
Chapter 2

Theoretical framework in the

weak-tunneling limit

In this Chapter, we develop the theoretical tools required for the study of transport in the
Anderson-Holstein Hamiltonian in the limit of weak tunneling, Γ ≪ kBT, ~ω0. This regime
allows for a perturbative treatment of the tunneling Hamiltonian HT, and we start with a
discussion of the systematic perturbation theory in HT. The main input for the transport
calculation consists of the transition rates induced by electron tunneling. In the following
sections, we explain how to obtain these rates and how they enter the rate equations that
determine the occupation probabilities of the system. Subsequently, we show how the rate-
equations formalism can be employed for the computation of the stationary current and the
current shot noise. This formalism forms the basis for most of the following Chapters, and
in its development we closely follow pertinent references such as Refs. [45, 60,84].

2.1 Transition rates

Regarding the tunneling Hamiltonian HT as a perturbation, one can proceed to calculate
rates for transitions | i 〉 → | f 〉 by an expansion of the T -matrix and applying Fermi’s
golden rule (see e.g. [85]),

γif =
2π

~
|〈 f |T | i 〉|2 δ(Ei − Ef ) =

2π

~
|〈 f |HT +HTG0HT + · · · | i 〉|2 δ(Ei − Ef ). (2.1)

Here, Ei and Ef denote the energies of the initial and final states | i 〉 and | f 〉, and G0 =
[Ei −Hmol −Hleads + iη]−1 is the free retarded Green’s function. Generally, the initial and
final states still involve degrees of freedom of the leads. These are eliminated by integrating
over the energies of particles and holes generated in the Fermi seas during the process,
taking into account thermal occupations by f or 1 − f factors, where f(ǫ) = (eβǫ + 1)−1 is
the Fermi function. Thus, one arrives at rates W which are labelled by molecular degrees of
freedom only. [Of course, the rates will still include a label for the participating junction(s).]
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|n, q 〉 → |n+ 1, q′ 〉 |n, q 〉 → |n− 1, q′ 〉

Figure 2.1: Sequential-tunneling processes, here schematically exemplified for tunneling onto and
off of the molecule via the left and right junction, respectively. The “kets” |n, q 〉 denote the state
of the molecule, specifying the electronic occupation n and the number of vibrational excitations q.

2.1.1 Sequential tunneling and Franck-Condon matrix elements

To lowest order in HT , one obtains sequential tunneling processes, which transfer one elec-
tron from a lead onto the molecule or vice versa, see Fig. 2.1. For example, the rate for
a process changing the charge number of the molecule from n = 0 to n = 1 by tunneling
across junction a, and simultaneously changing the number of excited phonons from q to
q′, is given by

W 01
qq′; a = s(0, 1)

Γa

~

∣

∣Mqq′
∣

∣

2
fa(εd + [q′ − q]~ω0). (2.2)

Here, fa(ǫ) = f(ǫ − µa) denotes the Fermi function for lead a. Our choice of jointly
treating the spin-up and the spin-down states as the singly-occupied state n = 1 requires
the inclusion of a spin factor s. The spin factor definitions s(0, 1) ≡ 2 and s(1, 0) ≡ 1 reflect
the fact that rates for processes n = 0 → 1 are twice as large as rates for n = 1 → 0 due to
the spin-degeneracy of the state n = 1. The symbol Mqq′ denotes the Franck-Condon (FC)
matrix element for a phonon transition q → q′. This matrix element is given by the overlap
of two harmonic oscillator wavefunctions φq and φq′ , spatially displaced by the distance
∆x =

√
2λℓosc. Introducing q = min{q1, q2} and Q = max{q1, q2}, the matrix elements

read

Mq1q2 =

∫ ∞

−∞
dxφ∗q1

(x+ ∆x)φq2(x) = [sgn(q2 − q1)]
q1−q2 λQ−qe−λ2/2

(

q!

Q!

)1/2

LQ−q
q (λ2),

(2.3)

where Ln
m(x) denotes the generalized Laguerre polynomial. As illustrated in Fig. 2.2, the

behavior of the FC matrix elements crucially depends on the strength of the electron-phonon
coupling (i.e., the magnitude of the wavefunction displacement), and detailed discussions
of the cases of strong and weak coupling are provided in Chapters 3 and 6.

The rate for the analogous process n = 0 → 1 can be obtained from Eq. (2.2) by
swapping the spin factor and substituting fa by (1 − fa), i.e.

W 10
qq′;a = s(1, 0)

Γa

~

∣

∣Mqq′
∣

∣

2 {
1 − fa(εd − [q′ − q]~ω0)

}

. (2.4)
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Figure 2.2: Franck-Condon matrix elements for weak (λ = 0.2), intermediate (λ = 1), and strong
(λ = 4) electron-phonon coupling. Panels in the top and middle row show the square of the Franck-
Condon matrix element as a function of initial and final phonon state qi and qf , respectively. The
plots in the bottom row visualize the displacement of the molecular potential surfaces for the neutral
and singly ionized molecule.
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(a) (b)|n, q 〉 → |n, q 〉 |n, q 〉 → |n, q′ 〉

Figure 2.3: Cotunneling processes. (a) Elastic cotunneling, (b) inelastic cotunneling

2.1.2 Cotunneling

In next-to-leading order in HT , cotunneling processes [11, 86] are generated, see Fig. 2.3.
These transfer one electron from lead a to lead b, while the electronic occupation of the
molecule changes only virtually in the intermediate state. Cotunneling transitions leaving
the molecular state unchanged are referred to as elastic cotunneling . Transitions changing
the molecular state, e.g. by a spin-flip or phonon excitation or deexcitation, are called
inelastic cotunneling . For simplicity, let us consider the case of a large charging energy
(U → ∞) inhibiting double occupation of the molecule entirely. Then, based on Eq. (2.1),
the corresponding rates are obtained as

W 00
qq′;ab =

s(0, 0)

2π~
ΓaΓb

∫

dǫ

∣

∣

∣

∣

∣

∣

∑

q′′

Mq′q′′M
∗
qq′′

ǫ− εd + (q − q′′)~ω0

∣

∣

∣

∣

∣

∣

2

fa(ǫ)
[

1 − fb(ǫ+ [q − q′]~ω0)
]

(2.5)

W 11
qq′;ab =

s(1, 1)

2π~
ΓaΓb

∫

dǫ

∣

∣

∣

∣

∣

∣

∑

q′′

Mq′q′′M
∗
qq′′

εd − ǫ+ (q′ − q′′)~ω0

∣

∣

∣

∣

∣

∣

2

fa(ǫ)
[

1 − fb(ǫ+ [q − q′]~ω0)
]

.

(2.6)

Here, the spin factors are s(0, 0) = s(1, 1) ≡ 2, which follow from an analysis of the relevant
contributions as illustrated in Fig. 2.4. For cotunneling through the empty molecule, n =
0 → 0, there is an incoherent addition of the processes transferring a spin-up or a spin-
down electron, respectively. For n = 1 → 1 the cotunneling transition may either leave
the molecule’s spin state invariant or cause a spin flip, again resulting in two incoherent
processes. In both cases n = 0 and 1, the rates of the two contributions are identical and
hence can be absorbed into the spin factor. We stress that the order of indices associated
with the FC matrix elements is essential here, since the sign of the FC matrix elements
becomes relevant for the interference terms. This slightly subtle point is further elucidated
in Appendix B.

It is crucial to note that, in general, the cotunneling rates cannot be directly evaluated
from Eqs. (2.5) and (2.6). These expressions diverge due to second-order poles from the
energy denominators. This divergence, related to the infinite lifetime of the virtual inter-
mediate state within a purely perturbative approach, has been pointed out before [87, 88].
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Figure 2.4: Relevant contributions to the cotunneling rates in the U → ∞ limit. For both charge
states n = 0 and 1 there are two incoherent contributions with either a spin-up or a spin-down
electron being transferred across the molecule.

A regularization scheme has been developed in order to extract the correct cotunneling
rates [87,88], which we summarize here, deferring the details to Appendix C. The basis for
the regularization of cotunneling rates is given by two observations.

(i) Second-order perturbation theory clearly misses the fact that the intermediate state
obtains a finite width ∼ Γ due to the tunneling. This width should enter the energy
denominator as an imaginary part, shifting the pole away from the real axis.

(ii) For a specific cotunneling transition | i 〉 → | f 〉 at finite temperature, the final state
| f 〉 can also be reached from the initial state | i 〉 by two sequential processes.

Specifically, the regularization proceeds as follows. First, a level width γ ∼ Γ is introduced
in the energy denominators. With the poles shifted away from the real axis, the integral can
now be carried out. The resulting expression is then expanded in powers of the level width
γ. The leading order term is proportional to 1/γ. When combining this with the prefactor
ΓaΓb of the rates Eqs. (2.5) and (2.6) , the overall order of this term is found to be identical
to a sequential-tunneling term. Following point (ii), this term must be disregarded to avoid
double-counting of sequential processes. The next-to-leading order in the γ-expansion is a
γ0 term. It is this term which gives the regularized expression for the cotunneling rate.
This procedure is carried out in detail in Appendix C.

It is interesting to note that these “cotunneling rates” may become negative. This result
can in fact be expected by considering the simple case of a single-level resonant tunneling
model without charging energy. For this model, the exact result for the current in the
T → 0 limit is

I = sgn(eV )
2e

h

ΓLΓR

ΓL + ΓR

∑

a=L,R

a arctan

[

a |eV | − 2εd
Γ

]

, (2.7)

where we identify the index L (R) with a = +1 (a = −1). Expanding this in orders of Γ,
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we find that the second-order term [corresponding to cotunneling] is given by

Icot = − e

h
ΓLΓR

|eV |
(eV/2)2 − ε2d

. (2.8)

This expression indeed becomes negative, whenever the level is located inside the bias win-
dow, i.e. cotunneling reduces the sequential-tunneling current. Our regularization procedure
combined with the rate-equations approach exactly reproduces these expressions, as shown
in detail in Appendix G. It is worth noting that, alternatively, the formalism developed
by König, Schoeller and Schön may be used to circumvent the necessity of regularization,
see e.g. Ref. [89]. We find that additional corrections due to level shifts and broadening
captured by their approach are irrelevant in the case Γ ≪ kBT considered here. In this
limit, both approaches are expected to give identical results.

2.2 Rate equations

The rates for transitions between different molecular states form the essential input for the
rate equations, as introduced in the context of Coulomb blockade phenomena [90,91]. These
determine the time-evolution of the probabilities Pn

q for the occupation of the molecular
states |n, q 〉, and they can be written in the intuitive form

dPn
q

dt
=
∑

n′,q′

[

Pn′

q′ W
n′n
q′q − Pn

q W
nn′

qq′

]

− 1

τ

[

Pn
q − P eq

q
∑

q′ P
n
q′

]

. (2.9)

Here, the first sum describes the change of the occupation probability Pn
q due to probability

flow into and out of this state, giving a corresponding positive (probability increase) and
negative (probability decrease) contribution, respectively. The last term is added on a
phenomenological basis, and describes relaxation of the vibrations towards the equilibrium
distribution P eq

q = e−q~ω0/kBT (1 − e−~ω0/kBT ) on a time scale τ . In the course of this
work, we will mainly investigate the two limiting cases of equilibrated phonons (τ → 0,
distribution fixed to equilibrium), and unequilibrated phonons (τ → ∞, nonequilibrium
distribution entirely determined through tunneling dynamics). However, we stress that the
investigation of intermediate relaxation strengths according to Eq. (2.9) is straightforward,
and will be studied in Chapter 3.

A rigorous derivation of the rate equations can be achieved through the density-matrix
formalism [45,79,92]. Its starting point is the formulation of the von-Neumann equation for
the reduced density matrix of the molecule. In general, this leads to a complicated integro-
differential equation. The crucial simplification arises from the reasonable assumption that
electronic relaxation in the leads is fast compared to the tunneling dynamics. In this case,
the Born-Markov approximation can be employed, and the evolution equation becomes an
ordinary differential equation – the Master equation for the reduced density matrix.1 In the
weak-tunneling limit Γ ≪ kBT, ~ω0, coherences between different molecular states |n, q 〉
are negligible, and the Master equations reduce to rate equations. These represent the

1In the literature, the distinction between the terms “Master equation” and “rate equations” is slightly
inconsistent. We suggest to refer to the equation of motion for the reduced density matrix as Master equation,
and to its diagonal part as rate equations. We will follow this nomenclature throughout the text.
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diagonal part of the reduced density matrix. Despite the somewhat disparate nomenclature
and main focus, we find it useful to note that the theory of rate equations is well-known
in mathematics under the name of “Continuous-Time Markov Chains”, see e.g. the book
by W. J. Anderson [93]. Another helpful introduction to Markov processes at the interface
between physics and mathematics can be found in Ref. [94].

It is convenient to reexpress Eq. (2.9) in terms of a matrix equation of the form

dp

dt
= Wp, (2.10)

where W is a coefficient matrix containing all rates, and the vector p consists of all oc-
cupation probabilities, see Appendix D for further details. Given some initial condition
p(t = 0) = p0, the rate equations are formally solved by

p(t) = eWtp0. (2.11)

Under rather general conditions, typically satisfied in physical applications, one can show
that for long times the probability distribution converges to a unique stationary distribution
P [93]. Instead of performing the limit

P = lim
t→∞

p(t) (independent of the initial condition), (2.12)

one can solve the stationary rate equations

WP = 0 (2.13)

with the condition that the sum over all components of the vector P is 1 (normalization),
which we write as trP = 1.

For a systematic expansion in orders of the tunneling, we write W = W(1) + W(2) + · · ·
as well as P = P(0) + P(1) + · · · . Substituting this into the rate equation, we obtain up to
second order the equations

W(1)P(0) = 0, (2.14)

W(1)P(1) = −W(2)P(0). (2.15)

The normalization condition for P leads to trP(0) =
∑

i P
(0)
i = 1 and trP(1) = 0. Here and

in the following, the “trace” of a vector always denotes the sum of its components.

2.3 Stationary current and shot noise

As shown, e.g., in Refs. [45] and [84], the steady-state current and the current noise can be
computed via the rate-equations formalism. We first consider the steady-state current to
leading order in HT, i.e. sequential tunneling. Then, the expression for the current across
the left junction, for instance, simply amounts to counting the electrons being transferred
in the bias direction, and subtracting those which travel in the opposite direction. This
leads to the intuitive expression

IL = e
∑

n

∑

q,q′

Pn
q

[

Wn,n+1
qq′; L −Wn,n−1

qq′; L

]

. (2.16)
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Due to charge conservation, the average current across the left and right junction must be
identical in the stationary case, IL = IR.

When including processes beyond sequential tunneling, it is convenient to define a cur-
rent coefficient matrix WI , closely related to the coefficient matrix W of the rate equations;
a detailed description is provided in Appendix D. Then, the current may be compactly
written as

I = trWIP, (2.17)

which can be expanded order by order in the tunneling,

I = I(1) + I(2) + · · · (2.18)

= trW
(1)
I P(0) + tr

[

W
(1)
I P(1) + W

(2)
I P(0)

]

+ · · ·

The lowest-order current I(1) is the sequential-tunneling current. The second-order contri-
bution I(2) contains the cotunneling current and corrections to the sequential current due
to changes of the probability distribution by inelastic cotunneling.

A method for evaluating the current shot noise

S(ω) = 2

∫ ∞

−∞
dτ eiωτ

[

〈I(τ + t)I(t)〉t − 〈I(t)〉2t
]

(2.19)

within the rate-equations formalism has been developed by Korotkov in Ref. [84]. This
formalism is based on the following two insights.

(i) In the regime of weak coupling between the molecule (dot) and the electrodes, the
current is generated by discrete charge transfer processes at times τ1, τ2, . . .

(ii) The waiting times ti = τi−τi−1 between consecutive events is generally large compared
to the duration of each charge transfer process.

Accordingly, the current in junction a may be approximated by the expression

Ia(t) =
∑

i

Ni δ(t− τi), (2.20)

where Ni denotes the number of electrons transferred across junction a in the event i.
Substituting this expression into Eq. (2.19), it is possible to derive the noise power spectrum
from the relevant transition rates. Korotkov’s method can be generalized to include higher-
order processes beyond sequential tunneling, as we show in detail in Appendix D.




