Contents

	Title	Page	i
	Ded	cation	v
	Abs	ract	vi
	Tabl	e of Contents	'ii
	Ack	owledgments	1
	Cita	ions to Previously Published Work	2
	Nota	tion	3
1	Intr	oduction	5
	1.1	Sketch of molecular electronics	5
		1.1.1 Experiments	6
		1.1.2 Theory	8
	1.2	Generic model	10
		1.2.1 Explanation of the Anderson-Holstein model	12
		1.2.2 Regimes of the Anderson-Holstein model	13
		1.2.3 Extensions of the model	4
	1.3	Overview of the thesis 1	15
2	$\mathbf{Th}\epsilon$	oretical framework in the weak-tunneling limit	.8
	2.1	Transition rates	18
		2.1.1 Sequential tunneling and Franck-Condon matrix elements 1	19
		2.1.2 Cotunneling	21
	2.2	Rate equations	23
	2.3	Stationary current and shot noise	24
3	Fra	ck-Condon blockade and giant Fano factors – Electronic avalanches 2	26
	3.1	Introduction	26
	3.2	Foundation of the Franck-Condon blockade and numerical results 2	27
		3.2.1 Franck-Condon blockade	27
		3.2.2 Giant Fano factors	29
		3.2.3 Self-similar electron avalanches	30
	3.3	Analytical theory of avalanche transport	32
		3.3.1 Full counting statistics	33
		3.3.2 Microscopic derivation of $p_a(n)$	36
		3.3.3 Noise spectrum $S(\omega)$ of avalanche-type transport	37
		3.3.4 The role of vibrational relaxation	39

		3.3.5 Fano factor enhancement for nonzero ε_d	39			
	3.4	Conclusions	41			
4	Franck-Condon blockade beyond sequential tunneling – Cotunneling ef-					
	fect	s	43			
	4.1	Introduction	43			
	4.2	Summary of central results	44			
		4.2.1 The fate of the FC blockade	44			
		4.2.2 Persistence of avalanches and enhanced Fano factors	44			
		4.2.3 Absorption-induced vibrational sidebands	45			
		4.2.4 Inherent telegraph noise	45			
	4.3	Cotunneling rates in the FC blockade regime	45			
	4.4	Current-voltage characteristics	46			
		4.4.1 Linear Conductance	46			
		4.4.2 Nonlinear current-voltage characteristics	49			
	4.5	Current shot noise	53			
		4.5.1 Zero-frequency noise for equilibrated vibrations	53			
		4.5.2 Zero-frequency noise for unequilibrated vibrations	55			
		4.5.3 Noise spectrum for unequilibrated vibrations	57			
	4.6	Conclusions	57			
5	Effe	ects of charge-dependent vibrational frequencies and anharmonicities	59			
	5.1	Introduction	59			
	5.2	Extended Model	60			
	5.3	Calculations	61			
	5.4	Results and interpretation	62			
		5.4.1 Charge-dependent frequencies	62			
		5.4.2 Anharmonicities	65			
	5.5	Conclusions	65			
6	Nor	nequilibrium effects for weak electron-phonon coupling	66			
	6.1	Introduction	66			
	6.2	Weak electron-phonon coupling within the Anderson-Holstein model	67			
		6.2.1 Phonon distributions for weak electron-phonon coupling	67			
	6.3	Implications for real molecules	70			
		6.3.1 Direct vibrational relaxation	72			
		6.3.2 Additional vibrational modes	72			
		6.3.3 Morse potential and dissociation	72			
	6.4	Conclusions	75			
7	The	ermopower of single molecules	76			
	7.1	Introduction	76			
	7.2	Extended Model	77			
	7.3	Thermopower	78			
		7.3.1 Sequential-tunneling contributions	79			
		7.3.2 Cotunneling contributions	79			

	7.4	Results
		7.4.1 Sequential tunneling
		7.4.2 Results for the total thermopower $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $ 83
	7.5	Summary
8	Trai	nsport through negative-U molecules 88
	8.1	Introduction
	8.2	Effective Hamiltonian
	8.3	Rates
	8.4	Conductance and current-voltage characteristics
	8.5	Current shot noise in the negative- U model $\ldots \ldots \ldots \ldots \ldots \ldots \ldots $ 95
		8.5.1 Fano factor for cotunneling
		8.5.2 Fano factor for unidirectional pair tunneling
		8.5.3 Fano factor for mixed pair tunneling
		8.5.4 Interpretation of the full Fano factor
	8.6	Mapping between the negative- U and the conventional Anderson Hamiltonian 99
		8.6.1 Particle-hole transformation
		8.6.2 Left-right transformation
		8.6.3 Mapping for the linear-response regime
	8.7	Positive- U model with local Zeeman field: High-temperature regime \ldots 104
		8.7.1 Linear conductance and current-voltage characteristics 104
		8.7.2 Current shot noise in the positive- U Anderson model 106
	8.8	The onset of the Kondo effect: Logarithmic corrections
	8.9	The charge-Kondo regime
		8.9.1 Linear conductance
		8.9.2 Nonlinear current-voltage characteristics
		8.9.3 Shot noise
	8.10	Extension: Breaking of the LR symmetry $\ldots \ldots \ldots$
	8.11	Conclusions
9	Con	clusions and outlook 115
\mathbf{A}	Imp	ortant canonical transformations 119
	A.1	Lang-Firsov transformation
		A.1.1 Model and task
		A.1.2 Preliminary remarks
		A.1.3 Canonical transformation
	A.2	Schrieffer-Wolff transformation
	A.3	Glazman-Raikh transformation
в	Frar	nck-Condon matrix elements 126
	B.1	FC matrix elements for vibrations and oscillations 126
	B.2	FC matrix elements for the Morse potential

\mathbf{C}	Regularization scheme for cotunneling rates	129
	C.1 The I integral	130
	C.2 The J integral \ldots	130
D	Formalism for calculating current and shot noise	132
	D.1 Current	133
	D.2 Noise	134
	D.3 Formula for the stationary probability distribution	137
\mathbf{E}	Details: Analytical treatment of avalanche transport	138
	E.1 Derivation of the full counting statistics	138
	E.2 Derivation of the stationary current and the noise spectrum	140
\mathbf{F}	Sketch of Monte-Carlo simulations for Markov processes	142
	F.0.1 Relaxation in Monte Carlo simulations	143
G	Exactly solvable case: the resonant-level model	144
	G.1 Current	144
	G.2 Zero-frequency noise	146
н	Approximate evaluation of cotunneling rates	148
Ι	Details: Noise calculations	149
	I.1 Zero-frequency noise and Fano factor for the telegraph regime	149
	I.2 Zero-frequency noise in the pair-tunneling regime	150
J	Quantum mechanics of the Morse potential	151
K	Thermopower: Linearized rate equations and expansion coefficients	153
	K.1 Linearized rate equations	153
	K.2 Expansion coefficients	153
\mathbf{L}	Kondo regime – Inelastic backscattering contributions	158
Bi	bliography	160
Deutsche Kurzfassung 1'		170
Curriculum vitae 1		
In	Index	

Acknowledgments

One of the symptoms of an approaching nervous breakdown is the belief that one's work is terribly important.

BERTRAND RUSSELL (1872-1970) in "Conquest of Happiness"

We are like dwarfs on the shoulders of giants, so that we can see more than they, and things at a great distance, not by virtue of any sight on our part, or any physical distinction, but because we are carried high and raised up by their giant size.

BERNARD OF CHARTRES (12th Century)

It is without any hesitation that I assent to Chartres' and Russel's points of view. In the end, my PhD thesis, no matter how important or unimportant for the world of science, constitutes a piece of work which has profitted greatly from the presence of a number of people around me. It is my pleasure to be able to thank these "giants," who have frequently carried me on their shoulders in various ways.

First and foremost I would like to thank my PhD adviser Prof. Felix von Oppen. I had just started my PhD when he advised me to read Steven Weinberg's "Four golden lessons" [1]. At that time, Weinberg's "oceanographic metaphore" of a PhD student facing the "vast, unexplored ocean" of physics that he still has to learn, felt all too familiar to me. Indeed, it was "sink or swim." All along the way, Prof. von Oppen's encouragement and support provided the water wings needed for succeeding. I have come to appreciate and learn from his great intuition and way of thinking about physics. I am indebted to Prof. von Oppen for the large amounts of time that he spent with me discussing the progress as well as the dead ends I experienced while working on my thesis.

Several other senior scientists and fellow PhD students have worked with me on one or several projects, which have become part of my thesis. They are: Prof. Mikhail Raikh (University of Utah), Dr. Yuval Oreg and Eran Sela (Weizmann Institute of Science), Prof. Anton Andreev (University of Washington), Matthias Semmelhack (FU Berlin), and Prof. Abraham Nitzan (Tel Aviv University). I would like to thank them for their patience and support, and for sharing their valuable physical insight. I have learned a lot from working with them, and I have very much enjoyed the collaborations. In addition, I have benefitted from discussions with Prof. Carsten Timm (University of Kansas), Dr. Maarten Wegewijs (RWTH Aachen), Prof. Israel Bar-Joseph (Weizmann Institute of Science), Dr. Andrea Donarini (Universität Regensburg), Dong-Hun Chae (University of Texas), and Florian Elste (FU Berlin). I am indebted to Heiko Appel (FU Berlin) for support with the local computer cluster.

Life in our research group as well as outside of the Physics Department would not have been the same without friends. I would like to thank Christian Joas (FU Berlin), who has endured (and answered) my numerous physics and computer related questions, and made me feel at home in the department. Uli, Sigrid, Heiko, Mirjana, Moritz, E. Sperling, and Christian W. ought to be mentioned – they know what I am thanking for. Finally, I thank my family, especially my parents and sister, for their tireless support.

I acknowledge funding by the DFG through the Sfbs 290, 658, and Spp 1243 as well as support through a PhD grantship from the Studienstiftung des deutschen Volkes. I would like to thank the University of Washington and the Weizmann Institute of Science for hospitality on several occasions, in the latter case made possible by the LSF and the EU - Transnational Access program (RITA-CT-2003-506095).

Citations to Previously Published Work

Large portions of Chapter 3 have appeared in the following two papers:

Franck-Condon Blockade and Giant Fano Factors in Transport through Single Molecules, J. Koch and F. von Oppen, Phys. Rev. Lett. **94**, 206804 (2005), cond-mat/0409667;

Full counting statistics of strongly non-Ohmic transport through single molecules, J. Koch, M. E. Raikh, and F. von Oppen, Phys. Rev. Lett. **95**, 056801 (2005), cond-mat/0501065.

Chapters 5 and 6 are based upon

Effects of charge-dependent vibrational frequencies and anharmonicities in transport through molecules, J. Koch and F. von Oppen, Phys. Rev. B **72**, 113308 (2005), cond-mat/0508011;

Current-induced nonequilibrium vibrations in single-molecule devices, J. Koch, M. Semmelhack, F. von Oppen, and A. Nitzan, Phys. Rev. B **73**, 155306 (2006), cond-mat/0504095.

Chapter 7 appears in its entirety as

Thermopower of Single-Molecule Devices, J. Koch, F. von Oppen, Y. Oreg, and E. Sela, Phys. Rev. B **70**, 195107 (2004), cond-mat/0405453.

Central parts of Chapter 8 have been published as

Pair tunneling through single molecules, J. Koch, M. E. Raikh, and F. von Oppen, Phys. Rev. Lett. **96**, 056803 (2006), cond-mat/0510249;

Fractional Shot Noise in the Kondo Regime, E. Sela, Y. Oreg, F. von Oppen, and J. Koch, cond-mat/0603442 (submitted to Phys. Rev. Lett.)

A compact review of the topics discussed in Chapters 3 and 8 has also been published as

Novel quantum transport effects in single-molecule transistors, F. von Oppen and J. Koch, Advances in Solid State Physics **46** (Springer-Verlag Berlin, 2006).

Finally, publications on the material presented in Chapter 4 (together with F. von Oppen and A. V. Andreev) and Chapter 8 (together with E. Sela, Y. Oreg, and F. von Oppen) are currently in preparation.

Electronic preprints (shown in typewriter font) are available on the Internet at the following URL:

http://arXiv.org

Notation

In order to avoid unneccessarily complicated notation, we have refrained from marking operators with "hats." The *c*-number vs. operator nature of quantities should be clear from the context. Vectors are denoted in bold face, e.g. \mathbf{v} , matrices are indicated by sans-serif font, e.g. W. For the convenience of the reader, we provide a list of the symbols and abbreviations most frequently used throughout the text.

Symbol Description

$\lfloor x \rfloor$	floor function, gives the largest integer less than or equal to x
a	index for the left and right lead $(a = L, R)$
b, b^{\dagger}	annihilation and creation operator for a vibrational excitation of the molecule
β_m	parameter for the inverse width of the Morse potential
$c_{a\mathbf{p}\sigma}, c^{\dagger}_{a\mathbf{p}\sigma}$	annihilation and creation operator for an electron in lead a with momentum \mathbf{p}
	and spin projection σ
D_{-}	parameter for the depth of the Morse potential
$d_{\sigma}, d_{\sigma}^{\dagger}$	annihilation and creation operator for a spin- σ electron in the molecular orbital
ε_d	one-particle energy of the molecular orbital which dominates the transport
E_q^n	eigenenergy of the molecular state $ n,q\rangle$
$F, F_{\rm ex}$	(zero-frequency) Fano factor, excess noise Fano factor
$f(\epsilon)$	Dirac-Fermi distribution, $f(\epsilon) = (e^{\beta\epsilon} + 1)^{-1}$
$f_a(\epsilon)$	Dirac-Fermi distribution for lead $a, f_a(\epsilon) = f(\epsilon - \mu_a)$
G	linear conductance
G_T	thermal linear-response coefficient
Г	total tunneling-induced level width, $\Gamma = \sum_{a} \Gamma_{a}$
Γ_a	partial level width induced by tunneling in junction a , $\Gamma_a = 2\pi \rho t_a ^2$
$H_n(x)$	Hermite polynomial
$I_{\nu}(x)$	modified Bessel function
λ	dimensionless parameter characterizing the electron-phonon coupling strength
$\ell_{\rm osc}$	harmonic oscillator length (measure of the spatial extent of the vibrational ground state)
$\mathcal{L}_n^m(x)$	generalized Laguerre polynomial
μ_a	chemical potential of lead a
$M_{qq'}$	Franck-Condon matrix element for a phonon transition $q \rightarrow q'$
n	electronic occupation number of the molecule
$n_B(\epsilon)$	Bose function, $n_B(\epsilon) = (e^{\beta\epsilon} - 1)^{-1}$
$n_{d\sigma}, n_d$	spin-resolved and total occupation-number operator for the molecular orbital
ω	(angular) frequency in the noise-power spectrum
ω_0	(angular) frequency for the vibrational mode of the molecule
P_q^{cq}	thermal equilibrium distribution for vibrational excitations
P_q^n	stationary occupation probability for the molecular state $ n,q\rangle$
$\psi(x)$	digamma function (logarithmic derivative of the 1' function)
q	vibrational excitation number for the molecule
ho	density of states of the leads (constant in the wide-band limit)
σ	S_z component of the electronic spin $(\sigma = , \downarrow)$
s(n,n')	spin factor
S	thermopower
$S(\omega)$	noise power spectrum for the current shot noise
I, β	temperature, $\beta = 1/\kappa_B I$
au	vibrational relaxation rate
	tunnening matrix element for junction a
U V	charging energy of the relevant molecular orbital
V TTZnn'	Dias voltage
$W_{qq'}^{nn}$	rate for the tunneling-induced transition $ n,q\rangle ightarrow n',q' angle$

Abbreviation Description

Franck-Condon
highest occupied molecular orbital
current-voltage
lowest unoccupied molecular orbital
Monte-Carlo
negative differential conductance, negative differential resistance
particle-hole/left-right
scanning tunneling microscope
width at half maximum