
Chapter 3

Franck-Condon blockade and giant Fano

factors – Electronic avalanches

3.1 Introduction

The Fano factor F , defined as the ratio S(ω = 0)/2e |I| of the zero-frequency current
noise and the classical Schottky result for Poissonian shot noise [95], contains information
about the charge of the current-carrying particles, and about quantum correlations between
them. Typically, the Pauli principle leads to suppressed Fano factors (F < 1) for fermionic
carriers [96]. However, super-Poissonian noise has been discovered in systems with insta-
bilities [96–98], and, very recently, with dynamical spin blockade [99]. In this chapter, we
report surprisingly large Fano factors in transport through single molecules, which origi-
nate from the coupling of electronic and vibrational degrees of freedom, but are unrelated
to instabilities.

We investigate the regime of strong electron-phonon coupling by current-voltage (IV )
and noise calculations. It is found that strong electron-phonon coupling leads to a significant
current suppression at low bias voltages, which we term Franck-Condon blockade. The
striking transport properties of this regime are further elucidated by computing the current
fluctuations. We find that systems with weak vibrational relaxation can exhibit giant Fano
factors of the order of 102–103. This occurrence of giant Fano factors is due to avalanche-like
transport of electrons interrupted by long times without charge transfer. These avalanches
occur in a self-similar manner over a wide range of time scales, which is reflected in power-law
behavior of the noise amplitude over many orders of magnitude in frequency and relaxation
rate. The foundations of the FC blockade regimes and numerical results based on the
rate-equations formalism are presented in Section 3.2.

In the subsequent Section 3.3 we establish an analytical description of self-similar
avalanche transport. This allows us to study analytically the full counting statistics and
noise spectrum of charge transport in this regime. The specifics of transport in the FC-
blockade regime make the counting statistics strongly non-Gaussian. We support our find-
ings for the counting statistics as well as for the frequency-dependent noise power by nu-
merical simulations, finding excellent agreement.
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3.2 Foundation of the Franck-Condon blockade and numerical results

3.2.1 Franck-Condon blockade

The strong dependence of the IV s on the electron-phonon coupling strength λ is shown
in Fig. 3.1(a) for λ = 1 (intermediate coupling) and λ = 4 (strong coupling), as obtained
from the rate-equation approach. We first consider the case of εd = 0, i.e. the molecular
single-particle level and the lead Fermi energies are aligned at zero bias. Then, for λ = 1,
the current increases sharply due to resonant tunneling when switching on a small bias
voltage, and it exhibits the characteristic FC steps. In contrast, for λ = 4 the current is
significantly suppressed at low bias voltages.

The current suppression originates from the behavior of the FC matrix elements deter-
mining the rates of phononic transitions q1 → q2. Their dependence on the electron-phonon
coupling strength can be understood in terms of the overlap of two displaced harmonic
oscillator wave functions. The parameter λ determines the magnitude of this displacement
in units of the oscillator length. For weak coupling, λ ≪ 1, transitions mainly occur along
the diagonal q1 → q1. For intermediate coupling, λ ≈ 1, the distribution of transition
rates becomes wider, and transitions slightly off-diagonal are favored. For strong electron-
phonon coupling, λ ≫ 1, the distribution widens considerably and a gap of exponentially
suppressed transitions between low-lying phonon states opens, see Fig. 3.1(b). It is inter-
esting to note that these ingredients are also crucial in the context of phonon broadening
of resonant-tunneling line shapes [41].

For temperatures kBT ≪ ~ω0, a tunneling event can increase the number of excited
phonons by at most ∆q = ⌊|eV | /2~ω0⌋ due to energy conservation.1 Thus, for strong
electron-phonon coupling and at low bias voltages, the system is trapped in a region of
exponentially small transition rates. For equilibrated phonons (τ = 0) this suppression
dominates the IV until the bias voltage is high enough (eV ∼ λ2

~ω0) to escape from the
blockade regime by transitions from the vibrational ground state to highly excited phonon
states. For unequilibrated phonons (τ = ∞) the blockade is less rigorous, since a tunneling
event can leave the molecule in an excited phonon state and subsequent tunneling events
can increase this excitation even further.

There exist two experimental fingerprints of the FC blockade, which can be readily used
to distinguish it from other low-bias current suppressions, such as off-resonance tunneling
for εd 6= 0 and Coulomb blockade. In ungated devices, the succession of FC step heights
yields a fingerprint of the origin of the blockade regime. For symmetric devices with strong
phonon relaxation, the presence of FC blockade is reflected in increasing step heights when
leaving the voltage range of current suppression. For asymmetric devices or weak phonon
relaxation, this criterion does not hold for each single step but still gives a valid tendency for
the step-height succession. (We point out that systems with strong electron-phonon coupling
and weak relaxation can even exhibit NDR phenomena as indicated by negative values for
dI/dV in Fig. 3.1(c) in red color.) When working with gated devices, a clear distinction can
be achieved by measuring dI/dV as a function of both bias and gate voltage. Here, the FC
blockade can be identified by an extended blockaded region in the eV –εd plane, whereas an
εd 6= 0 suppression and Coulomb blockade can always be lifted by an appropriate adjustment

1Here, ⌊x⌋ denotes the largest integer less than or equal to x.
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Figure 3.1: (a) Current-voltage characteristics for intermediate (λ = 1) and strong (λ = 4) electron-
phonon coupling for kBT = 0.05~ω0 with (eq.) and without (un.) relaxation of phonons. We find
that strong electron-phonon coupling leads to a significant current suppression at low bias voltages.
This Franck-Condon blockade arises from the behavior of the Franck-Condon matrix elements for
phonon transitions q1 → q2. In (b), the square of the Franck-Condon matrix element is shown as a
function of initial and final phonon states for λ = 1 (left) and λ = 4 (right). For strong electron-
phonon coupling, transitions between low lying phonon states are exponentially suppressed. The
corresponding current suppression cannot be lifted by a gate voltage, which may serve as a fingerprint
of FC blockade. This is depicted in the plot of dI/dV in the V –Vg plane for unequilibrated phonons
with λ = 4 (c). The case of intermediate coupling with λ = 1 (d) is shown for comparison.
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Figure 3.2: Zero-frequency (excess) Fano factor as a function of bias voltage with λ = 4 for εd = 0
and kBT = 0.05~ω0. Results are shown for equilibrated phonons (τ = 0) and unequilibrated phonons
(τ = ∞). We find that the combined effect of strong electron-phonon coupling and weak phonon
relaxation leads to giant Fano factors in the Franck-Condon blockade regime.

of the gate voltage, see Figs. 3.1(c),(d).

3.2.2 Giant Fano factors

The remarkable transport properties of the FC blockade regime are elucidated by comput-
ing the current fluctuations. We use Monte Carlo (MC) methods to simulate the explicit
temporal dynamics of tunneling events, and rate equations combined with a Langevin ap-
proach [84] to calculate the current noise

S(ω) = 2

∫ ∞

−∞
dτ eiωτ

[

〈I(τ + t)I(t)〉t − 〈I(t)〉2t
]

, (3.1)

see Appendix D for further details. Here, we restrict our discussion to symmetric junctions
so that, according to the Ramo-Shockley theorem [96], the current is given by I(t) =
[IL(t) + IR(t)]/2. Typical results for strong and weak phonon relaxation are depicted in
Fig. 3.2, where the zero-frequency Fano factor Fex for the excess noise S −S|V =0 is plotted
as a function of bias voltage. For equilibrated phonons, Fex is suppressed below 1 and except
for weak step-like structures, it remains essentially constant in close vicinity of F = 5/9
expected for the phononless system with one spin-degenerate level and strong Coulomb
blockade [100].

In contrast, for unequilibrated phonons with λ = 4 the Fano factor reaches values
close to 200 as soon as the bias voltage is high enough for exciting the first phonon, and
subsequently decreases stepwise at bias voltages corresponding to the opening of further
phonon channels.2 For bias voltages sufficient to lift the FC blockade, the Fano factor

2We note that even larger Fano factors of the order of 103 for λ = 4 occur for nonzero single-particle
energy εd 6= 0. The origin of this off-resonance enhancement is explained in Section 3.3.5.
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Figure 3.3: Number of transmitted electrons N and number of excited phonons q as functions of
time, obtained by MC simulation for T = 0.05~ω0, eV = 3~ω0, εd = 0, τ = ∞, and λ = 4. The upper
plot shows a magnification of the marked region in the lower plot. The results show long periods of
time without current flow when the system assumes the phononic ground state, and avalanche-like
current flow accompanied by phonon excitations on much shorter time scales. Self-similarity of the
curves is found when magnifying the avalanche phases.

returns to values of the order of 1.

3.2.3 Self-similar electron avalanches

The physics of the giant Fano factor originates from the combined effects of FC blockade
and weak phonon relaxation, and can be understood by considering the time-dependent
dynamics of the system. Results from a MC simulation of the tunneling events for kBT ≪
~ω0 and strong electron-phonon coupling are shown in Fig. 3.3 (bottom), where the number
of transmitted electrons N within the time interval [0, t] and the number of excited phonons
q are plotted as functions of time t. [A sketch of the principles of MC simulations for
Markov processes is provided in Appendix F.] We find that for large periods of time
the system assumes the phononic ground state q = 0 and the current vanishes (i.e. N is
constant). These phases are interrupted by avalanche-like increases of N (accompanied by
phonon excitations) on much shorter time scales. When magnifying the avalanche phases,
we detect self-similarity of the curves N(t) and q(t), see Fig. 3.3 (top): Again, one observes
long times with constant N , now associated with the first excited vibrational state q = 1,
and short avalanche phases.

The extended phases without charge transfer are due to the suppressed transition rates
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Figure 3.4: Noise power in the Franck-Condon blockade regime as a function of (a) frequency, and
(b) phonon relaxation rate for εd = 0, λ = 4, and kBT = 0.05~ω0. In (a) the total current noise is
plotted for unequilibrated phonons. In (b) the zero-frequency noise is plotted for the bias voltage
eV = 3~ω0. We find (approximate) power-law behavior S(ω) ∼ ω−α and S(0) ∼ τ1/α with α ≈ 1/2,
arising from the self-similar avalanches over a wide range of time scales.

for low-lying phonon states in the FC blockade regime. Typically, the system spends a long
time in the phononic ground state before a transition takes place. Starting from q = 0 and
for voltages 2~ω0 < |eV | < 4~ω0, where the Fano factor is maximal, energy conservation
only allows the phonon transitions 0 → 0 and 0 → 1. Since the rates for phonon transitions
0 → q2 roughly grow exponentially with q2, it is favorable to increase the phonon number
whenever an electronic transition occurs. Thus, as soon as the system succeeds in leaving
the phononic ground state and if phonon relaxation is weak, subsequent transitions tend
to increase the phonon number even further, while the transition rates increase roughly
exponentially. Then, after having left the regime of suppressed transition rates, the system
can exhibit an avalanche of tunneling events, until an accidental transition to the phononic
ground state induces another long period without charge transfer, and the cycle repeats.
Effectively, this leads to electron bunching, and the Fano factor can be estimated by the
typical number of electrons transmitted during an avalanche, see Fig. 3.3.

The remarkable self-similarity of avalanche phases due to the exponential stretching of
transition rates is reflected in the relaxation-rate dependence of the Fano factor and the
noise power spectrum, depicted in Fig. 3.4. In both cases, we find approximate power-
law behavior, S ∼ ω−α and S ∼ τ1/α with α ≈ 1/2, over many orders of magnitude in
relaxation rate and frequency, respectively. (In some cases with λ = 4 and εd 6= 0, we
found this power-law behavior to extend over 6 orders of magnitude in ω and 1/τ .) The
boundaries of the power-law scaling in the frequency domain are connected to the maximum



32 Chapter 3: Franck-Condon blockade and giant Fano factors – Electronic avalanches

available transition rate, and to the “smallest” transition rate describing the escape from
the phononic ground state. The weak oscillatory deviations from a pure power law arise
from the discreteness of the variable q.

3.3 Analytical theory of avalanche transport

We now turn to the development of an analytical theory of the regime of avalanche transport.
Our starting point is the time dependence of the current in the strong-coupling regime, which
can be presented as

I(t) = f
(0)
1 (t− t1) + f

(0)
2 (t− t1 − t2) + . . . , (3.2)

where ti are the time intervals between avalanches (quiet periods). These intervals are
much longer than the typical duration τ (0) of an avalanche, which occurs during the sparse

periods when the vibrations are excited. The random function f
(0)
i (t) (which is nonzero

only for times |t| . τ (0)) describes the passage of a large number
∫

dt f
(0)
i (t) = Ni ≫ 1 of

electrons through the molecule during the ith avalanche. Moreover, the numerical study
of the avalanches (Section 3.2) revealed their self-similar hierarchical structure, see Fig.
3.5. Quantitatively, this structure manifests itself in the fact that, during the time of an

avalanche ∼ τ (0), each function f
(0)
i itself takes the form of Eq. (3.2), with f

(0)
i replaced

by random functions f
(1)
i , which describe generation–1 avalanches interrupted by quiet

periods.3 Again, these quiet periods are much longer than the characteristic time scale τ (1)

of the functions f
(1)
i . For times shorter than τ (1), the functions f

(1)
i have the form of Eq.

(3.2) with corresponding generation–2 avalanches, f
(2)
i , having even shorter time-scale, τ (2),

and so on.4 Numerical results supporting this scenario are shown in Fig. 3.5.

The above discussion implies that the statistical properties of charge transport through
a molecule in the regime of strong electron-phonon coupling and through a conventional

nanostructure are drastically different. For a nanostructure, all f
(0)
i are δ functions, so

that Ni = 1. Hence, the distribution function Pt(Q) of the net transmitted charge Q during
time t (full counting statistics [101]) is completely encoded in the distribution of the waiting
times ti for single-electron transitions. This distribution reflects the details of the transport
mechanism, and might be quite nontrivial [96]. Nevertheless, with all ti being of the same
order, the full counting statistics differs only weakly from a Gaussian distribution. Small
deviations are caused by correlations [102, 103], interactions [104], or the influence of the
environment [105], and have been extensively studied theoretically.

By contrast, the counting statistics of avalanche-type transport is insensitive to the
details of the passage of a single electron through the molecule, since the number of electrons
involved in each avalanche is large. Instead, the counting statistics is governed exclusively by
the transition rates between different vibrational states. These rates have a simple structure
in the limit of strong coupling which allows us to develop a complete analytical theory for
the regime of avalanche-type transport. In particular, we demonstrate in this section that

3A generation–q avalanche (q = 0, 1, . . .) is characterized by waiting periods associated with the occupa-
tion of the vibrational state q.

4The hierarchy breaks off once the transferred charge per avalanche is of the order of unity.
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Figure 3.5: Hierarchical character of transport. Left: Three generations of self-similar MC plots for
λ = 4 and eV = 3~ω0, showing the net-transferred charge N and phonon state q as functions of time.
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numerical simulations for q = 0, 1, 2 (mean values N
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= 91.2, N
(1)

= 11.1, and N
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= 2.9).

the full counting statistics Pt(Q) is given by a concise analytical expression, which is strongly
skewed at “short” times (i.e. of the order of the zero-order quiet period) and evolves into a
Gaussian only for very large t. Along with the counting statistics, we also study analytically
how the hierarchy of avalanches manifests itself in the frequency dependence of the noise
power S(ω). Our analytical results are in excellent agreement with numerical Monte-Carlo
simulations. For easier reference, the definitions of the most important quantities used in
the following subsections are listed in Table 3.1. Some calculational details are deferred to
Appendix E to keep the main line of thought uninterrupted.

3.3.1 Full counting statistics

Since different generation–0 avalanches are statistically independent, it is easy to derive a
relation between the counting statistics Pt(Q) of the net charge Q and the conventional
counting statistics ϕt(n) [101] of the number of generation–0 avalanches n during the time
interval t. Indeed, using the definition Pt(Q) = 〈δ(Q − ∑n

j=1Nj)〉Nj ,n, and a Fourier
representation of the right-hand side, one obtains

Pt(Q) =

∫

dα

2π
eiαQ

∑

n

[

P̃0(α)
]n
ϕt(n), (3.3)



34 Chapter 3: Franck-Condon blockade and giant Fano factors – Electronic avalanches

Pt(Q) full counting statistics (probability that the net charge Q is transferred within
the time interval t

ϕt(n) counting statistics for avalanches (probability that n generation–0 avalanches
occur during the time interval t)

Pq(N) distribution function for the number N of electrons per generation–q avalanche
pq(n) distribution function for the number n of generation–(q + 1) avalanches in a

generation–q avalanche
W (t) distribution of waiting times between generation–0 avalanches

N
(q)

mean number of electrons per generation–q avalanche
nt mean number of generation–0 avalanches during the time interval t
nq mean number of generation–(q + 1) avalanches in a generation–q avalanche

τ (q) mean duration of a generation–q avalanche

t(q) average waiting time 〈ti〉 between avalanches at level q of the hierarchy

Table 3.1: List of definitions for the analytical treatment of avalanche transport.

where P̃0(α) = 〈exp (−iαNj)〉Nj denotes the Fourier transform of the distribution function
P0(N) of the total charge passing per generation–0 avalanche. The durations of the quiet
periods are exponentially distributed, which results in Poisson statistics for the counting
statistics of avalanches,

ϕt(n) =
exp(−nt)[nt]

n

n!
. (3.4)

Here, nt denotes the average number of generation–0 avalanches within time t. Substituting
this form into Eq. (3.3) and performing the summation over n yields an expression for the
counting statistics similar to the Holtsmark distribution [106],

Pt(Q) =

∫

dα

2π
exp

{

iαQ+ nt

[

P̃0(α) − 1
]}

. (3.5)

Thus, the problem of the counting statistics is reduced to finding the distribution P0(N).
Two facts allow us to find P0(N), namely

(i) the self-similar structure of avalanches, and

(ii) the large number nq of generation–(q + 1) avalanches within a given generation–q
avalanche.

Our basic observation is that we can derive a recursion relation, relating the distribution
functions Pq(N) and Pq+1(N) of the total passing charge (N (q) andN (q+1), respectively) per
avalanche for subsequent generations. This recursion follows from the obvious facts that

N (q) =
∑nq

j=1N
(q+1)
j and that different avalanches of a given generation are statistically

independent. By analogy with the derivation of Eq. (3.3), we thus obtain

Pq(N) =

∫

dα

2π
eiαN

∑

n

[

P̃q+1(α)
]n
pq(n), (3.6)

where pq(n) denotes the distribution function of nq. To proceed further, one has to spec-
ify the form of the distribution pq(n). This distribution is governed by the microscopic
characteristics of the Franck-Condon transitions. We demonstrate below that pq(n) =



Chapter 3: Franck-Condon blockade and giant Fano factors – Electronic avalanches 35

(1/nq) exp(−n/nq).
5 Upon substituting this form into Eq. (3.6), the summation over n on

the right-hand side can be easily performed and we obtain, after a Fourier transform of
both sides,

P̃q(α) =
1

1 − nq ln[P̃q+1(α)]
. (3.7)

The distribution Pq can now be obtained from this equation by writing its general solution

as P̃q(α) = [1 + iαN
(q)

+ cq(αN
(q)

)2 + . . .]−1. Inserting this into Eq. (3.7), we find that
the numerical coefficients cq flow to zero with q by virtue of the small parameter 1/nq, see

Appendix E for further details. Thus, the solution P̃q(α) = [1 + iαN
(q)

]−1 with Fourier
transform

Pq(N) = θ(N) exp
[

−N/N (q)
]

/N
(q)

(3.8)

can be viewed as a fixed point of the recursion equation Eq. (3.6) and since N
(q)

= nqN
(q+1)

,
self-similarity is obeyed asymptotically. The existence of this fixed-point solution is a con-
sequence of remark (i) which implies that up to rescalings, the distribution functions Pq(N)
have the same functional form for all q. Fig. 3.5 numerically confirms this result for three
different generations.

With Pq(N) established, we obtain the counting statistics by substituting P̃0(α) =

(1 + iαN
(0)

)−1 into Eq. (3.3) and performing the integral and summation, see Appendix E.
This yields

Pt(Q) = e−ntδ(Q) + e
− Q

N
(0)

−nt

√

nt

N
(0)
Q

I1

(√

4ntQ

N
(0)

)

. (3.9)

Here, I1(z) denotes a modified Bessel function. Eq. (3.9) is our central result. It is nicely
confirmed by MC simulations as shown in Fig. 3.6, and describes the evolution of the
counting statistics between the following two transparent limits.

Short times

For short times, nt = t/〈ti〉 ≪ 1, we use the expansion I1(z) ≈ z/2 for z ≪ 1 and obtain
from Eq. (3.9)

Pt(Q) ≃ e−nt

[

δ(Q) + (nt/N
(0)

)e−Q/N
(0)
]

. (3.10)

Typically only a few electrons are transmitted through the molecule. The long tail described
by the second term in Eq. (3.10) arises from realizations where an avalanche occurs within
the time t and reflects the spread of charge within a single avalanche.

Long times

For long times, nt ≫ 1, we substitute the large-z asymptote of I1(z) into Eq. (3.9). Then,

it is easy to see that the second term has a sharp maximum centered at Q = ntN
(0)

, which

5Here, we exploit that the average number of subavalanches is large, nq ≫ 1. This allows us to treat n
as a continuous variable.
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(0)
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is the average charge passed through the molecule after a large number of avalanches.
Expansion of the exponent around the maximum yields the Gaussian

Pt(Q) ≃ (
√

2πσQ)−1 exp

[

−
(

Q− ntN
(0)
)2
/2σ2

Q

]

(3.11)

with a width σQ = (2nt)
1/2N

(0)
. This width is twice the width expected from the fluctua-

tions of the waiting times. This enhanced broadening is due to fluctuations of the charge
passed per avalanche. These additional fluctuations also manifest themselves in the noise
characteristics of transport as analyzed below.

3.3.2 Microscopic derivation of pq(n)

The distribution pq(n) for the number n of generation–(q+ 1) avalanches in a generation–q
avalanche can be derived in the following way. We first generalize the distribution ϕt(n) to

higher generations, i.e. we define ϕ
(q)
t (n) as the distribution of the number n of generation–

q avalanches within a generation–(q − 1) avalanche which occur during the time interval
t. The self-similarity of avalanches implies that these higher-generation distributions must
obey Poisson statistics as well.

Now, the distribution pq(n) is obtained by averaging the Poisson distribution of n for

a given avalanche duration over the distribution of durations τ
(q)
i , i.e.

pq(n) =

〈

exp
[

−τ (q)
i wq

] (

τ
(q)
i wq

)n

n!

〉

τ
(q)
i

. (3.12)
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Here, wq denotes the average rate for starting a generation–(q+1) avalanche from the level q.
On microscopic grounds, the distribution of durations is a simple exponential distribution,
which immediately transforms into pq(n) = (1/nq) exp(−n/nq) since nq is large.

To see that the duration distribution is exponential, we note that the mean duration
τ (q) of a generation–q avalanche is determined by the waiting times in the vibrational state
q + 1 since the durations of intermittent higher-generation avalanches can be neglected.
Two processes terminate a generation–q avalanche: a direct transition from q + 1 to q or a
transition back to q during a generation–(q+1) avalanche. Denoting the total rate for both
processes by Γq, we obtain an exponential distribution of durations, Γq exp(−Γqτ

(q)).

3.3.3 Noise spectrum S(ω) of avalanche-type transport

We first derive a general expression for S(ω) assuming arbitrary distributions P0(N) of the
avalanche magnitudes and W (t) of the waiting times. For frequencies smaller than 1/τ (0),

we have f
(0)
i (t) ≃ Niδ(t) in Eq. (3.2). Using Fourier representations of the δ functions and

averaging over the ti and Ni, the average current becomes

〈I(t)〉 = 〈Ni〉
∫

dα

2π
eiαt W̃ (α)

1 − W̃ (α)
, (3.13)

where W̃ (α) = 〈exp(−iαti)〉ti denotes the Fourier transform of W (t). In the long-time
limit, only small values of α contribute to the integral in Eq. (3.13) so that we can use
the expansion W̃ (α) = 1− iα〈ti〉 − (1/2)α2〈t2i 〉+ . . . Inserting this into Eq. (3.13), keeping
only the leading order in α and performing the contour integration over α, we recover the
obvious result 〈I(t)〉 = 〈Ni〉/〈ti〉. [See Appendix E for details.] Similarly, we express the
current-current correlator as

〈I(t1)I(t2)〉

=

∫

dα

2π

dβ

2π
e−iαt1−iβt2

〈

[N1e
iαt1 +N2e

iα(t1+t2) + . . .][N1e
iβt1 +N2e

iβ(t1+t2) + . . .]
〉

=

∫

dα

2π

dβ

2π
e−iαt1−iβt2

[〈Ni〉2W̃ (α+ β)

1 − W̃ (α+ β)

(

1

1 − W̃ (α)
+

1

1 − W̃ (β)
− 1

)

(3.14)

+
(〈N2

i 〉 − 〈Ni〉2)W̃ (α+ β)

1 − W̃ (α+ β)

]

.

The last equality follows upon term-by-term averaging and resummation of the series. To
access the limit of long times t = (t1 + t2)/2, we introduce ω = (α − β)/2 and Ω = α + β.
Then, the exponent in the integrand in Eq. (3.14) assumes the form exp(iωτ − iΩt) with
τ = t2 − t1. The limit t → ∞ can now be taken in analogy with the derivation of 〈I(t)〉
above. The integrand can be directly identified with the noise spectrum S(ω), so that

S(ω) =
2

〈ti〉

{

〈Ni〉2
[

1

1 − W̃ (ω)
+

1

1 − W̃ (−ω)
− 1

]

+ (〈N2
i 〉 − 〈Ni〉2)

}

. (3.15)

Taking the zero-frequency limit requires one to keep terms of order ω2 in the expansion of
W̃ (±ω). In this way, the Fano factor F = S(ω = 0)/2e〈I〉 becomes

F = 〈Ni〉
〈t2i 〉 − 〈ti〉2

〈ti〉2
+

〈N2
i 〉 − 〈Ni〉2
〈Ni〉

. (3.16)
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This equation allows for a transparent interpretation: Noise originates from two sources,
namely the fluctuations in the intervals between avalanches and the fluctuations in the
transmitted charge per avalanche. In the conventional situation where Ni = 1 for all i, the
Fano factor is given by the fluctuations of the waiting times ti for a transition in which an
electron passes either directly or sequentially from the left to the right lead. For example, for
transport through a symmetric junction in the Coulomb-blockade regime, one immediately
recovers F = 5/9 [100] when taking into account that the rates of entering and leaving the
dot are related as 2:1 due to spin. For the specific distributions adopted in our model, both

terms in Eq. (3.16) contribute equally, and the Fano factor reduces to F = 2N
(0)

, which, in
agreement with Eq. (3.11), is twice the value expected for a fixed magnitude of avalanches.
This is confirmed by numerical results.

For frequencies larger than 1/τ (0), the “fine structure” of the avalanches described by

the functions f
(0)
i in Eq. (3.2) must be taken into account. This fine structure can be

incorporated into the noise spectrum Eq. (3.15) by replacing

〈Ni〉2 → 〈f̃(α)〉〈f̃(β)〉, (3.17)

〈N2
i 〉 → 〈f̃(α)f̃(β)〉, (3.18)

where f̃(α) denotes the Fourier transform. Explicitly employing the exponential distribution
of the waiting times, we find the remarkable simplification [1−W̃ (ω)]−1+[1−W̃ (−ω)]−1−1 =
1. In this way, we obtain

S(ω) =
2

〈ti〉
〈f̃(ω)f̃(−ω)〉. (3.19)

For frequencies of the order of ω ≃ 1/t(0) (where t(q) denotes the average waiting time 〈ti〉
at level q of the hierarchy), we can ignore the fine structure of the avalanche and replace

f̃(ω) = N
(0)
i . Thus, we find

S(ω) =
2〈[N (0)

i ]2〉
t(0)

. (3.20)

At higher frequencies ω ≃ 1/t(1), the function f(t) is resolved into avalanches of generation
q = 1. Then, we can write

〈f̃(ω)f̃(−ω)〉 =

∫

dt

∫

dτ eiωτ 〈f(t+ τ/2)f(t− τ/2)〉. (3.21)

Up to the integral over t, this expression is analogous to S(ω) itself, with generation–0
quantities replaced by corresponding q = 1 quantities. For the frequencies of interest, we
therefore find

S(ω) =
2

t(0)
τ (0)〈[N (1)

i ]2〉
t(1)

. (3.22)

Using the obvious relations τ (0) = t(1)n0 and N
(0)

= n0N
(1)

and generalizing to arbitrary
q, we conclude that

Sq+1 =
N

(q+1)

N
(q)

Sq. (3.23)
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Here, we define Sq = S(ω ≃ 1/t(q)) so that Eq. (3.23) provides a rule for extending the
noise spectrum to progressively higher frequencies.

The essential microscopic inputs are the ratios t(q+1)/t(q) and N
(q+1)

/N
(q)

. Both ratios
are determined by overlaps of displaced vibrational wavefunctions. The rate 1/t(q) is dom-
inated by the transition q → q + 1. Thus, it involves the overlap of neighboring harmonic

oscillator states. By contrast, N
(q)

is inversely proportional to the transition rate from
a highly excited phonon level to the qth vibrational level. The difference between these
two rates is thus that the first involves four wavefunctions with index of order q, while the
second involves only two. As a result, we can immediately establish from a quasiclassical

evaluation of the matrix elements that t(q)/(N
(q)

)2 is essentially independent of q. With
this input, we conclude that S(ω) ∼ ω−α with exponent α = 1/2. Since the noise power
does not depend sensitively on ω in finite intervals around 1/t(q), this power law should
be superimposed with steplike features in S(ω). These conclusions agree with numerical
simulations over several orders of magnitude in frequency.

3.3.4 The role of vibrational relaxation

Finally, we remark that direct vibrational relaxation (with rate γrel), neglected so far, only
gradually suppresses avalanche-type transport. Indeed, the numerical results presented in
Section 3.2 revealed a power-law scaling of the zero-frequency noise, S(0) ∼ 1/γ2

rel, over
a wide range of relaxation times. This relation can easily be justified on the basis of our

previous analytical result S(0) = 4e2[N
(0)

]2/t(0). As confirmed by numerical MC data, the
number of electrons transferred in a generation–0 avalanche is expected to scale linearly with

the avalanche duration. This implies the relation N
(0) ∼ τ (0). Vibrational relaxation adds

an additional channel for terminating an avalanche, thus increasing the effective termination
rate according to

Γe = Γ0 + γrel. (3.24)

Here, we have defined Γ0 = 1/τ (0). Thus, the effective avalanche duration is shortened due

to relaxation, also diminishing the average electron number N
(0)

,

N
(0) ∼ τe = 1/Γe =

1

Γ0 + γrel
. (3.25)

As soon as relaxation is the dominant limiting process, γrel ≫ Γ0, we recover the observed
power-law behavior S(0) ∼ 1/γ2

rel.

3.3.5 Fano factor enhancement for nonzero εd

So far, we have mainly focused on the case of vanishing single-particle εd. Interestingly, as
briefly mentioned in Section 3.2, the situation εd 6= 0 may cause a further increase of Fano
factors as compared to the εd = 0 configuration, see Fig. 3.7. Especially large Fano factors
are observed for low biases above the threshold eV > ~ω0 whenever the electronic level εd
is roughly aligned with the Fermi energy of the right or left lead.

At first view, the resulting Fano factor enhancement is surprising since the mean num-
ber of electrons per avalanche is decreased for such a level configuration. For an under-
standing of this decrease, consider the case of level alignment with the left Fermi energy.
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Figure 3.7: Excess noise Fano factor as a function of bias voltage for strong electron-phonon coupling
(λ = 4.0) and different gate-voltages εd. Remarkably, the Fano factor is even further increased for
nonzero εd, which is explained by the drastic enhancement of waiting-time fluctuations.

Then, phonon excitations can only occur through tunneling in the right junction. Events
in the junction L can only decrease the phonon state (or leave it unchanged). Thus, every
second tunneling event will inhibit phonon excitations. With avalanches benefitting from
the possibility of reaching highly excited phonon states, the mean number of electrons per
avalanche is reduced as compared to the case where the level is centered between the two
Fermi levels. This decrease in 〈Ni〉 is confirmed by Monte-Carlo simulations.

The somewhat counterintuitive result that the Fano factor nevertheless becomes larger
can be traced back to the significantly enhanced fluctuations in waiting times ti, which
directly contribute to the Fano factor, see Eq. (3.16). In the following, we explain this en-
hancement of waiting-time fluctuations. Any generation–0 avalanche may terminate either
in the charge state n = 0 or n = 1, and the corresponding probabilities are denoted p0

and p1. After the avalanche termination, the system undergoes a waiting period ti. The
crucial point is that for level alignment with one Fermi energy, this waiting time strongly
depends on the charge state n. Starting in the state n = 0, transitions in the left junction
do not allow phonon excitations. By contrast, for the initial state n = 1 and transitions
across the right junction, the excitation of phonons is favored (due to the increase of FC
matrix elements towards highly excited vibrational states). Accordingly, the relevant two
rates after avalanche termination are dramatically different, W 01

00 ≪ W 10
01 , and the waiting

times in the two cases will differ accordingly,

〈t(n=0)
i 〉 = (W 01

00 )−1 ≫ 〈t(n=1)
i 〉 = (W 10

01 )−1. (3.26)

Consequently, the probability distribution of waiting times is not given by a single expo-
nential anymore, but is well approximated by

p(ti) = p0W
01
00 exp[−W 01

00 ti] + p1W
10
01 exp[−W 10

01 ti]. (3.27)

While the εd = 0 case with a simple exponential distribution results in
(

〈t2i 〉 − 〈ti〉2
)

/〈ti〉2 =
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1, we now find
〈t2i 〉 − 〈ti〉2

〈ti〉2
≈ 2 − p0

p0
, (3.28)

valid for p0 ≫ W 01
00 /W

10
01 . By Monte-Carlo simulations we confirm that p0 satisfies 1 >

p0 ≫ W 01
00 /W

10
01 for realistic parameters. Therefore, Eq. (3.28) explains the off-resonance

enhancement of Fano factors by the increase of waiting-time fluctuations.

3.4 Conclusions

Vibrational degrees of freedom can play an important role in transport through single
molecules, and lead to transport properties very different from those of conventional semi-
conductor or metal nanostructures. In particular, we have shown that FC physics, which is
characteristic of molecules, leads to a low-bias current suppression (FC blockade) and giant
Fano factors of the order of 102–103 in single-molecule devices with strong electron-phonon
coupling and weak phonon relaxation. The Fano factor enhancement has been explained by
avalanche-like transport of electrons. The self-similar occurrence of such avalanches over a
wide range of time scales is reflected in approximate power-law behavior of the noise as a
function of frequency and relaxation rate.

Our complete analytical description for the full-counting statistics and the frequency-
dependent noise power of self-similar avalanche-type transport was made possible by the fact
that current flow is essentially unidirectional. We emphasize that our arguments are quite

Figure 3.8: Differential conductance measured for a vibrating suspended quantum dot in an experi-
ment by Weig et al. The regions marked in red show a significant current suppression at the charge
degeneracy points, consistent with our predictions for the Franck-Condon blockade. The exact origin
of the lifting of the blockade by a magnetic field is not fully understood to date. This figure is taken
from Reference [107].
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general, with rather limited microscopic input, making our results potentially applicable far
beyond the particular realization of avalanche-type transport considered in the numerical
simulations.

We finally remark that an experimental verification of this new transport regime de-
pends on designing a single-molecule device with strong electron-phonon coupling and weak
direct vibrational relaxation. Strong electron-phonon coupling is even realized in simple
diatomic molecules such as F2 and Kr2 for which we estimate λ ≃ 4.4 and λ ≃ 5.4 [108],
and very likely in a plethora of larger molecules. In addition, vibrational relaxation times as
large as 10ns have been observed in recent experiments [44]. For these relaxation times, the
regime discussed in this chapter is reached for currents large compared to 10pA.6 Alterna-
tively, the effects predicted here may be relevant in artificial nano-electromechanical devices.
Indeed, the current suppression in the FC blockade may have recently been observed in such
systems [107], see Fig. 3.8.

6This should be compared to currents in typical experiments ranging from nA to µA [26].


