
Chapter 6

Nonequilibrium effects for weak

electron-phonon coupling

6.1 Introduction

The vision of molecular electronics [2] in part depends on the realization of devices such as
molecular transistors, switches, or diodes. One strategy towards this goal involves the cou-
pling of electronic and vibrational (phononic) degrees of freedom of molecules. A question
of principal importance for single-molecule devices are the consequences of nonequilibrium
effects at finite bias. Strong nonequilibrium molecular vibrations can be beneficial in mole-
cular devices, e.g., by enhancing switching rates between molecular conformations. In other
instances, they may hinder the operation of devices, in the extreme case by inducing dis-
sociation of the molecule. Recent theoretical work – some of it included in this thesis –
shows that even within simple models, vibrational nonequilibrium has important effects on
IV s and shot noise [45, 59], may induce a shuttling instability [75, 76], or lead to current
flow characterized by a self-similar hierarchy of avalanches of large numbers of transferred
electrons (see Chapters 3 and 4).

Recent numerical results by Mitra et al. [45] suggest that intriguingly, vibrational non-
equilibrium becomes stronger as the electron-phonon coupling λ decreases. Characterizing
the vibrational nonequilibrium by the probability distribution of phonon excitations, these
authors observe that the width of this distribution grows with decreasing coupling λ. These
numerical results are obtained within a minimal model describing transport through one
molecular orbital, which is coupled to a single vibrational mode (Anderson-Holstein model).

In this chapter,1 we first clarify the underlying mechanism for this nonequilibrium effect
by developing an analytical theory. Our approach relies on a mapping to a Fokker-Planck
equation, which becomes exact in the limit of weak electron-phonon coupling. This mapping
predicts that the width at half maximum (WHM) of the phonon distribution diverges as
λ → 0. Remarkably, the WHM is shown to scale as λ−α with bias-dependent, non-integer
exponents α > 0. We confirm our analytical results by numerical simulations.

Real single-molecule devices will typically involve features such as several vibrational

1The research presented in this chapter is a result of a close collaboration in particular with M.
Semmelhack.
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modes, anharmonic vibrational potentials, and direct vibrational relaxation (e.g. due to
radiation or interaction with the substrate), which are not fully captured by the Anderson-
Holstein model. We therefore discuss how various such extensions of this model, which may
be important for an accurate description of experimental systems, modify our analytical
findings. Specifically, we include anharmonic vibrations within a Morse-potential model
which allows us to discuss current-induced dissociation of the molecule. In this context, we
show that the current-induced dissociation rate is governed by an interplay of the above-
mentioned divergence of the width of the phonon distribution and a slowing down of the
diffusion in phonon space as λ decreases.

The outline of the chapter is as follows: In Sec. 6.2 we discuss the nonequilibrium
effects of weak electron-phonon coupling within the Anderson-Holstein model. This model
was specified in Chapter 1, and the resulting properties of the phonon distribution for
weak electron-phonon coupling are derived in Section 6.2. Nonequilibrium properties of
real molecules are discussed in Sec. 6.3 by going beyond the Anderson-Holstein model. In
particular, we address the effects of vibrational relaxation and the presence of several phonon
modes as well as the situation of anharmonic potentials. Our conclusions are summarized
in Sec. 6.4.

6.2 Weak electron-phonon coupling within the Anderson-Holstein model

Our starting point for the analysis of the weak electron-phonon coupling regime is the
Anderson-Holstein Hamiltonian introduced in Chapter 1. We focus on the regime of strong
Coulomb blockade, appropriate when voltage and temperature are small compared to the
charging energy U . For simplicity, we assume a symmetric device with ΓL = ΓR and
identical voltage drops of V/2 across each junction.2

6.2.1 Phonon distributions for weak electron-phonon coupling

For λ≪ 1, the FC matrix elements [Eq. (2.3)] have the asymptotic behavior

|Mq1q2 |2 ≃ Q!

q!

λ2∆q

(∆q!)2
, (6.1)

valid for qλ2, ∆qλ2 ≪ 1, where Q = max{q1, q2}, q = min{q1, q2}, and ∆q = Q − q.
Therefore, the FC matrix elements and the transition rates Wn,n±1

qq′ decay rapidly with
increasing ∆q. Consequently, the vibrational state of the molecule is predominantly changed
by processes for which q → q′ = q ± 1, and ∆q = 1. Neglecting all other processes, the
rate equations describe a random walk in the space of phonon states q with q-dependent
nearest-neighbor hopping rates. In this approximation, the random walker would eventually
escape to infinity, as the rates for q ⇋ q + 1 are equal and grow with q. This implies that
there is no steady-state phonon distribution Pq =

∑

n P
n
q within this random-walk model.

To derive the actual steady-state phonon distribution, it is therefore imperative to go
beyond the random-walk model by including higher-order processes with ∆q > 1. These

2We emphasize that our assumption of a symmetric device is not crucial for our essential results. Specif-
ically, the scaling behavior, Eq. (6.3), is not sensitive to asymmetries of the molecule-lead coupling.
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Figure 6.1: Illustration of the two process types determining the phonon dynamics: Phonon diffusion
and phonon drift. The drift term originates from the fact that bias voltage limits the maximum
phonon increase to ⌊eV/2~ω0⌋. Larger changes of the phonon occupation are only possible for
de-excitation processes.

may favor vibrational de-excitation processes since the applied voltage sets an upper limit
to the increase (but not to the decrease!) in the vibrational excitation q by a tunneling
event. For example, for εd = 0 the full voltage drop eV/2 per sequential-tunneling event
can be converted into vibrational energy. Thus, ∆qa = ⌊eV/2~ω0⌋ + 1 is the leading-order
asymmetric process for which only de-excitation processes are permitted. This situation is
illustrated in Fig. 6.1.

We can now derive the scaling of the steady-state phonon distribution Pq with electron-
phonon coupling λ by balancing the diffusion process due to tunneling events with ∆q = 1
[with diffusion constant ∼ qλ2, see Eq. (6.1)] and the leading asymmetric drift process [with
rate (qλ2)∆qa , see Eq. (6.1)]. This leads to the balance equation

qλ2Pq
′′ ∼ (qλ2)∆qaPq

′, (6.2)

which implies a scaling law for the width q0 of Pq, namely

q0 ∼ λ−α, α = 2(∆qa − 1)/∆qa. (6.3)

This power-law scaling is nicely confirmed by numerical results for Pq as shown in Fig. 6.2(a).
Remarkably, for kBT ≪ ~ω0 the discrete dependence of the leading asymmetric process on
bias and gate voltage implies finite regions in the (V, εd)-plane characterized by certain
non-integer exponents α. The resulting “phase diagram” is shown in Figs. 6.2(b),(c) where
the wedge-shaped regions A, B, and C correspond to α = 1, 4/3, and 3/2, respectively.3

For the diamond-shaped regions along the line εd = 0, marked in Fig. 6.2(b) by hatch-
ing, we can go beyond the derivation of this scaling behavior and obtain analytical results
for the entire phonon distribution Pq by a mapping to a Fokker-Planck equation. The
derivation exploits the crucial observation that for U → ∞ and kBT ≪ ~ω0, the transition
rates Wn→n′

q→q′ = sn→n′
wq→q′ factorize into a spin factor sn→n′

= (1 + δn′,1)δ|n−n′|,1 and a
phonon factor

wq→q′ = τ−1
0

∣

∣Mqq′
∣

∣

2
[θ(q + ∆qa − 1 − q′) + θ(q − q′ − ∆qa)], (6.4)

3Additional smaller steps in Fig. 6.2(c) can be traced back to changes in the nature of the asymmetry
within one scaling phase.
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Figure 6.2: (a) Scaling behavior of the phonon distribution width as a function of electron-phonon
coupling for representative values of (eV/~ω0, εd/~ω0) equal to a: (3, 0); b: (5, 1); c: (5, 0); d : (7, 1).
(b) Scaling domains as a function of bias and gate voltage. (c) Width of the phonon distribution
as a function of bias and gate voltage at λ = 0.15 and kBT = 0.005~ω0. The scaling of the width
differs for the plateaus according to A: q0 ∼ λ−1, B: q0 ∼ λ−4/3, and C: q0 ∼ λ−3/2.
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where τ−1
0 = Γa/~ = 2πρ |ta|2 /~. In the stationary case, this implies the factorization

Pn
q = PnPq, which allows us to derive the purely phononic rate equation

0 = dPq/dt =
∑

q′

[Pq′wq′→q − Pqwq→q′ ], (6.5)

Since the phonon distribution becomes wide, we can take q to be continuous, expand Pq′

around q′ = q up to second order, and keep only the leading-order contributions to diffusion
and drift. In this way we obtain the Fokker-Planck equation

0 =
∂P

∂t
=

1

2

∂2

∂q2
[D(q)P (q)] − ∂

∂q
[A(q)P (q)] , (6.6)

with diffusion coefficient D(q) = 2qλ2/τ0, drift coefficient A(q) = [λ2 − c(qλ2)∆qa ]/τ0,
and c = 2∆qa(∆qa!)

−2. Remarkably, the stationary Fokker-Planck equation (6.6) can be
solved analytically for any ∆qa by the scaling ansatz Pq = aλαf(λαq) with a normalization
constant a. The universal function f is uniquely determined by Eq. (6.6) together with the
boundary conditions f(0) = 1, f ′(0) = 0, and we find

f(x) = exp
[

−x∆qa/b
]

(6.7)

with b = 1
2(∆qa!)

2. Note that in particular, this analytical result confirms the power-
law scaling (6.3) of the width of the phonon distribution. The power-law scaling (6.3)
together with the analytical phonon distributions (6.7) constitute the central results of this
chapter. The phonon distributions are nicely confirmed by numerical solutions of the full
rate equations as shown in Fig. 6.3.4

In fully developed nonequilibrium, the width of the phonon distribution diverges with
decreasing electron-phonon coupling λ, and the resulting phonon distributions are non-
analytic in λ. An important theoretical implication of this result is that in fully developed
nonequilibrium, perturbation theory in the electron-phonon coupling parameter λ is inad-
equate. Indeed, we find below that the radius of convergence of such an expansion in λ
would involve the direct vibrational relaxation rate.

6.3 Implications for real molecules

Transport through real molecules will typically involve physics that goes beyond the Anderson-
Holstein model. In particular, we will discuss

(i) direct vibrational relaxation,

(ii) the presence of more than one vibrational mode, and

(iii) anharmonic vibrational potentials.

We show that while the exact scaling results for phonon distributions are specific to the
Anderson-Holstein model, nonequilibrium effects at weak electron-phonon coupling persist
and can be understood within the phonon diffusion model as long as the vibrational relax-
ation rate remains small compared to I/e.

4The small deviations observed in the inset of Fig. 6.3(b) reflect that the effective perturbation parameter
q0λ

2 ∼ λ2/(∆qa) grows with ∆qa even at fixed λ.
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Figure 6.3: Phonon distributions Pq at bias voltages (a) eV = 3~ω0 and (b) eV = 5~ω0, plotted
for several coupling strengths λ at εd = 0, kBT = 0.05~ω0. The insets show that these distributions
(approximately) collapse to universal curves given by the red curves, which are the solutions of the
the Fokker-Planck equation (6.6) specific to each voltage range n~ω0 < eV/2 < (n+ 1)~ω0.
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6.3.1 Direct vibrational relaxation

Direct phonon relaxation can be included within the relaxation-time approximation by
adding − 1

τ [Pn
q − P eq

q
∑

q′ P
n
q′ ] to the right-hand side of the rate equations, see Eq. (2.9).

Here, P eq
q denotes the equilibrium phonon distribution, which can be approximated by

P eq
q = δq,0 for kBT ≪ ~ω0.

To understand the effect of direct vibrational relaxation on the phonon distribution
Pq, it is important to note that the diffusion and drift processes in phonon space slow
down as the electron-phonon coupling λ decreases. As λ decreases, we therefore expect
that there exists a crossover coupling λ0: For λ ≫ λ0, the vibrational diffusion is limited
by the drift in phonon space induced by the asymmetry between vibrational excitation and
de-excitation, as discussed above. By contrast, for λ≪ λ0 the dominant limiting process is
direct vibrational relaxation, leading to a decrease of the width of the phonon distribution.
This expectation is confirmed by numerical results as seen in Fig. 6.4(a) which shows the
width of the phonon distribution as a function of λ for various relaxation rates. Fig. 6.4(b)
shows the dependence of λ0 on relaxation time τ for ∆qa = 1. Note that λ0 grows only
very slowly with increasing relaxation. While the λ0 vs. τ dependence is close to a power
law with an exponent 1/4 - 1/3, no simple scaling can be expected. The reason is that
the scaling suggested by the rate equations amended by the relaxation term is incompatible
with the scaling implied by the boundary condition λ2(α+1)f ′(0) = −τ0/τSa at q = 0, where
S = 1 + P 0.

6.3.2 Additional vibrational modes

Typical molecules have many vibrational modes of different vibrational frequencies. We
expect that the scenario discussed in this chapter is most relevant to molecules whose lowest
frequency mode happens to be weakly coupled. As this mode becomes highly excited, it
would start to mix with other (higher-frequency) modes. In the simplest approximation,
we can account for such mode mixing as a channel of direct vibrational relaxation so that
the discussion of the previous subsection applies. Indeed, due to this mixing, vibrational
energy can be distributed among different modes, which will generally tend to decrease
phonon occupation numbers, similar to the vibrational relaxation discussed above. Under
these conditions, such a weakly coupled vibrational mode may provide an efficient pathway
to “pump” higher-frequency vibrations.

6.3.3 Morse potential and dissociation

So far, our considerations were based on the harmonic approximation for the phonon po-
tential. We argue however that wide phonon distributions are not an artefact of this ap-
proximation, but also appear for more realistic, anharmonic potentials. As an example, we
investigate the effect of weak electron-phonon coupling for the Morse potential

V (x) = D
[

e−2βm(x−x0) − 2e−βm(x−x0)
]

, (6.8)

where D > 0 denotes the dissociation energy, βm the inverse potential range, and x0 the
potential minimum position. The relevant basics of the Morse potential are reviewed in
Appendix J.
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Figure 6.4: (a) Width of the phonon distribution as a function of electron-phonon coupling strength
for several vibrational relaxation times τ and eV = 3~ω0, kBT = 0.05~ω0, εd = 0. For λ > 0.25 all
curves show the approximate q0 ∼ λ−1 scaling. Below a relaxation-rate dependent crossover-point
λ0 the WHM is strongly suppressed due to direct relaxation. (b) Crossover-point λ0 vs. relaxation
time τ .
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Figure 6.5: Mean dissociation rate as a function of electron-phonon coupling strength at kBT =
0.005~ω0 for several bias voltages as obtained by Monte Carlo simulation with a Morse potential
containing 10 bound states.

The Morse potential [109] accurately describes the vibrations of diatomic molecules
and allows us to study current-induced molecular dissociation [113]. This phenomenon has
been explored experimentally in STM experiments with molecules on metal surfaces, and
sufficiently high currents have been reported to lead to fast dissociation of the absorbed
molecules [114]. While this scenario with strong coupling between the molecule and the
metal surface is distinct from the regime addressed in this chapter, we remark that, in
principle, the deposition of molecules on passivated surfaces [21] can be exploited to study
the weak-coupling regime as well.

In analogy to the harmonic oscillator model, we assume that the potential energy curves
for the neutral and singly-charged molecule have the same shape (i.e. D and βm are fixed),
but are shifted with respect to each other by ∆x =

√
2λℓosc. Building on e.g. Ref. [115],

we derive Franck-Condon matrix elements for the Morse potential between bound states as
well as between bound and continuum states. Details of this calculation are contained in
Appendix B.

Specifically, we study the current-induced dissociation rate of the molecule as function
of electron-phonon coupling and bias voltage by Monte-Carlo simulation. Assuming low
temperatures, and switching on the voltage at time t = 0, the molecule starts in the phonon
ground state and then evolves in time due to the tunneling dynamics. Given that transitions
from the continuum back to bound states are negligible, we obtain an average dissociation
rate Γdiss by recording the times tdiss,i required for reaching the continuum and averaging
over samples. (We note that calculations of mean first-passage times for the highest-lying
bound level give compatible dissociation times.) Typical results for dissociation rates for



Chapter 6: Nonequilibrium effects for weak electron-phonon coupling 75

weak electron-phonon couplings (without relaxation) are depicted in Fig. 6.5.
The maximum in the dissociation rate Γdiss vs. λ can be understood as a direct conse-

quence of a competition between the broadening of the phonon distribution and the slowing
down of diffusion in phonon space. As λ decreases from values of the order of unity, Γdiss

first increases. This reflects the concurrent increase in the width of the phonon distribution.
Beyond the maximum, Γdiss decreases due to the slowing down of diffusion in phonon space.
Finally, the dissociation rate increases with voltage because of the increased width of the
phonon distribution (see Fig. 6.2) and the possibility of multiple-phonon excitations within
one tunneling event.

6.4 Conclusions

We have studied the current-induced vibrational nonequilibrium in single-molecule devices
and found that remarkably, the width of the nonequilibrium phonon distribution increases
with decreasing electron-phonon coupling. We have identified regions in the bias voltage-
gate voltage plane in which the width of the phonon distribution exhibits power-law di-
vergences with decreasing λ, with voltage-dependent noninteger exponents. In some rep-
resentative cases, we are able to derive analytical phonon distributions by a mapping to a
Fokker-Planck equation. These striking effects of current-induced nonequilibrium are found
to have important implications in more realistic models which include direct vibrational
relaxation and anharmonic potential surfaces. A very important conclusion from our work
is that approaches which are perturbative in the electron-phonon coupling λ have to be as-
sessed with extreme care in fully-developed nonequilibrium. Finally, we remark that recent
experiments [44] show that the vibrational relaxation time can be as large as 10ns, in which
case current-induced vibrational nonequilibrium becomes important for currents as small
as 10pA.


