
Chapter 3

Progress in Functional Neuroanatomy:

Precise Automatic Geometric

Reconstruction of Neuronal

Morphology From Confocal Image

Stacks

3.1 Summary

Dendritic architecture provides the structural substrate for myriads of input and output

synapses in the brain and for the integration of presynaptic inputs. Understanding mech-

anisms of evolution and development of neuronal shape and its respective function are

thus formidable problems in neuroscience. A fundamental prerequisite for �nding answers

is a precise quantitative analysis of neuronal structure in situ and in vivo. Therefore we

have developed a tool set for automatic geometric reconstruction of neuronal architecture

from stacks of confocal images. It provides exact midlines, diameters, surfaces, volumes

and branch point locations, and allows analysis of labeled molecule distribution along neu-

ronal surfaces as well as direct export into modelling software. We demonstrate the high

accuracy of geometric reconstruction and show the analysis of putative input synapse dis-

tribution throughout entire dendritic trees from in situ light microscopy preparations as

a possible application. The binary version of the reconstruction module is downloadable

at no cost.
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3.2 Introduction

The morphology of a neuron's dendritic tree is important for its computational charac-

teristics (Euler and Denk, 2001; Koch and Segev, 2000; Mainen and Sejnowski, 1996; Rall

et al., 1992) and for an adequate spatial distribution of thousands of input and output

synapses. Dendritic arborizations receive, integrate, �lter and process incoming synaptic

information with complex spatio-temporal patterning to create structured information

output which is transmitted to network partners. Therefore, network and brain func-

tion are strongly dependent upon neural architecture. The morphogenesis of dendritic

trees is regulated by innate genetic factors, neuronal activity and external molecular cues

(Libersat and Duch, 2004; McAllister, 2000; Miller and Kaplan, 2003; Wong and Ghosh,

2002) during developmental and experience-dependent plasticity (Spitzer, 2002; Wong and

Wong, 2000). Furthermore, alterations in neural morphology may occur during ageing

and neurodegenerative diseases (de Brabander et al., 1998; Uylings et al., 2000).

Despite striking achievements during recent years, neuroscience is still far from having a

comprehensive understanding of the computational function of dendritic shape (Gabbiani

et al., 2001; Hausser et al., 2000; Koch and Segev, 2000; Krichmar et al., 2002; Segev and

London, 2000; Single and Borst, 1998; Stuart and Hausser, 2001) and of the mechanisms

underlying maturation, re�nement and ageing of dendritic shape in the manifold types and

subtypes of neurons in the brain (Cline, 2001; Libersat and Duch, 2004; Schar�, 2000; Scott

and Luo, 2001; Wong and Ghosh, 2002). A commonly available tool is needed to create

neuronal morphology databases (van Pelt et al., 2001), and to quantitatively analyze

changes in dendritic shape with high accuracy, as imaged during development or during

learning in situ. Ideally, such a tool should provide precise 3-dimensional reconstruction

to determine the neuron's length, diameter, surface, orientation and branching pattern

(Libersat and Duch, 2004; Uylings and van Pelt, 2002) as well as its sites of input and

output synapses. Only with these measures in hand can a thorough geometric evaluation,

as well as the construction of models for computational analysis be performed.

Electron microscopy o�ers the highest precision of cellular morphology, but, due to the

method's practical constraints, is only applicable to �xed tissue and is restricted to sub-

volumes of neurons. Confocal or two-photon microscopy o�er excellent possibilities for

monitoring the growth in situ and in vivo of �uorescent-stained neuronal structures at

high resolution in 3 dimensions, while the neuron is in its natural environment.

Volume reconstructions, which provide surface and volume measures, are a commonly

available method for the automatic reconstruction of neural morphology from confocal

image stacks, but information about branching number, diameter and length must still be
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determined. This, in principle, could be accomplished by a variety of methods developed

to automatically extract midlines from binary volume de�nitions to build up a wire model

of the neuronal tree that is equipped with diameters, i.e. a geometric reconstruction.

Its precision, however, is limited by the quality of the volume reconstruction one starts

with, and usually su�ers from various algorithmic constraints which make manual post-

processing necessary.

Due to the low accuracy and incomplete results of automatic procedures that are now

available, geometric reconstructions are commonly done manually with programs such as

Neurolucida (MicroBrightField, Inc.) (Glaser and Glaser, 1990) or Neurozoom (Neurome,

Inc.). The accuracy of manual reconstruction however is strongly dependent on individ-

ual data interpretation to estimate midlines and diameters of dendrites. In addition, it

is extremely time consuming. Automation therefore is a better way to create morphol-

ogy databases that quantitatively link physiological function and genetic composition to

morphology.

We have developed a complete and novel reconstruction tool set for creating precise ge-

ometric reconstructions as well as surface and volume reconstructions. The entire recon-

struction process is fully automatic for confocal image stacks of well-stained dendritic trees

as complex as those of cerebellar Purkinje cells. For even more complex dendritic trees, or

for image stacks of inferior quality, the reconstruction procedure is semi-automatic. The

user can manually de�ne branch point hierarchy, and midlines and diameters of intercon-

necting segments are automatically determined to obtain a skeleton reconstruction. For

surface reconstructions at single voxel precision, the skeleton reconstruction is used to ex-

tract localized intensity values for image segmentation to cope with staining gradients and

intensity fading caused by bleaching or absorption. Furthermore, we present a method

for assessing the concentration of labeled markers around the neuron's surface or within

its cytoplasm to determine the distribution of labeled molecules along neuronal processes.

Finally, an export routine is included to write compartment model description �les from

geometric reconstructions in Genesis and Neuron format for computational analysis.

This tool set o�ers completely new approaches to address the development, re�nement,

and function of neuronal architecture. To speed up database establishment and common

use, it is equipped with a graphical editor to allow extensive interaction; it incorporates

into the commercially available visualization software, Amira. The binary version of

the reconstruction module is downloadable at no cost and its basic features are brie�y

documented (www.neurobiologie.fu-berlin.de/Evers.html). It requires Amira version 3.0

or 3.1 and is ready to install.
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3.3 Methods

3.3.1 Intracellular staining, immunocytochemistry and image ac-

quisition of multiple label specimens

Intracellular recording and staining of Manduca Motorneuron 5 was done as described

in Duch and Mentel (2004). Special care was taken to avoid tissue shrinking (Bucher

et al., 2000). A Leica TCS SP2 laser scanning microscope equipped with three di�erent

laser lines was used to acquire image stacks of tripple labeled preparations. All images

were obtained in simultaneous acquisition mode, i.e. the emitted �uorescence light of

synchronously excited �uorophores was divided by an acoustic-optical beam splitter to

be detected by separate photomultipliers. Thus, no image misalignment occurred due to

error in scan mirror positioning. Images were further processed with Amira 3.1 (TGS)

and arranged into �gures with Adobe Illustrator 10 (Adobe Systems Incorporated).

3.3.2 Correction for chromatic aberration

To correct for chromatic aberration of the optical path, a neuron was �lled with biotin

and double-labeled with Cy3- and Cy5- coupled streptavidin (Jackson Immunochemicals

Inc.). An image stack was obtained as described above. The misalignment between

images of the same structure was measured and corrected for in subsequent image stacks

of identically-treated specimens (see (Wouterlood et al., 1998)).

3.3.3 Programming

All programming was done in C++, making use of Amira 3.1 (TGS) and OpenInventor

(SGI) libraries for image data handling and visualization. The software was compiled

for Microsoft Windows 2000 using Microsoft Visual Studio 6.0, IRIX 6.5 (SGI) using

MIPSpro Compiler Version 7.41 and Suse Linux 9.0 using gcc3.3.1.

3.3.4 Reconstruction algorithms

The algorithms are described in detail in a parallel, theoretical paper (Schmitt et al., 2004).

However, the basic principle of �tting reconstructions to confocal image data is brie�y

described in words below. The neuron's branchpoint hierarchy is set by the user. Then the

interconnecting segments are automatically reconstructed as cylinders. This is realized by

adapting the active contour model by Kass (1988). Thereby, the precision of the skeleton

of interconnecting link segments is controlled by two criteria: �rst, the skeleton has to be
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smooth, avoiding wiggles, which are due to imaging noise. This is enforced mathematically

by equipping the segment with spring properties and calculating its reset force, a value

which describes the segments smoothness (smoothness measure). Second, the centerline

has to lie close to the middle of bright voxels (medialness), guaranteeing that the precise

morphology of the neuron is reconstructed. This medialness is evaluated algorithmically

and, in turn, consists of two components: First, voxels with relatively higher gray value

should lie inside the neuron's circular cross-section, whereas relatively lower gray values

should lie outside. Second, the change of staining intensity, i.e. the gradient of image

intensities should be maximal at the circumference of the circular cross-section. Both

criteria for medialness are dependent on the local staining distribution rather than on the

absolute value of staining intensity.

Both the smoothness measure and medialness measure are evaluated for every cylinder,

giving a numerical expression of reconstruction quality, called energy in the following. By

iteratively evaluating the summed energy of the segment (i.e. the energy functional) and

adjusting its midline and diameters to minimize its energy, the reconstructed segment is

�tted to the confocal image data.

Precise surface reconstructions are obtained by initially calculating a 3-dimensional dis-

tance map of �oat values with the voxel resolution of the original image data, on which

every voxel holds the distance to the nearest cylinder of the skeleton reconstruction. Nega-

tive values mark the inside of the structure and the zero-crossing the structure's boundary.

The distance map is subsequently deformed to best �t the image intensity distribution,

loosing the restriction to cylindrical cross sections. For this we deploy the geodesic ac-

tive contour method (Caselles et al., 1997), which allows introducing several weighing

criteria to judge reconstruction quality on a voxel by voxel basis. These criteria namely

are staining intensity at every single compartment of the cylindrical reconstruction, local

staining gradients, and a user-de�ned surface smoothness. The distance map is iteratively

optimized adjusting the distance values of every voxel to maximize reconstruction quality.

The distance map can be threshold-segmented to obtain a binary volume de�nition. Sub-

sequent surface reconstruction can be generated, for example, by application of standard

techniques (e.g. generalized marching cube algorithm), yielding a triangulated surface

reconstruction.

3.3.5 Staining density and localization extraction

Staining density distribution along neuronal projections can be calculated in two di�erent

ways. If membrane-associated proteins are under investigation, the mean intensity of
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2nd channel image data around every triangle of a triangulated surface reconstruction is

calculated within a pre-de�ned distance and stored for every triangle. For correlation

analysis between the skeleton's geometry and the staining localization, the skeleton is

fragmented into truncated cones. Surface triangles are assigned to that cone-shaped

compartment best approximating the triangle's location and are stored for every node.

Thus staining distribution calculated for the surface reconstruction can be related to the

neuron's geometry.

If the localization of cytoplasmatic proteins should be analyzed, the mean staining density

within the volume corresponding to a cone-shaped compartment of the skeleton recon-

struction is extracted. The node's volume is �rst con�ned to lie on the node's side of the

planes orthogonally intersecting the straight lines to its neighbor nodes in their center

point, and second, the volume's voxels must hold a negative value in the �tted distance

map (described above). The density values are stored for every node.

3.3.6 Exporting geometry data for analysis

Data about tree geometry can be exported as an ASCII table and include the following

values for every branch segment: successive endings, segments, number of branchpoints

and tree length; length and mean radius of branch segment; tree distance and air distance

to tree origin.

Tags can be individually assigned to skeleton nodes. This enables to de�ne a selection

of nodes for geometric analysis. If a geometric analysis is performed for selected nodes,

the ASCII table will additionally include the following measures: length and mean radius

of the branch segment the node is part of; the node's tree distance and air distance to

tree origin; distance to next higher branchpoint; radius of the node; values stored for the

node.

3.3.7 Importing three-dimensional reconstructions in non-proprietary

format

An import and export �lter for neuron morphology data in SWC-�le format (Cannon et al.,

1998) is included with the reconstruction module for Amira. This is a suggested format for

online neuronal morphology databases, as used at http://www.cns.soton.ac.uk/∼jchad/
cellArchive/cellArchive.html. This �le format is supported by CVAPP, a program for

viewing and simple editing available from the above address, and which also supports the

import of Neurolucida reconstructions. Like this, it is possible to process Neurolucida
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reconstructions within Amira.
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3.4 Results

Here we present a comprehensive new reconstruction tool-set for measuring precise geo-

metric parameters, describing the morphology of 3-dimensional neuronal processes. The

tool-set consists of 4 components.

1. A semi-automatic reconstruction procedure is realized by adapting the snake algo-

rithm (Kass, 1988; Schmitt et al., 2004) to trace approximately tubular neuronal

structures in confocal image stacks. User interaction is needed to de�ne branch point

hierarchy, whereby the algorithm automatically determines the midline and diam-

eter of interconnecting link segments at a user-prede�ned step size. The resulting

tubular reconstruction of the neuronal tree, which we refer to as the neuron's skele-

ton, contains precise information on length, diameter, orientation and branching

pattern.

2. To access exact surface and volumetric measures, we adapted the geodesic active

contour algorithm (Caselles et al., 1997; Schmitt et al., 2004) to �t the idealized

cylindrical shape of previously generated skeleton reconstruction to actual image

data, resulting in precise boundary de�nition.

3. To accelerate the reconstruction process, we skeletonize threshold segmented confo-

cal image stacks with the TEASAR algorithm (Sato et al., 2000) to generate pre-

liminary wire models, which then serve as an initialization for the above-mentioned

tracing algorithm. This fully automates the reconstruction process in cases of sim-

ple branching (for instance Purkinje neurons) and well-stained neurons, and signi�-

cantly shortens the time needed to reconstruct neuronal trees with complex branch-

ing.

4. We present new methods for measuring staining density of 2nd channel image data

along surface de�nitions or within their respective volume. This enables relative

geometric analysis of, for instance, protein location in close vicinity to the surface

of the dendritic tree or within the cytoplasm along the axis of neuronal projections.

3.4.1 Tracing neuronal structures

To trace the run of a neuron's processes in three-dimensional space from a stack of con-

focal image data, it was previously necessary to manually de�ne midlines and diameters

of all branches. This is extremely time-consuming and depends on personal judgment.

These drawbacks can be overcome as depicted in Fig. 3.1. As an example, a small part of
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Figure 3.1: Semi-automatic midline and diameter determination beats manual mehtods.
Continued on next page.

a motorneuron dendritic �eld (shown as a volume rendering in Fig. 3.1A) is reconstructed

mimicking a conventional manual procedure within Amira (Fig. 3.1B). Typically occur-

ring inaccuracies are obvious. First, slight bends of neuronal processes often get ignored,

which leads to shortcuts in these structures (see Fig. 3.1B2, oval). Second, strong tapers

and sharp curves are represented by unrealistic abrupt changes in diameter and sharp

angular bends (Fig. 3.1B, large arrows). Third, image contrast must be adjusted to

make small and, therefore, weakly-stained structures visible during reconstruction. The

perceived diameter of all structures then will then appear thicker, thus introducing fur-

ther inaccuracy. As a consequence the resulting reconstruction re�ects only the coarse

morphology, and an inordinate amount of time must be invested in manually describing

tapers and curves with a small enough step size. Even a small step size cannot compensate

for the restriction of manual reconstructions to the image plane of every optical section of

confocal image data. This is expressed in a stair-like appearance of the midline's course

in a y-z aspect of the reconstruction, resulting in mis-estimation of length (Figs. 3.1B,

D, E ). This problem becomes strikingly obvious in a manual reconstruction of an entire

dendritic tree (Fig. 3.1E ). To overcome these limitations we developed a semi-automatic
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Figure 3.1: continued

A: a small part of an intracellularly labeled dendritic �eld is shown as volume rendering
from a stack of optical section. Manual geometric reconstructions (mimicking conven-
tional manual procedures) ao the main dendrite (B and C ) are compared with geometric
reconstructions of the same dendrite obtained with a new semiautomatic method (C ).
B -D : all points de�ned by user interaction are depicted in blue. Manual reconstruction
requires that the user de�nes all center points and diameters manually and by personal
judgment of the confocal image stack (blue spheres in B). To follow the 3-dimensional run
of the dendrite, diameters must also be user-de�ned between branchpoints (blue spheres
in B). Nevertheless, even with multiple user de�nitions for a single dendritic branch, atri-
�cial abrupt changes in diameter and sharp bends occur (bold arrows in B), and slight
bends often get ignored (see selective enlargement in B2 ). Applying our semi-automatic
method (C ), only branchpoints and endpoints have to be de�ned by the user (see blue
spheres in C ), whereas the interconnecting link segment is traced automatically with pre-
selctable step size at single voxel resolution (C ). This reduces time investment [compare
number of user-de�ned blue spheres in manual (B) and in semi-automatic (C ) method],
and it also precisely describes sharp (bold arrows in C ) as well as slight bends (see selec-
tive enlargement in C2 ). If the same amount of pints is user-de�ned (D) as needed for
the semiautomatic procedure (C ), the accuracy of the resulting manual reconstruction is
strongly impaired. Resulting error of the manual reconstruction compared with the new
semiautomatic method is depicted quantitatively in the table in A. To show the resulting
di�erence for an entire dendritic tree, a manual reconstrution of the dendritic �eld of an
insect motorneuron (E ) and its revision with the semiautomatic method (F ) are depicted
in xz-view in E and F. Selective enlargements of the distal ends in yz-view show only the
midlines. This shows that the manual reconstrions's midline is restricted to optical sec-
tions of the confocal microscope, resulting in a stair-like appearance and false estimations
of dendrite lenght and branch trajectory.

reconstruction algorithm, only demanding user-provided information on interconnectivity.

One method is to interactively de�ne connected locations within the neuronal tree. The

link segment is then traced automatically, producing a string of connected cylindrical

compartments. Under the assumption of approximate cylindrical shape of the stained

structures, the compartments' axis and radii are �tted into the confocal image stack data

by iteratively optimizing their values to achieve best image data congruency. The method

does not depend on boundary de�nition by �xed threshold levels, but calculates inten-

sity gradients to determine boundary information (see 3.3). Branchpoints are created,

choosing already-reconstructed parts as starting or endpoint. Therefore, to measure the

geometry of a complete neuronal tree, only the location and connection pattern of branch-

points and endpoints must be de�ned manually. The algorithm automatically optimizes

branchpoint location in 3 dimensions, but does not correct for user de�ned branchpoints

located outside the original staining. Branchpoints that are left out of the calculation will
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result in a straight reconstructed segment.

To show the advantages in the accuracy of this algorithm, we revised the manual recon-

struction shown in Fig. 3.1B with our semi-automatic method. The resulting reconstruc-

tion (Fig. 3.1C ) is a better �t to the confocal image data than the manual one, and is

independent of varying staining intensities. It precisely describes slight and sharp bends

as well as continuous tapers (Fig. 3.1C large arrows, C2 ), resulting in an exact geomet-

rical reconstruction of neuronal processes. The center point of each compartment is not

restricted to the image planes, but is adjusted to lie in the center point of its staining

intensity distribution (see 3.3). Therefore, the dependency of length accuracy on optical

section thickness is strongly diminished.

In addition to the improved accuracy, the semi-automatic reconstruction process is much

faster than manual approaches, because the number of points that have to be de�ned is

considerably reduced (Figs. 3.1B, 1C, blue spheres). The step size in which the skeleton's

midline and diameter are determined can be adjusted to any value, limited only by the

computational power of the computer, and not by the time invested by the experimenter.

In contrast, when reducing the number of manually de�ned points to the number needed

for the semi-automatic reconstruction, but not applying the new algorithm, the resulting

reconstruction is greatly impaired (Fig. 3.1D). If the metric parameters of the manual

reconstruction are compared to those of the precise semi-automatic reconstruction, for

example in the case of segment 1 in Fig. 3.1B to D, the deviation of the manual re-

construction for single segments is as high as 10% in the length and 26% in its radius.

The inaccuracy of the midline's course in manual reconstructions as compared to the

high accuracy of the new tool presented here is further demonstrated in Fig. 3.1E to F.

The x-y view of an entire dendritic tree of an insect motorneuron is shown for a manual

Neurolucida reconstruction (Fig. 3.1E ; imported into Amira, see methods), and the same

reconstruction is then �tted with the method described above (Fig. 3.1F ). Diameter

precision, smoothness of �t, midline de�nitions, and length calculation are all far better

with the new automatic tool. This becomes especially apparent when comparing selec-

tive enlargements of the tip of the dendritic �eld in a y-z view (Fig. 3.1E and F ). The

manual reconstruction shows a stair-like appearance as compared to the smooth �t with

the automatic method. Comparing the metric parameters of the reconstructions of the

whole dendritic trees shown in Fig. 3.1E and F, a deviation of the manual reconstruction

as high as 7% in length, 7% in surface area and 11% in volume is observed. In summary,

compared to manual solutions our methods save considerable amounts of time and provide

higher accuracy with respect to �nding the midlines and the diameters of the neuronal

segments under investigation.
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3.4.2 Boundary determination / distance map calculation / sur-

face extraction

As the cylindrical �t discussed above precisely describes the midline of neuronal structures,

it only approximates the actual run of the surface of the neuron and does not give good

boundary de�nition for non-tubular structures. Exact surface representation of neuronal

structures may be of fundamental importance, however, when exact volumetric measures

are needed, and also for a proximity correlation between multiple structures acquired

when considering multiple channel image data.

Most surface extraction methods rely on global threshold criteria, although confocal image

stacks bear method-constrained data blurring and distortion described through the point

spread function (PSF), as well as decreased �uorescence intensity with increased distance

from the site of dye injection due to dye di�usion delay before sample �xation or live tissue

image acquisition. The confocal image data can be corrected for the microscope and tissue

speci�c PSF by applying deconvolution algorithms, principally enabling threshold-based

image segmentation to build volume and surface reconstructions. Dye concentration gra-

dients, however, may signi�cantly in�uence accuracy particularly in distant parts of the

neuron. Thin processes with �uorescent signals which are close to background noise, stain-

ing discontinuities, and ruptures occurring through histological processing need manual

editing, which is subject to individual perception. To illustrate the importance of devel-

oping methods other than globally-de�ned threshold values for boundary extraction, we

show a skeleton reconstruction of an individual dendritic growth-cone obtained with the

semi-automatic method superimposed onto a single optical section (Fig. 3.2A and B).

The contrast in Fig. 3.2A is adjusted to make thin structures visible, whereas in Fig. 3.2B

the contrast is left untouched, to remain the same as in the original recording, which was

adjusted to exploit the full working range of the photo detector while avoiding signal sat-

uration during image acquisition. If the interior of the neuron is de�ned to be composed

of voxels with staining intensities as occurring within small structures, the boundaries

of thick structures will be overestimated. In contrast, if the threshold value is adjusted

to describe the boundary of thick structures, thin structures are completely excluded.

Therefore, threshold-based surface extraction cannot be applied to neurons consisting of

structures with di�ering staining intensities, although this is a regularly-occurring phe-

nomenon with �uorescent-labeled neurons (Fig. 3.2A and B). To solve this problem, we

use the previously-�tted skeleton to extract local threshold values for each cylindrical

compartment. These local threshold values are then used by an adapted active contour

algorithm to �t a 3-dimensional distance map to the image data applying smoothness con-
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Figure 3.2: From a skeleton with �tted diameters to an exact surface. Semiautomatic
cylindrical reconstruction is insensitive to lokal staining intensities, because it evaluates
the steepest slope of the intensity gradient to determine the structures boundary. This
problem is shown by superimposing a skeleton reconstruction onto a single optical sec-
tion, in which the contrast is optimized according to 2 di�erent criteria: 1st, to make thin
neuronal processes visible (A), and 2nd, optimized for thicker structures (B). Perceived
diameters depend strongly on the contrast setting as indicated by the white arrowheads
in A and B. This problem is overcome by using an algorithm to extract local thresholds.
Skeleton reconstruction is used to initialize a distance map that is �tted to the actual
staining distribution (C ). Negative values mark inside of tructures, and 0 crossing in-
dicates the structure's boundary. Arrowheads indicate sites where conventional global
threshold-based boundary extraction would fail to produce correct results for either one
of the neuronal processes, depending on the chosen threshold value. Resulting distance
map can be converted into a binary volume de�nition by selecting voxels with distance
values ≤ 0 (D). Resulting surface overcomes limitation to strictly tubular topology and
takes nontubular neuronal shapes into account (D), thus representing a precise surface
de�nition.

straints (see methods). The distance map has the same voxel size as the original image

data, whereby every voxel maintains the distance value to the nearest patch of neuronal
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surface (Fig. 3.2C ). Negative values mark the inside of structures; zero-crossings mark

the boundary. This distance map can be threshold-segmented to obtain a binary volume

de�nition. A precise triangulated surface reconstruction can be generated, for example,

by applying the generalized marching cube algorithm (Fig. 3.2D).

3.4.3 Complete automation by skeletonization of threshold seg-

mented image data

As described above, �xed-level threshold segmented surface reconstructions are limited in

their accuracy. However, if applied to relatively large and well-stained structures, they

give a good preliminary approximation of the actual neuronal shape. Here, we use the

TEASAR algorithm (implementation into Amira kindly provided by Ste�en Prohaska,

Berlin, Germany) to extract an approximated centerline tree from prior segmented confo-

cal image stacks, equipped with diameters. This tree is subsequently used as initialization

for the previously described semi-automatic method. The interplay between both algo-

rithms produces a skeleton, which is precisely adapted to the image data without further

user interaction, not impairing the reconstruction's accuracy.

This fully automatic reconstruction approach is demonstrated for the dendritic �eld of a

Purkinje cell, a cultured rat astrocyte and for the axonal arborization of an insect sensory

neuron (wind sensitive accessory hair of Locusta migratoria). As the TEASAR algorithm

relies on strict hierarchical organization of the segmented image data, the threshold level

for all cases was adjusted to include the maximum of the arborizations while avoiding

arti�cial formation of loops within the tree. In cells labeled as evenly as the Purkinje

neuron depicted in Fig. 3.3A (projection view of all optical sections into one focal plane),

most arborizations are included in the resulting fully automatic geometric reconstruction

(Fig. 3.3B). This leaves the user to add only a few leftover branches with staining intensity

below threshold level (arrows), or to remove a few possible loops within the threshold

segmented image data. The entire reconstruction of the Purkinje cell (Fig. 3.3A, B) takes

the experimenter less than 15 minutes working time, including the creation of dendrograms

(Fig. 3.3C ) and the extraction of accurate values for the length, diameters, and numbers

of all segments and their order and orientation in 3-dimensional space.

As illustrated in Fig. 3.3 for a cultured astrocyte (Fig. 3.3D, E ) and the central projection

patterns of a locust hair receptor cell (Fig. 3.3F ), this combination of methods fully

automates the reconstruction process of many di�erent cell types, as long as uniform

staining intensity can be achieved experimentally. In the case of complex neurons with

largely di�ering staining intensities, only clearly articulated parts of the neuronal tree
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A B

C

FED

Figure 3.3: Full automatic reconstructions from confocal image stacks. Continued on
next page.

can be reconstructed fully automatically (compare the high complexity of the dendritic

�eld of the insect motorneuron in Fig. 3.4F ). To avoid the formation of loops within

the volume reconstruction, the threshold value for image segmentation then must be

chosen moderately, excluding �ne arborizations from the full automatic reconstruction

and producing unconnected fragments of the neuronal tree as a consequence. However,

this still saves the user a large amount of time, as unconnected parts can be reconnected

manually and only �ne structures are left over to be traced interactively applying the

semi-automatic method described above (see 3.4.1).
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Figure 3.3: continued

As shown for a Purkinje neuron (A-C ), an astrocyte (D and E ), and the central pro-
jections of a locust mechanoreceptor (F ), fully automatic reconstructions at maximum
precision are possible for well- and evenly stained neurons by combining the TEASAR
centerline extraction algorithm and our adapted semiautomatic snake algorithm. This ap-
plication is restricted to confocal image data that allows threshol-based volume estraction,
preseving the noninterrupted and strict hierarchical organization of neuronal arboirzation.
This criterion is ful�lled by image stacs of a quality as shown for a rat cerebellar Purkinje
cell as a projection view in A. Most of the dendritic tree of this neuron was reconstructed
completely automatically wihtin 15 min (B). Limits of fully automatic reconstruction are
shown by the fact that some weakly stained projections at the upper rim of the den-
dritic tree ar missing (see arrows, cf. A and B). Such absent segments can be rapidly
suppelemented by using our semiautomatic reconstruction procedure. The combiation
of automatic and semiautomatic tools results in quite precise quantitative neural shape
data with minimal time investment. Total work time from the raw data stack of the
Punkinje cell shown in A to a dendrogram including diameters as shown in C was 15 min.
This method is applicable for multiple cell types. D : projection view of a confocal image
stack of cultured astrocytes. Top right astrocyte was selectively reconstructed (E ) with
the fully automatic tool within a few minutes. F: fully automatic reconstruction of cen-
tral projections of alocust mechanoreceptor superimposed onto the projectoin view of the
corresponding confocal image stack. Data courtesy of J. Brockhaus and C. Lohr (Kaiser-
slautern, Germany; Purkinje Neuron), D. Muench (Berlin; locust mechanoreceptor), and
M. Holtje and G. Ahnert-Hilger (Berlin; astrocytes).

3.4.4 Evaluation of the geometric relation between multiple chan-

nel data

Neuronal function and development are strongly in�uenced by both, molecules that are

in close spatial relationship to the dendritic surface, such as cell surface proteins, growth

factors, and synaptic receptor molecules, and by molecules that occur compartmental-

ized in the cytoplasm, such as kinases along the neuron's projection axes. Therefore,

many questions rely on an analysis of the proximity and localization relation between

�uorescently-labeled structures in multiple channel image data. Ideally, the boundaries of

each stained pro�le would be de�ned with a precision that allows distance measurement

between surfaces in the submicron range. This is now possible for the dendritic surface by

local threshold extraction, as demonstrated in Fig. 3.2. However, if this is to be done for

immunocytochemically labeled molecules which are di�usely distributed throughout the

neuropil, boundary de�nition by threshold segmentation is usually not applicable because

of the antigen concentration-dependent variation of emitted light intensity.

With this in mind, we suggest a novel evaluation method for measuring the 2nd and
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Figure 3.4: Evaluation of labeled protein concentration along dendritic surfaces at sub-
micron resolution. Continued on next page.

3rd channel staining density around surface areas. This is done by calculating the mean

staining intensity around every triangle of a triangulated surface in a user-de�ned dis-
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Figure 3.4: continued

Analysis of the distribution of labeled putative presynaptic sites around solely postsy-
naptic dendritic structures (all putative synapses marked by anti-synaptotagmin, or only
putative inhibitory synapses marked by anti-synaptotagmin and anti-GABA). A: precise
surface reconstruction af a single growth-cone from an insect mononeuron (MN5 from
Manduca sexta) as generated by local threshold �tting of the reconstructed skeleton. To
neglect all labeled presynaptic proteins further than 300 nm from the growth-cone surface,
a distance map around the precise surface reconstruction is used to delete all synapto-
tagmin label outside the 300-nm range. Resulting cut-out of the anti-synaptotagmin
label is visualized as avolume redering. B : to visualize and quantify the average molecule
concentration around each patch of the reconstructed growth-cone surface, the mean
anti-synaptotagmin label staining intensity is depicted in false color code on the surface
reconstruction, with warm colors representing high concentraions. For further quanti�ca-
tion and/or export into modelling software, the surface reconstruction is projected back
onto the individual cylindrical compartments of the geometric reconstruction (C ). D :
selective enlargement of a small part of a dendritic surface reconstruction and volume
redering of both, anti-GABA immunocytochemistry from a 2nd image channel (top left),
and volume rendering of anti-synapsin immunostaining from a 3rd image channel (top
right). Average molecule concentration around each patch of the reconstructed surface is
depicted for each staining (anti-GABA, bottom left ; anti-synapsin, bottom right) in false
color code, with warm colors representing high concentrations. Asterisks indicate sites
on the dendritic surface reconstruction that are in dlose proximity to high concentrations
of both immunolabels, but arrows indicate close proximity to high concentrations of 1
label only. The co-localization index [A×B/(A+B)] is shown in E, with warmer colors
representing high concentrations of both labels within 300 nm of the surface. F : example
of an entire dendritic tree for which this type of analysis was conducted. Numerical data
for the distribution of putative GABAergic presynaptic sites detected with this method
throughout the entire dendritic tree with 1,900 branch pints is plotted as a function of
dendritic diameter (top diagram) and as a function of distance to the dendritic branch
origin (see arrow).

tance in 3-dimensional space. Consequently, a neuronal surface is searched for its spatial

relationship to labeled proteins by evaluating their staining intensity in a user-de�ned

surrounding sub-volume. This staining density can then be mapped onto the surface for

visualizing not only the distribution but also the staining intensity of labeled antigens

along neuronal processes.

If the critical distance between both labels of the double staining is at about the same

magnitude as the resolution of the recorded images, the surface has to be de�ned with

great precision. In this case the skeleton reconstruction and consecutive surface generation

described above are pivotal, particularly if synaptic proteins or surface molecules are

under investigation. For instance, considering the relation of presynaptic structures to

their postsynaptic membrane in the case of the Calyx of Held, the synaptic cleft is about
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20 nm in size, and the vesicle pool extends to about 200-300 nm (Satzler et al., 2002)

from the active zone. This sums to a distance of 220-320 nm, which would be the critical

distance if vesicle-associated proteins are to be analyzed. The scanning resolution of the

confocal microscope is set to 100x100x300nm, which exceeds the actual optical resolution,

thus resulting in oversampling. This procedure counteracts partial volume e�ect and

facilitates algorithmic structure recognition. However, the critical distance for evaluating

staining distribution is a width of only a few voxels. To illustrate the power of this

evaluation method, we chose an intracellular staining of a dendritic growth-cone of an

insect motorneuron (Manduca sexta, MN5) combined with an antibody staining against

synaptotagmin (Fig. 3.4A to C ). This addresses the distribution of putative presynaptic

terminals contacting the postsynaptic growth-cone.

Because of the density of immunoreactive synaptotagmin-positive pro�les in the neuropil,

the image information has to be excised around the dendritic surface for a better visu-

alization of the relation between dendrites and the labeled proteins in the 2nd channel

image data. This is accomplished by a distance map, generated as described above. All

image intensities further than 300 nm from the dendritic surface are set to zero, so that

the volume rendering of the resulting data, displayed together with the surface recon-

struction, allows comprehensive visualization (Fig. 3.4A). To also obtain quanti�cation,

the surface reconstruction is equipped with a color code representing the staining density

within 300 nm (Fig. 3.4B). Warmer colors represent the higher staining intensities of

synaptotagmin label located within 300nm of the dendritic surface. Used in conjunction

with the skeleton reconstruction of the dendrite, each patch of the surface reconstruction

can be projected onto the individual cylindrical compartments. This enables analysis

of geometric relation between staining distribution and the neuron's morphology (Fig.

3.4C ). This type of evaluation makes it possible to analyze entire dendritic trees for

synaptic contact probability, at least under the assumption that a high staining intensity

of a synaptically-localized labeled protein might indicate a high likelihood of a putative

synapse. Fig. 3.4D to F demonstrate how this type of analysis can be further extended by

an additional third label. In this example a triple-staining is used to address the question

of how putative GABAergic synapses might be distributed throughout an entire dendritic

tree. An intracellular staining of a motorneuron is combined with immmunocytochemistry

for synapsin-I (2nd channel) and for GABA (3rd channel). The motorneuron dendritic

tree is reconstructed, and both immunolabels further than 300 nm from the dendritic

surface are excised with the help of the distance map as described above. In Fig. 3.4D a

small part of the reconstruction of the dendritic tree is superimposed with the remaining

immunolabels for GABA (left) and for synapsin-I (right) as voltex views. In Fig. 3.4D
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(bottom) the mean staining intensities of the immunolabels within 300 nm distance of the

reconstructed surface are visualized on the dendritic surface in false color code. Asterisks

indicate co-localization of high staining intensities of GABA and of synapsin-I on the

dendritic surface and arrows indicate sites on the surface which are in close relation to a

high staining intensity of one label only. Calculating the correlation between both yields a

color map which results from co-localization of both, GABA and synapsin-I at high stain-

ing intensities within 300 nm of the dendritic surface (Fig. 3.4E ). This o�ers a method

of assessing the distribution of putative synapses of a speci�c transmitter throughout

entire dendritic trees on the light microscopic level. As all staining intensity maps and

correlation analysis can be projected onto the skeleton reconstruction, numerical data is

available. As an example we analyzed the occurrence of putative GABAergic synapses

detected with this method through the entire dendritic tree of an insect motorneuron (Fig

3.4F ). The frequency of putative GABAergic synapses is plotted as a function of dendrite

radius and as a function of the distance of the origin of the �rst order branch of the tree.

As supplemental data a movie can be downloaded, showing the geometric reconstruction

of the complete dendritic tree and a close-up into the subsequently generated surface re-

construction. The surface reconstruction is then embedded into the original image data of

the intracellular staining, Synapsin-I label and GABA-label consecutively and equipped

with the color codes generated as described above. This movie allows a comprehensive

judgment on the applicability of the method. Many other numerical analyses are possible,

as this is just to demonstrate the power of quantitatively evaluating proximity relations

from multiple �uorescent labeled channels. In principle, the distribution of every molecule

which gives a clear label in immunocytochemical detection can be analyzed. Depending on

the scale, correction for chromatic aberration of the optical path may have to be applied

before (Wouterlood et al., 1998).

To measure the distribution of labeled cytoplasmic molecules along neuronal arborizations,

the staining intensities of labeled antigens in the interior of the cell surface must be

evaluated with regard to their distribution along the neuron's projection axis. To ensure

correct de�nition of the cell's interior, a precise de�nition of neuronal shape - irrespective

of the idealized cylindrical shape of geometric reconstructions - is of equal importance as

for surface-localized proteins. Therefore, a distance map has to be computed as described

above to calculate the mean staining intensity of 2nd channel image data within the

volume of all skeleton nodes. The volume corresponding to a node is �rst con�ned to lie

on the node's side of the planes orthogonally intersecting the straight lines to its neighbors

in their center point. Second, its voxels must hold a negative value in the distance map.
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3.5 Discussion

We describe a novel and ready-to-use tool set which enables fast and reproducible geo-

metric reconstruction of �uorescent-labeled neuronal arbors from confocal or two-photon

image stacks. As demonstrated, the reconstruction accuracy is very high, and it is largely

independent of the individual doing the reconstructing. In addition, we introduced a

technique to analyze staining intensity distribution along neuronal projections with re-

spect to their surface or cytoplasmatic localization using multiple channel image stacks.

This method allows investigation of protein distribution and concentration along whole

neuronal trees without time consuming immuno-electron microscopy (EM) studies. Due

to limits in optical resolution, however, the method is restricted in its applicability. It

has to be carefully tested for each type of analysis conducted (for example by acquir-

ing test images of pressure injected �uorescently labeled beads) and can not replace EM

studies for many questions. If co-applied with the geometric reconstruction described

above, metric correlation analysis with respect to the neuronal morphology is possible.

Combined with the recent achievements in two-photon imaging and genetically-expressed

dyes this method will allow to estimate the relative concentration variations of molecules

along the surfaces of living and growing neurons to be determined at the optical resolu-

tion the imaging setup delivers. The key of this new approach is to statistically evaluate

staining intensity distribution with respect to geometry. This may be particularly useful

for evaluating morphogenetic gradients, as occurring for instance from guidance molecule

distribution during CNS development.

Image stacks from well- and evenly-stained neurons that are acquired at high scan-

ning resolution without detector saturation can now be reconstructed within minutes, as

demonstrated for the examples of a Purkinje cell and the a�erent projections of an insect

mechanoreceptor neuron. Dendritic spine necks show distinct morphological characteris-

tics and are usually too thin for automatic recognition, and thus, must be reconstructed

semi-automatically by de�ning their origins on the dendrite. Algorithms optimized to

detect spine morphology have recently been published by other authors (Weaver et al.,

2004) and may be combined with these methods.

The combination of user interaction and semi-automatic tools now allow precise recon-

structions of even the most complex dendritic �elds and �ne dendritic �lopodia, accom-

plished much more quickly than with conventional methods. This will be advantageous

for both, single neuron analysis (life cell imaging, modelling etc.) and the creation of

neuronal morphology databases (see below).
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3.5.1 Complete automation by centerline extraction

Centerline extraction from binary volume de�nition is carried out with the TEASAR al-

gorithm. This algorithm performes closest to our intuitive perception of the structure's

midline. Its disadvantage, however, is the dependency on a strict hierarchical organiza-

tion of the segmented image data. Deviation from hierarchical organization, for example

circular connections within the segmented image data, will occur if the threshold level for

image segmentation is not chosen carefully or if the distance between two structures is be-

low optical resolution. The TEASAR algorithm unpredictably chooses one way, regardless

of the size of connection. In these cases it would be favorable to achieve a centerline of all

the connections and allow the user to delete those that are unwanted. In principle this is

possible by applying geometric thinning algorithms. These, however, are sensitive to non-

smooth surfaces, erroneously producing a high number of arti�cial branches. This removes

the time bene�t of automatic centerline extraction, as one has to manually correct each

of these. Therefore, the tool set can be further improved by developing skeletonization

algorithms that also work dependably on non-hierarchal data. The programming of our

tool set is strictly object-oriented, therefore allowing easy integration of other algorithms

for further programming development.

3.5.2 Applying reconstruction on time lapse images

Time-lapse image stacks of living tissues must be analyzed to quantify growth dynamics of

neurons in 3-dimensional space. Slight movement of preparations and declining �uorescent

signal intensities due to dye bleaching rule out comparing structures by their absolute

coordinates, or by �xed-threshold level surface reconstructions. With our reconstruction

framework, however, it is possible to align a copy of a reconstruction obtained from an

earlier image stack to subsequently acquired data, letting the algorithm automatically

adjust it to interim movement in space. Only minor additions or deletions have to be

done to re�ect retraction or growth of arbors. Persisting branch points can be named

individually as absolute landmarks, which enables comparison of multiple subsequent

skeleton reconstructions. If additional proteins are marked with a di�erent wavelength

dye, whole cell analyses of growth dynamics can be correlated to protein distribution.

These new possibilities of quantitative neuronal tree analysis may open new doors for

data analysis in modern in vivo and in situ imaging studies on living neurons.
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3.5.3 Export into modelling software

Cylindrical models of neuronal projections are commonly used to simplify neuronal geom-

etry, and, therefore, speed up computational analysis of neuronal information processing

without losing the fundamental neuronal computation characteristics (Gabbiani et al.,

2001; Hausser et al., 2000; Koch and Segev, 2000; Single and Borst, 1998; Stuart and

Hausser, 2001). A major problem in building these cylindrical models for computational

analysis is caused by parts of the neuronal tree that show a strong deviation from a

cylindrical volume to surface ratio. In such a case cylindrical compartments with nicely

�tted diameters produce an insu�cient approximation of the neuronal geometry for com-

putational modelling. To overcome this limitation, the automatic generation of volume

reconstructions can, in turn, be used to optimize the algorithmically built cylindrical

model. Each voxel of the volume reconstruction is assigned to the nearest cylinder of the

geometrical reconstruction, and thus, can be used to optimize the cylinder's geometry

to best re�ect either the surface or volume of the reconstructed shape or any calculated

intermediate. The high accuracy of the geometric reconstruction allows optimization of

multi-compartment modelling, at least with regard to the geometric variables. To allow

easy transition to modelling programs, we provide export �lters to generate geometrically

correct models for either Genesis or Neuron. For both modelling programs, their respec-

tive innate 3-D method is deployed to specify shape, orientation, and location in three

dimensions. For Neuron, sections are generated for every tree segment located between

2 branch points or one branch and an end point. Every sampling point, as generated

by the semi-automatic reconstruction algorithm, is used as a 3-D point in the section.

The sections are connected to each other, preserving the neuron's topology. For Genesis,

compartment geometry information is created at every sampling point of the geometric

reconstruction by de�ning a point identi�er, its 3-D position and diameter, and the iden-

ti�er of its preceding sampling point in the neuron's tree hierarchy. Downsampling of the

spatial resolution to optimize computation speed must be done elsewhere.

3.5.4 Neuronal model and morphology databases

Neuroanatomical databases of reconstructed neurons can help in understanding the role of

morphological variations between cell types or between individual cells of the same type.

Morphological alterations of neurons occur during development (Libersat and Duch, 2004;

(Cline, 2001; Wong and Ghosh, 2002), during postembryonic plasticity such as learning

(Muller et al., 2002; Yuste and Bonhoe�er, 2001, 2004), but also during degenerative pro-

cesses, such as ageing (Uylings et al., 2000) or diseases (Arendt, 2001). Therefore, changes
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in neuronal shape have multiple causes and consequences. Accordingly, the patterns of

morphological changes probably follow distinct rules. Such rules cannot be inferred from

the structure of single neurons, but require to sample many neurons to extract general

principles. Another major question is whether neuronal morphology falls in distinct classes

or follows a continuum (Monyer and Markram, 2004). Cluster analysis of neuronal shape

is necessary to address this. Such problems require to pool geometric neuronal models

generated by many di�erent individuals in databases. In this regard two things are crucial:

standardization of �le format and a convention about the reconstruction procedure to en-

sure the possibility of comparison. Our method o�ers the possibility to standardize not

only the sampling density, but gives a high user-independency in determining the center

point and diameter of every compartment of the neuronal tree automatically. However,

the method can not fully account for the high variability in image data quality due to

di�ering tissue processing or imaging setups.

The usefulness of a neuron morphology database is also dependent on the availability of

physiological data recorded from each neuron. As it is not possible to achieve this if each

contributor must produce labor-intensive reconstruction work, a high degree of automa-

tion is pivotal. Therefore, our reconstruction framework will provide practical simpli�-

cation for this approach. To permit direct integration of our reconstruction toolset into

online databases for neuronal morphology, it is equipped with import and export �lters

for the currently used SWC �le format. To speed up database buildup and common use

by many scientists, it incorporates into the commercially available visualization software

Amira, and the binary version of the reconstruction module will be downloadable at no

cost at http://www.neurobiologie.fu-berlin.de/Evers.html. Having such a tool set avail-

able to many neuroscientists may help in tackling new aspects of functional neuroanatomy

with the goal of addressing the functional interplay between dendritic morphology and

dendritic computation, a functional relationship which lies at the very basis of information

processing in our brains.
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