
Chapter 5

Effects of charge-dependent vibrational

frequencies and anharmonicities

5.1 Introduction

As indicated in Chapters 3 and 4, the signatures of electron-phonon coupling differ depend-
ing on the transport regime. Vibrational steps appear in IV s in the sequential-tunneling
regime [45, 58, 60], and in the conductance dI/dV in the inelastic-cotunneling regime [59].
The visibility of these steps generally depends on the step heights and spacings, as well
as their broadening. Three main mechanisms for broadening of vibrational steps in IV
and conductance of single-molecule devices have been identified: Broadening induced by (i)
temperature, (ii) vibrational dissipation [60], and (iii) molecule-lead tunneling [61]. In this
chapter, we discuss an additional broadening mechanism which arises when going beyond
the one-mode harmonic approximation of previous models.

Essentially, all studies to date, see e.g. Refs. [45, 58–61], are based on two simplify-
ing approximations. First, they restrict the description of the molecular vibrations to the
harmonic approximation, and second, they assume the vibrational frequencies to be iden-
tical for the different molecular charge states relevant for the transport. In devices with
symmetric voltage splitting, the combination of these two approximations leads to strictly
equidistant steps in IV for specific gate voltages.

Here, we take a step towards a more realistic modeling of the vibrations by investigating
both (1) the case of vibrational frequencies depending on the molecular charge state, and
(2) the case of anharmonic oscillations within a Morse-potential model. Using a rate-
equations approach valid for the regime of weak molecule-lead coupling, we calculate IV s
and conductances, and show that strictly equidistant vibrational steps are indeed an artefact
of the simplifications in previous models. Remarkably, we find that the strength of direct
vibrational relaxation can significantly alter the current-voltage characteristics. For strong
relaxation, the extended models mainly lead to shifts of the step positions. By contrast,
for weak vibrational relaxation they effectively result in a bias-dependent broadening of
vibrational steps due to the steps splitting into a multitude of closely spaced substeps.
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60 Chapter 5: Effects of charge-dependent vibrational frequencies and anharmonicities

5.2 Extended Model

Our starting point is a generalization of the Anderson-Holstein model for a molecule coupled
to metallic leads [41, 45, 58], cmp. Eqs. (1.1)–(1.3). As discussed in Chapter 1, transport is
assumed to be dominated by one spin-degenerate electronic level with energy εd (measured
with respect to the zero-bias Fermi energies of the leads), tunable by a gate electrode. We
retain the exact form of the lead and tunneling Hamiltonians Hleads and HT presented in
Eqs. (1.2) and (1.3), but generalize the molecular contribution. Its general expression can
be cast in the form

Hmol =εdnd +
U

2
nd(nd − 1) +

P 2

2µ
+ Vnd

(X). (5.1)

Here, the kinetic and potential energy terms refer to the nuclear motion. For definiteness,
we consider a model with one dominant mode of vibrations. Then, X, P , and µ denote
the corresponding normal coordinate, momentum, and reduced mass, respectively. For the
singly and doubly charged molecular ions, the potential energy curves generally deviate from
their neutral counterpart. In the spirit of the Born-Oppenheimer approximation, we take
this into account by writing the potential energy in the form Vnd

(X) =
∑

n vn(X) |n 〉 〈n |,
using projectors onto the electronic ground states with fixed molecular charge n = 0, 1, 2.
For simplicity, we again assume symmetric voltage splitting throughout this chapter, and
focus on the case of strong Coulomb blockade (U → ∞).

In the absence of tunneling, the molecular states can be written as |n, q 〉 with n de-
noting the charge state of the molecule and q the number of excited phonons. The rates
Wnn′

qq′ =
∑

a=L,RW
nn′

qq′; a for transitions |n, q 〉 → |n′, q′ 〉 via junction a are calculated by
Fermi’s golden rule. Recent papers investigating the influence of molecular vibrations on
current and noise have focused on the model vn(X) = 1

2µω
2
0(X +

√
2nλℓosc)

2, i.e. vibra-
tions are taken into account within the harmonic approximation and their frequencies are
assumed to be independent of the molecular charge state [45, 58–61]. The position of the
potential minimum explicitly depends on the charge state, and its shift, measured in units
of the oscillator length ℓosc = (~/µω0)

1/2, is characterized by the electron-phonon coupling
strength λ.

We extend this model as follows. In the first case, model (M1), we include frequency
variations for the different charge states by using

vn(X) =
1

2
µω2

n(X +
√

2nλℓosc)
2. (M1)

In the second case, model (M2), we investigate the effects of anharmonicities within a model
based on the Morse potential [109]

vn(X) = D
[

(1 − e−βm(X−
√

2nλℓosc))2 − 1
]

, (M2)

where D denotes the dissociation energy, βm determines the inverse range of the potential,
and ℓosc = (~/µωe)

1/2 characterizes the range of the ground-state wave function with ωe =
βm(2D/µ)1/2. The number of bound states is given by ⌊j⌋+1 where j =

√
2µD/βm~−1/2.

The Morse potential encompasses both bound and continuum states and is therefore also
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suitable to describe dissociation processes, see Chapter 6 and Appendix J. In this chapter
however, we restrict the discussion to situations in which transitions into continuum states
can be neglected.

An important qualitative difference compared to the harmonic approximation arises
from the asymmetry of the Morse potential under parity transformations X → −X, which
causes the overlap of vibrational wavefunctions (and hence the transition rates) to depend
on the direction of the shift of the potential minima. In contrast to the case of symmetric
potentials, the FC matrix elements now behave differently depending on the sign of the
electron-phonon coupling λ [110]. (For symmetric potentials the sign is irrelevant and λ
can be chosen to be a positive number.) In the general case, this leads to a dependence of
the stationary current on the sign of λ.

5.3 Calculations

The calculation of the transition rates Wnn′

qq′ essentially reduces to the evaluation of Franck-
Condon (FC) matrix elements, given by the overlap of the oscillator wave functions φn,q of
the initial and final states |n, q 〉 and |n′, q′ 〉,

Mnn′

qq′ =

∫ ∞

−∞
dxφ∗n,q(x)φn′,q′(x). (5.2)

In harmonic models with ω0 = ω1 = ω2 the FC matrix elements are independent of n, n′.1

By contrast, for charge-dependent oscillator frequencies and for anharmonic potentials we
must take into account the charge states of the molecule. Hence, the FC matrix elements
exhibit an explicit dependence on n and n′ throughout this chapter. Moreover, for the basic
Anderson-Holstein model, the FC matrix elements can be compactly written in terms of
Laguerre polynomials. For the harmonic model (M1) with different vibrational frequencies
ωn, and the Morse potential model (M2), no such simple expression is available2 and instead
we evaluate the integrals

Mnn′

qq′ =
(αnαn′)1/4

(2q+q′q!q′!π)1/2

∫ ∞

−∞
dξ Hq(αnξ + αnn

√
2λ)Hq′(αn′ξ + αn′n′

√
2λ) (5.3)

× e−
1
2
(αnξ+αnn

√
2λ)2− 1

2
(αn′ξ+αn′n′

√
2λ)2 ,

Mnn′

qq′ =2

[

q!q′!(j − q)(j − q′)
Γ(2j − q + 1)Γ(2j − q′ + 1)

]1/2

aq′−q (5.4)

×
∫ ∞

0
dξ ξ2j−q−q′−1L2(j−q)

q (aξ)L
2(j−q′)
q′ (a−1ξ)e−

a+a−1

2
ξ

numerically, where Eqs. (5.3) and (5.4) correspond to (M1) and (M2), respectively. Here,
Hq(x) denotes the Hermite polynomial of order q, Lα

n(x) the generalized Laguerre polyno-

mial, αn =
√

ωn/ω0 and a = e−
1
2
βm(n′−n)

√
2λℓosc .

1This statement is valid up to an overall sign, see the discussion in Appendix B.1.
2We point out that an analytical solution of the integral in Eq. (5.4) in terms of an alternating sum is

possible [110]. However, for potentials with a large number of bound states the sum is intractable, and direct
numerical quadrature is preferable.
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Figure 5.1: IV and conductance for a symmetric device (ΓL = ΓR, symmetric voltage splitting)
with slightly different vibrational frequencies for the neutral and charged molecule (ω1 = 1.1ω0),
and λ = 1.2, U → ∞. (a) IV at εd = 0 and kBT ≪ ~ω0 for strong and weak vibrational relaxation.
While for equilibrated phonons, step locations are specified by Eq. (5.5), for unequilibrated phonons
a multitude of steps is generated, leading to an effective step-broadening even at low temperatures.
For comparison, the inset shows results with identical frequencies ω0 = ω1. (b),(c) Conductance plots
at kBT = 0.02~ω0 showing the subsplitting and washing out of phonon features for unequilibrated
phonons.

Since the transition rates Wnn′

qq′ are bounded from above, and the stationary occupation
probabilities obey Pn

q → 0 for q → ∞, the Eqs. (2.9) and (2.16) can be effectively solved
for a finite number of relevant phonon excitations. For the Morse potential, this treatment
requires the restriction to a sufficiently high number of bound states and sufficiently low
voltages so that all relevant excitations remain far below the dissociation threshold, q ≪ ⌊j⌋.

5.4 Results and interpretation

5.4.1 Charge-dependent frequencies

We first discuss results for model (M1) with harmonic vibrations and charge-dependent
frequencies. Representative results are depicted in Fig. 5.1. For equilibrated phonons
(τ → 0) and frequencies ω0 6= ω1, steps appear at different positions than in the identical-
frequencies case, see Fig. 5.1(a). In principle, steps remain well-defined as shown in the
corresponding conductance plot, see Fig. 5.1(b), where only small shifts of the series of
vibrational sidebands are caused by the entering of two different energy scales ω0 and ω1.
In contrast, for unequilibrated phonons (τ → ∞) a splitting of vibrational steps into a



Chapter 5: Effects of charge-dependent vibrational frequencies and anharmonicities 63

multitude of substeps is observed to cause an effective broadening, which increases with
bias voltage, see Fig. 5.1(a),(c). We now give a more quantitative explanation for this
behavior.

For equilibrated phonons and temperatures γ ≪ kBT ≪ ~ω0,1, the phonon distribution
Pq =

∑

n P
n
q is strongly peaked for the phonon ground state q = 0. Consequently, phonon

transitions predominantly occur in the channel 0 → q. Energy conservation limits the pos-
sible excitation processes, and in the (eV, εd)-plane the boundaries at which the transitions
| 0, 0 〉 → | 1, q 〉 and | 1, 0 〉 → | 0, q 〉 become possible are given by

εd = ∓eV/2 + E
(0)
0 − E(1)

q , and εd = ∓eV/2 + E(0)
q − E

(1)
0 , (5.5)

where E
(n)
q = ~ωn(q + 1/2) denotes the phonon energy of the state |n, q 〉, and the lower

(upper) sign refers to the left (right) lead. In addition, current only flows if electrons can
traverse the molecule, leading to the condition

|eV/2| ≥
∣

∣

∣εd − E
(0)
0 + E

(1)
0

∣

∣

∣ , (5.6)

which together with Eq. (5.5) completely specifies the positions of all vibrational sidebands
for equilibrated phonons. In particular, even small frequency differences result in IV s with
non-equidistant phonon step spacings,3 and the central crossing point is now located at
(eV, εd) = (0, ~[ω0 −ω1]/2) due to the deviation of the zero-point energies of the oscillators.

In contrast, for unequilibrated phonons a multitude of excitation and de-excitation
processes | 0, q 〉 → | 1, q′ 〉 and | 1, q 〉 → | 0, q′ 〉 are permitted, and Eq. (5.5) must be replaced
by

εd = ∓eV/2 + E(0)
q − E

(1)
q′ , and εd = ∓eV/2 + E

(0)
q′ − E(1)

q . (5.7)

The range of the contributing q, q′ in Eq. (5.7) now inherently depends on the nonequilibrium
distribution Pn

q , which makes concise statements about the occurrence of certain steps more
difficult. Generally, larger bias voltages |eV | cause the nonequilibrium distribution to widen,
and thus increase the range of relevant q, q′ in Eq. (5.7). This corresponds to a splitting
of a vibrational step into an increasing number of closely spaced substeps as observed in
Fig. 5.1(a),(c), resulting in an effective broadening of steps.

Interestingly, for asymmetric devices (ΓL 6= ΓR) we find that frequency differences
between molecular charge states can induce negative differential conductance (NDC). A
representative example for this behavior is shown in Fig. 5.2. The splitting of phonon steps
causes peaklike structures at the onset of phonon steps. For certain parameters, such NDC
features have been predicted for asymmetric coupling and harmonic vibrations with ω0 = ω1

by Boese and Schoeller [58]. Here, we report that qualitatively similar NDC behavior can
arise from differing vibrational frequencies, for parameters where our numerical results do
not exhibit NDC for ω0 = ω1. It is interesting to note that NDC at onsets of phonon steps
is also observed in the experiment by Park et al. [26, 111].

3We remark that model (M1) can still yield IV s with equidistant phonon steps for equilibrated phonons,
if asymmetric voltage splitting (not considered here) is introduced.
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Figure 5.2: Current-voltage characteristics for an asymmetric device (ΓR = 0.3ΓL, symmetric volt-
age splitting) in the unequilibrated regime with λ = 1.1, kBT ≪ ~ω, U → ∞. The combination
of asymmetric coupling and differing vibrational frequencies is observed to lead to weak peaklike
structures at the onsets of phonon steps with negative differential conductance regions (marked by
arrows).
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Figure 5.3: IV and conductance plots for a symmetric device (ΓL = ΓR, symmetric voltage splitting)
with a Morse potential (j = 30), for λ = 1.5, U → ∞. (a) IV at εd = 0 and kBT ≪ ~ωe for
strong and weak vibrational relaxation. For equilibrated phonons steps along εd = 0 are located
at voltages specified by Eq. (5.5), for unequilibrated phonons the step-splitting leads to an effective
step-broadening even at low temperatures. (b),(c) Conductance plots at kBT = 0.02~ωe showing
the subsplitting and broadening of phonon features for unequilibrated phonons.
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5.4.2 Anharmonicities

Results for the model (M2) with anharmonic vibrations are depicted in Fig. 5.3. While
the main effects are similar to those of model (M1) – steps in IV being non-equidistant,
weak vibrational relaxation leading to the splitting of steps into substeps – the underlying
mechanism is different. In the Morse model (M2), the potential curves are shifted depending
on the molecular charge state, but are identical otherwise. Here, the appearance of different
step spacings and splitting of steps is purely due to the fact that the energy spectrum of an
anharmonic oscillator is not equidistant.

In analogy to model (M1), for equilibrated phonons the positions of vibrational side-

bands are fixed by substituting the eigenenergies of the Morse potential E
(n)
q = −D +

~ωe(q+1/2)−~ωeχ(q+1/2)2 into Eqs. (5.5) and (5.6). Here, we have used χ = (2j+1)−1.
This leads to a conductance plot consisting of two sets of parallel lines with decreasing line
distances, reflecting the decreasing spacing of eigenenergies of the Morse potential as the
quantum number q increases, see Fig. 5.3(a),(b). Since the phonon ground state energies

are identical, E
(0)
0 = E

(1)
0 , the central crossing point is located at (eV, εd) = (0, 0).

In the unequilibrated case, the anharmonicity of the potential and the occurrence of
various phonon excitation and de-excitation processes give rise to a splitting of steps. As
before, the range of relevant q, q′ in Eq. (5.7) depends on bias and gate voltage, leading to
a growing number of substeps with increasing voltage, and hence an effective washing out
of phonon steps, see Fig. 5.3(a),(c).

5.5 Conclusions

As a step towards a more realistic modeling of molecular vibrations and their consequences
for electronic transport in single-molecule devices, we have investigated the effects of charge
dependences of vibrational frequencies and anharmonicities in the sequential-tunneling
regime. Even for small frequency differences and anharmonicities, we find that vibrational
step spacings cease to be equidistant. In combination with weak vibrational relaxation, both
frequency differences and anharmonicities are shown to lead to a bias-dependent splitting of
levels, effectively resulting in a broadening of phonon steps. For asymmetric molecule-lead
coupling, we find that this mechanism can also lead to negative differential conductance
behavior. We conclude that spacings of vibrational features in dI/dV provide information
about charge dependence of vibrational frequencies and anharmonicity of the potential.
Whenever other broadening mechanisms play a secondary role, the bias-dependent sub-
splitting or broadening may act as a fingerprint of nonequilibrium vibrations.

It is interesting to note that the appearance of clusters of vibrational substeps due to
the emergence of differing energy scales of phonon excitations resembles the splitting of
tunneling peaks observed in transport through ultrasmall metallic grains. In that context,
Agam et al. [112] argued that the Coulomb interaction effectively results in a bias-dependent
splitting of resonance peaks in the nonequilibrium case, i.e. for sufficiently slow electronic
relaxation. Finally, we remark that similar arguments also suggest a splitting of the con-
ductance fine structure for magnetic single-molecule devices [79], whenever the exchange
coupling varies with the molecular charge state.


