
and

|A(m, duI)| ≤ ν2 |duI |p−1 ,(7.27)

for p > 1 and for all differential forms duI ∈ L1
loc(M) of degree k, 0 ≤ k ≤ n.

Proof. Because of Lemma 7.9 the norm of duI on the manifold M and
the norm generated by H(m) are equivalent and thus

ν |duI | ≤ |duI |H .

With (7.16), (7.18) and (7.22) we get

ν1 |duI |p ≤ |duI|pH = Jf(m)

= 〈duI , d
∗vJ〉 = 〈duI , A(m, duI)〉 .

The second estimation follows directly from the definition of the mapping
A(m, ξ)

|A(m, duI)| = |〈H(m)duI, duI〉
p−2
2 H(m)duI | ≤ |H(m)|

p
2 |duI |p−1

= ν2 |duI |p−1 .

2

8 Quasiregular mappings and WT -classes

In this chapter we want to consider the connection of quasiregular mappings
and the WT -classes of differential forms.

8.1. Theorem. If f ∈ W 1,s
loc (M), s = max{k, n − k}, is weakly K-

quasiregular, then the differential form duI (7.4), deg duI = k, is of the class
WT2.

Proof. This result follows direct with the Lemmas 7.21 and 7.25 together
with Theorem 5.6. 2

We want to show now a different approach, based more on the proper-
ties of differential forms of the WT -classes. Here we follow [MMV1] and
[FMMVW].
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Let A and B be Riemannian manifolds of dimensions dimA = k and
dimB = n−k, 1 ≤ k < n, and with scalar products 〈 , 〉A, 〈 , 〉B, respectively.
On the Cartesian product N = A×B we introduce the natural structure of
a Riemannian manifold with the scalar product

〈 , 〉 = 〈 , 〉A + 〈 , 〉B .

We denote by π : A× B → A and η : A× B → B the natural projections of
the manifold N onto submanifolds.

If wA and wB are volume forms on A and B, respectively, then the differ-
ential form wN = π∗wA ∧ η∗wB is a volume form on N (see (3.10)).

8.2. Theorem. Let f : M → N be a quasiregular mapping and let
u = π ◦ f : M → A. Then the differential form u∗wA is of the class
WT2 on M with the structure constants p = n/k, ν1 = ν1(n, k,KO) and
ν2 = ν2(n, k,KO).

8.3. Remark. From the proof of the theorem it will be clear that the
structure constants can be chosen to be

ν1 = (k +
n− k

c2
)n/2n−n/2K−1

O , ν2 = ck−n ,

where c = c(k, n,KO) and c = c(k, n,KO) are, respectively, the greatest and
least positive roots of the equation

(kξ2 + (n− k))n/2 − nn/2KO ξ
k = 0 .(8.4)

Through similar considerations and with the same proof, only swapping the
roles of u∗wA and v∗wB, it can be shown that also v∗wB ∈ WT2.

Proof. Setting v = η ◦ f : M → B we choose θ = v∗wB. The volume
form wB is weakly closed.

In fact, if the mapping v is sufficiently regular, then

dθ = dv∗wB = v∗dwB = 0 .

In the general case for the verification of the condition (3.14) we approximate
the mapping v : M → B in the norm of W 1,n(M) by smooth maps vl,
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l = 1, 2, . . . . Because the condition (3.14) holds for each of the differential
forms v∗l wB, it holds also for the differential form v∗wB.

The weak closedness of the differential form u∗wA follows similarly.
Fix a point m ∈ M, at which the relation (6.3) holds. Set a = u(m),

b = v(m). Then

Tf(m)(N ) = Ta(A) × Tb(B).

The computations can be conveniently carried out as follows. We first
rewrite the condition (6.3) with the help of (3.11) in the form

|Df(m)|n ≤ KO|f ∗wN | ,(8.5)

where wN is a volume form on N .
For the points a ∈ A, b ∈ B we choose neighborhoods and local systems of

coordinates x1, . . . , xk, and xk+1, . . . , xn, orthonormal at a and b, respectively.
With (3.10) we have

u∗wA = u∗(dx1 ∧ . . . ∧ dxk) = u∗dx1 ∧ . . . ∧ u∗dxk(8.6)

= df 1 ∧ . . . ∧ dfk .

Because the form wA is simple, we obtain by the inequality between the
geometric and arithmetic means

|df 1 ∧ . . . ∧ dfk|1/k ≤
( k∏

i=1

|df i|
)1/k

≤ 1

k

k∑
i=1

|df i| ≤
(1

k

k∑
i=1

|df i|2
)1/2

.(8.7)

Similarly we obtain

v∗wB = dfk+1 ∧ . . . ∧ dfn(8.8)

and

|dfk+1 ∧ . . . ∧ dfn|1/(n−k) ≤
( 1

n− k

n∑
i=k+1

|df i|2
)1/2

.(8.9)

It is not difficult to see that

f ∗wN = f ∗(π∗wA ∧ η∗wB) = u∗wA ∧ v∗wB = u∗wA ∧ θ
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and further that

|f ∗wN | = |u∗wA ∧ v∗wB| ≤ |df 1 ∧ . . . ∧ dfk||dfk+1 ∧ . . . ∧ dfn| .

We have

|df |2 =
k∑

i=1

|df i|2 +
n∑

i=k+1

|df i|2 ≤ n |Df(m)|2,

and therefore from (8.5), (8.7) and (8.9) we get

(
k|u∗wA|2/k + (n− k)|v∗wB|2/(n−k)

)n/2
(8.10)

≤
( k∑

i=1

|df i|2 +
n∑

i=k+1

|df i|2
)n/2

≤
(
n|Df(m)|2

)n/2

≤ nn/2KO〈u∗wA, ? θ〉
≤ nn/2KO|u∗wA| |v∗wB| .

With

ξ =
|u∗wA|1/k

|v∗wB|1/(n−k)

the preceding relation takes the form

(kξ2 + (n− k))n/2 ≤ nn/2KOξ
k .

Using the notations c and c for the least and greatest positive roots of
the equation (8.4) we have c ≤ ξ ≤ c and

c|v∗wB|1/(n−k) ≤ |u∗wA|1/k ≤ c|v∗wB|1/(n−k) .(8.11)

As above, from (8.11) it follows that

|u∗wA|n/k ≤
(
k +

n− k

c2

)−n/2
nn/2 KO〈u∗wA, ? θ〉 .

Thus the condition (4.6) for the membership of the differential form u∗wA of
degree k in the class WT2 is indeed satisfied.
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To verify the condition (4.7), it is enough to observe that from (8.11) it
follows that

cn−k|θ| ≤ |f ∗wA|(n−k)/k .

2

Let x1, . . . , xk be an orthonormal system of coordinates in Rk, 1 ≤ k < n.
Let A be a domain in Rk and let B be an (n − k)-dimensional Riemannian
manifold. We consider the manifold N = A×B.

Let f : M → N be a mapping of the class W 1,n
loc (M). Locally we write

the mapping f in the components f 1, . . . , fn. Let u = π ◦ f and v = η ◦ f be
as defined above. We have u∗wA = df 1 ∧ . . . ∧ dfk.

8.12. Theorem. If the mapping f is quasiregular, then the differential
form u∗wA is of the class WT3 on M with the structure constants p = n/k,
ν2 = ν2(k, n,KO), ν3 = ν3(k, n,KO).

8.13. Theorem. If the mapping f : M → Rn is quasiregular, then the
differential form u∗wA is of the class WT4 on M with the structure constants
p = n/k, ν3 = ν3(k, n,KO), ν4 = ν4(k, n,KO).

8.14. Remark. We can choose the constants ν2, ν3 and ν4 to be

ν2 = ck−n, ν3 =
(
1 +

1

c21

)n/2
n−n/2kn/2K−1

O ,

ν4 =
(
(n− k)−n/2(1 + c21)

−n/2nn/2KO

)(n−k)/k
,

where c is the least positive root of (8.4), where c1 is the least and c1 the
greatest positive root of the equation

(ξ2 + 1)n/2 − nn/2k−k/2(n− k)−(n−k)/2KO ξ
k = 0 .(8.15)

In contrast to the proof of Theorem 8.2 the differential form u∗wA of
degree k has now a global coordinate representation. The results of the
previous proof stay applicable in the proofs of Theorem 8.12 and 8.13. The
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main difference is that we use now the inequality between geometric and
arithmetic means (8.7) and (8.9) and with the help of (8.10) we get

( k∑
i=1

|df i|2 +
n∑

i=k+1

|df i|2
)n/2

≤ k−n/2(n− k)−(n−k)/2nn/2KO

( k∑
i=1

|df i|2
)k/2( n∑

i=k+1

|df i|2
)(n−k)/2

.

From this point the proofs follow the concept of the proof of Theorem 8.2.
For details of the proofs of Theorem 8.12 and 8.13 see [FMMVW] §6. Our
slightly better constants ν3 and ν4 follow directly from the definitions of the
classes WT3 and WT4.

There exist some differences between the Theorems 8.1 and 8.2. In the
first theorem the mapping f is only weakly quasiregular. This could be
weakened by a theorem from T.Iwaniec ([Iw1] §11) which says that a weakly
K-quasiregular mapping f ∈W 1,p

loc , p < n, is also K-quasiregular, if p is close
enough to n, here p depends only on n and K, see also [FW] §9. The theorem
depends on a Caccioppoli-type estimate, which recently was refined in [Iw2].

The differential form duI (7.4) depends on a multi-index, we have more
possibilities for a differential form of the class WT2. The differential form
u∗wA in Theorem 8.2 is fixed, but we gave concreter constants ν1 and ν2.

9 Morrey’s Lemma on manifolds

In this chapter we follow mostly the considerations of [MMV3]. Let M be
a Riemannian manifold of dimension n and without boundary. We assume
that M is orientable and of the class C3. Let d(m1, m2) be the geodesic
distance between the points m1, m2 ∈ M. We denote by

B(a, t) = {m ∈ M : d(a,m) < t}
Σ(a, t) = {m ∈ M : d(a,m) = t}

the geodesic ball and the geodesic sphere, respectively, with center a ∈ M
and radius t > 0.
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