Chapter 8

Transport through negative-U molecules

8.1 Introduction

We have discussed in Chapter 1 that the coupling between electronic and vibrational degrees
of freedom has two principal consequences: (i) The tunneling matrix elements get renormal-
ized by a translation operator, which describes the shift between molecular potential surfaces
for different charge states. (ii) Through the interaction between electrons and vibrations,
the system gains energy, which causes a reduction of the charging energy U — U — 2A%hwy,
the polaron shift. In previous chapters, we have extensively studied the consequence (i) of
the electron-phonon coupling, and we have established that the tunneling-induced phonon
dynamics governed by Franck-Condon physics leads to striking effects beyond the emergence
of vibrational sidebands in the current-voltage characteristics. In this chapter, we focus on
the second important consequence (ii) of a large polaron shift, which can lead to a negative
effective charging energy U.

In physics, the concept of negative-U centers was first pointed out more than three
decades ago by Anderson [119], and is realized in many amorphous semiconductors. In
chemistry, the scenario of negative-U molecules is known as “potential inversion” [120]. In
cyclic voltammogram measurements, the negative charging energy is signalled by a favoring
of the doubly ionized molecular state, i.e. negative-U molecules prefer a charging by two
electrons instead of one. An important ingredient in realizing this scenario in molecular
junctions may be a reduction of the true molecular charging energy by screening due to
metallic electrodes [121] or an electrolytic environment [20].

In general, finite on-site interaction (of any sign) opens a new transport channel between
molecule and leads. Namely, at finite U, two electrons can hop onto the molecule simulta-
neously. Yet, it is only for negative U that this process can dominate the transport. Indeed,
negative U favors even electron occupation numbers of the molecule. At low temperatures,
the degeneracy between two even-number charge states leads to the development of the
charge-Kondo effect. In this case, virtual pair transitions assume the role of spin-flips [122]
(responsible for the conventional spin-Kondo effect), and lead to the formation of Kondo
correlations in the ground state. However, the fact that the relevant pseudospin degree of
freedom is associated with charge, makes this Kondo state rather fragile. The underlying
reason for this was elucidated by Iche and Zawadowski [82] and Haldane [83], who pointed
out that for the charge-Kondo effect, any deviation from degeneracy acts as a Zeeman field
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on the pseudospin and, thus, suppresses the Kondo correlations. This observation has dras-
tic consequences for transport. For the conventional spin-Kondo effect, the low-temperature
conductance eventually reaches the unitary value over a wide range of gate voltages. By
contrast, for the charge-Kondo effect the unitary value is only achieved precisely at the reso-
nance gate voltage. This fragility of the charge Kondo effect in transport through molecules
with negative U was illustrated by several recent numerical simulations [123-125].

In this chapter, we first explore the transport dynamics in negative-U molecules out-
side the Kondo regime, by calculating the current-voltage characteristics and zero-frequency
noise in Sections 8.2-8.5. A main result of our investigation is that negative U strongly
affects the transport through a molecule even in the rate-equation regime at high temper-
atures, where Kondo correlations are irrelevant. We show that in this regime, negative U
leads to a unique scenario for the passage of current through the molecule, which we study
analytically at all gate voltages and biases. In Section 8.6, we establish a generalization of
the particle-hole transformation by Iche and Zawadowski, suitable for the transport situa-
tion. This particle-hole/left-right transformation opens up the possibility of mapping the
current in the negative-U model to the current in a conventional Anderson model with a
local Zeeman field. We exploit this mapping in both possible ways: In Section 8.7, we de-
duce transport characteristics for the Anderson model from our previous negative-U results.
Finally, in Sections 8.8-8.9 we turn to an analytical investigation of the charge-Kondo effect
by utilizing results known from the conventional spin-Kondo effect.

8.2 Effective Hamiltonian

We start from the Anderson-Holstein Hamiltonian
H = Hmol + Hleads + HT7 (81)

see Egs. (1.1)—(1.3). As described in Chapter 1, the electron-phonon coupling is eliminated
by the Lang-Firsov transformation [41,45, 71], which implies renormalizations of the tun-
neling Hamiltonian ¢, — tae_)‘(m_b), of the orbital energy ¢4 — €4 — A2hwp, and of the
charging energy U — U —2X\?hwy. It is this last renormalization which opens the possibility
of a negative effective charging energy. The underlying reason for this renormalization is
that the energetic polaron shift is proportional to the excess charge of the molecule squared
which is of the same form as the Coulomb charging energy. To be specific, we focus on
temperatures and biases where only the vibrational ground state is populated. In this case,

we obtain an effective Hamiltonian
Heg = eqng + Unging) + Higads + Hr (8.2)

with negative effective charging energy U and Franck-Condon suppressed tunneling matrix
elements t, — tae_)‘z/ 2 (absorbed into the definition of ¢, in the following).

As the single-particle energy ¢4 is tuned by a gate voltage, the electron occupation
ng of the molecule switches from empty (ng = 0) to doubly occupied (ng = 2) at the
resonant gate voltage defined by the condition 2e4+ U = 0.} Due to the negative U, single

n the presence of additional orbitals, this remains true as long as |U| is smaller than the level spacing.
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Figure 8.1: (a) Level configuration of the negative-U model. Shown are the one-particle energies for
the singly-occupied molecule (¢4), the doubly-occupied molecule (4+U/2), and the energy for which
holes can propagate through the doubly-occupied molecule (g4 + U). The right panel illustrates the
relevant types of processes: (b) cotunneling, (¢) and (d) pair tunneling.

occupation (ng = 1) of the molecule is unfavorable at any gate voltage. A schematic of the
corresponding configuration of one-particle energies near resonance is shown in Fig. 8.1(a).
Sequential tunneling of single electrons is clearly exponentially suppressed at bias voltages
leV| < |U|. Instead, the dominant sequential transport processes near resonance involve the
coherent transfer of electron pairs.? Representative pair-tunneling processes are illustrated
in Figs. 8.1(c) and (d). It is important to realize that in addition to processes in which the
two electrons enter the molecule from the same lead, the electron pair on the molecule can
be created (or annihilated) by two electrons tunneling in from (or out to) opposite leads. In
parallel with these sequential pair-tunneling processes, single-particle cotunneling processes
[see Fig. 8.1(b)] also take place. We find that while both processes are of the same order,
they can be easily distinguished since the single-particle cotunneling contribution does not
exhibit any structure near the resonance gate voltage.

To capture all eight pair-tunneling processes systematically, we perform a Schrieffer-
Wolff transformation [126,127] (see Appendix A.2 for details). This eliminates the tunnel-
ing Ht to lowest order, and we obtain a transformed Hamiltonian

Hgw = eqng + Unging) + Hicads + Hdir,ex + Hpairs (8.3)

where we ignore a term which merely renormalizes €4. For positive U, one only retains

1 tat?
Hdir,ex 25 Z |:€apa€dclpaca’p’0 (84)

aa'pp’o

+ tath M(€eap) (d:i,dgcjlpaca/p/a. — cgpaca/p/gnda) + h.c.] ,

2We define sequential-tunneling processes as involving real occupation of the molecule as opposed to
cotunneling during which the molecule is only virtually occupied.
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which describes the direct and exchange interactions between molecule and lead. Here, we
have introduced the abbreviation

1 1
e—eq €—(eq+U)

M(e) = (8.5)

and we have denoted spin inversion by T, | =/, 1. With U > 0 and in the absence of charge
fluctuations, transport predominantly proceeds via single-electron cotunneling described by
Hgiy ex. By contrast, for negative U it is crucial to retain the pair-tunneling terms

Hywir = Y tate M(eap)drdicl,, il + e, (8.6)
aa’pp’

Obviously, Hpair contributes only for nonzero effective charging energy U.

8.3 Rates
Using Fermi’s Golden Rule, the pair Hamiltonian Hpai leads to the rate
aa/ Fara/ 2
052 =~ de M= (€) fo(€) far (264 + U — €), (8.7)

for pairs of electrons tunneling onto the molecule.? Here, I', = 27p, |ta|2 is the energy scale
of single-particle tunneling in junction a for a constant density of states p,. The superscripts
(aa’) denote the leads from where the spin-up electron (a) and the spin-down electron (a’)
originate. The analogous rates Wzaﬂio for pairs leaving the molecule are obtained from
Eq. (8.7) by replacing each lead Fermi function f, with a factor (1 — f,).

In the regime where single-particle occupation of the molecule is negligible, i.e.

|2€d+U‘,’eV|,kBT<<6d, ‘Sd—i-U’, (8.8)

the integral in Eq. (8.7) approximately reduces to an integral over the Fermi functions alone,

and can be expressed in terms of the function F'(€) = ¢/[exp(fe) —1]. For symmetric voltage

splitting,? i.e., fu(€) = f(e — eV,) with Vg = £V/2, the explicit result for pair tunneling

reads

|
h

where the upper (lower) sign refers to x =0 — 2 (x = 2 — 0). The pair-tunneling rates,
Eq. (8.9), have several remarkable features.

wee = M2(0)F [+ (264 + U + eV + V)], (8.9)

(i) Pair tunneling with electrons originating from the same lead [a = o/, Fig. 8.1(c)] leads
to bias-dependent rates. By contrast, pair tunneling with electrons from different
leads [a # @, Fig. 8.1(d)] is bias independent, as the energy missing in the lead with
lower Fermi energy is exactly compensated for by the additional energy available in
the lead with higher Fermi energy.

3We call attention to the fact that the notation for rates employed in this Chapter deviates from our
usual notation.
4The generalization to asymmetric voltage splitting is straightforward.
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(i) When pair tunneling is energetically allowed, its rate is proportional to the detuning
of the pair state 2¢4 + U from the relevant Fermi energy. This is in sharp contrast to
rates for single-electron sequential tunneling, which are independent of the energy of
the single-particle state.

This unusual behavior of the pair-tunneling rates arises from the fact that only the sum of
the energies of the two tunneling electrons is fixed by energy conservation, making the phase
space for pair tunneling proportional to the detuning.® We will see below that this leads
to characteristic features of pair tunneling both in the gate-voltage and bias dependence
of the conductance. Similarly, the rates for cotunneling from lead a to a’ can be obtained
from Hgiy cx as

/ | F(BQVa)’ Wfi/g _ ZFaFa’ F(eVy) ’ (8.10)
h €5 h (eq+U)?

including an explicit factor of 2 for spin.

Having established the relevant processes and their rates, we now describe transport
outside the Kondo regime by the corresponding rate equations [90,91]. Since the occupation
probability for the singly-occupied molecule is negligible for |eV| < |U|, the stationary rate
equations reduce to 0 = PyWa_,g — PyWy_,2, with the solution Py = Wa_,o/[Wa—o + Wo—2],
P, =1— PFy. Here, W;_,; denotes the total rate for transitions from initial state ¢ to final
state f,ie., Wiy = Za,a/ Wi‘ﬂ/f. The stationary current I = IPaS 4 ot eyaluated in the
left junction, involves contributions from pair tunneling and cotunneling,

IpairS/e = P()w()_,g - PQ'ZUQ_)[), (8.11)
I Je = Pyvg—o + Pava—o. (8.12)

Here, the coefficients v and w are given by
Vo—0 = WOL_}?O — WOR_%O, Wo—2 = QWOL_L,Q + WOL_J?Q + WOR_LQ (8.13)

The factor of 2 in the last equation originates from the coherent transfer of two electrons
in this pair-tunneling process. [All remaining coefficients are obtained from Eq. (8.13) by
interchanging “2 < 0” in the subindices.]

8.4 Conductance and current-voltage characteristics

The rate equations provide a complete analytical description of the nonlinear current-voltage
characteristics through negative-U molecules. Specifically, we find for the linear conductance

_ 2e’T'[T'g U2 B(2eq+U) 1 1
= Th B 0P zsmpae o) T Vet D |-
(8.14)

G

5Similar phase-space arguments apply to pair tunneling between superconductors, see J. W. Wilkins, in
Tunneling Phenomena in Solids, edited by E. Burstein and S. Lundqvist (Plenum Press, New York, 1969),
chap. 24.
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Figure 8.2: Conductance as a function of gate voltage, based on our analytical results. (a) Linear
conductance G for several temperatures. The conductance curve exhibits a featureless background
due to cotunneling and a distinct peak of constant height and width ~ T due to pair tunneling.
(b) Conductance for several bias voltages at T = 1.0 x 10~3|U| for a symmetric junction. For bias
voltages eV > kpT, the width of the double peak is given by eV

Here, the last two terms in brackets, which arise from cotunneling, give a slowly varying
background. By contrast, pair tunneling, described by the first term in brackets, leads to a
remarkable conductance peak. As illustrated in Fig. 8.2(a), its height G = 24€?T';I'g/U?%h
exceeds twice the cotunneling background and is temperature independent, while its width
is proportional to 7. This feature, which is a direct consequence of the phase space for
pair tunneling, should provide an unambiguous experimental signature of pair tunneling
as opposed to ordinary Coulomb blockade conductance peaks, whose integral strength is
temperature independent.

While the linear conductance is identical for symmetric and asymmetric devices, their
finite-bias behavior differs considerably. For large voltages |eV| > kT, we find for the pair
tunneling current

qoains _€_ 16U 2T TR
h(U? = 62)2T7 |04] + TR |0-] + 2T LT R 9|

(8.15)
x [O4TL 04| (Tr S| +TL|8)) + (L o B, + = ),

where § = 2e4+ U, 6 =+ eV, and O = 0(—0)0(Fo+) — 0(0)0(+d+). For symmetric
devices, Eq. (8.15) implies that the width of the conductance curve is fixed by the bias
voltage, as illustrated in Fig. 8.2(b). This behavior is in stark contrast to the conventional
Coulomb blockade, where one finds two symmetric sharp peaks at detunings +V/2 from
resonance. This difference which also arises from the phase space for pair tunneling, is
further emphasized in Fig. 8.3(a) for all bias and gate voltages.
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Figure 8.3: Current as a function of bias and gate voltage for (a) a symmetric junction with
'y =Tg = kT, (b) an asymmetric junction with I'y, = 0.1kgT, T'r = 10kgT, and with kT =
0.5-1073 |U|. For asymmetric junctions, one observes the rectification effect due to pair tunneling. (c)
Dominant pair-tunneling processes for I'r > I';, (mixed pair-tunneling process). The gate-voltage
dependence of the process (i) explains the possibility of gate-controlled switching in asymmetric
devices.
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Figure 8.4: Stability diagram for the ground-state occupation ng and dominant transport modes as
a function of gate and bias voltages for a symmetric device with negative U.
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Devices with a significant asymmetry in the molecule-lead couplings exhibit a striking
asymmetry with respect to voltage inversion, see Fig. 8.3(b). We find in this case that pair
tunneling causes strong current rectification, whose transmission direction can be switched
by a gate voltage. To understand this rectification effect, consider an asymmetric device
with I'r > I'r, and suppose that the Fermi level is higher in the left lead. Then, the
pair-tunneling current proceeds by the sequence depicted in Fig. 8.3(c), which call mized
pair-tunneling process:

(i) A pair with electrons from opposite leads jumps onto the molecule,
(ii) the electron pair on the molecule is transferred to the right lead.

While (ii) is a fast process (~ I'%), the current is limited by process (i) with rate ~ I',T'g.
Then, the switching by a gate voltage immediately follows from the rate for process (i),
which is exponentially suppressed only for 264 + U > 0. By a similar analysis for the
opposite bias, one finds an exponential suppression of the pair current for 2¢4 + U < 0,
thus also explaining the rectification. These features render molecules with negative U
interesting candidates for devices with transistor-like characteristics.

8.5 Current shot noise in the negative-U model

As demonstrated in Chapters 3 and 4, a bunching of electrons leads to a characteristic
increase of the current noise. Based on this insight, we may expect that transport of electron
pairs will also cause interesting fingerprints in the current shot noise. Here, we therefore
extend our analysis of pair-tunneling transport and study the zero-frequency noise S(w = 0)
and the corresponding Fano factor F' = S(w = 0)/2e|(I)].

We first present numerical results for the Fano factor, obtained via a generalized version
of the technique developed by Korotkov [84]. (Details about the computation can be found
in Appendices D and 1.2.) Figure 8.5 depicts our results for the Fano factor of a symmetric
negative-U device as a function of gate and bias voltage. As expected, the transfer of
electrons in pairs is observed to cause super-Poissonian noise F' > 1 in the regime dominated
by pair tunneling. Outside the pair-tunneling regime, cotunneling dynamics leads to purely
Poissonian noise, i.e. I/ = 1. The fact that the value F' = 2, naively expected for electron
pairs, is not reached, is explained by the coexistence of pair tunneling and cotunneling. We
find that the Fano factor maximum for a symmetric device is always concentrated along the
crossover boarder between the cotunneling and pair-tunneling regimes. An explanation for
this, based on a detailed analysis of pair-tunneling Fano factors, is given below.

As already shown for the current-voltage characteristics, the degree of coupling asym-
metry in a negative-U device plays an important role in determining the relevant transport
processes. As a result, the noise characteristics crucially depend on the coupling ratio
I'r/T'L, see Figure 8.6. These plots show results for the finite-bias Fano factor as a function
of gate voltage, for different coupling ratios. We find that the main effects of a strong cou-
pling asymmetry consist of the suppression of super-Poissonian noise, and the emergence of
sub-Poissonian noise in the region dominated by mixed pair-tunneling processes.

Interestingly, it is possible to obtain a comprehensive analytical understanding of the
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Figure 8.5: Fano factor as a function of bias and gate voltage for a symmetric junction with
'y, = Tgr = kT, and with U = —2 x 103kgT. Super-Poissonian noise reflects the bunching of
electrons in pair-tunneling processes.

F . -
0.8 Cr/Tp =25 - o8
1 I 1 I 1 I 1 1 I 1 I 1 I 1
06 -50 0 50 06 -50 0 50
ea+|U[/2 (1073 |U]) ea+ U] /2 (1073 |U])

Figure 8.6: Fano factor as a function of gate voltage at finite bias (eV = 50 x 1072 [U|) for different
magnitudes of junction asymmetry I'y, /T'r. The dominance of mixed pair-tunneling processes for
asymmetric junctions reduces the super-Poissonian noise and leads to Fano factors below 1.



Chapter 8: Transport through negative-U molecules 97

numerical results based on the Fano factor formula derived in Chapter 3,

(#2) - () (NP) — (N)?

F = (N;) TAY: + )

(8.16)

In other words, the Fano factor acquires two distinct contributions: The first term in
Eq. (8.16) arises from the fluctuations of waiting times t;, the second term reflects the
fluctuations of the number of transferred electrons INV;. Equation (8.16) is valid whenever
the quantities V; and t; are uncorrelated, and have fixed probability distributions indepen-
dent of i. Employing this formula, we analytically calculate the separate Fano factors for
cotunneling, unidirectional pair tunneling, and mixed pair tunneling in the following.

8.5.1 Fano factor for cotunneling

For temperatures small compared to the applied bias, kT < eV, cotunneling transport
is essentially unidirectional: transitions with electron transfer in the direction opposed to
the applied bias can be neglected. The current is then determined by a single parameter,
the cotunneling rate W. The evaluation of Eq. (8.16) is straightforward. The number of
transferred electrons per event is exactly one, and the fluctuations of the transmitted charge
vanish. The waiting times t; follow an exponential distribution p(t) = We="?, so that the
first and second moments are given by

)= 0 (=g (8.17)

As a result, cotunneling leads to a Fano factor of unity,

() = ()
F=tt =1 (8.18)

This explains the Poissonian noise in the regions dominated by cotunneling in Fig. 8.5.

8.5.2  Fano factor for unidirectional pair tunneling

We now consider the case of unidirectional pair tunneling, i.e. transport is assumed to
be caused by the following sequence of events: (i) An electron pair tunnels from the left
lead onto the molecule. (ii) The electron pair tunnels off of the molecule into the right
electrode. When evaluating the Fano factor via Eq. (8.16), we consider events in one of the
two junctions. Without loss of generality, we choose the left junction. Then, each event
(i) transfers N; = 2 electrons, and there are no fluctuations of this number. However, it is
crucial to note that the waiting time ¢; now consists of a sum of two times, the waiting time
for the event (i) in junction L and the waiting time for event (ii) in junction R, ¢; = t& +tE.

R

Each waiting time tf’ is exponentially distributed according to

pr(t) = Wiy exp [ Wi ot] (8.19)
pR(t) = W2R~>O €xp [_WZRHOﬂ ) (820)
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where Wk, (WE ) is the rate for the pair-tunneling transition in the left (right) junction.
The probability distribution P(t) for the sum of waiting times in the left and right junctions
is simply given by the convolution

o) o) L R
P(t) = / dt” / dt® pp (tH)pr(t®)(t — tF — 1) = —W;O*?W?HLO e Woiat _ o=Walot|
0 0 Wilo = Wolss

(8.21)
The resulting first and second moments of the total waiting time are
1 1 Wi, + W
(t) = g + o = (8.22)
WOHQ W2~>0 W0H2W2~>O
(t2) =2 Wal” + Worg Wit + Witol” (8.23)
’ [WOL~>2]2[W21%~>0]2
Substituting into Eq. (8.16), we obtain for the Fano factor
12 — ($:)2 WE )2 WL )2

<tl>2 (W2R—>O + W()L—>2)2

Due to their phase-space behavior, the pair-tunneling rates vary with gate voltage according
to
FQ
Wk, ~ ﬁ(evm —eg—U/2)0(eV/2 —eq—U/2), (8.25)

FQ
WL, ~ f(ed +U/24€eV/2)0(eq+ U/2 4+ €V/2), (8.26)

valid in the limit of low temperatures. Consequently, for a symmetric device the rates are
identical at the degeneracy point 2¢4+ U = 0, and the Fano factor resulting from Eq. (8.24)
is FF = 1. Away from the degeneracy point, one rate loses phase space while the other gains
phase space. As a result, for approximate alignment of the two-particle level with one of
the Fermi energies, ¢4+ U/2 ~ +eV/2, one rate nearly vanishes and the other one remains
finite. The corresponding Fano factor is F' = 2. This dependence of the Fano factor on gate
voltage is clearly reflected in the numerical results depicted in Fig. 8.5. Interestingly, for
asymmetric devices unidirectional pair-tunneling leads to Fano factors F > 1 even at the
degeneracy point. In the limit I'; /T’y — 00, one obtains a Fano factor of F' = 2.

It is worth noting that Eq. (8.24) also yields the Fano factor for sequential tunneling
when replacing (N;) = 2 by (N;) = 1, as well as Wi, — W& | and Wi, ; — W[ . The
crucial difference between sequential and pair tunneling is that sequential rates are indepen-
dent of gate voltage as long as the level position remains in the bias window. Accordingly,
the Fano factor for sequential tunneling in a symmetric device is equal to 1/2.

8.5.3 Fano factor for mixed pair tunneling

Finally, we consider mixed pair tunneling, i.e. the transport mode typical for pair tunneling
in asymmetric junctions. Two electrons enter the molecule from the left lead (rate W),
and subsequently split up to leave the molecule via the left and right junction, respectively
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(rate Wa). Let us consider the right junction. Here, exactly one electron is transferred for
each combined process of pair tunneling onto and off of the molecule. The waiting time
again consists of a sum of two exponentially distributed random times, exactly as in the
unidirectional pair-tunneling case. All arguments given there can be reapplied for the case
of the mixed pair-tunneling case, resulting in

W2+ W3

F=—*"
(Wl +W2)2

(8.27)
Formally, this is identical to the result for sequential tunneling. Once again, the important
difference is the gate-voltage dependence of the pair-tunneling rates. While the phase-space
behavior of the rate W is given by Eq. (8.25), the splitting pair rate scales like

r.r
Wy ~ —L R

(264 +U)0(2e4 4+ U). (8.28)

Consequently, the Fano factor for the mixed pair-tunneling process varies between F = 1
and F' = 1/2, depending on the coupling ratio and gate voltage.

8.5.4 Interpretation of the full Fano factor

The full Fano factor, Fig. 8.5, can now easily be interpreted in terms of the contributions
from the previously discussed processes. Outside the pair-tunneling regime, cotunneling is
the only relevant process and leads to a Fano factor equal to 1. Inside the pair-tunneling
regime, cotunneling, as well as unidirectional and mixed pair tunneling coexist. The re-
sulting Fano factor is given by a weighted average of the individual Fano factors.® This
comprehensively explains the qualitative features of the numerical results in Fig. 8.5, and
the fact that the Fano factor does not fully reach the value of 2 naively expected for pair
tunneling. As discussed in Section 8.4, for devices with large asymmetry, I'y/Ty > 1,
unidirectional pair-tunneling is suppressed and mixed pair processes take over. As a result,
the Fano factor is reduced, and sub-Poissonian noise dominates the transport, see Fig. 8.6.
The influence of unidirectional pair-tunneling close to the degeneracy point is reflected in
remaining super-Poissonian traces for moderate asymmetries.

8.6 Mapping between the negative-U and the conventional Anderson
Hamiltonian

We now turn to the mapping between the negative-U and the conventional Anderson model,
which we will exploit in subsequent sections in both possible directions for a deeper under-
standing of each model, both in the high-temperature and Kondo regime. The relation
between the positive and negative-U Anderson models was established by Iche and Zawad-
owski [82], and further elucidated by Haldane [83]. They suggested a particle-hole (PH)
transformation for one spin direction, which reverses the sign of the charging energy U and
turns the two-particle level position 24 + U in the negative-U picture into a Zeeman field
within the positive-U model.

5The extraction of the relevant weights is not trivial, and Eq. (8.16) cannot be applied in any straight-
forward way.
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This transformation is perfectly suitable for the situation of a negative-U center coupled
to one Fermi sea, relevant, e.g., for the case of amorphous semiconductors as discussed by
Anderson [128]. However, for the nonequilibrium scenario of transport through a molecule
coupled to two electrodes, this mapping has the drawback of converting charge current
into spin current. For the case of a symmetric device, i.e. symmetric voltage splitting and
identical couplings to the left and right electrode, we show that a subsequent left-right (LR)
transformation eliminates this problem. In combination, the resulting particle-hole/left-
right (PHLR) transformation provides an exact mapping between the charge currents in
the negative-U model and the conventional Anderson model with local Zeeman field.

The key effect of the PHLR transformation is given by the mapping of charge to spin
degrees of freedom. It is precisely this interchangeability which establishes the relation
between the spin degeneracy leading to the conventional spin-Kondo effect and the charge
degeneracy causing the charge-Kondo effect. Importantly, the PHLR transformation also
implies that particle-hole symmetry within one model is mapped to spin symmetry within
the counterpart model (and vice versa). As a consequence, the breaking of particle-hole
symmetry by tuning the gate-voltage in the negative-U model exactly corresponds to the
breaking of spin symmetry by a local Zeeman field in the positive-U model. Thus, recalling
that spin-symmetry breaking inhibits the conventional Kondo effect, the PHLR mapping
immediately explains the fragility of the charge-Kondo effect as a function of gate voltage.

We first review the PH mapping, following References [82] and [83], and subsequently
introduce the LR mapping.

8.6.1 Particle-hole transformation

The PH transformation is carried out for one of the two spin directions, and without loss
of generality we may choose 0 =|. We define new annihilation and creation operators [,

8 by
ﬂdT = dT’ ﬁaPT = Cap?» (829)
— gt —
ﬁdl = dl’ ﬂapl = _Ca(fp)l' (830)
In other words, for ¢ =1 we continue speaking of creation and annihilation of particles,
whereas for ¢ =] we describe the system in terms of creation and annihilation of holes. It
is straightforward to verify that the § operators obey the usual anticommutation rules. We
define the corresponding number operators by ng, = B(Eaﬁdg and Ngpe = Blpgﬂapg. From
this, one immediately infers that
ngy = N4y, Napl = Nap?s (8.31)
ng =1—"ngq|, Nap| = 1-— ﬁa(—p)l' (832)
With this PH transformation, the negative-U Hamiltonian (up to an irrelevant additive
constant) is mapped to

U
b Z Ndo — UﬁdTﬁdl + Z €apNapo (8.33)

apo

H

eV _ " _ _
- ao 5 Tapo + > (tapﬂlpaﬂda + tapﬁloﬁapa) + (ea + U/2)(ay — Nay)-

apo apo
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Here, we have used the identity t,(_p)
tunneling Hamiltonian, and we have assumed a particle-hole symmetric band, i.e. €4(_p) =
—eqp- [Note that this is generically true in the vicinity of the Fermi energy by linearizing
the dispersion relation.] Analyzing the resulting expression for the Hamiltonian, one notes
that the Anderson model with negative U has been mapped to an Anderson model with
positive U’ = —U and an additional Zeeman energy B’. Denoting all parameters of the new
Hamiltonian with primes, we can set up the following “dictionary”:

= t,p in order to rearrange the expression for the

eh=U/2, U =-U B =24+U. (8.34)

Note that the current through the system, originally given by

<I> = ;<§tzanapa>7 (835)

apo

now takes the form
e/ d _
(I =3 <dt > aanapg> . (8.36)
apo

As evident from the additional spin factor in the current, the PH transformation turns the
charge current of the negative-U model into a spin current in the conventional Anderson
model (and vice versa).

8.6.2 Left-right transformation

In order to obtain a transformation which maps charge current to charge current, we exploit
the assumption of a symmetric device and perform the following left-right transformation,

d; = ﬁdm c:sz = ﬁap% (837)
CLp, = Brpl; rp) = BLpl- (8.38)
While the ¢ =7 component remains invariant, the o =| electrons (specifically, the spin

component which was previously affected by the particle-hole transformation) acquire an
interchange of the labels for left and right. This transforms the Hamiltonian H into

U
H = ) Zn&a — Un/dTn;li + Z(ﬁap - aev/2)n:1p0
apo

ag
+y (tpcfgpod:, + t;dfi,c;pg) + (a + U/2)(nly — nly)). (8.39)

apo

Here, the crucial point is that the bias now affects both spin components in the same way,
and the current is expressed as

Iy = g <(Z 3 an;pa> . (8.40)

Through the combined PHLR mapping, the charge current of the negative-U model is thus
mapped to a charge current of the positive-U Anderson model.
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Figure 8.7: Illustration of the mapping between the negative-U model (a) and the conventional

Anderson model (b) with additional local Zeeman field B’. All level energies are given as energies
per particle.

As aresult, we have established a one-to-one mapping between transport in the negative-
U model and transport in a conventional Anderson model with an additional local Zeeman
field acting on the molecule. The magnitude of the Zeeman field is determined by the de-
tuning of the two-particle level from the degeneracy point with the unoccupied molecule.
In the negative-U model, this detuning is essentially given by the gate voltage. Further,
observing that the new one-particle energy and charging energy are given by ¢/, = U/2
and U’ = —U, respectively, we emphasize that the conventional Anderson model is fixed
to the symmetric point 2¢/, + U’ = 0. This is a direct consequence of the fact that the
PHLR transformation maps the negative-U spin symmetry to particle-hole symmetry in
the positive-U model. An illustration of the resulting configuration is provided in Fig. 8.7.
The details of the mapping are summarized by the “dictionary” in Table 8.1.

8.6.3 Mapping for the linear-response regime

It is important to note that the PHLR mapping crucially depends on the assumption of a
device with symmetric voltage splitting and identical couplings to the left and right lead.
In view of realistic experimental setups, this amounts to a rather strict assumption. In this
subsection, we show that for the linear-response regime (V' — 0), the mapping between
negative- and positive-U models remains valid even for asymmetric couplings, ', # I'g.
The discussion of the more general finite-bias case with asymmetric couplings is deferred to
Section 8.10.

Let us define V, and I, as the spin-dependent bias and current in the negative-U
Anderson model, and V] and I’ as the corresponding quantities in the positive-U model.
Then, restricting to the linear-response regime, the current in the negative-U model has the
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negative-U model

Anderson model

mol. operators:
dy, d)

lead operators:
Capl> CLpl, CRp|

mol. operators:
/ d/T
T

lead operators:

/ i a
€ap1> “C R(—p)1> ~€ L(-p)l

mol. states: mol. states:

100, 11, 11, [TL) L)% (1) 10), [1)
charging energy

charging energy U=-U>0

U<0 gate voltage
e, =U/2

gate voltage Zeeman energy

&d B =2¢4+U

Table 8.1: Dictionary for the mapping between the negative-U model and the conventional Anderson
model with additional Zeeman field. Symbols with (without) primes denote quantities in the positive-
U (negative-U) model.

form
L=gnVi+guVi I =gnVi +9. Vi, (8.41)

where g, denotes the conductance response of spin-o electrons to a bias voltage applied to
spin-o”’ electrons only. Accordingly, the total linear conductance of the negative-U Anderson
model is obtained by dividing I+ + I} by V = V; = V|, resulting in

G=> goo (8.42)

On the other hand, we may evaluate the linear conductance of the positive-U model by
exploiting the PH transformation. As a result of Eq. (8.36), the charge current I = I+ +1| of
the negative-U model is turned into a spin current in the positive-U model. Simultaneously,
the bias sign for spin-| electrons is inverted, so that we have

It = I = gnV{ =gV, (8.43)
Ij=—I = —gnV{ +gV]. (8.44)

Setting V{ = V| = V' we obtain the linear conductance of the positive-U model

G'=g11+91 911 —9u- (8.45)

Now we prove that g;| = g1 = 0, which gives the desired result, G = G’. To see that, one
can use the Glazman-Raikh transformation [129] (see Appendix A.3), and write the current
operator in the form

i |trlltr]

I =—
h
tL” + [tr)?

[@podo “hel, (8.46)
po

where 19 denotes the decoupled lead. Due to this decoupling of 19, it is impossible to fully
contract the current-current correlator (I11) and the off-diagonal response functions giving
the conductivities g,5 vanish.
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8.7 Positive-U model with local Zeeman field: High-temperature regime

Although the central goal of this chapter consists of an analysis of transport in the negative-
U model, we first exploit the PHLR transformation in the opposite direction and investigate
the positive-U model with local Zeeman field. Intriguingly, the mapping opens up a new
way of understanding the effects of a local Zeeman field on transport in the Anderson model
at high temperatures, T > Tk. Based on our previous findings for the negative-U model,
which revealed super-Poissonian Fano factors F© > 1 due to tunneling of electron pairs,
the mapping surprisingly dictates that an identical enhancement of Fano factors must also
occur due to the presence of the Zeeman field at positive U. After analyzing the linear
conductance and nonlinear current-voltage characteristics, we will pinpoint the cotunneling
correlations due to the Zeeman field as the origin for super-Poissonian noise by translating
the pair-tunneling processes into the positive-U language.

8.7.1 Linear conductance and current-voltage characteristics

For temperatures large compared to the Kondo temperature, we have shown in the previous
sections that transport in the negative-U case is dominated by sequential tunneling of
electron pairs. By means of the PHLR transformation, we can now translate our analytical
results obtained for the negative-U model to the positive-U Anderson model. Its linear
conductance is dominated by cotunneling, and as a function of the local Zeeman field B’ it
is given by

26T g U’? 838 4 4

W B — B smnpn] TP s /B = gz |

¢ T BP
(8.47)

Here, the first term is caused by inelastic spin-flip processes, the last two terms are generated
by elastic cotunneling. The mapping between the processes at positive U and the corre-
sponding pair-tunneling and cotunneling processes in the negative-U model are illustrated
in Figures 8.8 and 8.9. In analogy to the increased phase space for two-particle processes
at negative U, inelastic spin-flip processes gain a phase-space enhancement proportional
to |£eV/2 — B'| whenever |B'| < eV/2. As a result, the linear conductance G’ develops a
peak for vanishing Zeeman field. The peak width is given by temperature and its height is
constant. This is the exact counterpart of the pair-tunneling conductance peak at negative
U.

Similarly, the nonlinear current-voltage characteristics I(e4, V') for the negative-U model
can be mapped to the current of the positive-U Anderson model as a function of Zeeman
field and bias voltage, I'(B’, V). In particular, in the limit of small temperatures we obtain
for the current due to inelastic cotunneling (spin-flips)

e 16U 2U'LTR
R(U?2 = 52)2T2 |64+ T%[6_| + 20 TR |4]

Iinel _

X |04 L]0+ (CRI6-[+TL[0]) + (L < R, + < —)|, (8.48)
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Figure 8.8: Relation between (a) the unidirectional pair-tunneling process for negative U and (b)
the inelastic spin-flip in the conventional Anderson model with local Zeeman field, as obtained by
the PHLR transformation. The phase space available for each process is marked in red color.
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cotunneling in the conventional Anderson model with local Zeeman field, as obtained by the PHLR

transformation.
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where § = B', 61 = d £ eV, and O = 0(—9)0(F0+) — 0(0)6(+0+). Analogous to the
pair-tunneling current, this spin-flip current dominates the transport properties whenever
the Zeeman field is smaller than the bias window, |[eV| /2 > |B’|.

8.7.2 Current shot noise in the positive-U Anderson model

The PHLR mapping can now easily be employed to extract the corresponding results for the
Fano factor in the positive-U Anderson model. As a result of the mapping, the gate-voltage
axis in Fig. 8.5 is converted to the Zeeman field B’/2. Evidently, the presence of the local
Zeeman field leads to super-Poissonian noise. The origin of this noise enhancement can be
traced back to the translation of the unidirectional pair tunneling into the language of the
positive-U Anderson model. Applying the PHLR transformation, one finds that the two
consecutive pair processes correspond to two inelastic cotunneling processes, see Fig. 8.8:
The first process flips the spin from down to up, the second process flips it back to o =]. In
both cases, one electron is transferred from the left to the right lead. The crucial point is
that these two processes are correlated whenever the Zeeman field is nonzero. For B’ # 0,
the phase-space involved in the inelastic processes causes one spin-flip to be faster than the
other one. The difference of the rates becomes maximal when the Zeeman field becomes as
large as the bias voltage, B’ ~ eV.

8.8 The onset of the Kondo effect: Logarithmic corrections

Now, we return to the focus of this chapter on negative charging energies, and employ the
PHLR transformation to deepen our understanding of the negative-U model based on the
conventional Anderson model. It is known that the degeneracy between the two charge
states n = 0 and n = 2 in the negative-U Anderson model results in Kondo correlations at
low temperatures [122]. For temperatures T' > Tk, the development of these correlations is
expected to be signalled by logarithmic corrections to the leading-order perturbative results.
Here, we exploit the PHLR transformation to extract the logarithms for the negative-U case
from well-known results in the context of the conventional Anderson model, see e.g. Ref. [14].

Specifically, the chain of transformations we employ is as follows. Our starting point
is the negative-U Anderson model. Applying the PHLR transformation, we obtain a con-
ventional Anderson model with local Zeeman field, Eq. (8.39). Then, a Schrieffer-Wolff
transformation [126] is performed. Up to an irrelevant renormalization of the level energy
€4, the mapping results in H' = Hy + Hjy + Hpo + Hz, where

Hy =eq + Z eapclpacapg, (8.49)
apo
Hy= Y JaappSaapp - S (8.50)
aa’pp’
Hpot = Z Kaa/pplclpgca/plg, (851)
aa'pp’o

Hy, =B'S* (8.52)
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Further details about the Schrieffer-Wolff transformation including definitions of the am-
plitudes J and K are deferred to Appendix A.2. In order to make the connection to the
Kondo-Hamiltonian [13], the dependence of the amplitudes J and K on energy is approx-
imated by their Fermi-energy values within a band of width D and zero outside. That is,
inside the band we have
U 1
e = —8tyth — 8.53
(e, +U")e, “ay (8.53)
toth, 2e,+U'

2 (e, +U)

Jaa/ - —2tat2/

Koo = =0. (8.54)
Since the PHLR transformation maps the negative-U model onto an Anderson model fixed
to the symmetry point 2¢/, + U’ = 0, the potential scattering term is identically zero, and
the resulting Hamiltonian is

Hg =Ho+ Y JowSea - S+ B'S”. (8.55)

aa’

In the linear response regime (zero bias), the Hamiltonian may be further simpli-
fied by exploiting that the Hermitian matrix J = (J,u) has the eigenvalues 0 and J =
—(8/U) Y, |ta|®. This exchange coupling .J > 0 is antiferromagnetic, leading to a screening
of the local spin by the conduction electrons and the formation of a spin-singlet state for
T <« Tk, discussed in the subsequent section. In terms of the eigenvectors of J, the original
two-leads problem can therefore be written as a one-channel problem [14],

Hie =33 epthlgthipo + Js1 - S + B'S*. (8.56)
1 po
Alternatively, this can be derived by applying the Glazman-Raikh transformation [129] to
the Anderson Hamiltonian before carrying out the Schrieffer-Wolff transformation.

After mapping the negative-U problem to the Kondo Hamiltonian, it is straightforward
to translate results from the conventional spin-Kondo effect to the charge-Kondo scenario
of negative U. In particular, a perturbative treatment of the exchange coupling leads to the
well-known logarithmic terms ~ J2In(D/w) in the amplitude for a transition |ps,o) —
|p's’,0’) [13,14]. Summing up the most-diverging contributions to all orders, or using
poor-man’s scaling alternatively [130], results in the emergence of the Kondo temperature

Tk = Dexp[—1/pJ], (8.57)

where p denotes the density of states of the leads. Employing the Kubo formula, the
conductance for vanishing Zeeman field B’ = 24 + U = 0 is found to be
o 2¢? ATy Tp 372 1

" h (Tp+Tg)2 16 nX(T/Tk)

(8.58)

Note that the leading order correctly reproduces the rate-equations result for the pair-
tunneling peak: For T' > Tk we have In(T/Tx) ~ pJ, so that

G ~ 24¢’T' T'r/U?h. (8.59)
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For decreasing temperature, the developing Kondo correlations cause a slow logarithmic
increase of the peak height value. Additional corrections affect the tails of the conductance
peak. In the language of the positive-U Anderson model, this implies considering the
situation of a large Zeeman field B’ = 2e4 + U > kgT. For this limit, a relation similar to
Eq. (8.58) can be derived [14], namely

G- g AT TR 12 1
~ h T +Tg)21610%[(2e4+U)/Tk]

(8.60)

This captures the logarithmic corrections to the cotunneling tails of the conductance peak
in the negative-U model.

8.9 The charge-Kondo regime

The logarithmic corrections considered in the previous section signal the onset of the charge-
Kondo effect in the negative-U model. In this section, we turn to the investigation of the
Kondo effect in the low-temperature regime, T' < Tx. Again, the PHLR transformation
serves as a central tool in our considerations, allowing for the translation of the conventional
spin-Kondo effect into the charge-Kondo effect.

We start with a brief review of the conventional spin-Kondo regime. In the previous
section, we have seen that, for temperatures T' > Tk, the effective exchange coupling
J grows with decreasing temperature, diverging at the Kondo temperature due to the
breakdown of perturbation theory. The true low-temperature behavior of the system was
first discussed independently by Anderson [131], Yosida [132], and Yoshimori [133]. They
concluded that the Kondo regime is described by the strong-coupling limit J > D, which
causes the trapping of one conduction electron at the impurity site and the formation of a
spin-singlet state.

Despite the intricate many-body nature of the Kondo effect, the low-temperature limit
T — 0 again becomes remarkably simple. As demonstrated by Nozieres [134, 135], the
locking into a spin-singlet state leaves only a monmagnetic impurity and the remaining
conduction electrons. At finite temperatures 0 < kT < J, real breaking of the singlet
state is energetically impossible, but virtual excursions into the n = 0,2 and n = 1-triplet
states occur. This polarizability of the singlet generates a weak effective electron-electron
interaction. Following Nozieres, the low-temperature limit is accurately described by a
Landau Fermi-liquid theory, and is captured by the effective Hamiltonian

Z (OZL iy +9B'o) v Yo

2
k.k'o

1
mpl K

H=>" &) thno —
ko

gﬂ Z ¢};1T¢kﬂ¢};3l¢k4la (8.61)

7T
P Kk1J€2J€3J€4

where 1)y, annihilates a quasiparticle with energy & = vpk and spin ¢.” The a-term
describes the quasiparticle scattering at the impurity site, the (-term accounts for the
induced interaction between quasiparticles. As shown by Nozieres, a central consequence of

"Note that we set kg = 1 in the present section.
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the fact that the Kondo resonance is always floating on the Fermi sea, consists of the fixing
of the parameter ratio a/ to unity [134,135]. The additional «-term describes the effect
of a local Zeeman field B" acting on the impurity (as generated by the PHLR mapping).
We note that both coefficients o and v may be determined by a comparison with the exact

Bethe-ansatz solution [136], leading to v = v = T /T4 with T% = Wef%.

8.9.1 Linear conductance

In Section 8.6.3, we have established the equality of the conductances for the positive-U and
negative-U models. Here, we exploit this finding to obtain the low-temperature conductance
of the negative-U model in the Kondo regime, based on our knowledge of the conventional
spin-Kondo effect at positive U.

Within the Fermi-liquid description, the linear conductance may be expressed as a
function of the scattering phase shift. As shown by Nozieres in Ref. [134], this phase shift
depends both on the energy of the incoming particle and on the particle distribution, and

can be expanded as /

5U:g+%€(—f;;+7;f. (8.62)
Here, spin inversion is denoted by & = —o, and p is the density of states. The leading-order
phase shift /2 makes the molecule a perfectly open channel in the Kondo regime. From
the phase shift we can determine the transmission and reflection amplitudes from left to
right (from right to left), t, and r, (t. and r.), respectively. t,. Using the Glazman-Raikh

transformation [129], we easily obtain the corresponding scattering matrix

se=(7 5 )=(0 )0 T)(S 1) e

(tLl,[trl)

Vo ltal?”

where (¢, s) = This results in a transmission coefficient given by

4t |tr]”

2 L R .9

= sin“(d, ). 8.64
N AR (564
At T = 0, the linear conductance is not expected to depend on « nor 3 since the corre-
sponding processes involve quasiparticles with finite energies. As a result, the Kondo-regime

conductance of the Anderson model with local Zeeman field B’ < Tk is given by

o

e? 2¢? AR
G'= T Z 2] = (T + TR [1—(vB'/Tx)?] . (8.65)

Employing the identity of linear conductances for the positive and negative-U models, see
Section 8.6.3, we conclude that the charge-Kondo effect in the negative-U model leads to
G=—

the conductance )
y
— |1 - =2 U
h (FL+FR)2 (TK[ €d+ ])

Here, the correspondence between Zeeman field (at positive U) and gate voltage (at negative
U) is directly reflected in the departure from the unitary limit as soon as the negative-U
system is tuned away from the charge-degeneracy point. This marks the fragility of the
charge-Kondo effect in contrast to the conventional Kondo effect.

2¢2  4T;T
¢ LR . (8.66)
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8.9.2 Nonlinear current-voltage characteristics

We now go beyond the linear-response regime and consider the nonlinear conductance of
the symmetric positive and negative-U models in the T' = 0 limit. Our starting point is the
positive-U model, which results in the conventional Kondo effect. The PHLR tranformation
is applied subsequently to transfer our results to the charge-Kondo case at negative U.
For nonzero bias, quasiparticles with finite energy are involved, and hence the a- and
[-terms in the effective Hamiltonian, Eq. (8.61), become relevant. These terms describe the
weak scattering at the spin-singlet state and the induced interaction between quasiparticles,
and cause a reduction of the unitary current I, = 2¢2/hV due to backscattering events.
The total current may thus be written in the form I = I, — I,. In order to extract the
backscattering contributions from the effective Hamiltonian, we need to relate the quasi-
particle states ¥y, to the states of left-movers and right-movers, L, and Rg., respectively.
This relation is dictated by the Glazman-Raikh transformation [129], which results in

wka = \}i(Lko‘ + Rko’) (867)

for a symmetric device.® Importantly, left-movers originate from the right lead and right-
movers from the left lead. This fact allows us to account for the nonequilibrium situation
at finite bias by identifying the distribution of right-movers (left-movers) with the Fermi
distribution of the left (right) lead, i.e. fr(g)(€). Substituting the decomposition Eq. (8.67)
into the effective Hamiltonian, we find that the elastic term (~ «) and the inelastic term
(~ B) generate backscattering transitions which turn left-movers into right-movers, and vice
versa. Since these contributions act as weak perturbations, we may evaluate the backscat-
tering current by summing the corresponding backscattering rates obtained via Fermi’s
golden rule. Our approach reproduces the well-established results from Ref. [14], and here
we briefly review the essential steps, starting with the elastic contributions.

Elastic backscattering contributions

Upon substitution of the left-right decomposition, the elastic contribution to the effective
Hamiltonian can be cast into the form

1
27T,0TK

Hy = — > > [alé +&)/2+ B0 af brs. (8.68)

k.,k' o0 a,b=L,R
This leads to four different processes, which can be depicted diagrammatically as
R % R R % L L % R L % L

q=0 g=1 q=-1 q=0

where ¢ denotes the number of particles transferred in the backscattering channel. Evi-
dently, only processes with g # 0 contribute to the backscattering current. Assuming a

8We emphasize that the 1y, states denote scattering states with incoming wave vector k. They are not
momentum eigenstates and hence involve both left-moving and right-moving contributions.
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positive bias (i.e. ur, = eV/2 > pr = —eV/2), the T = 0 rate for the ¢ = 1 process is given
by

Po =20 3 [(asl R, Lo Hales)| fu(@ll — fr@)5(& — &) (8:69)
kk' o

:2;?( ! )Zp [ de sl = fa(@) (ac +1E'a)’

2mp Ty

of (V' (1B
12 \ Tk Tk
resulting in a backscattering contribution I, = eI',. Here, |gs) denotes the ground state

of the system. It is easy to verify that the ¢ = —1 process has zero phase space for positive
bias, and consequently vanishes.

2eV

~h

)

Inelastic backscattering contributions

In a similar fashion, we analyze the inelastic backscattering generated by

p ; t
Hin=—or D D hyybriCy dea (8.70)
PTEK o ks ka abed=L, R

This gives rise to 2* = 16 distinct processes, which we evaluate in detail in Appendix L. It is
crucial to note that Hj, allows for the backscattering of two right-movers, and the increased
phase space results in enhanced rates as compared to single-particle backscattering. In
total, the inelastic contributions amount to a backscattering current

262

Is = Ipi + ;= =

V%ﬁQ(eV/TK)Q. (8.71)

Upon summation of these contributions, the total current for the positive-U Anderson model
with local Zeeman field is obtained as

22
I=1,-I,="v

a2 2 2
v |1 (BT - o+ 55 ( 4 ) . (8.72)

12 \Tx

Due to the onset of backscattering at finite energies, the current is reduced with increasing
bias voltage. The breaking of spin-symmetry by the local Zeeman field leads to an additional
reduction ~ (B')?2, as required by symmetry.

Finally, we return to the charge-Kondo effect in the negative-U model by applying the
PHLR transformation. The resulting current close to the unitary limit is given by

a?+58° (V\?
12 Tk

22
I=1,—I,= v

A 1— (v[2eq + U)/Tk)? -

, (8.73)

revealing the current reduction due to a gate detuning from the charge degeneracy point.
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Figure 8.10: Transport processes near the unitary limit for the conventional spin-Kondo effect. The
two reservoirs correspond to right-movers (originating from the left lead), and left-movers (originat-
ing from the right lead). (a) Elastic backscattering of one right-mover. (b) Inelastic backscattering
of one right-mover accompanied by creation of a particle-hole pair within one reservoir. (c) Inelastic
backscattering of two right-movers with opposite spins.

8.9.3 Shot noise

In this subsection, we turn to the current shot noise in the Kondo regime. The PHLR
transformation allows us to transfer our central results for the conventional Anderson model
to the negative-U model. As demonstrated in the previous subsection, close to T' = 0 and
for small bias voltages, the current is nearly unitary, and backscattering events are rare.
In this scenario, a sensible definition of the Fano factor does not involve the direct current
(which would yield F' = 1 with small corrections), but rather the backscattering current I,

F = S/2e|L). (8.74)

We have shown, that the backscattering current displays a competition between single-
particle backscattering processes, and pair backscattering. Specifically, the relevant processes
are

(i) elastic backscattering [x «, see Fig. 8.10(a)],

(ii) inelastic backscattering of one electron accompanied by creation of a particle-hole pair
of either left or right movers [x 3, see Fig. 8.10(b)], and

(iii) inelastic backscattering of two rightmovers [ox 3, see Fig. 8.10(c)].

Since backscattering remains a weak perturbation and events are rare, consecutive backscat-
tering processes will be uncorrelated. Consequently, the zero-frequency noise is obtained
as .. ves

S = 2e(19 + 1§V + 213", (8.75)

where roman numbers identify the aforementioned process types. The additional factor of
2 for process (iii) takes into account that the charge of the backscattered pair should enter
the noise quadratically. As a result, the Fano factor is given by

_ 2(B'/Tk)* + 5(V/Tk)?
- 2B/Tg)?+ (V/Tg)?

(8.76)

(Here, we have exploited the identity of the coefficients «, 3, and 7y, which follows from
comparison with the Bethe ansatz [136].) Remarkably, for vanishing local Zeeman field,
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Eq. (8.76) leads to a super-Poissonian Fano factor F' = 5/3 due to pair backscattering. It
is the enhanced phase space for pair scattering which renders its contribution dominant,
despite the fact that it constitutes only one of the seven relevant processes. In the opposite
limit of large Zeeman fields B’ > V, single-particle backscattering at the singlet dominates
and the Fano factor is Poissonian, ' = 1.

A straightforward application of the PHLR mapping now yields the corresponding Fano
factor for the negative-U model,

_ 2([2eq 4+ U)/Tk)? + 3(V/Tk)?
 2([2eq + UY/Tk )2+ (V/Tk)?

(8.77)

Interestingly, the fragility of the charge-Kondo effect is also directly reflected in the current
shot noise: The Fano-factor enhancement only dominates the immediate vicinity of the
charge-degeneracy point. A detuning from this point results in a suppression of the Fano
factor, and Poissonian noise is recovered as soon as the detuning is large compared to the
bias voltage.

8.10 Extension: Breaking of the LR symmetry

We finally comment on the consequences of LR-symmetry breaking. In particular, we
consider the case of symmetric voltage splitting [the splitting ratio is fixed by the capacitance
ratio of the junctions|, but broken left-right symmetry regarding the couplings, i.e. t;, # tg.
The PH transformation is not affected by the coupling asymmetry, so that its general result
is given by Eq. (8.33). By contrast, the LR transformation crucially depends on the left-
right symmetry. Breaking this symmetry results in a mapping to the following positive-U
model,

U
H = 5 Z Ny, — Uniny, + Z(Gak — aeV/2)ngy,,

o ako
3 (tao by + 1) + (20 + U/2) (0l — 7)), (8.78)
ako
where
takr = taks tre) = tRE,  tRk = tLk- (8.79)

Accordingly, transport in the negative-U model with asymmetric coupling is equivalent
to transport in a positive-U model with local Zeeman field and spin-dependent tunneling
matrix elements. Specifically, for one spin direction (here: T) the couplings are I'y, and I'g
for the left and right junction, respectively. For the other spin direction (]) however, the
couplings are interchanged and are I'r (I'z) in the left (right) junction.”

9We note that this is consistent with the independence of the linear conductance on LR symmetry, as the
system only couples to the symmetric combination of the left and right lead in linear response (Glazman-
Raikh transformation). In fact, in combination with the Glazman-Raikh transformation, Eq. (8.78) can be
used for a second independent proof of the identity of conductances in the negative-U and the corresponding
positive-U model.
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8.11 Conclusions

Near the degeneracy point, transport through a molecular junction with negative U differs
drastically from the conventional Coulomb-blockade scenario at positive U. At high tem-
peratures T' > Ty, negative U results in current flow making the molecule alternate in time
between even occupation numbers. This is accomplished by pair tunneling, which is the
dominant transport mode in the gate-voltage — bias-voltage domain shown in Fig. 8.4.

It is intriguing that the on-site attraction of two electrons makes pair tunneling through
molecules qualitatively similar to tunneling through a superconducting grain, considered in
Ref. [137]. However, in the case of molecules, the physical picture of transport is more
complex. This is because a pair can be created on the molecule by electrons tunneling from
different leads, as illustrated in Fig. 8.1(d). By contrast, for a grain with size larger than
the superconducting correlation length, electron pairs enter and exit the grain only from the
same lead, i.e. only the processes in Fig. 8.1(c) are responsible for the passage of current.!”
As an important consequence of this difference, negative-U molecules act as gate-controlled
rectifiers. Apart from these characteristic fingerprints in current-voltage characteristics, the
pair-induced correlations also lead to super-Poissonian shot noise, which are most prominent
for roughly symmetric devices.

The PHLR transformation, developed for mapping transport in negative-U molecules
to transport through conventional positive-U centers with a local Zeeman field, has proven
to be a valuable tool in deepening our understanding of both negative-U and positive-U
transport scenarios. In particular, it has served as a key ingredient in our investigation
of the charge-Kondo regime. Our results for the linear conductance and the nonlinear IV
analytically confirm the fragility of the charge-Kondo effect: Any gate-voltage detuning
from the charge-degeneracy point results in a departure from the unitary limit, which is in
contrast to the conventional spin-Kondo effect. Remarkably, we find that backscattering
of electron pairs also plays an important role deep inside the Kondo regime, and leads
to super-Poissonian noise in the backscattering current with Fano factor F' = 5/3 at the
degeneracy point.

10 Another difference between transport through negative-U molecules and superconducting grains lies in
the absence of BCS coherence factors in the former.



