
Chapter 7

Thermopower of single molecules

7.1 Introduction

In this chapter, we investigate the thermopower of single-molecule devices. The ther-
mopower is defined as the ratio of bias voltage V and an applied temperature difference
∆T under the condition that the current vanishes:

S = − lim
∆T→0

V

∆T

∣

∣

∣

∣

I=0

. (7.1)

A very interesting feature of the thermopower is that, unlike the IV characteristic, it pro-
vides information on whether the current flow proceeds predominantly through the LUMO
or HOMO. The underlying reason is that a nonzero thermopower requires breaking of
particle-hole symmetry about the Fermi energy. For quantum dots the thermopower for
pure sequential tunneling has been investigated theoretically by Beenakker and Staring [116]
and experimentally by Staring et al. [117]. The cotunneling regime [86] and the crossover
have been studied by Turek and Matveev [88]. In the case of a quantum dot strongly
coupled to one lead, the thermopower has been investigated by Matveev and Andreev [118].

Here, we extend these considerations to transport through single molecules, where
experimental work [26,28,29] indicates that phonons may play an important role. We base
our calculations on the Anderson-Holstein Hamiltonian, Eqs. (1.1)–(1.3), slightly going
beyond the model introduced in Chapter 1 by considering both internal vibrations as well
as CM oscillations of the molecule. Employing the rate-equation approach valid for weak
molecule-lead coupling (see Chapter 2), we compute the thermopower as a function of gate
voltage, temperature, and electron-phonon coupling.

We find that the sign of the thermopower reveals whether transport is dominated by
electrons or holes. Moreover, the thermopower contains information on the electronic and
phononic excitations of the molecule. This way of measuring the molecular excitations
in linear response [cf. the ∆T → 0 limit in Eq. (7.1)] may have advantages over the more
conventional IV characteristic. The latter necessarily involves nonequilibrium effects, which
may be difficult to interpret. Moreover, a large applied voltage may even affect symmetry
and structure of the molecule itself.

To leading order perturbation theory for the molecule-lead coupling (sequential-tunneling
contributions), we find that the thermopower as a function of gate voltage develops a saw-
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tooth behavior in the low temperature limit with steps due to electronic and phononic
excitations. Step sizes and their dependence on the electron-phonon coupling strength are
analyzed.

Going beyond the sequential approximation, we find that in a wide range of parameters
cotunneling contributions from next-to-leading order perturbation theory in the tunneling
are important.1 We investigate these contributions and the full crossover between the
sequential-tunneling and the cotunneling regimes. We find that elastic cotunneling does
not show any significant phonon structure, and discuss under which conditions phonon
features due to sequential-tunneling are retained in the total thermopower.

The outline of this chapter is as follows: Section 7.2 describes a generalization of the
Anderson-Holstein, which includes molecular CM oscillations. Our calculations for the
thermopower are described in Section 7.3 and the results are presented in Section 7.4. We
summarize our findings in Section 7.5. Some calculational details including the results of
the cotunneling regularization are relegated to appendices.

7.2 Extended Model

In extension to the Anderson-Holstein model of Chapter 1, we here distinguish two types of
phonons, which we term vibrations and oscillations: Vibrations are internal phonon modes
of the molecule, for which the center of mass (CM) of the molecule is at rest, and which are
incorporated in the Hamiltonian Eq. (1.1). On the other hand, oscillations involve move-
ment of the molecule as a whole, which has been observed in experiments with physisorbed2

molecules [26]. To describe oscillations, we introduce the momentum and position operators
pz and z of the CM displacement. In the case of physisorption the coupling to the leads
is weak, so that the two phonon types typically involve different energy scales: Vibrations,
which are associated with strong intra-molecular bonds, will have considerably higher ener-
gies than oscillations. The two phonon types also differ in the nature of coupling: Vibrations
directly couple to the electric charge on the molecule, described by the term ∼ nd(b

† + b),
whereas the coupling for oscillations occurs through displacement-dependent tunneling ma-
trix elements tL,R(z).

Specifically, the displacement dependence of the tunneling matrix elements for oscilla-
tions is obtained by the following consideration. The tunneling matrix element t describes
the tunneling processes between the leads and the molecule, and we may assume an expo-
nential fall-off of t with increasing distance between lead and molecule. For a symmetric
molecule of length 2l between two leads with a separation distance 2d, this yields

tL,R(z) = t0 exp[−(d− l ± z)/z0]. (7.2)

1At low temperatures the cotunneling terms increase due to higher order contributions that lead to
strong Kondo correlations near the Kondo temperature TK . Here, we assume temperatures high compared
to the Kondo temperature, T ≫ TK . The thermopower for T & TK can be estimated by substituting the
cotunneling rate by an effective one, which is renormalized by the higher-order terms, cf., e.g., M. Pustilnik
and L. I. Glazman, J. Phys. Condens. Matter 16, R513 (2004).

2Physisorption refers to weak bonding of a molecule to a surface by van-der-Waals forces or hydrogen
bridge bonds, as opposed to chemisorption, which terms the case of strong covalent bonds between molecule
and surface.
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The parameter z0 fixes the length scale of the exponential fall-off of the electronic wave
functions outside the leads and the molecule. In the following, we restrict ourselves to
considering one phonon type at a time. Whenever the specific phonon type is irrelevant we
will skip the subscripts “vib” and “osc”.

7.3 Thermopower

The thermopower, Eq. (7.1), is calculated by considering the current through the molecule
in the linear response regime, which is

I(V,∆T ) = GV +GT ∆T + O(V 2,∆T 2, V∆T ), (7.3)

where G denotes the conductance, GT the thermal coefficient, and ∆T = TL − TR the
temperature difference between the left and right lead. Hence, the thermopower can be
written as

S =
GT

G
=
Gsq

T +Gco
T

Gsq +Gco
, (7.4)

where sequential tunneling and cotunneling contributions have been separated. We investi-
gate both contributions to the thermopower and obtain expressions valid in the full crossover
regime by means of the regularization scheme for cotunneling rates (Appendix C).

In order to obtain the conductance G and the thermal linear-response coefficient GT ,
we expand the current (2.16) in the bias voltage V = VL−VR and the temperature difference
∆T = TL − TR. Since V and ∆T are in principle infinitesimal, we can conveniently choose
the right electrode to have zero potential and temperature T . Accordingly, the left electrode
has potential V and temperature T +∆T . When expanding the current, one has to expand
both the probabilities Pn

q and the transition rates Wnn′

qq′ .

We write the expansion for the transition rates and probabilities as

Wnn′

qq′ = wnn′

qq′ + ∆T tnn′

qq′ + V vnn′

qq′ + · · · (7.5)

and

Pn
q = Pn

q + Θn
q ∆T + Φn

q V + · · · . (7.6)

Here, Pn
q = 2δ1,n exp(−En

q /kBT )/Z denotes the grandcanonical probability distribution at

equilibrium, and Z =
∑

n,q 2δ1,n exp(−En
q /kBT ) the corresponding partition function.3 The

normalization condition for the deviations of Pn
q from its equilibrium value is 0 =

∑

n,q Θn
q =

∑

n,q Φn
q .

By substituting the expansions (7.5), (7.6) into the rate equations (2.9) and retaining
only terms linear in V and ∆T , one obtains a new set of rate equations for the deviations
Θn

q and Φn
q , see Appendix K, Eq. (K.1). These, in conjunction with the normalization

conditions for Θ and Φ, represent an inhomogeneous system of linear equations, whose
solution yields the deviations Θn

q and Φn
q . Finally, the current (G.5) can be expanded in

3The additional factor of 2δn,1 takes into account the spin-degeneracy of the level n = 1.
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terms of ∆T and V :

I =
∑

n,q,q′

(∆TΘn
q + V Φn

q )
[

wn,n+1
qq′; R − wn,n−1

qq′; R

]

(7.7)

+
∑

n,q,q′

Pn
q

[

∆T (tnn
qq′; RL − tnn

qq′; LR) + V (vnn
qq′; RL − vnn

qq′; LR)

]

Note that the terms proportional to Θn
q and Φn

q in the expansion of the cotunneling con-
tributions are absent since the rates of cotunneling from left to right and vice versa cancel
each other at zero bias, (wnn

qq′; RL − wnn
qq′; LR) = 0.

7.3.1 Sequential-tunneling contributions

In Eq. (7.7) it was chosen to expand IR in V and ∆T . Due to the steady-state property
I = IR = IL, an expansion in IL gives the same result and it turns out to be convenient
to expand the expression I = (IL + IR)/2, which for the sequential-tunneling contributions
results in

Isq =
1

2

∑

n,q,q′

(∆TΘn
q + V Φn

q )
[

wn,n+1
qq′; R − wn,n−1

qq′; R + wn,n−1
qq′; L − wn,n+1

qq′; L

]

+
1

2

∑

n,q,q′

Pn
q V

[

vn,n−1
qq′; L − vn,n+1

qq′; L

]

+
1

2

∑

n,q,q′

Pn
q ∆T

[

tn,n−1
qq′; L − tn,n+1

qq′; L

]

. (7.8)

Here, the first term remarkably vanishes due to the symmetry4 wn,n±1
qq′; R = wn,n±1

qq′; L . Therefore,
one obtains the following sequential-tunneling contributions to the thermal coefficient GT

and the conductance G,

Gsq
T =

1

2

∑

n,q,q′

Pn
q

[

tn,n−1
qq′; L − tn,n+1

qq′; L

]

, Gsq =
1

2

∑

n,q,q′

Pn
q

[

vn,n−1
q→q′; L − vn,n+1

qq′; L

]

. (7.9)

We point out that the so-obtained conductance and thermal coefficient do not depend on
the probability deviations Θn

q and Φn
q any more. This is an important result since it allows

for an analytic expression of the thermopower not involving an explicit solution of the rate
equations, cf. Appendix K. [Expansions of IL and IR alone lead to expressions for Gsq

and Gsq
T , which do involve Θn

q and Φn
q . We have also carried out calculations based on this

approach by solving the rate equations for the probability deviations and find agreement
with the results from Eq. (7.9).]

7.3.2 Cotunneling contributions

The cotunneling contributions to thermal coefficient and conductance are

Gco
T =

∑

n,q,q′

Pn
q

[

tnn
qq′; RL − tnn

qq′; LR

]

, Gco =
∑

n,q,q′

Pn
q

[

vnn
qq′; RL − vnn

qq′; LR

]

. (7.10)

4This symmetry is a consequence of the fact that the rates w are evaluated at zero bias.
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In principle, any set of rate equations involving phononic excitations yields an infinite system
of linear equations. In numerical calculations one makes use of the fact that transitions
involving highly excited phonon states typically result in small rates. This allows for the
introduction of a cutoff phonon number.

We find that the linear response quantities G and GT do not depend on the relaxation
time τ . Mathematically, this corresponds to the result that the conductance and thermal
coefficient do not involve the probability deviations Φn

q and Θn
q , cmp. Eqs. (7.9)–(7.10).

The physical reason for this is the following: In the I → 0 limit, the average time needed
for one electron tunneling through the molecule becomes large compared to the relaxation
time. Consequently, the initial state for any tunneling process corresponds to an equilibrium
phonon state.

By substituting back Eqs. (7.9)–(7.10) into Eq. (7.4), we arrive at the following ana-
lytical expression for the thermopower:

S =

∑

n,q,q′ P
n
q

[

tn,n−1
qq′; L − tn,n+1

qq′; L + 2tnn
qq′; RL − 2tnn

qq′; LR

]

∑

n,q,q′ P
n
q

[

vn,n−1
qq′; L − vn,n+1

qq′; L + 2vnn
qq′; RL − 2vnn

qq′; LR

] . (7.11)

This equation is our central result. It shows that even in the presence of phonons, the
thermopower can be expressed analytically through the equilibrium probability distribution
Pn

q and the expansion coefficients of the transition rates evaluated at vanishing source drain
voltage and temperature difference. In the following section the implications of Eq. (7.11)
will be discussed.

7.4 Results

7.4.1 Sequential tunneling

We first consider the results for pure sequential tunneling, postponing the discussion of the
full thermopower due to both sequential and cotunneling to Sec. 7.4.2. We give numerical
results for the thermopower and present analytic expressions for the limiting case U → ∞
and T → 0 below. Representative numerical results are shown in Fig. 7.1.

The dominant feature of the sequential-tunneling thermopower Ssq is a large step at
the gate voltage ε∗d = −U/2, for which the Fermi energy of the leads lies halfway in between
the | 1, 0 〉 and the | 2, 0 〉 state. This situation is depicted in Fig. 7.2. At εd = ε∗d the ther-
mocurrent GT ∆T vanishes due to electron-hole symmetry. An increased (decreased) gate
voltage lowers (raises) the molecular levels with respect to the Fermi level, and therefore
current is dominated by electrons (holes) flowing from the left to the right lead. Conse-
quently, GT changes sign at εd = ε∗d. Moreover, away from the Coulomb peaks, sequential
tunneling can only occur through the tails of the lead Fermi distributions due to energy
conservation. Therefore, the sequential-tunneling conductance and thermal coefficient fall
off exponentially away from the Coulomb peak. At gate voltages close to ε∗d, their behavior
can be estimated by

Gsq ∼ exp[ε∗d/kBT ] cosh[(ε∗d − εd)/kBT ], (7.12)

Gsq
T ∼ exp[ε∗d/kBT ] sinh[(ε∗d − εd)/kBT ]. (7.13)
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Figure 7.1: Thermopower Ssq times temperature as a function of gate voltage for ~ω0 = 0.11U .
Large: Vibrations with λ = 2. Inset: Oscillations with ξ0 = 5. (See text below Eq. (7.16) for
a discussion of the choice of parameters.) The positions of the corresponding Coulomb peaks in
∂I/∂V are marked with arrows. In contrast, the main features of the thermopower occur between
the Coulomb peaks.
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Figure 7.2: Electron-hole symmetry for the gate voltage εd = −U/2.
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Consequently, the sequential-tunneling thermopower Ssq = Gsq
T /G

sq behaves as ∼ tanh[(ε∗d−
εd)/kBT ] in the vicinity of ε∗d, which develops a discontinuity in the limit T → 0.

In addition to the electronic step, the results show smaller phonon steps with a distance
of ~ω0 between adjacent steps. To understand slope, temperature dependence, and phonon
step sizes of the sequential-tunneling thermopower, we turn to the case U → ∞. In this
limit, electronic double occupation of the molecule is forbidden, and the sequential-tunneling
thermopower Ssq = Gsq

T /G
sq reads

Ssq =

∑

q,q′ P
eq
q (P 0t01qq′ − P 1t10qq′)

∑

q,q′ P
eq
q (P 0v01

qq′ − P 1v10
qq′)

(7.14)

= − εd
eT

−
∑

q,q′(P
0P eq

q + P 1P eq
q′ )f ′(E1

q′ − E0
q )~ω0(q

′ − q)
∣

∣Mq′→q

∣

∣

2

eT
∑

q,q′(P
0P eq

q + P 1P eq
q′ )f ′(E1

q′ − E0
q )
∣

∣Mq′→q

∣

∣

2 .

Here, we have used that the equilibrium distribution Pn
q factorizes into an electronic and

a phononic part, with the latter given by P eq
q = e−q~ω0/kBT (1 − e−~ω0/kBT ). Thus, we find

that the thermopower purely due to sequential tunneling roughly scales like 1/T , which is in
agreement with the quantum dot case [116]. In the low temperature limit, the thermopower
develops a characteristic sawtooth behavior as a function of gate voltage. The slope of the
linear pieces is found to be dSsq/dεd = −1/eT .

In the T → 0 limit, one obtains

lim
T→0

TSsq = −εd
e

+ sgn(εd)

∑

q<|εd|/~ω0
q~ω0 |M0q|2

e
∑

q<|εd|/~ω0
|M0q|2

, (7.15)

where the last term generates the step features by adding up higher phonon contributions
for increasing gate voltages. We can obtain the phononic step size ∆Q of the Qth step of
TSsq in the T → 0 limit from Eq. (7.15),

∆Q =
~ω0

e
|M0Q|2

Q
∑

q=0

(Q− q) |M0q|2




Q
∑

q=0

|M0q|2
Q−1
∑

q=0

|M0q|2




−1

. (7.16)

Here, Q counts the discontinuities of TSsq starting at εd = 0 with increasing gate voltage.
∆Q depends on the step number Q and on the coupling strength λ or ξ0 = z0/ℓosc for
vibrations or oscillations, respectively. Here, ℓosc = (~/Mωosc)

1/2 is the harmonic-oscillator
length for oscillations and M denotes the molecular mass.

It is instructive to estimate typical values of the parameters ξ0 and λ for realistic
systems. For ξ0 we need to compare z0 to the oscillator length ℓosc. An order of magnitude
estimate yields z0 ≈ ~/(meW )1/2. Here, W is the work function of the metal leads and is of
the order of several eV. On the other hand, for a typical experiment [26] oscillations occur on
an energy scale of 1–10 meV. This yields ξ0 = z0/ℓosc ≫ 1. In this case, displacements of the
molecule’s CM are small on the scale of z0, and therefore no significant shuttle effects [75,76]
can be expected.

Next we consider the vibrational coupling parameter λ. Let r be the normal coordinate
deviation from the equilibrium value r0. To leading order, charging the molecule with an
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Figure 7.3: Phonon step size ∆Q in units of ~ω0/e for the step numbers Q = 1, 2, 3.

additional electron has the effect of shifting the phonon potential curve by some distance
∆r, so that the potential energy is now ≈ 1

2Mω2
vib(r + n∆r)2. Hence, the electron-phonon

coupling term is of the order of magnitude ofMω2
vibr∆r = ∆r/ℓvib~ωvib(b+b

†) and therefore
λ ≈ ∆r/ℓvib. Here, ℓvib = (~/Mωvib)

1/2 is the harmonic oscillator length corresponding to
vibrations. There is not a general rule for how ℓvib and ∆r compare so that λ can in
principle assume values both smaller and larger than 1.

Due to the different behavior of the matrix elements for vibrations and oscillations,
the phonon step size turns out to differ between those two cases as shown in Fig. 7.3. For
vibrational phonons, the electron-phonon coupling becomes stronger for increasing λ. In the
case of electron-phonon coupling for oscillations, the coupling gets stronger for decreasing
ξ0 = z0/ℓosc.

5 Thus, the plausible finding is that in both cases phonon step size increases
with the effective electron-phonon coupling strength. For oscillations the steps are rather
small in the relevant regime of ξ0 ≫ 1. For vibrations they may be more pronounced.

7.4.2 Results for the total thermopower

The results for the thermopower discussed above arise from considering sequential-tunneling
contributions only. However, if the Fermi levels are not aligned with a molecular level,
sequential tunneling only occurs via electrons (or holes) in the tails of the Fermi distributions
in the leads. In this case, the sequential-tunneling conductance Gsq and thermal coefficient
Gsq

T are exponentially suppressed, and higher-order processes such as cotunneling may yield
important contributions. Accordingly, sequential tunneling dominates in proximity to the

5Decreasing z0 at fixed ℓosc increases the position dependence of the hopping matrix elements t(z).
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aligned-levels configuration, and is suppressed most at the gate voltage ε∗d at which the large
electronic step in the sequential-tunneling thermopower occurs. In the latter range of gate
voltages, cotunneling may give the dominant contributions to the thermopower. For this
reason we have included the effect of cotunneling processes in the rate-equations approach.
At temperatures kBT < ~ω0, inelastic cotunneling can be neglected, and we find that the
elastic cotunneling does not exhibit significant phonon structure.

Figure 7.4(a) exemplifies the behavior of the thermopower including both sequential
and cotunneling as a function of gate voltage for several temperatures. Whether the total
thermopower S shows the sequential-tunneling phonon structure or whether it is mainly
dominated by cotunneling contributions without significant phonon features, strongly de-
pends on the choice of parameters. Firstly, step-like features can only be expected if the
sequential-tunneling part develops pronounced steps. As discussed above, this depends
on phonon type, phonon-coupling strength, and temperature. Only for temperatures well
below ~ω0/kB one can expect any features, as can be seen from the smoothening of the
phonon steps for increasing temperature in Fig. 7.4(a). Secondly, temperature and the
dimensionless coupling parameter,

α = ρ |ta|2 /U, (7.17)

which arises in the rate equations and roughly describes the relative strength of cotunneling
to sequential tunneling,6 determine where the crossover between the sequential-tunneling
and cotunneling regimes occurs. For illustration, Fig. 7.4(b) shows the thermopower S as
a function of gate voltage at fixed temperature for two different coupling parameters α as
well as the corresponding sequential-tunneling result for comparison.

The crossover between the sequential-tunneling and cotunneling regimes occurs in a
rather small gate-voltage range, cf. Fig. 7.4(a) and (b), which allows one to identify crossover
gate voltage εxo

d .7 Our results show that the crossover points roughly scale as εxo
d ∼ T lnα−1,

which is in agreement with corresponding results for quantum dots, cf., e.g., Ref. [88].
This can be understood based on the following estimate of the crossover points εxo

d .
We assume that only a small gate-voltage region is dominated by sequential tunneling,
|εxo

d | < |ε∗d|. With ∆εd = minm=0,1 |εd +mU | being the dominant activation energy for
either electrons or holes, one can roughly estimate the sequential-tunneling conductance
and thermal coefficient by an activated behavior dependence,

Gsq, Gsq
T ∼ exp(−∆εd/kBT ). (7.18)

While sequential-tunneling contributions therefore fall off exponentially with ∆εd, cotun-
neling contributions only show a weak power-law dependence on the activation energy ∆εd,
and temperature T . To lowest order they may be approximated by a constant,

Gco, Gco
T ∼ αb. (7.19)

Comparison of equations (7.18) and (7.19) yields as an estimate for the crossover gate
voltage

εxo
d ≈ −kBT (lnα−1 − ln b). (7.20)

6In this chapter, we measure the sequential and cotunneling rates in natural units of ρ |ta|
2 /~ and

ρ2 |ta|
4 /(~2U), respectively.

7Strictly speaking, the crossover “point” is a region, and can be slightly different for G and GT .
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Figure 7.4: (a) Thermopower times temperature as a function of gate voltage for several temper-
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coupling parameter defined in Eq. (7.17)). (b) Thermopower as a function of gate voltage at fixed
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In this approximation, |εxo
d | increases linearly with temperature and decreases logarith-

mically like lnα−1. The number of phonon steps (if present in the sequential-tunneling
contribution) is given by |εxo

d | /~ω0.

For the parameter choices of Fig. 7.4(b), we find that b assumes values which allow us
to neglect the ln b term in Eq. (7.20). This leads to the following estimates of the crossover
gate voltage: εxo

d ≈ −0.1U for α = 10−5, and εxo
d ≈ −0.2U for α = 10−9, which is in good

agreement with the crossovers observed in Fig. 7.4(b).

We note that the thermopower attains rather small values in the cotunneling regime.
This is plausible when reconsidering the effect of the electron-hole symmetry at ε∗d = U/2.
Due to this symmetry, the thermopower must vanish at ε∗d. In the case of sequential
tunneling, the exponentially suppressed currentGsq

T ∆T shows the breaking of this symmetry
for small gate voltage deviations from ε∗d rather abruptly (leading to the large steps in the
sequential-tunneling thermopower Ssq as a function of gate voltage). For cotunneling on
the other hand, the thermal current is not exponentially suppressed, but roughly follows a
power-like decrease with ∆εd. Therefore, breaking of the electron-hole symmetry is not as
pronounced so that S remains small in the cotunneling region centered around ε∗d.

7.5 Summary

Using a model for electronic transport through a single spin-degenerate molecular orbital,
and taking into account oscillational and vibrational phonons, we have calculated the ther-
mopower of a single-molecule device in the regime of weak molecule-lead coupling. In
contrast to IV measurements, the thermopower provides a means of extracting information
about electronic and phononic excitations, and about the nature of the electron-phonon
coupling in a linear response measurement. Therefore, it may have advantages over the
more conventional IV characteristic, which necessarily involves nonequilibrium effects, and
which, at large voltages, may even affect symmetry and structure of the molecule itself. In
addition, the sign of the thermopower signals the breaking of particle-hole symmetry and
thus allows one to determine whether transport proceeds by tunneling through the HOMO
or LUMO.

We have found that sequential-tunneling contributions yield a characteristic sawtooth
behavior of the thermopower as a function of gate voltage for low temperatures, which shows
structure due to electronic and phononic excitations. It has been shown that due to the
different nature of electron-phonon coupling for oscillations and vibrations, characteristic
differences in the phonon step size arise in the sequential-tunneling thermopower. Analytical
expressions for the phonon step size have been derived in the limit of strong Coulomb
blockade, which show that, for realistic parameters, phonon steps can be expected to be
more pronounced for vibrations than for oscillations.

Away from the Coulomb peaks, cotunneling dominates over sequential tunneling. By
considering these cotunneling contributions, we have found that the (elastic) cotunneling
regime does not show significant structure due to phononic excitations. We have investigated
the crossover regime and have given an estimate for the gate voltage at which the crossover
takes place. It has been shown that the phononic structure exhibited by the sequential-
tunneling contributions is retained in the thermopower if kBT ≪ ~ω0 and kBT lnα−1 > ~ω0,
i.e., (1) the temperature is low enough so that the phononic structure is not blurred out,
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and (2) the dimensionless coupling parameter α is so small that the crossover gate voltage
is high enough to allow for at least one phonon feature in the thermopower.


