

4 Methodology

4.1 Overview

NELION is an Internet based personal investment tool and

portfolio management software. It retrieves stock data from

the Internet, manages it and generates investment

suggestions and portfolio updates via e-Mail and alerts via

short messaging system, SMS. Additionally, an investor can

view his portfolio via a web page and can manipulate his

preferences and execute purchases or sales.

The system is separated into a task agent, an administration

tool and an HTML interface, each of which attaches to the

common NELION database.

HTML Interface

Task Agent

NELION
Database

WWW

e-Mail

SMS

Internet Admin Tool

Figure 4.1.1: Block Diagram NELION

4.2 The HTML Interface

The HTML Interface provides an investor using NELION with a

means to manage his portfolio and edit his preferences. After

entering his e-mail address as a user name and the

The Administration Tool 83

associated password under www.nelion.net the investor gets

an overview of his porfolio including the current value, stocks

owned and current recommendations. A graph compares the

return on investment of his portfolio compared to the Dow

Jones Industrial Index as well as the Nasdaq.

From this main page, the investor can select hyperlinks that

allow him to maintain his investment preferences and account

parameters, buy or sell or research specific stocks.

4.3 The Administration Tool

The Administration Tool is designed for the administration of

the data, parameters and tasks on the database. As such, it is

only used by the NELION system manager and does not

require any investment experience, since it only provides a

means to maintain data but does not contain any logic for

stock prediction or portfolio distribution.

The data entry screens mirror the structure of the database

and consequently include a data entry screen for all the major

tables. For the investor data, the Administration Tool provides

one page for the data kept in the investor table. Additionally,

there are pages to view the current portfolio, its development

in a graphical format, the purchasing and sales history, as well

as the return on investment.

The stock interface includes pages with lists of the

mathematical models and current predictions with different

horizons, in addition to the standard information, such as the

company name and ticker, current price and volume. A

84 Methodology

parameter dialog allows the administrator to maintain all the

adjustable settings of the system, while the task list shows the

jobs that the task agents are currently working on, or that is

waiting for execution by one of them.

4.4 The Database

The database is the central store of information and has to

scale to several gigabytes in size in order to be able

accommodate historic data, models, recommendations and

portfolio histories for thousands of stocks and investors. The

diagram below shows a simplified conceptual data model.

The additional tables required for the model storage have not

been included for simplicity. The complete data model is

shown in Appendix D. The primary keys for each table is

included and underlined in the figure.

STOCK
Stock_ID

MODEL
Model_ID

CORROLATION

TODO
Todo_Key
Todo_Desc

PARAMETERS
Parameter_ID

PREDICTION
Prediction_Interval
Prediction_Date

RECOMMENDATION
Recommendation_Date

INVESTOR
Investor_ID

PORTFOLIO

PURCHASES
Purchase_ID

StockData
Date

Figure 4.4.1: Simplified Conceptual Data Model

The Database 85

The historic price and volume data for each stock that is

tracked is stored in a separate table, which is created when

the stock is entered. The figure above only shows one

representative table, StockData.

The system hinges on the two main entities, stocks and

investors. For each stock, the system stores the company

name, stock exchange abbreviation called the ‘ticker” as well

as the volatility. The internal Stock_ID number is the primary

key of the table and used as a foreign key in all related tables.

The correlation between all stocks, for example, uses the two

Stock_IDs as its primary key and merely stores the correlation

as an attribute. The prediction table needs two additional

fields, the prediction interval and the prediction date, as a

primary key and stores the percentage prediction increase or

decrease as a positive or negative float as its only attribute.

The stock model component is only represented by a single

table, which defines its own internal model number Model_ID

as a primary key. The additional tables that are required to

store the assorted models are not included in the diagram.

The investor entity requires less support tables but contains

more fields within the table itself but also uses an Investor_ID

as a primary key. Besides the investor name and his e-mail

addresses for update and notification purposes as well as

SMS updates, the system stores the investment preferences

in the form of risk adversity parameters, expected minimum

annual return as well as the minimum transaction volume.

Additionally, it tracks parameters that control how frequently

the investor receives e-mails with an update of the current

86 Methodology

portfolio and purchase and sale recommendations. In order to

be able to show the change in portfolio value from one e-mail

to the next, it also stores the account value from the last

update. Furthermore, it maintains a field for the cost of each

transaction.

Lastly, each investor has an investor type, where three

different options are possible: A “Test Investor” is used to

simulate trading behavior and the resultant portfolio for

different configurations in a past period, so that a new

potential user of the system can select a configuration with the

desired characteristics. For these investors, the system

maintains a start and end date for this test. An “Auto-Trader”

is an automatic investor that autonomously acts on the

investment recommendations in a “live” simulation on current

data. This function allows the analysis of the system as a

proof of concept. Finally, there is the “Normal Investor”, who

receives regular updates, but that has to update his purchases

and sales on the system, whether they were recommended or

not.

The portfolio, purchases and recommendation tables provide

the link between investors and stocks, since each investor has

a portfolio containing zero or more stocks. Each inherits the

respective internal identifiers as foreign keys.

The purchase table shows when these stocks were purchased

and sold and at what price these transactions were executed.

The current and historic recommendations are kept in the

corresponding table along with their recommendation dates.

The Task Agent 87

The parameters are not connected to the remaining tables,

since they only store system values, which will be read by the

task agent or Administration Tool for specific functions. The

table describes the six parameters that are stored in this table.
Parameter Description
TimerInterval Specifies the frequency with which the Administration

Tool updates the task list on the screen
BankRate Guaranteed Interest Rate from the broker or bank
Diff2NY Time difference to the New York Stock Exchange.

This is used to schedule the Internet download task
Mutation The likelihood of mutation in the genetic algorithm
SMS Threshold If the value of a stock changes more than this

threshold, an SMS message is sent to all investors
who own the stock, as well as the System
Administrator

SMS for System
Administrator

The SMS e-mail address of the system administrator

Table 4.4.1: System Parameters

The task table has an implicit link to the stocks and investors,

since all tasks relate to one of these two entities. Due to this

dual connection, there cannot be an explicit database

constraint and the referential integrity of the link has to be

verified by the task agent.

4.5 The Task Agent

The task agent supports the stock prediction and portfolio

management calculations, as well as the Internet interface. It

retrieves individual tasks from the task list, marks them as

“taken” until they have been executed and then deletes them

from the database.

The task agent can perform nine different tasks. The Internet

Load function to retrieve data from the World Wide Web is

88 Methodology

always the first step. Given this data, the next tasks,

calculating the volatility, mathematical models and the

correlation between stocks can be executed. These tasks can

be grouped together into a single task for a new time series.

Further tasks include sending a portfolio update, possibly

including transaction recommendations, to the investor.

Lastly, the task agent executes the test investor function and a

background thread that performs model optimization with a

genetic algorithm. All of these are explained in detail in the

following sections.

4.5.1 Internet Load

The Internet Load function connects to the Internet and

downloads historic price and volume data for each stock

tracked by NELION. If a stock has just been added to the

system so that the data table is empty, it will attempt to load

data starting from January 1, 1980. In case this function was

not invoked for several days, it retrieves missing data in one

download, bringing the stock data up-to-date.

The system stores the closing price for every day since the

stock has started trading. On weekends, public holidays and

days where the trading volume was nil, it assumes that the

price has not changed but still inserts a record into the

corresponding table. This facilitates the monthly model

calculation, which uses the last day of each month as a basis.

Additionally, it allows for consistent correlation calculations of

The Task Agent 89

stocks that are traded in different markets and with different

public holidays.

Significant changes in the stock price tend to signify dramatic

occurrences either for the stock itself or for the market as a

whole. Since this may require the attention of the investor, the

system notifies the administrator and all investors who own a

stock via a mobile phone SMS message. The sensitivity of

this threshold is controlled by the SMS threshold parameter,

which defaults to 20% so that stock price changes that exceed

that value will result in a message.

4.5.2 Calculate Volatility

The volatility of each stock is calculated using the following

equation:

() ∑
=

−−
=

n

i i

ii

x

xx

n
x

1

11
σ Equation 4.5.1

This value measures the mean absolute percentage change in

price over the entire interval for which the system has data.

Though it treats public holidays like regular trading days, it

ignores weekends.

90 Methodology

4.5.3 Calculate Models

For each stock, NELION calculates prediction models of four

different types: Autoregressive models of degree n (ARN),

artificial neural networks (ANN), k-nearest neighbor models

(KNN) and Markov models (MM). Since the system permits

prediction horizons of one day, seven days (one week) and 30

days (one month), it calculates models for each of these. As

input, it correspondingly uses the closing stock prices of the

last n days, weeks or months to predict the closing stock price

one prediction interval into the future.

This function serves as a bootstrap for the genetic algorithm

described below, which uses the available models to further

search the parameter space for better predictors.

The data was divided into a test and a training set but in order

to capture trends throughout the available data, each input

tuple had a 50% chance of being assigned to one of the two.

The quality of a model was measured by calculating the

normalized mean squared error (NMSE) of the predictions in

the test set.

()

() ()()2
1

2

targetmintargetmax

targetprediction
1

NMSE
ii

n

i
iin

−

−⋅
=

∑
= Equation 4.5.2

Since each stock price time series has a different dynamic,

NELION calculates models of each type and prediction

The Task Agent 91

horizon with various parameter combinations and stores the

best two configurations of each type on the database. The

details of each model type are described in the following

paragraphs.

The autoregressive models (ARN) use the Durbin-Levinson

algorithm described in Chapter 2 to calculate a linear

prediction model. The only parameters that could be adjusted

for the model type were the number of input values, which

ranged between two and 14 values. It stored the best two

models for each prediction horizon on the database.

The artificial neural network (ANN) models in NELION use a

single hidden layer with a single output unit, which represents

the prediction of the model. The units in the input layer are

mapped to the input tuple of the network. Each unit in the

hidden and output layers is fully connected to the previous

layer and has an additional link to a threshold input, which has

a constant input of one.

Since the model is only defined for an input range of between

zero and one, all input data is normalized to a range between

zero and 0.5. This ensures that all values remain within unity,

since the stock prices in our experiments never doubled their

value within one unit of the investment horizon.

As suggested by Weigend and Nix, the hidden units have a

sigmoidal transfer function while the output unit uses a linear

transfer function [Weigend, Nix, 1994]. The artificial neural

network was trained using the back propagation network as

described in Chapter 2. The learn rate and momentum

92 Methodology

parameters were set to 0.1 for all units, but in an effort to

speed up convergence, the learn rate was left dynamic and

increased or decreased by a factor two if consecutive updates

were in the same direction.

h=2...14

2

2

i 1

1 h

o

Input Units

Linear Transfer
Function

Sigmoidal
Transfer Function

i=2...14

Figure 4.5.1: Artificial Neural Network

The system used batch learning so that weight updates on

each link were performed after every epoch since this proved

to be more reliable than on-line learning. Since the test error

initially tends to exhibit rather erratic behavior, NELION

imposes a minimum number of 500 epochs. Learning was

stopped after three consecutive epochs increased the test

error or until it reached a maximum number of learning

epochs. This value was set at 1000 for an investment horizon

of one day, 2000 for one week and 3000 for one month.

These values were identified through experimentation and

helped some configurations, which remained near the

minimum error but never achieved three consecutive

increases.

NELION tested all combinations of artificial neural network

models with between two and 14 input units and between two

The Task Agent 93

and 14 hidden units and stored the best two for each

prediction interval.

The k-nearest neighbors (KNN) models algorithm retrieves

each tuple in the test set and searches the training set for the

constellations, which resemble the given pattern most closely.

NELION calculates all models with between two and 14 input

values and identifies between k=2 and k=14 “nearest

neighbors.” The distance from the input tuple to the tuples in

the training set is calculated using the Euclidean metric,

though the genetic algorithms described below can select

between this and a Gaussian or constant metric.

The prediction for each tuple is the weighted average of the k

nearest neighbors, where the weight of each neighbor is

inversely proportional to the distance as shown in the equation

below.

∑
=

=
k

n
n

i
i

d

d
w

1

 Equation 4.5.3

The Markov models (MM) use between four and 14 input

values and select between four and 20 random states from the

training set. The system then assigns each tuple in the

training set to one of these states and then counts the number

of transitions from one state to another. Given these numbers,

it is possible to calculate the probability of each transition. The

prediction was the weighted outcome of between one and all

94 Methodology

states used in the model. The weighting algorithm is the same

as for k-nearest neighbors algorithm.

4.5.4 Calculate Correlations

The correlation between stock x and stock y measures how

closely the two time series are related and is calculated as

follows:

()
()()

() ()∑∑

∑
−−

−−
=

i
i

i
i

i
ii

yyxx

yyxx
yx

22
,ρ Equation 4.5.4

In the formula above, xi represents the price of time series x at

a specific time i and x is the mean price for all i. The task

calculates the correlation between the given time series and

all other time series tracked in the system. If time series x

equals time series y, the correlation is unity by definition.

4.5.5 Send E-Mail Update

In order to provide the investor with an update on his portfolio,

its total value and the loss or gain for each stock currently

held, the system periodically sends an e-mail to the specified

address. The frequency of these messages is set for each

investor, though the task can be created manually at any time

for one specific or all investors.

The Task Agent 95

4.5.6 Calculate Recommendation

Given models for all stocks tracked in NELION, the system

calculates predictions for investment horizons on a daily,

weekly and monthly basis. It is assumed that the transactions

executed by the investor have a negligible influence on the

stock market as a whole. The system uses the model with the

lowest NMSE to predict the future stock price. It is worth

noting, that the MM and KNN models use the entire historic

data to predict the future stock prices and not only the test set,

as was done during the model calculation.

The predictions for each stock are stored on the database as

the percentage change from the current stock price and form

the basis of a recommendation for each investor. Additionally,

however, the recommendations take the current portfolio as

well as risk adversity parameters of the investor into account

by calculating the relative risk of all favorable future portfolios.

The parameters pertain to stock correlation, volatility, model

error and trading volume as well as a minimum transaction

amount.

The correlation between two stocks measures the likelihood of

congruent movement in response to external market forces,

like interest rate changes, new laws, political conflict or acts of

nature. The volatility measure described above measures the

variability of the stock price. Stocks with a high volatility tend

to show erratic price movements, making them a riskier

investment than those with a low volatility. NELION is able to

forecast some stocks with greater precision than others,

96 Methodology

resulting in a lower NMSE for these time series. An investor

can specify that the recommendations should favor these

stocks, since this would decrease the risk of the resulting

portfolio. A stock with a high turnover volume tends to show

greater price stability. Additionally, the transactions by the

investor affect the market price of the stock to a lesser degree

for stocks with a high volume. Consequently, this reduces the

risk associated with these kinds of stock.

In order to identify the portfolio with the lowest relative risk

given the investor parameters, NELION calculates the risk of

the current portfolio using the following equation.

∑∑
= =

⋅⋅
=

n

i

n

j ji

jijiji

O

ELC
Risk

1 1 ,

,,, Equation 4.5.5

In this equation, the factors in the numerator (Ci,j for the

correlation, Li,j for the volatility and Ei,j for the measure of error)

increase the risk of the portfolio and the volume factor Oi,j in

the denominator decrease it.

The dependence on the correlation Ci,,j is defined as follows,

where C represents the investor specific correlation

parameter, Ii is the portfolio value currently invested in stock i

of and ρi,,j is the correlation between stock i and j.

()()[] 11,, +−= jijiji IICC ρ Equation 4.5.6

Similarly, the volatility, error and volume components are

defined as follows.

The Task Agent 97

()[] 11, +−= jiji llLL Equation 4.5.7

()[] 11, +−= jiji eeEE Equation 4.5.8

()[] 11, +−= jiji ooOO Equation 4.5.9

In these equations, L, E and O represent the investor

parameters for volatility, model error adversity and volume

preference respectively and must be in the interval [0,1]. The

terms li, ei, and oi represent the volatility, model error and

current trading volume for the stock i.

The relative weight of each factor is determined by the

relationship between each parameter. A comparatively large

value of L, for example, increases the weight of the volatility

characteristics, which can be interpreted as a particular risk

adversity as it pertains to volatility.

Each of the individual factors is reduced to unity in case one of

the parameters C, L, E and O vanishes, making the risk

calculation independent of that component. This is equivalent

to the investor stating that the corresponding component

should not be considered in his risk calculation.

Several boundary conditions were handled as exception cases

in NELION. If the trading volume oi of a particular stock was

zero, the entire term in the double sum was disregarded. This

is equivalent to disregarding this stock completely. If all

investor parameters were set to zero, all terms in the double

98 Methodology

sum would be unity and the calculated risk would be the same

for all possible portfolios. This is equivalent to the investor not

making any statement regarding his investment preferences

and is disallowed by the system.

It is important to note that the equation above represents a

relative risk calculation and that it does not map directly to a

physical quantity. It does, however, permit NELION to

compare the relative risk associated with different portfolios by

initially calculating the relative risk value for the current

portfolio and then searching for portfolios with a lower relative

risk.

This is done using the gradient decent method over this n2-

dimensional parameter space. The standard algorithm is

restricted to prevent the recommendation of negative

ownership of specific stocks, called “short positions.” The

system starts its search with a step size of one and iteratively

calculates the resultant portfolio. In case the resultant portfolio

does not have a lower relative risk, the step size is reduced by

a factor two and the iteration is restarted. This process

repeated until the step size has diminished to 10-8.

Once the optimal portfolio is calculated, NELION filters it to

ensure that the minimum transaction limit for the investor is

not violated. This restriction prevents the system from

recommending purchases or sales, where the cost of the

transaction outweighs the benefit of it. This filter also validates

that a sale suggestion of a particular stock does not result in a

portfolio, where the sale of the remaining stocks of the same

The Task Agent 99

company would force a transaction that would fall below the

minimum transaction volume at the current price. In such a

case, the system would recommend selling all of the stocks for

this company.

For example, if NELION finds the optimum by selling 60 of the

100 stocks of company XYZ in the portfolio, and the future

sale of the remaining 40 stocks would result in a transaction of

less than the minimum transaction volume, it would

recommend selling all 100 stocks.

In order to ensure that the expected portfolio return specified

by the investor is met, the portfolio selection only includes

stocks, for which the system has predicted a price increase

greater than this threshold. This results in a customized

portfolio recommendation for each investor, which is sent to

his e-mail address for the next investment horizon. For the

auto-investors, the recommendations are “executed”

immediately, so that the purchases and the portfolio are

updated automatically.

4.5.7 New Time Series

This task combines the tasks that are necessary for each new

time series: Internet Load, Calculate Volatility, Calculate

Models and Calculate Correlations.

100 Methodology

4.5.8 Test Investor

In order to identify parameters that correspond to the risk and

return expectations of an investor, NELION provides the Test

Investor function. This task simulates the behavior of an

investor for a specified period in the past so that the outcome

of the resulting portfolio can be analyzed.

This function is designed with the assumption that test

investors with all different parameter combinations are created

on a specific database. The investors are then tested in a

defined interval of sufficient length to be able to analyze their

behavior.

Assuming that the dynamics of the past hold in the future, one

can then aggregate the results from many different parameter

combinations. It is then possible to make statistical

statements about investors with certain parameter

combinations so that a potential user of NELION can select

the risk and return structure suitable for his needs.

4.5.9 Parameter Selection with the Genetic Algorithm

Since the computer running the task agent only responds to

requests entered into the task list on the database, it spends

the majority of its time waiting for new jobs. This processing

time is nevertheless available for productive tasks at no

incremental costs. In order to take advantage of this power,

NELION starts a background thread to search the parameter

The Task Agent 101

space of the prediction models using a genetic algorithm if no

other tasks need to be addressed immediately.

Genetic algorithms imitate the gene selection process from

nature to mix different traits from two parents, in the hope of

generating a child that can outperform either parent, as

defined by some fitness function. Much like in its biological

equivalent, where an animal, the genotype, is defined by its

genetic makeup, its phenotype, a mathematical model can be

specified by a series of parameters. These parameters are

encoded in a string of bytes of a finite length.

Biological reproduction entails the selection of specific genes

from the two parental phenotypes. Similarly, a mathematical

genetic algorithm maps this crossover function to the random

selection of bytes from the phenotypes of the two parents

resulting in a child phenotype, which has inherited some

features from either of its parents.

Biological mutation is a process by which a specific gene was

not inherited from either parent but is randomly generated,

frequently through some sort of defect or external influence.

In the overwhelming majority of cases, this leads to children

with undesirable characteristics. However, occasionally, this

leads to a new trait that increases the likelihood of survival and

begins to dominate the population thereafter. This dynamic

can be imitated in genetic algorithms by selecting random

bytes instead of inheriting them from one of the parents on

occasion.

102 Methodology

The child phenotype can be used to generate a new

mathematical model, which can be trained and tested. If the

model error is lower than either of its parents, it is apparently

superior and can replace one of the two parents.

For each stock and model type (ANN, ARN, MM and KNN) the

system stores two models with the lowest test error as

parents. Using these two models, the algorithm uses

crossover and mutation to generate new models, calculate the

predictive quality of them and to replace the worse of the

existing parent models if the child test error is lower than either

of them. The likelihood of mutation is controlled through a

system parameter, which can be anywhere between 0% (no

mutation) and 50%, meaning that on average every second

byte is randomly selected with no heritage from either parent

phenotype.

The resulting phenotype is converted back to a genotype by

interpreting the string and populating the parameters of a new

model. These parameters are validated to ensure a valid and

sensible configuration. The specific parameters and validation

depends on the model type and are shown in the table below.

The Task Agent 103

Model Parameter Validation

ARN # input values

• Can not be more than twice the # of input
values of either of the parent models

• Can not be more than 32
• Must be at least 1

input values (units)

• Can not be more than twice the # of input
values of either of the parent models

• Can not be more than 32
• Must be at least 1

hidden units

• Can not be more than twice the # of input
values of either of the parent models

• Can not be more than 32
• Must be at least 1

ANN

Transfer Function • Must be 1 or 2 representing the constant
a in the transfer function

input values

• Can not be more than twice the # of input
values of either of the parent models

• Can not be more than 32
• Must be at least 1

of nearest neighbors
(“k”)

• Can not be more than twice the # of
nearest neighbors of either of the parent
models

• Can not be more than 32
• Must be at least 1

Metric • Must be 1, 2 or 3 representing Euclidean,
Gaussian or Constant functions

KNN

Weighting • Must be 1, 2 or 3 representing Euclidean,
Gaussian or Constant functions

input values

• Can not be more than twice the # of input
values of either of the parent models

• Can not be more than 32
• Must be at least 1

states

• Can not be more than twice the # of
states of either of the parent models

• Can not be more than 32
• Must be at least 1

states used to
calculate prediction

• Can not be more than # states
• Must be at least 1

MM

Weighting • Must be 1, 2 or 3 representing Euclidean,
Gaussian or Constant functions

 Table 4.5.1: Genetic Algorithm Parameter Validation

104 Methodology

Given the verified parameters, the system calculates the

model and if its test error is lower than that of either of the

other two models, the system replaces it on the database.

	4.1 Overview
	4.2 The HTML Interface
	4.3 The Administration Tool
	4.4 The Database
	4.5 The Task Agent

