Aus dem Institut für Fleischhygiene und -technologie des Fachbereiches Veterinärmedizin der Freien Universität Berlin

Zusammensetzung der psychrotrophen Hackfleischmikroflora "industrieller" Herstellung mit mikroökologischer und hygienischer Bewertung ihrer Hauptkomponenten

Inaugural-Dissertation zur Erlangung des Grades eines Doktors der Veterinärmedizin an der Freien Universität Berlin

vorgelegt von **Urte Köpke**Tierärztin aus Eutin

Berlin 2002

Journal-Nr. 2654

Gedruckt mit Genehmigung des Fachbereiches Veterinärmedizin der Freien Universität Berlin

Dekan: Univ.-Prof. Dr. M. F. G. Schmidt

Erster Gutachter: Univ.-Prof. Dr. Dr. h.c. G. Reuter

Zweiter Gutachter: Univ.-Prof. Dr. H.-J. Sinell

Dritter Gutachter: Priv.-Doz. Dr. Günter Klein

Tag der Promotion: 17.10.2002

Meinen Eltern und Schwestern

INHALTSVERZEICHNIS

1	EINLEITU	JNG	1
2	LITERAT	URÜBERSICHT	3
	2.1 Psyc	chrotrophe Fleischmikroflora	3
	2.1.1 E	Begriffsklärung	3
	2.1.1.1	Psychrotrophe Mikroorganismen	3
	2.1.1.2	Definition und Rechtsgrundlagen für Hackfleisch	6
	2.1.2 H	Herkunft und Wachstum der psychrotrophen Hackfleischmikroflora	8
	2.1.2.1	Einflußfaktoren auf das Bakterienwachstum	8
	2.1.2.2	2 Mikrobielle Kontamination	11
	2.1.2.3	Reduzierung der bakteriellen Belastung	20
	2.1.3	Vorkommen und Bedeutung der psychrotrophen Mikroflora des	
	ŀ	Hackfleisches als Verderbniserreger und als pathogene Spezies	22
	2.1.3.1	Psychrotrophe Verderbniserreger im Hackfleisch	22
	2.1.3.2	Psychrotrophe Pathogene im Hackfleisch	25
	2.1.4 A	Antagonismus und mikroökologisches Gleichgewicht im Habitat	
	F	Fleisch	41
	2.2 Nach	nweismethoden für Komponenten der Mikroflora von frischem	
		ch	44
		Kultureller Nachweis	
	2.2.1.1		
	2.2.1.2	2 Identifizierung einzelner Komponenten der psychrotrophen	
		Fleischmikroflora	47
	2.2.2 \	Weitere Nachweismethoden	48
		Molekularbiologisch-genotypische Methoden	
	2.3 Mikr	obiologische Normen und Kriterien für Hackfleisch	55

3	MATER	IAL UND METHODEN	60
	3.1 Ma [.]	terial	60
	3.1.1	Probenmaterial	
	3.1.2	Teststämme	60
	3.1.2	.1 Referenz- und Wildstämme	60
	3.1.2	.2 Isolierte Stämme	66
3.1.3		Nährmedien, Substrate und Reagenzien für die klassische Mikro-	
		biologie	66
	3.1.3	.1 Stammanzucht und Stammhaltung	66
	3.1.3	.2 Probenaufbereitung	67
	3.1.3	.3 Selektivnährmedien	68
	3.1.3	.4 Physiologische und biochemische Prüfung	69
	3.1.4	Arbeitsgeräte und sonstiges Material für die Klassische Mikrobiologie.	74
	3.1.5	Materialien und Arbeitsgeräte zur molekularbiologischen Spezies-	
		identifizierung von den Acinetobacter-Stämmen	75
	3.2 Me	thoden	76
	3.2.1	Probenaufbereitung	76
	3.2.2	Bestimmung der Keimzahl	76
	3.2.3	Isolierung der Bakterien	78
	3.2.4	Identifizierung der Hackfleischisolate mittels klassischer Mikrobiologie	
		nach einem phänotypischen Reaktionsschema	79
	3.2.4	.1 Thermische Wachstumsversuche, Gram-Färbungsverhalten und	
		Beweglichkeitsprüfung	79
	3.2.4	.2 Biochemische Reaktionen	80
	3.2.4	.3 Differenzierung der Gram-positiven Isolate	81
	3.2.4	.4 Differenzierung der Gram-negativen Isolate	81
	3.2.5	Sequenzanalyse eines partiellen hochvariablen 16S rDNA-Abschnittes	3
		der Acinetobacter-Isolate	93
	3.2.6	Erläuterungen zur statistischen Auswertung	93

4	ERGEB	NIS	SE	95
	4.1 Übe	erpr	üfung der physiologischen und biochemischen Reaktion	en
	der	Saı	mmlungsstämme	95
	4.1.1	Ph	ysiologische und biochemische Eigenschaften der Referenz-	und
		Wil	dstämme	95
	4.1.1	.1	Gram-negative Sammlungsstämme	95
	4.1.1	.2	Gram-positive Sammlungsstämme	98
	4.1.2	Ph	ysiologische und biochemische Eigenschaften der Isolate aus	;
		На	ckfleisch	100
	4.1.2	.1	Gram-positive Isolate aus Hackfleisch	100
	4.1.2	.2	Gram-negative Isolate aus Hackfleisch	101
	4.2 Ver	tail:	ung der psychrotrophen Hackfleischisolate	104
	4.2.1		ychrotrophe Keimzahlen der vier Hackfleischsorten	
	4.2.2		antitativer Vergleich der psychrotrophen mit den mesophilen	
			samtkeimzahlen	104
	4.2.3		antitativer Vergleich zwischen den Gram-positiven und den G	
			gativen psychrotrophen Mikrofloraanteilen	
	4.2.4		samtüberblick der qualitativen und quantitativen Verteilung de	
		psy	chrotrophen Hauptkomponenten nach Hackfleischsorten	109
	4.2.4	.1	Rindergehacktes	109
	4.2.4	.2	Schabefleisch	114
	4.2.4	.3	Schweinegehacktes	118
	4.2.4	.4	Gemischtes Hackfleisch (Rind und Schwein)	122
	4.2.4	.5	Vergleich der qualitativen und quantitativen Verteilung der	
			psychrotrophen Hauptkomponenten zwischen den Hackfleis	sch-
			sorten	126
	4.2.5	Be	trachtung der qualitativen und quantitativen Ergebnisse von s	pe-
		zie	llen Keimgruppen	133
	4.2.5	.1	Pseudomonaden-Stämme	133
	4.2.5	.2	Enterobacteriaceae-Stämme	136
	4.2.5	.3	Acinetobacter-Stämme	138

4.3	3 V	/orkommen von <i>Acinetobacter</i> -Stämmen in vier Hackfleischsorten	
	n	nach phäno- und genotypischer Identifizierung1	40
4	4.3.1	Speziesidentifizierung der Acinetobacter-Isolate auf genotypischem	
		Wege durch Sequenzanalyse eines partiellen 16S rDNA-Abschnittes	
		mit Hilfe eines speziellen Computerprogramms1	40
4	4.3.2	Vergleich der Ergebnisse nach klassischer und molekularbiologischer	
		Methode1	41
5 E	Disk	ussion14	45
5 .1	I N	/lethodenwahl 1	45
į	5.1.1		
		biochemischen Reaktionen1	45
į	5.1.2		
		variablen partiellen 16S rDNA-Abschnittes zur Identifizierung der	
		Acinetobacter-Isolate1	47
5.2	2 F	Physiologische und biochemische Eigenschaften der Referenz-	
	S	tämme und Hackfleischisolate1	48
į	5.2.1	Referenzstämme	48
į	5.2.2	P. Hackfleischisolate	49
5.3	3 V	/erteilung der psychrotrophen Hackfleischisolate1	50
į	5.3.1	Psychrotrophe Keimzahlen der vier Hackfleischsorten 1	50
į	5.3.2	Quantitativer Vergleich der psychrotrophen mit den mesophilen	
		Gesamtkeimzahlen1	51
į	5.3.3	Quantitativer Vergleich zwischen den Gram-positiven und den Gram-	
		negativen psychrotrophen Mikrofloraanteilen1	53
į	5.3.4	Gesamtüberblick der qualitativen und quantitativen Verteilung der	
		psychrotrophen Hauptkomponenten	54
5.4	1 (Gesundheitliche Bewertung der Mikrofloraanteile aus "industriell"	
		nergestelltem Hackfleisch für den Menschen1	64

6	SCHLUßFOLGERUNGEN	171
7	ZUSAMMENFASSUNG	173
8	SUMMARY	176
9	A NHANG	179
10	LITERATURVERZEICHNIS	200

VERZEICHNIS HÄUFIG VERWENDETER ABKÜRZUNGEN

A. <u>A</u>cinetobacter

Achr. <u>Achr</u>omobacter

Aer. <u>Aer</u>omonas

Alc. <u>Alc</u>aligenes

Aqua demin. <u>Aqua demin</u>eralisata

ATCC <u>American Type Culture Collection</u>

B. Brochothrix

BgVV Bundesinstitut für gesundheitlichen Verbraucherschutz und

<u>V</u>eterinärmedizin

C. <u>Carnobacterium</u>

cfu <u>colony forming units</u>

CI. <u>Cl</u>ostridium

CCUG <u>Culture Collection University of Göteborg</u>

DNA <u>Desoxyribonucleic acid</u>

DSMZ Deutsche Sammlung von Mikroorganismen und Zellkulturen

Eb. <u>E</u>ntero<u>b</u>acter

FIHV <u>Fl</u>eisch<u>h</u>ygiene-<u>V</u>erordnung

h <u>h</u>our *H*. <u>*H*afnia</u>

 $\begin{array}{ll} \text{HFI-RL} & \underline{\textbf{H}} \text{ack} \underline{\textbf{fl}} \text{eisch-} \underline{\textbf{R}} \text{icht} \underline{\textbf{l}} \text{inie} \\ \text{HFIV} & \underline{\textbf{H}} \text{ack} \underline{\textbf{fl}} \text{eisch-} \underline{\textbf{V}} \text{erordnung} \\ \text{KbE} & \underline{\textbf{K}} \text{olonie} \underline{\textbf{b}} \text{ildende} \ \underline{\textbf{E}} \text{inheiten} \\ \end{array}$

 \underline{L} actobacillus \underline{L} conostoc \underline{L} eu \underline{c} onostoc

lg dekadischer <u>Log</u>arithmus: log₁₀

List. Listeria

LMBG <u>Lebensmittel- und Bedarfsgegenständegesetz</u>

mGKZ <u>mesophile Gesamtkeimzahl</u>

min minute

P. <u>P</u>ediococcus
Pa. Pantoea

pGKZ <u>psychrotrophe Gesamtkeimzahl</u>

Pb. <u>P</u>sychro<u>b</u>acter
Ps. <u>Ps</u>eudomonas

rDNA <u>r</u>ibosomal <u>D</u>esoxyribo<u>n</u>ucleic <u>a</u>cid

RG <u>R</u>indergehacktes

RS Gemischtes Hackfleisch, Rind und Schwein

S. <u>S</u>erratia

SF \underline{S} chabe \underline{f} leisch

SG <u>S</u>chweinegehacktes

Shew. <u>Shew</u>anella

x_C Mittelwert über die <u>C</u>hargen

x_P Mittelwert der Logarithmen der 5 Einzel<u>p</u>roben

Y. <u>Y</u>ersinia

DANKSAGUNG

Herrn Prof. Dr. h.c. Gerhard Reuter danke ich herzlich für die Überlassung des Dissertationsthemas und für die konstruktive und kritische Anleitung sowie besonders freundliche und geduldige Hilfestellung bei der Anfertigung meiner Dissertation.

Dr. Dag Harmsen gilt mein Dank für die Durchführung der molekularbiologischen *Acinetobacter*-Identifizierung.

Allen Mitarbeitern des Instituts für Fleischhygiene und -technologie möchte ich für die gemeinsame Zeit im Institut und besonders Frau Dorothea Jaeger, Frau Sigrid Kringel und Frau Lilo Bräutigam für die stets freundlichen Worte danken. Dank gilt besonders meinen Mitdoktoranden Dr. Marc Goldberg und Jacobus Louwers für die freundschaftliche Zusammenarbeit sowie stets gewährte Hilfeleistung. Dr. Alexander Pack danke ich herzlich für das Interesse an meiner Dissertation und die persönliche Unterstützung während unserer gemeinsamen Arbeitszeit im Institut.

Frau Dr. Gisela Arndt sei hier für die Beratung bei den biometrischen Auswertungen meiner Arbeit gedankt.

Meinen Freunden möchte ich an dieser Stelle für die aufmunternden Worte danken, die mir immer wieder Mut gemacht haben.

Von ganzem Herzen danke ich meinen Eltern und Schwestern für die jederzeit gewährte einzigartige Hilfe, die mir in schwierigen Zeiten ein wichtiger Rückhalt war.

LEBENSLAUF

Name Urte Köpke

Geburtsdatum und -ort 31.03.1968

Geburtsort Eutin

Schulbildung

1974-1978 Grundschule Malente

1978-1987 Johann-Heinrich-Voß-Gymnasium in Eutin

Studium

1987-1993 Studium der Veterinärmedizin

Approbation als Tierärztin

28. Mai 1993

Wissenschaftliche Tätigkeit

seit 1995 Doktorandin am Institut für Fleischhygiene und

-technologie, Fachbereich Veterinärmedizin der

Freien Universität Berlin

01.04.1997 bis 30.11.2000 Wissenschaftliche Mitarbeiterin am Institut für

Fleischhygiene und -technologie, Fachbereich

Veterinärmedizin der Freien Universität Berlin

Berufstätigkeit

26.02.2001 bis 31.12.2001 Angestellte in der Biotechnologiefirma MOLOGEN

Forschungs-, Entwicklungs- und Vertriebs GmbH

SELBSTÄNDIGKEITSERKLÄRUNG

Hiermit versichere ich, Urte Köpke, die vorliegende Arbeit selbständig und nur auf Grundlage der angegebenen Hilfsmittel und Literaturstellen verfaßt zu haben.

Berlin, 19.08.2002

link Lopke