3 Differential forms on Riemannian manifolds

Let \mathcal{M} be an orientable compact Riemannian manifold of dimension n and of the class C^{3}. Let x^{1}, \ldots, x^{n} be local coordinates in the neighborhood of a point $m \in \mathcal{M}$. The square of a line element on \mathcal{M} has the following expression in terms of the local coordinates x^{1}, \ldots, x^{n}

$$
d s^{2}=\sum_{i, j=1}^{n} g_{i j}(x) d x^{i} d x^{j}
$$

Each section ω of the bundle $\Lambda^{k}(T(\mathcal{M}))$ is a differential form of degree k on the manifold \mathcal{M}. The differential form ω can be written in terms of the local coordinates x^{1}, \ldots, x^{n} (see (1.2)) as the linear combination

$$
\begin{equation*}
\omega=\sum_{I \in \mathcal{I}(k, n)} \omega_{I} d x^{I}=\sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} \omega_{i_{1} \ldots i_{k}} d x^{i_{1}} \wedge \ldots \wedge d x^{i_{k}} \tag{3.1}
\end{equation*}
$$

Let ω be a differential form defined on an open set $D \subset \mathcal{M}$. If $\mathcal{F}(D)$ is a class of functions defined on D, then we say that the differential form ω is in this class provided that all coefficients $\omega_{I}, I \in \mathcal{I}(k, n)$, are in this class.

For example $\omega \in L^{p}(D), 1 \leq p \leq \infty$, if all coefficients ω_{I} belong to $L^{p}(D)$. Endowed with the norm

$$
\begin{equation*}
\|\omega\|_{p, D}=\left(\int_{D}|\omega(m)|^{p} d v_{\mathcal{M}}\right)^{1 / p}=\left(\int_{D}\left(\sum_{I \in \mathcal{I}(k, n)}\left|\omega_{I}(m)\right|^{2}\right)^{p / 2} d v_{\mathcal{M}}\right)^{1 / p} \tag{3.2}
\end{equation*}
$$

$L^{p}(D)$ is a Banach space. Here $d v_{\mathcal{M}}$ denotes the n-dimensional volume element on \mathcal{M}. The space $L_{1}^{p}(D)$ consists of all differential forms ω with

$$
\begin{equation*}
\|\omega\|_{L_{1}^{p}(D)}=\left(\int_{D}\left(\sum_{I \in \mathcal{I}(k, n)} \sum_{i=1}^{n}\left|\frac{\partial \omega_{I}(m)}{\partial x^{i}}\right|^{2}\right)^{p / 2} d v_{\mathcal{M}}\right)^{1 / p}<\infty \tag{3.3}
\end{equation*}
$$

The norm (3.3) is only a semi-norm. The Sobolev space $W^{1, p}(\mathcal{M}), 1 \leq p<$ ∞, is defined by

$$
W^{1, p}(\mathcal{M})=L^{p}(\mathcal{M}) \cap L_{1}^{p}(\mathcal{M})
$$

with the norm $\|\omega\|_{W^{1, p}(\mathcal{M})}=\|\omega\|_{p}+\|\omega\|_{L_{1}^{p}(\mathcal{M})}$. The local spaces $L_{\text {loc }}^{p}(\mathcal{M})$ and $W_{\text {loc }}^{1, p}(\mathcal{M})$ are defined in the usual way.

The Sobolev embeddings in Euclidean spaces (see for example [Re] §2) are valid for compact manifolds. For the following theorem and proof see [He] §3.3.
3.4. Theorem. Let \mathcal{M} be a compact Riemannian manifold of dimension n. For every $p, 1 \leq p<n$, and every $q \geq 1$ such that $q<n p /(n-p)$, the embedding of $W^{1, p}(\mathcal{M})$ in $L^{q}(\mathcal{M})$ is compact.

For all differential forms $\alpha \in L^{p}(D)$ and $\beta \in L^{q}(D)$ with $1 \leq p, q \leq \infty$, $1 / p+1 / q=1$, the inner product is defined by

$$
\begin{equation*}
(\alpha, \beta)=\int_{D}\langle\alpha(x), \beta(x)\rangle d v_{\mathcal{M}} \tag{3.5}
\end{equation*}
$$

The orthogonal complement of a differential form ω on a Riemannian manifold \mathcal{M} will be denoted by $\star \omega$, where the linear operator \star is the Hodge star operator of (1.5). If $\operatorname{deg} \omega=1$, then in the local orthonormal system of coordinates x^{1}, \ldots, x^{n} at m we can write

$$
\star \omega(m)=\star \sum_{i=1}^{n} \omega_{i}(m) d x^{i}=\sum_{i=1}^{n}(-1)^{i-1} \omega_{i}(m) d x^{1} \wedge \ldots \wedge \widehat{d x^{i}} \wedge \ldots \wedge d x^{n}
$$

where the sign ${ }^{\wedge}$ means that the expression under ${ }^{\wedge}$ is omitted.
We shall make extensive use of the exterior derivative operator d. If ω, $\operatorname{deg} \omega=k, 0 \leq k \leq n$, is a differential form whose coefficients are in $C^{1}(\mathcal{M})$, then $d \omega, \operatorname{deg}(d \omega)=k+1$, denotes its differential defined by

$$
\begin{equation*}
d \omega=\sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} d \omega_{i_{1} \ldots i_{k}} \wedge d x^{i_{1}} \wedge \ldots \wedge d x^{i_{k}}=\sum_{I \in \mathcal{I}(k, n)} d \omega_{I} \wedge d x^{I} \tag{3.6}
\end{equation*}
$$

The exterior derivative operator is a linear operator. For arbitrary differential forms α and β, differentiable in a domain $D \subset \mathcal{M}$, the following properties hold

$$
\begin{gather*}
d(\alpha \wedge \beta)=d \alpha \wedge \beta+(-1)^{k} \alpha \wedge d \beta \tag{3.7a}\\
d(d \alpha)=d(d \beta)=0 \tag{3.7b}
\end{gather*}
$$

where k is the degree of the differential form α.
The formal adjoint operator to d, the so called Hodge codifferential d^{*}, is defined by the help of the exterior derivative operator and the Hodge star operator. For a differential form ω of degree k we define

$$
\begin{equation*}
d^{*} \omega=(-1)^{k} \star^{-1} d \star \omega \tag{3.8}
\end{equation*}
$$

It follows that $d^{*} \omega$ is of degree $k-1$ with the representation

$$
d^{*} \omega=\sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} \sum_{\nu=1}^{k}(-1)^{\nu-1} \frac{\partial \omega_{i_{1} \ldots i_{k}}}{\partial x^{i_{\nu}}} d x^{i_{1}} \wedge \ldots \wedge \widehat{d x^{i_{\nu}}} \wedge \ldots \wedge d x^{i_{k}} .
$$

Observe that the application of the exterior derivative to a differential form of degree n is always zero, the same is true for the codifferential applied to a differential form of degree zero. From (3.8) it follows that $d^{*}\left(d^{*} \omega\right)=0$.

In the previous chapter we already defined orientable manifolds, with the help of differential forms we can say it in other words.
3.9. Lemma. A differentiable manifold $\mathcal{M}, \operatorname{dim} \mathcal{M}=n$, is orientable if and only if there exists a differential form of degree n, everywhere nonvanishing.

For the proof see $[\mathrm{Au}] \S 9$.
Let \mathcal{M} and \mathcal{N} be orientable Riemannian manifolds of dimension n and f : $\mathcal{M} \rightarrow \mathcal{N}$ a mapping of the Sobolev class $W_{\mathrm{loc}}^{1, p}(\mathcal{M}), p \geq 1$. Concerning local coordinates x^{1}, \ldots, x^{n} we can write the mapping f locally in the components f^{1}, \ldots, f^{n}. Then f induces a homomorphism $f^{*}: C^{\infty}(\mathcal{M}) \rightarrow L_{\mathrm{loc}}^{p}(\mathcal{M})$ on differential forms of degree k, called the pull-back. More precisely, for a differential form $\alpha=\sum_{I \in \mathcal{I}(k, n)} \alpha_{I} d x^{I} \in C^{\infty}(\mathcal{M}), \operatorname{deg} \alpha=k$, we get

$$
\begin{align*}
\left(f^{*} \alpha\right)(m) & =\sum_{I \in \mathcal{I}(k, n)} \alpha_{I}(f(m)) d f^{i_{1}} \wedge \ldots \wedge d f^{i_{k}} \tag{3.10}\\
& =\sum_{I \in \mathcal{I}(k, n)} \alpha_{I}(f(m)) d f^{I} .
\end{align*}
$$

The pull-back f^{*} can be interpreted as a coordinate transformation of differential forms. The operator f^{*} applied on differential forms of degree k
with constant coefficients is easily recognized as the k th exterior power of the linear transformation $D^{t} f(m)$. That is

$$
\begin{equation*}
\left(f^{*} \alpha\right)(m)=\left[D^{t} f(m)\right]_{\#} \alpha . \tag{3.11}
\end{equation*}
$$

For the theory of differential forms on Riemannian manifolds and especially for the following statements we refer to [Rh].

If \mathcal{M} is a compact n-dimensional orientable Riemannian manifold with nonempty piecewise smooth boundary $\partial \mathcal{M}$, the following Stokes formula holds for an arbitrary differential form $\omega \in C^{1}(\mathcal{M}), \operatorname{deg} \omega=n-1$,

$$
\begin{equation*}
\int_{\partial \mathcal{M}} \omega=\int_{\mathcal{M}} d \omega . \tag{3.12}
\end{equation*}
$$

3.13. Definition. A differential form α, $\operatorname{deg} \alpha=k$, on the manifold \mathcal{M} with coefficients $\alpha_{I} \in L_{\mathrm{loc}}^{p}(\mathcal{M}), I \in \mathcal{I}(k, n)$, is called weakly closed, if for each differential form $\beta, \operatorname{deg} \beta=k+1$, with

$$
\operatorname{supp} \beta \cap \partial \mathcal{M}=\emptyset, \quad \operatorname{supp} \beta=\overline{\{m \in \mathcal{M}: \beta \neq 0\}} \subset \mathcal{M}
$$

and with coefficients in the class $W_{\text {loc }}^{1, q}(\mathcal{M}), 1 / p+1 / q=1,1 \leq p, q \leq \infty$, we have

$$
\begin{equation*}
\int_{\mathcal{M}}\left\langle\alpha, d^{*} \beta\right\rangle d v_{\mathcal{M}}=0 \tag{3.14}
\end{equation*}
$$

The following lemma shows that for smooth differential forms α, condition (3.14) agrees with the usual condition of closedness $d \alpha=0$, see [Rh] §25. Let \mathcal{M} be an orientable Riemannian manifold with nonempty piecewise smooth boundary.
3.15. Lemma. Let $\alpha, \beta \in C^{1}(\mathcal{M})$ with $\operatorname{deg} \alpha=k$ and $\operatorname{deg} \beta=k+1$. If either α or β has compact support in \mathcal{M}, then

$$
\begin{equation*}
\int_{\mathcal{M}}\langle d \alpha, \beta\rangle d v_{\mathcal{M}}=\int_{\mathcal{M}}\left\langle\alpha, d^{*} \beta\right\rangle d v_{\mathcal{M}} \tag{3.16}
\end{equation*}
$$

Proof. With (1.9) and property (3.7a) we know that

$$
\begin{aligned}
\int_{\mathcal{M}}\langle d \alpha, \beta\rangle d v_{\mathcal{M}} & =\int_{\mathcal{M}} d \alpha \wedge \star \beta \\
& =\int_{\mathcal{M}} d(\alpha \wedge \star \beta)+(-1)^{k+1} \int_{\mathcal{M}} \alpha \wedge d \star \beta
\end{aligned}
$$

Because α or β has compact support on \mathcal{M}, the first integral on the right side is zero by Stokes formula for differential forms. Thus and with (3.8) it follows

$$
\begin{aligned}
\int_{\mathcal{M}} d \alpha \wedge \star \beta & =(-1)^{k+1} \int_{\mathcal{M}} \alpha \wedge \star \star^{-1} d \star \beta=\int_{\mathcal{M}} \alpha \wedge \star d^{*} \beta \\
& =\int_{\mathcal{M}}\left\langle\alpha, d^{*} \beta\right\rangle d v_{\mathcal{M}}
\end{aligned}
$$

We next introduce the following very useful theorem.
3.17. Theorem. Let α and β be differential forms, β with a compact support, and $\alpha \in W_{\operatorname{loc}}^{1, p}(\mathcal{M}), \beta \in W^{1, q}(\mathcal{M}), 1 \leq p, q \leq \infty, \operatorname{deg} \alpha+\operatorname{deg} \beta=$ $n-1,1 / p+1 / q=1$. Then

$$
\begin{equation*}
\int_{\mathcal{M}} d \alpha \wedge \beta=(-1)^{\operatorname{deg} \alpha+1} \int_{\mathcal{M}} \alpha \wedge d \beta . \tag{3.18}
\end{equation*}
$$

In particular, the differential form α is weakly closed if and only if $d \alpha=0$ a.e. on \mathcal{M}.

Proof. Fix α and β with the stated properties. Because the coefficients of the differential form α are in the class $W_{\text {loc }}^{1, p}(\mathcal{M})$, there exists a sequence $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ of differential forms with coefficients in the class $C^{1}(\mathcal{M})$ converging in the $W^{1, p}$-norm to the coefficients of the differential form α on every compact set $K \subset \operatorname{int} \mathcal{M}$.

Let $\left\{\beta_{n}\right\}_{n=1}^{\infty}$ be a sequence of differential forms, $\operatorname{deg} \beta_{n}=\operatorname{deg} \beta$, in the class $C^{1}(\mathcal{M})$ having compact supports and converging in the norm of $W^{1, q}$ to the differential form β. We may assume that there exists a smooth submanifold $U \subset \subset \mathcal{M}$ such that supp $\beta_{n} \subset U$ for all integers n.

The differential forms $\alpha_{n} \wedge \beta_{n}$ have compact supports contained in U. Stokes formula yields

$$
\int_{\mathcal{M}} d\left(\alpha_{n} \wedge \beta_{n}\right)=\int_{U} d\left(\alpha_{n} \wedge \beta_{n}\right)=0
$$

and hence

$$
\int_{U} d \alpha_{n} \wedge \beta_{n}+(-1)^{\operatorname{deg} \alpha} \int_{U} \alpha_{n} \wedge d \beta_{n}=0
$$

We have

$$
\int_{U} d \alpha \wedge \beta-\int_{U} d \alpha_{n} \wedge \beta_{n}=\int_{U}\left(d \alpha-d \alpha_{n}\right) \wedge \beta+\int_{U} d \alpha_{n} \wedge\left(\beta-\beta_{n}\right) .
$$

Therefore, using the Hölder inequality (1.10) we obtain

$$
\begin{aligned}
\mid \int_{U} d \alpha \wedge \beta & -\int_{U} d \alpha_{n} \wedge \beta_{n} \mid \\
& \leq \int_{U}\left|d\left(\alpha-\alpha_{n}\right) \wedge \beta\right| d v_{\mathcal{M}}+\int_{U}\left|d \alpha_{n} \wedge\left(\beta-\beta_{n}\right)\right| d v_{\mathcal{M}} \\
& \leq C \int_{U}\left|d\left(\alpha-\alpha_{n}\right)\right||\beta| d v_{\mathcal{M}}+C \int_{U}\left|d \alpha_{n}\right|\left|\beta-\beta_{n}\right| d v_{\mathcal{M}} \\
& \leq C\left\|d\left(\alpha-\alpha_{n}\right)\right\|_{L^{p}(U)}\|\beta\|_{L^{q}(U)}+C\left\|d \alpha_{n}\right\|_{L^{p}(U)}\left\|\beta-\beta_{n}\right\|_{L^{q}(U)}
\end{aligned}
$$

where $C=\left(C_{k+1, l}\right)^{1 / 2}$ is the constant of (1.10) with $k=\operatorname{deg} \alpha$ and $l=\operatorname{deg} \beta$. Similarly we obtain

$$
\begin{aligned}
\mid \int_{U} \alpha \wedge d \beta & -\int_{U} \alpha_{n} \wedge d \beta_{n} \mid \\
& \leq C_{1}\|\alpha\|_{L^{p}(U)}\left\|d\left(\beta-\beta_{n}\right)\right\|_{L^{q}(U)}+C_{1}\left\|\alpha-\alpha_{n}\right\|_{L^{p}(U)}\|d \beta\|_{L^{q}(U)}
\end{aligned}
$$

where $C_{1}=\left(C_{k, l+1}\right)^{1 / 2}$. These inequalities easily yield (3.18).
If $d \alpha=0$ a.e. on \mathcal{M}, then by (3.18)

$$
\begin{equation*}
\int_{\mathcal{M}} \alpha \wedge d \beta=0 \tag{3.19}
\end{equation*}
$$

for an arbitrary differential form $\beta \in W^{1, q}$ with compact support. This, obviously, implies (3.14). On the other hand, if we take a weakly closed differential form $\alpha \in W_{\text {loc }}^{1, p}(\mathcal{M})$, then by (3.18) one has

$$
\int_{\mathcal{M}} d \alpha \wedge \beta=0 \quad \text { for all } \beta \in W^{1, q}(\mathcal{M}) \quad \text { with } \quad \operatorname{supp} \beta \subset \mathcal{M} .
$$

We fix an arbitrary point $m \in \mathcal{M}$ and pass to the local coordinates on \mathcal{M} in a neighborhood of this point. We see that almost everywhere in a neighborhood of the point m the coefficients of the differential form $d \alpha$ are zero. Hence the theorem has been proved.

