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3 Portfolio Management 

If all stock predictions were perfect, portfolio management 

would amount to the transfer of funds to the commodity that 

promises the highest return in the specified investment 

interval.  Unfortunately, the future is not predictable to that 

degree of accuracy.  Consequently, portfolio management 

requires a careful distribution of funds in various stocks so that 

any one single incorrect prediction does not dramatically and 

negatively affect the performance of the entire portfolio.  On 

the other hand, spreading the risk between numerous stocks 

also implies that a dramatic upside gains by any one 

investment only helps the portfolio proportionally.   

Due to this dynamic, portfolio selection is dependent on the 

risk adversity of the investor.  Markowitz defined the 

theoretical concept of the perfect portfolio, on which NELION 

is based [Markowitz 1959].  After analyzing the concepts of 

return and risk in this chapter, I present the parameterization 

of the conflicting goals of high return with low risk in the 

optimal portfolio theory.   
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3.1  Return 

The return of a stock in a specified period is the percentage 

increase of the value of the investment.  It is defined as 

follows: 
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In the equation above, Pt is the current price and Pt-1 is the 

price at the beginning of the interval, while Dt is the dividend 

within that period.  The dividend can never be negative.  For 

periods, which do not coincide with the financial year of the 

underlying stock, the dividend is calculated as a percentage of 

the total accrued during the period.  Following standard 

investment convention, we assume that the interval is one 

year.  From Equation 3.1.1, it is clear that the return Rt is 

positive if Pt is larger than Pt-1, or the price of the commodity 

has increased.   

The return of a portfolio is the weighted sum of the i individual 

stock returns. 
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In this equation Xi denotes the fraction of the portfolio covered 

by each investment and therefore  
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This requirement does not impose any restrictions on the 

allocation of funds, since it allows for money kept as cash.  

The return would then simply be the bank interest rate, which 

may be 0%, depending on the account type. 

3.2 Risk 

Unlike the return of an investment, the definition of risk is more 

subjective.  Markowitz assumes a normal distribution of upside 

and downside potential around the return of a commodity, 

based on its volatility ó. 
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Figure 3.2.1: The One-in-Six Rule 

In Figure 3.2.1, the expected return ì defines the peak of the 

normal distribution with ì-σ and ì+σ defining a 2/3 margin of 



72 Portfolio Management 

return.  The downside potential is 1/6, hence the name of the 

rule.  It is clear that a small σ reduces potential loss thereby 

minimizing the associated risk of the equity.  We therefore 

define the risk V(X) of an investment of value X with a variance 

σ as follows. 

( ) 22σXXV =  Equation 3.2.1 

Unlike the return, the risk can not simply be calculated as the 

weighted sum of the individual risks, since individual stocks 

can be dependent on similar external factors.  Both Daimler-

Chrysler and Ford are affected negatively by rising oil prices, 

for example, so that a portfolio consisting of these two stocks 

has a higher risk than one with Daimler-Chrysler and 

Microsoft, for example, assuming that Microsoft and Ford have 

the same volatility.  Consequently, the systemic risk of a 

portfolio includes the covariance ρij of the individual 

investments i and j as shown in Equation 3.2.2 below. 
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The first term represents the inherent risk of every individual 

stock, while the second term captures the risk associated with 

the correlation between stocks. Given a portfolio where the 

correlation ρij between all stocks i and j is zero, the risk VP 

reduces to the simple sum of individual risks for each stock. 
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3.3 The Optimal Portfolio 

The conditions of Equation 3.2.3 are virtually impossible to 

achieve for any n>1, but additionally, this approach ignored 

the return of the portfolio.  In order to find the optimal stock 

distribution, we look at a sample portfolio with two stocks with 

an equal expected return ì, where ρij = 0.2, σ1 = 0.6 and σ2 = 

0.8.  We can plot the risk of the portfolio as a function of the 

investment in the first stock.  
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Figure 3.3.1: Risk of a Portfolio 

If these two stocks were the only available choices, an 

investor would ideally distribute 60% of the available capital in 

stock 1 and the remaining 40% in stock 2.  This example 
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shows that the risk of a portfolio can be minimized without 

changing the expected return.  

In order to calculate this optimal portfolio, we use Markowitz' 

approach.  He defined the objective function, which assigns a 

weight between the desire for high returns and a low risk. 

( )[ ] PP VREAf +−=  Equation 3.3.1 

In this function, A represents the risk aversion of the investor 

and is dependant on his investment needs.  A graph of this 

function highlights a region that satisfies the investor’s 

requirements for return as well as risk.  The edge of this region 

defines the portfolios with the highest return given a specific 

risk or conversely, the lowest risk give a defined return and is 

called the Efficient Frontier. 
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Figure 3.3.2: The Efficient Frontier 
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In the next step, Markowitz defined the Utility Function, which 

is also investor dependent and describes the utility U(R) of a 

specific return R.  This function is used to identify the desired 

return when optimizing a portfolio.   

( ) 2
PPP cRbRaRU −+=  Equation 3.3.2 

The coefficients b and c are not negative so that the resulting 

graph will have a form as shown below. 
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Figure 3.3.3: The Utility Function 

A person at the beginning of his career can generally afford to 

take a larger risk since he will generally not depend on the 

savings in the near future but would benefit from higher 

returns later in life.  Short-term downward fluctuations are 

tolerable to this group of persons but not for an investor who is 

close to retirement and will need his savings in the near future.  

Job security, the plans for a large purchase in the near future 
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or personal risk aversion are other considerations, which will 

affect these parameters. 

Applying the expectation operator E(.) on Equation 3.3.2 we 

get the following result. 

( )( ) ( ) ( )2
PPP RcERbERUE −+= α  Equation 3.3.3 

Using the definition of the variance 

( ) ( ) ( )[ ]22
PPP RERERV −=  Equation 3.3.4 

we can re-write Equation 3.3.4 as follows: 

( )( ) ( ) ( )[ ] ( )PPPP RcVREcRbEaRUE −++= 2
Equation 3.3.5 

For a constant expected utility, C, we can solve this equation 

for the expected return E(RP). 

 ( ) ( ) 21 CCRVRE PP −+=  Equation 3.3.6 
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This equation defines utility curves, which we can add to the 

graph shown in Figure 3.3.2, to arrive at the optimal portfolio 

as shown below. 
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Figure 3.3.4: The Optimal Portfolio 

The point of tangency between the utility curve and the 

efficient frontier defines the optimal portfolio for this investor.  

This point can be calculated by substituting Equation 3.3.6 into 

Equation 3.3.1 and solving for V(RP) or E(RP). 
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This expression uniquely specifies the optimal portfolio.   
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The challenge of this approach is the identification of the 

parameters in the utility and the objective functions since they 

are highly subjective and represent relative weights and 

cannot be attached to measurements in the physical world. 

3.4 Applying the Theory 

Most trading systems are extensions of financial prediction 

experiments and have the goal of measuring the real-world 

results that can be associated with the forecasts.  The 

simplest form was already mentioned in the experiments from 

Rehkugler and Poddig:  If an increase was predicted, the 

system purchased one additional fictitious unit of the DAX, if a 

decrease was predicted, one was sold.  The system did not 

permit the ownership of negative numbers of the stock, or 

“short” positions. 

Due to their mathematical simplicity, trading strategies based 

on moving averages are probably the most widely used 

technical rules.  These models were prominently used by 

LeBaron and became the baseline for further comparison 

[LeBaron 1995]. 

In LeBaron’s experiment, the single moving average indicator 

generated buying (selling) signals when its value was above 

(below) the current stock price.  The adjustment of the model 

required identifying the optimal length of the data window.  A 

slight improvement on the basic algorithm could be achieved if 

trading signals were only generated if the difference between 

the moving average and the current price exceeded a 
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specified band.  This reduced the number of trades and, by 

implication, the transaction costs that a real world investor has 

to bear. 

Moving average oscillators compare a short term and a long 

term moving average of the stock price against each other.  

These models frequently use the commonly quoted moving 

averages of five, ten, 15, 50 and 200 days for their 

comparisons.  Buy (sell) signals are generated only if the short 

(long) term moving average rises above that of the long (short) 

term.  Again, frequently the difference between the two values 

has to exceed a specified value in order to trigger a trading 

signal, so that the number of transactions is kept at bay.   

Using both of these moving average trading systems as a 

foundation, Dihardjo and Tan compared artificial neural 

network prediction models with an associated trading system 

to predict profitability opportunities in the Australian Dollar/US 

Dollar exchange rate [Dihardjo, Tan 1999].  Though they found 

that both systems were profitable in the period tested, the 

ANN models performed better (annualized returns between 

13% and 19%) than the simple moving average approach 

(returns of between 8% and 13%).  The experiments showed 

that both models were particularly successful in markets, 

which exhibited long term trends. 

Kumar, Tan and Ghosh used the same Australian Dollar/US 

Dollar exchange rate data and built sophisticated financial 

forecasting models.  These incorporated the chaotic 
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components in numerous ways in an effort to optimize the 

predictive powers of the models and, by implication, the 

profitability of their system [Kumar et al, 1999].  The trading 

system worked with two different rule patterns:   

Pattern 1: 

If (Current Forecast – Previous Forecast) > Delta then 

 Signal = “Buy” 

Else If (Previous Forecast – Current Forecast) > Delta then 

 Signal = “Sell” 

Else 

 Signal = “Hold” 

Pattern 2: 

If (Current Forecast – Current Close) > Delta then 

 Signal = “Buy” 

Else If (Current Close – Current Forecast) > Delta then 

 Signal = “Sell” 

Else 

 Signal = “Hold” 

The Delta value was used to provide a threshold, which 

eliminates excessive trades, since they were taken into 

account with 0.1% of the transaction value in this experiment. 

Interestingly, though the forecasting models were considerably 

more complex than the ones used by Dihardjo and Tan, the 

profitability ranged between 11% and 20% annualized return 

and thus did not significantly help this goal much. 



Applying the Theory 81 

Notably missing from this list of trading strategies is one that 

addresses the realities of an individual investor, who has to 

decide not only which stocks offer good growth opportunities, 

but also how to distribute his investment between the 

numerous alternatives.  Bookstaber describes a simple BASIC 

program that combines chart analysis with a simple risk 

calculation algorithm, but does not analyze the success or 

failure of this approach given historic data [Bookstaber 1985]. 

Programs with a similar focus exist with investment institutions 

or other professional investors who emphasize risk analysis, 

however, this work tends to not get published since it is 

considered the strategic advantage of the respective owner or 

user community.  Jean Y. Lequarré voiced a similar sentiment 

in the conclusion of his article: “This inability to discuss their 

findings in the open is often frustrating for many of those 

involved in this activity and specially the ones who come from 

academia” [Lequarré 1993]. 

This thesis is an effort to combine the significant work on 

financial time series analysis and prediction with a coherent 

trading strategy that can be adjusted to the preferences and 

needs of the individual investor.  The resulting system is 

designed to run on common PC hardware making it suitable 

for personal investment advice and as a portfolio management 

tool.  
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