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Chapters[2land [3|are based on accepted publications and chapter[dis based on a manuscript
ready for submission. Chapter |5/ describes work in progress which will need further labor

after the thesis before being publishable.

Chapter [2t New Methods for the Computer-Assisted 3D Reconstruction of Neurons from
Confocal Image Stacks

Chapter [3} Progress in Functional Neuroanatomy: Precise Automatic Geometric Re-
construction of Neuronal Morphology From Confocal Image Stacks

Chapter Synaptogenic control of the shape of dendritic filopodia

Chapter Computational analysis of dendritic signal integration at different develop-

mental stages of the Motorneuron 5 of Manduca sexta.

The contribution of the different authors was as follows:

Chapter This manuscript describes a joint project between Stephan Schmitt and me.
I programmed the graphical user interfaces and statistic export filters. Stephan
Schmitt developed the algorithmic principles for the reconstruction methodologies,
which are part of his Diploma thesis. Algorithmic optimization was done in equal
shares. Stephan Schmitt wrote the manuscript accompanied by continuous discus-

sions with Carsten Duch and me.

M. Sibila (former Scholz) contributed by discussing the work.

Chapter I developed the integration of automatic skeletonization algorithms to ini-
tialize the semi-automatic algorithms described in Chapter one. Further, T devel-
oped the quantification methods and data export of the localization of immuno-
cytochemically stained proteins along neuronal surface for statistical analysis else-
where. Stephan Schmitt contributed with the development of semi-automatic re-

construction algorithms as declared for Chapter one.

I wrote the manuscript and discussed the work with Stephan Schmitt and Carsten
Duch.

Chapter : I performed all experiments and the analysis of synaptotagmin distribution
along filopodia projections and wrote the manuscript. Morphological analyses of
filopodia was done in equal shares with Daniel Miinch. Experimental data and the

manuscript were discussed with Daniel Miinch and Carsten Duch.




Chapter I have developed the export routines for geometric data into NEURON and

also the routines to visualize NEURON modelling data in AMIRA. I have conducted
the parameter fits for passive membrane properties and did the modelling of spike
initiation (Fig. . The modelling work on synapse synchronicity is a collaboration
with Alexander Maye (ZIB) with him conducting the computation and with both

of us developing the intellectual framework.
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