main difference is that we use now the inequality between geometric and arithmetic means (8.7) and (8.9) and with the help of (8.10) we get

$$\left(\sum_{i=1}^{k} |df^{i}|^{2} + \sum_{i=k+1}^{n} |df^{i}|^{2} \right)^{n/2}$$

$$\leq k^{-n/2} (n-k)^{-(n-k)/2} n^{n/2} K_{O} \left(\sum_{i=1}^{k} |df^{i}|^{2} \right)^{k/2} \left(\sum_{i=k+1}^{n} |df^{i}|^{2} \right)^{(n-k)/2}$$

From this point the proofs follow the concept of the proof of Theorem 8.2. For details of the proofs of Theorem 8.12 and 8.13 see [FMMVW] §6. Our slightly better constants ν_3 and ν_4 follow directly from the definitions of the classes \mathcal{WT}_3 and \mathcal{WT}_4 .

There exist some differences between the Theorems 8.1 and 8.2. In the first theorem the mapping f is only weakly quasiregular. This could be weakened by a theorem from T.Iwaniec ([Iw1] §11) which says that a weakly K-quasiregular mapping $f \in W_{\text{loc}}^{1,p}$, p < n, is also K-quasiregular, if p is close enough to n, here p depends only on n and K, see also [FW] §9. The theorem depends on a Caccioppoli-type estimate, which recently was refined in [Iw2].

The differential form du_I (7.4) depends on a multi-index, we have more possibilities for a differential form of the class \mathcal{WT}_2 . The differential form u^*w_A in Theorem 8.2 is fixed, but we gave concreter constants ν_1 and ν_2 .

9 Morrey's Lemma on manifolds

In this chapter we follow mostly the considerations of [MMV3]. Let \mathcal{M} be a Riemannian manifold of dimension n and without boundary. We assume that \mathcal{M} is orientable and of the class C^3 . Let $d(m_1, m_2)$ be the geodesic distance between the points $m_1, m_2 \in \mathcal{M}$. We denote by

$$B(a,t) = \{m \in \mathcal{M} : d(a,m) < t\}$$

$$\Sigma(a,t) = \{m \in \mathcal{M} : d(a,m) = t\}$$

the geodesic ball and the geodesic sphere, respectively, with center $a \in \mathcal{M}$ and radius t > 0. In the following we make use of the co-area formula or the Kronrod-Federer formula [Fe] §3.2. We give this formula in the form needed, see for example [GT] §16.5.

9.1. Theorem. Let ϕ be a nonnegative Borel measurable set in a domain $D \subset \mathcal{M}$ and u a local Lipschitz function on D. Then

(9.2)
$$\int_{D} \phi(m) |\nabla u(m)| dv_{\mathcal{M}} = \int_{0}^{\infty} dt \int_{E_{t}} \phi(m) dH$$

where H is the surface measure on $E_t = \{m \in \mathcal{M} : |u(m)| = t\}.$

To ensure that the local structure of the manifold \mathcal{M} is uniformly euclidean, we need the following three properties. Hereby we assume that in these properties the constants $\delta, c_1, ..., c_4$ and the function h are independent of the point $a \in \mathcal{M}$.

I) For $a \in \mathcal{M}$ the radius of injectivity $r_{inj}(a)$ satisfies $0 < \delta < r_{inj}(a)$. Thus, the geodesic ball $B(a, \delta)$ admits polar coordinates $(r, \theta), 0 \leq r \leq \delta$, $\theta \in S^{n-1}$, with the volume element

(9.3)
$$dv_{\mathcal{M}} = G_a(r,\theta) dr d\theta$$

where $G_a(r, \theta) > 0$ is a continuous function, compare with [BC] §11.10.

II) The function $G_a(r, \theta)$ satisfies

(9.4)
$$c_1 h(r) \le G_a(r,\theta) \le c_2 h(r)$$

for all $0 < r < \delta$ and $\theta \in S^{n-1}$ with the continuous function h(r) > 0.

III) The area of the geodesic sphere $\Sigma(a, r)$

(9.5)
$$S(a,r) = \int_{\Sigma(a,r)} dH^{n-1} = \int_{S^{n-1}} G(r,\theta) d\theta$$

for $r \in (0, \delta)$ is an increasing function on $(0, \delta)$. For the derivative of S(a, r) with respect to r the following inequality holds

(9.6) $c_3 r^{n-2} \le S'(a,r) \le c_4 r^{n-2}$

for all $r \in (0, \delta)$.

For an arbitrary pair of points $m_1, m_2 \in \mathcal{M}$ we denote by $\Gamma = \Gamma(m_1, m_2)$ the family of locally rectifiable curves $\gamma \subset \mathcal{M}$ of the class $C^k, k \geq 2$, joining the points m_1 and m_2 .

9.7. Lemma. Suppose that the manifold \mathcal{M} satisfies properties I), II), and III) with the constant $\delta > 0$. Let $m_1, m_2 \in \mathcal{M}$ with $d = d(m_1, m_2) \leq \delta$ and let the function $\rho \in L^p_{loc}(\mathcal{M}), p \geq 1$, be nonnegative. If there exist constants $\alpha, c_5 > 0$, such that

(9.8)
$$\int_{B(a_k,r)} \rho^p dv_{\mathcal{M}} \le c_5 r^{n-p+\alpha}$$

for $r \in (0, d)$, k = 1, 2, then

(9.9)
$$\inf_{\gamma \in \Gamma(a_1, a_2)} \int_{\gamma} \rho \, ds_{\mathcal{M}} \le c_6 \, \frac{d^{n + \frac{\alpha}{p}}}{\operatorname{mes}_n(B(a_1, d) \cap B(a_2, d))}$$

We can choose

$$c_{6} = \left(\frac{c_{2}}{c_{1}}\right)^{2} \frac{2}{n+\alpha/p} \left(1 + \frac{n-1}{\alpha/p} \left(\frac{c_{4}}{c_{3}}\right)^{2}\right) c_{5}^{\frac{1}{p}} \left(\frac{c_{4}}{n(n-1)}\right)^{\frac{p-1}{p}}$$

with the constants c_j , $j = 1, \ldots, 4$ from (9.4) and (9.6).

Proof. First we consider the case p = 1. Let $Q = B(a_1, d) \cap B(a_2, d)$. For k = 1, 2 let $l_k(m)$ be a geodesic segment joining the point a_k to a point $m \in Q$. Since $r_{inj}(a_k) > d$, these geodesic segments $l_k(m)$ are the shortest curves joining the mentioned points.

We have

(9.10)
$$\inf_{\gamma \in \Gamma(a_1, a_2)} \int_{\gamma} \rho ds_{\mathcal{M}} \le \inf_{m \in Q} \left(\int_{l_1(m)} \rho ds_{\mathcal{M}} + \int_{l_2(m)} \rho ds_{\mathcal{M}} \right) = \mathcal{R}(\Gamma)$$

and hence

$$(9.11) \quad \mathcal{R}(\Gamma) \int_{Q} dv_{\mathcal{M}} \leq \int_{Q} dv_{\mathcal{M}} \int_{l_{1}(m)} \rho ds_{\mathcal{M}} + \int_{Q} dv_{\mathcal{M}} \int_{l_{2}(m)} \rho ds_{\mathcal{M}}$$
$$\leq \int_{B(a_{1},d)} dv_{\mathcal{M}} \int_{l_{1}(m)} \rho ds_{\mathcal{M}} + \int_{B(a_{2},d)} dv_{\mathcal{M}} \int_{l_{2}(m)} \rho ds_{\mathcal{M}}$$
$$= I_{1} + I_{2}.$$

Here we need to estimate the integral I_1 only, the integral I_2 can be estimated similarly.

Applying the Kronrod-Federer formula (9.2) and observing that

$$|\nabla_m d(a_k, m)| = 1 \quad \text{in } B(a_k, d),$$

we obtain from (9.3) that

(9.12)
$$I_{1} = \int_{0}^{d} dr \int_{\Sigma(a_{1},r)} dH^{n-1} \int_{l_{1}(m)} \rho ds_{\mathcal{M}}$$
$$= \int_{0}^{d} dr \int_{S^{n-1}} G_{1}(r,\theta) d\theta \int_{0}^{r} \rho(t,\theta) dt,$$

where $G_1(r, \theta) = G_{a_1}(r, \theta)$. Now (9.4) yields

(9.13)
$$I_{1} \leq c_{2} \int_{0}^{d} h(r) dr \int_{S^{n-1}} d\theta \int_{0}^{r} \rho(t,\theta) dt$$
$$= c_{2} \int_{0}^{d} h(r) dr \int_{0}^{r} dt \int_{S^{n-1}} \rho(t,\theta) d\theta.$$

If we set

$$J(r) = \int_{B(a_1,r)} \rho dv_{\mathcal{M}} = \int_{0}^{r} dt \int_{S^{n-1}} G_1(t,\theta)\rho(t,\theta)d\theta,$$

then for almost every $r \in [0, d)$, we have by (9.4)

$$J'(r) = \int_{S^{n-1}} G_1(r,\theta)\rho(r,\theta)d\theta \ge c_1 h(r) \int_{S^{n-1}} \rho(r,\theta)d\theta.$$

Now we obtain from (9.13)

$$I_1 \le c_2 \int_0^d h(r) dr \int_0^r \frac{J'(t)}{c_1 h(t)} dt = \frac{c_2}{c_1} \int_0^d h(r) dr \int_0^r \frac{J'(t)}{h(t)} dt$$

However, the inequality (9.4) implies

$$\frac{1}{c_2\omega_{n-1}}S_1(r) \le h(r) \le \frac{1}{c_1\omega_{n-1}}S_1(r) \,,$$

where $S_1(r) = S(a_1, r)$ and ω_{n-1} is the surface area of the unit sphere S^{n-1} of \mathbb{R}^n . Thus from the preceding inequality we get

(9.14)
$$I_1 \le \left(\frac{c_2}{c_1}\right)^2 \int_0^d S_1(r) dr \int_0^r \frac{J'(t)}{S_1(t)} dt \,.$$

The last integral has the value

(9.15)
$$\int_{0}^{r} \frac{J'(t)}{S_{1}(t)} dt = \frac{J(t)}{S_{1}(t)} \Big|_{0}^{r} + \int_{0}^{r} \frac{J(t)}{S_{1}^{2}(t)} S_{1}'(t) dt$$
$$= \frac{J(r)}{S_{1}(r)} + \int_{0}^{r} \frac{J(t)}{S_{1}^{2}(t)} S_{1}'(t) dt$$

since the conditions imply that

$$\frac{J(t)}{S_1(t)} \le ct^{\alpha} \to 0 \text{ as } t \to 0.$$

From (9.14) and (9.15) we obtain

(9.16)
$$\left(\frac{c_1}{c_2}\right)^2 I_1 \le \int_0^d J(r)dr + \int_0^d S_1(r)dr \int_0^r \frac{J(t)}{S_1^2(t)} S_1'(t)dt$$

The condition (9.8) yields

(9.17)
$$\int_{0}^{d} J(r)dr \leq \frac{c_5}{n+\alpha} d^{n+\alpha}.$$

We conclude from (9.6) and (9.8) that

$$\int_{0}^{d} S_{1}(r) dr \int_{0}^{r} \frac{J(t)}{S_{1}^{2}(t)} S_{1}'(t) dt \leq \frac{c_{4}}{n-1} \int_{0}^{d} r^{n-1} dr \int_{0}^{r} \frac{c_{5} t^{n-1+\alpha}}{(\frac{c_{3}}{n-1}t^{n-1})^{2}} c_{4} t^{n-2} dt$$
$$= \left(\frac{c_{4}}{c_{3}}\right)^{2} c_{5} \frac{n-1}{\alpha(n+\alpha)} d^{n+\alpha}.$$

This inequality together with the estimates (9.16) and (9.17), leads us to the inequality

$$\left(\frac{c_1}{c_2}\right)^2 I_1 \leq \frac{c_5}{n+\alpha} d^{n+\alpha} + \left(\frac{c_4}{c_3}\right)^2 c_5 \frac{n-1}{\alpha(n+\alpha)} d^{n+\alpha}$$
$$= \frac{c_5}{n+\alpha} \left(1 + \left(\frac{c_4}{c_3}\right)^2 \frac{n-1}{\alpha}\right) d^{n+\alpha} .$$

Since a similar estimate is valid for I_2 , we obtain from (9.11)

(9.18)
$$\mathcal{R}(\Gamma) \operatorname{mes}_{n} Q \leq \left(\frac{c_{2}}{c_{1}}\right)^{2} \frac{2c_{5}}{n+\alpha} \left(1 + \left(\frac{c_{4}}{c_{3}}\right)^{2} \frac{n-1}{\alpha}\right) d^{n+\alpha},$$

and this inequality together with (9.10) finishes the proof of the lemma for p = 1.

The case p > 1 can be reduced to p = 1. By the Hölder inequality we have for k = 1, 2

$$\int_{B(a_k,r)} \rho dv_{\mathcal{M}} \le \left(\operatorname{mes}_n B(a_k,r) \right)^{\frac{p-1}{p}} \left(\int_{B(a_k,r)} \rho^p dv_{\mathcal{M}} \right)^{\frac{1}{p}}.$$

Using (9.2) and (9.6) we obtain

$$\operatorname{mes}_{n}B(a_{k},r) = \int_{0}^{r} dt \int_{\Sigma(a_{k},t)} \frac{dH^{n-1}}{|\nabla d(a_{k},m)|}$$
$$= \int_{0}^{r} S(a_{k},t)dt \leq \frac{c_{4}}{n(n-1)}r^{n}.$$

With this relation and with (9.8) we arrive to the estimate

$$\int_{B(a_k,r)} \rho dv_{\mathcal{M}} \le \left(\frac{c_4}{n(n-1)}\right)^{\frac{p-1}{p}} c_5^{\frac{1}{p}} r^{n-1+\frac{\alpha}{p}}.$$

Now we can use the lemma for p = 1 and get (9.9) in the general case. \Box

For a subdomain $D \subset \mathcal{M}$ we set

(9.19)
$$\delta(D) = \inf_{\{m_k\}} \liminf_{k \to \infty} d(m_k, D)$$

where the infimum is taken over all possible sequences $\{m_k\}, m_k \in \mathcal{M}$, not having accumulation points in \mathcal{M} . For the domain D we assume that there exists a constant $c_7 > 0$, such that

(9.20)
$$\operatorname{mes}_{n}(B(a_{1},d) \cap B(a_{2},d)) \ge c_{7} d^{n}$$

for all points $a_1, a_2 \in D$, satisfying the condition

(9.21)
$$d = d(a_1, a_2) \le \frac{1}{2}\delta(D)$$

Now we deduce the well-known form of Morrey's lemma for differential forms on Riemannian manifolds. For the special case of functions compare with [GT] §12.1 and [Re] §2.1.

9.22. Theorem. Suppose that the manifold \mathcal{M} satisfies the properties I), II), and III) with the constant $\delta > 0$. Let $D \subset \subset \mathcal{M}$ be a domain such that $\delta \leq \delta(D)/2$ and (9.20) holds. Let $\omega \in W^{1,p}_{\text{loc}}(\mathcal{M})$ be a differential form of degree $k, 0 \leq k \leq n, p \geq 1$. If for every point $a \in D$ and for every $r \leq \delta(D)/2$ the inequality

(9.23)
$$\int_{B(a,r)} |d\omega|^p dv_{\mathcal{M}} \le c_5 r^{n-p+\alpha}$$

holds, then the differential form ω can be redefined on a set of measure zero such that for all $a_1, a_2 \in D$, $d(a_1, a_2) < \delta$, we get

(9.24)
$$\inf_{\gamma \in \Gamma(a_1, a_2)} \int_{\gamma} |d\omega| ds_{\mathcal{M}} \leq \frac{c_6}{c_7} d^{\frac{\alpha}{p}} ,$$

where c_6 is the constant from Lemma 9.7.

Proof. If we replace in Lemma 9.7 the function ρ by the value of the differential form $d\omega$, the theorem follows directly with the help of (9.20). \Box

10 Estimate for the energy integral

Here we present an estimate for the energy integral of the differential form $d\omega \in \mathcal{WT}_2$.