3 Differential forms on Riemannian manifolds

Let \mathcal{M} be an orientable compact Riemannian manifold of dimension n and of the class C^3 . Let x^1, \ldots, x^n be local coordinates in the neighborhood of a point $m \in \mathcal{M}$. The square of a line element on \mathcal{M} has the following expression in terms of the local coordinates x^1, \ldots, x^n

$$ds^2 = \sum_{i,j=1}^n g_{ij}(x) dx^i \, dx^j \, .$$

Each section ω of the bundle $\Lambda^k(T(\mathcal{M}))$ is a differential form of degree k on the manifold \mathcal{M} . The differential form ω can be written in terms of the local coordinates x^1, \ldots, x^n (see (1.2)) as the linear combination

(3.1)
$$\omega = \sum_{I \in \mathcal{I}(k,n)} \omega_I dx^I = \sum_{1 \le i_1 < \dots < i_k \le n} \omega_{i_1 \dots i_k} dx^{i_1} \wedge \dots \wedge dx^{i_k}.$$

Let ω be a differential form defined on an open set $D \subset \mathcal{M}$. If $\mathcal{F}(D)$ is a class of functions defined on D, then we say that the differential form ω is in this class provided that all coefficients ω_I , $I \in \mathcal{I}(k, n)$, are in this class.

For example $\omega \in L^p(D)$, $1 \leq p \leq \infty$, if all coefficients ω_I belong to $L^p(D)$. Endowed with the norm

(3.2)
$$\|\omega\|_{p,D} = \left(\int_{D} |\omega(m)|^p dv_{\mathcal{M}}\right)^{1/p} = \left(\int_{D} \left(\sum_{I \in \mathcal{I}(k,n)} |\omega_I(m)|^2\right)^{p/2} dv_{\mathcal{M}}\right)^{1/p}$$

 $L^p(D)$ is a Banach space. Here $dv_{\mathcal{M}}$ denotes the *n*-dimensional volume element on \mathcal{M} . The space $L_1^p(D)$ consists of all differential forms ω with

(3.3)
$$\|\omega\|_{L^p_1(D)} = \left(\int\limits_D \left(\sum_{I \in \mathcal{I}(k,n)} \sum_{i=1}^n \left| \frac{\partial \omega_I(m)}{\partial x^i} \right|^2 \right)^{p/2} dv_{\mathcal{M}} \right)^{1/p} < \infty.$$

The norm (3.3) is only a semi-norm. The Sobolev space $W^{1,p}(\mathcal{M}), 1 \leq p < \infty$, is defined by

$$W^{1,p}(\mathcal{M}) = L^p(\mathcal{M}) \cap L^p_1(\mathcal{M})$$

with the norm $\|\omega\|_{W^{1,p}(\mathcal{M})} = \|\omega\|_p + \|\omega\|_{L^p_1(\mathcal{M})}$. The local spaces $L^p_{\text{loc}}(\mathcal{M})$ and $W^{1,p}_{\text{loc}}(\mathcal{M})$ are defined in the usual way.

The Sobolev embeddings in Euclidean spaces (see for example [Re] §2) are valid for compact manifolds. For the following theorem and proof see [He] §3.3.

3.4. Theorem. Let \mathcal{M} be a compact Riemannian manifold of dimension n. For every $p, 1 \leq p < n$, and every $q \geq 1$ such that q < np/(n-p), the embedding of $W^{1,p}(\mathcal{M})$ in $L^q(\mathcal{M})$ is compact.

For all differential forms $\alpha \in L^p(D)$ and $\beta \in L^q(D)$ with $1 \leq p, q \leq \infty$, 1/p + 1/q = 1, the inner product is defined by

(3.5)
$$(\alpha,\beta) = \int_{D} \langle \alpha(x),\beta(x)\rangle \, dv_{\mathcal{M}}$$

The orthogonal complement of a differential form ω on a Riemannian manifold \mathcal{M} will be denoted by $\star \omega$, where the linear operator \star is the Hodge star operator of (1.5). If deg $\omega = 1$, then in the local orthonormal system of coordinates x^1, \ldots, x^n at m we can write

$$\star \,\omega(m) = \star \sum_{i=1}^n \omega_i(m) \, dx^i = \sum_{i=1}^n (-1)^{i-1} \omega_i(m) \, dx^1 \wedge \ldots \wedge \widehat{dx^i} \wedge \ldots \wedge dx^n \,,$$

where the sign $\hat{}$ means that the expression under $\hat{}$ is omitted.

We shall make extensive use of the exterior derivative operator d. If ω , deg $\omega = k$, $0 \le k \le n$, is a differential form whose coefficients are in $C^1(\mathcal{M})$, then $d\omega$, deg $(d\omega) = k + 1$, denotes its differential defined by

$$(3.6) d\omega = \sum_{1 \le i_1 < \ldots < i_k \le n} d\omega_{i_1 \ldots i_k} \wedge dx^{i_1} \wedge \ldots \wedge dx^{i_k} = \sum_{I \in \mathcal{I}(k,n)} d\omega_I \wedge dx^I .$$

The exterior derivative operator is a linear operator. For arbitrary differential forms α and β , differentiable in a domain $D \subset \mathcal{M}$, the following properties hold

(3.7a)
$$d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^k \alpha \wedge d\beta ,$$

(3.7b)
$$d(d\alpha) = d(d\beta) = 0 ,$$

where k is the degree of the differential form α .

The formal adjoint operator to d, the so called Hodge codifferential d^* , is defined by the help of the exterior derivative operator and the Hodge star operator. For a differential form ω of degree k we define

(3.8)
$$d^*\omega = (-1)^k \star^{-1} d \star \omega .$$

It follows that $d^*\omega$ is of degree k-1 with the representation

$$d^*\omega = \sum_{1 \le i_1 < \dots < i_k \le n} \sum_{\nu=1}^k (-1)^{\nu-1} \frac{\partial \omega_{i_1 \dots i_k}}{\partial x^{i_\nu}} dx^{i_1} \wedge \dots \wedge dx^{i_k} \cdot \dots \wedge dx^{i_k} \cdot \dots \wedge dx^{i_k}$$

Observe that the application of the exterior derivative to a differential form of degree n is always zero, the same is true for the codifferential applied to a differential form of degree zero. From (3.8) it follows that $d^*(d^*\omega) = 0$.

In the previous chapter we already defined orientable manifolds, with the help of differential forms we can say it in other words.

3.9. Lemma. A differentiable manifold \mathcal{M} , dim $\mathcal{M} = n$, is orientable if and only if there exists a differential form of degree n, everywhere non-vanishing.

For the proof see [Au] §9.

Let \mathcal{M} and \mathcal{N} be orientable Riemannian manifolds of dimension n and f: $\mathcal{M} \to \mathcal{N}$ a mapping of the Sobolev class $W^{1,p}_{\text{loc}}(\mathcal{M}), p \geq 1$. Concerning local coordinates x^1, \ldots, x^n we can write the mapping f locally in the components f^1, \ldots, f^n . Then f induces a homomorphism $f^* : C^{\infty}(\mathcal{M}) \to L^p_{\text{loc}}(\mathcal{M})$ on differential forms of degree k, called the pull-back. More precisely, for a differential form $\alpha = \sum_{I \in \mathcal{I}(k,n)} \alpha_I dx^I \in C^{\infty}(\mathcal{M}), \text{ deg } \alpha = k$, we get

(3.10)
$$(f^*\alpha)(m) = \sum_{I \in \mathcal{I}(k,n)} \alpha_I(f(m)) df^{i_1} \wedge \ldots \wedge df^{i_k}$$
$$= \sum_{I \in \mathcal{I}(k,n)} \alpha_I(f(m)) df^I .$$

The pull-back f^* can be interpreted as a coordinate transformation of differential forms. The operator f^* applied on differential forms of degree k with constant coefficients is easily recognized as the kth exterior power of the linear transformation $D^t f(m)$. That is

(3.11)
$$(f^*\alpha)(m) = [D^t f(m)]_{\#} \alpha$$

For the theory of differential forms on Riemannian manifolds and especially for the following statements we refer to [Rh].

If \mathcal{M} is a compact *n*-dimensional orientable Riemannian manifold with nonempty piecewise smooth boundary $\partial \mathcal{M}$, the following Stokes formula holds for an arbitrary differential form $\omega \in C^1(\mathcal{M})$, deg $\omega = n - 1$,

(3.12)
$$\int_{\partial \mathcal{M}} \omega = \int_{\mathcal{M}} d\omega$$

3.13. Definition. A differential form α , deg $\alpha = k$, on the manifold \mathcal{M} with coefficients $\alpha_I \in L^p_{loc}(\mathcal{M}), I \in \mathcal{I}(k, n)$, is called weakly closed, if for each differential form β , deg $\beta = k + 1$, with

$$\operatorname{supp} \beta \cap \partial \mathcal{M} = \emptyset, \quad \operatorname{supp} \beta = \overline{\{m \in \mathcal{M} : \beta \neq 0\}} \subset \mathcal{M},$$

and with coefficients in the class $W^{1,q}_{\text{loc}}(\mathcal{M}), 1/p + 1/q = 1, 1 \leq p, q \leq \infty$, we have

(3.14)
$$\int_{\mathcal{M}} \langle \alpha, d^*\beta \rangle \, dv_{\mathcal{M}} = 0 \, .$$

The following lemma shows that for smooth differential forms α , condition (3.14) agrees with the usual condition of closedness $d\alpha = 0$, see [Rh] §25. Let \mathcal{M} be an orientable Riemannian manifold with nonempty piecewise smooth boundary.

3.15. Lemma. Let $\alpha, \beta \in C^1(\mathcal{M})$ with deg $\alpha = k$ and deg $\beta = k + 1$. If either α or β has compact support in \mathcal{M} , then

(3.16)
$$\int_{\mathcal{M}} \langle d\alpha, \beta \rangle \, dv_{\mathcal{M}} = \int_{\mathcal{M}} \langle \alpha, d^*\beta \rangle \, dv_{\mathcal{M}} \, .$$

Proof. With (1.9) and property (3.7a) we know that

$$\int_{\mathcal{M}} \langle d\alpha, \beta \rangle \, dv_{\mathcal{M}} = \int_{\mathcal{M}} d\alpha \wedge \star \beta$$
$$= \int_{\mathcal{M}} d(\alpha \wedge \star \beta) + (-1)^{k+1} \int_{\mathcal{M}} \alpha \wedge d \star \beta$$

Because α or β has compact support on \mathcal{M} , the first integral on the right side is zero by Stokes formula for differential forms. Thus and with (3.8) it follows

$$\int_{\mathcal{M}} d\alpha \wedge \star \beta = (-1)^{k+1} \int_{\mathcal{M}} \alpha \wedge \star \star^{-1} d \star \beta = \int_{\mathcal{M}} \alpha \wedge \star d^* \beta$$
$$= \int_{\mathcal{M}} \langle \alpha, d^* \beta \rangle \, dv_{\mathcal{M}} \, .$$

We next introduce the following very useful theorem.

3.17. Theorem. Let α and β be differential forms, β with a compact support, and $\alpha \in W^{1,p}_{\text{loc}}(\mathcal{M}), \beta \in W^{1,q}(\mathcal{M}), 1 \leq p,q \leq \infty, \deg \alpha + \deg \beta = n-1, 1/p+1/q = 1$. Then

(3.18)
$$\int_{\mathcal{M}} d\alpha \wedge \beta = (-1)^{\deg \alpha + 1} \int_{\mathcal{M}} \alpha \wedge d\beta .$$

In particular, the differential form α is weakly closed if and only if $d\alpha = 0$ a.e. on \mathcal{M} .

Proof. Fix α and β with the stated properties. Because the coefficients of the differential form α are in the class $W_{\text{loc}}^{1,p}(\mathcal{M})$, there exists a sequence $\{\alpha_n\}_{n=1}^{\infty}$ of differential forms with coefficients in the class $C^1(\mathcal{M})$ converging in the $W^{1,p}$ -norm to the coefficients of the differential form α on every compact set $K \subset \text{int}\mathcal{M}$.

Let $\{\beta_n\}_{n=1}^{\infty}$ be a sequence of differential forms, deg $\beta_n = \text{deg }\beta$, in the class $C^1(\mathcal{M})$ having compact supports and converging in the norm of $W^{1,q}$ to the differential form β . We may assume that there exists a smooth submanifold $U \subset \subset \mathcal{M}$ such that supp $\beta_n \subset U$ for all integers n.

The differential forms $\alpha_n \wedge \beta_n$ have compact supports contained in U. Stokes formula yields

$$\int_{\mathcal{M}} d(\alpha_n \wedge \beta_n) = \int_{U} d(\alpha_n \wedge \beta_n) = 0$$

and hence

$$\int_{U} d\alpha_n \wedge \beta_n + (-1)^{\deg \alpha} \int_{U} \alpha_n \wedge d\beta_n = 0$$

We have

$$\int_{U} d\alpha \wedge \beta - \int_{U} d\alpha_n \wedge \beta_n = \int_{U} (d\alpha - d\alpha_n) \wedge \beta + \int_{U} d\alpha_n \wedge (\beta - \beta_n) .$$

Therefore, using the Hölder inequality (1.10) we obtain

$$\begin{split} \left| \int_{U} d\alpha \wedge \beta - \int_{U} d\alpha_{n} \wedge \beta_{n} \right| \\ &\leq \int_{U} \left| d(\alpha - \alpha_{n}) \wedge \beta \right| dv_{\mathcal{M}} + \int_{U} \left| d\alpha_{n} \wedge (\beta - \beta_{n}) \right| dv_{\mathcal{M}} \\ &\leq C \int_{U} \left| d(\alpha - \alpha_{n}) \right| \left| \beta \right| dv_{\mathcal{M}} + C \int_{U} \left| d\alpha_{n} \right| \left| \beta - \beta_{n} \right| dv_{\mathcal{M}} \\ &\leq C \| d(\alpha - \alpha_{n}) \|_{L^{p}(U)} \| \beta \|_{L^{q}(U)} + C \| d\alpha_{n} \|_{L^{p}(U)} \| \beta - \beta_{n} \|_{L^{q}(U)} \,, \end{split}$$

where $C = (C_{k+1,l})^{1/2}$ is the constant of (1.10) with $k = \deg \alpha$ and $l = \deg \beta$. Similarly we obtain

$$\begin{aligned} \left| \int_{U} \alpha \wedge d\beta &- \int_{U} \alpha_{n} \wedge d\beta_{n} \right| \\ &\leq C_{1} \|\alpha\|_{L^{p}(U)} \|d(\beta - \beta_{n})\|_{L^{q}(U)} + C_{1} \|\alpha - \alpha_{n}\|_{L^{p}(U)} \|d\beta\|_{L^{q}(U)}, \end{aligned}$$

where $C_1 = (C_{k,l+1})^{1/2}$. These inequalities easily yield (3.18).

If $d\alpha = 0$ a.e. on \mathcal{M} , then by (3.18)

(3.19)
$$\int_{\mathcal{M}} \alpha \wedge d\beta = 0$$

for an arbitrary differential form $\beta \in W^{1,q}$ with compact support. This, obviously, implies (3.14). On the other hand, if we take a weakly closed differential form $\alpha \in W^{1,p}_{\text{loc}}(\mathcal{M})$, then by (3.18) one has

$$\int_{\mathcal{M}} d\alpha \wedge \beta = 0 \quad \text{for all } \beta \in W^{1,q}(\mathcal{M}) \quad \text{with} \quad \text{supp} \, \beta \subset \mathcal{M} \,.$$

We fix an arbitrary point $m \in \mathcal{M}$ and pass to the local coordinates on \mathcal{M} in a neighborhood of this point. We see that almost everywhere in a neighborhood of the point m the coefficients of the differential form $d\alpha$ are zero. Hence the theorem has been proved. \Box