
3 Differential forms on Riemannian mani-

folds

Let M be an orientable compact Riemannian manifold of dimension n and
of the class C3. Let x1, . . . , xn be local coordinates in the neighborhood of
a point m ∈ M. The square of a line element on M has the following
expression in terms of the local coordinates x1, . . . , xn

ds2 =
n∑

i,j=1

gij(x)dx
i dxj .

Each section ω of the bundle Λk(T (M)) is a differential form of degree k
on the manifold M. The differential form ω can be written in terms of the
local coordinates x1, . . . , xn (see (1.2)) as the linear combination

ω =
∑

I∈I(k,n)

ωI dx
I =

∑
1≤i1<...<ik≤n

ωi1...ikdx
i1 ∧ . . . ∧ dxik .(3.1)

Let ω be a differential form defined on an open set D ⊂ M. If F(D) is
a class of functions defined on D, then we say that the differential form ω is
in this class provided that all coefficients ωI , I ∈ I(k, n), are in this class.

For example ω ∈ Lp(D), 1 ≤ p ≤ ∞, if all coefficients ωI belong to Lp(D).
Endowed with the norm

‖ω‖p,D =

∫
D

|ω(m)|pdvM

1/p

=

∫
D

 ∑
I∈I(k,n)

|ωI(m)|2
p/2

dvM


1/p

(3.2)

Lp(D) is a Banach space. Here dvM denotes the n-dimensional volume ele-
ment on M. The space Lp

1(D) consists of all differential forms ω with

‖ω‖Lp
1(D) =

∫
D

 ∑
I∈I(k,n)

n∑
i=1

∣∣∣∣∣∂ωI(m)

∂xi

∣∣∣∣∣
2
p/2

dvM


1/p

<∞ .(3.3)

The norm (3.3) is only a semi-norm. The Sobolev space W 1,p(M), 1 ≤ p <
∞, is defined by

W 1,p(M) = Lp(M) ∩ Lp
1(M)
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with the norm ‖ω‖W 1,p(M) = ‖ω‖p+‖ω‖Lp
1(M). The local spaces Lp

loc(M) and

W 1,p
loc (M) are defined in the usual way.
The Sobolev embeddings in Euclidean spaces (see for example [Re] §2)

are valid for compact manifolds. For the following theorem and proof see
[He] §3.3.

3.4. Theorem. Let M be a compact Riemannian manifold of dimen-
sion n. For every p, 1 ≤ p < n, and every q ≥ 1 such that q < np/(n − p),
the embedding of W 1,p(M) in Lq(M) is compact.

For all differential forms α ∈ Lp(D) and β ∈ Lq(D) with 1 ≤ p, q ≤ ∞,
1/p+ 1/q = 1, the inner product is defined by

(α, β) =
∫
D

〈α(x), β(x)〉 dvM .(3.5)

The orthogonal complement of a differential form ω on a Riemannian
manifold M will be denoted by ? ω, where the linear operator ? is the Hodge
star operator of (1.5). If degω = 1, then in the local orthonormal system of
coordinates x1, . . . , xn at m we can write

? ω(m) = ?
n∑

i=1

ωi(m) dxi =
n∑

i=1

(−1)i−1ωi(m) dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn ,

where the sign ̂ means that the expression under ̂ is omitted.
We shall make extensive use of the exterior derivative operator d. If ω,

deg ω = k, 0 ≤ k ≤ n, is a differential form whose coefficients are in C1(M),
then dω, deg(dω) = k + 1, denotes its differential defined by

dω =
∑

1≤i1<...<ik≤n

dωi1...ik ∧ dxi1 ∧ . . . ∧ dxik =
∑

I∈I(k,n)

dωI ∧ dxI .(3.6)

The exterior derivative operator is a linear operator. For arbitrary dif-
ferential forms α and β, differentiable in a domain D ⊂ M, the following
properties hold

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ ,(3.7a)

d(dα) = d(dβ) = 0 ,(3.7b)
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where k is the degree of the differential form α.
The formal adjoint operator to d, the so called Hodge codifferential d∗,

is defined by the help of the exterior derivative operator and the Hodge star
operator. For a differential form ω of degree k we define

d∗ω = (−1)k ?−1 d ? ω .(3.8)

It follows that d∗ω is of degree k − 1 with the representation

d∗ω =
∑

1≤i1<...<ik≤n

k∑
ν=1

(−1)ν−1∂ωi1...ik

∂xiν
dxi1 ∧ . . . ∧ d̂xiν ∧ . . . ∧ dxik .

Observe that the application of the exterior derivative to a differential
form of degree n is always zero, the same is true for the codifferential applied
to a differential form of degree zero. From (3.8) it follows that d∗(d∗ω) = 0.

In the previous chapter we already defined orientable manifolds, with the
help of differential forms we can say it in other words.

3.9. Lemma. A differentiable manifold M, dimM = n, is orientable
if and only if there exists a differential form of degree n, everywhere non-
vanishing.

For the proof see [Au] §9.
Let M and N be orientable Riemannian manifolds of dimension n and f :

M → N a mapping of the Sobolev class W 1,p
loc (M), p ≥ 1. Concerning local

coordinates x1, . . . , xn we can write the mapping f locally in the components
f 1, . . . , fn. Then f induces a homomorphism f ∗ : C∞(M) → Lp

loc(M) on
differential forms of degree k, called the pull-back. More precisely, for a
differential form α =

∑
I∈I(k,n)αIdx

I ∈ C∞(M), degα = k, we get

(f ∗α) (m) =
∑

I∈I(k,n)

αI(f(m)) df i1 ∧ . . . ∧ df ik(3.10)

=
∑

I∈I(k,n)

αI(f(m)) df I .

The pull-back f ∗ can be interpreted as a coordinate transformation of dif-
ferential forms. The operator f ∗ applied on differential forms of degree k
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with constant coefficients is easily recognized as the kth exterior power of
the linear transformation Dtf(m). That is

(f ∗α) (m) = [Dtf(m)]# α .(3.11)

For the theory of differential forms on Riemannian manifolds and espe-
cially for the following statements we refer to [Rh].

If M is a compact n-dimensional orientable Riemannian manifold with
nonempty piecewise smooth boundary ∂M, the following Stokes formula
holds for an arbitrary differential form ω ∈ C1(M), degω = n− 1,∫

∂M
ω =

∫
M
dω .(3.12)

3.13. Definition. A differential form α, deg α = k, on the manifold
M with coefficients αI ∈ Lp

loc(M), I ∈ I(k, n), is called weakly closed, if for
each differential form β, deg β = k + 1, with

supp β ∩ ∂M = ∅, supp β = {m ∈ M : β 6= 0} ⊂ M,

and with coefficients in the class W 1,q
loc (M), 1/p+ 1/q = 1, 1 ≤ p, q ≤ ∞, we

have ∫
M

〈α, d∗β〉 dvM = 0 .(3.14)

The following lemma shows that for smooth differential forms α, condition
(3.14) agrees with the usual condition of closedness dα = 0, see [Rh] §25. Let
M be an orientable Riemannian manifold with nonempty piecewise smooth
boundary.

3.15. Lemma. Let α, β ∈ C1(M) with degα = k and deg β = k + 1.
If either α or β has compact support in M, then∫

M
〈dα, β〉 dvM =

∫
M

〈α, d∗β〉 dvM .(3.16)

Proof. With (1.9) and property (3.7a) we know that∫
M

〈dα, β〉 dvM =
∫
M
dα ∧ ? β

=
∫
M
d(α ∧ ? β) + (−1)k+1

∫
M
α ∧ d ? β .
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Because α or β has compact support on M, the first integral on the right
side is zero by Stokes formula for differential forms. Thus and with (3.8) it
follows ∫

M
dα ∧ ? β = (−1)k+1

∫
M
α ∧ ? ?−1 d ? β =

∫
M
α ∧ ? d∗β

=
∫
M

〈α, d∗β〉 dvM .

2

We next introduce the following very useful theorem.

3.17. Theorem. Let α and β be differential forms, β with a compact
support, and α ∈ W 1,p

loc (M), β ∈ W 1,q(M), 1 ≤ p, q ≤ ∞, deg α + deg β =
n− 1, 1/p+ 1/q = 1. Then∫

M
dα ∧ β = (−1)deg α+1

∫
M
α ∧ dβ .(3.18)

In particular, the differential form α is weakly closed if and only if dα = 0
a.e. on M.

Proof. Fix α and β with the stated properties. Because the coefficients
of the differential form α are in the class W 1,p

loc (M), there exists a sequence
{αn}∞n=1 of differential forms with coefficients in the class C1(M) conver-
ging in the W 1,p-norm to the coefficients of the differential form α on every
compact set K ⊂ intM.

Let {βn}∞n=1 be a sequence of differential forms, deg βn = deg β, in the
class C1(M) having compact supports and converging in the norm of W 1,q

to the differential form β. We may assume that there exists a smooth sub-
manifold U ⊂⊂ M such that supp βn ⊂ U for all integers n.

The differential forms αn ∧ βn have compact supports contained in U .
Stokes formula yields∫

M
d(αn ∧ βn) =

∫
U

d(αn ∧ βn) = 0 ,

and hence ∫
U

dαn ∧ βn + (−1)deg α
∫
U

αn ∧ dβn = 0 .
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We have∫
U

dα ∧ β −
∫
U

dαn ∧ βn =
∫
U

(dα− dαn) ∧ β +
∫
U

dαn ∧ (β − βn) .

Therefore, using the Hölder inequality (1.10) we obtain∣∣∣∫
U

dα ∧ β −
∫
U

dαn ∧ βn

∣∣∣
≤

∫
U

|d(α− αn) ∧ β|dvM +
∫
U

|dαn ∧ (β − βn)|dvM

≤ C
∫
U

|d(α− αn)| |β|dvM + C
∫
U

|dαn| |β − βn|dvM

≤ C‖d(α− αn)‖Lp(U) ‖β‖Lq(U) + C‖dαn‖Lp(U) ‖β − βn‖Lq(U) ,

where C = (Ck+1,l)
1/2 is the constant of (1.10) with k = degα and l = deg β.

Similarly we obtain∣∣∣∫
U

α ∧ dβ −
∫
U

αn ∧ dβn

∣∣∣
≤ C1‖α‖Lp(U) ‖d(β − βn)‖Lq(U) + C1‖α− αn‖Lp(U) ‖dβ‖Lq(U) ,

where C1 = (Ck,l+1)
1/2. These inequalities easily yield (3.18).

If dα = 0 a.e. on M, then by (3.18)∫
M
α ∧ dβ = 0(3.19)

for an arbitrary differential form β ∈ W 1,q with compact support. This,
obviously, implies (3.14). On the other hand, if we take a weakly closed
differential form α ∈W 1,p

loc (M), then by (3.18) one has∫
M
dα ∧ β = 0 for all β ∈W 1,q(M) with supp β ⊂ M .

We fix an arbitrary point m ∈ M and pass to the local coordinates on
M in a neighborhood of this point. We see that almost everywhere in a
neighborhood of the point m the coefficients of the differential form dα are
zero. Hence the theorem has been proved. 2
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