main difference is that we use now the inequality between geometric and arithmetic means (8.7) and (8.9) and with the help of (8.10) we get

$$
\begin{aligned}
\left(\sum_{i=1}^{k}\left|d f^{i}\right|^{2}\right. & \left.+\sum_{i=k+1}^{n}\left|d f^{i}\right|^{2}\right)^{n / 2} \\
& \leq k^{-n / 2}(n-k)^{-(n-k) / 2} n^{n / 2} K_{O}\left(\sum_{i=1}^{k}\left|d f^{i}\right|^{2}\right)^{k / 2}\left(\sum_{i=k+1}^{n}\left|d f^{i}\right|^{2}\right)^{(n-k) / 2}
\end{aligned}
$$

From this point the proofs follow the concept of the proof of Theorem 8.2. For details of the proofs of Theorem 8.12 and 8.13 see [FMMVW] §6. Our slightly better constants ν_{3} and ν_{4} follow directly from the definitions of the classes $\mathcal{W} \mathcal{T}_{3}$ and $\mathcal{W T}_{4}$.

There exist some differences between the Theorems 8.1 and 8.2. In the first theorem the mapping f is only weakly quasiregular. This could be weakened by a theorem from T. Iwaniec ([Iw1] §11) which says that a weakly K-quasiregular mapping $f \in W_{\text {loc }}^{1, p}, p<n$, is also K-quasiregular, if p is close enough to n, here p depends only on n and K, see also [FW] §9. The theorem depends on a Caccioppoli-type estimate, which recently was refined in [Iw2].

The differential form $d u_{I}$ (7.4) depends on a multi-index, we have more possibilities for a differential form of the class $\mathcal{W} \mathcal{T}_{2}$. The differential form $u^{*} w_{\mathcal{A}}$ in Theorem 8.2 is fixed, but we gave concreter constants ν_{1} and ν_{2}.

9 Morrey's Lemma on manifolds

In this chapter we follow mostly the considerations of [MMV3]. Let \mathcal{M} be a Riemannian manifold of dimension n and without boundary. We assume that \mathcal{M} is orientable and of the class C^{3}. Let $d\left(m_{1}, m_{2}\right)$ be the geodesic distance between the points $m_{1}, m_{2} \in \mathcal{M}$. We denote by

$$
\begin{aligned}
& B(a, t)=\{m \in \mathcal{M}: d(a, m)<t\} \\
& \Sigma(a, t)=\{m \in \mathcal{M}: d(a, m)=t\}
\end{aligned}
$$

the geodesic ball and the geodesic sphere, respectively, with center $a \in \mathcal{M}$ and radius $t>0$.

In the following we make use of the co-area formula or the KronrodFederer formula $[\mathrm{Fe}] \S 3.2$. We give this formula in the form needed, see for example [GT] §16.5.
9.1. Theorem. Let ϕ be a nonnegative Borel measurable set in a domain $D \subset \mathcal{M}$ and u a local Lipschitz function on D. Then

$$
\begin{equation*}
\int_{D} \phi(m)|\nabla u(m)| d v_{\mathcal{M}}=\int_{0}^{\infty} d t \int_{E_{t}} \phi(m) d H \tag{9.2}
\end{equation*}
$$

where H is the surface measure on $E_{t}=\{m \in \mathcal{M}:|u(m)|=t\}$.
To ensure that the local structure of the manifold \mathcal{M} is uniformly euclidean, we need the following three properties. Hereby we assume that in these properties the constants $\delta, c_{1}, \ldots, c_{4}$ and the function h are independent of the point $a \in \mathcal{M}$.
I) For $a \in \mathcal{M}$ the radius of injectivity $r_{\text {inj }}(a)$ satisfies $0<\delta<r_{\text {inj }}(a)$. Thus, the geodesic ball $B(a, \delta)$ admits polar coordinates $(r, \theta), 0 \leq r \leq \delta$, $\theta \in S^{n-1}$, with the volume element

$$
\begin{equation*}
d v_{\mathcal{M}}=G_{a}(r, \theta) d r d \theta \tag{9.3}
\end{equation*}
$$

where $G_{a}(r, \theta)>0$ is a continuous function, compare with $[\mathrm{BC}] \S 11.10$.
II) The function $G_{a}(r, \theta)$ satisfies

$$
\begin{equation*}
c_{1} h(r) \leq G_{a}(r, \theta) \leq c_{2} h(r) \tag{9.4}
\end{equation*}
$$

for all $0<r<\delta$ and $\theta \in S^{n-1}$ with the continuous function $h(r)>0$.
III) The area of the geodesic sphere $\Sigma(a, r)$

$$
\begin{equation*}
S(a, r)=\int_{\Sigma(a, r)} d H^{n-1}=\int_{S^{n-1}} G(r, \theta) d \theta \tag{9.5}
\end{equation*}
$$

for $r \in(0, \delta)$ is an increasing function on $(0, \delta)$. For the derivative of $S(a, r)$ with respect to r the following inequality holds

$$
\begin{equation*}
c_{3} r^{n-2} \leq S^{\prime}(a, r) \leq c_{4} r^{n-2} \tag{9.6}
\end{equation*}
$$

for all $r \in(0, \delta)$.
For an arbitrary pair of points $m_{1}, m_{2} \in \mathcal{M}$ we denote by $\Gamma=\Gamma\left(m_{1}, m_{2}\right)$ the family of locally rectifiable curves $\gamma \subset \mathcal{M}$ of the class $C^{k}, k \geq 2$, joining the points m_{1} and m_{2}.
9.7. Lemma. Suppose that the manifold \mathcal{M} satisfies properties I), II), and III) with the constant $\delta>0$. Let $m_{1}, m_{2} \in \mathcal{M}$ with $d=d\left(m_{1}, m_{2}\right) \leq \delta$ and let the function $\rho \in L_{\mathrm{loc}}^{p}(\mathcal{M}), p \geq 1$, be nonnegative. If there exist constants $\alpha, c_{5}>0$, such that

$$
\begin{equation*}
\int_{B\left(a_{k}, r\right)} \rho^{p} d v_{\mathcal{M}} \leq c_{5} r^{n-p+\alpha} \tag{9.8}
\end{equation*}
$$

for $r \in(0, d), k=1,2$, then

$$
\begin{equation*}
\inf _{\gamma \in \Gamma\left(a_{1}, a_{2}\right)} \int_{\gamma} \rho d s_{\mathcal{M}} \leq c_{6} \frac{d^{n+\frac{\alpha}{p}}}{\operatorname{mes}_{n}\left(B\left(a_{1}, d\right) \cap B\left(a_{2}, d\right)\right)} \tag{9.9}
\end{equation*}
$$

We can choose

$$
c_{6}=\left(\frac{c_{2}}{c_{1}}\right)^{2} \frac{2}{n+\alpha / p}\left(1+\frac{n-1}{\alpha / p}\left(\frac{c_{4}}{c_{3}}\right)^{2}\right) c_{5}^{\frac{1}{p}}\left(\frac{c_{4}}{n(n-1)}\right)^{\frac{p-1}{p}}
$$

with the constants $c_{j}, j=1, \ldots, 4$ from (9.4) and (9.6).
Proof. First we consider the case $p=1$. Let $Q=B\left(a_{1}, d\right) \cap B\left(a_{2}, d\right)$. For $k=1,2$ let $l_{k}(m)$ be a geodesic segment joining the point a_{k} to a point $m \in Q$. Since $r_{\text {inj }}\left(a_{k}\right)>d$, these geodesic segments $l_{k}(m)$ are the shortest curves joining the mentioned points.

We have

$$
\begin{equation*}
\inf _{\gamma \in \Gamma\left(a_{1}, a_{2}\right)} \int_{\gamma} \rho d s_{\mathcal{M}} \leq \inf _{m \in Q}\left(\int_{l_{1}(m)} \rho d s_{\mathcal{M}}+\int_{l_{2}(m)} \rho d s_{\mathcal{M}}\right)=\mathcal{R}(\Gamma) \tag{9.10}
\end{equation*}
$$

and hence

$$
\begin{align*}
\mathcal{R}(\Gamma) \int_{Q} d v_{\mathcal{M}} & \leq \int_{Q} d v_{\mathcal{M}} \int_{l_{1}(m)} \rho d s_{\mathcal{M}}+\int_{Q} d v_{\mathcal{M}} \int_{l_{2}(m)} \rho d s_{\mathcal{M}} \tag{9.11}\\
& \leq \int_{B\left(a_{1}, d\right)} d v_{\mathcal{M}} \int_{l_{1}(m)} \rho d s_{\mathcal{M}}+\int_{B\left(a_{2}, d\right)} d v_{\mathcal{M}} \int_{l_{2}(m)} \rho d s_{\mathcal{M}} \\
& =I_{1}+I_{2}
\end{align*}
$$

Here we need to estimate the integral I_{1} only, the integral I_{2} can be estimated similarly.

Applying the Kronrod-Federer formula (9.2) and observing that

$$
\left|\nabla_{m} d\left(a_{k}, m\right)\right|=1 \quad \text { in } B\left(a_{k}, d\right),
$$

we obtain from (9.3) that

$$
\begin{align*}
I_{1} & =\int_{0}^{d} d r \int_{\Sigma\left(a_{1}, r\right)} d H^{n-1} \int_{l_{1}(m)} \rho d s_{\mathcal{M}} \tag{9.12}\\
& =\int_{0}^{d} d r \int_{S^{n-1}} G_{1}(r, \theta) d \theta \int_{0}^{r} \rho(t, \theta) d t,
\end{align*}
$$

where $G_{1}(r, \theta)=G_{a_{1}}(r, \theta)$. Now (9.4) yields

$$
\begin{align*}
I_{1} & \leq c_{2} \int_{0}^{d} h(r) d r \int_{S^{n-1}} d \theta \int_{0}^{r} \rho(t, \theta) d t \tag{9.13}\\
& =c_{2} \int_{0}^{d} h(r) d r \int_{0}^{r} d t \int_{S^{n-1}} \rho(t, \theta) d \theta
\end{align*}
$$

If we set

$$
J(r)=\int_{B\left(a_{1}, r\right)} \rho d v_{\mathcal{M}}=\int_{0}^{r} d t \int_{S^{n-1}} G_{1}(t, \theta) \rho(t, \theta) d \theta
$$

then for almost every $r \in[0, d)$, we have by (9.4)

$$
J^{\prime}(r)=\int_{S^{n-1}} G_{1}(r, \theta) \rho(r, \theta) d \theta \geq c_{1} h(r) \int_{S^{n-1}} \rho(r, \theta) d \theta
$$

Now we obtain from (9.13)

$$
I_{1} \leq c_{2} \int_{0}^{d} h(r) d r \int_{0}^{r} \frac{J^{\prime}(t)}{c_{1} h(t)} d t=\frac{c_{2}}{c_{1}} \int_{0}^{d} h(r) d r \int_{0}^{r} \frac{J^{\prime}(t)}{h(t)} d t
$$

However, the inequality (9.4) implies

$$
\frac{1}{c_{2} \omega_{n-1}} S_{1}(r) \leq h(r) \leq \frac{1}{c_{1} \omega_{n-1}} S_{1}(r),
$$

where $S_{1}(r)=S\left(a_{1}, r\right)$ and ω_{n-1} is the surface area of the unit sphere S^{n-1} of R^{n}. Thus from the preceding inequality we get

$$
\begin{equation*}
I_{1} \leq\left(\frac{c_{2}}{c_{1}}\right)^{2} \int_{0}^{d} S_{1}(r) d r \int_{0}^{r} \frac{J^{\prime}(t)}{S_{1}(t)} d t \tag{9.14}
\end{equation*}
$$

The last integral has the value

$$
\begin{align*}
\int_{0}^{r} \frac{J^{\prime}(t)}{S_{1}(t)} d t & =\left.\frac{J(t)}{S_{1}(t)}\right|_{0} ^{r}+\int_{0}^{r} \frac{J(t)}{S_{1}^{2}(t)} S_{1}^{\prime}(t) d t \tag{9.15}\\
& =\frac{J(r)}{S_{1}(r)}+\int_{0}^{r} \frac{J(t)}{S_{1}^{2}(t)} S_{1}^{\prime}(t) d t
\end{align*}
$$

since the conditions imply that

$$
\frac{J(t)}{S_{1}(t)} \leq c t^{\alpha} \rightarrow 0 \text { as } t \rightarrow 0
$$

From (9.14) and (9.15) we obtain

$$
\begin{equation*}
\left(\frac{c_{1}}{c_{2}}\right)^{2} I_{1} \leq \int_{0}^{d} J(r) d r+\int_{0}^{d} S_{1}(r) d r \int_{0}^{r} \frac{J(t)}{S_{1}^{2}(t)} S_{1}^{\prime}(t) d t \tag{9.16}
\end{equation*}
$$

The condition (9.8) yields

$$
\begin{equation*}
\int_{0}^{d} J(r) d r \leq \frac{c_{5}}{n+\alpha} d^{n+\alpha} \tag{9.17}
\end{equation*}
$$

We conclude from (9.6) and (9.8) that

$$
\begin{aligned}
\int_{0}^{d} S_{1}(r) d r \int_{0}^{r} \frac{J(t)}{S_{1}^{2}(t)} S_{1}^{\prime}(t) d t & \leq \frac{c_{4}}{n-1} \int_{0}^{d} r^{n-1} d r \int_{0}^{r} \frac{c_{5} t^{n-1+\alpha}}{\left(\frac{c_{3}}{n-1} t^{n-1}\right)^{2}} c_{4} t^{n-2} d t \\
& =\left(\frac{c_{4}}{c_{3}}\right)^{2} c_{5} \frac{n-1}{\alpha(n+\alpha)} d^{n+\alpha}
\end{aligned}
$$

This inequality together with the estimates (9.16) and (9.17), leads us to the inequality

$$
\begin{aligned}
\left(\frac{c_{1}}{c_{2}}\right)^{2} I_{1} & \leq \frac{c_{5}}{n+\alpha} d^{n+\alpha}+\left(\frac{c_{4}}{c_{3}}\right)^{2} c_{5} \frac{n-1}{\alpha(n+\alpha)} d^{n+\alpha} \\
& =\frac{c_{5}}{n+\alpha}\left(1+\left(\frac{c_{4}}{c_{3}}\right)^{2} \frac{n-1}{\alpha}\right) d^{n+\alpha}
\end{aligned}
$$

Since a similar estimate is valid for I_{2}, we obtain from (9.11)

$$
\begin{equation*}
\mathcal{R}(\Gamma) \operatorname{mes}_{n} Q \leq\left(\frac{c_{2}}{c_{1}}\right)^{2} \frac{2 c_{5}}{n+\alpha}\left(1+\left(\frac{c_{4}}{c_{3}}\right)^{2} \frac{n-1}{\alpha}\right) d^{n+\alpha} \tag{9.18}
\end{equation*}
$$

and this inequality together with (9.10) finishes the proof of the lemma for $p=1$.

The case $p>1$ can be reduced to $p=1$. By the Hölder inequality we have for $k=1,2$

$$
\int_{B\left(a_{k}, r\right)} \rho d v_{\mathcal{M}} \leq\left(\operatorname{mes}_{n} B\left(a_{k}, r\right)\right)^{\frac{p-1}{p}}\left(\int_{B\left(a_{k}, r\right)} \rho^{p} d v_{\mathcal{M}}\right)^{\frac{1}{p}}
$$

Using (9.2) and (9.6) we obtain

$$
\begin{aligned}
\operatorname{mes}_{n} B\left(a_{k}, r\right) & =\int_{0}^{r} d t \int_{\Sigma\left(a_{k}, t\right)} \frac{d H^{n-1}}{\left|\nabla d\left(a_{k}, m\right)\right|} \\
& =\int_{0}^{r} S\left(a_{k}, t\right) d t \leq \frac{c_{4}}{n(n-1)} r^{n} .
\end{aligned}
$$

With this relation and with (9.8) we arrive to the estimate

$$
\int_{B\left(a_{k}, r\right)} \rho d v_{\mathcal{M}} \leq\left(\frac{c_{4}}{n(n-1)}\right)^{\frac{p-1}{p}} c_{5}^{\frac{1}{p}} r^{n-1+\frac{\alpha}{p}} .
$$

Now we can use the lemma for $p=1$ and get (9.9) in the general case.
For a subdomain $D \subset \subset \mathcal{M}$ we set

$$
\begin{equation*}
\delta(D)=\inf _{\left\{m_{k}\right\}} \liminf _{k \rightarrow \infty} d\left(m_{k}, D\right) \tag{9.19}
\end{equation*}
$$

where the infimum is taken over all possible sequences $\left\{m_{k}\right\}, m_{k} \in \mathcal{M}$, not having accumulation points in \mathcal{M}. For the domain D we assume that there exists a constant $c_{7}>0$, such that

$$
\begin{equation*}
\operatorname{mes}_{n}\left(B\left(a_{1}, d\right) \cap B\left(a_{2}, d\right)\right) \geq c_{7} d^{n} \tag{9.20}
\end{equation*}
$$

for all points $a_{1}, a_{2} \in D$, satisfying the condition

$$
\begin{equation*}
d=d\left(a_{1}, a_{2}\right) \leq \frac{1}{2} \delta(D) \tag{9.21}
\end{equation*}
$$

Now we deduce the well-known form of Morrey's lemma for differential forms on Riemannian manifolds. For the special case of functions compare with [GT] §12.1 and [Re] §2.1.
9.22. Theorem. Suppose that the manifold \mathcal{M} satisfies the properties I), II), and III) with the constant $\delta>0$. Let $D \subset \subset \mathcal{M}$ be a domain such that $\delta \leq \delta(D) / 2$ and (9.20) holds. Let $\omega \in W_{\mathrm{loc}}^{1, p}(\mathcal{M})$ be a differential form of degree $k, 0 \leq k \leq n, p \geq 1$. If for every point $a \in D$ and for every $r \leq \delta(D) / 2$ the inequality

$$
\begin{equation*}
\int_{B(a, r)}|d \omega|^{p} d v_{\mathcal{M}} \leq c_{5} r^{n-p+\alpha} \tag{9.23}
\end{equation*}
$$

holds, then the differential form ω can be redefined on a set of measure zero such that for all $a_{1}, a_{2} \in D, d\left(a_{1}, a_{2}\right)<\delta$, we get

$$
\begin{equation*}
\inf _{\gamma \in \Gamma\left(a_{1}, a_{2}\right)} \int_{\gamma}|d \omega| d s_{\mathcal{M}} \leq \frac{c_{6}}{c_{7}} d^{\frac{\alpha}{p}} \tag{9.24}
\end{equation*}
$$

where c_{6} is the constant from Lemma 9.7.
Proof. If we replace in Lemma 9.7 the function ρ by the value of the differential form $d \omega$, the theorem follows directly with the help of (9.20).

10 Estimate for the energy integral

Here we present an estimate for the energy integral of the differential form $d \omega \in \mathcal{W} \mathcal{T}_{2}$.

