11 Hölder continuity for differential forms

We give a new definition of the Hölder continuity for differential forms, based on the definition for functions.

Let \mathcal{M} be an *n*-dimensional Riemannian manifold and $\Gamma = \Gamma(m_1, m_2)$ the family of locally rectifiable arcs $\gamma \in \mathcal{M}$ joining the points m_1 and m_2 . Here $d = d(m_1, m_2)$ is the geodesic distance between the points m_1 and m_2 . We denote by $ds_{\mathcal{M}}$ the element of length on \mathcal{M} .

11.1. Definition. Let ω be a differential form of degree k and D a compact subset of \mathcal{M} . The differential form ω satisfies the Hölder condition at a point $m_1 \in D$ with index α , where $0 < \alpha \leq 1$, and with the coefficient $C(m_1)$ if

(11.2)
$$\inf_{\gamma \in \Gamma} \int_{\gamma} |d\omega| ds_{\mathcal{M}} \le C(m_1) d^{\alpha}$$

for all $m_2 \in D$ sufficiently close to m_1 . One says that ω is Hölder continuous with index α on D if (11.2) is satisfied for all $m_1 \in D$. If $C = \sup_{m_1 \in D} C(m_1) < \infty$ the differential form ω is called uniformly Hölder continuous on D.

If the differential form ω is continuous and of degree zero, i.e. ω is a function, then

$$|\omega(m_1) - \omega(m_2)| \le \inf_{\gamma \in \Gamma} \int_{\gamma} |\nabla \omega| ds_{\mathcal{M}} = \inf_{\gamma \in \Gamma} \int_{\gamma} |d\omega| ds_{\mathcal{M}}$$

and the well-known definition for Hölder continuity follows.

For example a quasiregular mapping $f : \Omega \to \mathbb{R}^n$ is Hölder continuous on compact subsets of Ω , $\Omega \subset \mathbb{R}^n$. The best index α is known to be $K_I(f)^{1/1-n}$, see [Vu] §11.

If the differential form ω is of degree greater than zero and if ω_0 is a closed differential form we have

$$\inf_{\gamma \in \Gamma} \int_{\gamma} |d(\omega + \omega_0)| ds_{\mathcal{M}} = \inf_{\gamma \in \Gamma} \int_{\gamma} |d\omega| ds_{\mathcal{M}} .$$

This means, if ω is Hölder continuous in a compact set D then also $\omega + \omega_0$. The Hodge Decomposition Theorem [IM] §6 for differential forms says that for every differential form $\omega : \mathbb{R}^n \to \Lambda^k(\mathbb{R}^n)$, 1 , there exist differential forms

$$\alpha \in \ker d^* \cap L^p_1(\mathbb{R}^n) \text{ and } \beta \in \ker d \cap L^p_1(\mathbb{R}^n)$$

such that

(11.3)
$$\omega = d\alpha + d^*\beta \,.$$

The differential forms $d\alpha$ and $d^*\beta$ are unique. Back to the Hölder condition, we see that (11.2) in this case only gives an estimate for the coclosed part of ω . This idea holds local also on manifolds.

Now we formulate the Hölder continuity for differential forms of the class \mathcal{WT}_2 . Again for $D \subset \mathcal{M}$ we set $\delta(D)$ as in (9.19).

11.4. Theorem. Let D be a compact subset of the *n*-dimensional Riemannian manifold \mathcal{M} . We assume that at every point $a \in D$ the manifold \mathcal{M} satisfies the conditions I),II), and III) with a constant $\delta \leq \delta(D)/2$ and that for every pair of points $a_1, a_2 \in D$ satisfying (9.20) also (9.21) holds.

Let the differential form $d\omega$ be of the class \mathcal{WT}_2 . If $\beta = \beta(a, \delta) > 0$ for all $a \in D$, then for all $a_1, a_2 \in D$ with $d = d(a_1, a_2) < \delta$ the inequality

$$\inf_{\gamma \in \Gamma(a_1, a_2)} \int_{\gamma} |d\omega| ds_{\mathcal{M}} \le \frac{c_6}{c_7} d^{\frac{\beta}{p}}$$

holds. This is the Hölder continuity of ω in D with Hölder index $\alpha = \beta/p$ and coefficient c_6/c_7 .

11.5. Remark. Here c_6 is the constant from Lemma 9.7 with c_5 from Lemma 10.9. Further β is the constant from (10.4).

Proof. The theorem follows directly with Theorem 10.9 and Theorem 9.22.