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Abstract
The objective of this Ph.D. thesis is the development and validation of a VTOL-

based (Vertical Take Off and Landing) micro-drone for the measurement of gas con-
centrations, to locate gas emission sources, and to build gas distribution maps. Gas
distribution mapping and localization of a static gas source are complex tasks due to
the turbulent nature of gas transport under natural conditions [1] and becomes even
more challenging when airborne. This is especially so, when using a VTOL-based
micro-drone that induces disturbances through its rotors, which heavily affects gas
distribution. Besides the adaptation of a micro-drone for gas concentration mea-
surements, a novel method for the determination of the wind vector in real-time
is presented. The on-board sensors for the flight control of the micro-drone pro-
vide a basis for the wind vector calculation. Furthermore, robot operating software
for controlling the micro-drone autonomously is developed and used to validate the
algorithms developed within this Ph.D. thesis in simulations and real-world experi-
ments.

Three biologically inspired algorithms for locating gas sources are adapted and
developed for use with the micro-drone: the surge-cast algorithm (a variant of the
silkworm moth algorithm) [2], the zigzag / dung beetle algorithm [3], and a newly
developed algorithm called “pseudo gradient algorithm”. The latter extracts from
two spatially separated measuring positions the information necessary (concentra-
tion gradient and mean wind direction) to follow a gas plume to its emission source.
The performance of the algorithms is evaluated in simulations and real-world exper-
iments. The distance overhead and the gas source localization success rate are used
as main performance criteria for comparing the algorithms.

Next, a new method for gas source localization (GSL) based on a particle filter
(PF) is presented. Each particle represents a weighted hypothesis of the gas source
position. As a first step, the PF-based GSL algorithm uses gas and wind measure-
ments to reason about the trajectory of a gas patch since it was released by the gas
source until it reaches the measurement position of the micro-drone. Because of the
chaotic nature of wind, an uncertainty about the wind direction has to be considered
in the reconstruction process, which extends this trajectory to a patch path envelope
(PPE). In general, the PPE describes the envelope of an area which the gas patch
has passed with high probability. Then, the weights of the particles are updated
based on the PPE. Given a uniform wind field over the search space and a single gas



source, the reconstruction of multiple trajectories at different measurement locations
using sufficient gas and wind measurements can lead to an accurate estimate of the
gas source location, whose distance to the true source location is used as the main
performance criterion. Simulations and real-world experiments are used to validate
the proposed method.

The aspect of environmental monitoring with a micro-drone is also discussed.
Two different sampling approaches are suggested in order to address this problem.
One method is the use of a predefined sweeping trajectory to explore the target
area with the micro-drone in real-world gas distribution mapping experiments. As
an alternative sampling approach an adaptive strategy is presented, which suggests
next sampling points based on an artificial potential field to direct the micro-drone
towards areas of high predictive mean and high predictive variance, while maxi-
mizing the coverage area. The purpose of the sensor planning component is to
reduce the time that is necessary to converge to the final gas distribution model or
to reliably identify important parameters of the distribution such as areas of high
concentration. It is demonstrated that gas distribution models can provide an accu-
rate estimate of the location of stationary gas sources. These strategies have been
successfully tested in a variety of real-world experiments in different scenarios of gas
release using different gas sensors to verify the reproducibility of the experiments.
The adaptive strategy was also successfully validated in simulations using predefined
sweeping trajectories as reference criteria.

The results of this Ph.D. thesis reflect the applicability of gas-sensitive micro-
drones in a variety of scenarios of gas release. Effective counteractive measures can
be set in motion after accidents involving gas emissions with the aid of spatially
resolved gas concentration and wind data collected with micro-drones. Monitoring
of geochemically active regions, landfills, CO2 storage facilities, and the localization
of gas leaks are further areas of application.

Keywords: Autonomous micro-drone (micro UAV), chemical sensing, gas source
localization, gas distribution mapping, estimation of wind speed and direction.



Zusammenfassung
Die Zielsetzung der Dissertation ist die Entwicklung und Validierung einer VTOL-

fähigen (Vertical Take Off and Landing) Mikrodrohne zur Messung von Gaskonzen-
trationen, zur Lokalisierung von Gasemissionsquellen und zur Erstellung von Gas-
verteilungskarten. Neben der Adaption einer Mikrodrohne zur Gaskonzentrations-
messung wird ein neuartiges Verfahren zur Bestimmung des Windvektors in Echtzeit
realisiert. Die Basis für die Windvektorberechnung bildet die Onboard-Sensorik zur
Flugregelung der Mikrodrohne. Weiterhin wird eine neuartige Software zur autono-
men Steuerung der Mikrodrohne vorgestellt, mit der eine ausführliche Validierung
der im Rahmen dieser Dissertation entwickelten Algorithmen in Simulationen und
Realexperimenten durchgeführt wird.

Zwei biologisch inspirierte Algorithmen zur Lokalisierung von Gasquellen wur-
den für den Einsatz mit der Mikrodrohne angepasst – die Entwicklung eines drit-
ten Algorithmus wird ebenfalls beschrieben. Dieser Algorithmus extrahiert aus zwei
räumlich getrennten Messpunkten die notwendigen Informationen (Konzentrations-
gradient und mittlere Windrichtungen) um einer Gasfahne bis hin zur Emissions-
quelle zu folgen. Die Leistungsfähigkeit der Algorithmen wurde in Simulationen und
Realexperimenten bestimmt, wobei als Vergleichskriterium dabei die Abweichung
der von der Mikrodrohne erstellten Trajektorie im Vergleich zur Ideallinie und die
Erfolgsquote beim Lokalisieren der Gasquelle herangezogen wurden.

Im Anschluss wird eine neue Methode zur Quelllokalisierung beruhend auf einem
Partikelfilter präsentiert. Dabei steht jedes Partikel für eine gewichtete Hypothe-
se der Quellposition. Im ersten Schritt rekonstruiert der Partikelfilter anhand der
Messdaten der Mikrodrohne den Weg, den das Gas von der Quelle bis zur Mess-
position genommen haben könnte, und aktualisiert auf Basis dieser Berechnung
die Gewichtung der Partikel. Unsicherheiten bezüglich der gemessenen Windrich-
tung werden dabei in Form eines sich öffnenden Wind-Kegels in Flächenprojektion
(2D) berücksichtigt. Ausgehend von mehreren Messpositionen kann schließlich eine
gute Schätzung der Quellposition erfolgen, deren Abweichung dabei ein Kriterium
der Leistungsfähigkeit des Algorithmus darstellt. Simulationen und Realexperimente
dienen hierbei zur Validierung des Verfahrens.

Auch auf den Aspekt der Umweltbeobachtung von Gasverteilungen mit einer Mi-
krodrohne wird eingegangen. Hierzu werden zwei Messstrategien zur Modellierung



der Gasverteilung verglichen. Eine Strategie sieht die Messung entlang vordefinier-
ter Sweeping-Trajektorien vor, wohingegen ein weiterer Ansatz adaptiv neue Mess-
positionen auf Basis eines kontinuierlich aktualisierten Gasverteilungsmodells vor-
schlägt. Diese adaptive Messstrategie verwendet künstliche Potentialfelder um die
Mikrodrohne in Regionen mit hoher Gaskonzentration oder hoher Varianz der Gas-
konzentration zu steuern, während generell eine möglichst umfassende Abdeckung
der Überwachungsfläche angestrebt wird. Ziel ist die Minimierung der Zeit, die not-
wendig ist, um ein repräsentatives Gasverteilungsmodell zu erhalten. Es wird gezeigt,
dass Gasverteilungsmodelle dazu beitragen können Positionen von Gasquellen zu be-
stimmen. Die Strategien wurden erfolgreich in einer Vielzahl von Realexperimenten
in verschiedenen Szenarien der Gasfreisetzung erprobt und unter Verwendung un-
terschiedlicher Gassensortechnologien auf Reproduzierbarkeit der Experimente ge-
testet. Die adaptive Messstrategie wurde darüber hinaus erfolgreich in Simulationen
validiert.

Die Resultate dieser Dissertation spiegeln die Anwendbarkeit gassensitiver Mi-
krodrohnen unter verschiedenen Bedingungen der Gasfreisetzung wider. Effekti-
ve Gegenmaßnahmen bei Gefahrenszenarien nach Chemie- oder Gefahrgutunfäl-
len können mit Hilfe ortsaufgelöster Gaskonzentrations- und Winddaten eingelei-
tet werden. Die Überwachung von geochemisch aktiven Regionen, Mülldeponien,
CO2-Speicherungsanlagen und die Lokalisierung von Leckagen bilden weitere An-
wendungsfelder.

Schlagwörter: Autonome Mikrodrohne (Micro UAV), Gassensorik, Windmessung,
Lokalisierung von Gasquellen, Datenmapping, Gasverteilungsmodellierung.
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Chapter 1

Introduction

At present, the release of hazardous and greenhouse gases is an acute threat to
the environment/climate and mainly responsible for extensive ecological damage,
both global (ozone layer depletion and global warming) and local (pollution and
poisoning hazards caused by accidents). Gases may be released in many different
ways and for various reasons: as exhaust gases from traffic or industry, as flue gases
from fires, or as a consequence of incidents with chemicals. Other sources of gas
emission are, e.g., geodynamically active regions, waste disposals, Carbon Capture
& Storage (CCS) areas, industrial sites, landfill sites, and contaminated areas. Thus,
an early localization of gas leaks and monitoring of potential areas of gas emission
are essential.

August 23, 2011 – Earthquake Could Cause Gas Leaks: “The 5.9 earth-
quake centered near Richmond, Va., which struck the east coast this af-
ternoon, could have damaged natural gas lines. Both the city of Philadel-
phia, and the state of Pennsylvania have issued warnings to residents to
call 911 if they smell natural gas.” [4]

The fundamental requirement for gas emission control as well as effective coun-
teractive measures in case of incidents or disasters such as the above mentioned
earthquake is the availability of measurements of relevant gas concentrations in the
area of interest with high spatial and temporal resolution, e.g., to provide incident
planning staff with information to prevent citizens and rescue workers from being
harmed or killed [5]. In order to obtain a truthful representation of the gas distribu-
tion and be able to locate gas sources, it is essential to collect spatially distributed
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concentration and wind measurements. The response of many gas sensors, however,
is caused by direct interaction with the chemical compounds and thus represents
only a small area around the sensor surface. For economical and deployment-related
reasons, a stationary sensor network is in many cases not a viable solution. The
measuring vehicles used up to now [6–8] which are equipped with appropriate gas
analysis technology can carry out highly selective gas measurements, but are typi-
cally ground-based and cannot reach the emission source in certain cases due to, e.g.,
obstacles, rough terrain, and large gaps. Smaller handheld measurement devices are
flexible and inexpensive, but the danger of hazardous gases to people can prevent
their use very close to the emission source. Therefore, only remote sensing can of-
ten be carried out. Accordingly, a quickly deployable, flying mobile measurement
device, which is able to measure gas concentrations and wind vectors in many dif-
ferent scenarios of gas release, is needed to perform the above mentioned gas source
localization and monitoring tasks.

Micro Unmanned Aerial Vehicles (MUAVs) can be equipped with a variety of
sensors and precisely navigated to a certain region of interest for remote sensing
without endangering persons in critical areas. MUAVs are interesting because they
are cost-efficient, easy to transport, and can be deployed in a short time. Micro
Vertical Take-Off and Landing (VTOL) UAVs, such as quadrocopters (in the fol-
lowing referred to as micro-drones), have the ability to hover over a certain point of
interest for a prolonged time. Their compact design and excellent maneuverability
makes precise navigation which gives access even to small passages in urban terrain
and on industrial sites possible.

In the past two decades a number of algorithms for gas source localization (GSL)
and gas distribution mapping (GDM) have been presented. To the author’s knowl-
edge, implementations of these algorithms have been tested and evaluated so far on
ground-based mobile robot platforms, Autonomous Underwater Vehicles (AUVs),
and blimps. Gas distribution mapping and localization of a static gas source are
complex tasks due to the turbulent nature of gas transport under natural condi-
tions [1] (Fig. 1.1). Gas molecules emitted in natural environments are carried by
the wind, forming a plume. Two physical processes that influence the transport
of gas molecules and cause the dilution and dispersion downwind of the source
are molecular diffusion and turbulence. Molecular diffusion is a very slow process
and therefore negligible [10]. Turbulence causes the formation of eddies of different
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Figure 1.1: Effect of turbulence compared to pure molecular diffusion (figure and
caption are taken from Smyth and Moum [9]): At the top, the initial state is assumed
to be a circular region of nearly homogeneous concentration, whereas two numerical
solutions of the equations of motion obtained in the case of a motionless fluid (left)
and in the case of fully developed, two-dimensional turbulence (right) are shown
at the bottom. The mixed region (yellow/green) in the distribution on the right
expands much more rapidly in the turbulent case (i.e., no smooth concentration
gradients are formed pointing at the gas source).

size [11]. This leads to a patchy and intermittent structure of plumes where high and
low gas concentrations are spatially and temporally close [12]. Often, the actual gas
source is located at the point of highest gas concentration, although it may occur
that the highest concentration is measured far away from the gas source.

Ground-based mobile robots could be operated at very low speeds in the mag-
nitude of approximately ≤ 0.1ms−1, which affects gas distribution only marginally
in comparison to a micro-drone. The rotors of the micro-drone induce disturbance,
which heavily affects the gas distribution. Thus, the task of gas source localization
and gas distribution mapping becomes even more challenging when airborne. This
Ph.D. thesis deals with the problem of gas source localization and gas distribution
mapping in natural environments with a micro-drone. To the author’s knowledge,
it is the first time that these tasks are addressed with an airborne micro-drone in
real-world scenarios.

The first part of this Ph.D. thesis discusses the development and in-depth val-
idation of a gas-sensitive micro-drone that provides the basis for the real-world
experiments performed throughout this work. A novel approach to estimate the
wind vector based on the existing measurement data of the micro-drone’s on-board
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sensors is implemented to avoid the need to use anemometric sensors. A detailed
evaluation in wind tunnel and field tests is included. The robot operating software
to autonomously control the micro-drone from the ground station and a simulation
environment are presented as well.

The second part of this Ph.D. thesis deals with the problem of gas source local-
ization with a micro-drone. The task of localizing a gas source can be broken down
into three subtasks [13]:

1. Plume finding: attempting to get into contact with the gas.

2. Plume traversal: following the gas plume to its source.

3. Source declaration: determining the gas source location.

However, the source declaration phase is performed in parallel to the other two
subtasks rather than merely at the end. Some algorithms may even not need
to differentiate between plume finding and traversal, e.g., probabilistic algorithms
(Sec. 2.2.2.1). This work deals with all three phases with the main focus on the lat-
ter two. Three reactive, biologically-inspired (bio-inspired) plume tracking strategies
are implemented and a new measuring strategy especially designed for, but not lim-
ited to, a micro-drone is presented. This includes a statistical investigation of their
performance and robustness. The task of declaring the source is still an open issue
rarely addressed in the past. This work provides a possible solution for the whole gas
source localization task, including gas source declaration for a gas-sensitive micro-
drone, by incorporating a particle filter-based localization approach.

The third part of this work addresses the problem of gas distribution mapping
with a micro-drone. Modeling the gas distribution is the task of deriving a truthful
representation of the observed gas distribution from a set of spatially and temporally
distributed measurements [14]. Two different sampling approaches are suggested in
order to address this problem. First, predefined trajectories are used to explore
the target area with the micro-drone in several real-world gas distribution mapping
experiments. A detailed investigation concerning the suitability of micro-drones
for gas distribution mapping is given in this context. However, building detailed
gas distribution maps over large areas is time-consuming. To arrive at a truthful
gas distribution model more quickly, a second approach is presented that allows
for faster inference of a reasonably accurate estimate of the gas source location.
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The adaptive sensor planning algorithm suggests next sampling points based on an
Artificial Potential Field (APF). The selection process considers three objectives to
direct the sensor towards areas of high predictive mean and high predictive variance
of the gas distribution while maximizing the coverage area. By introducing locality
constraints, the results of the sensor planning component can be used to plan suitable
paths for a micro-drone.

Nevertheless, all suggested solutions can be transferred to other robotic platforms
regardless of the element for which the robot is specialized (land, water, and air).

1.1 Contributions

The main contributions of this Ph.D. thesis are:

1. Development and adaptation of two gas sensor modules, respectively, intended
for use as payload for quadrocopter-based micro-drones, including their exper-
iment evaluation with the Airrobot AR100-B micro-drone.

2. Development and experiment evaluation of three different methods to reduce
disturbance of gas transport by the rotors of the micro-drone.

3. Introduction and experiment evaluation of a new approach to estimate the
wind vector in real-time based on the existing measurement data of the micro-
drone’s on-board sensors which makes additional anemometric sensors super-
fluous. To the best of the author’s knowledge, this approach is unique.

4. Demonstration of airborne measuring and monitoring of hazardous scenarios
with quadrocopter-based micro-drones and realization of 22 real-world exper-
iments in different outdoor environments (Tuscany Region, BAM Test Site
’Technical Safety’, and Botanical Garden of Berlin) under varying wind and
weather conditions. Furthermore, the suitability of the micro-drone for gas dis-
tribution mapping is evaluated (in general: environmental monitoring tasks),
including a detailed evaluation of the experiment runs. It should be high-
lighted that the real-world experiments were performed with the gas-sensitive
micro-drone in outdoor environments without simplifying the experiment se-
tups.
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5. Setup of a simulation environment for systematic gas source localization and
gas distribution mapping experiments with a simulated micro-drone. This
includes the development and integration of a filament-based gas dispersion
model by Pashami et al. [15], a GPS model, a gas sensor model, a simple
disturbance model of the micro-drone, and a wind direction sensor model.

6. Tackle the problem of gas source localization and gas distribution mapping of
static gas sources in natural environments with a gas-sensitive micro-drone.

7. Implementation of three reactive bio-inspired plume tracking strategies adapt-
ed for the micro-drone: the surge-cast algorithm (a variant of the silkworm
moth algorithm) [2], the zigzag / dung beetle algorithm [3], and a newly de-
veloped algorithm called “pseudo gradient algorithm”. The latter incorpo-
rates a new measuring strategy especially designed for (but not limited to)
a micro-drone. An experiment evaluation of the plume tracking strategies
was performed in simulation and real-world experiments, including a detailed
statistical analysis of their performance and robustness.

8. Introduction of an algorithm based on a particle filter to perform gas source
localization. The main contribution is the proposed measurement model that
uses gas and wind measurements to build a patch path envelope (PPE) and
update the particles depending on their relative position to the PPE and the
actual gas measurements. The PPE describes the envelope of an area the gas
patch has passed with high probability. An experiment evaluation of this algo-
rithm was performed in simulation and real-world experiments. Furthermore,
an experiment observation demonstrates that the assumption of a uniform
wind field does not hold in turbulence-dominated environments.

9. Introduction of a sensor and path planning strategy [16] that incorporates
locality constraints to plan the path for a micro-drone. The algorithm uses
information about the target area, previous sampling locations, and the current
statistical gas distribution model to direct the sensor towards areas of high
predictive mean, high predictive variance, while maximizing the coverage area
using an artificial potential field. An experiment evaluation of this algorithm
was performed in simulation and real-world experiments.
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10. Confirmation of the observation that the gas distribution maps (and partic-
ularly the variance prediction) can provide good estimates of the gas source
location.

1.2 Structure of the Thesis

The structure of this thesis is as follows:

Chapter 2 gives an overview of gas sensing technologies, which are relevant or
interesting for mobile robotic applications, including a short discussion con-
cerning the gas sensor selection for the micro-drone. Furthermore, a survey of
related work on gas sensing with mobile robots and (micro) unmanned aerial
vehicles is provided. Finally, a brief review of state-of-the-art wind vector
estimation techniques for (micro) unmanned aerial vehicles is given.

Chapter 3 details the development and in-depth validation of a gas-sensitive mi-
cro-drone that is used in the real-world experiments of the present Ph.D. thesis.
Furthermore, it presents a novel approach to estimate the wind vector based on
the existing measurement data of the micro-drone’s on-board sensors without
a dedicated anemometer. The proposed approach is evaluated in wind tunnel
and field tests. The second part of this chapter presents two different robot
operating software to predefine measurement campaigns and to autonomously
control the micro-drone from the ground station.

Chapter 4 discusses the need for simulation experiments and presents the setup of
the simulation environment that was used for the investigations of this Ph.D.
thesis.

Chapter 5 describes three bio-inspired plume tracking algorithms and their imple-
mentation for a gas-sensitive micro-drone including a new measuring strategy
especially designed for, but not limited to, a micro-drone. An experiment
comparison of these strategies in simulation and real-world experiments is also
given, including a detailed statistical analysis of their performance and robust-
ness.

Chapter 6 introduces a new algorithm based on a particle filter to perform gas
source localization. A unique measurement model is proposed that uses gas
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and wind measurements to infer the location of the gas source. The algorithm
was evaluated in simulation and real-world experiments.

Chapter 7 exemplifies how to address environmental monitoring tasks with a gas-
sensitive micro-drone and presents the realization of 22 real-world experiments
in a number of uncontrolled outdoor environments with varying wind and
weather conditions to evaluate and discuss the suitability of the micro-drone
for gas distribution mapping.

Chapter 8 introduces a sensor and path planning strategy that incorporates lo-
cality constraints in order to plan the path for a micro-drone and presents an
experiment evaluation of this algorithm in simulation and real-world experi-
ments.

Chapter 9 concludes the Ph.D. thesis and gives an outlook on future work.



Chapter 2

State of the Art and Related Work

2.1 Gas Sensor Technology

Coal miners used to bring canary birds to the mine shafts as an early detection
system of life-threatening gases such as carbon dioxide (CO2), carbon monoxide
(CO), and methane (CH4). The canary bird, normally a very songful bird, would
stop singing and eventually die in the presence of these gases, signaling the miners to
exit the mine quickly [17]. However, this out-of-time “detection system” was neither
able to identify the threatening gas, nor its concentration.

Gas sensors are small devices that generate an electrical signal in the presence
of a target gas. They are usually part of a safety system, which can be mobile or
stationary, to identify and to quantify gaseous chemical volatiles. Gas sensors can
be classified according to their operational principles. The most common sensors
are thermal, mass, electrochemical, potentiometric, amperometric, conductometric,
and optical sensors [18]. The general principle behind gas sensors is the fact that
“changes in the gaseous atmosphere alter the sensor properties in a characteristic
way” [5]. The requirements on gas sensors in robotics (and in other fields of appli-
cation as well) are high sensitivity, selectivity, reliability, and robustness as well as
a rapid response time, low power consumption, and compact size [19]. Additionally,
the sensors should be inexpensive and commercially available.

Analytical equipment, such as infrared (IR) spectroscopy, gas chromatography
(GC), and mass spectrometry (MS) constitute an alternative to the use of gas sen-
sors [20]. However, these instruments are still too heavy, large, and expensive, mak-
ing them unattractive for mobile robot applications, especially for micro-drones.

9
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In the following subsections a brief overview of gas sensing technologies is pro-
vided, which are relevant or interesting for mobile robotic applications. Furthermore,
their advantages and disadvantages are presented and the most promising sensors
for the use on a micro-drone are identified. A complete survey of the different sensor
technologies is beyond the scope of this Ph.D. thesis and can be found in [18].

2.1.1 Catalytic (Cat)

A catalytic (Cat) gas sensor is a thermal sensor. Cat gas sensors are composed of
a so-called pellistor: a platinum (Pt) coil which is embedded in a pellet of sintered
ceramic material coated with a porous catalytic metal. The porosity of the catalyst
leads to an increased response time of the sensor. The Pt coil acts both as the
heater and as the resistance thermometer [18]. Typical operating temperatures for
the Pt coil are between 300◦C and 500◦C. The presence of flammable gases (or
vapors) causes a combustion at the catalytic surface of the sensor. The evolved
heat from this reaction increases the temperature of the pellistor (heat of reaction),
which also results in an increase of its resistance. This change in resistance is pro-
portional to the concentration of the explosive gases or vapors. In addition to the
catalytically-active element, the sensor also contains a heated, inactive compensator
element [21]. Both elements are part of a Wheatstone bridge. The advantage is
that environmental influences such as temperature and humidity are compensated.
However, the fundamental problem of Cat gas sensors is the catalyst poisoning [18]:
another chemical compound that bonds on the catalytic surface of the sensor re-
ducing the effectiveness of the catalyst (a poisoned catalytic surface can no longer
accelerate the desired chemical reaction). A more detailed description of Cat gas
sensors can be found in [18].

Advantages of Cat gas sensors are their commercial availability, robustness, lin-
earity, and the simple calibration routine. On the other hand, the heat-of-reaction
principle requires relatively high gas concentrations resulting in a low sensitivity (in
the magnitude of % by volume). Further disadvantages are the low selectivity –
each flammable gas or vapor, which is burned catalytically, results in a change in
resistance of the pellistor – and a comparatively high power consumption due to
the high operating temperatures. However, the warm-up time of Cat gas sensors
is much shorter than that of metal oxide (MOX) gas sensors (Sec. 2.1.4 – approx.
5min).
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2.1.2 Acoustic Wave (AW)

Acoustic Wave (AW) gas sensors, also known as Quartz Crystal Microbalance
(QCM) gas sensors, are devices that use an oscillating piezoelectric substrate, usu-
ally a quartz crystal, as a highly sensitive balance to weigh gas molecules [19]. QMC
sensors belong to the family of mass sensors and are also referred to as Surface Acous-
tic Wave (SAW) or Bulk Acoustic Wave (BAW) devices depending on whether the
effect of surface waves or bulk waves is used [5]. By using different chemical coatings
on the crystal with specific affinities, the QMC gas sensor can be made responsive to
different gases. When gas molecules become temporarily attached to the coating, the
effective crystal mass increases and lowers its resonant frequency. This relationship
between effective crystal mass and resonant frequency is known as the Sauerbrey
equation, which is the basic transduction relationship of QCM gas sensors [18]. The
Sauerbrey equation is defined as:

∆f = −2 · f 2 ·∆m
ρ · v

, (2.1)

where ∆f is the change in the resonant frequency of the crystal (the frequency shift),
f is the resonant frequency of the crystal, ∆m is the increase in mass of the crystal
per unit area, ρ is the density of the crystal material, and v is the speed of sound
waves in the crystal material. The frequency shift is proportional to the mass of the
target gas.

The advantages of QCM sensors are the rapid response time, low power con-
sumption, low weight, the possibility to control the selectivity over a wide range,
long-term stability, and long lifetime. Disadvantages include comparatively low sen-
sitivity to the target gas, limited robustness to variations in humidity, and relatively
high temperature sensitivity.

2.1.3 Electrochemical (EC)

Electrochemical (EC) gas sensors are the largest and the oldest group of chemical
sensors [18]. Nowadays, they consist of an electrolyte (solid or liquid) containing
three electrodes: a sensing electrode, a counter electrode, and a reference electrode.
An electronic potentiostat-circuit ensures a constant electrical voltage between sens-
ing electrode and reference electrode [21]. Both the material of the electrodes and
the electrolyte as well as the voltage are selected accordingly to guarantee that the
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target gas is electrochemically transformed (through oxidation or reduction) on the
sensing electrode. At the same time, oxygen from the ambient air reacts at the
counter electrode electrochemically. The flow of electrons between the sensing elec-
trode and the counter electrode generated by this reaction is proportional to the
gas concentration [21]. A more detailed description of EC gas sensors can be found
in [18].

The advantages of EC gas sensors are their commercial availability, the low power
consumption (the lowest among all types of sensors available for gas monitoring [22]),
low weight, linearity, long-term stability, and an effective life span of one to three
years. EC gas sensors are generally fairly selective to the target gas they are designed
for [22]. The degree of selectivity, however, depends on the target gas and the
concentration range for which the sensor is designed. The majority of toxic gases
can be measured. The low cross-sensitivity to temperature, humidity, and other
gases (due to selective filters) is also an advantage. On the other hand, the response
time of EC gas sensors ranges from 30 to 60s. The low sensitivity depending on the
target gas is another disadvantage.

2.1.4 Metal Oxide (MOX)

Metal Oxide (MOX) gas sensors have been the most widely used gas sensors in
mobile robot olfaction as well as in electronic nose applications [23] due to their
commercial availability, their high sensitivity, the effective life span of three to five
years, and their acceptable response and recovery times. MOX gas sensors are
conductometric sensors. The basic MOX gas sensor consists of a heating element
inside a ceramic tube coated with a semiconductor. The semiconductor is typically
sintered tin dioxide (SnO2) or zinc oxide (ZnO). Typical operating temperatures for
MOX gas sensors lie between 300◦C and 550◦C. The selectivity of these sensors is
obtained to a certain extent either by doping the surface of the semiconductor with
different additives or by setting different operating temperatures [23]. In general,
the combustion process is not strongly selective to the precise structural details of
molecules of the target gas [5]. The presence of reductive gases causes a drop in the
resistance of the semiconductor. The resistance increases as the concentration of
the target gas is reduced. This relationship between the sensor resistance and the
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concentration of the detected gas is nonlinear and can be approximated by [24]:

RS
∼= KC−α, (2.2)

where RS is the resistance of the sensor when exposed to the target gas, K is a
scaling constant, C is the gas concentration, and α is the sensitivity of the sensor.
A more detailed description of MOX gas sensors is given in [18,24].

The disadvantages of MOX gas sensors are their comparatively high power con-
sumption due to the high operating temperatures, the nonlinearity, the cross sensi-
tivity to humidity, and the variance of the response characteristics between individ-
ual sensors [25]. The nonlinearity of the sensor also makes it difficult to calibrate.
Additionally, MOX gas sensors typically have to be heated for 30 to 60min before
proper usage. Poor selectivity is another disadvantage.

2.1.5 Conductive Polymer (CP)

A Conductive Polymer (CP) gas sensor is a conductometric sensor. The measurand
of CP gas sensors is the resistance of the surface layer. In comparison to MOX
gas sensors they use a thin polymer film instead of a semiconductor. A convenient
method to deposit the polymer film across the gap between two electrodes is the elec-
trochemical deposition [26] as the thickness of the film can be controlled accurately.
Polypyrrole (PPy), polyaniline (PAni), polythiophene (PTh), and their derivatives
typically have been used as the active layers of gas sensors. CP gas sensors respond
to a wide range of organic vapors depending on their doping. However, the exact
altering mechanism of the conductivity has not been understood clearly [26]. A
more detailed description of CP gas sensors can be found in [26].

The advantages of CP gas sensors are that they have high sensitivities and short
response and decay times. In addition, the power consumption of CP gas sensors
is low as they can be operated at room temperature [27]. On the other hand, the
actual level of sensitivity is approximately one order of magnitude lower than that
of MOX gas sensors [5]. Further disadvantages are the sensitivity to humidity and
the long-term drifts.



14 2.1. GAS SENSOR TECHNOLOGY

2.1.6 Infrared (IR)

Infrared (IR) gas sensors belong to the family of optical gas sensors. The principles of
optical gas sensors are related to classical spectroscopy [18]. IR gas sensors typically
consist of an IR source, a bandpass filter, and a detector element. A second bandpass
filter and detector element in combination with an optional mirror can be used as
reference to compensate for changes that occur in the sensor (e.g., the intensity of
the light source and corrosion of the reflecting surfaces). The radiation from the
IR source contains a wide spectral content. When this radiation interacts with gas
molecules, one part of the energy has the same frequency as the gas molecule’s
natural frequency [22]. This energy is absorbed by the gas molecules while the rest
of the radiation is transmitted. This absorbed radiation causes the gas molecules
to gain energy, i.e., the gas molecules start to oscillate more strongly resulting in a
temperature rise of the gas molecules. The increase in temperature is proportional
to the concentration of the target gas. The absorbed radiation also causes a decrease
in the strength of the original source at a particular wavelength (of the target gas).
Both the temperature and the absorbed energy can be detected in dependence of the
detector element. A more detailed description of IR gas sensors can be found in [22],
whereas a more general description of optical gas sensors can be found in [18].

The advantages of IR gas sensors are their commercial availability, the high se-
lectivity, the wide range of sensitivities, the long-term stability, and an effective life
span of three to five years (in special cases up to 10 years). Very low cross-sensitivity
to temperature and humidity is also an advantage. Furthermore, IR gas sensors are
not sensitive to the airflow like the other presented gas sensors. They do not have the
problem of poisoning and the maintenance effort is minimal due to larger calibration
intervals. On the other hand, the power consumption of IR gas sensors is relatively
high as they are typically heated to avoid condensation on the reflective surfaces.
Another disadvantage is that the price of IR gas sensors can vary depending on the
light source used.

2.1.7 Gas Sensor Selection

The objective of this work was to develop and validate a gas-sensing payload for a
micro-drone for real application scenarios (Ch. 3). Targeted fields of operation are
gas measurements in, e.g., accident scenarios, emission control, and monitoring of
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critical areas as well as gas leak detection and localization. Therefore, the following
question has to be addressed:

“Which gas sensors are best suitable for use with a micro-drone with respect to the
wide range of intended real application scenarios?”

In general, the suitability of certain gas sensors depends directly on their application
scenario [22]. In the case of the given micro-drone, where constraints regarding the
payload capacity (approx. 200g) and the flight time (approx. 20min depending
on the payload configuration) are given, gas sensors with high weight and high
power consumption can theoretically be excluded from this decision process as they
further reduce the flight time. However, if combustible gases (or vapors) have to
be monitored and locations of possible gas leaks, e.g., on landfill sites (methane –
CH4) [Paper II] have to be inferred, one of the following relatively power-intensive
gas sensors has to be chosen: Cat, MOX, or IR. This is especially relevant when
operating the micro-drone in areas where gas compounds may become explosive. To
avoid ignition, the micro-drone has to be shut down in time. Here, Cat and IR gas
sensors are considered for the regular payload and MOX gas sensors are tried as part
of an electronic nose developed by Örebro University (Sec. 3.2.2). MOX gas sensors
are interesting for gas source localization and gas distribution mapping tasks due
to their reasonably fast response and recovery times. Generally, MOX gas sensors
cannot be recommended in application scenarios where calibrated gas sensors are
needed due to, e.g., the sensor drift and the variance of the response characteristics
between individual sensors [25]. To monitor toxic gases (and oxygen), EC gas sensors
should be used in mobile applications. EC gas sensors are characterized by their very
low power consumption, response times of 30 to 60s, and their low cross-sensitivity
to temperature, humidity, and other gases. On the other hand, QMB and CP gas
sensors are not suitable for real-world applications. QMB gas sensors suffer from
their generally low sensitivity to the target gas and the high cross-sensitivity to
environmental influences such as temperature and humidity. However, the rapid
response times may be beneficial for gas source localization and gas distribution
mapping tasks. The sensitivity to humidity and the as yet incomplete scientific
understanding of CP gas sensors constitute the criterion for exclusion of this kind
of sensor.

In a market survey, a commercial available portable gas detector was identified
which is applicable for the use with a micro-drone: the Dräger X-am 5600 (Sec.3.2.1).
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It combines the most suitable gas sensor technology for real-world applications in
one device and, in addition, features low mass, robustness, and compact design.
The sensors can easily be exchanged and calibrated to meet the requirements of
different application scenarios. The gas detector can measure many combustible
gases and vapors with the Cat gas sensor as well as different (toxic) gases, e.g.,
oxygen (O2), ozone (O3), carbon monoxide (CO), hydrogen sulfide (H2S), ammonia
(NH3), carbon dioxide (CO2), sulfur dioxide (SO2), phosphine (PH3), hydrogen
cyanide (HCN), nitric oxide (NO), nitrogen dioxide (NO2), chlorine (Cl2), hydro-
gen (H2), phosgene (COCl2), amine, odorants, and organic vapors (OV) with EC
and IR gas sensors.

2.2 Gas Source Localization (GSL) with Mobile
Robots

In the past two decades a number of algorithms for gas source localization (referred to
as odor source localization in the literature) have been presented. Kowadlo and Rus-
sell [28] and Lochmatter [12] published two excellent surveys of the work in this field
of research. Kowadlo and Russell have classified more than 25 algorithms in a Venn
diagram (see Fig. 2.1). Lochmatter, on the other hand, has classified the gas source
localization algorithms in ten categories, which are sketched in Fig. 2.2. Within
this Ph.D. thesis, a brief overview is given of the existing algorithms according to
the survey published by Lochmatter. In contrast to Lochmatter, the gradient-based
algorithms are considered to be in the class of the bio-inspired plume tracking algo-
rithms. This Ph.D. thesis does not elaborate on multi-robot collaboration schemes
(swarms) for gas source localization since it is aimed to accomplish this task with a
single micro-drone first. However, interesting approaches with multiple robots were
suggested in [13, 29] (bio-inspired algorithm based on spiraling and upwind surge
extended for multiple robots – Fig. 2.2 (e)), in [30–33] (algorithms based on Particle
Swarm Optimization (PSO) – Fig. 2.2 (c)), and in [34] (a probabilistic approach
called “infotaxis”, which was extended in this work for multiple robots – Fig. 2.2
(g)).
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(a) Part 1

(b) Part 2

Figure 2.1: Venn diagram of reported odor localization approaches (a) part 1 and
(b) part 2 (from Kowadlo and Russell [28]).



18 2.2. GSL WITH MOBILE ROBOTS

Figure 2.2: Gas source localization approaches (from Lochmatter [12]).
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2.2.1 Bio-inspired Algorithms

The vast majority of approaches that have been proposed for gas source localization
take inspiration from insects and other simple life forms. Insects have an outstanding
ability to find distant sources of odors by tracking wind-borne odor plumes to their
emission source [35]. In an analogous way, robots try to mimic the insects’ plume
tracking behavior to reach the source where they declare the end of their task [25,28].
Insects and other animals that have inspired robotics research for gas plume tracking
include [Paper II]:

• Moths, which use odor localization to find mates [36–41].

• Lobsters, which use odor localization to locate food [42,43].

• Escherichia coli bacteria, which use odor localization to locate nutrients [44].

• Dung beetles, which use odor localization to find hatching niches, habitation,
and food [3, 44].

Most bio-inspired plume tracking algorithms are based on the well-studied behavior
of moths [45–56]. The search pattern of the (silkworm) moth mainly contains the
following three behaviors [44]:

1. Upwind surge: Moving upwind when exposed to pheromones.

2. Casting: After having lost the plume, swinging from side to side with increas-
ing amplitude for a few seconds to reacquire the plume.

3. Spiraling: Adopting a circular motion pattern if the plume cannot be found.

A variety of state machine-based algorithms have been developed based on one or
more of these three rules or variants thereof [3, 12, 13, 28, 29, 41, 55, 57–61] (Fig. 2.2
(d) to (f)). These algorithms generally require a wind direction sensor and a binary
gas concentration sensor (typically a normal gas sensor which is thresholded). Some
other algorithms use gradient information determined from spatially separated gas
concentration measurements to move towards the gas source [12, 28, 43, 44, 62–70]
(Fig. 2.2 (a) and (b)). These algorithms are typically equipped with one or two gas
sensors only and do not need a wind direction sensor. In general, most of the state-
of-the-art plume tracking algorithms are based on two principles: chemotaxis and
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anemotaxis [Paper II]. Chemotaxis refers to a mechanism in which the movement
of an organism (or robot) is determined by the gas distribution, most often by the
concentration gradient. Anemotaxis instead refers to a mechanism in which the
movement of an organism (or robot) is determined by the perceived airflow (or fluid
flow).

To the author’s knowledge, implementations of these bio-inspired plume tracking
algorithms have been tested and evaluated so far on ground-based robot platforms,
Autonomous Underwater Vehicles (AUVs), and blimps. Almost all algorithms con-
sider a 2D environment. Experiments in 3D environments are still rare [69–72].
Furthermore, most experiments have been performed under simplified conditions,
such as a steady constant airflow and the presence of a single gas source emitting
a known chemical compound at a constant release rate. However, the airflow in an
open outdoor environment is turbulence-dominated [73], creating complex structures
of gas patches with different concentration levels.

Ch. 5 discusses three bio-inspired plume tracking algorithms for a gas-sensitive
micro-drone in more detail. The algorithms are based on the same basic principles
as presented here (chemotaxis and anemotaxis). However, the selection concentrates
on algorithms that move goal-oriented to the source. On the other hand, algorithms
are refused that involve moving the robot on spirals, e.g., the spiral-surge algorithm
from Hayes et al. [13], which seems not to be feasible to use with a micro-drone. The
strong disturbances induced by the rotors destroy the plume structure permanently,
making it more difficult or even impossible to track the plume to its source. The
surge-cast algorithm (a variant of the silkworm moth algorithm) [2], the zigzag /
dung beetle algorithm [3], and a newly developed algorithm called “pseudo gradient
algorithm” are implemented as they appear to be the most promising algorithms
to use with a micro-drone. The latter includes a new measuring strategy to deal
with the strong disturbances induced by the rotors of the micro-drone – measuring
a local concentration gradient with spatially separated sensors is not feasible in this
case. The pseudo gradient algorithm also considers wind information to overcome
the limitations of older gradient ascent methods that do not know whether they
follow a plume towards or away from its source. The algorithms are evaluated in
simulations and real-world experiments with a gas-sensitive micro-drone in a setup
where no artificial conditions were introduced to simplify the experiments.



CHAPTER 2. STATE OF THE ART AND RELATED WORK 21

2.2.2 Probabilistic Algorithms

2.2.2.1 Information Theory

Vergassola et al. [74,75] proposed a search strategy called “infotaxis” (Fig. 2.2 (g)).
Infotaxis is based on probability and information theory and was especially de-
signed to work in turbulence-dominated environments. The location of the source
is modeled as a probability distribution which is derived from previously collected
concentration measurements made in the environment. The robot tries to reduce
the entropy of this distribution either by moving to neighboring locations for which
a high information gain is expected or by standing still.

So far, there are only two works which have evaluated the concepts presented by
infotaxis in real experiments with ground-based robots. Moraud and Martinez [76]
assess the robustness and reliability of infotaxis for localizing a heat source. They
argue that heat has similar dispersion properties as chemical compounds. However,
the response and decay of temperature sensors are much faster than gas sensors.
Additionally, a fan introduced an artificial airflow in the experiment area, which
further simplifies the localization problem. Lochmatter [12] evaluated a statistical
approach that follows the same principles as infotaxis. The experiments were per-
formed inside a 18×4m2 wind tunnel under laminar flow conditions with an ethanol
gas source and a robot equipped with a commercial gas sensor.

As this Ph.D. thesis shows the feasibility of using a micro-drone for plume tracking
by means of three representative algorithms and in order to keep the development
effort within a certain limit, this work focuses on algorithms that are easy to imple-
ment. Future work should address the study of the usage of probabilistic algorithms
with a micro-drone for plume tracking and gas source localization.

2.2.2.2 Bayesian Inference

Particle filter algorithms are commonly used in the field of robotics, e.g., in Si-
multaneous Localization And Mapping (SLAM). More recently Li et al. proposed
in [77,78] a gas source localization algorithm based on a particle filter. It estimates
the location of the gas source in real-time while the robot performs an exploratory
behavior in an outdoor environment with time-variant airflows [78]. The exploratory
behavior was composed of the plume finding strategy specified by Li et al. [79] and
the spiral-surge plume tracking strategy described by Hayes et al. [29] in order to
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collect gas concentration and wind measurements more effectively [78]. Li et al. use
a likelihood function based on the probability density function introduced by Pang
and Farrell [80] in combination with a gas patch path reconstruction approach to
calculate a so-called observation window. Thus, the observation window defines the
area in which the origin of the gas patch is assumed with high likelihood. In case
of a detection event, particles are added and spread out in the observation window.
Finally, the collected information is exploited by the particle filter algorithm, which
terminates if all particles converged in a small area. They evaluated their algorithm
in 33 real experiments, which they performed over an area of 10 × 10m2 with an
ethanol gas source and a mobile robot equipped with, i.a., a MOX gas sensor and an
ultrasonic anemometer. A comparison with the Bayesian-inference-based gas source
localization method introduced by Pang and Farrell [80] was carried out offline using
the recorded experiment data. Li et al. showed that their particle filter-based gas
source localization algorithm works more robust than the Bayesian-inference-based
method. However, their success rate lay only around 79%. A disadvantage of this
algorithm is that it assumes a roughly uniform airflow over the search space. Fur-
thermore, simulation experiments to support the evaluation of the algorithm are
missing.

Ch. 6 presents a new gas source localization algorithm based on a particle filter.
The trajectory of a gas patch is reconstructed similar to [77, 78] by dividing the
taken wind measurements into time intervals. In contrast to Li et al., uniformity
in the wind field is not assumed and experiment results are provided which prove
that their assumption does not hold. Furthermore, an uncertainty about the wind
direction is considered in the reconstruction process due to the turbulent nature of
wind, which extends this trajectory to a patch path envelope (PPE) instead of a
single patch trajectory. The PPE describes the envelope of an area the gas patch
has passed with high probability. The opening angle of the PPE depends on the
stability of the wind direction, which is expressed by the circular variance. Finally,
a function is defined that updates the particles based on their relative position to
the most recent calculated PPE and the most recent binary concentration measure
introduced by Li et al. [77]. The algorithm is successfully validated in simulations
and real-world experiments.
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2.2.3 Algorithms based on Gas Distribution Maps

Several authors studied the use of gas distribution maps for gas source localization
purposes [14,81–83] (Fig. 2.2 (h)). Their results show that the true source location
does not always correlate with the location where the highest average gas concen-
trations were measured [12]. However, a good indicator for the source location was
found to be the variance of the measured samples at a given location, which was
significantly higher close to the source [1].

Ch. 7 discusses the usability of a micro-drone for gas distribution mapping. Fur-
thermore, real-world experiments try to verify whether in the case of a micro-drone
the variance still provides a better indicator for the gas source location than the
mean. To estimate the gas distribution model, the algorithms Kernel DM+V [84]
and Kernel DM+V/W [85] are used exemplarily. Kernel DM+V estimates predic-
tive variance in addition to predictive mean of the gas distribution model. Kernel
DM+V/W algorithm also considers wind information to compute the gas distribu-
tion model. Both algorithms are described in more detail in Sec. 7.1.

In Ch. 8, an Artificial Potential Field (APF) is used in the path planning and
adaptive sampling to direct measurements to locations of high predictive mean,
and high predictive variance of the current statistical gas distribution model. As a
consequence of the performed observations in Ch. 7 and the results presented in [1],
six estimators are defined that use both created models to determine the gas source
location.

2.2.4 Other Approaches

Lochmatter also points to two other interesting approaches related to gas source
localization [12]. The first approach was proposed by Lilienthal and Duckett [86]
(Fig. 2.2 (j)). They programmed their robot to evade each local concentration
maximum (including the source itself). Thus, regions of low concentration were
explored, whereas regions of high concentration were left out. This helps to infer
the location of the gas source as “the robot covers the whole available area except
near the actual location of the source” [86]. The second approach was proposed by
Kowadlo et al. [87] (Fig. 2.2 (i)). They combined vision, olfaction, and airflow maps
for gas source localization. Based on the airflow maps, the algorithm computes a list
of locations to take gas concentration measurements. The robot processes the list
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and uses the resulting information to reason about the potential gas source location.
Then, the robot uses vision to reject potential sources from the list. Finally, olfaction
is again used for source declaration. The algorithm is similar to the probabilistic
algorithms, although the utility function is not based on probability theory [12].

Another interesting approach was introduced in [88] by Cabrita et al. (Fig. 2.2
(h)). They developed two algorithms based on particles (but not related to par-
ticle filtering): a plume mapping algorithm and an odor-oriented exploration and
plume tracking algorithm. The (particle) plume mapping algorithm converts gas
concentration measurements into a point cloud around the sensor’s location with
number of particles proportional to the measured gas concentration in parts per
million (ppm). This requires properly calibrated gas sensors. The newly created
point cloud is merged with the particle plume. Older particles which are located
in this new region are removed to assure that the number of points in a certain
region reflects the last concentration measurement in that area and to produce a
smooth representation of the plume [88]. The particle plume explorer algorithm is
divided into four steps. It draws a circle with a radius r around the robot and sep-
arates it into n slices. Next, slices which overlap with obstacles or contain a defined
percentage of explored area are removed. When all slices have been removed, the
robot enters a recovery behavior by searching for the closest viable spot to continue
the exploration. A cost function, which incorporates the direction of growing gas
concentrations, the direction of the current slice, and the orientation of the robot, is
calculated for each remaining slice. Finally, the slice with minimum cost is chosen.
Both algorithms were tested in simulations and in more “realistic scenarios” with
mobile robots showing that both algorithms are reliable and robust. The disadvan-
tage of these approaches is that properly calibrated sensors are needed and that the
plume is not captured in a realistic manner.

2.3 Gas Distribution Mapping (GDM)

Modeling the gas distribution is the task of deriving a truthful representation of the
observed gas distribution from a set of spatially and temporally distributed mea-
surements of relevant variables, foremost gas concentration, but also wind, pressure,
and temperature [14]. Asadi et al. [89] and Neumann et al. [Paper III] published
two surveys of the work in this field of research.
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Probably the most straightforward statistical gas distribution modeling approach
is to measure the response over a prolonged time with a grid of stationary gas
sensors and discretize the model at the same resolution. This technique has been
used, e.g., in [90], where each grid point is assigned the average concentration over
the measurement period. A similar method is presented in [91], where maximum
values of the measurement period are mapped instead of average concentrations.
With an increasing area, however, building a dense grid of gas sensors involves an
arbitrarily high number of fixed gas sensors [5]. This raises problems such as cost
and lack of flexibility. Furthermore, an array of MOX gas sensors (used by Ishida
et al. in [90]) would cause serious disturbances due to convective flows created by
their built-in heaters [92].

An alternative to a network of stationary gas sensors is to use a single mobile
sensor that consecutively collects samples at predefined locations. This avoids cal-
ibration issues of the sensor network and allows for adaptive sampling of the envi-
ronment. Under the assumption of a stationary gas distribution, consecutive sam-
pling is theoretically equivalent to simultaneous distributed measurements. Hayes et
al. [13] use a group of mobile sensors to create a histogram representation of the gas
distribution. The histogram bins collect the number of “odor hits” (these are mea-
surements above a defined threshold) received by all sensors in the corresponding
area while they followed a random walk pattern. This method requires even cover-
age of the environment and potentially discards some useful information by using
only binary data. Additionally, it would also take a very long time to obtain sta-
tistically reliable results, and there is no extrapolation on the measurements apart
from the quantization into the histogram bins. Therefore, it is doubtful whether
this approach would scale well to larger environments. Pyk et al. [41] interpolate
the sensor measurements at locations other than the measurement using bi-cubic or
triangle-based cubic filtering, depending on whether or not the measurement loca-
tions formed an equidistant grid. A disadvantage of this method is that no spatial
averaging is carried out and that fluctuations therefore appear directly in the map.

The Kernel extrapolation Distribution Mapping (Kernel DM) algorithm intro-
duced by Lilienthal and Duckett discretizes the available space into grid cells and
computes an estimate of the distribution mean for each cell by using a symmetric
Gaussian kernel [84]. The Gaussian kernel weighs the importance of each sample
to estimate gas distribution at each grid cell based on the cell’s distance from the
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respective measurement point. Kernel DM does not rely on even coverage of the
environment. Lilienthal et al. [14] extended this approach to Kernel DM+V which
estimates predictive variance in addition to predictive mean of the gas distribution
model. Another approach to estimate the predictive variance in gas distribution
modeling is the Gaussian Process Mixture model (GPM) proposed by Stachniss et
al. [83]. It considers gas distribution modeling as a regression problem. Subsequent
work is focused on extending the basic Kernel DM+V algorithm in a way that wind
information [85], the third dimension [93,94], and a time-dependent component [95]
are also considered to compute the gas distribution model.

In this Ph.D. thesis, a micro-drone equipped with gas sensors is used to perform
consecutive sampling. To estimate the gas distribution model, the Kernel DM+V/W
algorithm [85] is used, which is an extension of Kernel DM+V that also considers
wind information to compute the gas distribution model. The algorithm is described
in more detail in Sec. 7.1 and used in Ch. 7 to model the gas distribution and in Ch. 8
as part of an adaptive sampling algorithm that directs measurements to locations
of high predictive mean, and high predictive variance of the current statistical gas
distribution model.

In the following subsections, an overview of existing approaches is given that
deal with the problem of choosing the next sampling location based on the current
knowledge of the gas distribution (or other spatial phenomena). A more detailed
survey can be found in [16]. All of the presented approaches either try to minimize
cost functions [96–99], are non-adaptive (offline) [97,100,101], or try to apply simple
heuristics [102] in order to select next sampling locations. Only a few algorithms
perform adaptive path planning [103,104] to increase the information gain. However,
these approaches are only capable of solving near-optimally small instances of the
problem [104] and do not have any approximation guarantees [102] (NP -hard).
Work based on artificial potential fields was so far only used to deploy mobile sensors
in unknown environments [105,106] and does not consider the measurements taken
by the mobile sensors.

In Ch. 8, a modified Artificial Potential Field (APF) is used in the path planning
and adaptive sampling algorithm to direct measurements to locations of high pre-
dictive mean, and high predictive variance of the current statistical gas distribution
model. Additionally, information about previous sampling locations is considered to
maximize the coverage area. This accomplishes a tradeoff between exploration and
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exploitation. By introducing locality constraints, suitable paths can be planned for
a mobile gas sensor. The complexity of the algorithm is only O

[
(D/c)2

]
, where D

is the dimension of the environment and c is the cell size.

2.3.1 Spatial Monitoring with Mobile Sensor Networks

Given a limited number of sensors, time, and power to monitor spatial phenomena,
planning sampling locations that provide most informative samples to build an ac-
curate model of the environment is critical. Several works have been published on
spatial monitoring which address this problem. The selection process of sampling
points in the state of the art is mostly based on different criteria such as accuracy of
estimated measurements and resource constraints, e.g., mobility, time, power, and
wireless communication.

Limited number of sensors to monitor spatial phenomena are often modeled as
Gaussian Random Fields. Krause et al. [98] apply Gaussian Processes (GPs) to
monitor spatial phenomena. Several criteria to choose the sampling locations have
been extensively investigated and compared including Mutual Information (MI), en-
tropy, and geometrical models. The results of this comparison on temperature and
precipitation data sets indicated that the strategy with maximizing MI between ex-
plored and unseen locations outperformed other approaches significantly. A similar
approach has been utilized to monitor the ecological condition of a river using single
and multiple mobile sensors and to plan the path for mobile sensors [97].

To monitor the environment using a mobile sensor network, Muttreja et al. [96]
present a data acquisition framework which uses sparse GPs to estimate spatio-
temporal models and evaluates the observed data at each sensor location as a func-
tion of time. To minimize the energy consumption, the sensors are planned in a
cluster structure and samples are collected whenever the confidence of the estimated
model is below a desired threshold. To sample each sensor, an active learning based
criterion is applied with the variance minimization as objective.

In [99], a discrete simulation optimization approach is proposed to select sensor
placements in a multiple sensor system with a data fusion center. The objective is
defined so as to increase the accuracy of the information about the spatial phenom-
ena by minimizing the Mean Squared Error (MSE) and at the same time satisfy
an energy consumption constraint insofar there is one. To achieve this goal a two-
stage, random search-based simulation optimization algorithm is used. The selection



28 2.3. GAS DISTRIBUTION MAPPING (GDM)

of sampling points is based on an entropy criterion to minimize the resulting un-
certainty and an MI criterion which selects places that are most informative about
unseen locations.

2.3.2 Informative Path Planning

To explore the area with one mobile sensor where prior information about distribu-
tion and environment is not available, one straightforward solution is to sample in
predefined locations. This sampling method is applied for gas distribution mapping
in several experiments. The results are presented in Ch. 7.

To consider resource constraints, an alternative to predefined sampling strate-
gies is to adaptively select sampling locations using information about samplings
locations and measurement values. Most of the previous work on informative path
planning has either dealt with non-adaptive approximation algorithms [97,100,101]
that plan and commit the paths before any observations are made, or with adap-
tive (often myopic, i.e., limited look-ahead) heuristics that update and re-plan as
new information is collected [102]. Partially Observable Markov Decision Processes
(POMDPs) have been used to perform adaptive path planning in complex environ-
ments [103]. Singh et al. [104] present a novel non-myopic approach to adaptive
informative path planning that represents a trade-off between exploration and ex-
ploitation. The approach was extensively evaluated on a search and rescue domain
and on a scientific monitoring problem using a real robotic system.

2.3.3 Artificial Potential Fields in Mobile Robotics

Artificial Potential Field (APF) methods are used in a number of robotic applications
including local navigation and obstacle avoidance. APF approaches have also been
used for the spatial formation of a set of sensors, spatial monitoring, and coverage
problems [105,106].

In [105], an APF approach is used to deploy a decentralized mobile sensor network
in an unknown environment. Each sensor is repelled from obstacles and other sensors
and a viscous force is applied on the sensor to reach an equilibrium state. The spatial
configuration of sensors is affected by changes in the environment (e.g., movement
of obstacles) that can shift the equilibrium state.

Schwager et al. [106] treats multi-robot coverage problem as an optimization
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problem and unifies different existing strategies for deploying groups of robots in an
environment. To solve the deployment problem, a cost function is proposed in which
measurements from different sensors are combined in a mixing function. This mixing
function enables relating different strategies including the geometric Voronoi-based
coverage, the probabilistic variance minimization, and artificial potential field ob-
jectives by introducing a parameter. Using this approach and varying the objective
by changing the parameter is then demonstrated on simulated data.

2.4 Environmental Monitoring using Gas-
sensitive Unmanned Aerial Vehicles (UAVs)

Previous works on environmental monitoring using gas-sensitive Unmanned Aerial
Vehicles (UAVs) elaborated methodologies to measure the spatial distribution of
chemical plumes and to search for the emission sources.

Kovacina et al. [107] developed a rule-based, decentralized control algorithm that
relies on constrained randomized behavior (symmetrical and asymmetrical search).
The algorithm respects UAV restrictions on sensors, computation, and flight en-
velope and was validated in a simple simulation environment with a UAV swarm
searching for and mapping a chemical cloud within a region.

Rutkowski et al. suggest in [69] bio-inspired control algorithms for winged UAVs
to track a plume to its source in 3D by fusing gas, visual, and airspeed sensors. The
motion of the tracking UAV is decomposed into two components – a component
normal to and a component tangential to the wind direction. Each component is
assigned its own algorithm to control the UAV based on wind and gas concentration
measurements. The algorithms were tested in simple simulations only.

The use of a blimp-based gas-sensitive UAV for demining tasks including chemical
mapping strategies based on a behavioral and a neuronal model of the moth is
investigated by Bermúdez i Badia et al. [108]. The chemical mapping strategies were
tested in simulations and real-world experiments. The authors conclude that their
UAV “can produce fully autonomous chemical localizations based on two predefined
sets of behaviors, random search and scanning”. The chemical mapping strategies
were tested in simulations and real-world experiments.

Bamberger et al. [109] developed a Stigmergic Potential Field (SPF) based ap-
proach to UAV swarming to coordinate movement, transient acts, and task allo-
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cation among cooperating vehicles. They performed real-world experiments with
a single UAV which was deployed to a simulated plume (using simulated sensors).
The UAV conducted an autonomous search of the designated area and characterized
the spatial extent of the plume successfully.

An expert system for contaminant mapping based on a genetic algorithm with
physical reasoning using the wind vector, online concentration measurements, and
estimates of the source location to perform path planning for UAVs is presented by
Kuroki et al. [110]. The method was tested in simulations using the Gaussian plume
/ puff model.

In the project AirShield (Airborne Remote Sensing for Hazard Inspection by Net-
work Enabled Lightweight Drones) an autonomous swarm of Micro UAVs (MUAVs)
was developed to support emergency units and improve the information basis of
disasters [111]. The aim of the project is to detect leaking Chemical, Biological,
Radiological, Nuclear, and Explosive (CBRNE) contaminants in their spatial extent
to carry out hazard analysis. Within this project, two steering strategies of a swarm
of UAVs to efficiently cover a region of interest in order to achieve a spatial 3D
coverage for aerial plume detection were compared: the Self-repelling Random Walk
(SRW) and the Cooperative-repelling Random Walk (CRW) [112]. These steering
strategies were evaluated in simulations with respect to 3D coverage. The APF ap-
proach proposed within this Ph.D. thesis is also a self-repelling strategy. However, a
two-dimensional (2D) version of the SRW presented in [112] is not considered within
this Ph.D. thesis as it does not incorporate sensor data.

Real-world experiments with standard or micro UAVs in outdoor environments
are rarely available in the literature, especially in the area of gas source localiza-
tion and gas distribution mapping. Almost all of the related work is validated in
simulated experiments only. This has the advantage that ground truth data is avail-
able. On the other hand, however, a gas dispersal simulation environment does not
capture all relevant real-world effects and it is therefore unclear how the obtained
results extend to realistic environments. A key contribution of this Ph.D. thesis is
several real-world experiments performed in uncontrolled outdoor environments.
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2.5 Wind Vector Estimation using Micro UAVs

Molnar and Stojcsics and Kroonenberg et al. present the adaption of a Pitot tube
for winged small size UAVs in [113, 114]. A Pitot tube is the state-of-the-art flight
speed determination method for aircraft and has its origin in pressure measurement.
It consists of a tube which is aligned parallel to the fluid flow and a pressure mea-
surement equipment in the rear part of the device. The wind vector is calculated
as the difference between the flight vector and the ground vector which is obtained
from GPS data. But for a quadrocopter, a Pitot tube is hardly applicable because
of the inconsistent flight direction and low flight speeds (≤ 12ms−1). Furthermore,
additional hardware would be needed to compensate the micro-drone’s inclination
angle and turn the Pitot tube nearly in flight direction. This extra weight would
reduce the available payload and the flight time of the micro-drone drastically.

There are other methods which consider wind information in the control of micro
UAVs. In [115], a mathematical model is used to estimate the aerodynamic and
speed stability of a micro-drone using real-time measurements. However, none of
these approaches is able to estimate the wind vector based on the existing on-board
sensors of the micro UAV.

Instead, Ch. 3 presents an approach which is able to estimate the wind vector
based on the on-board sensors of the micro-drone and makes additional anemometric
sensors superfluous. Thus, the valuable payload remains free for other sensors.
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Chapter 3

Design of the Gas-Sensitive
Micro-Drone

Recent developments in the field of Micro Unmanned Aerial Vehicles (MUAVs) and
mobile gas measurement techniques have established new possibilities to search for
and characterize hazardous airborne substances. The Federal Institute for Materials
Research and Testing (BAM), in cooperation with Airrobot GmbH & Co. KG
(Germany), has developed a mobile and flexible aerial-based measuring system as
part of an R&D project funded by the Federal Ministry of Economics and Technology
(BMWi) [Paper I, Paper III, Paper V–Paper VII, Paper XI]. Parts of this
Ph.D. thesis were carried out within this R&D project. The concept of the project
includes the development and validation of a gas-sensing payload (approx. 200g)
for the Airrobot AR100-B micro-drone (Fig. 3.1(a)), which is capable of operating
in a variety of scenarios of gas emissions. For example, it detects exhaust gas from
chimneys, flue gas in a fire, and gas emissions in the case of an accident involving
chemicals or hazardous goods. Another field of application which is addressed is the
spatially resolved emission control of geodynamically active regions, waste disposals,
stockpiles, Carbon Capture & Storage (CCS) areas, industrial sites, landfill sites,
and contaminated areas. Additionally, it should provide accurate gas concentration
measurements and persons without extensive pilot experience should be able to
control this measuring system. The validation and optimization of the measuring
system was also part of this Ph.D. thesis.

MUAVs are interesting because they are cost-efficient, easy to transport, and can
be deployed in short time. They are characterized by their compact design and

33
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(a) (b)

Figure 3.1: (a) Airrobot AR100-B micro-drone in flight. (b) Visualized disturbance
induced by the rotors of the Airrobot AR100-B micro-drone using an AX-430 orange
colored smoke bomb (photo taken at BAM TTS).

excellent maneuverability, which makes precise navigation possible and gives access
even to small passages, which is especially significant in urban terrain and industrial
sites. Micro Vertical Take-Off and Landing (VTOL) UAVs, such as quadrocopters,
additionally have the ability to hover over a certain point of interest for a prolonged
time, which allow more informative gas concentration measurements in comparison
to, e.g., a fixed-wing aircraft in view of the slow response times of popular chemical
sensors. Blimps, on the other hand, have a more adverse size-to-payload proportion
and are more affected by the wind.

However, the disadvantage of quadrocopters is given by the payload limitation
to only a few hundred grams, the relatively short flight time, and the disturbances
introduced by their rotors into the environment (Fig. 3.1(b)), which may destroy
the original gas dispersion pattern. A blimp may ease some of these limitations, but
the poor size-to-payload proportion, the high resistance to wind, and their inertial
characteristics are not beneficial for gas concentration measurements in a turbu-
lent outdoor environment, especially for gas source localization and gas distribution
mapping.

The Airrobot AR100-B micro-drone (Fig. 3.1(a)) is such a quadrocopter. It
presents an ideal platform for gas concentration measurements in the immediate
vicinity of the object which causes the emission. A gas-sensing sensor module was
developed and validated within the Ph.D. thesis for this micro-drone. The results
show that this platform also provides an excellent robotic platform to validate the
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Figure 3.2: Schematic diagram of the micro-drone (top view) with two clock-
wise (red) and two counterclockwise (blue) running rotors (figure reprinted from
Büchi [116]).

gas source localization and gas distribution mapping algorithms developed within
this Ph.D. thesis (Ch. 5 to 8) in real-world experiments.

In the remainder of this chapter, first, the micro-drone is described, which is used
as the robotic platform (Sec. 3.1). Next, the integration of gas-sensitive devices as
payload is presented and the corresponding validation and calibration experiments
are performed (Sec. 3.2). Sec. 3.3 identifies three different design approaches to
improve the gas transport to the sensors and analyzes their functional performance.
Then, a wind vector estimation approach that uses the existing on-board sensors of
the micro-drone only is introduced and validated (Sec. 3.4). Finally, the developed
robotic operating software to autonomously control the micro-drone is presented
(Sec. 3.5) and conclusions are drawn (Sec. 3.7).

3.1 Airrobot AR100-B – Quadrocopter

The Airrobot AR100-B micro-drone has a diameter of 1m and is driven by four
brushless electric motors (≤ 2000rpm). The micro-drone can be equipped with a
variety of sensors and precisely navigated to a certain region of interest for remote
sensing without endangering persons in critical areas. The basic structural parts of
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Table 3.1: System parameters of the micro-drone.

Property Setting
Diameter 1m

Total Flight Mass 1.3kg
Payload Mass 200g

Operating Distance ≤ 1km
Flight Time ≤ 30min
Flight Speed ≤ 12ms−1

Max. Wind Load ≤ 8ms−1

the micro-drone are made of carbon fiber. The maximum payload mass is 200g with
a total flight mass of about 1.3kg. The maximum flight time is about 20 to 30min.
The micro-drone can withstand a maximum wind speed of 8ms−1. Communication
with the ground station is established by a wireless radio link. Data packets can
include control instructions or data from the micro-drone’s on-board sensors. The
operating distance of the remote control and communication link is 1km. A Global
Positioning System (GPS) supports the micro-drone during operation. The micro-
drone can be flown by line of sight, via on-board video camera and video goggles
as well as by autonomous waypoint following. The latter allows for sending either
single waypoints to the micro-drone which will be approached immediately or whole
waypoint lists (waypoint mode). The waypoints contained in a waypoint list will be
consecutively processed if the micro-drone is set to autonomous mode.

The Inertial Measurement Unit (IMU) is an important part of the micro-drone.
It provides the basis for flight control and wind vector estimation [Paper III, Pa-
per XI] and can be read out during operation. The IMU consists of three orthog-
onally arranged accelerometers, which detect linear accelerations along the x-, y-,
and z-axis, and three orthogonally arranged rotation rate sensors, which measure
angular accelerations along the x-, y-, and z-axis. Magnetic field sensors (compass)
and GPS are used to improve the accuracy of the IMU and to compensate for sensor
drift [117]. The IMU of the micro-drone also contains a barometric pressure sensor
to control the micro-drone’s altitude.

In comparison to a helicopter, the micro-drone is characterized by a less compli-
cated and stronger mechanical system: the four brushless electric motors are con-
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nected directly to two clockwise and two counterclockwise running rotors. Fig. 3.2
illustrates the functional principle of the micro-drone. An inclination and therefore
a drift of the micro-drone is achieved by changing the revolutions per minute (rpm)
of the blue and red rotors, respectively. The right blue rotor has to turn with lower
rpm and the left has to turn with higher rpm in order to fly the micro-drone to the
right, for example. The pair-wise change of the rpm of the blue and red rotors cause
a rotation around the yaw axis of the micro-drone (z-axis). The rpm of all rotors
have to be uniformly changed in order to perform a climb or descent flight of the
micro-drone.

3.1.1 Validation of the GPS-based Positioning System

The GPS receiver of the micro-drone is needed in the real world to easily perform self-
localization, to hold the position via GPS, and to fly the micro-drone autonomously
from one position to another. Therefore, the accuracy of the GPS receiver and the
flight control of the micro-drone play an extremely important role, also in order
to accurately perform gas source localization and gas distribution mapping. To
measure the accuracy of the GPS holding system and the flight control, the following
experiment was performed:

3.1.1.1 Experiment Setup

The micro-drone was controlled autonomously inside a 12× 8m2 region that is part
of a much bigger open area. A total of 31 waypoints were sent to the micro-drone.
GPS coordinates were recorded for 20s for each waypoint. As the micro-drone does
not confirm the arrival of a waypoint, a trigger was used. The gathering of GPS
data was started by the trigger when the micro-drone reached a waypoint within a
radius of 1.5m and was stopped 20s later. Then the next waypoint was uploaded to
the micro-drone.

The wind speed and direction varied during the experiment and were measured
with the micro-drone based on their on-board sensors, which is fairly accurate
(Sec. 3.4.3). The experiment conditions were quite harsh as the mean wind speed
lay around 2ms−1 with wind gusts of up to 6.5ms−1.
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Figure 3.3: Calculated distances dWP and directions θWP from the uploaded way-
points to their corresponding GPS coordinates as recorded by the micro-drone.

3.1.1.2 Experiment Results

The distances dWP and directions θWP from the uploaded waypoints to their cor-
responding GPS coordinates recorded by the micro-drone were calculated and eval-
uated using Eq. B.1 and B.3 (Appendix B). A total of approximately 4,300 GPS
coordinates were obtained during this experiment. The number of available satellites
varied from 9 to 11. Fig. 3.3 shows the (distance, direction)-pairs of all obtained
GPS coordinates in a circular diagram (similar to a windrose diagram). Here it is
clearly visible that almost all these pairs are below a radius of 2m and that the
directional component is almost uniformly distributed. The mean distance over all
available GPS data to their corresponding waypoints is 1.17m with a standard devi-
ation of ±0.71m. The respective confidence interval is (1.15, 1.18)m at a confidence
level of 95%.

The results show that the micro-drone is able to hover over a certain position
regardless of changing wind conditions. However, the position is only accurate within
approximately ±1.17m and should be considered in the gas source localization and
gas distribution mapping algorithms. In this Ph.D. thesis, this GPS positioning and
flight control error is modeled (Sec. 4.2) and used in the simulation experiments.
So far, this error is not considered in the presented gas source localization and gas
distribution mapping algorithms.
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Figure 3.4: Dräger X-am 5600 gas detector with electrochemical (EC), catalytic
(Cat), and infrared (IR) sensors. The IrDA-transceiver is located in the upper part
on the rear panel.

3.2 Integration of Gas Sensors

Two different kinds of gas-sensing payload were developed for the micro-drone. The
gas-sensing payload based on the gas detector X-am 5600 (Dräger Safety AG & Co.
KGaA, Germany) was developed and validated within the Ph.D. thesis. The elec-
tronic nose (e-nose) was developed by Örebro University within the project “Moni-
toring of Landfill Sites with a Gas-Sensitive Mobile Robot” (GasBot).

3.2.1 Dräger X-am 5600

A commercially available gas detector (Dräger X-am 5600), which is originally de-
signed as a handheld device for personal safety, is the base unit of the gas-sensing
payload for the micro-drone. It features low mass (approx. 233g incl. the recharge-
able battery) and compact design (47× 129× 31mm3 [W ×H ×D]). The modular
concept allows the ad hoc exchange of the four sensors in the gas detector, which
enables users to customize it for their specific application. Depending on the sce-
nario, it can measure many combustible gases and vapors with the catalytic (Cat)
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sensor as well as different (toxic) gases, e.g., O2, O3, CO, H2S, NH3, CO2, SO2,
PH3, HCN , NO, NO2, Cl2, H2, COCl2, amine, odorants, and organic vapors (OV)
with electrochemical (EC) and infrared (IR) sensors. Table 3.2 shows a survey of
the existing sensors for this device (special low and high concentration sensors were
not used within this survey). Their characteristics are high resolution, high measur-
ing accuracy (relative measuring error), relatively fast response times (T50 / T90

1),
and also the wide range of the sensors and the low current consumption of the gas
detector (approx. 1.3mA (standby), 8.5mA (in measuring mode), and 120mA (in
alarm mode; can be suppressed by software)). Additionally, the gas detector com-
bines multiple sensor technologies (EC, IR, and Cat), which are relatively easy to
calibrate in comparison to MOX gas sensors (Sec. 2.1.4). Therefore, the gas detector
provides the base unit of the gas-sensing payload of the micro-drone.

A significant reduction in weight of the gas detector has been achieved by the
removal of unnecessary components (e.g., the mounting clip) and the integrated
rechargeable battery in order to meet the payload limitation of 200g (the gas detector
weighs 121g incl. all sensors). The casing of the gas detector remained unmodified
as it is designed for calibration and maintenance purposes and protected against
water and dust according to IP 67 (see [119] for further information) and therefore
capable of working outdoors.

A more lightweight lithium-based battery model AA (20.5g) serves as a power
supply (3.7V with 900mAh) for the sensors until their next mission to achieve fast
operational readiness and to avoid long warm-up times of the sensors (up to 20 hours
– see Table 3.2). During missions, the power is supplied by the battery of the micro-
drone. The mounting was specially designed for the gas detector. It is based on the
payload adapter plate of Airrobot and can be easily mounted and dismounted.

An additional electronic board with the dimension of an AA battery controls the
communication between the gas detector and the micro-drone via the integrated
microcontroller (MSP430F2618, Texas Instruments Incorporated, USA) and appro-
priate device interfaces (IrDA, RS232, and I2C ). A temperature and humidity sen-
sor (SHT15, Sensirion AG, Switzerland) was also integrated as both factors may
affect the measurement data (however, no compensation for varying temperature

1The response time of the sensor is commonly specified by the T90 or T50 time. T90 is the time
for the sensor’s response current to reach 90% of its steady-state value. Similarly, the T50 metric
is the time required for the sensor to reach 50% of its steady-state value [118].
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(a) (b)

Figure 3.5: (a) The e-nose equipped with the following MOX (TGS26xx family)
and EC (TGS4161) sensors: (A) TGS2602 (H2S, NH3), (B) TGS2600 (CO, CH4),
(C) TGS2610 (CH4, LP gas), (D) TGS2611 (CH4), and (E) TGS4161 (CO2). (b)
Micro-drone equipped with e-nose.

or humidity was applied in the experiments presented in this Ph.D. thesis). The
microcontroller queries the gas detector (IrDA) and samples the temperature and
humidity sensor (proprietary protocol) permanently and introduces the data in the
micro-drone’s downlink (RS232 and I2C ). At the same time, the microcontroller pre-
vents the gas detector from entering in the relatively high power-consuming alarm
mode. The IrDA communication and the gas detector itself allow a sampling rate
of 1Hz for each sensor.

Dräger offers special battery cases for the gas detector, which allows to use the
device with two commercially available batteries (AA). This battery case was used
to integrate both the lithium-based battery and the electronic board. Only a small
electronic board containing the temperature and humidity sensor and the IrDA
transceiver to communicate with the gas detector was installed outside the casing.

The resulting overall weight of the gas-sensing payload including the above men-
tioned modifications amounts to 197g. Further potential for reducing the weight of
the payload is given by the casing of the gas detector, which weighs approximately
63g.

3.2.2 Electronic Nose (e-nose)

An electronic nose (Fig. 3.5(a)) was specially adapted to the micro-drone by Örebro
University. The e-nose has a size of 132 × 52mm2 and weighs 100g. The input
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voltage lies between 12 to 16V and the current consumption is around 300mA.
The e-nose has five sensor sockets, four of which can be equipped with the Figaro
(Figaro Engineering Inc., Japan) TGS26xx family (MOX gas sensors) and one with
the Figaro TGS4161 (CO2; EC gas sensor). The basic measuring circuit used for
the TGS26xx family is based on a voltage divider circuit (the voltage at the load
resistor is measured), whereas the basic measuring circuit used for the TGS4161 is
based on an operational amplifier. Both circuits allow the measurement of voltages,
which is directly correlated with a certain gas concentration. However, the sensors
have to be calibrated in order to draw conclusions about the gas concentration to
which the sensor is exposed. The heaters of the sensors are adjustable by software
in the range of 0 to 7V . Since the response of MOX gas sensors is highly dependent
on their surface temperature (Sec. 2.1.4), a temperature modulation is supported by
varying the heater voltage (not used during the experiments with the micro-drone).

However, only the TGS2611 (CH4) and TGS4161 (CO2) were used during the
real-world experiments. The sensors were chosen because of their fast sensor re-
sponse and decay (TGS2611 – CH4), high sensitivity (TGS2611 – CH4), and high
selectivity (TGS4161 – CO2) to their target gases. Sensor response experiments in
an open environment with the TGS2611 (heater voltage: 5V ) and a methane source
(1,000ppm) located around 0.3m away show response times of T50 = 9.61s ± 2.45s
and T90 = 22.64s± 4.21s. The TGS4161 is characterized by a slow sensor response
(T90 = 1.5min) and an accuracy of ±20% (at 1,000ppm). Both sensors allow a
sampling rate of 8Hz for each sensor.

3.2.3 Validation Experiments – Dräger X-am 5600

3.2.3.1 Experiment Setup

Experiments in laboratory scale were carried out in a 20m3 test chamber (Fig. 3.6(a))
to measure different CO2 concentrations for the validation of the system with respect
to the measurement of gas concentrations in a medium-sized volume consisting of the
same gas compound. Two commercially available gas detectors which were placed at
different positions in the chamber were used as reference systems to provide ground
truth measurements. One detector was identical to that used in the micro-drone’s
payload. The gas detectors were equipped with electrochemical CO2 sensors. A
circulating pump and a fan were operated to achieve homogeneous intermixing of
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(a) (b)

Figure 3.6: (a) Micro-drone flying in the 20m3 test chamber. (b) Comparison of
the measured CO2 concentration at the micro-drone and a reference device vs. time
(the micro-drone had been airborne before the experiment started).

the entire volume. The chamber was flushed at the beginning of each trial, i.e.,
the contained gas / air mixture was replaced with “clean” air to assure a CO2-free2

test chamber. The induction of CO2 was carried out in series and intermittently for
about 30s to regulate the CO2 concentration. The micro-drone was started before
CO2 was induced.

3.2.3.2 Experiment Results

Taking into account the accuracy of the used CO2 sensors (EC) in the different
measurement devices used and the position-dependent delay (the time needed to
achieve a homogeneous concentration in the test chamber), all values measured by
the device of the micro-drone coincide with those measured by the reference devices
(Fig. 3.6(b)). Therefore, the ability of the entire system to measure gas concentra-
tions in a medium-sized volume has been satisfactorily verified. As a further step,
the enhancement of the design and optimization of the system in order to implement
a more point-wise gas concentration measurement is shown in Sec. 3.3.
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(a) (b)

Figure 3.7: The setup of the calibration experiments: (a) the e-nose mounted inside
a calibration adapter connected via a small tube to (b) a multi gas controller (MKS
Instruments, USA).

3.2.4 Calibration Experiments – E-Nose

The calibration of MOX gas sensors is challenging as a sensitivity to other substances
as well as temperature and humidity is usually given (Sec. 2.1.4). However, the
TGS2611 (CH4) and TGS4161 (CO2) of the e-nose are calibrated in order to get
a rough correlation between the sensor readings (V ) and the present concentration
(ppm). As a result, the results of the real-world experiments obtained with the
Dräger X-am 5600 gas detector and the e-nose can be compared.

3.2.4.1 Experiment Setup

The e-nose was mounted to a calibration adapter (Fig. 3.7(a)), which was connected
via a tube to a multi gas controller (MKS Instruments, USA, Fig. 3.7(b)). The
multi-gas controller was used to expose the sensors of the e-nose with a defined
concentration of CH4 and CO2, respectively. The cross-sensitivity to temperature
and humidity was not considered during the calibration routine as “dry” calibration
gas (i.e., traces of humidity are removed to a level that lies under the determination
limit) at a temperature of approximately 25◦C was used. The calibration curves were
obtained successively by recording the stabilized responses of the sensors exposed
to constant concentration levels over their measuring range (TGS2611 (CH4) and
TGS4161 (CO2): [0, 10,000]ppm) consecutively. The TGS2611 (CH4) was calibrated

2Air contains 380ppm of the trace gas CO2, which was neglected during the experiment.
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(a) (b)

Figure 3.8: Calibration curves of the (a) TGS2611 (CH4) at different heater voltages
(4.5, 5.0, and 5.5V ) and (b) the TGS4161 (CO2) sensor.

Table 3.3: Approximation of the curve fitting parameters of the calibration curves
(with 95% confidence intervals).

TGS2611 TGS4161
4.5V 5.0V 5.5V 5.0V

a
698.9 598 447.6 113.6

(53.69, 1344) (366.1, 830) (357.6, 537.6) (107.6, 119.5)

b
0.0289 0.0235 0.0213 0.0270

(0.0221, 0.0358) (0.0208, 0.0262) (0.0200, 0.0226) (0.0266, 0.0273)

c
−842.5 −730.9 −601.8 −113.6

(−1383,−301.8) (−927,−534.8) (−738.9,−464.6) (−197.1,−30.03)

d
0.0015 −0.0067 −0.0114 −0.74

(−0.0259, 0.0288) (−0.0248, 0.0114) (−0.0259, 0.0032) (−3.74, 3.74) · e10
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for the heater voltages of 4.5, 5.0, and 5.5V , whereas the TGS4161 (CO2) was only
calibrated for the heater voltage of 5.0V .

It should be noted that in a highly dynamic and turbulent environment the gas
concentration will not reach a steady state [23].

3.2.4.2 Experiment Results

The results can be seen in Fig. 3.8(a) and 3.8(b). Table 3.3 shows the approximation
of the curve fitting parameters of the calibration curves. The curve fitting was
done by calling the Matlab curve fitting toolbox “cftool”. A first-order exponential
function for the curve fitting was used of the form: f(x) = a ·exp(b ·x)+c ·exp(d ·x),
where f(x) is the fitted sensor response in V , x is the concentration value in ppm,
and a, b, and c are the coefficients of the fitting.

3.3 Gas Transport to the Sensors

In Sec. 3.2.3 it was shown that measurements of gas concentrations in a large volume
are feasible for the micro-drone equipped with the Dräger X-am 5600 gas detector.
However, gas transport to the gas sensors is a critical process due to the induced
disturbance by the rotors of the micro-drone, which basically dilute and disperse the
surrounding gas-air mixture. This could be problematic for scenarios where point
gas sources are present or the gas sensors work at the lower limit of detection.

3.3.1 Design Approaches of Gas Transportation

To improve the measurement capabilities of the micro-drone for small plumes, three
different design approaches that lead to a less diluted gas-air mixture at the gas
sensors were implemented and analyzed with respect to their functional performance:

• Passive gas transport: integration of the Dräger X-am 5600 gas detector below
the micro-drone without any auxiliary device regarding the airflow.

• Semi-active gas transport: using the airflow generated by the rotors (see
Figs. 3.9, 3.10(a), and 3.11(a)).

• Active gas transport: using additional fans and tubes (see Figs. 3.9, 3.10(b),
and 3.11(b)).
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Figure 3.9: Schematic diagram of the gas detector equipped with the constructional
solution of the base unit of the semi-active and active gas transport approach (cross-
section). The 12V axial fan (∅24mm×30mm) with an airflow of 5.4m3·h−1, however,
is only used for the constructional solution of the active gas transport approach.

(a) Semi-active (b) Active

Figure 3.10: Schematic diagram of the micro-drone (bottom view) equipped with the
constructional solution of the (a) semi-active and (b) active gas transport approach.
The tube of the active gas transport approach protrudes from the radius of the
micro-drone by nearly 0.3m.
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(a) Semi-active (b) Active

Figure 3.11: (a) Design of the semi-active gas transport approach. (b) Integration
of the Dräger X-am 5600 gas detector using the design of the active gas transport
approach.

When applying the passive approach, no artificial airflow is used to bring the gas
to the sensors (the gas detector is mounted directly under the micro-drone without
modification). When applying the semi-active gas transport approach, the gas-air
mixture is conveyed through a carbon fiber tube using the suction effect of one
rotor. The tube of the active gas transport approach protrudes from the radius of
the micro-drone by nearly 0.3m. Here, a 12V axial fan (∅24mm× 30mm) with an
airflow of 5.4m3 · h−1 was mounted inside the tube to draw in the gas-air mixture.
Fig. 3.11 shows the design of the semi-active and active gas transport approach.

The effective sensor response and decay can be sped up to some degree by an arti-
ficially generated airflow (compare Table 3.2 CO2 – IR gas sensor) to achieve faster
and more accurate gas concentration measurements with shorter residence time of
the micro-drone at a certain position. The semi-active and active gas transport
approaches are required and were developed within the Ph.D. thesis.

3.3.2 Validation Experiments

3.3.2.1 Experiment Setup

Reproducible environmental conditions are needed in order to be able to compare the
different gas transport methods: a gas source with a constant release rate and stable
airflow conditions. An experiment setup to create such a controlled environment was



50 3.3. GAS TRANSPORT TO THE SENSORS

(a) (b)

Figure 3.12: (a) Micro-drone in flight in front of the artificial emission source. (b)
Micro-drone flying below a visualized plume in a wind tunnel.

built up in the huge fire test hall of BAM (Fig. 3.12(a)). A CO2 gas bottle connected
to a pressure-reducing valve was used as the emission source. A fan generated stable
airflow conditions and dispersed the gas as well. A defined measuring position was
chosen for all experiments approximately 1m downwind from the fan in the height
of the gas flow. A second Dräger X-am 5600 gas detector was used as reference
system to provide reference measurements. The CO2 infrared sensors were used in
these experiments because of their faster response and higher accuracy (Sec. 3.2.1:
Table 3.2).

One experiment for each gas transport mechanism was performed. At the begin-
ning of each trial, the gas concentration was adjusted so that the reference sensor
measured a stable value of 0.5% by volume. Afterwards, the micro-drone equipped
with the Dräger X-am 5600 gas detector and one of the three gas transport mecha-
nisms was flown to the measuring point to perform CO2 measurements in flight for
approximately 100s.

3.3.2.2 Experiment Results

The results of the experiments are shown in Fig. 3.13. Significant differences can be
seen between the different gas transport solutions. In contrast to measurements in
a large volume of the same gas concentration (Sec. 3.2.3), none of the approaches is
capable of measuring the reference gas concentration of 0.5% by volume. The highest
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Figure 3.13: Comparison of the design of gas transport: Measured CO2 concentra-
tion at “stable” environmental conditions with micro-drone in flight. The active gas
transport approach can avoid the dilution effect of the rotors of the micro-drone
best with the long carbon fiber tube. However, a tradeoff between applicability and
sensitivity is given by the semi-active payload.

measured concentrations (peaks) lay around 0.32 (passive), 0.30 (semi-active), and
0.39 (active) % by volume, which is 64, 60, and 78% of the reference measurements.
The averaged measurement results, after the sensor responded, are more significant.
The averaged concentrations were 0.18 ± 0.02 (passive), 0.26 ± 0.01 (semi-active),
and 0.33± 0.02 (active) % by volume, which is 36, 52, and 66%, respectively, of the
reference measurements.

The reason for the generally lower measurements compared to the reference sensor
is the rotor movement of the micro-drone (Sec. 3.3). The active gas transport
approach can avoid this dilution effect best with the long carbon fiber tube. The
disadvantages of this method, however, are the additional weight (approx. 76g), the
position of the tube inlet which strongly dictates the measurement results as well
as the enlarged drone size that is exposed to wind. A tradeoff between applicability
and sensitivity is given by the semi-active payload (approx. 26g). Using the semi-
active gas transport, it turns out that flying rather below the plume is advantageous.
Fig. 3.12(b) demonstrates that the plume in front of the micro-drone is still intact,
while the rotors redirect the plume completely downwards.

Each gas transport solution has its own advantages and disadvantages depending
on the measurement scenario. The gas transport solutions can easily be changed
since the standard design has been used. However, the semi-active gas transport
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approach was mainly used in the real-world experiments as it offers high applicability
and reasonable sensitivity.

3.4 Estimation of the Wind Vector

The wind vector is important for many existing gas dispersion models [120, 121] to
better characterize the dispersion properties of the plume, as well as for gas source
localization (Sec. 2.2) and in some cases of gas distribution modeling (Sec. 2.3).
Wind measurements are furthermore important since high wind speeds and strong
wind gusts in the target area may also limit the use of the micro-drone presented in
Sec. 3.1, which can only resist wind speeds of up to 8ms−1. Additionally, meteoro-
logical services like the German Weather Service (DWD) specify the averaged wind
speed and direction only in a height of 10m above ground. However, wind speed and
direction can vary locally and below a height of 10m above ground due to naturally
occurring conditions (condition of the soil, strong temperature gradients, and type
of the ecological system) or building density (countryside or city). Therefore, the
on-board measurement of the wind vector in real-time is fundamental.

The response of many gas sensors is caused by direct interaction with the chem-
ical compound and thus represents only a small area around the sensor surface
(≈ 0.01m2) [Paper III]. Additionally, a single gas sensor does not provide direc-
tional information. In order to mitigate these limitations, directional information
in form of the wind vector (wind speed and direction) should be acquired. Conse-
quently, the on-board measurement of the wind vector in real-time is crucial.

In the following section a new approach by Neumann et al. [Paper III, Pa-
per XI] is described and validated to estimate the wind vector based on the ex-
isting measurement data of the micro-drone’s on-board sensors (IMU) which makes
additional anemometric sensors superfluous. This approach in combination with
wind tunnel experiments to determine the relationship between inclination angles
and wind speed is, to the best of the author’s knowledge, unique.

3.4.1 Theory

The wind vector estimation presented in this section is based on the wind triangle
(Fig. 3.14(b)). The wind triangle is commonly used in navigation and describes the
relationships between the flight vector ~v = (rv, θv), the ground vector ~w = (rw, θw),
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(a) (b)

Figure 3.14: (a) Force diagram of the micro-drone, where ψ is the inclination angle
of the micro-drone, g is the acceleration due to gravity, m is the total mass of the
micro-drone (including the payload), F is the shear force, FL is the drift force, and
FD is the drag force. (b) The wind triangle defined by the flight vector ~v, the ground
vector ~w, and the wind vector ~u.

and the wind vector ~u = (ru, θu), where r denotes the length and θ the directional
component of the vectors. Here, the 2D case can be considered since the knowledge of
the gravity vector is available. Two of the three vectors or four of the six parameters
of the wind triangle (flight speed rv, ground speed rw, wind speed ru, drift angle
α, and the angles β and γ of the wind triangle) are needed in order to derive the
remaining parameters. However, only the ground vector is directly given by the
GPS receiver of the micro-drone.

In the following approach, the flight vector ~v is estimated based on the micro-
drone’s roll and pitch angle as well as on the system’s orientation to the magnetic
north pole, the latter determined by a compass. The micro-drone’s IMU provides
the corresponding angles φ (roll) and θ (pitch). Fig. 3.15 shows the local coordinate
system of the micro-drone.

~eroll =


0

cosφ
sinφ

 , ~epitch =


cos θ

0
− sin θ

 (3.1)

The inclination angle of the micro-drone ψ is calculated as the inverse scalar
product from the cross product of the (rotated) unit vectors (Eq. 3.1) and ~nXY .
~nXY = (0, 0, 1) is the normal unit vector to the XY -plane which is parallel to the
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Figure 3.15: Micro-drone with local coordinate system. The viewing direction of
the micro-drone is considered as the inverse normal vector −~nY Z = (−1, 0, 0).

ground (Fig. 3.15). Finally, the angle ψ can be used to calculate the drag force FD.
Fig. 3.14(a) shows the relationship between the forces.

ψ = cos−1
(
~nXY · (~epitch × ~eroll)
|~nXY | · |~epitch × ~eroll|

)
, (3.2)

FD = g ·m · tanψ, (3.3)

where g is the acceleration due to gravity and m is the total mass of the system.
The flight speed can be calculated theoretically by using the definition of the drag
coefficient cd.

rv =
√

2 · FD
ρ · Aproj · cd

, (3.4)
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where Aproj is the projected surface area and ρ is the density of the fluid (in this
case air). The density of air depends on the temperature and humidity. However,
Aproj and cd are generally not known and have to be determined. The projected
surface area Aproj can be generated for each inclination angle (increment step could
be 1◦) in 3D-CAD software using a 3D model of the micro-drone and a reference
body with known projected surface area Aref (e.g., a sphere; Eq. 3.5).

Aproj =
#PAproj
#PAref

· Aref , (3.5)

where #PAproj is the number of pixels in the projected surface area of the micro-
drone and #PAref is the number of pixels in the reference area. The drag coefficient
cd has to be investigated in wind tunnel experiments for different wind speeds. Both
are described in Sec. 3.4.2.

To calculate the flight direction θv, first the angle λ between the viewing direction
of the micro-drone, considered as the negative normal vector −~nY Z = (−1, 0, 0), and
the projection of the vector ~epitch×~eroll onto the XY -plane is to be calculated using
Eq. 3.6. In order to decide whether the vector ~epitch × ~eroll is located on the left
or right of the micro-drone with respect to the viewing direction, Eq. 3.7 must be
solved. This distinction is required as the result of Eq. 3.6 will be within the interval
[0, 180]◦. The flight direction θv is calculated by using the angle λ and the compass
angle of the viewing direction of the micro-drone δcompass.

λ = cos−1
(
−~nY Z · (~epitch × ~eroll)XY
| − ~nY Z | · |(~epitch × ~eroll)XY |

)
(3.6)

~nXZ · (~epitch × ~eroll)XY =


< 0 , if ~epitch × ~eroll is left

> 0 , if ~epitch × ~eroll is right

= 0 , otherwise

(3.7)

θv =


(360◦ − λ+ δcompass) mod 360◦ , if Eq. 3.7 < 0

(λ+ δcompass) mod 360◦ , otherwise
(3.8)

Finally, the wind vector is calculated using the estimated flight vector ~v and the
measured ground vector ~w using the wind triangle (Fig. 3.14(b)) and the law of
cosines. The drift angle α equals the difference of θw and θv.

ru =
√
r2
v + r2

w − 2rv · rw · cosα (3.9)
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Figure 3.16: Micro-drone in the wind tunnel at 7.5ms−1.

β = cos−1
(
r2
v − r2

w − r2
u

−2rw · ru

)
(3.10)

θu = (θw + 180◦ ± β) mod 360◦ (3.11)

Eqs. 3.9, 3.10 and 3.11 are used to get the wind speed ru and direction θu for
0 < α < 180◦. The cases α = 0◦ and 180◦ have to be considered separately. The
sense of rotation of β in Eq. 3.11 depends on the flight direction θv, i.e., if the flight
direction is within the interval [θw + 180◦, θw] mod 360◦, then rotation is clockwise
(+β), otherwise counterclockwise (−β).

3.4.2 Experiment Study

A wind tunnel is usually used to determine the drag coefficient cd of an object. The
object is mounted on a plate equipped with force sensors in order to measure drag
force FD. The drag coefficient cd is then calculated using Eq. 3.4. However, the
typically used force balance is not adequate for those experiments as the influence
of the rotors of the mounted micro-drone at different wind speeds is not considered.
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Therefore, the flight vector ~v was calculated based on experimentally determined
functions.

3.4.2.1 Experiment Setup

The experiments took place in a Göttingen-type wind tunnel [122] (Fig. 3.16; TU
Dresden, Germany). The tunnel has a flow diameter of about 3m and an almost
4.5m long test section, which provided sufficient space for the experiments using
the micro-drone. The speed of the airflow in the wind tunnel can be set precisely
with a relative error < 1%. The reference was measured using pressure sensors in
the prechamber and in the free jet of the wind tunnel. The pressure sensor (Setra
Systems, Inc., USA) in the prechamber of the wind tunnel was used to measure the
total pressure Pt. The relative error of this sensor was less than < ±1Pa. The static
pressure was measured in the free jet using a barometric column with a measurement
error of ±0.5mmHg. Finally, Eq. 3.12 is used to calculate the flow speed v in the
wind tunnel.

v =
√

2(Pt − Ps)
ρ

(3.12)

with

Pt = Ps + q, (3.13)

where Pt is the total pressure, Ps is the static pressure, q is the dynamic pressure,
and ρ is the air density (1.2041kg ·m−3 at 20◦C).

Different series of measurements were performed in the wind tunnel in different
radial orientations of the micro-drone (without payload: 0◦ and 45◦; with pay-
load: 0◦, 45◦, and 90◦) and with different payload configurations (different sizes and
weights). The first experiments were performed with the AR100, whereas the second
experiments were performed with its successor model AR100-B. In comparison to
its predecessor, the AR100-B is slightly larger and the rotor heads are additionally
equipped with flapping hinges which results in a larger projected surface area size
Aproj. Fig. 3.17 shows the different radial orientations of the micro-drone investi-
gated in the wind tunnel. The wind tunnel provided speeds from 0.0 up to 8.0ms−1

with an increment step of 0.5ms−1. Data was collected from the micro-drone’s IMU
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(a) (b) (c)

Figure 3.17: Schematic diagram of the micro-drone (top view) with standard pay-
load container represented as shaded box in different radial orientations: (a) 0◦, (b)
45◦, and (c) 90◦. The arrows indicate the viewing direction of the micro-drone.

for about 60s and was considered valid if the micro-drone held its position (controlled
via camera) and wind speed in the wind tunnel was steady.

3.4.2.2 Experiment Results

Fig. 3.18 shows the results from the wind tunnel experiments. A relationship be-
tween the inclination angle of the micro-drone ψ and the flight speed rv based on
different series of measurements has been obtained. Two functions were derived for
both micro-drones by interpolation using the method of least squares which can be
used to directly calculate the flight speed rv:

(rv)AR100 = 0.004 · ψ2 + 0.396 · ψ − 0.188 (3.14)

(rv)AR100-B =


0.019 · ψ3 − 0.258 · ψ2 + 1.447ψ − 1.119 , if ψ ∈ [0, 7)◦

−0.002 · ψ2 + 0.556ψ − 1.153 , if ψ ∈ [7, 18]◦
(3.15)

Eq. 3.14 applies for the micro-drone without flapping hinges (AR100) and is based on
a quadratic function, whereas Eq. 3.15 is for the successor model with flapping hinges
(AR100-B) and consists of two sub-functions: a cubic and a quadratic part. Fig. 3.19
shows the reference curves for the micro-drone (a) without and (b) with flapping
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(a) (b)

Figure 3.18: Inclination angle of the micro-drone ψ at different flow speeds v: (a)
comparison of different radial orientations of the micro-drone with standard payload
container (≈ 200g) and without payload (AR100) and (b) comparison of different
payload configurations between approximately 0 to 300g (AR100-B).

hinges. Each function was created based on all experiments from the corresponding
micro-drone. It can be observed that the behavior of the micro-drone in the wind
tunnel in (a) is quadratic whereas the behavior in (b) seems to be nearly linear in
the interval of approximately [7, 18]◦.

Further results show that different radial orientations (Fig. 3.18(a)) and payload
configurations (Figs. 3.18(a) and 3.18(b)) of the micro-drones seem to be irrelevant
and can be neglected. This can be seen in Table 3.4 which compares the different
radial orientations of the micro-drone (AR100) with standard payload container
(≈ 200g) and without payload. In all cases RMSE is ≤ ±0.74◦ resulting in an
average RMSE of 0.56◦ ± 0.23◦.

The comparison of the different payload configuration (AR100-B) shows similar
results: RMSE is ≤ ±0.67◦ resulting in an average RMSE of 0.50◦±0.19◦. Here, the
orientation angle was kept at 0◦. The semi-active gas transport unit consists of two
tubes assembled in an angle at 45◦, whereas the active gas transport unit consists
only of one tube pointing in viewing direction (Sec. 3.3). Therefore, the projected
surface area of the active gas transport unit will stay more or less constant over all
possible inclination angles ψ, whereas the projected surface area size of the semi-
active gas transport unit will change (at an orientation angle of 0◦). This can be
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(a) (b)

Figure 3.19: Flow speed v as a function of inclination angle ψ (micro-drone (a)
without and (b) with flapping hinges in each case averaged over the available mea-
surement data). The error bars indicate the standard deviation ±σ.

seen in Fig. 3.18(b) comparing the curve progressions of the active and semi-active
payloads.

The flapping hinges of the rotors allow them to move within 7.0◦ ± 1.0◦ at lower
rpm of the motors. There, the centrifugal forces create greater inertia for the flapping
hinges of the rotor heads. Thus the rotors can move to achieve a more stable hover.
The centrifugal forces at higher rpm of the motors reduce the flapping hinge effect
on the rotor heads and therefore increase directional control of the micro-drone.
Fig. 3.20 shows the micro-drone (a) without and (b) with flapping hinges. The
rotors of the micro-drone without flapping hinges are aligned almost parallel to
the micro-drone, whereas the rotors with flapping hinges are aligned either more
parallel to the ground or more parallel to the micro-drone depending on the rpm of
the motors. This may explain the outlier at 1.15ms−1 (Fig. 3.19(b)) at lower rpm.

The analysis of the experiment results shows that different radial orientations and
payload configuration have an influence on the inclination angle ψ. However, it was
shown that the influence is negligible. Furthermore, the flapping hinges change the
size of the projected surface area Aproj and the micro-drone’s behavior at higher flow
speeds v and inclination angles ψ (quadratic vs. linear), respectively. This effect has
to be considered separately. Comparing the derived functions for both micro-drones
with their averaged data points obtained from the wind tunnel experiments gives
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Table 3.4: Top: Comparison of different radial orientations of the micro-drone with
standard payload container (≈ 200g) and without payload. Bottom: Comparison of
different payload configurations between approximately 0 to 300g (W = Without,
SA = Semi-active, and A = Active).

Micro-Drone Orientation Payload MSE RMSE

AR100

0◦ and 45◦ No 0.43 0.66◦

0◦ and 0◦ Yes / No 0.52 0.72◦

45◦ and 45◦ Yes / No 0.16 0.41◦

0◦ and 45◦ Yes 0.44 0.66◦

0◦ and 90◦ Yes 0.55 0.74◦

45◦ and 90◦ Yes 0.03 0.16◦

AR100-B
0◦ W and SA 0.29 0.54◦

0◦ W and A 0.09 0.30◦

0◦ SA and A 0.44 0.67◦

(a) (b)

Figure 3.20: Comparison of the inclination angle of the micro-drone ψ and the
alignment of the rotors equipped (a) without and (b) with flapping hinges.

an RMSE of (a) 0.10ms−1 and (b) 0.05ms−1. Therefore, the reference functions can
be used independently from the radial orientation and payload configuration of the
micro-drones.
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3.4.3 Validation Experiments

3.4.3.1 Experiment Setup

The validation experiments of the wind vector estimation took place on a wide open
field at Örebro University (Sweden). An ultrasonic anemometer (Young 81000, R.
M. Young Company, USA) was positioned at a height of approximately 2m and was
used to perform the reference measurements (Fig. 3.21). The ultrasonic anemometer
has an operating range between 0 and 40ms−1 with a resolution of 0.01ms−1 and
an accuracy of ±1% (in the range of 0 to 30ms−1). The resolution of the wind
direction is 0.1◦ with an accuracy of ±2◦ (in the range of 0 to 30ms−1). Therefore,
the anemometer provides a highly precise reference for the wind vector estimation
by the micro-drone.

The first experiment was to validate the wind vector estimation during hover-
ing flight of the micro-drone. Here, the micro-drone was manually positioned at
a distance of 2 to 5m from the anemometer and at a height of 2m. The position
was chosen based on the actual wind data in a way that the generated airflow of
the micro-drone’s rotors did not influence the anemometer. Measurements with
the IMU, GPS, and anemometer were recorded at the frequencies of 24Hz, 4Hz,
and 1Hz, respectively, for about 20min. The position was controlled automatically
using only the on-board GPS of the micro-drone. The second experiment was to
validate the wind vector estimation during flight of the micro-drone. Therefore, four
waypoints were placed around the anemometer in a square of size 30 × 30m2, thus
positioning the anemometer almost in the center (Fig. 3.21(b)) of the area of the
experiments. The micro-drone autonomously visited each waypoint twice, before
the experiment was completed.

For the evaluation of these results, the assumption has to be made that the wind
vector measured at the anemometer and the micro-drone are comparable, i.e., that
the wind field does not change drastically over the distance between the reference
measurement with the anemometer and the position of the micro-drone.

3.4.3.2 Experiment Results

In general, a good match between the wind speed and direction measured with the
micro-drone and the wind speed and direction measured with the Young anemometer
was found, see Figs. 3.22 to 3.25, respectively. Exceptions in form of small variations
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(a) (b)

Figure 3.21: (a) Micro-drone with 3D ultrasonic anemometer (Young 81000, R.
M. Young Company, USA). (b) The path taken by the micro-drone. The red dot
indicates the position of the anemometer.

can be seen in Figs. 3.22 and 3.23, e.g., between 150 and 200s, and 1100 and 1150s.
However, greater variations in the measured wind directions can be observed in
Fig. 3.23 around 650s and 900s: deviations of the measurements taken with the
micro-drone compared to the reference may be as high as 60◦. The reason for these
variations could be traced to inaccuracies of the GPS receiver or a problem with
the GPS-based positioning system of the micro-drone (e.g., oversteering). Further
reasons include the different measuring positions and varying distance of the micro-
drone to the anemometer. The calculated RMSE for the wind speed is ±0.71ms−1

(moving average of 10s) and ±0.60ms−1 (moving average of 20s) with the micro-
drone hovering close to the anemometer and ±0.53ms−1 (moving average of 10s)
and ±0.36ms−1 (moving average of 20s) with the micro-drone flying around the
anemometer.

A systematic offset of approximately 15◦ was discovered comparing the wind
direction data, which can be traced to a poor north alignment of the anemometer and
the inferior compass used. Here, the uncertainties are most likely introduced by the
assumption of a uniform wind field (see Sec. 6.1.1.3), the imprecise synchronization
of measured GPS and IMU data, and a given packet loss of the data transmission
in the downlink of the micro-drone. If the measurement data of the anemometer
is corrected with the above mentioned offset, an RMSE value of ±17.76◦ (moving
average of 10s) and ±14.02◦ (moving average of 20s) with the micro-drone hovering
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(a)

(b)

Figure 3.22: Experiment 1: (a) Validation of the wind speed estimation and (b) the
deviation of the reference to the measurement. The data was averaged over the last
20s using a sliding window.
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(a)

(b)

Figure 3.23: Experiment 1: (a) Validation of the wind direction estimation (cor-
rected with an offset due to a systematic error in the experiment setup) and (b) the
deviation of the reference to the measurement. The data was averaged over the last
20s using a sliding window.
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(a)

(b)

Figure 3.24: Experiment 2: (a) Validation of the wind speed estimation and (b) the
deviation of the reference to the measurement. The data was averaged over the last
20s using a sliding window.
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(a)

(b)

Figure 3.25: Experiment 2: (a) Validation of the wind direction estimation and (b)
the deviation of the reference to the measurement ((a) corrected with an offset due
to a systematic error in the experiment setup). The data was averaged over the past
20s using a sliding window.



68 3.5. DEVELOPMENT OF THE ROBOT OPERATING SOFTWARE

Table 3.5: MSE and RMSE of the wind vector estimation.

Wind Speed Wind Direction

Moving
Average

Hovering Flying Hovering Flying
MSE RMSE MSE RMSE MSE RMSE MSE RMSE
- (ms−1) - (ms−1) - (◦) - (◦)

- 1.19 1.09 0.75 0.87 847.94 29.12 1002.47 31.66
5s 0.72 0.85 0.46 0.68 495.60 22.26 623.36 24.97
10s 0.50 0.71 0.29 0.53 315.26 17.76 353.06 18.79
20s 0.36 0.60 0.13 0.36 196.63 14.02 218.22 14.77

close to the anemometer can be calculated using directional statistics (Appendix A,
Eq. A.1). The RMSE in flight is ±18.79◦ (moving average of 10s) and ±14.77◦

(moving average of 20s).
The results of the wind vector validation are promising (Table 3.5). In this form,

the wind vector estimation is of great importance to the field of application and
represents a major improvement over the existing systems (e.g., Pitot tube) for a
quadrocopter. No additional Pitot tube or anemometric sensor has to be mounted
in order to obtain the wind vector and valuable payload capacity is saved for other
sensors. Because on the fact that the micro-drone already runs a Kalman filter to
obtain less noisy data from the IMU, averaging the calculated wind vector over the
last 20s is sufficient in order to obtain a good estimation of the wind vector.

3.5 Development of the Robot Operating
Software

The micro-drone does not provide the computational performance to autonomously
control itself and to execute the gas source localization and gas distribution mapping
algorithms presented in Ch. 5 to 8. Additional hardware on board connected to
the control unit of the micro-drone would be needed to perform these tasks and to
transmit the corresponding control sequences (e.g., rpm of the motors or waypoints).
Another way would be to connect a computer via USB cable to the ground station
and to introduce the corresponding control sequences in the uplink of the micro-
drone. However, the limited flight time of the micro-drone and the already heavy
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gas-sensing payload (approx. 200g without gas transport solutions) do not allow to
add further powerful hardware. Therefore, the second alternative was chosen.

Two different robot operating software with Graphical User Interface (GUI) were
developed for the ground station within this Ph.D. thesis. The first software can be
used to predefine a certain measurement campaign, whereas the second can be used
to autonomously control the micro-drone. Both software use the method presented
in Sec.3.5.1 to calculate new waypoints (GPS coordinates which can be uploaded
to the micro-drone) based on the current position of the micro-drone and a given
azimuth direction angle and distance (step size).

3.5.1 Waypoint Calculation

The following method is a part of the great circle navigation formulae and shows
how to calculate a new waypoint wp2 = (θ2, φ2) based on the current position
wp1 = (θ1, φ1), an azimuth direction angle δ, and a distance d from wp1 to wp2 (all
values are given in radians):

φ2 = sin−1 (sin(φ1) · cos(d′) + cos(φ1) · sin(d′) · cos(δ)) , (3.16)

θ2 = (θ1 + atan2( sin(δ) · sin(d′) · cos(φ1),

cos(d′)− sin(φ1) · sin(φ2)) + π) mod (2π)− π, (3.17)

where θ is the longitude of waypoint wp, φ is the latitude of waypoint wp, and
d′ = d/6378137 (the constant 6378137 is related to the World Geodetic System 1984
(WGS 84)). Eqs. 3.16 and 3.17 were taken from [123].

3.5.2 Measurement Campaign Software

The measurement campaign software makes it possible to define different measure-
ment campaigns in the form of waypoint lists. Such a list can be uploaded to the
micro-drone using the Airrobot software for the ground station. The start posi-
tion, altitude, flight speed, orientation, residence time, and the step size in x- and
y-direction of the micro-drone, as well as the search area size can be defined here.
Additionally, an area coverage mode (sweeping, zigzagging, and spiraling) can be
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Figure 3.26: Screenshot of the robot operating software for the autonomous control
of the micro-drone and the Google Earth Geographic Information System (GIS).

chosen. A dynamic change of the waypoint list cannot be applied since the list has
to be downloaded, changed, and uploaded again. Furthermore, the time needed to
upload a waypoint list – depending on the number of elements – is relatively high.
However, it is possible to transmit a single waypoint with fewer parameters to the
micro-drone. This approach is used in the following section.

3.5.3 Autonomous Control Software

Fig. 3.26 shows a screenshot of the robot operating software for the autonomous
control of the micro-drone. It features the visualization of current measurement
data (wind-, ground-, and flight vector, temperature, humidity, concentration val-
ues, battery voltage, and flight time of the micro-drone), the visualization of the
trajectory taken by the micro-drone and its current position, different control pos-
sibilities in form of the gas source localization (GSL) and gas distribution mapping
(GDM) algorithms (Ch. 5 to 8), and the generation of new waypoints. Additionally,
the start position, altitude, flight speed, orientation, residence time, the step size of
the micro-drone, and the search area size can be defined here.

Fig. 3.27 shows the developed underlying system architecture of the autonomous
control software. It was developed based on the sense-plan-act architecture [124]
commonly used in robotics. A computer is connected via USB cable to the ground
station. The ground station receives and routes correct received downlink data to
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Figure 3.27: System architecture of the autonomous control software.

the computer. Here, the software logs the received data and passes them to the
Data Fusion Unit (DFU). The DFU stores the data in a large look-up table for the
algorithms (Ch. 5 to 8) and fuses the data to estimate the wind vector (Sec. 3.4).
The DFU also provides the GPS coordinates for the Geographic Information System
(GIS). The GIS is based on Google Earth and shows the geographical data, the
trajectory taken by the micro-drone, and its current position. Here, the area borders
for the real-world experiments can be chosen by simple mouse click. The GIS and
the DFU provide the necessary data for the algorithms. The decision where to
perform a new measurement is made in the algorithm part and is based on past and
current measurement data (gas concentration, wind vector, etc.) and the area the
micro-drone already covered. The waypoints (WPs) are calculated and transmitted
via USB to the uplink of the micro-drone. After correct reception, the micro-drone
flies directly to this new waypoint.

3.6 Field Test: Gas Measurements in a Volcanic
Crater

To validate and optimize the system for real-world application scenarios, a field test
was carried out in the harsh conditions of a volcanic crater (Fig. 3.28) [Paper VII].
Area of operation was one of the craters in Timanfaya National Park on the Canary
Island Lanzarote. Despite being inactive, gas emission was assumed at the bottom
of the volcano. Lichen growing there showed different color in some areas, which
might be an indicator of a gas impact. Wind and rocky terrain as well as the distance
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Figure 3.28: Field test in Timanfaya National Park (Lanzarote, Canary Islands).

between micro-drone and pilot contributed to challenging operation conditions. The
experiments’ objective was to fly down to the bottom of the crater, land at the area
of discolored lichen, perform regular gas measurements during the whole mission,
and return to the starting point. All operation was to be carried out via remote
control and the sensing data was to be transmitted and displayed in real time.

The experiment was performed successfully. During two consecutive flights the
navigation and data transmission worked well and proved the capability of the sys-
tem to operate in real-world conditions. The received remote sensing data showed
low concentrations of SO2, a typical volcanic gas, which likely explains the presence
of the discolored lichen. SO2 was detected also in other areas of the Timanfaya
region. Besides the gas measurement data, GPS and altitude information were also
transmitted as well as a video stream during the flight.

3.7 Summary and Conclusions

The combination of a micro-drone with chemical sensors to devise a mobile and flex-
ible gas measurement device creates new possibilities in estimating the risk potential
in a variety of scenarios without endangering people. Targeted fields of operation are
gas measurements in accident scenarios, emission control, and monitoring of critical
areas (including environmental monitoring tasks). This chapter describes a proto-
type of a gas-sensitive micro-drone and demonstrates its performance in a number
of validation experiments. An important enhancement for gas source localization
and gas distribution mapping is the possibility to estimate wind vectors without
a dedicated anemometer (which would consume valuable payload) using only the
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micro-drone’s on-board sensors. The proposed wind vector estimation approach
was evaluated in a wind tunnel and field tests and constitutes a major improvement
over existing systems (e.g., Pitot tube and any kind of anemometer) for a quadro-
copter. Furthermore, robot operating software were developed for the ground station
to autonomously control the micro-drone during the real-world experiments using
one of the algorithms presented in the following chapters. The first software can be
used to predefine measurement campaigns (e.g., to collect data for gas distribution
mapping), whereas the second can be used to autonomously control the micro-drone
based on the sense-plan-act scheme. The latter is mainly used for the gas source
localization and gas distribution mapping algorithms.

Future work should include the improvement of data synchronization between
IMU and GPS to minimize the error in the wind vector estimate. One way to achieve
this could be to perform the involved calculations directly on-board the micro-drone
to avoid any delay due to wireless communication and packet loss of the downlink
of the micro-drone. In general, an extension of the wind vector estimation approach
to 3D would provide valuable information for any 3D gas source localization and
gas distribution mapping algorithm. This could be done by incorporating data of
other sensors, such as the rpm of the rotors and the altitude data of the barometric
pressure sensor. A modification of the gas transport design approaches to further
improve the sensing capabilities of the micro-drone would be beneficial as well. This
could be combined with an airflow model of the micro-drone to estimate a local
concentration gradient when using more than one gas sensor.

It should be noted that it is the first time that a gas-sensitive micro-drone based on
a quadrocopter has been developed. Therefore, it was necessary to gain experience
in this new and challenging field of research, thus making the development effort to
a significant part of this Ph.D. thesis.
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Chapter 4

Setup of the Simulation
Environment

The evaluation of algorithms for gas source localization and gas distribution mapping
requires reliable ground truth information. Simulated data offers ground truth in-
formation and the possibility to repeat experiments under identical conditions [15].
Thus, large test sets can be run and simple debugging of the algorithms can be
performed.

Gas distribution models developed for atmospheric dispersion such as CALPUFF,
RIMPUFF, and PUFF-PLUME [120, 121] cannot capture all the relevant aspects
of gas propagation with a sufficient level of detail [14] which make them unsuitable
for simulation experiments with gas-sensitive mobile robots (and micro-drones). In-
stead, the filament-based gas dispersion model developed by Pashami et al. [15] is
used. It combines flow simulation using standard Computational Fluid Dynamics
(CFD) methods with the filament-based gas propagation model introduced by Far-
rell et al. [125]. The latter produces a challenging and physically plausible simulation
model while achieving significant computational simplifications [125].

The simulation environment was developed and integrated in the autonomous
control software (see Sec. 3.5.3) to benefit from the already existing GIS. The algo-
rithms still carry out their computations based on real-world coordinates. Simply,
the real-world coordinates must be transformed into the local coordinate system of
the simulation data. The advantage of this approach is that it allows use of the
same software implementation of the algorithms as on the real micro-drone.

The simulation setup includes a filament-based gas dispersion model (Sec. 4.1),
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Figure 4.1: Plume propagation in the simulated wind tunnel after 99s.

a GPS model of the micro-drone (Sec. 4.2), a gas sensor model (Sec. 4.3), a simple
disturbance model of the micro-drone (Sec. 4.4), a wind direction sensor model
(Sec. 4.5), and functions to perform transformations between the global and local
coordinate system (Appendix B).

4.1 Filament-Based Gas Dispersion Model

The complex interaction of gas with its surroundings is typically characterized by
three physical effects: molecular diffusion, turbulence, and advection [15]. The
filament-based gas dispersion model developed by Pashami et al. [15] takes all these
effects into account. It simulates gas dispersion for compressible flows with a realistic
turbulence model. The implementation of this model is divided into two parts:
the flow simulation with OpenFOAM (see Sec. 4.1.1) and the filament-based gas
dispersion approach introduced by Farrell et al. [125]. The results in [15] show that
the plume generated in simulations is comparable to a real plume in a wind tunnel.
Fig. 4.1 shows the plume propagation of one simulation experiment in a 32 × 8m2

wind tunnel under predominantly laminar airflow.

4.1.1 OpenFOAM Flow Model

The OpenFOAM (Open Field Operation and Manipulation) CFD Toolbox is used
to numerically solve the equations of fluid flow. The “rhoPisoFoam” solver for com-
pressible, laminar, or turbulent flows was used within the simulation experiments.
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4.1.2 Filament-based Gas Dispersion

The gas propagation model by Farrell et al. [125] simulates gas as a set of filaments
(i = 0, . . . , N), each containing a constant amount of molecules or particles Q =
8.3× 109. Filaments are defined by their position, pi,t and width, Ri,t.

In each time step t, the position of every filament is updated according to the
wind flow vi,t and a stochastic process:

pi,∆t = pi,t + vpi,t∆t+ εp, (4.1)

where vpi,t is the wind vector at position pi,t. The stochastic component εp is a
vector of three independent Gaussian random variables, N

(
0, σ2

p

)
, with standard

deviation σp = 0.1m.
To model molecular diffusion, filaments become wider with time while their peak

concentration decreases. The width of a filament evolves as

Ri,t+∆t = Ri,t + γ

2Ri,t

with γ = 4× 10−7. (4.2)

Here, the gas source releases 500 such filaments per second with an initial width of
Ri,t = 0.20m. The filaments are uniformly distributed over the circular area of the
source.

4.2 GPS Model

Based on the results of Sec. 3.1.1, the error of the GPS is simply modeled as a vector
with samples of a non-zero-mean normal distribution with σ2 set to 1.17:

 xm

ym


noise

=
 N (xm, 1.17)
N (ym, 1.17)

 , (4.3)

where (xm, ym) is the position of the micro-drone.

4.3 Gas Sensor Model

The model of a perfect gas sensor is not suitable for realistic simulation experi-
ments. Therefore, the simulation environment developed within this Ph.D. thesis
was extended with a more realistic sensor model.
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4.3.1 Sensor Response Experiment

In order to determine the responses of the different sensors used in the gas detector
(IR – CO2, Cat – CH4, and EC – CO), the following experiment was performed:
the gas detector was inserted in a calibration adapter which was connected to a
trigger valve (0.5l ·min−1) using a short flexible tube. A gas cylinder containing the
corresponding calibration gas was attached to this trigger valve. During the exper-
iments the gas detector was connected to a computer using a USB to IR converter.
Measurements were recorded on the computer at a frequency of 1Hz.

The following procedure was repeated for each sensor type: The trigger valve
was opened until the sensor output reached a steady value. The gas detector was
then removed from the calibration adapter and inserted into the active gas transport
method in order to expose the sensor to “clean air”. The integrated small fan was
used to speed up the sensor decay. The sensor readings were normalized to the
interval [0, 1] using Eq. 4.4 [14] in order to get the sensor response values ri:

ri = Ri −min(Ri)
max(Ri)−min(Ri)

, (4.4)

where i is the sample index and Ri are the calibrated gas concentration measure-
ments taken by the gas sensor used.

4.3.2 Sensor Model

The sensor model was developed in analogy to the one presented by Lilienthal and
Duckett [126]. Here, the recorded sensor response values of each sensor were fitted
to a first-order sensor model to model the sensor response as an exponential rise and
decay. Fig.4.2 shows exemplarily the real gas sensor readings of the Cat gas sensor
together with the fitted sensor model of the sensor response. As a comparison,
Fig. 4.3(a) shows the fitted sensor model of the response of the IR gas sensor.
Based on the experiment results (Fig. 4.3(b)), a sensor model (Eqs. 4.5 to 4.9) was
developed which separates into four parts according to the four regions shown in
Fig.4.2:
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Figure 4.2: Real gas sensor readings of the Cat gas sensor (circles) together with the
fitted (first-order) sensor model of the sensor response (red line). The four regions
of the applied model (Eqs. 4.5 to 4.9) are labeled with Roman numerals. The red
arrows indicate the moments, where the trigger valve was opened and closed. The
measurement values were normalized to the interval [0, 1].

r(t) =



rI(t) , if t < ts1

rII(t) , if ts1 < t < ts1 + ∆t

rIII(t) , if ts1 + ∆t < t < ts1 + ∆t+ ts2

rIV (t) , if ts1 + ∆t+ ts2 < t

(4.5)

rI(t) = R0 (4.6)

rII(t) = R0+(Rmax−R0)·


(1− e

t−ts1
τr ) (Cat and EC)

η · (1− e−
t−ts1
τIR1 ) + (1− η) · (1− e−

t−ts1
τIR2 ) (IR)

(4.7)

rIII(t) = Rmax (4.8)

rIV (t) = R′0 + (Rmax −R′0) · e−
t−ts1 −∆t−ts2

τd , (4.9)
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(a) (b)

Figure 4.3: (a) Sensor response of the IR gas sensor. The circles are the real gas
sensor readings and the red line is the fitted sensor model of the sensor response.
(b) Result of the sensor response experiment using the three different gas sensors
(Cat, EC, and IR): the red arrows indicate the moments, where the trigger valve
was opened and closed, respectively. The measurement values were normalized to
the interval [0, 1].

where

R0 ≤ R′0 < Rmax. (4.10)

The sensor model contains 8 and 10 adjustable parameters, respectively, for the
different gas sensors (the parameters which are used only for the IR gas sensor model
are marked with an asterisk): R0 is the sensor response level before the sensor is
exposed to the target gas, Rmax is the response level after the sensor responded, and
R′0 is the response level after the sensor decayed. τr, τIR1*, and τIR2* are the time
constants of the sensor response, whereas τd is the time constant of the sensor decay.
The constant η* is used to modify the amplitude of both terms in Eq. 4.7. ts1 is the
time before the sensor started to respond, ts2 is the time before the sensor started
to decay, and ∆t is the duration of the rising period. However, ts1 and ts2 were only
considered at the beginning of each measurement period as they describe the time
needed for the gas / air mixture to reach the gas-sensitive element of the sensor.
Small fluctuations within one measurement period due to, e.g., varying measurement
positions of the micro-drone (Sec. 4.2), were not delayed additionally.
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Table 4.1: Gas sensor model parameters.

Cat EC IR
Response Decay Response Decay Response Decay

τr in (s)
Value 7.0126 - 16.1812 - - -
σ 0.0199 - 0.0014 - - -

τIR1 in (s)
Value - - - - 2.4958 -
σ - - - - 0.1001 -

τIR2 in (s)
Value - - - - 42.5273 -
σ - - - - 7.4442 -

τd in (s)
Value - 2.8862 - 14.2792 - 4.1862
σ - 0.0663 - 0.3292 - 0.0940

η
Value - - - - 0.8312 -
σ - - - - 0.0128 -

1− η
Value - - - - 0.1911 -
σ - - - - 0.0090 -

ts1 in (s) 5 - 10 - 4 -
ts2 in (s) - 4 - 7 - 4
MSE 0.0266 0.0377 0.1528 0.1878 0.0318 0.0523

The Levenberg-Marquardt algorithm [127] was used to fit the sensor model to
the recorded response values in order to obtain the following parameters: τr, τIR1 ,
τIR2 , τd, and η. The parameters ts1 and ts2 were determined by subtracting the
timestamps of the first sensor response and decay with the timestamp when the
trigger valve was opened and closed, respectively. Table 4.1 contains the results of
the parameter estimation.

4.4 Simple Disturbance Model

To model the disturbances of the rotors on both the measurements and the involved
dilution of the gas / air mixture (i.e., the stirring of the surrounding air by the ro-
tors), the gas concentration values are simply averaged at the measurement position
given by the filament-based gas dispersion model (Sec. 4.1) within a radius of 0.5m
before applying the gas sensor model (Sec. 4.3). The radius of 0.5m corresponds to
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the radius of the micro-drone. Therefore, the result of a measurement at the plume
boundary is reduced significantly as the rotors dilute the gas with the surrounding
“clean air” (many low and zero concentration values can be found close to the plume
boundary). Accordingly, results of measurements directly inside the plume are not
influenced so much as many high concentration values can be found in the close
vicinity of that measurement position.

4.5 Wind Direction Sensor Model

The wind sensor is modeled as a perfect sensor with the option to add noise to the
directional component. The noise is added using samples of a zero-mean normal
distribution (N (0, σ2

θ)):

(θu)noise =
(
θu +N

(
0, σ2

θ

))
mod 360◦, (4.11)

where θu is the available wind direction in the simulation data. The noisy wind
direction (θu)noise is rotated into the local coordinate system of the simulation envi-
ronment. The wind speed ru is not distorted additionally with noise.

To model the circular variance S0 (Appendix A), i samples of a zero-mean normal
distribution are drawn (N

(
0, σ2

S0

)
) with a frequency of 1Hz over the measuring time

∆T . σ2
S0 is set to 23.08, which corresponds to the average variance of single wind

measurements taken with the micro-drone in real-world experiments. Finally, S0 is
calculated using Eq. A.3, which is relevant for the algorithm presented in Ch. 6.

4.6 Summary and Conclusions

This chapter described the simulation environment which was set up to run exper-
iments on simulated data. Simulated data provides ground truth information and
the possibility to repeat experiments under identical conditions [15]. Thus, large
test sets can be run and simple and fast debugging of the algorithms is supported.
However, despite all the effort spent on the simulation environment, it still consti-
tutes a significant simplification of real conditions and makes real-world experiments
an essential part of the validation process of new algorithms. Future work should
address the influence of the micro-drones’ rotor movement on gas dispersion and an
extension to the 3rd dimension.



Chapter 5

Plume Tracking Implemented on a
Micro-Drone

This chapter presents the development of three bio-inspired plume tracking algo-
rithms for the gas-sensitive micro-drone: the surge-cast algorithm (a variant of the
silkworm moth algorithm) [2], the zigzag / dung beetle algorithm [3], and a newly
developed algorithm called “pseudo gradient algorithm” [Paper IV, Paper IX].
The algorithms were developed under the assumption that an arbitrary rectangu-
lar search area defined by four GPS coordinates and a main search direction are
given. They were successfully tested in simulations and real-world experiments with
the micro-drone equipped with the e-nose. At this point, it should be highlighted
again that it is the first time that real-world plume tracking experiments with a
gas-sensitive micro-drone were completed successfully in a setup where no artificial
conditions were introduced to simplify the experiments.

Note that next measuring positions are calculated by the method introduced
in Sec. 3.5.1, which requires the current position of the micro-drone, an azimuth
direction angle, and a defined step size. The minimum step size and the minimum
flight speed of the micro-drone are limited to 1m and 1ms−1, respectively, which also
had to be considered in the development process. Because of the constraints given by
the micro-drone operated in waypoint mode and to take the slow response times of
the used gas sensors into consideration, the micro-drone is stopped at each calculated
position to collect gas and wind measurements for a specified measurement time and
reject samples taken in between the stops.

The remainder of this chapter firstly describes three bio-inspired plume tracking
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algorithms (Sec. 5.1) and their modifications to be used in combination with the
micro-drone. Next, the performance of the three plume tracking algorithms are
compared with each other in simulations under controlled environmental conditions
and to the work by Lochmatter [2, 12] (Sec. 5.2). Finally, real-world experiments
are performed. The results are compared with each other and again to the work by
Lochmatter (Sec. 5.3) and conclusions are drawn (Sec. 5.4).

5.1 Gas Source Localization

As stated in [28], reactive gas source localization algorithms can be separated into
three phases: 1. plume acquisition (finding the plume), 2. plume tracking (moving
the robot guided by the gas plume), and 3. source declaration (predicting the most
likely location of the emitting source and deciding that a source has been found).
The focus of this chapter lies on the first two phases: plume acquisition and plume
tracking. Sec. 5.1.3 offers a suggestion how to solve the source declaration phase.

The first two algorithms presented in this section use only binary gas information
from the sensor, i.e., they detect either the presence or absence of the target gas.
Different gas concentration levels are ignored. To obtain this binary value, the aver-
age measured gas concentration is thresholded. Using binary gas information helps
to mitigate calibration issues with the gas sensors. However, more sophisticated
algorithms could be used to detect the presence or absence of the target gas. Since
gas molecules emitted in natural environments are carried by the wind to form a
plume, measuring the wind direction gives valuable information about the gas source
location. The wind speed, on the other hand, is ignored.

5.1.1 Plume Acquisition

Possible plume acquisition strategies to make contact with the plume are passive
monitoring of the environment and active exploration strategies. The passive strat-
egy is to wait until the sensors of the mobile robot detect a concentration level of the
target gas above a certain threshold. This indeed can minimize the energy consump-
tion of, e.g., ground-based mobile robots. However, in the case of a micro-drone,
where the energy consumption for the hovering of the micro-drone is high, the pas-
sive strategy is not feasible. Instead, an active exploration strategy has to be used,
for example, a randomized (e.g., random walk) or systematic search (e.g., move the



CHAPTER 5. PLUME TRACKING 85

mobile robot orthogonally to the wind direction). Here, the following systematic
search algorithm, called sweeping, was implemented and used for the three plume
tracking algorithms:

• collect gas sensor and wind measurements while keeping the micro-drone at a
fixed position for a prolonged time (here: 20s);

• average the gas concentration and wind measurements over the measurement
time;

• if the averaged gas concentration c̄ is below a given threshold thc (c̄ ≤ thc),
make a step orthogonal to the wind direction1: if this new position is outside
the search space, calculate an alternative position in upwind direction (make
one step in upwind direction2) and change the sweeping direction;

• if the averaged gas concentration c̄ is above a given threshold thc (c̄ > thc),
change to the plume tracking phase;

• repeat using the first step.

5.1.2 Plume Tracking

All three presented plume tracking algorithms are based on two principles: chemo-
taxis and anemotaxis (Sec. 2.2). Fig. 5.1 shows a good comparison of typical tra-
jectories created by the three reactive plume tracking algorithms discussed here.

5.1.2.1 Surge-Cast Algorithm

Lochmatter and Martinoli presented the surge-cast algorithm in [2]. It is a combi-
nation of plume tracking strategies used by the silkworm moth:

• Upwind surge: straight upwind movement as long as the moth is in the
plume.

• Casting: side-to-side searching (zigzagging) to reacquire the plume after los-
ing contact.

1Alternatively the search direction could be used if the wind is very variable (unstable).
2If the new point still remains outside the search space, calculate an alternative position using

the search direction instead. This ensures that the micro-drone stays within the search space.
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Figure 5.1: Comparison of the trajectories of three reactive plume tracking algo-
rithms obtained from simulation: the start and finish positions of the robot are
shown with arrows, and the plume, including centerline, is traced by dotted lines
(from Russell et al. [44]).

• Spiraling: an irregular, spiral-like movement if casting failed to reacquire the
plume.

The basic algorithm works as follows: The robot moves straight upwind until it
loses contact with the plume for a certain distance dlost. Then it tries to reacquire
the plume by searching crosswind for a defined distance dcast on both sides. The
chance of reacquiring the plume in the first crosswind movement is maximized by
measuring the wind direction to estimate on which side the robot has left the plume.
Every time the robot switches its behavior from upwind surge to casting and vice
versa, the wind direction is re-measured.

The surge-cast algorithm for the micro-drone works as follows:

• collect gas sensor and wind measurements while keeping the micro-drone at a
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Figure 5.2: Illustration of the surge-cast algorithm. The stars indicate the positions
where the wind direction is measured, whereas the gas concentration is measured
continuously. The plume is traced by the gray solid lines and the source is indicated
by the red dot. The red arrow illustrates the main wind direction. The figure was
adapted from Lochmatter and Martinoli [2].

fixed position for a prolonged time (here: 20s);

• average the gas concentration and wind measurements over the measurement
time;

• if the averaged gas concentration c̄ is above the threshold thc (c̄ > thc), perform
an upwind surge (move the micro-drone one step straight forward in wind
direction);

• if the averaged gas concentration c̄ is below the threshold thc (c̄ ≤ thc), carry
out casting in crosswind direction with increasing step size: # no detection
events × step size (return to sweeping, if no concentration was detected after
a defined number of steps)

• repeat using the first step.

Instead of considering the distance dlost in the algorithm, the plume is declared
lost in the surge-cast algorithm used here when the micro-drone measures an average
gas concentration below the threshold thc at a certain position (after one step). The
distance dcast is defined as a multiple of the step size to take account of the minimum
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Figure 5.3: Illustration of the zigzag algorithm introduced by Ishida et al. [3]. The
plume is traced by the gray solid lines and the source is indicated by the red dot.
The red arrow illustrates the main wind direction. The stars indicate the positions
where the wind direction is measured, whereas the gas concentration is measured
continuously.

step size of the micro-drone of 1m. Furthermore, the wind is remeasured in every
iteration of the algorithm to adapt faster to changing wind conditions.

5.1.2.2 Zigzag/Dung Beetle Algorithm

The zigzag or dung beetle algorithm was first reported by Ishida et al. [3]. The basic
algorithm works as follows: The robot moves upwind at an angle α (e.g., α = 60◦)
across the plume. If the gas sensor measures a concentration below a given threshold
thc, the robot is assumed to have reached the edge of the plume. It remeasures the
wind direction and continues moving upwind at an angle −α with respect to the
upwind direction. This procedure is repeated causing the robot to move in a zigzag
fashion within the plume. The robot is stopped when it has reached the source. A
sample trajectory can be seen in Fig. 5.3.

During the experiments in [3] the delay of the gas sensor response was considered
indirectly by slowing down the movement of the robot to 0.002ms−1. However, the
slowest flight speed of the micro-drone can be set to 1ms−1. In order to consider the
delay of the gas sensor response and the inaccuracies given by the indirect measuring
principle of the wind presented in Ch. 3, the following zigzagging algorithm was
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developed in analogy to the one presented in [3]. The algorithm changes its behavior
from sweeping into zigzagging once the averaged gas concentration c̄ is above the
threshold thc.

• collect gas sensor and wind measurements while keeping the micro-drone at a
fixed position for a prolonged time (here: 20s);

• average the gas concentration and wind measurements over the measurement
time;

• if the averaged gas concentration c̄ is above the threshold thc (c̄ > thc) or
the new position after the movement of the micro-drone is outside the search
space, set α to −α;

• if the averaged gas concentration c̄ is below the threshold thc (c̄ ≤ thc) for a
predefined number of steps, return to sweeping;

• turn the micro-drone α◦ from upwind direction and move a step forward;

• repeat using the first step.

The upwind angle α has a major influence on the performance of the zigzag
algorithm [2, 12]. The performance decreases with increasing α resulting in a high
distance overhead as the robot has to turn more often at the plume boundaries to
stay within the plume. On the other hand it becomes more robust. Small angles
result in a low distance overhead but cause the algorithm to decrease its robustness
as it might lose the plume easily.

5.1.2.3 Pseudo Gradient Algorithm

The idea for the first gradient-based algorithms for plume tracking goes back to
Braitenberg [128]. The chemical gradient is measured by a pair of bilateral gas
sensors mounted on each side of a robot, each directly controlling the speed of a
wheel. Each sensor is connected to (a) the motor on the same side, (b) the motor
on the opposite side (cross coupling), or (c) both motors. Although it was a purely
chemotactic approach, a Braitenberg-style robot is able to track a plume towards
a gas source by following the concentration gradient [65]. Fig. 5.1 shows a sample
trajectory. A representative algorithm is as follows [28]:
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Figure 5.4: Illustration of the Braitenberg vehicle type 2 with two motors and two
sensors. Each sensor connected to (a) the motor on the same side, (b) the motor on
the opposite side (cross coupling), and (c) both motors. The figure was extracted
from Braitenberg [128].

• Turn clockwise in proportion to the concentration difference. A negative value
indicates a counterclockwise turn. The magnitude of the turn is limited to
±16◦);

• Move forward 0.02m;

• Repeat using step one.

As no wind information is considered in this algorithm, the robot does not know
whether it is following a plume towards or away from its source. Turning the robot
in proportion to the concentration gradient in dependence of the upwind direction
solves this problem [44]. As the rotors of the micro-drone introduce strong distur-
bance, measuring a local concentration gradient with spatially separated sensors is
not feasible. Instead a new measuring strategy was developed, which basically splits
up one measuring position into two spatially separated ones. In order to respect the
minimum step size of the micro-drone of 1m and to progress faster to the source, the
step size in upwind direction dup was set to dcross+dcross/2. After the gas sensor has
detected a concentration above a threshold thc, the following procedure is repeated
[Paper IV, Paper IX]:

• collect gas sensor and wind measurements while keeping the micro-drone at
position p1 for a prolonged time (here: 20s);
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Figure 5.5: Three different cases of the pseudo gradient algorithm: (a) c̄p1 > c̄p2 , (b)
c̄p1 < c̄p2 , and (c) c̄p1 = c̄p2 . The case c̄p1 = c̄p2 = 0 restarts the plume acquisition
phase. The red stars indicate the measuring positions, the red arrows illustrate the
averaged wind directions, and the gray dotted line is the flight path of the micro-
drone.

• calculate the averaged gas concentration c̄p1 and wind direction (θ̄u)p1 over the
measurement time;

• make a step orthogonal to the wind direction (the direction of the first cross-
wind step is given by the current sweeping direction);

• collect gas sensor and wind measurements while keeping the micro-drone at
position p2 for a prolonged time;

• calculate the averaged gas concentration c̄p2 and wind direction (θ̄u)p2 over the
measurement time;

• calculate the pseudo concentration gradient (a concentration below the thresh-
old c̄ < thc will be set to 0; if c̄p1 = c̄p2 = 0, the direction of the crosswind
movement is inverted and sweeping is restarted):

grad(c̄p1 , c̄p2) = c̄p1

c̄p1 + c̄p2

, grad(c̄p1 , c̄p2) ∈ [0, 1]
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• if grad(c̄p1 , c̄p2) > 0.5, set β to −β, invert the direction of the crosswind
movement, and calculate the new measuring position p3 based on the averaged
wind direction determined at position p1 and the center position pc using the
equations in Sec. 3.5.1 (see Fig. 5.5(a)):

δ = (θ̄u)p1 + β · 2 · (grad(c̄p1 , c̄p2)− 0.5),

where β denotes the maximum upwind angle the micro-drone can take.

• if grad(c̄p1 , c̄p2) < 0.5, calculate the new measuring position p3 based on the
averaged wind direction determined at position p2 and the center position pc
(see Fig. 5.5(b)):

δ = (θ̄u)p2 + β · 2 · (1− grad(c̄p1 , c̄p2)− 0.5)

• if grad(c̄p1 , c̄p2) = 0.5, calculate the new measuring position p3 based on the
averaged wind direction of both measuring points p1 and p2 and the center
position pc (see Fig. 5.5(c)):

δ = (θ̄u)p1,p2

• fly the micro-drone autonomously directly from position p2 to position p3 and
repeat using the first step.

Fig. 5.6 shows a sample trajectory of the pseudo gradient algorithm.

5.1.3 Source Declaration

In recent work, the problem of gas source declaration has often been ignored and
replaced in experiment trials by establishing that the mobile robot reached a prede-
fined proximity to the known location of the gas source. This was performed visually
by a human observer [28]. First approaches without human interaction were sug-
gested, e.g., in [13, 77, 78, 86, 129–132]. For example, Li sent his REMUS AUV on
cloverleaf trajectories to estimate the source location [132]. His source declaration
module uses the six most recent detection points to calculate a bounding box using
three of the six most upstream locations. When the diameter of the box become
small enough, the source is assumed to be found and the center of the box was used
to estimate its location. Due to the navigation system’s relative inaccuracy of the
REMUS AUV, the location estimate was only accurate a few dozen meters. The
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Figure 5.6: Idealized sample trajectory of the pseudo gradient algorithm. The red
stars indicate the measuring positions, whereas the source is indicated by the red
dot. The plume is traced by the gray solid lines and the gray dotted line is the flight
path of the micro-drone. The red arrow illustrates the main wind direction.

source declaration phase is not considered within this chapter, but can be done using
the particle filter-based gas source localization algorithm presented in Sec. 6.

5.2 Simulation Experiments

Simulations were performed in order to determine the performance (=̂ distance
overhead) and robustness (=̂ success rate) of each plume tracking algorithm under
repeatable conditions using the simulation environment presented in Ch. 4.

5.2.1 Experiment Environment and Setup

The experiment area is a simulated wind tunnel with a size of 32× 8m2. The flow
speed in the wind tunnel was set to 0.5ms−1. A circular gas source with a radius
of 0.2m was placed in the experiment area at position (2, 4)m. In each run the
micro-drone was started inside the plume approximately at position (31, 4)m about
29m downwind from the source. The step size was set to 1m to model the system
characteristics of the micro-drone. The IR gas sensor model was used to simulate
the sensor response (Sec. 4.3). The simple disturbance model (Sec. 4.4) and the
GPS model (Sec. 4.2) of the micro-drone were used as well. The measuring time
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Table 5.1: Configurations of the different sets of the plume tracking simulation
experiments.

Set Algorithm Parameter Wind Sensor Noise σ2
θ Runs

1 Surge-Cast - variable 700
2

Zigzag

α = 15◦

variable 2,800
3 α = 30◦

4 α = 60◦

5 α = 75◦

6
Pseudo Gradient

β = 30◦

variable 2,1007 β = 60◦

8 β = 90◦

at each sampling location was set to 20s with a sampling frequency of 1Hz, and
the threshold thc was set to 0.05 (the concentration data was normalized before
usage). The parameter α of the zigzag algorithm and the parameter β of the pseudo
gradient algorithm were successively set to 15◦, 30◦, 60◦, and 75◦ (zigzag) and 30◦,
60◦, and 90◦ (pseudo gradient). The wind sensor noise σ2

θ (Sec. 4.5) was variable
during all sets of experiments, and a total of 100 runs were performed for each value
of σ2

θ ∈ {0.00, 14.02, 17.76, 22.26, 29.12, 60.00, 90.00}, where 14.02◦, 17.76◦, 22.26◦,
and 29.12◦ correspond to the RMSE of the wind vector estimation of the hovering
micro-drone using different averaging times (Sec. 3.4.3). Thus, a total of 700 runs
were performed for each set of experiments (Table 5.1).

A run was considered successful if the micro-drone reached a 1.5 × 2m2 large
area centered in front of the source, and unsuccessful if the robot touched an arena
wall or passed the target area. This stop criterion was chosen in a way that the
micro-drone stopped almost in front of the gas source. Furthermore, the step size
constraint of ≥ 1m does not allow the micro-drone to track a small scale plume. The
plume width at the source location has approximately the same width as the source
itself (here: � = 0.4m). Therefore, it is most likely that the micro-drone jumps over
the plume without detecting a concentration level above the threshold. This is also
the reason why larger step sizes of the micro-drone were not investigated.
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5.2.2 Experiment Results

A total of 5,600 runs were performed for the three plume tracking algorithms. A
sample trajectory of a successful run for each algorithm can be seen in Fig. 5.7.

The results of the surge-cast algorithm are shown in Fig. 5.8. The performance
of this algorithm is fairly good. The distance overhead of the algorithm is ≤ 1.5 for
σ2
θ ≤ 29.12 and it seems that the wind sensor noise has only a marginal influence on

the performance of the algorithm as long as the error does not exceed σ2
θ > 29.12.

However, the wind sensor noise greatly affects the success rate. Reasonable success
rates above 90% were only obtained up to a wind sensor error of σ2

θ = 22.26. A
success rate of 100% was only achieved with a wind sensor error of σ2

θ = 0.00.
Fig. 5.9 presents the results of the zigzag algorithm. The performance of this

algorithm depends heavily on its parameter α (upwind angle): small upwind angles
result in a small distance overhead but also in a low success rate, whereas a large
angle significantly increases the success rate and the distance overhead at the same
time as the micro-drone has to turn more often at the plume boundaries to stay
within the plume. Thus, the upwind angle α presents a tradeoff between robustness
and performance of this algorithm and has to be chosen carefully. Again it seems
that the wind sensor noise has only a small influence on the performance of the
algorithm. Reasonable results with high success rates (> 90%) up to a wind sensor
error of σ2

θ = 29.12 were only obtained with α = 60◦ and 75◦. Success rates of 100%
were achieved with α = 60◦ and 75◦ up to a wind sensor error of σ2

θ = 22.26.
The results of the pseudo gradient algorithm are presented in Fig. 5.10. The

parameter β has only a minor influence on the performance and the success rate of
the algorithm. The value of β should not be too small as a small angle probably
prevents the micro-drone from reacquiring the plume if lost. The wind sensor noise
seems to affect mainly the success rate of the algorithm. Reasonable results with
high success rates (> 90%) up to σ2

θ = 29.12 were obtained with β set to 60◦ and
90◦. Success rates of 100% were achieved with β = 90◦ up to a wind sensor error of
σ2
θ = 17.76.
Fig. 5.11 shows a summary of the obtained simulation results of all three algo-

rithms with σ2
θ = 14.02. It can be seen that the zigzag algorithm with α = 15◦ and

the surge-cast algorithm have the best distance overhead (1.07±0.05 and 1.12±0.10),
followed by the zigzag algorithm with α = 30◦ (1.23 ± 0.06). The pseudo gradient
algorithm has a distance overhead of 1.81 ± 0.05 (β = 30◦), 1.91 ± 0.08 (β = 60◦),
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(a) Surge-cast

(b) Zigzag; α = 75◦

(c) Pseudo Gradient; β = 90◦

Figure 5.7: Trajectories of successful simulation runs of all three plume tracking
algorithms with σ2

θ = 14.02. The source is indicated by the large gray circle at
position (2, 4)m. The smaller colored circles show the measured concentration at
the sampling locations.
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Figure 5.8: Simulation results obtained using the surge-cast algorithm. The error
bars indicate the confidence interval with 95% confidence level for the mean (as-
suming normally distributed data). The last bar is omitted because no run was
successful here.

and 2.04 ± 0.15 (β = 90◦) and lies in the medium range, followed by the zigzag
algorithm with α = 60◦ (2.12 ± 0.13) and α = 75◦ (4.06 ± 0.38). Therefore, the
zigzag algorithm with α = 15◦ and 30◦ and the surge-cast algorithm are the most
efficient algorithms within this comparison, but also the least robust ones. Even
with a small wind sensor error of only σ2

θ = 14.02, they are not able to reach success
rates of 100%. High robustness and reasonable distance overheads are given by the
pseudo gradient algorithm and the zigzag algorithm with α = 60◦. The zigzag al-
gorithm with α = 75◦ offers the highest robustness but produces the worst distance
overhead in this comparison.

Lochmatter [2,12] also performed 1,350 simulated runs for pure casting (zigzag),
surge-spiraling, and surge-casting using a realistic Webots3 simulation environment
extended with a simple advection model and the filament-based gas dispersion model
by Farrell et al. [125] (the same model as presented in Ch. 4). The experiments were
performed over an area of 16 × 4m2. In each run, the robot was released in the
plume at a position about 14.5m downwind from the source. A run was considered
successful if the robot reached the source, and unsuccessful if the robot touched an
arena wall.

For the surge-cast algorithm Lochmatter showed that choosing the cast distance
dcast too small, lets the algorithm fail as the robot could not reacquire the plume. The

3Webots is a commercial realistic robotic simulator.
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(a) α = 15◦ (b) α = 30◦

(c) α = 60◦ (d) α = 75◦

Figure 5.9: Simulation results obtained using the zigzag (casting) algorithm with α
(upwind angle) set to (a) 15◦, (b) 30◦, (c) 60◦, and (d) 75◦. The error bars indicate
the confidence interval with 95% confidence level for the mean (assuming normally
distributed data). The last bar is omitted in each bar plot because of the small
number of successful runs.
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(a) β = 30◦ (b) β = 60◦

(c) β = 90◦

Figure 5.10: Simulation results obtained using the pseudo gradient algorithm with
β set to (a) 30◦, (b) 60◦, and (c) 90◦. The error bars indicate the confidence interval
with 95% confidence level for the mean (assuming normally distributed data). The
last bar is omitted in each bar plot because of the small number of successful runs.

results presented here are comparable with the results he obtained at cast distances
of approximately 0.61m (Fig. 5.12(a)). The behavior of the distance overhead and
success rate of the surge-cast algorithm with increasing wind sensor noise are also
comparable with the results from Lochmatter (Fig. 5.12(b)). However, Lochmatter
demonstrated that casting for plume reacquisition is faster than spiraling if reliable
wind direction information is available, but less robust. Therefore, additional ro-
bustness was added to the current implementation of the algorithm presented here
by increasing the cast distance until the plume is found or the number of no detection
events exceeds a predefined number.



100 5.3. REAL-WORLD EXPERIMENTS

Figure 5.11: Comparison of the obtained simulation results of all three algorithms
with σ2

θ = 14.02. The error bars indicate the confidence interval with 95% confidence
level for the mean (assuming normally distributed data).

For the casting algorithm, Lochmatter demonstrated that the upwind angle α has
a major influence on the performance and that choosing this parameter is a tradeoff
between performance and robustness, which confirms the results presented here.
Acceptable success rates were only achieved with α ≥ 20◦. The results presented
here are comparable with the results he obtained at upwind angles of 15◦, 30◦, and
45◦ (correlates with the results presented here with α = 60◦; Fig. 5.12(c)). The
behavior of the distance overhead and success rate of the zigzag algorithm with
increasing wind sensor noise is also comparable with the results from Lochmatter
(Fig. 5.12(d)). Additionally, he showed that “the accuracy of the wind sensor only
has a marginal impact on the performance, and no visible influence on the robustness
as long as the accuracy is below a certain threshold”. However, pure casting would
not work in environments without a main wind flow.

Among the three algorithms tested in [2, 12], the surge-spiral algorithm is the
preferred strategy as it is the most robust and has the performance over a wide
parameter range followed by the surge-cast algorithm. Pure casting is the least per-
formant algorithm. Unfortunately, a gradient-based algorithm was not considered
in Lochmatter’s comparison.

5.3 Real-world Experiments

It is very difficult to set up a controlled airflow environment to perform initial
plume tracking experiments, especially when GPS is needed to control the micro-
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(a) Surge-cast with varying cast distance (b) Surge-cast with varying wind sensor noise σa

(c) Casting with varying upwind angle α (d) Casting with varying wind sensor noise

Figure 5.12: Simulation results of Lochmatter [12] obtained using the casting and
the surge-cast algorithm with a wind sensor noise set to σa = 0.1m: surge-cast
with (a) varying cast distance (dcast) and (b) varying wind sensor noise σa and
casting (zigzag) with (c) varying upwind angle (α) and (d) varying wind sensor
noise. The error bars indicate the confidence interval with 95% confidence level
for the mean (assuming normally distributed data). The figure and caption were
adopted from [12].
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Figure 5.13: Setup of the real-world plume tracking experiments: The experiment
area was set to 20× 16m2 with the gas source positioned approximately at position
(3.2, 5.7)m from the bottom left corner. The red arrow illustrates the main wind
direction during the experiments. The start position of the micro-drone is indicated
by the red star. The micro-drone can be seen in the image enlargement in the top
right corner of the figure.

drone. The first idea was to carry out these experiments in a vacant 100-year-old
greenhouse (approx. 10 × 15m2). However, the structure of the greenhouse acts
as a Faraday cage which produces an extremely inaccurate GPS signal. A new
greenhouse built of aluminum and plastic foil gave far better results, but it provided
only an experiment area of approximately 5 × 15m2. The relatively small area
size, the system characteristics of the micro-drone (minimum step size, accuracy of
the GPS-based positioning system, slow sensor recovery), and especially the fact
that controlled environmental setups are not desirable when targeting to real-world
applications [Paper II], led to the conclusion that the realization of the plume
tracking experiments have to be realized outdoors. Expensive indoor localization
systems like an indoor GPS system or a camera system were not considered within
this Ph.D. thesis.

5.3.1 Experiment Environment and Setup

All plume tracking experiments were carried out in a 20× 16m2 wide open outdoor
area surrounded by trees and buildings, which introduced a certain level of turbu-
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lence (Fig. 5.13). The micro-drone was equipped with the e-nose with a sampling
rate of 8Hz for each sensor. The step size of the micro-drone was set to 1.5m for
the surge-cast and the pseudo gradient algorithm, and to 2.0m for the zigzag algo-
rithm. The parameter α of the zigzag algorithm was set to 60◦ in the first and 75◦

in the second run. The parameter β of the pseudo gradient algorithm was set to
60◦. The flight speed of the micro-drone between the measurement positions was
set to 1ms−1. Because of the low altitude of the micro-drone of about 1.5m and
the inaccuracies given by the altitude control of the micro-drone below < 5m, the
altitude was kept constant manually during the experiments. A CH4 (99.5%-pure
methane) gas cylinder connected to a pressure-reducing valve was used as the gas
source. The outlet of the gas source was extended with a small tube, which was
attached to a fan in order to spread the analyte away from the cylinder and to im-
prove the gas dispersion. The air current introduced by the fan also prevented the
CH4 from immediately rising up to the atmosphere when released. The gas source
was placed approximately at position (3.2, 5.7)m from the bottom left corner. The
starting point of the trajectory is illustrated by the red star. The corresponding
algorithm was activated directly after take-off, which started the experiment.

Here, an experiment setup is built where no artificial conditions were introduced
to simplify the experiments. In comparison to a wind tunnel, the fan did not produce
a laminar wind flow over the experiment area. Instead, additional turbulences were
introduced by the gas cylinder and the running fan. Note that the results of the
experiments were published in [Paper IV, Paper IX].

5.3.2 Experiment Results

The wind conditions during the experiments were quite stable and permitted per-
forming a total of 6 successful runs: each algorithm was conducted twice. The
circular variance S0 (Appendix A) is used here to describe the degree of turbulence
(stability of the wind) during the different experiment runs.

Figs. 5.14(a) to 5.14(c) show the trajectories produced by the micro-drone. The
plume acquisition phase was excluded from the evaluation to make the results rudi-
mentarily comparable with each other and to the wind tunnel experiments performed
by Lochmatter [12]. Runs #2 (surge-cast) and #6 (pseudo gradient ) are particularly
noteworthy. Here the wind direction varied significantly during the runs which pre-
cluded the micro-drone making further progress for some time (Table 5.2 – circular
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(a) Surge-Cast (b) Zigzag (c) Pseudo Gradient

Figure 5.14: Trajectories of the micro-drone in real-world experiments including the
plume acquisition phase using (a) the surge-cast, (b) the zigzag (α = 60◦ [black] and
75◦ [red]), and (c) the pseudo gradient algorithm (β = 60◦). The experiment area
is illustrated by the gray dotted line. The source position is indicated by the gray
point. The gray circles mark the position of the first gas concentration measurements
above the threshold. The position where the wind direction started turning up to
180◦ is indicated with black arrows (in run #2 and #6).

Figure 5.15: Comparison of the distance overhead do (mean with 95% confidence
interval) and success rate of the surge-cast, the zigzag (α = 60◦ and 75◦), and the
pseudo gradient algorithm (β = 60◦). The traveled distance needed to acquire the
plume was not considered here.
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Table 5.2: Results of the real-world plume tracking experiments (excluding the
plume acquisition phase).

Surge-Cast Zigzag Pseudo Gradient
Run 1 2 3 4 5 6

Traveled Distance
21.01 41.78 18.06 44.18 29.65 26.02

dt (m)

Distance Overhead 2.01 3.27 1.93 2.67 1.96 2.02
do (m/m)
Mean 2.64 - 1.99

95% Confidence (1.40, 3.88) - (1.93, 2.04)
Interval

Mean Wind 3.10 3.18 2.22 3.23 3.48 3.26
Speed (ms−1)
σ (ms−1) ±1.59 ±1.72 ±1.03 ±1.52 ±1.71 ±1.61

Mean Wind 235.93 234,58 246.60 249.25 243.21 242.17
Direction (◦)

Circular Variance 0.19 0.20 0.17 0.14 0.16 0.16

variance). This is indicated in Fig. 5.14 with black arrows. Table 5.2 shows a com-
pilation of the experiment results. However, the overlapping confidence intervals,
the small number of experiments, the different chosen step sizes and upwind angles
for the zigzag algorithm, and the constantly changing structure of the plume (due
to changing wind conditions) do not permit obtaining strong statistical significance
of the performance of the algorithm.

Lochmatter’s Ph.D. thesis [12] compared three bio-inspired algorithms in experi-
ments with real robots in an 18× 4m2 large wind tunnel: pure casting (zigzagging),
surge-spiraling, and surge-casting. A total of 7×20 runs were performed with the fol-
lowing configurations: dlost = 0.40m, dcast = {0.14, 0.43, 0.72}m, α = {10, 20, 30}◦,
and dgap = 0.58m (the parameter for the surge-spiraling algorithm). In each run
the robot was released in the plume at a position approximately 14.5m downwind
from the source. The results of the experiments suggest that the surge-cast algo-
rithm (do = {1.12, 1.10, 1.05}) slightly outperforms the surge-spiraling algorithm
(do = 1.14) as the algorithm moves the robot only backward and forward instead of
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moving it in complete circles to reacquire the plume. The pure casting algorithm,
however, decreases its performance with increasing α as the robot has to turn more
often at the plume boundaries to stay within the plume (do = {1.16, 1.43, 1.63}).
Unfortunately, a gradient-based algorithm was not considered in his comparison.

The implementation of the bio-inspired algorithms used in this Ph.D. thesis are
slightly different to their initial implementation (e.g., dlost and dcast were removed)
to be conform with the system characteristics of the micro-drone (minimum step
size of 1m). The results of these algorithms are shown in Fig. 5.15. Nevertheless
the results can be used to draw further conclusions since the class of algorithms is
the same. Here the magnitude of the distance overhead is about twice as large as
in the results from Lochmatter. Reproducible conditions in the wind tunnel using
a laminar airflow allow for generation of approximately the same plume structure
(width, intermittency, and concentrations) within the experiment setup. This can-
not be achieved in the real world, especially since the wind direction constantly
changes by a few degrees. Even the experiment setup introduced additional turbu-
lence. Another problem is the different chosen α parameters used with the zigzag
algorithm.

The results demonstrate that plume tracking can be performed in a real-world
outdoor environment with a reasonable degree of turbulence. The micro-drone was
able to reacquire the plume even during varying wind conditions and successfully
reached the gas source in 6 of 6 trials. Comparing the results of Lochmatter with
the results presented here indicates that the surge-cast algorithm has a higher per-
formance than pure casting (zigzagging; α = 75◦), even though pure casting is more
robust. Further, it can be seen that the pseudo gradient algorithm is at least as ef-
ficient in the real world as the surge-cast algorithm due to the frequently performed
reacquire (casting) steps of the surge-cast algorithm.

5.4 Summary and Conclusions

In this chapter, three bio-inspired plume tracking algorithms and their implemen-
tation for a gas-sensitive micro-drone were described as well as a new measuring
strategy especially designed for, but not limited to, a micro-drone. Their perfor-
mance was evaluated in simulation and real-world experiments. The simulation
results suggest that the surge-cast algorithm is the most performant algorithm, fol-
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lowed by the zigzag algorithm with α = 15◦. However, Lochmatter’s and the results
presented here show that the robustness of both algorithms decreases faster with
increasing wind sensor noise than the pseudo gradient algorithm and the zigzag
algorithm with α = 60◦ and 75◦. Thus, the current implementation of the surge-
cast algorithm does not seem to be recommendable to use with the micro-drone.
The pseudo gradient algorithm presents a high-performance and robust alternative
to the zigzag algorithm. Furthermore, the results of the real-world experiments
demonstrate that plume tracking using a gas-sensitive micro-drone can be done
when particular environmental conditions are given. The micro-drone was able to
reacquire the plume even during periods of strongly changing wind. The initial re-
sults from the real-world experiments indicate that the pseudo gradient algorithm
is at least as efficient as the surge-cast algorithm. A strong correlation between
the results from simulation and real-world experiments can be found for the pseudo
gradient algorithm and the zigzag algorithm. Thus, as concerns the current imple-
mentation of the surge-cast algorithm, the pseudo gradient algorithm and the zigzag
algorithm are the most promising algorithms to use with the micro-drone. However,
[Paper II] demonstrates the weakness of state-of-the-art bio-inspired plume track-
ing algorithms that directly mimic insect behavior. It is argued that the gas sensing
mechanisms available to robotic systems are completely different from biological re-
ceptors and that the chaotic properties of natural environments do not allow the
formation of a steady gas plume that would lead a robot to the gas source using a
form of bio-inspired anemotaxis. These claims were supported by data collected in
four different experiment areas (indoor and outdoor) with three different platforms
(ground-based and flying). It was shown that although the explored experiment
areas are not of considerable size and the measurement points are spatially dense,
there is hardly any regularity in the wind direction measured with the anemometer
carried by the mobile robots and the micro-drone. It was also shown that large
directional fluctuations were observed between measurements taken at a single way-
point. This clearly indicates that the assumption of laminar airflow does not hold
in any of the four environments.

The relatively small number of real-world experiments does not allow for ob-
taining strong statistical significance regarding the performance of the plume track-
ing algorithms. Therefore, future work should include running large test sets with
different wind and weather conditions on, e.g., wide open landfill sites to obtain
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the performance and robustness of these algorithms in natural environments. At
the same time, implementations of probabilistic gas source localization algorithms
should be adapted to work with gas-sensitive micro-drones and tested in real-world
experiments as well. In general, the domain of probabilistic gas source localization
algorithms gives ample room for developing new algorithms.

Although it was shown that plume tracking is possible under certain circum-
stances in the real world, there is no guarantee that state-of-the-art bio-inspired
plume tracking algorithms lead a robot reliably to the gas source (especially if wind
direction is constantly turning). One possible application could be to locate the
source of a pollution caused by, e.g., industrial chimneys in a higher atmospheric
layer, where the airflow is more stable, or on wide open landfill sites.



Chapter 6

Gas Source Localization using a
Particle Filter (PF)

This chapter presents the development of a gas source localization (GSL) algorithm
based on a particle filter (PF). It uses gas and wind measurements to reason about
the trajectory of a gas patch from where it was released by the gas source until it
reaches the measurement position of the micro-drone (Fig. 6.1). The trajectory is
backtracked (and approximated) by dividing the taken wind measurements into time
intervals. The averaged wind vectors of each interval are then used to reconstruct
the trajectory in reverse. Given a uniform wind field over the search space and a
single gas source, the reconstruction of multiple trajectories at different measure-
ment locations using sufficient gas and wind measurements can lead to an accurate
estimate of the gas source location. Non-uniform wind fields, which are typical
for realistic environments, are accounted for by considering a patch path envelope
(PPE) instead of a single patch trajectory. The PPE describes the envelope of an
area through which the gas patch has likely moved. The source is considered to be
found (declared), if the location estimate, represented by the particles of the PF,
remains within a small region for a defined number of iterations. As exploratory be-
havior, sweeping along a predefined path and plume tracking are considered. In this
Ph.D. thesis, the pseudo gradient plume tracking algorithm presented in Sec. 5.1.2.3
is mainly used. The algorithm is successfully validated in simulation and real-world
experiments.

Note that the algorithm is only used for estimating the gas source location and
not for controlling the micro-drone. Additionally, it is assumed that the underlying
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Figure 6.1: Trajectory of the gas path since release at the source. The source location
is denoted by the large red dot and the position of the micro-drone is denoted by
pm. pi with i ∈ [1, 4] are the corner points of the rectangular search area, l is the
length, and w is the width of the search area. The length of the arrow represents the
average wind speed and its orientation is represented by the circular mean direction.

control algorithm used allows the micro-drone to collect gas and wind measurements
at fixed measuring positions during a fixed time interval and that an arbitrary
rectangular search area defined by four GPS coordinates is given (Fig. 6.1). As
the wind vector estimation with the micro-drone can only determine the x- and
y-component of the wind, this Ph.D. thesis focuses on the 2D case only.

In the remainder of this chapter, first, the basic particle filter and the applied
modifications are described (Sec. 6.1). Next, Sec. 6.1.1 describes the measurement
model of the particle filter that consists of the processing of the sensor data and the
construction of the PPE. Secs. 6.1.2 and 6.1.3 describe the phases of the particle
filter and Sec. 6.1.4 presents the modality to estimate the gas source location based
on the particle set. Then, simulation and real-world experiments are performed
(Sec. 6.2 and 6.3) and conclusions are drawn (Sec. 6.5).
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6.1 Particle Filter-based Gas Source Localization
Algorithm

The Particle Filter (PF), also known as Sequential Monte Carlo Method (SMC), is
an alternative nonparametric implementation of the Bayes filter [133] and a gen-
eralization of the Kalman filter for nonlinear and/or non-Gaussian problems. It is
commonly used in the field of robotics, e.g., in robot localization, SLAM, and robot
fault diagnosis to track a variable of interest as it evolves over time [134]. Here, the
PF is used to estimate gas source location.

The basic concept of PFs is that any probability density function (pdf ) can be
represented by a set of N random state samples (particles) drawn from this pdf to
approximate the target’s true world state (here: the location of the gas source):
Xt := x

[1]
t , x

[2]
t , . . . , x

[N ]
t . Each particle x[i]

t is a copy of the variable of interest asso-
ciated with an importance weight ω[i]

t ∈ Ωt and a set of relevant state parameters.
The importance weight indicates the quality of that specific particle and defines its
contribution to the overall estimate of the variable of interest. The denser a subre-
gion of the state space is populated by particles with high importance weights, the
more likely it is that the true world state falls into this region.

The basic PF consists of three phases in order to construct the particle set Xt
recursively from the set Xt−1: prediction, update, and resampling. Each particle
x

[i]
t−1 ∈ Xt−1 is processed within the prediction phase based on the pdf to generate

a hypothetical state x̄[i]
t ∈ X̄t. The prediction phase uses a motion model in order

to simulate the effect that an action has on the particle set (with appropriate noise
added) [134]. The update phase calculates for each particle x[i]

t the new importance
weight ω[i]

t ∈ Ωt based on the importance weight ω[i]
t−1 ∈ Ωt−1, the latest sensor

information available, and the measurement model to accurately describe the pdf.
The measurement model describes how measurements are generated from the hidden
true world state [135]. Finally, in the resampling phase, the algorithm draws N
particles with replacement from the temporary set X̄t to generate a new particle set
Xt. The probability of drawing each particle is given by its importance weight, i.e.,
particles with importance weights close to zero tend to be removed. In the beginning,
the particles are equally distributed over the state space if no prior information about
the pdf is given.

Algorithm 6.1 provides a formal description of the core function of the suggested
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Algorithm 6.1 Core function of the PF-based GSL algorithm.
Require: Xt−1, Ωt−1, Ct, and zt.
1: X̄t = Xt−1

2: Ω̄t = f(X̄t,Ωt−1, Ct, zt)
3: Normalize(Ω̄t)
4: if N̂eff ≥ γ ·N then
5: Xt = X̄t
6: Ωt = Ω̄t

7: else
8: Xt = Ωt = ∅
9: for i = 1 to N do

10: j = rand(1, 100)
11: if j ≤ δ · 100 then
12: if zt = 1 then
13: Xt = Xt ∪

{
x̄

[k]
t drawn uniformly from Fl,w ∩ St

}
14: else
15: Xt = Xt ∪

{
x̄

[k]
t drawn uniformly from Fl,w \ Ct

}
16: end if
17: else
18: Xt = Xt ∪

{
x̄

[k]
t drawn from X̄t with probability ∝ ω̄

[k]
t

}
19: end if
20: Ωt = Ωt ∪

{
ω

[i]
t = 1/N

}
21: end for
22: end if

PF-based GSL algorithm. The input is the particle set Xt−1 with weights Ωt−1,
along with the most recently calculated PPE Ct (Sec. 6.1.1.2) and the most recent
binary concentration measurement zt (Sec. 6.1.1.1).

Line 1 implements the PF prediction step. As the location of a static gas source is
of interest only, the particle sets X̄t and Xt−1 are identical.

Line 2 implements the measurement update. The new importance weights Ω̄t are
computed based on the function f(X̄t,Ωt−1, Ct, zt) that considers the relative
position of a particle with respect to the PPE Ct and the binary concentration
measurement zt. Actually, this function is intended to update only a single im-
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portance weight ω[i]
t−1 given the corresponding particle x̄[i]

t , but was generalized
here for the purpose of simplification. The measurement model is described in
Sec. 6.1.1. The full measurement update is described in Sec. 6.1.2.

Line 3 normalizes the importance weights Ω̄t (Sec. 6.1.3).

Line 4 checks whether the effective sample size N̂eff has dropped under a predefined
threshold γ · N (γ ∈ [0, 1]) and whether resampling has to be performed or
not (explained in detail in Sec. 6.1.3). If resampling is not necessary, the
temporary sets X̄t and Ω̄t are the result sets (lines 5 and 6).

Lines 3 to 21 implement the resampling step of the PF. In lines 9 to 21, the new
particle set Xt is built. A particle x̄[k]

t is drawn with probability δ uniformly
from the area Fl,w ∩ St, if zt = 1 (gas detection event), and from the search
area Fl,w \ Ct, if zt = 0 (non-detection event; see lines 11 to 16), where St
defines the area in upwind direction of the micro-drone and Fl,w is the search
area. A particle x̄[k]

t is drawn with probability 1 − δ from X̄t according to its
importance weight ω̄[k]

t (line 18). This resampling procedure is explained in
detail in Sec. 6.1.3. St and Fl,w are defined as

St =
{

(x, y) |
〈
((x, y)−m0), (cos θ̄t, sin θ̄t)

〉
≥ 0

}
(6.1)

and

Fl,w = {(x, y) | 0 ≤ x ≤ l ∧ 0 ≤ y ≤ w} , (6.2)

where m0 is related to the position of the micro-drone and explained in more
detail in Sec. 6.1.1, θ̄t is the averaged wind direction at iteration t, and l is the
length and w is the width of the search area. Finally, the importance weights
of all particles are set to 1/N (line 20).

In the beginning, each particle x[i]
0 is initialized with the weight ω[i]

0 = 1/N and the
position (x[i]

0 , y
[i]
0 ) drawn uniformly from the search area Fl,w, if no a priori knowledge

about the gas source location is given. An estimate of the gas source location is
obtained by, e.g., the weighted sum of all particles. A detailed description of an
alternative gas source estimation strategy is given in Sec. 6.1.4.
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6.1.1 Measurement Model

This section details the measurement model of the proposed PF-based GSL algo-
rithm. The measurement model links the information from the used sensors to the
hidden true world state [135]. It includes the sensor data processing (Secs. 6.1.1.1
and 6.1.1.2) and the path reconstruction of the gas patch (Sec. 6.1.1.4) in form of
a PPE. For this purpose, the properties of the wind field are relevant. Therefore,
Sec. 6.1.1.3 demonstrates that uniformity in the wind field does not exist.

6.1.1.1 Gas Concentration Measurements

At each iteration t, the micro-drone collects gas and wind measurements at a fixed
measuring position during a fixed time interval ∆T . To decide whether the micro-
drone was within the plume or not, a binary concentration measure zt with an
adaptive threshold c̄t was used as proposed by Li et al. [77]. It is defined as:

zt =


1 , if ct > c̄t−1

0 , otherwise
(6.3)

with

c̄t =


λc̄t−1 + (1− λ)ct , if t ≥ 1

ct , if t = 0,
(6.4)

where ct is the measured gas concentration averaged over the measurement interval
∆T at iteration t, c0 is the initial gas concentration detected at the start of the
algorithm, and λ ∈ [0, 1]. The adaptive threshold c̄t is also called exponential moving
average (EMA). Values of λ close to 1 are less responsive to recent measurements,
while values of λ closer to zero give greater weight to recent measurements. Thus,
the weighting for each gas measurement in the past decreases exponentially over
time, supporting, e.g., the adaptation to changes of the baseline of the gas sensor
and the hysteresis of the sensor response. zt = 1 indicates a gas-detection event at
iteration t, whereas a non-detection event is represented as zt = 0. As proposed
in [77], λ is set to 0.5 during all experiments to respond correctly in time to all
gas-detection events.
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Figure 6.2: Classification of the wind measurements in averaging intervals: The raw
measurements in each interval Ij are averaged to form a new measurement value
m̄[j].

6.1.1.2 Wind Measurements

At each iteration t, the micro-drone computes a PPE from a set of single wind mea-
surementsM =

{
m[i]

}
taken at a fixed position and during a fixed time interval ∆T .

Each measurement consists of the measurement time τ relative to the measurement
start time, the wind speed ru, and the wind direction θu: m[i] = (τ [i], r[i]

u , θ
[i]
u ).

The measurement interval ∆T is further split into n ∈ N+ intervals of equal size
∆τ (Fig. 6.2) to calculate the average wind direction and its uncertainty (variance).
The value of ∆τ (or n) is chosen so that ∆τ · n = ∆T . The raw measurements in
each interval are averaged to form a new measurement value m̄, which consists of the
averaged wind speed r̄u, the averaged wind direction θ̄u, and the circular variance
S0: m̄[j] = (r̄[j]

u , θ̄
[j]
u , S

[j]
0 ). Let

Ij =
{
i : j ·∆τ ≤ τ [i] ≤ (j + 1) ·∆τ

}
(6.5)

be the indices of all measurements m[i] in subinterval j. Then

r̄[j]
u = 1

|Ij|
∑
i∈Ij

r[i]
u , (6.6)

θ̄[j]
u ({(θu)i : i ∈ Ij}) is computed according to Eq. A.1, and S[j]

0 ({(θu)i : i ∈ Ij}) ac-
cording to Eq. A.3 (see Appendix A). M̄ is defined to be the chronologically (in-
creasing) ordered list of the averaged measurements m̄[j].
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Figure 6.3: Experiment setup to ascertain to which degree the assumption of a
uniform wind field holds in a realistic scenario.

6.1.1.3 Non-Uniformity of the Wind Field

Li et al. [78] assume a wind field that is uniform over a certain area at each instant
but subject to changes over time (i.e., the wind vector field is constant within this
area for a fixed time t but may change as a whole for different t). Under this
assumption it is possible to reconstruct the path of gas patches from the available
wind measurements taken at any position, which simplifies the GSL problem to a
certain extent. Li et al. claim in [78] that a time-varying wind field can be regarded
as roughly uniform within a circular domain around the robot, when the airflow is
not too weak (above 0.2ms−1) and the radius of this domain is not too large (less
than the distance traveled by the airflow in 10s). Here, an experiment was performed
similar to the one presented by Li et al. to ascertain to which degree the assumption
of a uniform wind field holds in a realistic scenario.

Experiment Setup The test was carried out in an open outdoor environment
at BAM TTS on a cloudy day. Trees and buildings around this area introduced a
certain level of turbulence. Two ultrasonic anemometers (uSonic-3 Scientific (former:
USA-1), Metek GmbH, Germany) were mounted at a height of approximately 1.35m
at a distance of approximately 2m of one another (according to the requirement



CHAPTER 6. GAS SOURCE LOCALIZATION USING A PF 117

of Li et al. [78]), as illustrated in Fig. 6.3. The ultrasonic anemometers have an
operating range of 0 up to 60ms−1 with a resolution of 0.01ms−1 and an accuracy
of ±0.1ms−1. The resolution of the wind direction is 0.1◦ with an accuracy of ±2◦.
The wind measurements were recorded at a frequency of 1Hz for about 83min.

Experiment Results When evaluating the wind data, it has to be kept in mind
that the sensitivity of the anemometers allows detecting the effects of micro-scale
eddies, which may disrupt the measurements to a certain extent. A total of 4,982
samples were collected with both anemometers, and only 15 of these measurements
were too weak according to the requirement of Li et al. [78], i.e., below 0.2ms−1.
The measurements that do not conform to Li’s requirements were removed from the
data set to perform the evaluation of this experiment. The measured wind speed in
the remaining data set was in the range of approximately 0.2 to 5.3ms−1 (i.e., not
weak according to the requirement of Li et al. [78]) and the measured wind direction
was between 146◦ and 61◦. Fig. 6.4 shows corresponding deviations between the two
anemometers, both of (a) the wind speed and (b) the wind direction. Uniformity
in the wind field would result in negligibly small deviations in the measured wind
vectors. The results, however, show that uniformity in the wind field is not given
(Fig. 6.4). Instead, differences in the measured values up to ≈ 2.5ms−1 (wind
speed) and ≈ 179◦ (wind direction) occurred. For example, a deviation of the wind
direction of ≈ 179◦ can be seen after approximately 4,170s in Fig. 6.4(b). At the
same time, a wind speed of 0.47ms−1 (anemometer 1) and 0.74ms−1 (anemometer
2) was measured, which indicates that the wind speed was not too weak while the
wind apparently blew from almost opposite directions.

In addition, as a measurement of linear correlation between the data collected
with the anemometers, the Pearson coefficient r for the wind speed and, in the
case of the wind direction, the circular-circular correlation index ρcc for directional
data as suggested in [136] were computed. Both indexes are bounded between -1
and 1. Correlations equal to 1 or -1, ignoring the sign, correspond to two perfectly
correlated variables. A value of zero, on the other hand, implies an absence of a
correlation and no relationship between the two variables exists. The computed
correlation coefficients for the wind speed and direction were r = 0.11 and ρcc =
−0.12, respectively. Thus, the claim of a roughly uniform wind field by Li et al.
does not hold.
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(a)

(b)

Figure 6.4: Deviation of (a) wind speed and (b) wind direction between the mea-
surements at both ultrasonic anemometers.

In general, the wind speed and direction can vary locally due to naturally oc-
curring conditions (condition of the soil, strong temperature gradients, and type of
the ecological system) or building density (countryside and city). Further observa-
tions confirm that the weather conditions (sunny vs. cloudy) have an impact on
the wind field due to convective currents induced by solar radiation. The claim
of a roughly uniform wind field by Li et al. may possibly hold for the particular
conditions considered in [78] (cloudy, daytime and season the experiment was per-
formed (November), the surface of the experiment area, and its surrounding area),
but cannot be generalized for all possible real-world environments.
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6.1.1.4 Construction of the Patch Path Envelope (PPE) in Uniform
Wind Fields

At each iteration t, the path of the wind {mj}j=1:n is calculated based on the mean
wind directions θ̄[j]

u and the length of the path line segments sj using the great circle
navigation formulae presented in Sec. 3.5.1 (Eqs. 3.16 and 3.17) starting from the
position of the micro-drone pm.

sj = ∆τ · r̄[j]
u , (6.7)

where r̄[j]
u is the mean wind speed and ∆τ the averaging period (Sec. 6.1.1.2).

Fig. 6.5 shows the reverse wind path starting from the position of the micro-
drone moving in upwind direction to rebuild the wind field using the history of
averaged wind measurements M . Using this approach with a perfect wind sensor
could accurately indicate the direction of the gas source if a concentration above a
certain threshold is detected. However, a perfect wind sensor does not exist and a
wind field in the real world is not uniform (Sec. 6.1.1.3). Furthermore, the airflow in
an open outdoor environment is affected by turbulent advection [73] which disperses
and dilutes the gas plume, creating complex structures of gas patches [Paper II].

Here, the circular variance is used to consider the non-regularity of the wind flow
direction (see Appendix A). The idea is to split up the path into two paths that
describe the extreme cases the gas patch may have traveled, resulting in a PPE:
one left {lj}j=1:n and one right {rj}j=1:n (Fig. 6.5). The stability of the wind within
each averaging interval is used to decide how the two paths will drift apart. Stable
wind conditions (S0 = 0) result in line segments in {lj}j=1:n and {rj}j=1:n parallel
to the corresponding path segment in {mj}j=1:n, whereas absolutely unstable wind
conditions (S0 = 1) produce line segments orthogonal to it. The PPE can be
interpreted as a probability area containing the gas source.

The paths are calculated using the great circle navigation formulae from Sec. 3.5.1
to extend the boundary of the envelope of the gas patch paths based on earlier wind
measurements (under the assumption of a uniform wind field). The positions lj+1

and rj+1 are determined based on the positions lj and rj, the azimuth direction
angles δlj and δrj , and length of the path line segments sj. The azimuth direction
angles δlj and δrj are shown in Fig. 6.5 by the direction of the direction vectors −−−→ljlj+1

and −−−→rjrj+1 and are calculated as follows:
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Figure 6.5: Path reconstruction in uniform wind fields using the wind information
measured with the micro-drone. The source location is denoted by the large red dot
and the position of the micro-drone is denoted by pm, pi with i ∈ [1, 4] are the corner
points of the rectangular search area, and l is the length and w is the width of the
search area. The measurement radius of the micro-drone is approximated with a
simple triangle given by the positions m0, l1, and r1.

δlj =
(
θ̄[j]
u − 90◦ · S[j]

0

)
mod 360◦ (6.8)

δrj =
(
θ̄[j]
u + 90◦ · S[j]

0

)
mod 360◦ (6.9)

The PPE’s first segment is approximated with a simple triangle with its right
angle rotated in downwind direction. The values are based on the averaged wind
measurements in position m1 (Fig. 6.5). By so doing the micro-drone’s measure-
ment radius determined by the rotor movement is taken into account and numerical
stability is achieved under stable wind conditions. This includes the possibility that
line segments may overlay at the beginning of the paths when the circular variance
is zero. Here again, the great circle navigation formulae is used to calculate the cor-
responding positions m0, l1, and r1 using the position of the micro-drone pm = m1,
the azimuth direction angles δm0 , δl1 , and δr1 , and the micro-drone’s radius of 0.5m.
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δm0 =
(
θ̄[1]
u + 180◦

)
mod 360◦ (6.10)

δl1 =
(
θ̄[1]
u − 90◦

)
mod 360◦ (6.11)

δr1 =
(
θ̄[1]
u + 90◦

)
mod 360◦ (6.12)

To complete the polygonal PPE Ct, the intersection points of the line segments
with the area border have to be calculated. The intersection points of two lines
are calculated using the method presented in [137]. Finally, the polygon delimiting
the PPE Ct is constructed counterclockwise by adding the vertex m0, the vertices
{rj}j=1:kr (e.g., in Fig. 6.5 kr = 4), the intersection point Ir, all corner points of
the area border in between the intersection points (e.g., in Fig. 6.5 only p2), the
intersection point Il, the vertices {rj}j=kl:1 (e.g., in Fig. 6.5 kl = 5), and m0 to
close the PPE. kl and kr correspond to the number of vertices of the left and right
boundaries of the PPE, respectively, within the area border.

6.1.1.5 Construction of the Patch Path Envelope (PPE) in Non-Uniform
Wind Fields

The method described above can be used for a ground-based mobile robot equipped
with a highly precise ultrasonic anemometer under uniform airflow conditions. Since
this Ph.D. thesis considers collecting the wind measurements with the micro-drone
in turbulent real-world environments with non-uniform wind fields, this approach
has to be adapted. Furthermore, the wind direction error (RMSE) in the wind
vector estimation approach for the micro-drone is only reasonable when averaging
the wind measurements over 20s (Sec. 3.4.3).

The left and right boundaries of the PPE are calculated based on the positions
l1 and r1 and the azimuth direction angles δl and δr (Fig. 6.6), which are calculated
as follows:

δl,r =
(
θ̄u ± 90◦ · S0

)
mod 360◦ (6.13)

In comparison to the original approach, the mean wind direction and the circular
variance calculated over the whole time interval ∆T is used to determine the PPE.
This time, the polygon delimiting the PPE Ct is constructed counterclockwise by
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Figure 6.6: Construction of the PPE for the micro-drone in real-world environments
in non-uniform wind fields. The source location is denoted by the large red dot. The
measurement radius of the micro-drone is approximated with a simple triangle given
by the positions m0, l1, and r1. The search area is defined by the four points p1 to
p4.

adding the vertex m0, r1, the intersection point Ir, all corner points of the area
border in between the intersection points, the intersection point Il, l1, and m0 to
close the PPE. The output of this stage is the PPE Ct that has an opening angle of
θCt = δl + δr. The simplified version of the PPE construction is shown in Fig. 6.6.

6.1.2 Update Step

The update phase calculates the new importance weight ω̄[i]
t ∈ Ω̄t for each parti-

cle x̄[i]
t ∈ X̄t based on the previous importance weight ω̄[i]

t−1 ∈ Ω̄t−1, the PPE Ct

(Sec. 6.1.1.4), and the binary concentration value zt (Sec. 6.1.1.1). Particles within
the PPE are processed differently than particles that lie outside the PPE. A fast
point-in-polygon test based on the Jordan curve theorem is used to decide whether
a particle lies within the PPE or not [138]. Furthermore, a straight line s orthogonal
to the averaged wind direction is defined that goes through vertex m0 (in Fig. 6.7
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(a) zt = 1 (b) zt = 0

Figure 6.7: Classification of the particles into three classes for (a) zt = 1 (gas hit
=̂ red PPE) and (b) zt = 0 (no gas hit =̂ green PPE): particles located inside the
PPE, particles located outside of the PPE in upwind direction with respect to line
s, and particles located outside the PPE in downwind direction with respect to line
s. The line s is denoted by the gray dotted line.

denoted by the gray dotted line). Now, the particles are classified in one of the fol-
lowing three classes: particles located inside the PPE (x̄[i]

t ∈ Ct), particles located
outside of the PPE in upwind direction with respect to line s (x̄[i]

t /∈ Ct∧x̄[i]
t ∈ Fl,w∩St

– see Eq. 6.1), and particles located outside the PPE in downwind direction with
respect to line s (x̄[i]

t /∈ Ct ∧ x̄[i]
t ∈ Fl,w \ St). Then, the following function is used to

update the corresponding importance weights:

f(x̄[i]
t , ω

[i]
t−1, Ct, zt)︸ ︷︷ ︸
ω̄

[i]
t

=



ω
[i]
t−1 , if zt = 1 ∧ x̄[i]

t ∈ Ct (6.14a)

α1 ·
θCt

180◦ · ω
[i]
t−1, if zt = 1 ∧ x̄[i]

t /∈ Ct ∧ x̄[i]
t ∈ Fl,w ∩ St (6.14b)

α2 ·
θCt

180◦ · ω
[i]
t−1, if zt = 1 ∧ x̄[i]

t ∈ Fl,w \ St (6.14c)

β2 ·
θCt

180◦ · ω
[i]
t−1 , if zt = 0 ∧ x̄[i]

t ∈ Ct (6.14d)

β1 · ω[i]
t−1 , if zt = 0 ∧ x̄[i]

t /∈ Ct ∧ x̄[i]
t ∈ Fl,w ∩ St (6.14e)

ω
[i]
t−1 , if zt = 0 ∧ x̄[i]

t ∈ Fl,w \ St, (6.14f)
where α1,2 and β1,2 are meta-parameters which adjust the contribution of the old
importance weight ω[i]

t−1 of particle x̄[i]
t at iteration t to the new importance weight

ω
[i]
t and θCt ∈ (0, 180]◦ is the opening angle of the first segment of the PPE (and not

of the triangle).
In the case of a detection event (Fig. 6.7(a)), the gas source is assumed to be

located inside the PPE. Thus, the new importance weight of a particle inside the
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PPE is set equal to its old weight (Eq. 6.14a). The weighting of particles outside the
PPE depends on their relative position to line s: particles located in upwind direction
of line s still have a higher probability to be located at the source (Eq. 6.14b) than
particles located in downwind direction of line s (Eq. 6.14c). This classification of
the particles is implemented by setting α1 > α2. For simplification, α2 is set to α2

1.
In the case of a non-detection event, the gas source is assumed to be located outside
the PPE. Thus, particles inside the PPE should be punished more (Eq. 6.14d) than
particles which are located outside (Eqs. 6.14e and 6.14f). Again, particles outside
the PPE are distinct due to their relative position to line s. This classification of
the particles is implemented as well by setting β1 > β2 = β2

1 .
The term θCt/180◦ in Eq. 6.14 additionally punishes particles in dependency of

the stability of the wind. The stability of the wind controls the opening angle of
the PPE θCt , which is calculated as 2 ·S0 · 90◦ (since θCt is by definition ∈ (0, 180]◦).
Small opening angles reflect stable wind conditions. In a detection event, it is
assumed that the gas source is located within the PPE as the measured gas was
released by the source and transported by the wind and forming a plume. Thus,
it is very unlikely that particles which are located outside the PPE reflect the gas
source location. Therefore, an additional punishment of these particles is justified.
In a non-detection event, it is assumed that the gas source is not located within the
PPE, which allows further punishment of these particles as well. On the other hand,
large opening angles indicate unstable wind conditions. Here, it is not possible to
limit the large number of possible source locations as the origin of the measured
concentration is more uncertain. Therefore, the punishment of the particles should
be much lower or should be even omitted, e.g., S0 = 1 results by definition in the
maximum possible opening angle of 180◦.

6.1.3 Resampling Step

One problem which can occur using PF algorithms is the degeneration of particles,
i.e., most of them have negligible importance weights. This impairs the effectiveness
of the algorithm. In order to focus the computational resources of the PF algorithm
to the relevant regions in the state space [133], resampling strategies are needed.

The resampling step is a “probabilistic implementation of the Darwinian idea
of survival of the fittest” [133]. It draws N particles with replacement from the
temporary set X̄t according to their importance weights [133], i.e., particles with
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small importance weights are (probabilistically) eliminated, whereas particles with
higher importance weights are (probabilistically) duplicated. Resampling requires
normalized importance weights:

ω̄
[i]
t = ω̄

[i]
t∑N

i=1 ω̄
[i]
t

. (6.15)

Thus, the resulting particle set Xt contains many duplicates of the particles with
higher importance weights as they are drawn with replacement. Particles, which
cannot be found in the set Xt, tend to be those particles with lower importance
weights [133]. Gaussian noise is added to the positions of the drawn particles x[i]

t

(with σ2 = 0.1m2) to prevent multiple duplicates from being at the exactly same
position. The distribution of particles changes during this process. The resampling
algorithm of Carpenter et al. [139] is used as it is easy to implement, it runs in linear
time in the number of particles, and other resampling strategies are generally found
to provide comparable results [140]. See Appendix F for a formal description of the
algorithm. A survey of common resampling strategies and variations thereof can be
found in [134].

The basic PF algorithm resamples the particle set at each iteration. Liu shows
in [141] that resampling decreases the efficiency of the sampled representation when
the particle weights are approximately the same.

The effective sample size N̂eff is a useful metric to decide whether resampling is
necessary [142] or not and can be approximated as [143]:

N̂eff = 1∑N
i=1(ω̄[i]

t )2
, (6.16)

where ω̄[i]
t is the normalized importance weight of particle x̄[i]

t .
If the effective sample size N̂eff drops below a given threshold (e.g., N/2) resam-

pling should take place, i.e., eliminating particles with small importance weights and
duplicating the particles with larger importance weights. Thus, clusters of particles
with larger importance weights are formed. This is problematic in a detection event
(zt = 1) when no particle is left within the PPE Ct. Therefore, particles are drawn
uniformly from the search area Fl,w with a probability of δ = 0.1 and the impor-
tance weight of each drawn particle is set to 1/N . To be more specific, the particles
are drawn uniformly from the upwind part of the search area with respect to line
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(a) Iteration = 220

(b) Iteration = 222

Figure 6.8: PF-based GSL algorithm using sweeping after (a) 220 and (b) 222
iterations. The blue points are the particles. The red point denotes the prediction
of the weighted mean and the green point denotes the particle with the highest
number of neighbors within a radius of ε = 0.5m, which in this case corresponds
almost to the true source location.

s (Fl,w ∩ St), if zt = 1 (gas-detection event) or from the search area excluding the
area of the PPE (Fl,w \ Ct), if zt = 0 (non-detection event).

6.1.4 Estimation of the Gas Source Location

The particle set Xt can be used to estimate the location of the gas source x̄s. An
obvious strategy may be to calculate the weighted mean over all particles as:

x̄s =
N∑
i=1

ω
[i]
t x

[i]
t . (6.17)

However, observations have shown that the weighted mean is often not a good
estimator since it is strongly affected by outliers (which in addition occur frequently
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as a consequence of resampling). Furthermore, it is very unlikely that all particles
will converge in one certain point considering the turbulent nature of the wind.
Assuming the particles to be in a large cluster with the weighted mean located
within the cluster or in its close vicinity and the micro-drone already has passed the
source, as shown in Fig. 6.8(a), then, it is very unlikely that a concentration above
the threshold will be detected if the wind direction has not changed much. That
means that from now on all particles are punished except for those that are located in
downwind direction of line s (see Sec. 6.1.2). These particular particles will keep their
old importance weight, which will shift the prediction of the weighted mean away
from the cluster further in downwind direction (Fig. 6.8(b)). The resampling step
speeds up this shift as it introduces (with probability δ = 0.1) uniformly distributed
particles and sets the importance weight of each particle to 1/N .

A more sophisticated strategy involves analyzing the particle clusters that have
evolved over time. The proposed strategy searches the particle x[k]

t with the highest
number of neighbors within a certain radius ε, i.e., the k for which

∣∣∣{x[j]
t | ∀j ∈ [1, N ] ∧ k 6= j : |x[k]

t − x
[j]
t | ≤ ε

}∣∣∣
is maximized. In the current implementation, ε is set to 0.5m. This particle x[k]

t is
called the Maximum Neighbors Estimate (MNE) and used as the estimate of the
gas source location (x̄s = x

[k]
t ). The importance weights of the MNEs and increasing

ε are other criteria of meta-parameters to select the gas source location estimate, if
more than one particle satisfies this expression. The relative number of neighbors
of that particle and their total weight may be used to describe the confidence of the
estimate. This approach may be extended by calculating the weighted average over
the MNE vicinity. However, this Ph.D. thesis only elaborates on the MNE itself.

6.2 Simulation Experiments

In order to evaluate the performance of the PF-based GSL algorithm, the parameters
α ∈ [0.1, 1.0] and β ∈ [0.1, 1.0] are optimized with respect to the average localization
error and the success rate for datasets collected with two different control algorithms:
the pseudo gradient algorithm (Ch. 5) and sweeping. The localization error is defined
as the distance between the true gas source location and the estimate described in
Sec.6.1.4. The success rate is the ratio of successful localizations to the total number
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Figure 6.9: Simulated PF-based GSL experiments. The gray and red dots are the
different tested gas source locations (the red source was used for the parameter
study). The blue and green squares denote the measurement positions where the
micro-drone stopped to take samples. The dashed blue line illustrates the idealized
trajectory of the micro-drone using sweeping and the dashed green line illustrates
a sample trajectory of the micro-drone using the gradient-based algorithm tracking
the plume emitted by the red source.

of performed experiments, in which the localization error lerr is less than or equal
to 1.5m.

6.2.1 Experiment Environment and Setup

The experiment area is a simulated wind tunnel with an area of 32× 8m2. The flow
speed in the wind tunnel was set to 0.5ms−1. A circular gas source with a radius
of 0.2m was placed in the experiment area approximately at position (8, 4)m (in
Fig. 6.9 illustrated with the red dot). To validate the determined meta-parameter
sets, a total of six different source positions were tested. For each control algorithm,
each experiment was repeated 100 times. In each run the simulated micro-drone
started at position (32, 0)m when using sweeping and at position (31, ysource)m when
using the gradient-based algorithm, where ysource corresponds to the y-coordinate of
the position of the current gas source. Here, the micro-drone was started directly
inside the plume to force the micro-drone to immediately start the plume tracking
behavior. The step size for both control algorithms was set to 1m to model the
system characteristics of the micro-drone. The upwind angle of the gradient-based
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algorithm was set to 90◦. The IR gas sensor model was used to simulate the sensor
response (Sec. 4.3). The simple disturbance model (Sec. 4.4) and the GPS model
(Sec. 4.2) of the micro-drone were used as well. The measuring time at each sampling
location was set to 20s with a sampling frequency of 1Hz. To model the lower limit
of detection of the modeled gas sensor, a threshold thc was defined and set to 0.05
(the concentration data was normalized before usage). The parameters γ and δ

(both related to the PF-based GSL algorithm) were set heuristically to 0.5 and 0.1,
respectively. The number of particles N was set to 1,000. The wind sensor noise
σ2
θ (Sec. 4.5) was set to 14.02. The noise σ2

S0 to calculate the circular variance S0

was set to 23.08 and corresponds to the characteristics of the micro-drone, i.e., the
proposed algorithm is optimized especially for the used robotic platform and its
measuring capabilities and characteristics.

6.2.2 Experiment Results

6.2.2.1 Parameter Optimization

Fig. 6.10 shows the dependency of the source localization accuracy on the meta-
parameters for both control algorithms after the last measurement point for the
gas source located approximately at position (8, 4)m. In general, it is evident that
the average localization error decreases strongly with increasing β. On the other
hand, the average localization error increases with increasing α. Thus, it seems to
be beneficial to choose a small value for α and a large value for β. This means that,
in the case of a gas-detection event, particles located outside the PPE are punished
much harder (with α or α2, depending on their position to line s) than, in the case
of a non-detection event, those particles located in upwind direction of line s (they
are punished with β or β2 depending on their relative position to the PPE). This
position-dependent punishment of the particles allows them to accumulate at the
location of the gas source and its close proximity.

A good parameter set for the gradient-based algorithm which minimizes the aver-
age localization error and maximizes the success rate is found to be (α, β) = (0.2, 0.8)
(Figs. 6.10(a) and 6.10(b)). The average error in the simulations with this parame-
ter set was only 0.96m±1.01m with a success rate of 86% (Appendix D Table D.1).
Although the parameter sets (α, β) = (0.3, 0.9) and (0.3, 1.0) achieve better success
rates (89%), the average localization error is worse for both combinations due to
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(a) (b)

(c) (d)

Figure 6.10: Dependency of the source localization accuracy on the meta-parameters
of the PF-based GSL algorithm for gradient-based control algorithm [(a) to (b)] and
sweeping [(c) to (d)]. Note that the plots are created using a linear scale for the
x-axis and a base 10 logarithmic scale for the y-axis for better data representation.

outliers (1.19m± 2.75m and 1.06m± 2.17m). Fig. 6.11(a) shows the results for the
parameter set (α, β) = (0.2, 0.8) in more detail (the parameter sets (α, β) = (0.3, 0.9)
and (0.3, 1.0) are given in the following as reference in parentheses): 42% of the re-
sults have a localization error of lerr < 0.5m (34% and 36%), 29% of the results have
a localization error of 0.5m ≤ lerr < 1.0m (40% and 36%), and 15% of the results
have a localization error of 1.0m ≤ lerr < 1.5m (15% and 17%). For example, the
best result for the weighted mean over all particles was obtained for the parameter
set (α, β) = (0.3, 1.0). The average localization error for this parameter set was
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(a) Gradient-based: α = 0.2 and β = 0.8 (b) Sweeping: α = 0.4 and β = 0.9

Figure 6.11: Classification of the localization error and cumulative success rate of the
PF-based GSL algorithm using (a) the gradient-based algorithm and (b) sweeping.

2.14m± 1.95m (with a success rate of 53%).

A good parameter set for sweeping is (α, β) = (0.4, 0.9) (Figs. 6.10(c) and
6.10(d)). The average localization error in the simulations with this parameter set
was 0.79m±0.46m with a success rate of 95% (Appendix D Table D.2). The second
best parameter set (α, β) = (0.2, 0.9), for example, has an average localization error
of 0.81m± 0.56m with a success rate of 89%. Fig. 6.11(b) shows the results for the
parameter set (α, β) = (0.4, 0.9) in more detail (the parameter set (α, β) = (0.2, 0.9)
is given in the following as reference in parentheses): 31% of the results have a
localization error of lerr < 0.5m (32%), 42% of the results have a localization error
of 0.5m ≤ lerr < 1.0m (39%), and 22% of the results have a localization error of
1.0m ≤ lerr < 1.5m (18%). For example, the best result for the weighted mean was
obtained for the parameter set (α, β) = (0.7, 1.0). The average localization error for
this parameter set was 1.87m± 1.51m (with a success rate of 50%).

Comparing the results of the MNE with those obtained with the weighted mean
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(a) Gradient-based: α = 0.2 and β = 0.8 (b) Sweeping: α = 0.4 and β = 0.9

Figure 6.12: Box-plot of the gas source location estimate (distance to true source
location) for the seven source locations using (a) the gradient-based algorithm and
(b) sweeping. The red dot denotes the source used for the parameter study. The
box shows the lower/upper quartile and the line denotes the median. The mean is
denoted by the small 2. The ◦ stands for outliers.

confirms the observations made in Sec. 6.1.4 that the weighted mean is often not
a good estimator since it is strongly affected by outliers. The MNE, on the other
hand, provides satisfying results (Sec. 6.5 presents directions for future work).

6.2.2.2 Results of the Validation Experiments

To validate the determined meta-parameter sets for each control algorithm, a total
of six different source positions were tested. Fig. 6.12 and Table 6.1 show the
corresponding results after the last measurement point for both control algorithms.

The average error of successful localizations is given in parentheses in Table 6.1. It
can be seen that the success rates using the gradient-based algorithm are in the range
of 76 to 89%. The average error of successful localizations is mostly reproducible
for all source positions (≤ 0.62m± 0.37m) except for source #2 and #3, where this
error is insignificantly higher (0.97m ± 0.31m and 1.11m ± 0.37m). The average
number of erroneous gas source location estimates including outliers (18.7%±4.8%)
is also slightly higher than in the previous experiment (14%).

The success rates using sweeping are in the range of 81 to 92%. The average error
of successful localizations can be reproduced for almost all source positions and is
≤ 0.80m ± 0.37m. An exception is source #2, where this error is slightly higher
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Table 6.1: Results of the validation experiments of the PF-based GSL algorithm.
The average error of successful localizations is given in parentheses.

Source Number
Source Gradient-based Sweeping
Position Localization Success Rate Localization Success Rate
(m) Error (m) (%) Error (m) (%)

• (8, 4)
0.96± 1.01

86
0.79± 0.46

95
(0.62± 0.37) (0.72± 0.34)

1 (2, 4)
0.82± 0.64

89
0.78± 0.45

92
(0.44± 0.35) (0.80± 0.37)

2 (16, 4)
1.29± 1.94

78
1.02± 0.67

81
(0.97± 0.31) (0.98± 0.36)

3 (26, 4)
1.14± 1.16

82
0.90± 0.53

87
(1.11± 0.37) (0.78± 0.34)

4 (22, 6)
1.17± 1.40

79
0.87± 0.58

88
(0.61± 0.36) (0.77± 0.33)

5 (26, 2)
1.22± 1.40

76
0.93± 0.74

89
(0.58± 0.34) (0.77± 0.35)

6 (10, 3.5)
1.18± 1.79

84
1.01± 1.08

81
(0.30± 0.37) (0.36± 0.38)

(≤ 0.98m± 0.36m).

A particular challenge for the algorithm using sweeping constitutes source #6 as it
is located in the middle of two successive measuring positions centered between two
successive sweeps (Fig. 6.9). Still, the algorithm is able to locate the gas source with
a success rate of 81%. The error rate of successful localizations is only 0.36m±0.38m.
A more detailed evaluation shows that (the result of the parameter optimization is
given as a reference in parentheses) 34% of the results have a localization error of
lerr < 0.5m (31%), 29% of the results have a localization error of 0.5m ≤ lerr < 1.0m
(42%), and 18% of the results have a localization error of 1.0m ≤ lerr < 1.5m (22%).

In general, it is evident that the number of outliers of incorrect gas source location
estimates is much higher when using the gradient-based control algorithm than using
sweeping. The measuring positions of the sweeping trajectory are predefined by the
start position and the step size of the micro-drone. The averaged measuring positions
differ from the predefined measuring positions only due to the relatively high GPS
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positioning error of the micro-drone. However, each measuring point of the grid is
visited only once. The gradient-based control algorithm shows a different behavior
in the immediate vicinity of the source. There, the algorithm often switches its
behavior from plume tracking to sweeping and vice versa (Fig.6.9). This precludes
further progress of the micro-drone for some time, but might be used to indicate the
proximity to the gas source. However, it seems that this behavior in combination
with inaccurate wind measurements may disrupt the estimator. Fig. 6.13 shows
exemplary the PF-based GSL algorithm using the gradient-based control algorithm
after 133 and 134 iterations. After 133 iterations, the algorithms were able to obtain
a good estimate of the gas source location (green dot), which was displaced further
upwind in the next iteration due to an “erroneous” particle classification in the
proximity to the gas source: the gas source is located inside the PPE, although
no gas-detection event is indicated. In iteration 135, the position of the estimator
jumps approximately to position (4, 4)m, which almost coincides with the red dot
in Fig. 6.13(b).

However, the results are good considering the slow response of the modeled gas
sensor and the relatively high GPS positioning error of the micro-drone (±1.17m).
In the current state of the algorithm, it seems that sweeping is a better strategy to
use with the PF-based GSL algorithm than the gradient-based control algorithm for
the above mentioned reasons.

6.3 Real-world Experiments

As the PF-based GSL algorithm is only used for estimating the gas source location
and not for controlling the micro-drone, no additional real-world experiments are
performed. Instead, the obtained experiment data from Ch. 5 (plume tracking) and
7 (gas distribution mapping) is used to test the algorithm under real-world effects.

6.3.1 Experiment Environment and Setup

The experiment setup for the PF-based GSL experiments using plume tracking
strategies is described in Sec. 5.3.1, whereas the experiment setup for the experi-
ments using sweeping is described in Sec. 7.3.2 and 7.3.3. However, a short summary
of the experiment setups is given below.
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(a) Iteration = 133: N̂eff = 508.79

(b) Iteration = 134: N̂eff = 328.47

Figure 6.13: Particles (blue points) of the PF-based GSL algorithm using the pseudo
gradient plume tracking algorithm after (a) 133 and (b) 134 iterations (after resam-
pling). The estimated gas source location is indicated by the green point that
corresponds to the MNE with ε = 0.5m. The red point denotes the prediction of
the weighted mean. The true gas source location is denoted by the black point (in
(a) hidden by the green point). The PPE for a non-detection event is indicated by
the green lines.

The e-nose was used for all experiments performed on the BAM TTS (MOX –
CH4) and for trial #1 and trial #6 to #8 of the experiments performed in the
botanical garden (EC – CO2). For the remaining trials, the Dräger X-am 5600 gas
detector was used (IR – CO2). The step size of the micro-drone varied from 1.0 to
2.0m depending on the individual experiment setup. The altitude of the micro-drone
was roughly constant for each experiment and varied between 1.5 and 2.0m. The
flight speed of the micro-drone between the measurement positions was set to 1ms−1.
At each measuring position, the micro-drone stopped to take gas concentration and
wind measurements for about 20s. A gas cylinder (BAM TTS – CH4 and botanical
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garden – CO2) connected to a pressure-reducing valve was used as the gas source
during all selected experiments and placed within the experiment area. The outlet
of the gas source was extended with a small tube, which was attached to a fan in
order to spread the analyte away from the cylinder. The size of the experiment area
varied from 5× 5m2 to 20× 16m2.

As in the simulation experiments, the parameters γ and δ were set to 0.5 and 0.1,
respectively. The number of particles N was set to 1,000.

6.3.2 Experiment Results

Table 6.2 shows the results of the real-world PF-based GSL experiments. A total
number of 6 trials were performed within the scope of the plume tracking experi-
ments presented in Sec.5.3, where each of the following algorithms were conducted
twice: surge-cast (trial # 1 and #2), zigzag (trial #3 and #4), and pseudo gradi-
ent (trial #5 and #6). The corresponding trajectories of the three plume tracking
algorithms can be seen in Sec. 5.3.2, Fig. 5.14. Another 13 trials were performed
within the scope of the GDM experiments using predefined sweeping trajectories.
Information regarding the wind conditions during the experiments can be found in
Secs. 5.3.2, 7.4.2, and 7.4.3.

Although the plume tracking experiments were stopped directly after the micro-
drone passed the source, the algorithm was able to locate the gas source with a
success rate of 83.3% (5 of 6 trials succeeded). Measurements behind the gas source
would have been advantageous to obtain a more accurate and reliable gas source
location estimate. However, an average error of successful localizations of 0.69m±
0.35m (the average localization error is 1.05m ± 0.94m) could be obtained. This
result is very good considering, e.g., the GPS positioning system error of the micro-
drone (±1.17m) and is in line with the simulation results presented in Sec. 6.2.2,
where the success rate varied from 76 to 89% and the average error of successful
localizations was between 0.30m±0.37m and 1.11m±0.37m (the average localization
error was between 0.82m± 0.64m and 1.29m± 1.94m).

The last sweep in the GDM experiments was also performed directly in front of
the gas source, i.e., the experiments were stopped immediately after the micro-drone
passed the source. Nevertheless, the success rate of 92.3% (12 of 13 trial succeeded)
is relatively high. The average error of successful localizations is 0.79m±0.38m (the
average localization error is 0.94m± 0.64m). Again, this result matches nicely with
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Table 6.2: Results of the real-world PF-based GSL experiments.

Trial #Iterations
Localization #Neighbors

Location
Area

Strategy
Error (m) ε = 0.5m (m2)

1 25 0.73 242

B
A
M

T
T
S

20× 16

Plum
e
Tracking

2 36 1.18 416
3 17 0.77 224
4 29 2.86 608
5 24 0.56 307
6 38 0.21 604

1 28 1.32 308

B
A
M

T
T
S

5× 5 Sw
eeping

2 28 0.46 186
3 28 1.09 664
4 43 0.36 659

20× 14
5 41 0.85 177
1 42 1.08 174

B
otanicalG

arden

6× 6

Sw
eeping

2 47 1.33 659
3 21 2.68 454

12× 6

4 25 0.20 236
5 17 0.45 206
6 24 0.93 541
7 25 0.52 145
8 25 0.89 183

the simulation results. There, the success rate varied from 81 to 95%. The average
error of successful localizations was between 0.36m±0.38m and 0.98m±0.36m (the
average localization error was between 0.78m± 0.45m and 1.02m± 0.67m).

Trial #2 to #5 of the botanical garden experiments should be highlighted as
the TGS4161 gas sensor was used, which has a sensor response of T90 = 1.5min
(the slowest gas sensor used within this Ph.D. thesis). Trial #3 of the botanical
garden experiments (Fig. 6.14) is particularly noteworthy as the localization error
after 21 iterations is 2.68m. However, this high localization error was caused by an
“erroneous” particle classification during iteration 19 (Fig. 6.14(a)): a gas detection
event is indicated and the gas source is located outside the PPE. Before that event,
the localization error was only 0.56m. A chronological description of the occurrences
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(a) Iteration = 19 (b) Iteration = 20

Figure 6.14: GDM experiment (trial #3 performed in the botanical garden) after
(a) 19 and (b) 20 iterations. The blue points represent the particles of the PF-based
GSL algorithm. The estimated gas source location is indicated by the green point
that corresponds to the MNE with ε = 0.5m. The red point denotes the prediction
of the weighted mean. The true gas source location is denoted by the black point.
The PPE for a detection event is indicated by the red lines.

offers valuable information about the reason for the incorrect gas source location
estimate:

Iteration 18: A relative stable west wind (270◦ with S0 = 0.35) prevailed during
iteration 18, which carried the gas from the source most likely along the x-
axis of the experiment area. During that time, the micro-drone was located
approximately at position (4.06, 3.92)m. The particles are mainly concentrated
in the immediate vicinity of the estimator located at position (2.56, 6.05)m.

Iteration 19: The micro-drone moved to position (4.08, 5.95)m to take samples,
which corresponds nearly to the y-coordinate of the gas source location. This
location could have been part of the plume centerline in the previous iteration.
At this location, the micro-drone measured a southwest wind (220◦), i.e., the
wind had turned in the meanwhile by almost 50◦. The wind was relatively
stable during the measuring period (S0 = 0.24 and ru = 1.32ms−1). Although
the wind had turned significantly, the micro-drone was able to detect traces
of gas, leading to an erroneous detection event since the gas source was not
located inside the PPE. Finally, resampling changed the distribution of the
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particles, resulting in a displacement of the estimator in iteration 20 (due to
a significant drop in the effective sample size N̂eff = 235.68).

Another resampling after iteration 21 may have restored the previous gas source
location estimate due to a correct detection event during iteration 20 (Fig. 6.14(b)).
Fig. 6.14(b) shows furthermore what happens to the PPE when unstable wind con-
ditions are present (S0 = 0.92). Here, the opening angle of the PPE reaches almost
171.5◦ of the maximum possible 180◦.

Unfortunately, the small number of experiments does not permit obtaining strong
statistical significance of the algorithm’s performance. However, the results indicate
the potential of this approach for localizing gas emission sources and its suitability
for a gas-sensitive micro-drone.

6.4 Related Work

Li et al. [78] performed an experiment with 33 trials over an area of 10×10m2 to test
the performance of their PF-based GSL algorithm. A humidifier containing liquid
ethanol was used as the gas source. As an experiment platform they used a ground-
based mobile robot equipped with an anemometer (Windsonic, Gill Instruments
Ltd.) and a MOX gas sensor (MiCS-5135, e2v Technologies (UK) Ltd.). The speed
of the robot was set to 0.2ms−1. The wind speed varied from 0.15 to 4.02ms−1 and
the wind direction varied from −270 to 184◦. Information concerning the stability
of the wind is lacking completely. They considered a run to be successful if the
last 20 estimated gas source locations (calculated with the weighted mean over all
particles) are within a radius of ≤ 0.5m. With their approach they were able to
obtain a success rate of 79% with an average localization error of 0.29m ± 0.04m.
It would be interesting to see the results for each individual run to evaluate the
performance of the algorithm with respect to outliers. However, due to the different
platforms used, the different experiment setups, and the different definition of the
success rate it, is not possible to compare the experiment results from Li et al. with
the presented results obtained from real-world experiments. A direct comparison
of both algorithms using the gas-sensitive micro-drone would be of great interest.
Such a comparison would be possible if the corresponding data sets or the source
code from Li et al. were available. The data sets recorded within this Ph.D. thesis
using the micro-drone will be published online.
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In contrast to the PF-based GSL algorithm of Li et al. [78], we introduce a
novel PF-based algorithm that uses both gas-detection and non-detection events to
estimate the location of a gas source. Furthermore, the proposed approach does not
rely on a roughly uniform wind field, which in the real world does not exist. Instead,
measured wind data, mean and variance of the wind to be precise, were included in
the proposed approach as indicator for the wind stability.

6.5 Summary and Conclusions

This chapter presents a novel PF-based GSL algorithm that is independent from
the exploration strategy used. The algorithm uses gas and wind measurements to
reason about the trajectory of a gas patch when estimating the gas source location.

In robotic simulations, the meta-parameters of the proposed PF-based GSL al-
gorithm were optimized in order to find optimal parameter sets for the gas-sensitive
micro-drone. As control algorithms, a gradient-based algorithm and sweeping were
considered. These parameter sets were successfully validated for both control algo-
rithms in additional simulation experiments with variable source positions. However,
the simulation results suggest that each control algorithm has its own, different op-
timal parameter configuration. A possible explanation can be seen in the number
of measurements taken inside the plume. A plume tracking strategy tries to stay
within the plume and switches only to sweeping when the plume cannot be reac-
quired, whereas sweeping will not diverge from the predefined measuring grid.

Although the relatively small number of real-world experiments did not allow
obtaining strong statistical significance regarding the performance of the proposed
algorithm, the results indicate the potential of the proposed approach for accurately
localizing a single gas emission source emitting a known chemical compound in
turbulent outdoor environments with a micro-drone, also under highly unstable
wind conditions (botanical garden experiments). Its suitability for a gas-sensitive
micro-drone is shown as well. Furthermore, the results suggest that the different gas
sensors used (MOX, EC, and IR) did not have a major impact on the success rate
and the localization error. In general, a good correlation between the results from
simulation and real-world experiments can be found for both control algorithms
using the particular best-suited parameter set.

For purposes of simplification, several parameters of the PF-based GSL algorithm
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were heuristically set to decrease the complexity of the problem. Future work should
investigate the influence of the following parameters in more detail (the parameters
which were set heuristically are marked with an asterisk; the remaining parameters
were adapted from [78]): N = 1,000 the number of particles*, γ = 0.5 the threshold
for resampling the particle set (adapted from [78]), ε = 0.5m the radius of the gas
source location estimate*, λ = 0.5 the exponential moving average parameter of the
binary concentration threshold (adapted from [78]), δ = 0.1 the probability that a
particle is drawn uniformly from the search area instead of the particle set*, and
σ2 = 0.1 the variance used to add Gaussian noise to the position of particles drawn
from the particle set*.

The measurement model of the PF gives ample room for further improvements,
e.g., the PPE may be divided into more regions. Particles far away from the mea-
suring position should not be punished the same way as particles located in the
immediate vicinity. More sophisticated clustering strategies could be developed to
determine the gas source location estimate. Future work should also include extend-
ing the algorithm to the 3rd dimension and, of course, more real-world and simula-
tion experiments have to be performed to test the algorithm extensively. Moreover,
the micro-drone should also take more samples behind the gas source in the real-
world experiments to verify the final estimate and to complete the declaration step
independently.
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Chapter 7

Gas Distribution Mapping using a
Micro-Drone

Gas distribution mapping (GDM) can be used in a number of relevant application
areas where a better understanding of the gas dispersion is needed, such as environ-
mental monitoring and safety and security related fields [144]. To build a predictive
gas distribution model, the Kernel DM+V/W algorithm introduced by Reggente
and Lilienthal [85] is used in this Ph.D. thesis, which is an extension of Kernel
DM+V [14] that also considers wind information to compute the gas distribution
model. It provides the basis for data interpretation and evaluation of results of
autonomous real-world outdoor experiments performed in the geochemically active
Tuscany Region (Italy), on the BAM TTS, and in the Botanical Garden of Berlin
and it is also part of the adaptive sensor planning algorithm presented in Ch. 8.

The input to this algorithm is a set D = {(x1,r1,~u1), . . ., (xn,rn,~un)} with gas
sensor measurements ri and airflow measurements ~ui collected at locations xi. The
output is a grid model that computes an estimate of distribution mean and variance
for each cell. The 2D version of the Kernel DM+V/W algorithm [85] is used to avoid
the higher computational complexity of the 3D Kernel DM+V/W algorithm [94] and
because the limited battery capacity of the micro-drone does not permit a full 3D
search. Furthermore, the field of main application is surface monitoring, which
demands 2D results. In the experiments, the micro-drone was kept in a single 2D
plane. The algorithm is described in more detail in Sec. 7.1.

In the remainder of this chapter, first, the applied GDM algorithm is summarized.
Then, the four different experiment environments and setups of the real-world ex-
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periments are described (Sec. 7.3). Sec. 7.4 presents the results of the real-world
experiments, analyzes differences between gas distribution maps created with the
Kernel DM+V and the Kernel DM+V/W algorithm, and investigates the following
aspects in detail: time to converge to a stable representation of the natural gas
distribution (Sec. 7.4.1), gas sensor technology (Sec. 7.4.3), and reproducibility of
the experiments (Secs. 7.4.1 to 7.4.3). Finally, it is concluded that the gas-sensitive
micro-drone is suitable for GDM and the limitations given by the platform are pre-
sented (Sec. 7.5).

7.1 Kernel DM+V/W Algorithm

The Kernel DM+V/W algorithm [85] works as follows: In the first step, it computes
weights ω(k)

i that model the information content of measurement i at grid cell k.
This is done by evaluating a two-dimensional, multivariate Gaussian kernel N at
the distance between the location of the measurement i and the center x(k) of the
cell k:

ω
(k)
i (σ) = N

(∣∣∣x(k) − xi
∣∣∣ , σ) . (7.1)

The shape and orientation of the kernel depend on the local airflow vector ~u and
on two meta-parameters that determine a spatial scale (σ) and a wind scale (γ). If
no wind is measured (or if no wind information is available), the Gaussian kernel
has a circular shape and corresponds to the Kernel DM+V algorithm (Eq. 7.1).
In the case of a non-zero wind measurement the kernel is replaced by an elliptic,
bivariate Gaussian, which takes the shape of an elongated ellipse with the semimajor
axis rotated in wind direction and stretched according to the strength of the wind
(Eqs. 7.2 to 7.8). This bivariate normal distribution is governed by a mean vector µ
(the point of measurement) and a 2×2 covariance matrix Σ. The covariance matrix
is computed according to the local airflow vector ~u at the sensor location as follows:

• To describe the length of the semimajor and semiminor axis of the ellipse (a, b)
in terms of the kernel width σ of the symmetric Gaussian kernel, the constraint
is set that the area of the ellipse remains constant (Eq. 7.2). The semimajor
axis a is stretched according to the strength of the wind and calculated using
Eq. 7.3. Eq. 7.4 determines the length of the semiminor axis by combining
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Eqs. 7.2 and 7.3:

πσ2 = πab (7.2)

a = σ + γ |~u| (7.3)

b = σ

1 + γ |~u| /σ
(7.4)

Eqs.7.3 and 7.4 are used to estimate the eigenvalues of the covariance matrix.
The covariance matrix is diagonal and the elements of Σ(σx, σy) are σx = a

and σy = b:

Σ(σx, σy) =
σx 0

0 σy

 =
a 0

0 b

 . (7.5)

• The covariance matrix is rotated so that the semimajor axis is aligned with
the wind direction θ:

ΣR(θ) = R(θ)ΣR(θ)−1, (7.6)

where

R(θ) =
cos θ − sin θ

sin θ cos θ

 (7.7)

is the rotation matrix.

• Finally, the Mahalanobis distance D between the location of the measurement
i and the center µ = x(k) of the cell k is used to calculate the corresponding
weights:

ω
(k)
i (σ) = D(xi, x(k)) =

√
(xi − x(k))TΣ−1

R(θ)(xi − x(k)) (7.8)

Fig. 7.2 illustrates how the wind correction is applied and Fig. 7.1 shows the
influence of the different wind speeds on the kernel shape with γ = 0.2s and
σ = 1.2m.
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Figure 7.1: Influence of different wind speeds on the kernel shape with γ = 0.2s and
σ = 1.2m. The arrow’s length represents the wind speed in ms−1.

Second, weights ω(k)
i , weighted sensor readings ω(k)

i (σ) · ri, and weighted variance
contributions ω(k)

i (σ) · (ri−rk(i))2 are integrated and stored in temporary grid maps:

Ω(k)(σ) =
n∑
i=1

ω
(k)
i (σ), (7.9)

R(k)(σ) =
n∑
i=1

ω
(k)
i (σ) · ri, (7.10)

V (k)(σ) =
n∑
i=1

ω
(k)
i (σ) · (ri − rk(i))2. (7.11)

The variance contributions are computed using the difference between the ac-
tual measurements ri and the corresponding prediction of the model r(k(i)), i.e., the
predictive mean for the grid cell k(i) closest to the point at which ri was measured.

Third, a confidence map α(k) is computed from the integrated weights Ω(k) using
another scaling parameter σΩ as a soft threshold:

α(k)(σ) = 1− e
−Ω(k)(σ)

σ2
Ω . (7.12)

The confidence map expresses an increased confidence at locations for which a large
number of sensor readings is available in the close vicinity (“close” is to be under-
stood relative to the kernel width σ).

Finally, the map estimate of the mean r(k) and the corresponding variance esti-
mate v(k) is calculated using Eqs. 7.13 and 7.14 as
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Figure 7.2: Discretization of the Gaussian kernel onto a grid. Left side: Model of
the information content of a gas sensor reading (the sampling location is depicted
in the center by a black ⊗) in the case of a radially symmetric Gaussian kernel
and bivariate Gaussian kernel, respectively. The blue dashed circle represents the
contour of the kernel in absence of wind and the red solid line shows the elliptic
contour of the kernel for the case of non-zero wind. Right side: strongly affected
cells are surrounded by a strong border. The figure and caption were reproduced
from Reggente and Lilienthal [85].

r(k)(σ) = α(k)R
(k)

Ω(k) +
{

1− α(k)
}
· r̄, (7.13)

v(k)(σ) = α(k)V
(k)

Ω(k) +
{

1− α(k)
}
· v̄. (7.14)

The final estimate is obtained by linear interpolation between the map prediction and
an a priori estimate for cells with low confidence. For the mean, the a priori estimate
r̄ is computed as the average concentration over all sensor readings. Similarly, the
average over all variance contributions v̄ is used to estimate the distribution variance
in regions far away from measurement points.

Note that measurements in between two sampling locations are not used in this
creation process to reduce the influence of a memory effect in the sensor response
due to the slow sensor recovery. Furthermore, the wind vector was averaged over all
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the measurements collected at a measurement position due to the accuracy of the
wind vector estimation presented in Sec. 3.4, i.e., the average wind vector was used
for all individual gas sensor measurements acquired at the measurement position.

7.2 Data Acquisition Strategy

Lilienthal and Duckett suggest in [130] (for a precursor of the Kernel DM+V/W
algorithm) that in order to build concentration grid maps, the sensor’s trajectory
must roughly cover the search space and measurements must be taken from multiple
directions: 1. to update cells multiple times, 2. to increase spatial accuracy, and
3. to compensate the memory effect in the sensor response due to the slow sensor
recovery. This can be achieved in a straightforward way by moving a mobile robot
along predefined trajectories that comply with the above mentioned requirements.
For example, Lilienthal programmed his mobile robot to move along two different
predefined trajectories: a rectangular spiral and a sweeping movement [5]. The
rectangular spiral consists of a sequence of inward and outward movements with
randomly chosen starting corner and direction. The sweeping movement was im-
plemented as a trajectory consisting of four segments scanning the area from each
starting corner.

In the case of a micro-drone, which introduces sustainable disturbances to gas
distribution and thus destroys important evidence, it is not desirable to visit mea-
surement positions more than once in a certain time period. Moving the micro-drone
along a spiral is also problematic as the disturbance in the upwind part of the spiral
could destroy the plume structure in its downwind part. In order to obtain more
truthful gas distribution models, the micro-drone is moved in each experiment along
a predefined sweeping trajectory preferably in upwind direction. As a result, the
effect that has the disturbances of the micro-drone on the resulting gas distribution
model is expected to be minimized. Furthermore, building detailed gas distribu-
tion maps over large areas is time-consuming and the batteries of the micro-drone
(equipped with payload) only provide power for approximately 20min. Thus, per-
forming just a single sweep is desirable for the above mentioned reasons. Ch. 8 will
introduce a more sophisticated data acquisition strategy based on artificial potential
fields and locality constraints.
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7.3 Experiment Environments and Setup

In the following Secs. 7.3.1 to 7.3.3, the experiment environments and setups of the
real-world GDM experiments are described in detail. Three sets of experiments with
a total of 22 trials were performed in the Tuscany Region [Paper I, Paper III],
on the BAM TTS [Paper II, Paper IX], and the Botanical Garden of Berlin
[Paper X]. The first set of experiments was conducted in volcanic environments
with several natural gas sources emitting high concentrations of, i.a., CO2 and H2S.
The second and third sets of experiments were performed under more controlled
conditions with an artificial gas source. The size of the exploration area and the
distance between consecutive waypoints in x- and y-direction can be seen in Ta-
ble 7.1, which provides a brief summary of the experiment environments and the
corresponding experiment setups.

Note that the origin of the local coordinate system does not coincide with the
starting positions of the micro-drone, which are indicated in Figs. 7.3 to 7.6 by the
red stars.

7.3.1 Tuscany Region

A first set of ten real-world GDM experiments were performed in the geochemically
active Tuscany Region close to Mount Amiata (Italy). The first four trials were
performed in the riverbed of the Ambra river close to the city Arezzo, whereas the
last five trials were performed in a region called “Inferno” close to the village Bagni
San Filippo. Both locations had the advantage of containing several natural gas

Table 7.1: Experiment environments and setup of the GDM experiments.

Location
Area Waypoint Distance Gas Source

Trials
m2 (x, y)m Source Type

Tuscany Region
5× 20 (2.5, 4.0) CO2 natural,

area
4

20× 24 (4.0, 4.0) CO2, H2S 6

BAM TTS
5× 5 (1.0, 1.0)

CH4
artificial,
point

3
20× 14 (2.0, 2.0) 2

Botanical Garden
6× 6 (1.0, 1.0)

CO2
artificial,
point

2
12× 6 (2.0, 2.0) 6
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Figure 7.3: Pre-programmed flight trajectory of the micro-drone within the “Am-
bra” experiments. The red area indicates the approximately 3.0× 3.0m2 large area
source located in the upper one-third of the experiment area. The red dots indicate
the sampling locations on the trajectory, whereas the starting and end points are
indicated by red stars. The red arrow illustrates the main wind direction during the
experiments.

sources emitting high concentrations of, e.g., carbon dioxide (CO2) and hydrogen
sulfide (H2S).

7.3.1.1 Ambra River Trials

The first four trials were performed in the Ambra river’s riverbed over an area of
5×20m2. The sweeping trajectory of the micro-drone was pre-programmed with the
measurement campaign software (Sec. 3.5.2) and uploaded to the micro-drone before
the experiments. In the experiments the step size was set to 2.5m in x direction and
4.0m in y direction. Starting and end points of the trajectory are labeled accordingly
with a red star (Fig. 7.3). The Dräger X-am 5600 gas detector was equipped with
CO2, H2S, CO, and CH4 sensors. Measurements were recorded at a frequency of
1Hz. The red dots show the positions where the micro-drone stopped to take gas
concentration and wind measurements for about 20s, which corresponds roughly to
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Figure 7.4: Experiment environment and setup of the “Inferno” experiments. The
geologic characteristics of this area are highlighted with transparent area markings:
The red areas indicate three visible, naturally bubbling CO2 and H2S area sources
of approximately 6.0× 3.0m2 (left), 3.0× 1.0m2 (middle), and 2.0× 2.0m2 (right).
The green area shows a zone of natural gas accumulation forming a “river” to the
right of the elevation in the middle. The information about this zone was given by
a local expert and was confirmed by several control samples taken by hand. The
red arrow shows the main wind direction. The starting point of the micro-drone is
indicated by the red star in the rear right corner of the experiment area.

the response times of the used sensors. The position was controlled using only the
on-board GPS of the micro-drone. The micro-drone was set to autonomous waypoint
mode directly after take-off, which started the experiment. The flight speed of the
micro-drone between the stops was set to 1ms−1. Because of the low altitude of the
micro-drone of about 0.3 to 0.5m, the altitude was kept constant manually during the
experiments. Take-off and landing were also performed manually. Each trial took
about 10 to 12min to complete. The time between the experiments was 5min, i.e.,
relatively short as the disturbance of the gas distribution by the micro-drone is still
visible in subsequent trials. A naturally bubbling CO2 area source of approximately
3.0× 3.0m2 was within the upper one-third of the experiment area with the center
located at position around x = 5.5m and y = 22.0m (Fig. 7.7).



152 7.3. EXPERIMENT ENVIRONMENTS AND SETUP

7.3.1.2 Inferno Trials

Another five trials were conducted over an area of 20 × 24m2 in a region called
“Inferno” (Fig. 7.4). The experiment setup was comparable to the one described in
Sec. 7.3.1.1 with the following exceptions: The step size in x and y direction was set
to 4.0m. Furthermore, three visible, naturally bubbling CO2 and H2S area sources
of approximately 6.0 × 3.0m2 (left), 3.0 × 1.0m2 (middle), and 2.0 × 2.0m2 (right)
were located within the experiment area. Their centers were located approximately
at position (11, 18)m, (15, 12)m, and (17, 5)m (Figs. 7.8 and 7.9). A zone of natural
gas accumulation was also located inside the experiment area. Its center was located
approximately at position (10, 2.5)m. The information about the zone of natural
gas accumulation was given by a local expert and was confirmed by several control
samples taken by hand.

Additionally, the experiments were performed on two different days with different
weather conditions (foggy vs. sunny). This time, the time between the experiments
was 30min on day 1 and approximately 10 to 15min on day 2.

7.3.2 BAM TTS Trials

Fig. 7.5 shows the experiment setup of the second set of five GDM experiments.
The experiments were carried out in a natural environment on the BAM Test Site
’Technical Safety’ (BAM TTS) over an area of 5 × 5m2 and 20 × 14m2 (Fig. 7.5).
The area is surrounded by trees and buildings, which introduced a certain level
of turbulence. The micro-drone was equipped with the e-nose (Sec. 3.2.2), which
supports a sampling rate of 8Hz for each sensor. The step size of the micro-drone
in x and y direction was set to 1.0m for the smaller area and 2.0m for the larger
area. The flight speed of the micro-drone between the measurement positions was
set to 1ms−1. The micro-drone was programmed to explore the experiment areas
following a sweeping trajectory using the autonomous control software presented in
Sec. 3.5.3. The starting point is illustrated by the red star. Because of the low
altitude requirement of the micro-drone, the altitude was kept constant manually
at about 1.5 to 2.0m during the experiments. A CH4 (99.5%-pure methane) gas
cylinder connected to a pressure-reducing valve was used as the gas source. The
outlet of the gas source was extended with a small tube which was attached to a fan
in order to spread the analyte away from the cylinder. The air current introduced
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Figure 7.5: Experiment environment and setup of the experiments performed on
the BAM Test Site ’Technical Safety’. The pre-programmed flight trajectory of
the micro-drone is shown with a dashed line. The red dots indicate the sampling
positions on the trajectory, whereas the starting point is indicated by the red star.
The red arrow illustrates the main wind direction during the experiments. The
combination of a CH4 gas cylinder and a fan was used as the emission source.

by the fan also prevented the CH4 from immediately rising up to the atmosphere
when released [Paper II]. The micro-drone was set to autonomous waypoint mode
directly after take-off, which started the experiment.

7.3.3 Botanical Garden Trials

The last set of experiments was performed in the Botanical Garden of Berlin over
an area of 6×6m2 and 12×6m2 (Fig. 7.6). The experiment setup was similar to the
one described in Sec. 7.3.2 with the following exceptions: A CO2 gas cylinder was
used as the gas source and four fans were placed in the experiment area instead of
one. The gas outlet was connected to one of the two fans in the middle (see Fig. 7.6).
Both the e-nose (Sec. 3.2.2) and the Dräger X-am 5600 gas detector (Sec. 3.2.1) were
used successively, each equipped with CO2 sensors. The CO2 sensor of the e-nose is
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Figure 7.6: Experiment environment and setup of the experiments performed in
the Botanical Garden of Berlin. The starting point is indicated by the red star.
The red arrow illustrates the main wind direction during the experiments. The
rectangular area marked with the red dashed line shows the experiment area of
6× 6m2, whereas the rectangular area marked with the black dashed line shows the
12× 6m2 experiment area.

based on an EC cell, whereas the Dräger X-am 5600 gas detector was equipped with
the corresponding IR sensor. In total, four trials were performed for each sensor
configuration.

The e-nose uses the Figaro TGS4161 gas sensor (EC) for the CO2 measurements.
The measurement range is [350, 10,000]ppm with a resolution of 1ppm. The Figaro
sensor offers a high selectivity to CO2. However, this sensor is characterized by a slow
sensor response (T90 = 1.5min) and an accuracy of only ±20% (at 1,000ppm steady
state). On the contrary, the Dräger X-am 5600 gas detector uses the IR gas sensor
to perform accurate CO2 concentration measurements (±5%). The measurement
range is [0, 25] % by volume with a resolution of 0.01% by volume. The advantage
of the IR gas sensor is the faster sensor response of only T90 ≤ 10s (pump) and
T90 ≤ 50s (diffusion). The lower resolution of only 0.01% by volume can definitely
be identified as a disadvantage of the IR sensor.
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7.4 Results of the Real-world Experiments

The sets of gas distribution maps presented in this section were created using the
Kernel DM+V/W algorithm [85] (Sec. 7.1) with γ heuristically set to 0.2s and a
cell size of 0.15m. The kernel width σ was also set heuristically and varied from
0.4 to 1.2m depending on the experiment setup. The smaller value of the kernel
width was chosen when a dense set of measurements was available (i.e., the spacing
along the exploration path was 1m), whereas the larger value served to smooth
the maps accordingly when only sparse measurements distributed over a large area
were available (i.e., the spacing along the exploration path was ≥ 2m; see Table 7.1).
Generally, it was required to obtain high confidence (α(k)) over the whole experiment
area and not only along the trajectory of the micro-drone due to an undersized
Gaussian kernel. The exact value of σΩ is not critical as long it is of the right
scale [145], it was set in relation to the kernel width to N (0, σ).

For each trial, an airflow map was generated using the corresponding experiment
data. At each waypoint where the micro-drone was stopped to take samples, a mean
wind vector was computed. The arrow’s length in the airflow maps in Figs. 7.7 to
7.12 represents the average wind speed and the circular mean direction is represented
by the arrow’s orientation. For the purpose of simplification the wind direction was
rotated so that the top, right, bottom, and left of each airflow diagram correspond
to the cardinal directions: north (0◦ and 360◦), east (90◦), south (180◦), and west
(270◦). In Tables 7.2 to 7.5, the mean wind direction is reported by the direction
from which it originates. Unless explicitly described, the blue squares denote the
measurement positions where the micro-drone stopped to take samples and the
dashed blue line illustrates the trajectory of the micro-drone in each airflow map.

7.4.1 Tuscany Region

7.4.1.1 Ambra River Trials

Wind conditions during all four trials were relatively unstable (Table 7.2). The
average wind speed was in the range of approximately 0.7 to 1.0ms−1 and the average
wind direction was between 299◦ and 30◦. The degree of stability for each trial is
given by the circular variance which was around 0.67 and 0.94.

Fig. 7.7(a) illustrates the predictive mean map and the predictive variance map
of the gas distribution and the computed airflow map in the first trial. Here, the
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(a) Trial #1; CO2

(b) Trial #2; CO2

Figure 7.7: Ambra experiments: Predictive mean (left) and variance map (middle)
of the gas distribution (in % by volume) and the mean airflow map (right) of the
(a) 1st to (d) 4th trial. The center of the area source is denoted by ⊗. The starting
position of the micro-drone is (a) (1, 2)m and (b) to (d) (1, 6)m.
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(c) Trial #3; CO2

(d) Trial #4; CO2

Figure 7.7: Ambra experiments: Predictive mean (left) and variance map (middle)
of the gas distribution (in % by volume) and the mean airflow map (right) of the
(a) 1st to (d) 4th trial. The center of the area source is denoted by ⊗. The starting
position of the micro-drone is (a) (1, 2)m and (b) to (d) (1, 6)m.
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Table 7.2: Wind conditions during the Ambra experiments.

Trial #Samples
Mean Wind σ Mean Wind Circular
Speed (ms−1) (ms−1) Direction (◦) Variance

1 1,684 0.86 ±0.58 57 0.94
2 2,649 1.04 ±0.62 299 0.67
3 2,362 0.74 ±0.62 330 0.73
4 2,113 0.71 ±0.58 30 0.87

position of the maximum measured concentration correlates approximately with the
position of the gas source in the map (compare with Fig. 7.3) as the first trial
likely had the advantage of an intact natural gas distribution. Figs. 7.7(b) to 7.7(d)
show the results of the subsequent trials where the maximum of the predictive mean
appears approximately in the middle of each map. Since the time between the
experiments was only 5min, a likely explanation is that the micro-drone’s rotors,
which act like a mixer that destroys the original gas dispersion pattern, have caused
an alteration in the gas distribution by changing the magnitude and the position
of the concentration maxima in the first trial. This finding is supported by the
observation that the maximum concentration decreased steadily over the four trials.
Since re-adjusting of the natural gas distribution needs time, the first trial is more
relevant and provides best results to reflect the area’s gas emitting characteristics.
The change in the sweeping pattern (and the starting point) 4m to the north after
the first trial was performed to obtain more relevant data close to the area source
without changing the remaining measurement positions from the first trial. Only
the sequence of visits was changed.

Higher reproducibility is given for trials #2 to #4 and the qualitative results
remain more constant in all three created maps. The quantitative results differ more
pronouncedly as the maximum concentrations decrease over time and with increasing
disturbance/ventilation induced by rotor movement. However, the four trials can
be seen as a chronological sequence as the maximum concentration decreases over
time. Further experiments were performed in other parts of the Tuscany Region
with similar results (Sec. 7.4.1.2).

The results (predictive mean and variance maps) of the Kernel DM+V/W algo-
rithm are very similar to the results of the Kernel DM+V algorithm and are therefore
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Table 7.3: Wind conditions during the Inferno experiments.

Day Trial #Samples
Mean Wind σ Mean Wind Circular
Speed (ms−1) (ms−1) Direction (◦) Variance

1
1 3,999 0.42 ±0.37 209 0.83
2 4,418 0.41 ±0.36 98 0.78

2

3 5,287 1.32 ±0.78 92 0.54
4 4,026 1.24 ±0.64 75 0.56
5 3,631 0.45 ±0.41 105 0.97
6 3,193 1.08 ±0.76 49 0.86

not shown here. One reason for this is the small chosen parameter γ, which stretches
the kernel according to the strength of the wind, and the low wind speeds during
all trials (see Fig. 7.1).

7.4.1.2 Inferno Trials

The experiments in the Inferno region were performed on two different days under
different weather conditions. The first day was foggy with an average temperature
of approximately 12◦C and an average relative humidity of 77%. The average wind
speed during the experiments was 0.4ms−1. The directional component of the mea-
sured wind was most likely affected by the combination of the low wind speed and
the inaccuracies given by the GPS receiver (Sec. 3.1.1). Thus, no reliable state-
ment concerning the degree of stability of the wind conditions can be made as the
micro-drone consistently measured very low wind speeds. Altogether the weather
conditions on the first day permitted higher gas accumulations close to the ground
as no strong wind flow was present. The second day was sunny with an average
temperature of almost 18◦C and an average relative humidity of 58%. The average
wind speed was in the range of approximately 1.1 to 1.3ms−1 and the average wind
direction was between 49◦ and 105◦. The circular variance was around 0.54 and
0.86. An exception is trial #5 where the average wind speed lay around 0.5ms−1

again (compare with day 1). The stronger wind conditions of the second day likely
enhanced dispersion and dilution of the volcanic gases. Additionally, a significantly
higher solar radiation produced convective currents, which further dispersed and
diluted the volcanic gases. Therefore, lower maximum concentration levels were
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measured over the experiment area. This can be observed in Fig. 7.8 comparing
trial #1 and #3 and in Fig. 7.9 comparing trial #1 and #6.

The results from selected GDM experiments can be seen in Figs. 7.8 and 7.9.
Figs. 7.8(a) to 7.8(c) and Figs. 7.9(a) to 7.9(c) show the predictive mean map (left)
and the predictive variance map (middle) of the CO2 and H2S distribution, respec-
tively. The corresponding airflow maps can be seen in the right part of each figure.
It seems that especially the created gas distribution maps from day 1 reflect the
area’s gas emitting characteristics best as the positions of the concentration rich ar-
eas correspond roughly to several naturally bubbling area sources. However, it can
be observed that not every source can be found in the final map for various reasons
(e.g., unknown release rate). The qualitative results remain more or less comparable.
This can be seen when comparing Figs. 7.8(a) and 7.8(b) from day 1 with each other
(CO2) and Figs. 7.9(a) and 7.9(b) from day 1 with Fig. 7.9(c) from day 2 (H2S).
However, the gas distribution maps from day 2 (Fig. 7.8(c)) differ more strongly
from those created on day 1 (Figs. 7.8(a) and 7.8(b)). A likely explanation is that
the different weather and wind conditions (i.a., higher wind speeds on day 2) did
not allow the gas to accumulate in the vicinity of their sources resulting in a poor
correlation. The quantitative results differ more strongly. The maximum concen-
tration on day 1 (and day 2) decreases over time and with increasing disturbances
induced by rotor movement. Here, a drop in the maximum concentration from 3 to
approximately 0.5 % by volume (CO2) and from 40 to 20ppm (H2S) was detected.
The drop in concentration is another indication for the assumption that the influ-
ence of the micro-drone’s rotors causes dispersion that changes the magnitude and
the position of the concentration maxima and that re-adjusting of the natural gas
distribution needs time (depending on the release rate of the gas source). Again,
the first trial probably altered the gas distribution. Additionally, weather and wind
conditions on the second day did not permit repetition of the high concentration
measurements from the first day. This can be seen by comparing Figs. 7.8(a) and
7.8(c).

The predictive variance maps (H2S) in Figs. 7.9(a) and 7.9(c) from the different
days indicate accurately the position of the 6× 3m2 area source, whose center was
located approximately at position (11, 18)m. Furthermore, the 3 × 1m2 (with the
center located approx. at position (15, 12)m) and 2× 2m2 (with the center located
approx. at position (17, 5)m) area sources can also be identified partially in both
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(a) Trial #1; day 1; CO2

(b) Trial #2; day 1; CO2

(c) Trial #3; day 2; CO2

Figure 7.8: Inferno experiments: Predictive mean (left) and variance map (middle)
of the gas distribution of the (a) 1st, (b) 2nd, and (c) 3rd trial. The figures on the
right show the corresponding mean airflow maps and the path of the micro-drone.
The centers of the area sources are denoted by ⊗. The starting position of the
micro-drone is located at position (27, 2)m. The CO2 concentration value is given
in % by volume.
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(a) Trial #1; day 1; H2S

(b) Trial #2; day 1; H2S

(c) Trial #6; day 2; H2S

Figure 7.9: Inferno experiments: Predictive mean (left) and variance map (middle)
of the gas distribution of the (a) 1st, (b) 2nd, and (c) 6th trial. The figures on the
right show the corresponding mean airflow maps and the path of the micro-drone.
The centers of the area sources are denoted by ⊗. The starting position of the
micro-drone is located at position (27, 2)m. The H2S concentration value is given
in ppm.
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Table 7.4: Wind conditions on the BAM TTS.

Trial #Samples
Mean Wind σ Mean Wind Circular
Speed (ms−1) (ms−1) Direction (◦) Variance

1 9,938 1.38 ±0.71 247 0.32
2 7,871 1.65 ±0.82 246 0.21
3 10,939 1.57 ±0.82 259 0.26

the predictive mean maps and the predictive variance maps (compare Figs. 7.8(a),
7.8(b), and 7.9(a) to 7.9(c) with Fig. 7.4), even though the micro-drone flew over
the experiment area several times (Fig. 7.9(c) – trial #6). The area of natural
gas accumulation can also be discovered in both the predictive mean maps and the
predictive variance maps of trail #1 and #6 in the lower left part of Figs. 7.8(a),
7.9(a), and 7.9(c). Additionally, the CO2 and H2S distribution maps indicate, that
the same area sources emit both CO2 and H2S as Figs. 7.8(a), 7.8(b), and 7.9(a),
7.9(b) show comparable qualitative results.

All results of the Kernel DM+V/W algorithm are very similar to the results of
the Kernel DM+V algorithm due to the low wind speeds during the trials and the
mostly unmodified kernel shape (see Fig. 7.1). The results of the Kernel DM+V
algorithm are therefore not shown here.

7.4.2 BAM TTS Trials

Fig. 7.10 shows the results of the experiments performed over the 5 × 5m2 large
area on the BAM TTS. Wind conditions during all three trials were very stable
(Table 7.4): the average wind speed ranged from approximately 1.4 to 1.7ms−1 and
the average wind direction was between 246◦ and 259◦. The degree of stability for
each trial is given by the circular variance which lay around 0.21 and 0.32. Here,
the airflow produced by the fan can be neglected as the area of influence is only
limited to the immediate proximity of the fan. Additionally, the airflow maps in
Fig. 7.10 reflect the stability of the local wind conditions as almost all wind vectors
point approximately in the same direction.

The gas emission of the artificial gas source used in the experiments was started
at the beginning of each trial. The artificial gas source had a more or less constant
release rate over the period of the experiment as the pressure-reducing valve was set
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to a constant pressure of approximately 5bar. The artificial gas source and the stable
wind conditions on the BAM TTS with the relatively high wind speeds permitted
instant formation of a reproducible plume moving away from its source (Fig. 7.10).

Reproducibility is given for trial #1 to #3 as the qualitative and quantitative
results remain more or less comparable in all created maps. Small variations in
the plume propagation can be explained by changes in the wind field during each
experiment run. The results from the last trial differ slightly as the airflow map
shows stronger variations in the wind field. However, all gas distribution maps
created with the Kernel DM+V/W algorithm match the corresponding airflow maps.
The areas of high predictive mean and high predictive variance in trial #2 and #3
accurately indicate the location of the gas source (at position (0, 3)m), which can
be seen in Figs. 7.10(b) and 7.10(c). As the micro-drone had to pass the gas source
very close in the last sweep, the altitude of the micro-drone had to be changed
manually to avoid collision with the fan. This occurred in trial #1 due to the
inaccuracies given by the GPS positioning system. Therefore, the last sweep in
trial #1 was performed at an altitude of approximately 1m directly above the fan
and the plume, respectively. This resulted in low concentration values near the
source, which displaced the measured maximum concentrations approximately 2 to
4m further downwind.

The disturbances produced by the rotors of the micro-drone did not affect the
plume propagation and gas dispersion sustainably as compared to the Tuscany ex-
periments (Sec. 7.4.1). There, the maximum concentrations decreased over time and
induced disturbance by rotor movement, which most likely caused a change in the
magnitude and the position of the concentration maxima. This can be explained
by the different prior conditions given for each scenario: The gas sources in the
Tuscany region had the time to accumulate regions of higher gas concentrations,
whereas the gas emission of the artificial gas source used in the remaining exper-
iments was started at the beginning of each trial. The artificial gas source had a
more or less constant release rate over the period of the experiment as the pressure-
reducing valve was set to a constant pressure of approximately 5bar, whereas the
natural gas source has an unknown release rate. Therefore, it is hard to predict the
point in time when the natural gas distribution was recovered. The combination of
the smaller experiment area, the artificial gas source, and the artificially supported
stable wind conditions on the BAM TTS with relatively high wind speeds permit-
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(a) Trial #1; CH4

(b) Trial #2; CH4

(c) Trial #3; CH4

Figure 7.10: BAM TTS: Predictive mean (left) and variance map (middle) of the
gas distribution of the (a) 1st, (b) 2nd, and (c) 3rd trial created using Kernel
DM+V/W. The figures on the right show the corresponding mean airflow maps
and the path of the micro-drone. The gas source was located approximately at
position (0, 3)m and is denoted by ⊗. The starting position of the micro-drone is
located approximately at position (5.5, 1.5)m. The CH4 concentration value is given
in % by volume.
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(a) Trial #1; CH4

(b) Trial #2; CH4

(c) Trial #3; CH4

Figure 7.11: BAM TTS: Predictive mean (left) and variance map (middle) of the
gas distribution of the (a) 1st, (b) 2nd, and (c) 3rd trial using Kernel DM+V.
The figures on the right show the corresponding mean airflow maps and the path of
the micro-drone. The gas source was located approximately at position (0, 3)m and
is denoted by ⊗. The starting position of the micro-drone is located approximately
at position (5.5, 1.5)m. The CH4 concentration value is given in % by volume.
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Table 7.5: Wind conditions in the Botanical Garden of Berlin.

Trial #Samples
Mean Wind σ Mean Wind Circular
Speed (ms−1) (ms−1) Direction (◦) Variance

3 7,161 1.07 ±0.70 172 0.56
4 15,580 1.09 ±0.66 140 0.67
6 8,020 1.43 ±0.85 106 0.58
7 8,087 0.99 ±0.77 91 0.55

ted instant formation of a reproducible plume moving away from its source. The
prevailing weather (foggy vs. sunny, e.g., convective currents) and wind conditions
(e.g., stability of the wind and low vs. high wind speeds) are natural factors which
additionally influenced the plume propagation and gas dispersion in the Tuscany
region more pronouncedly than in the trials performed on the BAM TTS.

Comparing the results of the Kernel DM+V/W algorithm with the results of
the Kernel DM+V algorithm demonstrates that the stronger wind speeds in all
three trials have a significant influence on the shape of concentration areas in both
predictive mean and variance maps. The Kernel DM+V/W algorithm basically
models – depending on the wind and the chosen parameter γ (Fig. 7.1) – elliptic
shaped areas due to its kernel modification (Fig. 7.10), whereas the Kernel DM+V
algorithm models rather circular shaped areas (Fig. 7.11). The kernel shape changes
the predicted plume structure slightly and is visible in all created maps. An elliptic
kernel aligned in wind direction narrows the plume, whereas a circular kernel widens
the plume. Additionally, the maximum concentrations in Fig. 7.11 (Kernel DM+V)
differ noticeably from the maximum concentrations in Fig. 7.10 (Kernel DM+V/W).
This difference is caused by the difference in the computation of the weights of both
algorithms as different sensor readings (measurement positions) will be considered
due to the kernel shape.

7.4.3 Botanical Garden Trials

Despite artificial ventilation, the wind conditions during all trials were very unstable
in the botanical garden trials (Table 7.5). The average wind speed ranged between
approximately 1.0 and 1.4ms−1 and the average wind direction changed between
91 and 172◦. The circular variance lay around 0.55 and 0.78, which indicates that
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the wind vectors were highly spread. However, the produced gas distribution maps
show that CO2 may be dispersed in x direction using the four fans.

Fig. 7.12 shows exemplarily the results of trial #3, #4, #6, and #7 performed in
the Botanical Garden of Berlin. Trial #3 and #4 were performed with the e-nose,
whereas the Dräger X-am 5600 gas detector was used in trial #6 and #7. The
quantitative results remain more or less comparable in all created maps, while the
qualitative results differ more strongly. For instance, the produced predictive mean
maps of trial #3 and #4 (Figs. 7.12(a) and 7.12(b)) do not allow identification
of a plume structure. Instead, it seems that the sensor of the e-nose retains high
measured concentrations for quite a long time due to the slow sensor recovery, most
likely expanding the local measurement to a much larger area with slowly decreasing
concentration values following the sweeping movement of the micro-drone. In con-
trast to that, an intermittent plume propagating in x direction can be identified in
the produced predictive mean maps of trial #6 and #7 (Figs. 7.12(c) and 7.12(d)).

All presented results of the Kernel DM+V/W algorithm (Fig. 7.12) are very
similar to the results of the Kernel DM+V algorithm (Fig. 7.13). Small variations are
visible between all maps due to the difference in the kernel shape of both algorithms
(circular vs. elliptic). Additionally, the maximum concentrations in Fig. 7.12 differ
from the maximum concentrations in Fig. 7.13 (see Sec. 7.4.2 for a more detailed
description).

Fig. 7.14 shows a comparison of the produced predictive mean maps of the gas
distribution and the trajectory taken by the micro-drone in trial #3 and #6. Here, it
can be clearly seen that a memory effect in the sensor response due to the slow sensor
may heavily affect the final gas distribution map (Fig. 7.14(a)). For instance, the e-
nose measured a high CO2 concentration at position (6, 8)m. The decay of the sensor
most likely persisted until the micro-drone reached the position (4, 2)m. This effect
is not visible in trial #6 (Fig. 7.14(b)) using the Dräger X-am 5600 gas detector.
However, the source location is indicated roughly by the high concentration variance
in five of the eight predictive variance maps (Figs. 7.12(b) to 7.12(d)). An exception
is, e.g., trial #3, where the high concentration variance is displaced approximately
3m from the real source location. The reason for that could be the lacking last
sweep (due to an exhausted battery). The IR gas sensor of the Dräger X-am 5600
gas detector, however, has a considerably better spatial resolution over the area as it
supports shorter response and decay times (i.e., the memory effect of the IR sensor
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(a) Trial #3; CO2; EC gas sensor

(b) Trial #4; CO2; EC gas sensor

(c) Trial #6; CO2; IR gas sensor

(d) Trial #7; CO2; IR gas sensor

Figure 7.12: Botanical garden: Predictive mean (left) and variance map (middle) of
the gas distribution and the corresponding mean airflow map (right) of the (a) 3rd,
(b) 4th, (c) 6th, and (d) 7th trial created using Kernel DM+V/W. The gas source
was located approximately at position (2, 6)m and is denoted by ⊗. The starting
position of the micro-drone is located at position approximately (a) (12, 2)m and
(b) to (d) (12, 3.5)m. The CO2 concentration value is given in % by volume.
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(a) Trial #3; CO2; EC gas sensor

(b) Trial #4; CO2; EC gas sensor

(c) Trial #6; CO2; IR gas sensor

(d) Trial #7; CO2; IR gas sensor

Figure 7.13: Botanical garden: Created predictive mean (left) and variance map
(middle) of the gas distribution using Kernel DM+V and the corresponding mean
airflow map (right) of the (a) 3rd, (b) 4th, (c) 6th, and (d) 7th trial. The gas source
was located approximately at position (2, 6)m and is denoted by ⊗. The starting
position of the micro-drone is located approximately at position (a) (12, 2)m and
(b) to (d) (12, 3.5)m. The CO2 concentration value is given in % by volume.
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(a) Trial #3; CO2; EC gas sensor (b) Trial #6; CO2; IR gas sensor

Figure 7.14: Comparison of the trajectory of the micro-drone and the predictive
mean map of the gas distribution of the (a) 3rd and (b) 6th trial. The trajectory of
the micro-drone is denoted by the dashed blue line.

is much lower than the memory effect of the EC sensor used by the e-nose).

7.5 Summary and Conclusions

Gas Distribution Mapping (GDM) by an autonomous, flying gas-sensitive micro-
drone in an uncontrolled environment is an extremely challenging field of research.
The application of the Kernel DM+V/W algorithm in combination with the esti-
mation of the wind vector using a micro-drone is very promising with respect to
the results of the presented real-world GDM experiments even though the explored
areas presented in this chapter are not of considerable size. The first set of exper-
iments in the geochemically active Tuscany region in particular highlight that the
micro-drone may not be suitable for repeated monitoring under low-wind conditions
when quantitative reproducibility is needed since it substantially disturb gas distri-
bution. The qualitative results still might be useful for identifying the gas source
locations. However, the time between each mission has to be long enough to allow
a recovery of the natural gas distribution. The other sets of experiments showed
that qualitative and quantitative reproducibility depend on the stability of wind and
weather conditions, and that gas sensors with faster response times are required in
order to reduce the measurement time and be able to cover larger areas.

Furthermore, the true source location was indicated more often in the predictive
variance maps than in the predictive mean maps. This is in line with previous
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observations that the concentration variance often provides a better indication of
the gas source location [1] than the mean.

One general problem is the memory effect in the sensor response due to the slow
sensor recovery, which can be observed especially in the two trials performed in
the Botanical Garden of Berlin using the e-nose. Therefore, it is beneficial to use
sensors with faster response and decay times (e.g., TGS2611 – CH4) for generating
truthful representations of gas dispersion (Sec. 7.4.3). However, sensors with fast
response and decay times are not always available for the target gas. To reduce the
memory effect in the response of sensors with slow response and decay times, Ishida
et al. [90] proposed the integration of a sensor dynamics model to “reconstruct the
actual gas distribution from the time-series response data considering the delay”. As
a consequence of the slow sensor recovery, a gas source might also be hidden in the
final gas distribution map if multiple gas sources that release different concentration
levels of the same gas are present. Therefore, depending on the trajectory of the
micro-drone, a gas source releasing a lower concentration may be masked by another,
spatially close gas source releasing a higher concentration of the same gas (i.e., that
the sensor decay of the higher concentration may hide the lower concentration),
which makes the localization of these sources a challenging task. The approach
of a Multi-Chamber Electronic Nose (MCE nose) proposed by Gonzalez et al. [146]
could overcome this limitation as it “alternate[s] between sensing and recovery states
[using redundant sensors], providing, as a whole, a device capable of sensing changes
in chemical concentrations faster”. Future work should additionally include the GPS
positioning error of the micro-drone for more accurate gas distribution maps.

Lilienthal and Duckett argue in [130] (for a precursor of the Kernel DM+V/W
algorithm) that building concentration grid maps requires a robot trajectory that
roughly covers the entire search space and passes particular measurement positions
from multiple directions. However, in the case of a micro-drone, which introduces
sustainable disturbances to the environment that modifies the current gas distribu-
tion and thus destroys important evidence, it is not desirable to visit measurement
positions more than once. Instead, performing just one full sweep in each experi-
ment seemed to be suitable regarding the experiment results, even though the Ker-
nel DM+V/W algorithm had to be run outside its specification. Furthermore, using
sweeping trajectories to build detailed gas distribution maps over large areas is time
consuming. The batteries of the micro-drone (equipped with payload) only provide
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power for approximately 20min. New battery technologies may overcome this limita-
tion in the near future. However, adaptive sampling strategies have to be developed
or a swarm of multiple gas-sensitive micro-drones has to be deployed. But even a
single gas-sensitive micro-drone causes extensive disturbance in the exploration area
and therefore a swarm may even faster interfere with data to be measured. One
possible alternative to overcome this problem may be to partition a large area into
smaller subregions (e.g., including wind information in the decision process such
that a micro-drone does not disturb the subregions assigned to other micro-drones).
Afterwards, each micro-drone can explore its assigned subregion. The 3D version
of the Kernel DM+V/W algorithm from Reggente and Lilienthal [94] may be used
when additional constraints are respected (e.g., the produced downward directed
airflow by the micro-drone’s rotors heavily influences the gas distribution directly
under the micro-drone up to a range of approx. 5 – 10m). Therefore, intelligent
exploration strategies for the 2D and 3D case have to be developed.
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Chapter 8

Sensor and Path Planning
Strategy for a Micro-Drone

Using sweeping trajectories to build detailed gas distribution maps over large areas
is extremely time consuming. A more detailed discussion about alternative data
acquisition strategies is given in Sec. 7.2. However, the batteries of the micro-drone
(equipped with payload) only provide power for approximately 20min. With the
micro-drone taking samples for 20s at each measurement position, the battery re-
stricts the micro-drone to a total of ≤ 60 measurement positions while a minimum of
100 measurement positions are needed to cover an area of 5×20m2 with a resolution
of 1m, for example (“Ambra” experiments in the Tuscany Region). Gas-sensitive
mobile robots therefore require a thoroughly designed sensor planning strategy that
selects preferable sampling locations based on the current knowledge about the en-
vironment and, more specifically, about gas distribution. The purpose of the sensor
planning component is to reduce the time that is necessary to converge to the final
gas distribution model or to reliably identify important parameters of the distribu-
tion such as areas of high concentration. Sensor planning is especially important
in the case of a flying gas-sensitive robot such as the one considered in this Ph.D.
thesis due to its limited battery life time.

In this Ph.D. thesis, a newly developed sensor planning approach [16] is adapted
by introducing locality constraints to plan the path for a micro-drone [Paper III,
Paper XII]. The sensor planning algorithm uses information about the target area
and previous sampling locations to maximize the coverage area. In addition, it con-
siders the continuously updated statistical gas distribution model (Sec. 7.1) to direct

175
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sensor measurements towards locations of high mean concentration and high con-
centration variance. The different objectives are combined in an Artificial Potential
Field (APF) in a way that allows to include additional objectives, e.g., from human
operators, in an intuitive and straightforward way. In addition to the introduction
of the modified APF-based sensor planning algorithm and the demonstration on
a gas-sensitive micro-drone, this chapter demonstrates again that the peak in the
predictive variance model can provide an accurate estimation for the location of a
stationary gas source.

Note that this chapter has emerged from a cooperation with Sahar Asadi who is a
Ph.D. student at Applied Autonomous Sensor Systems (AASS), Örebro University,
Sweden. A declaration of collaboration with the corresponding contributions of
Sahar Asadi and Patrick P. Neumann can be found in Sec. 8.1.

In the remainder of this chapter, first, the basic APF-based sensor planning algo-
rithm is described (Sec. 8.2). Then, two different locality constraints are introduced
to select the next measurement position (Sec. 8.2.1). Next, the complete sensor
and path planning algorithm for the micro-drone is described (Sec. 8.3). Finally,
simulation and real-world experiments are performed to evaluate the performance
of the APF-based sensor planning algorithms (Secs. 8.4 and 8.5) and conclusions
are drawn (Sec. 8.6).

8.1 Declaration of Collaboration

This chapter emerged from a collaborative work with Sahar Asadi who is a Ph.D.
student at Applied Autonomous Sensor Systems (AASS), Örebro University (Swe-
den). The main focus of her Ph.D. research is gas distribution modeling and sensor
planning. Within the context of this collaboration, we optimized an adaptive sensor
planning approach based on an Artificial Potential Field (APF) for the purpose of
gas distribution study and gas source localization using a gas-sensitive micro-drone.
Furthermore, we selected together evaluation criteria and measures described in
Sec. 8.4 and Appendix E. Some of the initial results of this collaboration are pre-
sented in [Paper III], [Paper X], and [Paper XII].

The initial adaptive APF-based sensor planning for gas sensors (see Sec. 8.5)
was originally introduced by Sahar Asadi. In the proposed method, the APF was
defined using only predictive mean and variance information of the estimated gas
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distribution maps (using the Kernel DM+V/W algorithm) and a repulsive potential
of previous measurement locations to choose the next sampling position [Paper III,
Paper XII].

Sahar Asadi’s main contribution within this collaboration was (1) the theoretical
part of the adaptive APF-based sensor planning algorithm, including theoretical
studies using the defined distance measures, (2) performing simulation experiments,
and (3) optimization of sensor planning parameters and gas distribution modeling
parameters.

The main contribution of this Ph.D. thesis within this collaboration was (1) the
design of the robotic platform (see Ch. 3), (2) design of the experiment setup of the
real-world experiments including data collection with the micro-drone (see Sec. 8.5),
(3) the optimization of the sensor planning algorithm for a single gas-sensitive micro-
drone by adding locality constraints (see Secs. 8.2.1 and 8.3), and (4) enhancement
of the sensor planning parameters in simulation (see Sec. 8.4).

After evaluation of first simulation and real-world experiments, we worked on
potential improvements of the initial sensor planning method and tested suitable
alternatives. Within this context and as part of Sahar Asadi’s Ph.D. research, an
improved version of the APF-based method was proposed. Within this Ph.D. thesis,
this novel method was evaluated in simulation experiments. This improved version
of the APF-based sensor planning has not been published yet and is in preparation;
however, upon on our agreement this algorithm is presented in this Ph.D. thesis in
Sec. 8.2. It includes confidence map in addition to predictive mean and variance to
build the APF. Furthermore, the predictive maps are used instead of an integration
over predictive mean values (cf. Eqs. 8.1 to 8.3 in Sec. 8.2 with Eqs. 8.10 to 8.12 in
Sec. 8.5).

The real-world experiments took place in an early stage of the algorithm and thus
were performed using the initial version of the APF-based sensor planning algorithm
(Sec. 8.5). The simulations, on the other hand, were performed using the improved
version of the sensor planning algorithm (Sec. 8.2).

8.2 Adaptive Sensor Planning

In each step, the adaptive sensor planning (SP) component (denoted by adaptive
SP in the following) [Paper III, Paper XII] suggests a selectable number nsp of
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locations to place sensors in the area of interest in the next iteration. The algorithm
uses information about the target area, previous sampling locations, and the current
statistical gas distribution model. The selection process considers three objectives
to direct the sensor towards areas of (1) high predictive mean, (2) high predictive
variance, while (3) maximizing the coverage area.

The first two objectives implement exploitation of the information in the gas
distribution model (“using the current belief about the state of the environment
most effectively [104]”). They are achieved by an attractive potential generated by
pseudo electric charges placed in each grid cell center of the corresponding created
gas distribution model. The strength of these charges is given by the corresponding
predictive mean and variance. Accordingly, two APF contributions are determined
for each cell k as

APF
(k)
M = r(k), (8.1)

APF
(k)
V = v(k), (8.2)

where r(k) and v(k) are the predictive mean and variance values for grid cell k,
respectively, both computed by the Kernel DM+V/W algorithm (Sec. 7.1). The
third objective that corresponds to exploration (“gathering information about the
environment [104]”) is implemented by the confidence map α(k):

APF
(k)
C = −α(k), (8.3)

where α(k) is the confidence value for grid cell k also determined by the Kernel
DM+V/W algorithm. The APF contributions are additively combined with impor-
tance factors βM , βV , and βC for each objective:

APF (k) = βM · APF (k)
M + βV · APF (k)

V + βC · APF (k)
C , (8.4)

where

βM + βV + βC = 1. (8.5)

APF
(k)
C creates a strong attraction if the confidence value in the respective cell k is

low, while the other two APF contributions (APF (k)
M and APF (k)

V ) create a strong
attraction if the respective quantity (mean and variance) is high.
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Finally, nsp locations are identified by selecting in each iteration i ∈ [1, nsp] the
location at which the potential is maximum as a suggested measurement point and
updating the APF by temporarily placing an additional measurement charge q at
the selected location x(i):

APF
(k)
i = βM · APF (k)

M + βV · APF (k)
V + βC · APF (k)

C︸ ︷︷ ︸
APF (k)

+βC · APF (k)
Qi
, (8.6)

with

APF
(k)
Qi

=
∑i

j=1 q · exp
(
|x(j) − x(k)|

σd

)
, (8.7)

where x(j) is the selected location in iteration j, x(k) is the location of cell center
k, σd is a scaling parameter, which is set to 1m. In the current implementation,
same repulsive force is assigned to all temporarily selected locations and the virtual
charge q is set to −1.

Theoretically, it may happen that the attractive forces towards an increased mean
and an increased variance in the opposite direction cancel themselves out. In prac-
tice, it is unlikely that the attractive forces are completely balanced at the position
of the sensor. Even if they were, the sensor would be directed towards one of the
directions and in the next step the symmetry would be broken [Paper XII].

8.2.1 Locality Constraints for Adaptive Sensor Planning

The previously described sensor planning approach distributes its nsp suggestions
over the target area without any spatial order. Moving the mobile gas sensor directly
to these locations (with highest APF values) tends to create a seesaw movement,
which drains the batteries sooner, resulting in fewer measurements. Therefore, two
different locality constraints are suggested to enhance the information gain within
the battery lifetime of the micro-drone:

A: The closest suggested location is selected as the next measurement position
(rather than the first suggestion) with

min {di | di = |pm − pi| with i ∈ [1, nsp]} , (8.8)
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where pm is the position of the micro-drone and pi with i ∈ [1, nsp] corresponds
to the suggested measurement locations.

B: The most often suggested close-by measurement location is selected from
among nsp suggestions from the basic sensor planning approach (rather than
the first suggestion). This is implemented by a matrix S that has the same dis-
cretization as the gas distribution model. For each grid cell k, S(k) counts the
number of the cell being suggested since it was actually visited the last time.
The next measurement point is ultimately selected as the one with the highest
ratio S(k)/d(k) where d(k) is the distance between the sensor’s current position
and grid cell k. Thus, a location far away from the current position will only
be selected if it was frequently suggested. In the current implementation, not
only the counter for a suggested cell but also the counter of neighboring cells
in the matrix S within a radius of 0.5m are increased by one. A radius of 0.5m
corresponds to the drainage / turbulence area under the micro-drone (that has
a diameter of 1m) induced by the rotors.

The APF criterion – choosing from the remaining locations the one with the highest
APF value – is applied if more than one possible next measurement location remains
in the selection process.

8.3 Sensor and Path Planning Algorithm for the
Micro-Drone

The initial measurement location is chosen randomly in the target area. Then, the
sensor and path planning algorithm for the micro-drone (SPPAM) performs the
following steps iteratively:

• collect gas sensor and wind measurements while keeping the micro-drone at a
fixed position for a prolonged time (here: 20s);

• average the sampling positions of the micro-drone and the gas concentration
and wind measurements over the measurement time (20s); (A number of sim-
ulations showed that using every single sampling position leads to a relatively
large, connected area of overlapping kernels which is disadvantageous for the
performance of the algorithm.)
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• compute the predictive gas distribution model using the Kernel DM+V/W
algorithm (Sec. 7.1), the input to the algorithm is the averaged positions and
the averaged gas concentration and wind measurements;

• derive an estimate of the source location from the predictive gas distribution
map (detailed in Sec. 8.5);

• determine the nsp suggested sampling locations with the APF-based sensor
planning component (Sec. 8.2);

• select a sampling location based on one of the locality constraints described
in Sec. 8.2.1;

• fly the micro-drone autonomously to the chosen sampling location and repeat
using the first step. (Measurements between two sampling locations are not
used to decrease the influence of a memory effect in the sensor response due
to the slow sensor recovery.)

The algorithm terminates either if the battery becomes low or the confidence map
α(k) is above a defined threshold for each cell k. In the real-world experiments, the
first criterion is used to terminate the algorithm, which resulted in approximately
24 to 35 sampling locations (Sec. 8.5). The whole adaptive sampling process is also
visualized in Sec. 8.5.2, Fig. 8.11.

8.4 Simulation Experiments

Simulation experiments offer ground truth information which enables a quantitative
comparison and performance evaluation of algorithms under repeatable conditions.
The different sensor planning approaches (adaptive SP and SPPAM) are evaluated
by comparing gas distribution models which were created using the measurements
suggested by a particular sensor planning algorithm with the available ground truth
model. The ground truth is built up using all available measurements of the simu-
lation experiment, whereas the predictive models are built up after each iteration of
the sensor planning approach by adding the measurements from the current sampling
location to the model. Thus, each iteration represents a subset of the simulation
data. As a measure of distribution similarity, the symmetric Kullback-Leibler (KL)
distance (Appendix E) is used.
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In order to evaluate the performance of SPPAM, the KL distance obtained with
SPPAM is compared to the KL distance obtained with adaptive SP, pure random
sampling, and sweeping (with step size set to 1m). The Kernel DM+V/W algorithm
is used to build the gas distribution model. For the predictive mean map, the a priori
estimate r̄ in the Kernel DM+V/W algorithm is set to the minimum concentration
over all sensor readings to achieve a better comparability between the created maps
and the ground truth [16]. Using the average concentration over all sensor readings
to update the corresponding cells with low confidence is not a good a priori estimate
compared to the large area in the ground truth map that contains low and zero
concentration values because of the narrow plume. This is especially relevant if the
first samples are taken randomly inside the plume.

Other performance parameters which were used to compare the different ap-
proaches with each other are the total traveled distance of the micro-drone, the
average distance between two consecutive sampling locations, and the obtained cov-
erage. The latter is approximated by a matrix that has the same size as the exper-
iment area with a cell size of 0.01m. The coverage is calculated as the ratio of the
number of visited cells to the number of all matrix cells. To account for the radius
of the micro-drone, neighboring cells within a radius of 0.5m are also assumed to be
covered.

In each of the following simulation experiments, the parameters of the Kernel
DM+V/W algorithm were set heuristically to c = 0.10m (grid cell size), σ = 0.40m
(kernel width), σΩ = N (0, σ = 0.4) ≈ 1.0, and γ = 0.6s. In comparison to the
experiments performed in Sec. 8.5, γ is set to 0.6s to consider the low flow speed in
the wind tunnel of 0.5ms−1. A total of up to 220 iterations (=̂ measuring positions)
were performed for SPPAM, adaptive SP, pure random sampling, and sweeping.
However, sweeping only needed 206 iterations to complete one full forward and one
full backward sweep and was therefore stopped directly afterwards. Furthermore,
the backward sweep was shifted to fill out the remaining gaps (Fig. 8.5(c)).

8.4.1 Theoretical Performance of SPPAM

8.4.1.1 Experiment Environment and Setup

To measure the idealistic performance of SPPAM under laminar flow conditions,
simulations are carried out at a high abstraction level. For this purpose, the micro-
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drone is modeled as a dimensionless point with a perfect GPS positioning system
and without influence of the rotors on the measurements. The wind and gas sensors
are modeled as perfect sensors without noise and delay. The experiment area is a
12× 8m2 large section of a simulated wind tunnel environment with size 32× 8m2.
The flow speed in the wind tunnel was set to 0.5ms−1. A circular gas source with a
radius of 0.2m was placed in the experiment area approximately at position (2, 4)m.
The start position of the micro-drone was chosen randomly in each run within the
experiment area.

First, to find a reasonably good parameter set for the adaptive SP algorithm,
experiments with different importance factors are performed for each objective (high
mean, high variance, and coverage). Next, the best parameter set is chosen to
evaluate SPPAM with the locality constraints suggested in Sec. 8.2.1. The number of
suggested measurement locations (nsp) was set to 10. Each experiment was repeated
100 times with a total of up to 220 iterations.

8.4.1.2 Experiment Results

Fig. 8.1 shows a KL distance comparison of predictive mean maps to the ground
truth map. The predictive mean maps are created using adaptive SP with different
importance factors, sweeping, and random sampling. The ground truth is built up
using all available measurements of the simulation experiment. The results demon-
strate that random sampling is not a good reference strategy as its convergence to
the final gas distribution model is slow. Sweeping, however, can provide a much
better reference. It reaches a good model accuracy after already ≈ 100 sampling
iterations (KL distance value of 0.21 ± 0.0) and a very good model accuracy af-
ter ≈ 200 sampling iterations (KL distance value of 0.05 ± 0.0). Furthermore, the
micro-drone following a sweeping trajectory has to cover a much smaller distance
than using random sampling. Sweeping needs 205.6m±0.0m, whereas random sam-
pling needs 1082.5m±40.7m (both determined after 206 iterations) to cover roughly
the entire experiment area (coverage: 99.8%±0.0% with sweeping and 79.5%±1.7%
with random sampling).

Adaptive SP with (βM , βV , βC) set to (0.4, 0.4, 0.2) fails to build an accurate model
of the gas distribution due to a too greedy parameter selection. The repulsive force
cannot antagonize its opponents (predictive mean and variance) and the algorithm
gets stuck in a local maximum. This can be seen in Fig. 8.1(a) in form of an in-
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(a) (b)

Figure 8.1: Results of the simulation experiments as functions of the number of
iterations: KL distance comparison of predictive mean maps to the ground truth
map (a) without and (b) with standard deviation. The predictive mean maps are
created using adaptive SP with different importance factors, sweeping, and random
sampling. The ground truth is built up using all available measurements of the
simulation experiment.

creasing KL distance value after 80 iterations and in Fig. 8.2, where a measurement
taken at approximately (4, 4)m stops any further exploration of the experiment area
after iteration 82.

Fig. 8.1(b) shows a KL distance comparison of predictive mean maps to the
ground truth map. The predictive mean maps are created using adaptive SP with
(βM , βV , βC) set to (0.1, 0.1, 0.8) and (0.2, 0.2, 0.6), and sweeping. The ground truth
is built up using all available measurements of the simulation experiment. A good
parameter set for (βM , βV , βC) for adaptive SP has been found to be (0.1, 0.1, 0.8).
For both parameter configurations, the above described problem that exploitation
dominates exploration (or: local maximum problem) only appears after the confi-
dence map α(k) reached a certain threshold for each cell k, which should serve as
a stop criterion for the algorithm. This happens approximately after 200 iterations
for the parameter configuration (0.2, 0.2, 0.6) (Fig. 8.1(b)) and after about 240 iter-
ations for the parameter configuration (0.1, 0.1, 0.8). The latter was observed in an
additional experiment with 20 runs with 400 iterations each (Fig. 8.3). In general,
to avoid early stagnation of adaptive SP, the following inequality is suggested and
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(a) Iteration = 82

(b) Iteration = 86

(c) Iteration = 82 (d) Iteration = 86

Figure 8.2: Local maximum problem of adaptive SP with too greedy parameter
selection: predictive mean (left), variance (middle), and confidence map (right) of
the gas distribution with the corresponding APF maps after (a) and (c) 82 and (b)
and (d) 86 iterations. Due to a local maximum approximately at position (2, 4)m
(corresponds to the position of the gas source), the algorithm gets stuck.

must hold for each k (otherwise the locations with local maxima will be suggested
in each iteration and the decision of the next sampling point will rely only on the
locality constraint used):

βM · APF (k)
M + βV · APF (k)

V ≤
∣∣∣βC · APF (k)

C

∣∣∣ (8.9)

Adaptive SP with (βM , βV , βC) set to (0.1, 0.1, 0.8) outperforms sweeping after
≈ 50 iterations and converges after ≈ 150 iterations (KL distance value of 0.05 ±
0.02). To achieve this result, the micro-drone was sent along a 803.9m± 39.5m long
trajectory and covered 79.1%±1.3% of the experiment area. In comparison, the KL
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Figure 8.3: Effect of the local maximum problem on the KL distance value of adap-
tive SP and SPPAM with locality constraint A and B (found out in an additional
experiment with 20 runs with 400 iterations each) as a function of the number of
iterations.

distance value of sweeping after ≈ 150 iterations is only 0.18± 0.0 (factor 3.6 worse
than adaptive SP). Furthermore, sweeping covered a distance of 150.3m ± 0.0m
(approx. factor 5.4 times better than adaptive SP) and obtained a coverage ratio
of 86.2% ± 0.0%. Although sweeping has covered approximately 7% more of the
experiment area, adaptive SP performs better as it prioritizes the exploitation of
regions of high mean concentration and high concentration variance. A theoretical
evaluation of the basic adaptive SP algorithm with a full parameter optimization
can be found in [16].

A critical aspect due to the resource constraints of, e.g., a micro-drone (or a mobile
robot) is the distance overhead of adaptive SP in comparison to sweeping. Moving
around with a micro-drone is time and power consuming. Thus, additional locality
constraints are needed to avoid sending the micro-drone in a seesaw movement over
the experiment area (Fig. 8.5(b)), which drains the batteries quicker, resulting in
fewer measurements.

Fig. 8.4 shows a KL distance comparison of predictive mean maps to the ground
truth map. The predictive mean maps are created using SPPAM, adaptive SP,
and sweeping. The ground truth is built up using all available measurements of
the simulation experiment. Here, the importance factors (βM , βV , βC) were set to
(0.1, 0.1, 0.8) for SPPAM and adaptive SP. At first glance, SPPAM with locality
constraints performs worse than adaptive SP. SPPAM with locality constraint A
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(a) (b)

(c) (d)

Figure 8.4: KL distance comparison of predictive mean maps to the ground truth
map (a) without and (b) and (c) with standard deviation as a function of the number
of iterations. The predictive mean maps are created using SPPAM, adaptive SP,
and sweeping. The ground truth is built up using all available measurements of the
simulation experiment. (d) Traveled distance of the micro-drone over the number
of sampling iterations using SPPAM, adaptive SP, and sweeping.

needs ≈ 16 iterations more (166 iterations) than adaptive SP to reach a KL distance
value of 0.05± 0.02 and covers 80.8%± 0.02% of the experiment area (adaptive SP:
82.1% ± 0.01% and sweeping: 90.0% ± 0.0%). However, it reduces the traveled
distance significantly to only 280.8m ± 10.7m. In comparison, adaptive SP needs
803.9m± 39.5m to reach a KL distance value of 0.05± 0.02. SPPAM with locality
constraint B needs ≈ 18 iterations more (168 iterations) than adaptive SP to reach
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(a) Iteration = 39 (b) Iteration = 39 (c) Iteration = 206

Figure 8.5: Sample trajectories of (a) SPPAM with locality constraint A, (b) adap-
tive SP, and (c) sweeping. The blue squares denote the measurement positions
where the micro-drone stopped to take samples and the dashed blue line illustrates
the trajectory of the micro-drone. The start position of the micro-drone is indicated
by the red square.

a KL distance value of 0.05±0.03 and covers 81.3%±0.01% of the experiment area
(adaptive SP: 82.5%± 0.01% and sweeping: 90.5%± 0.0%). The traveled distance,
however, could be reduced at least to 514.6m± 17.8m. Sweeping on the other hand
needs only 193.54m±0.0m to reach a KL distance value of 0.05±0.00, however this
takes 194 iterations (i.e., 28 iterations more than SPPAM with locality constraint
A). Table 8.1 shows a comparison of the performance of the algorithms to reach a
KL distance value of 0.05. Fig. 8.4(d) shows a comparison of the traveled distance
of the micro-drone using SPPAM, adaptive SP, and sweeping over time (sampling
iterations) and Table 8.2 shows the experiment results after 206 iterations.

It can be seen from the experiment results that SPPAM with locality constraint A
is a promising alternative to sweeping. Sweeping needs 194 iterations and sends the
micro-drone along a≈ 194m long trajectory to obtain a very good model accuracy (≤
a KL distance value of 0.05). Adaptive SP can achieve this result in 150 iterations.
However, the micro-drone needs to travel ≈ 804m. SPPAM with locality constraint
A obtains the same model accuracy after 166 iterations, but the mobile robot needs
to travel only ≈ 281m. SPPAM with locality constraint B avoids the local maximum
problem, but 168 iterations with the micro-drone traveling ≈ 515m are needed to
obtain the same result. Fig. 8.5 shows a sample trajectory for each of these three
approaches. Although, SPPAM with locality constraint A is the preferable strategy,
sweeping is a competitive alternative that needs to be considered.
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Table 8.1: Comparison of the performance of the algorithms to reach a KL distance
value of 0.05.

Strategy
# Iterations Traveled Distance Coverage

(m) (%)
Sweeping 194 193.54± 0.0 97.03± 0.0

Adaptive SP 150 803.9± 39.5 79.1± 0.01
SPPAM A 166 280.8± 10.7 80.8± 0.02
SPPAM B 168 514.6± 17.8 81.3± 0.01

Table 8.2: Experiment results after 206 iterations.

Strategy
Traveled Distance Coverage KL Distance

(m) (%) Value
Sweeping 205.6± 0.0 99.8± 0.0 0.032± 0.000

Adaptive SP 1136.9± 43.8 88.8± 0.9 0.027± 0.009
SPPAM A 359.8± 12.4 86.5± 1.2 0.030± 0.020
SPPAM B 646.9± 18.8 87.6± 0.9 0.030± 0.015

8.4.2 Robotic Simulation

Simulations with a simulated micro-drone are used to study the impact of some
real-world effects on the performance on adaptive SP and SPPAM.

8.4.2.1 Experiment Environment and Setup

The experiment setup is identical to the one described in Sec. 8.4.1.1 with the
following exceptions: The minimum step size of the micro-drone was introduced
and set to 1m. The IR gas sensor model described in Sec. 4.3 was used to simulate
the sensor response, and the gas concentration and wind measurements were taken
for 20s with a sampling frequency of 1Hz at each measuring position. The wind
sensor noise σ2

θ (Sec. 4.5) was set to 14.02. The simple disturbance model (Sec. 4.4)
and the GPS model (Sec. 4.2) of the micro-drone were also used.

8.4.2.2 Experiment Results

Fig. 8.6 shows a KL distance comparison of predictive mean maps to the ground
truth map. The predictive mean maps are created using adaptive SP and SPPAM,



190 8.4. SIMULATION EXPERIMENTS

(a) (b)

(c) (d)

Figure 8.6: Results of the robotic simulation experiments as functions of the number
of iterations: KL distance comparison of predictive mean maps to the ground truth
map (a) without and (b) with standard deviation. The predictive mean maps are
created using SPPAM, adaptive SP, and sweeping. The ground truth is built up
using all available measurements of the simulation experiment. (c) Coverage of
adaptive SP and SPPAM with locality constraints obtained from theoretical and
robotic simulations (SMs = sensor models). (d) Influence of the gas sensor and
GPS model on the coverage of adaptive SP (GSM = gas sensor model and GPSM
= GPS model).
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both with (βM , βV , βC) set to (0.1, 0.1, 0.8), and sweeping. The ground truth is built
up using all available measurements of the simulation experiment. It is evident
that SPPAM with locality constraints performs inferior to sweeping. Only adaptive
SP performs slightly better. However, especially in the beginning, the variance of
adaptive SP is much smaller than that of sweeping (Fig. 8.6(b)). One reason for
the high fluctuation of the KL distance values in the different runs of sweeping
might be the GPS model of the micro-drone, which changes the measuring grid
of the sweeping trajectory notably and results in irregular, large gaps between two
consecutive measuring positions (Fig. 8.7). Adaptive SP is also affected by this GPS
positioning system error, however, it seems that the corresponding KL distance
values are affected slightly by this error. Furthermore, the traveled distance of
the micro-drone (after 206 iterations) – in comparison to the theoretical simulation
results – increased by almost 60m using adaptive SP (from 1136.9m ± 43.8m to
1197.4m ± 32.6m), 88m using SPPAM with locality constraint A (from 359.8m ±
12.4m to 447.7m± 11.8m), and 64m using SPPAM with locality constraint B (from
646.9m ± 18.8m to 711.2m ± 18.9m). The traveled distance for sweeping remains
constant (205.6m ± 0.0m). On the other hand, the covered experiment area is
noticeably smaller in comparison to the results obtained in theoretical simulations
(Fig. 8.6(c)).

The results from theoretical and robotic simulations are not consistent. In order
to identify problems related to the simulated robotic platform (micro-drone), further
experiments with 20 repetitions were performed without gas sensor model only and
without GPS model, respectively (in this context, “without sensor model” refers
to a perfect sensor that was used for the simulation instead of the modeled sensor
presented in Ch. 4). The results of these experiments are given below.

Figs. 8.8(a) and 8.8(b) show the impact of the GPS positioning model on the
simulation results (without gas sensor model). The results follow the same trend
as those obtained from theoretical simulations. However, the KL distance value
after 206 iterations for the different sampling approaches is unsatisfactory due to
the introduced positioning error: 1.81±0.13 for adaptive SP, 1.76±0.13 for SPPAM
with locality constraint A, 1.78 ± 0.19 for SPPAM with locality constraint B, and
1.81 ± 0.17 for sweeping (compare Figs. 8.9(a) and 8.9(b)). The traveled distance
of the micro-drone (after 206 iterations) changed by almost 43m using adaptive SP
(from 1136.9m ± 43.8m to 1183.4m ± 21.3m), by 34m using SPPAM with locality
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Figure 8.7: Sample trajectory of sweeping of the first 109 iterations. The sampling
locations of the micro-drone were averaged over the measuring time (the red dot
indicates the micro-drone’s start position).

constraint A (from 359.8m± 12.4m to 326.0m± 11.2m), and by 11m using SPPAM
with locality constraint B (from 646.9m± 18.8m to 658.1m± 21.2m). The coverage
is comparable to the above presented results where all sensor models were used
(exemplarily shown in Fig. 8.6(d) for adaptive SP).

The comparison of the obtained coverage of the different SP strategies with and
without certain sensor models (Fig. 8.6(c) and 8.6(d)) indicates that the GPS model
of the micro-drone heavily affects the coverage area (and maybe the varying traveled
distance as well). In general, in each iteration the location is chosen at which
the potential takes its maximum. However, Fig. 8.7 already demonstrated that
predefined measuring locations do not necessarily have to coincide with the real
sampling locations of the micro-drone due to GPS inaccuracy. Correspondingly, the
taken samples might be collected at locations with low potential (instead of taking
samples at the location with maximum potential). As a result, the update of the
APF might not affect the location with maximum potential. Thus, the location at
which the potential is maximum will again be selected in the near future, reducing
the efficiency of adaptive SP.

Figs. 8.8(c) and 8.8(d) show the impact of the gas sensor model on the simu-
lation results (without GPS model). Ch. 7 already discussed the problem of the
memory effect in the sensor response and what impact the slow sensor recovery
has on the gas distribution maps created with sweeping. The gas sensor retains
high measured concentrations for a rather long time due to the slow sensor recov-
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(a) (b)

(c) (d)

Figure 8.8: Impact of the gas sensor and GPS model on the simulation results
as a function of the number of iterations: KL distance comparison of predictive
mean maps to the ground truth map (a) without gas sensor model and (c) without
GPS model. The predictive mean maps are created using SPPAM with locality
constraint A, adaptive SP, and sweeping. The ground truth is built up using all
available measurements of the simulation experiment. (b) and (d) show a more
detailed view of the results from iteration 100 to 206.

ery. The consequence being that the local measurement covers a much larger area
while the concentration values keep decreasing when the micro-drone applies the
sweeping movement (see Fig. 8.9(c)). As a result, the final gas distribution map
will show a much wider plume than the ground truth map (compare Figs. 8.9(a)
and 8.9(c)). This is even more problematic, when using adaptive SP or SPPAM.
Due to the slow sensor recovery and the high chosen importance factor βC = 0.8
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(a) Ground Truth (b) Without Gas Sensor Model

(c) Without GPS Model (d) With Models

Figure 8.9: Results of the robotic simulation experiments: Comparison of the (a)
mean ground truth map with predictive mean maps created after 206 iterations
using sweeping: (b) without gas sensor model, (c) without GPS model, and (d)
with all sensor models.

that promotes exploration, alternate measurements inside and outside the plume
will scatter the whole gas distribution map more heavily than using sweeping (that
“only” results in a wider plume). Again, the traveled distances are comparable to
the results obtained in theoretical simulations (Sec. 8.4.1.2). However, due to the
above mentioned reasons the KL distance value after 206 iterations is much higher
for adaptive SP and SPPAM than for sweeping (Fig. 8.8(b) and 8.8(d)): 0.44± 0.12
for adaptive SP, 0.37 ± 0.12 for SPPAM with locality constraint A, 0.53 ± 0.12 for
SPPAM with locality constraint B, and 0.13 ± 0.001 for sweeping. The coverage,
on the other hand, is more or less comparable to the results obtained in theoretical
simulations where no sensor model is used (exemplarily shown in Fig. 8.6(d) for
adaptive SP).

The results of the robotic simulations indicate that SPPAM with locality con-
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straints and (βM , βV , βC) set to (0.1, 0.1, 0.8) is not suitable for a micro-drone when
accurate gas distribution maps are required. Although, other sensor planning strate-
gies that are suitable for a micro-drone may exist. However, in this specific case,
sweeping seems to be a much better strategy. In contrast, the results from theo-
retical simulations show the potential of adaptive SP and SPPAM when a perfect
gas sensor and a perfect GPS positioning system are available. Future work should
build on these results and introduce corresponding error models in the algorithm
and improve the robotic platform itself.

8.5 Real-world Experiments

In addition to simulation experiments where ground truth is available, SPPAM was
tested in several real-world experiments with a gas-sensitive micro-drone. However,
the experiments took place at an early stage of the APF-based SP algorithm where
the two APF contributions based on the predictive mean and variance maps were
computed as:

APF
(k)
M =

∑
j 6=k r

(k) · exp
(
−|x

(j) − x(k)|
σd

)
, (8.10)

APF
(k)
V =

∑
j 6=k v

(k) · exp
(
−|x

(j) − x(k)|
σd

)
, (8.11)

where x(j) is the location of the recorded sample j, x(k) is the location of cell center
k, and σd is a scaling parameter, which was set to 1. Instead of using the confidence
map as repulsive potential, APF (k)

Q was calculated by placing charges at all |D| = n

previous measurement locations and q was set to −1:

APF
(k)
Q =

∑|D|
j=1 q · exp

(
−|x

(j) − x(k)|
σd

)
. (8.12)

Furthermore, only the wind measurements were averaged over the measurement
time. Thus, each gas sensor measurement was included into the gas distribution
model as if it was acquired together with a measurement of the average wind vector,
i.e., the average wind vector was used for all individual gas sensor measurements
acquired at the measurement position.
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(a)

(b)

Figure 8.10: (a) Experiment environment and setup at Örebro University. (b) A
snapshot during a pollution monitoring mission in the experiment environment at
BAM TTS of the first set of experiments.

8.5.1 Experiment Environment and Setup

The first set of experiments was carried out in an 8× 12m2 outdoor area at Örebro
University and on the BAM TTS with the Dräger X-am 5600 gas detector equipped
with CO sensors (EC). The second set of experiments was performed in a 5× 5m2

area on the BAM TTS with the micro-drone equipped with the e-nose (MOX).
The setup of the second set of experiments is the same as described in Sec. 7.3.2.
A summary of the experiment setup is given below. Gas concentration and wind
measurements were recorded with a frequency of 1Hz. The measurement time at
the measurement positions was set to 20s.

The parameters of the Kernel DM+V/W algorithm [85] were heuristically set to
c = 0.15m (grid cell size), σ = 0.40m (kernel width), σΩ = N (0, σ = 0.4) ≈ 1.0, γ =
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0.2s, and equal importance factors for the APF contributions (βM = βV = βC) were
used. The “most often suggested close-by” locality constraint was used here. The
flight speed of the micro-drone between the measurement positions was set to 1ms−1.
Because of the low altitude of the micro-drone of 1 to 2m, the altitude was kept
constant manually during the experiments. Each trial in the first set of experiments
took 14 to 19 minutes to complete depending on the battery consumption of the
micro-drone. The second set of experiments took 8 to 13 minutes to complete.
A barbecue filled with burning coal and fresh, damp wood was used as a pollution
source in the first set of experiments (Fig. 8.10) and was placed approximately in the
middle of the experiment area (at approx. (6.3, 3.8)m from the bottom left corner).
The gas source in the second set of experiments is a CH4 gas cylinder positioned at
approximately (0.0, 3.0)m (Sec. 7.3.2) within the experiment area. The algorithm
was activated directly after take-off, which started the experiment.

8.5.2 Experiment Results

8.5.2.1 First Experiment

The results presented in Figs. 8.11, 8.12(a), 8.12(b), and Table G.1 (see Appendix G)
demonstrate the suitability of the proposed algorithm for GDM and its use for gas
source localization. A total number of 16 trials were performed within these exper-
iment sets. Fig. 8.12(b) and Table G.1 show for all 16 trials the distance between
the true gas source location and six different estimates after the last measurement
point. The first three estimates are derived by selecting grid cells in which the (A)
predictive mean, (B) predictive variance, or (C) the product of mean and variance
are maximum. The fourth estimate is derived by selecting grid cells in which (D)
the predictive mean is greater than 90% of the maximum. The center of this area is
taken as the source location estimate and the maximum extension in x- or y-direction
is used to specify a confidence interval. In the same way, the last two estimates are
computed using (E) the variance or (F) the product of mean and variance. The true
source location was within the mean estimation area only in four trials and within
the variance estimation area in six trials. This is in line with previous observations
that the concentration variance often provides a better indication of the gas source
location [1] than the mean.

Fig. 8.11 shows the final snapshot of trial #3 after 31 measurement points.
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Figure 8.11: Adaptive sampling process: (a) from the previously visited sampling
locations, (b) predictive mean r(k) and (c) variance maps v(k) were created using
the Kernel DM+V/W algorithm with σ = 0.4m, c = 0.15m, and γ = 0.2s as meta-
parameters. (d) Then, a set of next sampling points are selected from the APF.
(e) These points and the estimated source location are denoted by green and red
dots, respectively. (f) The next sampling location is chosen based on the locality
constraint B, where the white cells are the previously selected cells and the darkest
cells correspond to the most often suggested ones. All plots were created after the
last time step of the SPPAM algorithm (trial #3, measurement 31).

The top row shows the previously visited sampling locations (left) and the cor-
responding mean distribution map r(k) (middle) and variance distribution map v(k)

(right) produced by the Kernel DM+V/W algorithm with σ = 0.4, c = 0.15m and
γ = 0.2s as meta-parameters. The bottom row shows a visualization of the APF
with βM = βV = βC (right), the area with the next suggested sampling points and
source location estimate, which are indicated by green and red dots, respectively
(middle), and the matrix S, where the white cells are the previously selected cells
and the darkest cells correspond to the most often suggested cells. Fig. 8.12(a)
shows exemplarily the trajectory produced by the path planning algorithm in trial
#3 with starting position (x, y) = (11.02, 7.00)m (compare with Fig. 8.11). Initial
results from these trials indicate the potential of adaptive sampling in providing
a good estimate of gas source location with a relatively small number of samples.
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(a) (b)

Figure 8.12: (a) Sample trajectory of SPPAM (trial #3) with starting position
(x, y) = (11.02, 7.00)m. (b) Box-plot of the gas source location estimate (distance
to true source location) of the 16 trials after 24 to 35 taken measurements: (A) peak
mean, (B) peak variance, (C) peak mean·variance, (D) mean, (E) variance, and (F)
mean·variance. The box shows the lower/upper quartile and the line denotes the
median. The mean is denoted by the small 2. The × symbol stands for outliers.

However, the source location estimate is a performance indicator that has not been
evaluated in Sec. 8.4.

It proved difficult to keep the gas emission rate constant over time with the
chosen gas source. A re-ignition of the almost extinguished source in trial #4 for
example (after the 20th measurement) created an intense emission that caused very
high concentrations also far away from the source. The 21st measurement taken at
position (x, y) = (8.85, 4.95)m was affected by this outburst, which caused a strong
change in the gas source location estimate (see Appendix G – Table G.1). Another
difficulty, which should be mentioned here, is the slow sensor decay. Flying from
the current position to the next measurement position directly over the source can
lead to an erroneous source location estimate (and inaccurate gas distribution map)
when the sensor still responds to the high concentrations close to the source.

8.5.2.2 Second Experiment

A total number of only two trials were performed directly after the GDM experiment
presented in Secs. 7.3.2 and 7.4.2 using the same experiment setup. The identical
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Table 8.3: Wind conditions on the BAM TTS.

Trial Method
Sampling Mean Wind σ Mean Wind Circular
Points Speed (ms−1) (ms−1) Direction (◦) Variance

1 Sweeping 24 1.38 ±0.71 247 0.32
2 Sweeping 24 1.65 ±0.82 246 0.21
3 Sweeping 24 1.57 ±0.82 259 0.26
4 SPPAM 22 1.60 ±0.76 223 0.48
5 SPPAM 11 1.81 ±0.82 23 0.33

experiment setup and the barely changed wind and weather conditions (Table 8.3)
permit an exemplary cross-comparison of the different sampling approaches. The
availability of more trials would have been advantageous for a more detailed eval-
uation. However, a longer period of almost constant wind would be needed to be
able to perform larger test sets. Unfortunately, such a day with the required wind
conditions has not recurred on the BAM TTS.

Fig. 8.13(a) shows exemplarily the result of trial #1 of the GDM experiment.
Here, the data was collected using a sweeping trajectory. Figs. 8.13(b) and 8.13(c)
show trial #4 and #5 using SPPAM. In comparison to the sweeping trials, the
stability of the wind conditions during the two trials using SPPAM decreased no-
ticeably (Table 7.4): the average wind speed increased from approximately 1.4 to
1.7ms−1 and 1.6 to 1.8ms−1 and the average wind direction changed from 246◦ and
259◦ to 223◦ (#4) and 23◦ (#5), respectively. Here, the airflow produced by the fan
can be neglected as the area of influence is only limited to the immediate proximity
of the fan. The main wind direction of trial #4 correlates more or less with the three
sweeping trials (compare exemplarily the airflow maps in Figs. 8.13(a) and 8.13(b)).
However, the wind directions measured at the sampling locations 4 to 10 during
trial #4 varied drastically from the main wind direction of 223◦: 146◦ to 160◦ (at
locations 4 to 8) and 344◦ to 35◦ (at locations 9 to 10). This fact is also reflected by
the increased circular variance of 0.48. Trial #5 has to be considered separately as
the main wind direction rotated by more than 120◦ although the circular variance of
0.33 is at least comparable to trial #1. Furthermore, only 11 sampling points could
be taken within this trial due to a battery failure of the micro-drone.

Again, the altitude of the micro-drone had to be elevated manually in trial #4 and
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(a) GDM: Trial #1; CH4

(b) SPPAM: Trial #4; CH4

(c) SPPAM: Trial #5; CH4

Figure 8.13: BAM TTS: Predictive mean (left) and variance map (middle) of the gas
distribution (a) using a sweeping trajectory (trial #1, see Sec. 7.4.2) and (b) to (c)
using SPPAM (trial #4 and #5). The figures on the right show the corresponding
mean airflow maps. The gas source was located approximately at position (0, 3)m
and is denoted by ⊗. The defined experiment area in (b) to (c) is indicated by the
gray dotted line. The starting position of the micro-drone was located approximately
at position (a) (5.5, 1.5)m and (b) to (c) at (0.6, 2.4)m. The CH4 concentration value
is given in % by volume. All plots of (b) trial #4 and (c) trial #5 were created after
the last time step of the SPPAM algorithm.
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Figure 8.14: Comparison of the coverage of GDM using a sweeping trajectory and
SPPAM. The size of the circles corresponds to the diameter of the micro-drone of
1m. The gray circles denote the sampling locations of the sweeping trajectory (trial
#1), whereas the blue solid circles denote the sampling locations of SPPAM (trial
#4). The sequence of visits of the sweeping trajectory is indicated by the arrow,
whereas the blue circles are numbered to their sequence.

#5 to avoid a collision with the fan resulting in low concentration values close to the
source and which moved the measured maximum concentrations further downwind
(Sec. 7.4.2). Therefore, no accurate gas source location estimate could be obtained.
However, reproducibility is only given for trial #1 and #4 as the qualitative and
quantitative results remain similar in all created maps. Small variations in the plume
propagation can be explained by the temporary change in the wind field during trial
#4. The results from trial #5 differ more pronouncedly as the airflow map shows a
significant change of the main wind direction.

Fig. 8.14 shows a comparison of the coverage of both strategies. The gray cir-
cles describe the coverage of the sweeping trajectory of trial #1 and the blue solid
circles show the coverage of the trajectory of SPPAM in trial #4. The sequence
of visits of trial #4 is specified in the blue circles. The size of the circles corre-
sponds to the diameter of the micro-drone of 1m. The sweeping strategy basically
covers the whole search area. SPPAM, on the other hand, directs the micro-drone
towards areas of high predictive mean and high predictive variance while maximiz-
ing the coverage area, which can be clearly seen in the distribution of the sampling
points. In comparison to sweeping, SPPAM also took more measurements close to
the plume centerline. The results demonstrate the suitability of the proposed algo-
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rithm for GDM and present an alternative to sweeping. However, more experiments
are needed to verify this proposition.

8.6 Summary and Conclusions

In this chapter, a novel adaptive sampling strategy was applied for a gas-sensitive
micro-drone. The adaptive SP approach uses the statistical gas distribution models
obtained with the Kernel DM+V/W algorithm. Areas of high mean and variance
are good candidates for further inspection and the corresponding locations are pri-
oritized through strong contributions to an APF. These exploitation contributions
are balanced by repulsive contributions at previous sampling locations that pro-
mote exploration. This adaptive SP approach was extended by introducing locality
constraints that make the proposed trajectory more suitable for a mobile gas mea-
surement system since it avoids large jumps between subsequent measurement loca-
tions. The results from theoretical simulations and real-world experiments with this
extended adaptive SP algorithm (SPPAM) show the potential for gas distribution
mapping. The robotic simulations highlight that future work should address the
GPS positioning error of the micro-drone. In general, a more accurate and reliable
positioning system of the micro-drone would be needed to obtain more accurate
gas distribution maps. However, it was also observed that the produced maps (and
particularly the variance prediction) are sufficient to provide good estimates of gas
source location. The conclusion when comparing sampling along a predefined sweep-
ing trajectory with the proposed adaptive SP approach is therefore that adaptive
SP tends to arrive in fewer iterations at a meaningful map which allows inference
of a reasonably accurate estimate of the gas source location. However, the theoret-
ical simulations (Sec. 8.4.1) indicate a shorter path for sweeping than for adaptive
SP. Furthermore, the robotic simulations (Sec. 8.4.2) suggest that adaptive SP with
locality constraints is not suitable for a micro-drone when accurate gas distribution
maps are required. In that specific case, sweeping seems to be a much better strat-
egy. On the other hand, the results from theoretical simulations show the potential
of adaptive SP when a perfect gas sensor and a perfect GPS positioning system
are available. In general, if the sampling device is a gas-sensitive micro-drone then
a strategy that avoids sampling at locations that provide little information is ad-
vantageous because of the resource constraints on the micro-drone. In addition, a
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smaller number of measurements also tends to interfere less with gas distribution.
This effect is not taken into account in the current SP algorithm, however. Thus,
suitable algorithms have to be developed that consider the resource constraints on
the micro-drone and minimize the flight time of micro-drones so as to interfere less
with gas distribution.

Future work should include a performance evaluation of the (extended) adaptive
SP algorithm for different scenarios of gas release considering, e.g., turbulent flow,
obstacles, different gas source locations, and varying size of the experiment area.
In [16], Asadi will address some of these points in her Ph.D. thesis. Furthermore,
to avoid the local maximum problem (i.e., exploitation dominates exploration) of
adaptive SP and SPPAM, mechanisms have to be integrated that recognize when
the robot is trapped in a region. To explore the rest of the experiment area (if
necessary), the selection of next measuring locations could be driven by repulsion-
only (by setting the importance factors for the mean and variance maps to zero).
In a next step, ways will be investigated on how to introduce a criterion that allows
minimizing the degradation of the observed gas distribution through the micro-
drone itself. Moreover, the current implementation of the adaptive SP algorithm
does not take into account the time when the measurements were made. Therefore,
an extension of the approach that introduces time-dependency [16] will be studied.
First, a time-dependent statistical gas distribution modeling algorithm will be used,
for example the Time-Dependent (TD) Kernel DM+V algorithm introduced in [95].
Next, a study of an extension of the adaptive SP algorithm to the 3rd dimension is
planned.

Autonomy and agent behavior are implemented in the adaptive SP strategy for
gas distribution mapping. Since agent behavior in a swarm was not the focus of
this Ph.D. thesis, this point was not elaborated on. However, strategies have to be
integrated that coordinate the different agents of a swarm (micro-drones) collision-
free within the inspection area.



Chapter 9

Conclusions and Future Work

Each chapter of this Ph.D. thesis contains a summary and conclusion section, where
suggestions for future work are also presented. This chapter concludes the thesis as
a whole and describes future work from a general perspective.

9.1 Conclusions

This Ph.D. thesis tackled gas source localization and gas distribution mapping of
static gas sources in natural environments with the help of a gas-sensitive micro-
drone. To the best of the author’s knowledge, it is the first time that a gas-sensitive
micro-drone was developed based on a quadrocopter which is able to perform in-situ
measurements of gas concentrations and wind vectors without dedicated anemome-
ter. This development is important as state-of-the-art measuring platforms are
generally ground-based and cannot reach certain emission sources (due to, e.g., ob-
stacles, rough terrain, and large gaps). At this stage, the prototype of a gas-sensitive
micro-drone can be utilized to obtain an estimate of the risk potential in a variety of
scenarios of gas emissions without endangering people in critical situations (Fig. 9.1).
Targeted fields of operation are gas measurements in accident scenarios, emission
control, monitoring of critical areas (including environmental monitoring tasks), and
detection of gas leaks under difficult conditions. Extensive experiment results with
the gas-sensitive micro-drone have demonstrated its suitability for these tasks.

It was demonstrated in several real-world environments that the gas-sensitive
micro-drone is capable of tracking a gas plume along its entire length using three
partly novel reactive bio-inspired plume tracking strategies. The application of these
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Figure 9.1: Micro-drone monitoring relevant parameters (gas concentrations, wind,
temperature, and humidity), while the fire brigade extinguishes a bus on fire. Photo
taken at BAM TTS during an artificial fire scenario.

algorithms was enabled by the ability of the micro-drone to simultaneously perform
gas concentration and wind measurements. The algorithms succeeded although the
wind vector estimation approach introduced an angular inaccuracy of approximately
±14◦. In combination with a novel particle filter-based gas source localization al-
gorithm for declaring the location of a static gas source, a possible solution for the
whole gas source localization task for a gas-sensitive micro-drone is suggested.

Furthermore, the problem of gas distribution mapping with the gas-sensitive
micro-drone was studied. Two different sampling approaches were suggested to
address this problem. First, predefined sweeping trajectories were used to explore
the target area with the micro-drone in several real-world gas distribution mapping
experiments. To more quickly arrive at a truthful gas distribution model, a second
approach was evaluated that allows obtaining a reasonably accurate estimate of the
gas source location. The adaptive sensor planning algorithm suggests next sampling
points which are based on an Artificial Potential Field (APF). By introducing lo-
cality constraints, the results of the sensor planning component can be used to plan
suitable paths for a micro-drone.

All algorithms presented in this work were evaluated in simulation and real-world
experiments. However, the design of experiments that enable to study and develop
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robotic systems for airborne chemical monitoring is probably one of the most cru-
cial aspects of research in mobile robot olfaction [Paper II]. To carry out ground
truth evaluated experiments in realistic environments by gas-sensitive mobile robots
has always been a critical issue: The chaotic nature of gas dispersal with rapidly
changing environmental conditions makes the plume evolution hard to predict and
prevents the reproducibility of these experiments. Furthermore, the dispersion of
chemicals in natural environments is difficult to observe since most of them produce
an invisible plume. Thus, it is difficult to obtain ground truth that can be used to
validate experiment results. Building a dense array of fixed installed gas sensors or
measuring probes (used for, e.g., GC) [5] is not feasible over a large area not only
for financial reasons, but also as gas distribution cannot be measured at the same
height as with the micro-drone. This static sensor setup also influences the natural
gas distribution. Using visible tracer gas is not practicable either as the tracer gas
and the gas to be monitored should have the same distribution characteristics [5].
The usage of visible tracer gas is especially impracticable when performing monitor-
ing experiments in geochemically active regions with gas sources emitting various
gases at unknown and variable release rates. Furthermore, correlating the visible
tracer gas to the measured concentration is also not straightforward. Experiments
under controlled conditions indeed can provide ground truth to validate the experi-
ment results, but it is hard to predict how the results obtained in such experiments
can be applied to uncontrolled or rather realistic environments. It cannot be said
that results obtained in an environment with, e.g., steady and controlled airflow au-
tomatically apply to more general and complex environments. It is very important
that experiment setups, in which the claimed results are obtained, are described in
detail.

Regarding real-world applications, the main limitations of this Ph.D. thesis can
be summarized as follows:

• The micro-drone’s rotor movement considerably disturbs the gas distribution
and influences gas measurements. This limitation was expected and observed
experimentally with an orange colored smoke bomb that was used to visualize
these disturbances (see Ch. 3, Fig. 3.1(b)).

• The flight time of approximately 20min does not allow to perform monitoring
or search tasks in large-area scenarios with a single micro-drone. For exam-
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ple, a fleet of micro-drones that conduct the exploration task consecutively or
simultaneously may solve the problem of limited battery capacity.

• The long response times of current gas sensors are also problematic for gen-
erating truthful representations of the gas dispersion. Furthermore, shorter
response times are also required in order to reduce the measurement time and
to be able to cover larger areas. This conclusion is based on the experiments
(see Ch. 7).

• The GPS positioning system of the micro-drone affects the accuracy of gas dis-
tribution maps and the localization performance of the algorithms presented.
This limitation was observed during the evaluation of the experiments de-
scribed in Ch. 7 and 8.

• The presented methods have been focused on the 2D case only because of the
restrictions imposed by the micro-drone at ground level. This limitation was
observed experimentally.

In view of the large number of real-world experiments performed in different
natural environments under variable wind and weather conditions, this Ph.D. the-
sis constitutes an important contribution to the field of mobile robot olfaction. In
comparison to experiments presented in previous work (Ch. 2), the real-world exper-
iments were performed in uncontrolled outdoor environments or experiment setups
were built where no artificial conditions were introduced to simplify the experiments.
Furthermore, all suggested algorithms can be transferred to other robotic platforms
regardless of the element the robot is specialized for (land, water, and air).

9.2 Future Work

The accuracy of the GPS positioning system of the micro-drone should be addressed
in the future. A positioning system that only relies on jumpy GPS data is not
desirable for a gas-sensitive micro-drone that perform gas distribution mapping.
For instance, lightweight optical systems could be developed and integrated into
the micro-drone that support more accurate position holding. The limitations of
current gas sensors is another open issue. More research is needed to develop better
gas sensors. New battery technologies, on the other hand, can support the extension
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of the flight time and miniaturization of such micro-drones and enable monitoring or
search tasks in large-area scenarios. Smaller micro-drones also reduce disturbance
to gas distribution.

Another limitation of the methods presented is that this Ph.D. thesis focused on
the 2D case due to the restrictions imposed by the micro-drone. Thus, a general
extension of this work may be to improve the micro-drone’s flight capabilities and
adapt the presented algorithms for the 3rd dimension, including a detailed statistical
analysis of their performance and robustness in simulation and real-world experi-
ments. The main focus should lie on the latter as almost all of the related work on
gas-sensitive standard or micro UAVs has been validated in simulated experiments
only. Furthermore, most gas source localization experiments have been performed
with the help of ground-based mobile robots under simplified conditions such as a
steady constant airflow and the presence of a single gas source emitting a known
chemical compound at a constant release rate. It would be beneficial to find ways
to perform meaningful ground truth evaluated real-world experiments.

Multi-robot collaboration was only touched on a rudimentary basis in this Ph.D.
thesis. For example, Lochmatter already showed in [12] that some bio-inspired
plume tracking algorithms cannot cope with disturbances and therefore are inher-
ently suitable for single-robot systems only. This is especially relevant when using
micro-drones for this task. For monitoring applications, however, a sophisticated
multi-robot collaboration scheme may help to reduce the time needed to cover larger
areas. But then, algorithms need to be developed able to cope with disturbances
caused by multiple micro-drones (swarm). This will help obtain reliable gas distri-
bution maps and identify the location of the gas source. Suggestions for possible
approaches are presented in Ch. 7 and 8 of this thesis.

The integration of conventional SLAM techniques into the overall system may en-
able the micro-drone to build a map of the environment. This can then be combined
with the presented gas source localization and gas distribution mapping algorithms
to support rescue workers during mission.
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Appendix A

Directional Statistics

The mean wind direction θ is calculated using Eq. A.1 [147]:

θ = arctan
(
s̄

c̄

)
+


0◦ s̄ > 0, c̄ > 0

180◦ c̄ < 0

360◦ s̄ < 0, c̄ > 0

(A.1)

with

s =
∑n
i=1 sin θi
n

and c =
∑n
i=1 cos θi
n

, (A.2)

where n is the total number of samples and θi is the angle of a single wind direction
measurement.

The circular variance S0 [147] is a dimensionless number and used here to describe
the stability of the wind during the different real-world experiments. S0 is calculated
using a sample of n wind directions θi : i ∈ [0, n]:

S0 = 1− R̄ (A.3)

where

R̄ =

√√√√( 1
n

n∑
i=1

cos(θi)
)2

+
(

1
n

n∑
i=1

sin(θi)
)2

. (A.4)

R̄ is called the mean resultant length. It is used to characterize the dispersion of
a sample. For example, a group of n vectors with identical direction results in
R̄ = 1, whereas a group of perfectly opposing vectors results in R̄ = 0. This means,
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that a large value of R̄ indicates a dense bundle of vectors with small spread and
accordingly a small value of R̄ indicates a more distributed set of vectors.



Appendix B

Coordinate Transformation

Fig. B.1 illustrates the simulation environment with micro-drone, gas source, plume,
and area boundaries. Before a transformation between the global world geodetic
system (WGS) and local coordinate system can be performed, the course between
the positions p1 = (θ1, φ1) and p2 = (θ2, φ2) and the course between the positions
p1 = (θ1, φ1) and pm = (θm, φm) (Fig. B.1) have to be calculated using Eq. B.1,

Figure B.1: Simulation environment with micro-drone, gas source, and plume: (0, 0),
(l, 0), (0, w), and (l, w) are the local coordinates and (θi, φi) with i = [1, 4] are
the corresponding global coordinates (θ=̂ longitude and φ=̂ latitude) of the area
boundary. The position of the micro-drone is denoted by (xm, ym)=̂(θm, φm).

213



214

where the positions pi = (θi, φi) with i = [1, 4] and pm = (θm, φm) refer to the
corners of the simulation environment borders and the position of the micro-drone,
respectively. Eq. B.2 is further used to obtain the angle α (the angle β results from
the equation of the interior angles):

course(pi, pj) = atan2( sin(θj − θi) · cosφj,

cosφi · sinφj − sinφi · cosφj · cos(θj − θi)), (B.1)

α = (course(p1, pm)− course(p1, p2)) mod (2 · π), (B.2)

where θi,j is the longitude and φi,j is the latitude of the respective real-world coor-
dinate pi,j.

Furthermore, the distance d between positions p1 = (θ1, φ1) and pm = (θm, φm)
has to be calculated:

d(pi, pj) = 2 · sin−1


√√√√(sin φi − φj2

)2

+ cosφj ·
(

sin θi − θj2

)2
 · 6378137, (B.3)

where the constant 6378137 is related to the World Geodetic System 1984 (WGS
84). Eqs. B.1 and B.3 are taken from [123].

Assuming that the micro-drone does not leave the first quadrant of the local
coordinate system, the local position of the micro-drone can be calculated as:

xm =


0 , if α = 0

d , if α = π
2

d · sinα
sin π

2
, otherwise

(B.4)

ym =


d , if α = 0

0 , if α = π
2

d · sinβ
sin π

2
, otherwise

(B.5)



Appendix C

Distance Overhead

The distance overhead do is used as the performance metric to compare the plume
tracking algorithms experiments with each other [12]. do is defined as:

do = dt
du
, (C.1)

where dt denotes the effectively traveled distance by the micro-drone and du the
upwind distance to the gas source. The upwind distance du is calculated using the
Euclidean distance between the position, where the micro-drone measures for the
first time an average concentration above the threshold, and the source position
(minus the distance at the end of the experiment). Therefore, it represents the
shortest path a robot would take if the source location were known. The advantage
of this performance metric is, that the distance overhead do is independent from
different start positions of the micro-drone as long the plume structure (width,
intermittency, and concentrations) remains the same over the whole length of the
plume.
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Appendix D

Simulation Results of the
PF-based GSL Algorithm

Tables. D.1 and D.2 show the simulation results of the PF-based GSL algorithm for
different meta-parameter combinations using the pseudo gradient plume tracking
algorithm (Table D.1) and sweeping (Table D.2). Each cell of the tables contains
the average error of successful localizations and its standard deviation as confidence
interval and the success rate of the corresponding meta-parameter set.
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Table D.1: Experiment results of the PF-based algorithm for different parameter
combinations using the pseudo gradient algorithm. A cell contains the average error
of successful localizations ±σ given in m and the success rate given in %.
HHH

HHH
HH

α

β
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1
0.73 0.86 0.76 0.68 0.67 0.69 0.68 0.58 0.64 0.66
±0.37 ±0.34 ±0.34 ±0.35 ±0.36 ±0.33 ±0.35 ±0.33 ±0.31 ±0.37

41% 64% 71% 78% 79% 80% 83% 79% 82% 76%

0.2
0.78 0.87 0.81 0.78 0.72 0.70 0.67 0.62 0.65 0.66
±0.39 ±0.36 ±0.34 ±0.41 ±0.34 ±0.38 ±0.35 ±0.37 ±0.37 ±0.38

28% 53% 56% 64% 76% 81% 81% 86% 75% 77%

0.3
0.82 0.84 0.77 0.76 0.70 0.71 0.66 0.65 0.64 0.65
±0.36 ±0.37 ±0.36 ±0.37 ±0.39 ±0.37 ±0.39 ±0.34 ±0.33 ±0.37

14% 42% 58% 63% 68% 80% 80% 79% 89% 89%

0.4
0.82 0.91 0.90 0.81 0.80 0.72 0.66 0.66 0.63 0.57
±0.41 ±0.37 ±0.36 ±0.38 ±0.33 ±0.37 ±0.37 ±0.34 ±0.34 ±0.34

7% 31% 50% 54% 63% 79% 74% 84% 80% 80%

0.5
1.29 0.84 0.82 0.81 0.77 0.76 0.75 0.72 0.61 0.60
±0.13 ±0.44 ±0.34 ±0.31 ±0.37 ±0.39 ±0.37 ±0.37 ±0.35 ±0.35

3% 16% 38% 47% 55% 69% 76% 77% 75% 74

0.6
0.82 0.87 0.98 0.79 0.83 0.66 0.71 0.67 0.62 0.60
±0.24 ±0.36 ±0.36 ±0.38 ±0.30 ±0.37 ±0.37 ±0.32 ±0.36 ±0.35

4% 16% 31% 36% 57% 56% 67% 72% 80% 75%

0.7
- 0.69 1.04 0.79 0.93 0.72 0.77 0.66 0.71 0.56
- ±0.39 ±0.23 ±0.37 ±0.32 ±0.38 ±0.36 ±0.31 ±0.40 ±0.31

0% 8% 13% 33% 42% 53% 69% 82% 69% 80%

0.8
- 0.67 1.00 0.78 0.75 0.85 0.76 0.64 0.66 0.65
- ±0.03 ±0.28 ±0.40 ±0.32 ±0.33 ±0.40 ±0.33 ±0.37 ±0.37

0% 2% 9% 20% 33% 47% 59% 68% 74% 77%

0.9
- 1.34 0.62 0.87 0.92 0.80 0.79 0.79 0.68 0.70
- - ±0.25 ±0.31 ±0.34 ±0.38 ±0.38 ±0.32 ±0.36 ±0.39

0% 1% 3% 11% 26% 46% % 59% 61% 76%

1.0
- - 0.68 0.91 0.88 0.79 0.81 0.72 0.80 0.66
- - ±0.51 ±0.35 ±0.36 ±0.37 ±0.35 ±0.33 ±0.40 ±0.35

0% 0% 2% 12% 9% 35% 53% 57% 63% 71%
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Table D.2: Experiment results of the PF-based algorithm for different parameter
combinations using sweeping. A cell contains the average error of successful local-
izations ±σ given in m and the success rate given in %.

HHH
HHH

HH
α

β
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1
- 0.69 0.83 0.71 0.77 0.70 0.71 0.68 0.70 0.73
- ±0.31 ±0.38 ±0.30 ±0.35 ±0.34 ±0.32 ±0.33 ±0.31 ±0.32

0% 15% 40% 68% 76% 80% 82% 85% 88% 82%

0.2
- 1.07 0.77 0.72 0.77 0.78 0.73 0.74 0.66 0.72
- ±0.37 ±0.34 ±0.35 ±0.39 ±0.34 ±0.34 ±0.33 ±0.36 ±0.37

0% 2% 28% 57% 68% 66% 83% 84% 89% 94%

0.3
- - 1.28 0.76 0.79 0.77 0.75 0.68 0.69 0.73
- - ±0.08 ±0.39 ±0.36 ±0.30 ±0.36 ±0.38 ±0.38 ±0.37

0% 0% 3% 40% 44% 63% 76% 81% 86% 86%

0.4
- - 0.78 1.01 0.76 0.79 0.72 0.71 0.72 0.73
- - ±0.46 ±0.32 ±0.38 ±0.39 ±0.36 ±0.36 ±0.34 ±0.34

0% 0% 3% 17% 41% 68% 83% 84% 95% 89%

0.5
- - - 0.57 0.88 0.86 0.74 0.73 0.78 0.72
- - - ±0.25 ±0.36 ±0.37 ±0.39 ±0.36 ±0.36 ±0.38

0% 0% 0% 6% 33% 50% 75% 86% 81% 91%

0.6
- - - - 0.84 0.84 0.82 0.72 0.67 0.75
- - - - ±0.39 ±0.37 ±0.37 ±0.38 ±0.35 ±0.38

0% 0% 0% 0% 15% 37% 61% 76% 83% 85%

0.7
- - - 0.79 0.72 0.81 0.73 0.72 0.68 0.67
- - - - ±0.16 ±0.37 ±0.39 ±0.36 ±0.38 ±0.36

0% 0% 0% 1% 2% 29% 57% 71% 77% 84%

0.8
- - - - - 0.78 0.82 0.73 0.73 0.76
- - - - - ±0.31 ±0.39 ±0.39 ±0.37 ±0.39

0% 0% 0% 0% 0% 16% 38% 62% 73% 82%

0.9
- - - - - 0.96 0.93 0.81 0.79 0.69
- - - - - ±0.42 ±0.35 ±0.35 ±0.38 ±0.38

0% 0% 0% 0% 6% 34% 62% 71% 76%

1.0
- - - - - 1.40 0.94 0.77 0.68 0.70
- - - - - - ±0.43 ±0.39 ±0.32 ±0.35

0% 0% 0% 0% 0% 1% 15% 49% 71% 74%
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Appendix E

Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence or relative entropy for probability is a mea-
sure of distribution similarity (Sec. 8.4). The KL divergence is defined as:

KL(p|q) = −
∫
p(x) ln q(x)

p(x)dx, (E.1)

where p(x) is the reference distribution (ground truth) and q(x) is the modeled
distribution. The KL divergence satisfies three properties:

KL(p|p) = 0 (E.2)

KL(p|q) = 0↔ p(x) = q(x) (E.3)

∀p, q : KL(p|q) ≥ 0 (E.4)

Here, the symmetric version of the KL distance measure is used as KL(p|q) 6≡
KL(q|p). It is defined as:

KL(p, q) = 1
2KL(p|q) + 1

2KL(q|p). (E.5)

Since gas distribution maps are not probability distributions, a normalization is
applied such that the sum over all values equals one [94].
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Appendix F

Particle Filter – Linear Time
Resampling

Carpenter et al. proposed in [139] a resampling algorithm, which runs in linear time
in the number of particles. They obtain a sorted random number sequence in linear
time using the cumulative sum of the negative logarithm of N random numbers
uniformly distributed in [0, 1]. The number of sorted random numbers that appear
in each interval of the cumulative sum represents the number of copies of a particle
to be propagated [134].

Algorithm F.1 represents a formal description of the algorithm. The input of the
algorithm is an array of importance weights and the output is an array of indices
describing which particles are going to propagate forward. Note that the arrays
start at 1.

Line 1 calculates the cumulative sum of the importance weights as:

Qj =
j∑
l=1

ω
[l]
t .

Lines 2 – 4 determine a sorted random number sequence in linear time (O(N)) by
calculating the cumulative sum of the negative logarithm of N random num-
bers uniformly distributed in [0, 1].

Lines 6 – 13 determine the number of copies of a particle to be propagated. A
particle with small importance weight has only a small chance to be propagated
as the corresponding cumulative sum interval is also small. Thus, there is only
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Algorithm F.1 Linear time resampling algorithm (from [134]).
Require: Ωt

Ensure: ∑N
i=1 ω

[i]
t = 1

1: Q = GetCumSum(Ωt)
2: t = GetNegLogRandomArray(N + 1)
3: T = GetCumSum(t) . Tj = ∑j

l=1 tl

4: T = T / T[N + 1]
5: i = j = 1
6: while i ≤ N do
7: if T[i] < Q[j] then
8: idx[i] = j

9: i = i+ 1
10: else
11: j = j + 1
12: end if
13: end while
14: return idx

a small chance that any of the random numbers appear in this interval. On
the other hand, the corresponding cumulative sum interval of a particle with
large importance weight is large and many random numbers can be found in
it. Therefore, many duplicates of particles with large importance weight are
going to survive.



Appendix G

Results of the Real-world
Experiments using SPPAM

Table G.1 shows the distance between the true gas source location and six different
estimates after the last measurement point for all 16 trials performed. The first three
estimates are derived by selecting grid cells in which the predictive mean, predictive
variance, or the product of mean and variance are maximum. The fourth estimate
is derived by selecting grid cells in which the predictive mean is greater than 90%
of the maximum. The center of this area is taken as the source location estimate
and the maximum extension in x- or y-direction is used to specify a confidence
interval. In the same way the last two estimates are computed using the variance
(fifth result) or the product of mean and variance (sixth result). The true source
location was within the mean estimation area only in four trials and within the
variance estimation area in six trials. This is in line with previous observations
that the concentration variance often provides a better indication of the gas source
location [1] than the mean.

A re-ignition of the almost extinguished source in trial #4 (after the 20th measure-
ment) created an intense emission that caused very high concentrations also far away
from the source. The 21st measurement taken at position (x, y) = (8.85, 4.95)m was
affected by this outburst, which caused a strong change in the gas source location
estimate. The results of trial #4 for the 20 measurement points before this event
are indicated in bold face in Table G.1. The results of the entire trial are shown one
line below.
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