
Intrinsic and Functional Aspects of Neuronal
Synchrony in Primary Visual Cortex

Dissertation

zur Erlangung des akademischen Grades des
Doktors der Naturwissenschaften (Dr. rer. nat.)

Eingereicht im Fachbereich Biologie, Chemie, Pharmazie
der Freien Universität Berlin

vorgelegt von

Denise Berger

aus Berlin

Juni 2009



.

The research presented in this thesis was carried out from December 2005 until May
2009 at the Institute for Biology, Neurobiology of the Freie University Berlin.

1. Gutachter: Prof. Dr. Martin Nawrot

2. Gutachter: PD Dr. Sonja Grün

Disputation am 03.07.2009



Declaration

Chapters 1, 2, and 3 have been published in peer-reviewed international journals. Chapter

4 is accepted in a peer-reviewed international journal. Chapter 5 will be submitted to

peer-reviewed international journals.

The contributions of individual authors were as follows:

Chapters 1 is published as:

Berger, D.; Warren, D.; Normann, R.; Arieli, A. & Grün, S.

Spatially organized spike correlation in cat visual cortex.

Neurocomput, 2007, 70, 2112-2116.

The work has been carried out by D. Berger, except for the experiments which were per-

formed in the laboratory of R. Normann. A. Arieli contributed in the discussions. S.

Grün supervised the project.

Chapters 2 is published as:

Maldonado, P.; Babul, C.; Singer, W.; Rodriguez, E.; Berger, D. & Grün, S.

Synchronization of neuronal responses in primary visual cortex of monkeys viewing

natural images.

J. Neurophysiol., 2008, 100, 1523-1532.

The work was mainly carried out by P. Maldonado and S. Grün. D. Berger designed the

method for the detection of eye events. W. Singer and E. Rodriguez contributed in the

discussions.

Chapters 3 is published as:

Grün, S.; Berger, D. & Borgelt, C.

Identification of neurons participating in cell assemblies

Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing

(ICASSP), 2009, 3493-3496.

The work originated from discussions between D. Berger and the other authors. C. Borgelt

proposed the estimation procedure. S. Grün performed the simulations.



Chapters 4 will appear as:

Berger, D.; Borgelt, C.; Morrison, A. & Grün, S.

Efficient Identification of Assembly Neurons within Massively Parallel Spike Trains.

in Computational Intelligence in Neuroscience

Data analyses were carried out by D. Berger. C. Borgelt proposed the estimation proce-

dure. S. Grün supervised the project. Developments of surrogates were developed by D.

Berger, C. Borgelt, and S. Grün. A. Morrison performed the network simulations.

Chapters 5 is to be submitted as:

Berger, D.; Nawrot, M.; Maldonado, P. & Grün, S.

Statistics of eye movements of monkeys freely viewing natural scenes.

The work has been carried out by D. Berger, except for the experiments which were

performed in the laboratory of P. Maldonado. S. Grün and M. Nawrot supervised the

project.



Summary

Most neurons in V1 are topologically organized in cortical columns, that coherently re-

spond to a particular, preferred stimulus by increasing their discharge rate. From a

statistical point of view, an increase of the frequency of action potentials is not sufficient

to explain how neurons in V1 are able to bring together and compute complex stimuli.

Modern theories of the primary visual pathway account for spatial and temporal aspects.

In particular, the cell assembly hypothesis postulates dynamically interacting groups of

neurons as the key mechanism for cortical information processing. As massively parallel

extracellular recordings are becoming available, the limited experimental evidence in favor

of the temporal coding hypothesis has to be assigned to a large extent to a lack of suitable

analysis tools. In this thesis I summarize a work to study the activity of the visual cortex

during natural viewing conditions. I, moreover, present new analysis strategies that allow

to study the activity of many neurons simultaneously and observe coordinated network

activity.

In the first part of this doctoral work results of pairwise correlation analysis from simul-

taneously recorded single units in V1 of free viewing monkeys are related to their eye

events, and simultaneously recorded multi-unit activities from visual cortex area 17 of

anesthetized cats are matched with the corresponding orientation maps. The questions

I answer in that context are: how can we relate the concept of orientation maps from

optical imaging and the temporal coding hypothesis? What is the relationship between

correlated neuronal activity and 1. spatial arrangement of the recording sites, and 2.

viewing behavior?

Mere pairwise tests are not suitable to conclusively identify assemblies. Existing analysis

techniques for higher-order synchrony fail in estimating the necessary parameters, whose

number grows exponentially with the number of neurons. Therefore, I designed two novel

methods for identifying neurons participating in assembly activity. Both methods enable

fast and reliable detection of neurons which participate in correlations.

This work provides new insights into the coding strategy employed by neurons of the

primary visual cortex. The demonstrated locking of neuronal synchronization to the time

of eye fixation, and the evidence that the spatial arrangement of synchronized neurons is

in agreement with orientation tuning maps strongly support the hypothesis that primary

visual cortex neurons encode visual information via precisely timed spikes. This work

sets also the bases for further tests of the temporal coding hypothesis, by introducing two

extremely efficient methods for identification of higher-order synchrony.

Finally, the analysis of eye movement and natural viewing strategies provides novel ap-



proaches to data from free viewing animals and thus open new routes for experiments

that aim to relate neuronal activity to natural behavior.
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Denise Berger Introduction

Introduction

Most of our cognitive functions and perceptual processes are carried out by the neocortex,

which is the largest structure of the human brain. Among all somatosensorial areas of the

central nervous system, the visual cortex has the most complex neural circuitry. About

half of the cortex is involved in visual processing as indicated from monkey studies (Tong,

2003). The primary visual cortex (V1 or area 17) is the most extensively studied and

perhaps the best understood area of the whole cerebral cortex. It is the first cortical

area to receive visual information from the environment, and is responsible for the initial

decomposition and integration of this input. About 90% of projections from the retina

are channeled through the lateral geniculate nucleus (LGN), a part of the thalamus, and

evetually reach V1. From V1 information is disseminated to various extrastriate visual

areas, including areas V2, V3, V4, responsible for further processing.

Receptive Fields Properties in V1 and their retinotopical organization

A single neuron in V1 receives information from a restricted area of the visual environment

and become active only when specific features, like orientation, contrast, or motion of an

object are presented in that location. This area is referred to as the receptive field of

the cortical unit (Hartline 1938). By definition, stimuli presented outside of the receptive

field will neither increase nor decrease the ongoing activity of that individual cell. Two

classes of neurons in V1 have been defined according to the complexity of their response

properties, namely simple and complex cells. Simple cells are the most specific. For

optimal activation, they require a bar of light of a certain width, which entirely fills the

central area of the field, and which is oriented at a certain angle. Complex cells respond

also to such stimuli, however in any position within their receptive field (Hubel and Wiesel,

1962, 1968; Albus, 1975). In addition, some complex cells respond particularly to lines or

edges moving in a specific direction across the receptive field.

As a recording electrode moves parallel to the surface of the striate cortex, the position in

the receptive field from which the responses are evoked changes in an orderly, predictable

manner, thereby preserving the spatial organization of the ganglion cells within the retina.

The receptive field location of many cortical cells have been used to map the visual

field onto the cortical surface of the monkey (Talbot and Marshall, 1941; Daniel and

Whitteridge, 1961; Bilge et al., 1967; Tusa et al., 1978), referred to as the retinotopic

map.

9
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Orientation and ocular dominance columns

A well known property of V1 is its organization in columns, which can be regarded as

functional modules. Hubel and Wiesel showed that cells sharing the preferred stimulus

orientation are arranged in vertical columns in cats (Hubel and Wiesel, 1962, 1963) and

monkeys (Hubel and Wiesel, 1968). Moreover, detailed mapping of adjacent columns re-

vealed a precise organization from one column to the next (Daniel and Whitteridge, 1961;

Hubel and Wiesel, 1962; Albus, 1975). Orientation preference changes smoothly along

the cortical surface, with systematic shifts in the axis of orientation from one column to

the next, occasionally interrupted by non-responsive foci.

The organization in orientation columns has also been studied by optical imaging tech-

niques in vivo (Blasdel and Salama, 1986; Bonhoeffer and Grinvald, 1991). Using either

a voltage-sensitive dye or inherent differences in the light scattering due to blood deoxy-

genation close to active cells, a highly sensitive camera can detect the pattern of active

and inactive orientation columns during the presentation of a bar of light with a specific

orientation. Careful inspection revealed the presence of pinwheel centers, focal points at

which all orientations come together. From there the system is organizes radially, in an

extraordinarily regular manner (Hubel and Wiesel, 1962, 1968; Albus, 1975). Some pin-

wheels are systematically organized with clockwise progression, others counterclockwise,

with each orientation appearing only once in a cylce. One or two such centers, evenly

spaced, occur in each square millimeter of cortex (Hubel and Wiesel, 1962, 1968; Albus,

1975) (see Fig. 1).

Another system of alternating columns processes inputs from each eye (Hubel and Wiesel,

1959). Ocular dominance columns represent again an orderly arrangement, preferentially

driven by either the left or right eye. A complete sequence of ocular dominance columns

and orientation columns is repeated regularly and precisely over the surface of the primary

visual cortex, each occupying a region of about 1 mm2 (Hubel and Wiesel, 1968) (see Fig.

2). This two-fold repeating organization is a striking illustration of the modular organi-

zation characteristic of the cerebral cortex. Each module acts as a window on the visual

field and each window represents only a tiny part of the visual field, but the whole field

is covered by many such windows. Within the processing module all information about

that part of the visual world is processed. It has been shown that orientation and ocular

dominance columns communicate with one another by means of horizontal connections

that link cells within a layer (Gilbert and Wiesel, 1983, 1989; Malach et al., 1993; Schmidt

et al., 1997; Kisvarday et al., 1997).

In conclusion, the visual cortex is organized functionally into two sets of intersecting con-

nections, one vertical, consisting of columns spanning the different cortical layers, and

10
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Figure 1: Orientation columns in the visual cortex of the monkey (modified
from Kandel et al., 2000). Optical imaging of the cortical surface taken while
the monkey viewed contours of different orientations (upper graphic). Bottom,
left: Enlargement of a pinwheel-like area. Bottom, right: Three-dimensional
organization of orientation columns in a 1 mm × 1 mm × 2 mm slab of the
primary visual cortex under the square surface region depicted in the left
graphic.

the other horizontal, connecting columns with the same response properties. Thus, sub-

stantial knowledge has been gained about the anatomical structures and the physiological

mechanisms that generate orientation selectivity, but only recently studies focussed on its

functional role. In some sense the experimental description of the visual cortical func-

tion is well ahead of our theoretical understanding of it. It has now become critical to

fully understand the principles of cortical representation and to provide a quantitative

description of the neural computation involved.

11
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Figure 2: Organization of orientation columns and ocular dominance columns
in primary visual cortex (modified from Kandel et al., 2000). An array of
functional columns of cells in the visual cortex contains the machinery neces-
sary to analyze a discrete region of the visual field and can be thought of as
a functional module. Each module contains one complete set of orientation
columns and one set of ocular dominance columns. The entire visual field can
be represented in the visual cortex by a regular array of such modules.

Neuronal Coding

Over a century ago the seminal work of Ramon y Cajal (1893) identified single nerve

cell as the elementary units of processing in the nervous system. The use of action

potentials (spikes) as a mean of communication is the striking feature of neurons in the

central nervous system. Since the discovery by Adrian (1926) that action potentials

are generated by sensory neurons with a frequency that is substantially determined by

the stimulus, the idea of rate coding has become a prevalent paradigm in neuroscience

(Perkel, 1968). However, there is emerging evidence that populations of neurons are also

able to synchronize their activity in a millisecond time scale and that synchrony plays

a role in information processing. Substantial knowledge has been gathered concerning

the biophysical (e.g., Gerstner and Kistler, 2002) and functional properties (Rieke et al.,

1997). However, one of the key questions in neuroscience remains, how information is

encoded in the spiking activity of a single cell and a whole population of cells (Golomb

et al., 1994; McClurkin et al., 1991; Rieke et al., 1997; Shadlen and Newsome, 1995, 1998).

In this debate, two different views can be distinguished. The rate-coding hypothesis claims

that through the mean firing rate - i.e., the average number of spikes in some time bin

12
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- information is carried, whereas the temporal-coding hypothesis claims that the precise

placement (time-locking) of the spikes is a significant additional mechanism.

Rate code and population code

The frequency code theory was first advocated by Sherrington (1906) who proposed that

neurons are integrate-and-fire devices (Knight, 1972). According to the integration princi-

ple each neuron sums the input activity and processes the response firing rate as a function

of the input. This was verified by Adrian (1926), who demonstrated that changes in the

firing of a neuron encoded information about the stimuli he presented to the animal. The

powerful idea that neurons use a so called rate code to transmit information was soon gen-

eralized to other systems, and eventually to the entire nervous system. The estimation

of firing rate by counting spikes during a response period has been enormously success-

ful in advancing our understanding of sensory information processing and provided the

foundation for our current understanding of the cortical code. From the point of view of

signal analysis, this approach offers a dramatic simplifications because it implies that an

entire spike train - a complex time varying signal comprising a long list of times at which

a neuron fired - can be replaced by a single number, the mean rate.

An alternative hypothesis about the role of the frequency of neuronal firing is the

population code model (Georgopoulos et al., 1982). According to this hypothesis, specific

features of a stimulus are encoded by a distributed combination of firing rates over a

group of neurons. The stimulus is represented as a distributed configuration of different

firing rates. The population coding hypothesis has been shown to be statistically more

reliable than observations using single neuron responses.

Evidence for integration over pools of neurons has come from the work of Georgopoulos

et al. (1982), who has shown that vector averaging over pools of sequentially recorded

motor cortical neurons can accurately reconstruct movement trajectories in monkeys.

These response averages are taken over the entire duration of the movement (∼ 500 ms).

A criticism to this idea is that population coding is not able to be disentangled from the

issue of temporal integration.

Cell assemblies

The first challenge to the rate cording hypothesis in favor of the importance of temporal

coding was given by the Canadian psychologist Donald O. Hebb. His theory was truly

groundbreaking when it was published in 1949 and it defined the guideline for theoretical

neuroscience still prevailing to the current day. Hebb built his theory on the definition of

a new concept that he called the “cell assembly” (Hebb, 1949).

13
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A cell assembly is defined as a group of neurons with strong mutual excitatory con-

nections. Hebb postulated the principle ”what fires together, wires together”, a simple

synaptic mechanism how new cell assemblies can be formed by groups of cells that are

often co-activated. According to this principle, repeated activation of the first cell will

generate a strongly connected line of cells that is reliably activated whenever its first cell

is active. Thus, once a subset of its cells are stimulated, the cell assembly tends to be

activated as a whole. Therefore, it can be considered as an operational unit in the brain.

In the framework of Hebb’s theory, a number of phenomena described by psychology can

be explained by simple mechanisms. An “association” is nothing but the activation of an

assembly by either a stimulus or another assembly.

Despite being originally formulated as a postulate with little biological justification, many

decades later the hebbian synapse and Hebb’s rule have received extensive experimental

support (e.g., Bliss & Lomo, 1973; Gustafsson et al., 1987). The concept of the cell

assembly as a general principle of neural computation, however, remains hotly debated.

Cell assemblies could be the manifestation, at least in principle, of mere covariances be-

tween firing rates. However, as it turned out that also the precise relative firing times and

temporal correlations in neural ensembles is important for coding and synaptic plasticity

(Abeles, 1991; Aertsen et al., 1989; Gerstein et al., 1989; Singer and Gray, 1995; Eckhorn,

1999; van Hemmen and Senn, 2002).

These observations led to a shift in paradigm from the study of rate coding mecha-

nisms to spike based coding in the neurosciences during the last 20 years.

Hebb’s ideas have influenced the research of many experimental and theoretical neuro-

scientists. Various “brain theories” realized aspects of Hebb’s work or incorporated his

concepts, e.g., Marr (1971); Shaw et al. (1985); Damasio (1989); Abeles (1991); Miller

(1996); Mesulam (1998); Wickelgren (1999). One particularly intriguing suggestion for

assembly organization is the synfire chain first proposed by Abeles (1991), based on an

original ideal by Griffith (1963).

Synfire chains

The synfire chain is a network design that embeds the postulation of cell assembly, and

features signal propagation and information processing by means of synchronous spike

activity. The synfire chain concept is based on the prediction that, given typical cortical

connectivity, firing rates, synaptic strengths, and synchronous inputs are likely to drive

postsynaptic cells more effectively than asynchronous inputs. Consequently, in each step

of the synfire chain the simultaneous firing of a significant pool of neurons raises the

potential of the (functionally) next pool of neurons, and eventually bring them to fire.

14
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From a topological point of view, a synfire chain is a feed-forward network composed of

groups of neurons, where each group converges and diverges strongly onto the next group.

Figure 3 illustrates the connectivity map in a synfire chain. When one pool is ignited by

an external stimulus, the whole chain becomes active and packets of synchronous activity

propagates between successive groups along the chain. Abeles (1982) argued that due to

this architecture synchronous firing of neurons in one layer will reliably cause synchronous

responses in the next group. He therefore suggested that synchronous activity can be

propagated in a stable manner. Indeed, stable propagation of pulse packets in synfire

chains has been shown theoretically (Hertz 1997), numerically (Diesmann et al., 1999),

and with simulations (Abeles, 1982; Hayon et al., 2005).

.........

...... ......

Figure 3: Schematic of a synfire chain. Each neuron is depicted as a blue circle.
Black lines symbolize synaptic connections. A pool of neurons is denoted by
a green rectangle. Each neuron converges and diverges to all neurons in
the previous and next step, respectively. The layout of the chain does not
represent the anatomy, but rather the order of activation in time. The same
neuron can be part of more than one pool. For example the two red neurons
shown in the figure may be physically one and the same neuron. Repeated
participation of the same neurons can occur up to the limit of the synfire
chains’ memory capacity.

The problem of assembly detection

Several issues limits the ability to verify this hypothesis. However, no clear experimental

evidence was reported that synfire chains occur in real brains. Experimental support has

so far been limited to inference from detection of a few repeating spatio-temporal neu-

ronal firing patterns in multiple single-unit recordings. However, theoretical and modeling

studies suggest the number of synchronized neurons to be in the order of 100, with 80%

of those neurons participating per activation (Abeles, 1991; Diesmann et al., 1999). Clear

evidence of the existence of synfire chains would require simultaneous recording of sev-

eral neurons from one pool and several from the next pool under conditions in which the

synfire chain is repeatedely activated.
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For a long time the required techniques of multiple single-unit recording and multivari-

ate data analysis were just unavailable. However, advanced recording techniques became

meanwhile available, that allow simultaneous recordings of up to several hundred neurons

(electrode methods: Warren et al. 2001, Donoghue 2002, Csicsvari et al. 2003, Rolston

et al. 2007, Euston et al. 2007; optical methods: Ohki et al. 2005; Ohki et al. 2006,

Sasaki et al. 2007). A drawback of these methods is that recorded neurons are dispersed

over a few cortical hyper-columns. With such a small sample, the likelihood to detect

neurons either from the same or successive links of a particular chain is vanishingly small.

However, multi-electrode recordings are steadily improving, such that recordings of even

larger neuronal populations can be expected in future.

Another problem for the verification of synfire chains is the limited number of available

analysis techniques. As massive parallel extracellular recordings are becoming more and

more available, the limited experimental evidence in favor of the cell assembly hypoth-

esis has be assigned to a large extent to a lack of suitable analysis tools (Brown et al.,

2004). Synchronized spiking across large groups is potential signature for active assem-

blies, predicting higher-order correlations among the spike trains of assemblies members.

However, the estimation of the necessary parameters of present analysis technique for

higher-order correlations poses serious problems, mainly because the number grows ex-

ponentially with the number of recorded neurons. As a consequence, most attempts to

detect active cell assemblies resort to pairwise correlations. Indeed, the existence and

functional relevance of pairwise interactions has been shown in various cortical systems

and behavioral paradigms, including visual (Singer et al., 1997; Kohn and Smith, 2005),

motor (Vaadia et al., 1995; Riehle et al., 1997), and prefrontal (Sakurai and Takahashi,

2006) areas.

Pairwise analysis, however, do not differentiate situations in which only pairs fire syn-

chronously from synchronized spikes in large populations. In such a case, the analysis

is insensitive to higher-order correlations and sparse synchronous events. Compelling

evidence for active assemblies thus require analysis methods that transcend pairwise cor-

relations.

Approaches to analyze correlations between more than two neurons do exist but typically

work only for a small number of neurons (e.g., Abeles and Gerstein, 1988; Dayhoff and

Gerstein, 1983b; Grün et al., 2002a,b) or consider only pair correlations while analyzing

the ensemble (e.g., Gerstein et al., 1978; Shlens et al., 2006; Schneidman et al., 2006).

Therefore, limitations of available analysis tools has rendered experimental evidence for

their fundamental prediction.
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Linking the neuronal code to vision

Much of the information regarding the response properties of cells in the primary visual

cortex has been obtained by displaying the optimal visual stimuli within a cell’s receptive

field while a monkey fixates on a screen (Hubel and Wiesel, 1968; Maunsell and Newsome,

1987) The initial assumption was that the responses thus recorded are not substantially

different from those generated in a more natural setting, but many studies have now

demonstrated that the responses of neurons in the visual cortex of cats and monkeys

significantly modulated their activity when stimuli are presented beyond their classical

receptive field, and that these responses are not readily apparent from their receptive

field properties (Nelson and Frost, 1978; Zeki, 1983; Allman et al., 1985; Desimone and

Schein, 1987; Gulyas et al., 1987). However, natural vision includes active eye movements,

and the intent and initiation of eye movements is expected to have an influence on the

neuronal activity in the visual system. Nevertheless, few neurophysiological studies have

been conducted to investigate the discharge properties of neurons in the visual cortex of

animals allowed to freely view natural images.

Every time we inspect a visual scene, we are confronted with a complex pattern of features

At each location of gaze, the visual system must parse the scene into component objects.

In spite of this complexity, our visual system is able to rapidely identify the features that

belong together. A psychophysical experiment on monkeys and humans, where subjects

were asked to decide whether a briefly flashed photograph of a natural scene contains a

target category such as an animal, food, or a means of transport, has shown that monkeys

can respond as early as 160 ms after stimulus presentation, and human subjects around

220 ms (Thorpe et al., 1996; Fabre-Thorpe et al., 1998; Van Rullen et al., 1998a)

To cope with the enormous amount of visual information in our everyday environment,

the human visual system uses a mechanism of visual attention and saccadic eye move-

ments to filter and process only the relevant information. The mechanisms that allow

attention to search all the possible feature combinations in a reasonable amount of time

are, however, still to be unveiled (Millner, 1974). Neisser (1967) suggested that some

form of image segmentation should occur that not only happens prior to attention but

also serves to attract it. One possibility is that salient features in an image, such as

regions of high contrast lead to elevated activity, and the population of cells with the

greatest activity captures attention (Koch and Ullmann, 1985). Indeed, experiments in

humans have shown that features such as orientation, color, and image intensity signifi-

cantly draw human attention. On the other side, fixations are less strongly tied to visual

saliency when meaningful scenes are viewed during active tasks (Oliva et al., 2003; Land

and Hayhoe, 2001; Henderson and Hollingworth, 1999; Turano et al., 2003) It is now

17
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commonly accepted that human eye movements are controlled by both bottom-up and

top-down mechanisms. The role of these two mechanisms in the control of eye movements

is thought to depend on the amount of semantic content in the image, as suggested by

(Parkhurst and Niebur, 2003). Images with high semantic content are likely to be more

top-down controlled, since an internal model of the content exists (Parkhurst et al., 2002).

The inspection of only a small part of the image in cooperation with the internal model

provides the observer with information about what to expect in the rest of the image. In

contrast, unfamiliar images, which have little meaning to the observer, stimulus-driven or

bottom-up mechanisms are supposed to play a more prominent role.

However, little is known about eye movements in relation to activity of population of

neurons. To this purpose, experiments with primates may offer the chance to gain new

insights into the mechanisms underlying visual processing in the brain, by combining psy-

chophysical and neurophysiological experiments. Moreover, it remains to be investigated

in how far viewing strategies employed by monkeys resemble similarities to those used by

humans. It has been shown in a speed categorization task that monkeys perform with only

slightly decreased accuracy but greater speed, than human observers (Fabre-Thorpe et al.,

1998). These results reveal striking similarity between monkeys and humans regarding

rapid processing of natural scenes. Nevertheless, it remains to be investigated whether

or not this similarity generalizes to viewing under natural conditions, when attentional

processes and eye movements take effects.

Aim and outline of the thesis

The first part of thesis addresses the issue of temporal coordination between neurons in

the primary visual cortex. In the first chapter the question of how the concept of cortical

maps is related to the concept of temporal coding is approached. To this end we analyzed

massively parallel spike recordings from the visual cortex (area 17) of an anesthetized cat

under different stimulus conditions, and during spontaneous activity. I addressed on the

one hand the issue of the intrinsic mechanisms employed by V1, and on the other hand

of the time dependencies between spike times of neurons belonging to the same column

and to different columns.

In the second chapter the concept of temporal coding is related to the eye events of free

viewing monkeys. Correlated activity of single neurons in V1 is analyzed in respect to eye

fixations and saccades. The analysis allowed to address the question whether synchrony

is temporally related to viewing behavior, thereby providing a functional mechanism for

initial image segmentation.
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In the second part of this thesis new approaches towards the detection of higher-order

correlation are discussed. Two novel methods for the selection of assembly members in

large data sets are presented (Chapter 3 and 4). The methods are tested on a network

of 5000 neurons with embedded synfire chain activity, and then applied to the same data

set already analyzed in Chapter 1.

In the last part of this thesis I investigate the eye movements of monkeys during free ex-

ploration of natural images, in order to develop possible approaches for linking correlated

neuronal activity to active vision (Chapter 5). The questions of what guides the monkeys’

eye fixations and what strategies they use for image exploration are addressed and related

to the case of humans.

Finally, I will review the findings presented in this thesis in detail and bring the different

results in an unified framework, before closing the discussion with an outlook on future

work.

Note about section numbering

In the following chapters, for maximal conformity with both the published version of the manuscripts

and the structure and readability of this dissertation, I use a slightly different notation for numbering

subsections, formulae and figures.

The section and subsection numbers assigned in this dissertation are shown in square brackets and

are followed by the original sectioning numbers, as found in the published version of the manuscripts.

Similarly, for formulae and figures the original number from the published version of the manuscripts is

preceded by the dissertation sectioning number. Furthermore, figures are shown in color also when they

were originally published in black and white.
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Abstract

Inspired by optical recordings from visual cortex which show maps of orientation selec-

tivity, and the finding that very similar patterns of population activity occur when the

neurons fire spontaneously (Kenet et al., 2003), we approach the question of how the

concept of cortical maps may be related to the concept of temporal coding. To this end

we analyzed parallel spike recordings performed using a 10 × 10 electrode grid covering

an area of 3.6 mm × 3.6 mm of cat visual cortex for occurrence of spike correlation.

We calculated all possible pairwise correlations between multi-unit activities (MUA) by

cross-correlation and extracted significantly correlated pairs using a boot-strap procedure.

The MUAs involved in correlated pairs were typically involved in more than a single cor-

related pair. Using methods of graph theory we found that the whole set of correlated

MUAs decomposes into a small number of groups of MUAs that have a high degree of

overlap of the mutually correlated pairs.

Mapping these groups back onto the spatial arrangement of the recording electrodes re-

vealed that these also correspond to spatially segregated clusters. The spatial scale of

this correlation map is in agreement with the scale of orientation tuning maps found by

optical imaging.

Keywords: spike synchronization; maps ; visual cortex
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[1].1 Introduction

Most cells in the primary visual cortex are selective for orientation and respond best, i.e.,

by increasing their rates, to their optimal stimulus. Neurons located in different columns

but with same stimulus preference coherently show high activity during the same, optimal

stimulus, as indirectly shown by optical imaging. Moreover, it has been shown that the

firing rate of a spontaneously active single neuron strongly depends on the instantaneous

pattern of the ongoing population activity in a larger cortical area (Tsodyks et al., 1999).

Very similar patterns of population activity were observed, both when the neuron fired

spontaneously and when driven by its optimal stimulus (Kenet et al., 2003). On the other

hand, the temporal coding hypothesis suggests that coordinated spiking activity on a fine

temporal scale should occur in the nervous system (Nelson et al., 1992) and is suggested

to be used for information coding. Accordingly, modern theories of the primary visual

pathway contain spatial and temporal aspects accounting for the observed cell behavior

in order to explain visual information processing.

We therefore approach the question of how the concept of temporal coding of single

neurons are related to the overall functional architecture. More specifically, we ask if

correlated neurons are arranged in a specific spatial organization that may be related

to maps of orientation tuning. Parallel spike recordings based on using a 10 × 10 elec-

trode grid (Utah electrode array, Bionic Technologies, Inc., Salt Lake City, UT, USA)

covering an area of 3.6 mm × 3.6 mm of cat visual cortex (Warren et al., 2001) allow

us to address the question of the relation of correlated neuronal activity to the distance

and the spatial arrangement of the recording sites. Data were recorded from area 17

of anesthetized cat during spontaneous activity, and under fullflash treatment with two

different stimulus intensities. We first analyze the simultaneous multi-unit recordings for

pairwise correlations using cross-correlation analysis and evaluate their significance us-

ing bootstrap techniques. In a next step, we identify groups of correlated pairs that are

highly mutually intra-correlated. Finally, mapping these groups back onto the electrode

positions and thereby to cortical space, allows us to relate their spatial arrangement to

the spatial scales found for orientation tuning maps.

[1].2 Methods and Results

[1].2.1 Detection of Correlated Spiking Activity

We analyzed the spiking activities that were recorded from the grid of electrodes (Fig.

[1].1) for pairwise correlations, during spontaneous activity (SP; no stimulus) and during
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full flash stimulation with two different intensities. We segmented epochs of high intensity

(HI) and low intensity (LI) into two separate data sets and analyzed them separately. For

simplicity we restricted ourselves to the evaluation of the multi-unit activities (MUA),

and requested a minimal firing rate of 1 Hz for further consideration. This left us with 80

parallel MUA spike trains during SP and 83 during LI and HI for further analysis. From

these we computed cross-correlations (CCH, Perkel et al., 1967) of all possible pairs in

the different stimulus conditions. To evaluate the significance of the correlation, we used

a boot-strap method that accounts for the firing rate changes of the neurons. Methods

that rely on trial repetitions (e.g., Aertsen et al., 1989) cannot be used here since under

the spontaneous condition we have only one trial. Thus we generated surrogate data sets

(100) that account for the firing rate changes in the data by dithering the individual,

original spike times within a given time interval (Hatsopoulos et al., 2003). Dithering

is performed for each individual spike of each of the parallel MUAs. Each spike was

dithered by random placement (equal probability) within a time interval of pre-defined

width positioned symmetrically around the original spike time. Since the widths of the

peaks in the original cross-correlograms were typically in the range of 30-50 ms, the dither

time interval was chosen such (70 ms) to destroy the temporal correlation while keeping

slow rate variations.

For each surrogate data set we computed the cross-correlation in the same way as for

the experimental, original data, which finally resulted in a mean cross-correlogram of

all surrogates including the standard deviations for each delay τ (Fig. [1].1C). Spike

correlation between two MUAs is considered significant, if the center peak of the smoothed

CCH (box car kernel of 10 ms width) exceeds two standard deviations (i.e., a significance

level of 5%) of the surrogate data. Then a pair is called correlated. A total of 148/3160

pairs were significant during SP, 78/3402 during HI and 203/3402 during LI.

[1].2.2 Groups of Inter-Correlated Pairs

Representing the pair correlations in form of an undirected graph, in which each MUA is

represented as a node, and existence of correlation by an edge between the two involved

MUAs, we found that the connection degree of edges per node was typically larger than

two, i.e., a single MUA is typically correlated with more than two other MUAs simultane-

ously. This led us to identify cliques of correlated pairs, i.e., groups of all-to-all mutually

correlated MUAs. Table [1].1 shows for the case of LI how often a clique of k nodes, i.e.,

MUAs, were found. Surprisingly, we found cliques with up to k = 9 nodes. In addition,

we noticed that cliques often have mutually overlapping members.
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Figure [1].1: A. Dot display of MUA spiking activity under low intensity
stimulation measured simultaneously by a grid of electrodes (see B). MUA
id corresponds to the electrode position numbered from upper left to lower
right, each line from left to right. B. Electrode recording grid. 10 × 10
Utah electrode array covering 3.6 mm × 3.6 mm of the cortex with an inter-
electrode distance of 400 µm. Electrodes marked by a black circle were broken
and did not deliver any signal. MUA signals with rates below 1 Hz were not
considered for further analysis (corresponding electrode positions marked by
crosses). C. Cross-correlogram of 2 MUAs (recorded from electrode 52 and
72, marked by blue circles in B.). Raw cross-correlogram (black) computed
on the time resolution of 1 ms. The red line shows the smoothed CCH (kernel
width: 10 bins of h). The green line indicates the mean of the predictor, the
blue line the significance level (mean plus twice the standard deviation). If
the center peak of the smoothed cross-correlogram exceeds the significance
level, the pair of MUA is considered to be significantly correlated.

k 2 3 4 5 6 7 8 9
# 23 18 9 8 2 2 3 1

Table [1].1:

This led us to define groups of highly intra-correlated MUAs (GIC) according to the fol-

lowing conditions: (1) only cliques with a minimum of k = 3 members were considered

and, (2) cliques are requested to have a minimal overlap of one member. Interestingly, as

a result the graph decomposed into only a small number of completely disjoint subgraphs

(3 during SP, 2 during HI and 4 during LI). The GICs contained 4, 13, and 19 MUAs

during SP, 7 and 15 MUAs during HI and 14, 3, 11, and 21 during LI (see Fig. [1].2).

Although cliques were requested to have a minimal overlap of one member, we actually

find that each N-clique within a GIC has an overlap of N-1 nodes of other cliques, if at

least one other clique with M≥ N nodes exists. A single MUA may be involved in up to

15 pairwise correlations.
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Figure [1].2: Graph of all significant pairwise MUA correlations under LI
stimulation. Each MUA is indicated by a square that includes the id of the
MUA. These represent nodes, and edges indicate an existing correlation be-
tween the two connected MUAs. The four circles of nodes show groups that
are composed of different cliques. Conditions to form groups are: a minimal
clique size of k = 3 and a minimal overlap between cliques of 1. The resulting
groups (GIC 1 - GIC 4) contain 14, 3, 11 and 21 MUAs, and are composed of
41, 3, 21 and 91 pairwise correlations, respectively. Additional squares (gray)
mark nodes that do not fullfill the above criteria, i.e., do belong to cliques of
only k = 2 members, and thus do not belong to one of the groups. MUAs 52
and 72, for which we have shown the cross-correlation in Fig. [1].1C, are both
members of GIC 3.

[1].2.3 Spatial Organization of Correlated Activity

Now we address the question how the GICs are spatially arranged. Therefore we map

the members of the identified groups back onto the recording grid and mark members

of a group by filled circles of a specific color (Fig. [1].3A). Interestingly, the different

GICs form separated, compact clusters in space. Thus, the groups of MUAs that are

highly intra-correlated also form localized groups in space. Two of the clusters (green

corresponding to GIC 1 and red corresponding to GIC 3, cf. Fig. [1].2) also included

one remotely located MUA. Note, that also the remote MUAs are included in multiple

correlations with the rest of the MUAs of the corresponding GIC. Circle radii indicate

number of MUAs the indicated MUA is correlated to. Our findings clearly show that
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the spatial organization of correlations are not randomly or homogeneously distributed

in space, but rather cluster in certain spatial domains. The spatial scale of the GICs is

directly comparable to the spatial scale of orientation maps found by optical imaging (Fig.

[1].3B). Across the different stimulus conditions the number of correlated MUAs differ (see

Section [1].2.1): during HI or SP less MUAs appear to be correlated as compared to LI.

As a consequence, in these conditions a lower number of GICs are found (see Section

[1].2.2). However group memberships stay mainly the same across different conditions.

Variation of the dither width had a minor impact on the results. For a smaller dither

width as used for the former analysis (30 ms), a smaller number of correlations appeared

to be significant. The involved MUAs formed the same spatial clusters as for larger dither

widths, but with less degree of connectivity and less members. For increasing dither

widths, the clusters became more and more pronounced. Beyond a dither width of 70 ms,

cluster members and degree connectivity remained stable.
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Figure [1].3: A. Spatial arrangement of groups of highly intra-correlated
MUAs for the same data as shown in Fig. [1].2 during LI. The array marks
the electrode grid used for the recording. Filled circles of a specific color in-
dicate electrode positions of MUAs that are identified as members of a GIC.
The radii of the filled circles indicate the number of correlations the MUAs
were involved in (see marker bar on the right). GICs result in spatial clusters:
GIC 1 corresponds to the green cluster (top, horizontal), GIC 2 to the blue
cluster (center), GIC 3 to the red cluster (left, vertical), and GIC 4 to the
cyan cluster (right, vertical). B. Comparison of spatial scales. Optical imaging
orientation map for one stimulus orientation (full field grating; modified from
Kenet et al., 2003) including the electrode grid used in our study are both
shown on the same scale.
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Figure [1].4: Distance dependence of correlations. The histogram shows as a
function of electrode distance the probability of finding correlated MUA pairs
(during LI, same data as shown in Figs. [1].2 and [1].3).

This study investigated the spatial organization of correlated activity in cat visual

cortex. Multi-unit activities were recorded by a grid spanning an area of 3.6 × 3.6

mm2 allowing us to investigate the relation of correlated MUA pairs to spatial structure.

On average 5% of all possible pairs were significantly correlated. To capture the cor-

relation structure, we constructed a graph with each MUA being a node and assigning

edges to significantly correlated MUAs. This led to the finding that the large number of

pairwise correlations (about 185) separate into a low number of groups (2-4) of highly

intra-correlated MUAs with 3-21 members per group (GICs). By mapping the detected

GICs back onto cortical space, we found that the members of the individual GICs also

clustered in space revealing a relationship between correlation pattern and spatial pattern.

The occurrence of correlation between pairs of MUAs appeared to be distance dependent.

When adjacent, they occurred most frequently, increasingly less up to about 3 mm, and

then again increasingly more (Fig. [1].4). Moreover, the spatial extent of the GICs corre-

sponds to the spatial scale of the orientation tuning map obtained by optical imaging (see

Fig. [1].3B, Kenet et al., 2003), as well as by electrophysiological imaging maps (War-

ren et al., 2004). Thus we conclude that our results in respect to the extent and spatial

arrangement of the clusters are in agreement with the spatial organization reported in

visual cortex contained by optical imaging (Huebener et al., 1997).

Ts’o et al. (1986) investigated cross-correlations between cortical neurons in respect to

long-range horizontal connections, i.e., distances of up to several mm. Their study sug-

gests a high degree of inter-connectivity between cells having the same orientation pref-

erence within as well as between columns, thereby strongly supporting our interpretation

of our results. Das and Gilbert (1999) investigated short-range interactions and observed

that neighboring cells in a range of up to 500 - 800 µm show spike correlations independent

of the orientation preference. However, we found correlations on a scale of distance. The

GICs have spatial extents that exceed this short-range interactions in all but one GIC.
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Furthermore, an additional important difference between their experiments and ours are

the type of stimulus. Here we investigated spontaneous activity as well activity under

full-flash treatment, whereas Das et al. used isolated optimal bars in the receptive fields

of the neurons. More comparable to our results is the study by Tsodyks et al. (1999) who

found orientation maps under spontaneous activity that is related to the tuning of the

individual cortical neurons and concluded that the underlying functional architecture is

associated to tuning properties. Another important observation, adding credence to the

possibility that our observed GICs reflect the underlying connection network in area 17

is that these correlation maps are highly similar for the 3 recording conditions. We con-

clude that the observed correlation patterns can not be considered to be random in view

of the overall number of correlations. Indeed, the correlations between MUA pairs appear

to be well organized, particularly when distance dependent correlations are compared to

orientation tuning in distinct columns. Since an orientation stimulus was not used here,

MUA correlation cannot definitively be ascribed to orientation tuning. Nevertheless, we

propose that these correlations of neuron pairs are linked according to orientation tuning.

For a categorical affirmation these results would have to be verified using an adequate

experimental paradigm using oriented stimuli. We also aim to address in future the tem-

poral dynamics in the correlation patterns of the clusters. Since Kenet et al. (2003) found

different orientation maps to be activated dynamically and systematically during sponta-

neous activity, we expect the GICs to be dynamically correlated and alternatingly active.

Another open question is related to the order of spike correlations. Due to the limitation

of the cross-correlation method to be restricted to pairwise correlations only, we could

not determine if the MUAs involved in more than one pair actually reflects the existence

of higher-order correlations, i.e., spike correlation patterns that involve more than two

neurons at a time (e.g., Schneider and Grün, 2003).
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Abstract

When inspecting visual scenes, primates perform on average four saccadic eye movements

per second, which implies that scene segmentation, feature binding, and identification of

image components is accomplished in <200 ms. Thus individual neurons can contribute

only a small number of discharges for these complex computations, suggesting that infor-

mation is encoded not only in the discharge rate but also in the timing of action potentials.

While monkeys inspected natural scenes we registered, with multielectrodes from primary

visual cortex, the discharges of simultaneously recorded neurons. Relating these signals to

eye movements revealed that discharge rates peaked around 90 ms after fixation onset and

then decreased to near baseline levels within 200 ms. Unitary event analysis revealed that

preceding this increase in firing there was an episode of enhanced response synchroniza-

tion during which discharges of spatially distributed cells coincided within 5-ms windows

significantly more often than predicted by the discharge rates. This episode started 30 ms

after fixation onset and ended by the time discharge rates had reached their maximum.

When the animals scanned a blank screen a small change in firing rate, but no excess syn-

chronization, was observed. The short latency of the stimulation-related synchronization

phenomena suggests a fast-acting mechanism for the coordination of spike timing that

may contribute to the basic operations of scene segmentation.
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[2].1 Introduction

When inspecting visual scenes it can be anticipated that a novel input constellation needs

to be processed each time a saccadic eye movement is performed to shift the gaze to a new

position. Primates perform up to four saccades per second, suggesting that feature extrac-

tion, perceptual grouping of features belonging to individual objects, and identification

of objects can be accomplished within about 200 ms. Similar conclusions on processing

speed have been derived from psychophysical experiments with human subjects who had

to recognize individual objects in cluttered scenes (Fabre-Thorpe et al., 2001). Based on

the evidence that processing can be surprisingly fast, it had further been proposed that the

neuronal networks at early stages of visual processing should accomplish functions such

as feature extraction, scene segmentation, and perceptual grouping by exchanging only a

few spikes per neuron (Guyonneau et al., 2004). In this case, only a limited amount of

information can be encoded by varying the discharge rate and it has thus been suggested

that, in addition, the cortex might exploit a temporal code. In this case, information

would also be encoded in the precise timing of action potentials (Fries et al., 2001, 2007;

Grün et al., 2002a; Hopfield, 2004). However, little is known about the responses of cells

in the visual cortex when animals are free to explore natural images. In cats and mon-

keys, neuronal responses to stimuli placed in the cells’ receptive field (RF) are modified by

stimuli presented outside the ”classical” RF (Jones et al., 2001; McAdams and Maunsell,

1999; Sugita, 1999; Trotter and Celebrini, 1999). Recent studies in monkeys exposed to

complex visual stimuli that simulate natural viewing conditions have shown, in addition,

that neurons in the primary visual cortex (V1) significantly reduce their firing when a

larger portion of the visual field is covered with the sample image (Vinje and Gallant,

2000). These context-dependent modulatory processes have been hypothesized to partici-

pate in stimulus selection, scene segmentation, and perceptual grouping. However, little is

known about how these multiple modulatory influences combine when animals are allowed

to freely scan visual scenes and no data are available on precise timing relations among

the discharges of simultaneously recorded neurons. We hypothesized that information

is encoded not only in discharge rates but also in timing relations among the spikes of

individual neurons; thus we should find indications of precise timing, e.g., synchronization

of discharges in these data.

Using an array of eight individually adjustable tetrodes we simultaneously recorded the

discharges of multiple neurons from the V1 of two adult, male capuchin monkeys (Ce-

bus apella). The animals were presented with a collection of pictures of different natural

scenes. Using Unitary Event (UE) analysis, we demonstrate an increased and highly pre-

cise spike synchronization that is dissociated from the later increase in neuronal firing
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rate. These results suggest that coordination of the timing of discharges may play an

important role in the initial processing of signals in V1.

[2].2 Methods

Subjects and recording setup

All experiments followed institutional and National Institutes of Health guidelines for the

care and use of laboratory animals. Two adult, male capuchin monkeys (Cebus apella)

weighing 3-4 kg served as subjects for this study. All surgical and recording procedures

were similar to those in Friedman-Hill et al. (2000). A hard plastic recording chamber

with eight independently movable nichrome tetrodes was mounted over the surface of the

V1. Guiding tubes were positioned on top of the dura mater. Tetrodes could be lowered

≤ 3-4 mm; thus we could record from the top cortex as well as a second section of V1

located underneath. After the end of recordings, the head post, eye coils, and manipulator

were removed and after full recovery the animals were donated for adoption.

Visual task and eye movements

The animals were seated in a chamber dimly lit at the low scotopic level and presented

with a collection of 15 pictures of different natural scenes that were displayed on a 21-in.

computer monitor (frame rate 60 Hz) located 57 cm in front of the animals, subtending

30 × 40o of visual angle. Each image was presented at least three times in a single record-

ing session. The animals were allowed to freely explore natural images (”images”) or black

frames (”blank”). The experimental protocol required the animals to maintain their gaze

for ≤5 s within the limits of the frames, to be rewarded with a drop of juice. To maintain

alertness, we also presented black frames that contained a single central fixation spot that

the animals had to fixate for 1 s to be rewarded (1o window). Vertical and horizontal eye

positions were monitored with a search coil driver (DNI Instruments; resolution: 1.2 min

of arc) by magnetic induction of an implanted coil (Judge et al., 1980) and then digitized

at 2 kHz (see Fig. [2].1). Eye coils were made of three loops of Teflon-coated wire and

implanted over the sclera, one in each eye. Eye coils were calibrated using fixation points

located at nine different positions on the screen. The calibration procedure was performed

at the beginning of each recording session.

Recordings

Neuronal activity of neighboring neurons was recorded with an array of eight individually

adjustable custom-fabricated nichrome tetrodes (1- to 2-MΩ impedance). The tetrode

wires were 12 µm thick made of nickel chromium (Kanthal, Palm Coast, FL), insulated
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Figure [2].1: Responses of cells in the primary visual cortex of a monkey
(Cebus apella) visually exploring a natural scene. A: example of the presented
images. Monkeys scanned the picture for ≤5 s. In this image presentation of
3 s duration, the colored line represents the eye trajectory. The yellow traces
represent the saccades, the red blobs represent the fixations, and the white
traces the unclassified eye movements. The blue and red arrows show the
initial and final positions, respectively. B: spike trains from 10 simultaneously
recorded cells for the time period shown in A. Each spike is represented as a
small vertical line. Note the diversity of activity for each visual fixation shown
in C. C: vertical and horizontal eye traces recorded during the same image
presentation, showing the automated eye classification assignments: yellow
and red for saccades and fixation, respectively. The white traces correspond
to uncompleted or unclassified eye movements. D-G: frequency distributions
of the duration of different eye movements in image (D-E) and blank (F-G)
conditions, respectively. Data are from 1219 images and 547 blank frames.
Total numbers of the respective eye movements are shown in parentheses.
The distributions for both saccades and fixations events differ significantly
between the image and blank conditions (Kolmogorov-Smirnov, P < 0.001).
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with polyamide, and wound together in a four-wire array. The tetrodes were mounted in

a 33G stainless-still tubing, which was beveled in a grinding wheel and gold plated (for

construction details, see Gray et al., 1995). The tetrodes were positioned in a circular ar-

ray, with a center-to-center distance of about 400 µm. The signals were amplified (×10K),

band-pass filtered for single-unit activity (0.5-5 kHz), sampled at 25 kHz, and then stored

for off-line spike sorting and analysis. Signals were fed through an off-line sorting pro-

gram to reconstruct the spike trains of units recorded simultaneously by a single tetrode.

Since the tetrode array remained in the animals for several days, each successive recording

through the same penetration was resumed always ≥200 µm deeper than that during the

previous session. This sampling procedure was continued until activity could no longer

be measured after which the guide tubes were repositioned. Some penetrations crossed

V1 twice in the anterior part of the calcarine sulcus, which led to systematic changes in

RF position.

Data analysis

EYE MOVEMENTS. An automatic algorithm was developed to extract from the eye

traces the different types of eye movements. Saccades were defined as eye movements

with an angular velocity >100o/s lasting for ≥5 ms. In addition, saccades were required

to exhibit a minimum acceleration of 170o/s2. The animals performed saccades with peak

velocities that ranged between 100 and >1,000o/s; the average peak velocity was around

400o/s. Fixation periods were classified as such when they lasted ≥100 ms with the eye

position maintained within 1o of the gaze location reached at the end of a saccade. To

minimize errors, only pairs of unambiguous saccade-fixation sequences were considered

for further analysis. The significance of firing rate changes during saccades was assessed

by comparing the rates in the first 20 ms and the consecutive 20 ms following the onset of

saccades. Significance tests for rate changes during fixations were performed comparing

the first and consecutive 50 ms after the onset of the events (t-test).

In this study animals freely directed their visual behavior. Thus after each saccade, cells

were stimulated by different portions of the image. The data thus reflect the average

responses of large numbers of cells to a large number of different stimuli. We address

each individual eye-movement-related event (saccade and fixation) as a ”trial” and the

measurement period during which electrode positions were kept constant and the con-

stellation of recorded cells was stable as ”recording session.” Trials of the same event

(saccades or fixations) were analyzed individually. Subsequently those occurring during

the same viewing condition (image or blank) and within the same recording session were

grouped. In Figure [2].2A we illustrate the segmentation of the data from a single im-

age presentation into trials. Since statistical analysis requires that trials have the same
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duration, we segmented the data using the onset of an eye-movement-related event as

reference (see histograms in Figure [2].1). For fixations, data were included from -25 ms

before fixation onset to 325 ms after fixation onset. This epoch was chosen so that the

UE analysis performed in sliding windows of 50 ms renders its first value at fixation onset.

If fixations were shorter, data from subsequent eye events were included to complete the

time window. An alternative would have been to include only the data from within the

trial that, however, would lead to a successive decrease of data for increasing fixation

duration. This in turn would lead to an increase in the noise. Therefore we decided to

include data from subsequent eye events. This probably introduced distortions toward the

end of the analysis window beyond 200 ms, but as the data show, the important events on

which our conclusions are based all occurred within the first 100 ms after fixation onset.

For the analysis of signals related to saccades, data were included from -25 to 75 ms.

ANALYSIS OF SPIKE CORRELATION. For the evaluation of temporal correlations be-

tween spikes from different neurons we used the UE analysis, a statistical method that

detects the presence of spike coincidences that exceed the level predicted by the respective

firing rates and evaluates their statistical significance (see METHODS; Grün et al., 1999,

2002a,b, 2003; Riehle et al., 1997) . Coincident firing that exceed the chance level by a

significant amount are called unitary events (Grün et al., 2002a). Although in principle

the method is able to handle correlations between more than two neurons, we restricted

the analysis here to pairwise correlations. The reason is that the analysis of triplet coinci-

dences or even higher complex synchrony patterns requires a higher number of samples to

obtain reliable statistics. Since we are interested in the dynamics of synchrony we use a

sliding-window analysis. The width of the window has to be chosen relatively small here

(50 ms) to account for the changes in the firing rate. Given these constraints we decided

to restrict the analysis to pairs of neurons only.

Spike trains of a pair of neurons recorded simultaneously during a particular trial were

aligned to the onset of the respective event (Fig. [2].2B, “EV”, here chosen as fixation

onset). To account for the nonstationarity of the neurons’ firing rates, the data were an-

alyzed with a sliding window (Grün et al., 2002b). An analysis window of fixed duration

Tw (here: 50 ms; gray box in Figure [2].2B) was slid along the data such that all data are

covered from the beginning to the end of the trial. The window was advanced in steps

corresponding to the time resolution h of the data (0.1 ms). The first window position

was centered at t = t0 = Tw/2 from trial onset and the last window around time Tw/2

before the end of the trial. At each position of the window all the data within the window

were analyzed for unitary events and the analysis was repeated sequentially for the next

positions tk = t0 +kh, where k is the index of the window positions. The results obtained
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Figure [2].2: Unitary event (UE) analysis. A: trial alignment and sliding
window approach. The simultaneous spike trains of 2 neurons are aligned
according to the relevant behavioral event (EV, exemplified for fixations).
The data extracted in relation to such an event were from -25 ms before until
325 ms after the event. For analysis we applied a sliding window Tw (width
50 ms) that was slid along the data in the time resolution of the data of 0.1
ms. At each position of the window the UE analysis was newly performed. B:
analysis within a window. Per trial j and per neuron i the number of spikes ci,j

within the window is extracted. From these the data firing probabilities per
trial per neuron are calculated by dividing the spike counts by the number
of bins N in the window (here: 500 bins of h = 0.1 ms). These probabilities
then serve to calculate the expected number of coincidences. C: extracting
the empirical number of coincidences in a single trial. Within a single trial the
number of coincidences is extracted as the joint spike events of the 2 neurons
occurring within the same bin (of 0.1 ms) (marked in light gray). D: to also
detect coincidences with small temporal jitter, the spike trains are shifted
against each other in units of the bins, with increasing shift. One neuron
is kept fixed as a reference, whereas the spike train of the other is shifted
forward and backward up to the maximal allowed jitter b (here 5 ms). The
total number of coincidences within the trial is then given by the sum of all
L = 2(b/h) + 1 individual shifts. For simplicity we omitted the time indices
of the window positions in the figures.
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for a given window position were plotted at the time point corresponding to the center

of the windows (Fig. [2].2B, indicated by arrows) to obtain time-dependent measures of

UEs.

The basic operation in the UE method is to compare the empirical number of coincidences

to the expected number that would occur by chance given the firing rates of the neurons.

Additionally, to account for nonstationary rates across trials (Grün et al., 2003), as are

typically present in data of awake behaving animals and in particular in the data treated

here, the relevant measures are obtained from single-trial analysis and only subsequently

summed across trials. Thus within the analysis window the expected number of coinci-

dences is calculated on the basis of the trial-by-trial firing probabilities pi,j , which are

estimated by the spike count ci,j of neuron i in trial j divided by the number of bins N

within a window: pi,j = ci,j/N, where N = Tw/h (Fig. [2].2C). The joint probability for

finding a coincidence by chance per trial is calculated by the product of the single-neuron

firing probabilities p1,j · p2,j. The expected number of coincidences per trial j results from

multiplying this probability with the number of bins N that are included in the analysis

window: nj
exp = p1,j · p2,j · N . The total number of expected coincidences within the

window is derived from the sum of the expected numbers per trial: nexp =
∑M

j=1
nj

exp.

The total empirical number of coincidences per window is derived simply by counting the

coincident events (spikes of both neurons within the same bin of width h) within a trial

and taking the sum across all the trials. However, being interested in detecting coinci-

dences that may occur with a small temporal jitter (e.g., up to b = 5 ms), we applied

the ”multiple-shift” approach (Grün et al., 1999). In this method the coincidences within

a single trial are detected by shifting the second spike train against the first (reference)

spike train (see Fig. [2].2D). The shift is stepwise increased from 0 in steps of h = 0.1

ms up to b = 5 ms (for positive and negative shifts). For each shift l of the L = 2(b/h)

+ 1 shifts, the exact coincidences nj,l
emp are counted. The total number of coincidences

considering all shifts then yields the total number of empirical coincidences in that trial

nj
emp =

L
∑

l=1

nj,l
emp

(Fig. [2].2D). The total sum of the empirical coincidences in a window is then given by

the sum of all coincidences across the trials

nemp =

M
∑

j=1

nj
emp
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Finally, we compared the empirical nemp to the expected number nexp of coincidences

to detect significant deviations. To this end, we calculated the joint-p-value jp [i.e.,

the probability of getting the given number of empirical coincidences (or an even larger

number) under the null hypothesis of independent firing]. The distribution that represents

the probability to find a given number of coincidences under this null hypothesis is given

analytically for the case of Poisson processes. Then the coincidence counts follow a Poisson

distribution, with its mean corresponding to the expected number of coincidences (for the

analytical derivation see Grün et al., 2002a). (See also the discussion on deviation from

the Poisson assumption in Controls in RESULTS.) Then the significance of nemp, given

nexp, measured as the joint-p-value, yields (Grün et al., 2002a)

jp(nemp, nexp) =

∞
∑

r=nemp

nr
exp

r!
exp(−nexp)

If its value is below an a priori threshold (here chosen as 5 %) coincident firing (synchrony)

is classified as significant and the unitary events identified in this way are expressed as

unitary event rate in a particular window. For better visualization of the significance val-

ues (see Fig. [2].3D) we use a log-transformed measure known as the joint-surprise (Grün

et al., 2002a). In summary, for each window position we calculate the expected number of

coincidences, the empirical number of coincidences, and the unitary events, all expressed

as rates, thus obtaining time-dependent functions of the respective measures: nemp(t),

nexp(t), and UE(t). The described analysis was performed for each pair of simultaneously

recorded neurons and separately for each session. To derive population statistics, the

time-dependent functions were averaged across all neuron pairs for a particular type of

trials (fixations or saccades). This yielded the average coincidence rates (expected and

empirical) and the average UE rate as functions of time. An example of a UE analysis

for a single pair is shown in Figure [2].3.

[2].3 Results

Eye movements during free viewing

During free viewing of natural images, the animals performed eye movements that were

categorized in saccades or fixation periods. Figure [2].1, A-C shows one example of the

presented visual scenes together with single-unit responses and the corresponding eye-

movement traces. We first examined distributions of the various eye movements for all

”image” and ”blank” conditions. These distributions differed markedly in the two con-

ditions (compare Fig. [2].1D and E with Fig. [2].1F and G). With images, saccades
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Figure [2].3: Example of pairwise UE analysis. A: raster plots of spike re-
sponses to 57 fixations on images of cell 1 and cell 2 recorded simultaneously.
Time 0 represents the onset of fixation. Red squares indicate unitary events.
UE analysis was performed within sliding windows of Tw = 50 ms. B: smoothed
poststimulus time histograms (boxcar with a window of the same width as
used for UE analysis) of cell 1 (dark gray) and cell 2 (light gray). C: expected
number of coincidences (blue) and empirical number of coincidences (pink)
expressed as rates. There are many more coincidences than expected at the
rising phase of the firing rate response. D: significance of UEs expressed by
the surprise measure. The surprise is not shown for values of −∞ for windows
in which one neuron does not have any spikes (i.e., 180-200 ms). Dashed lines
correspond to a significance level of 5% (used here for UE detection): red for
excess coincidences, blue for lacking coincidences.
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and fixation periods occurred typically every 250-300 ms, about sixfold more frequently

than during the scanning of blank frames. Saccades were significantly longer during the

blank condition than during the image condition and fixation times were scattered more

broadly (Kolmogorov-Smirnov, P < 0.001). The distribution of the fixation durations in

the image condition shows a clear peak at 230 ms, with 57 % of fixations lasting between

150 and 350 ms. The corresponding distribution in the blank condition is more dispersed

and fixation times are longer.

Firing rates during free viewing

We simultaneously recorded one to three cells per tetrode with at least eight tetrodes and

analyzed 418 single units, individually identified by a manual clustering method (Gray

et al., 1995). The receptive fields (RFs) of most units were located within 5-10o from

the center of gaze and were <2o. About 15 % of the recordings were made below the

opercular layer. The RFs of these cells were located within 15o and their sizes were <5o.

We pooled the cells from these two regions of V1 because we assumed that there are no

basic differences in firing statistics. No further RF properties were determined to save

time for data acquisition during free viewing.

The significance of firing rate changes during saccades was assessed by comparing the

rates in the first 20 ms after the onset of saccades with those in the subsequent 20-ms

interval using a t-test (P < 0.05). For fixation we compared the first 50-ms interval with

the consecutive 50-ms interval after the onset of the event. In the image condition, 30

% of the cells significantly increased their firing rate (Table [2].1) during the fixation pe-

riods and 23 % of the cells significantly decreased their firing during saccades. In the

blank condition significant rate changes occurred in <2 % of the cells (Table [2].1). We

examined the time course of the firing rate changes for all units by computing averaged

histograms (1-ms bin width) using the onset of saccades or fixations as trigger. Given that

each saccade or fixation had a different duration, each rate point (bin) is expressed as the

average over the entire sample of recorded neurons, normalized to the number of neurons

and trials contributing to that bin. The plots are truncated at time points beyond which

<90 % of the neurons contributed to the averages. Figure [2].4A summarizes the results

for the image condition. Whenever the animals fixate, average firing rates increase, with a

peak at about 90 ms after fixation onset, and then steadily decrease despite ongoing visual

fixation. In the grand average, saccadic eye movements were associated with a decrease in

firing rate consistent with saccadic suppression (Burr et al., 1994). In the blank condition

(Fig. [2].4B) all changes in firing rate started from a lower baseline level than that in the

image condition. Fixation periods were associated with an increment in firing rate that

was smaller and developed more slowly and was more sustained than that in the image
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Changes in Firing Rate Incidence of Synchronous Firing
(Percentage of Cells, n=418) (Percentage of Total Pairs, n=1369)

A B C D
Increase Decrease No Change Unitary Events

Cue fixation 1.4 1.2 97.4 21.3
Image saccades 0.4 23.2 76.4 10.8
Image fixations 30.4 0.2 69.4 34.0
Blank saccades 0.2 1.4 98.4 0.4
Blank fixations 0.7 0.2 99.1 5.0

Summary statistics of the full data set.

Table [2].1: A-C: percentage of cells showing significant changes in firing rates
during the the different phases of scene inspection. The significance of changes
during saccades was assessed by comparing the rates in the first 20 ms and
the consecutive 20 ms following the onset of saccades and for fixations by
comparing the first and consecutive 50 ms after the onset of the respective
events (t-test). Positive or negative differences were classified as increments
and decrements, respectively. D: percentage of cell pairs showing UEs in the
intervals from 20 to 50 ms (saccades) and 50 to 100 ms (fixations) after the
onset of the respective events.

condition. This modulation of firing rate is most likely due to corollary attention-related

activity associated with eye movements (Buisseret and Maffei, 1977; Purpura et al., 2003).

However, these changes were significant in only 4 of 418 single units. Saccadic eye move-

ments were not associated with modulations in rate. During fixation of a single fixation

spot displayed on an otherwise blank screen, firing rates increased rapidly toward a level

corresponding to baseline activity in the image condition and then decayed slowly. This

increase was significant in only 2 % of the neurons. In this case measurements were trig-

gered when the axis of gaze entered the fixation box (1o). Thus the first window contains

activity associated with the end of the saccade preceding the fixation.

Temporal relations among the discharges of simultaneously recorded cells (UE analysis)

We hypothesized that rate codes are complemented by a temporal coding strategy and

analyzed the data for coordination of spike timing among the discharges of simultane-

ously recorded neurons. Therefore we examined correlations between the firing patterns

of 1,369 cell pairs that were obtained in 80 recording sessions with ≤12 simultaneously

registered neurons. Altogether, 4851 trials were analyzed with images and 383 in the

blank condition. For correlation analysis we examined responses during the first 50 and
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Figure [2].4: Time course of changes in firing rates and synchrony associated
with different eye movements. Plots are color coded (see D) for images (left
column) and blank condition (right column). The gray lines in the right
column refer to the condition where the animals saccade toward and fixate a
central spot on an otherwise blank screen. In this condition the cells’ receptive
fields (RFs) fall on the dark screen. Traces for saccades are shorter than those
for fixations because of the inherently shorter duration of these events. A and
B: firing rates computed for and averaged over 418 single units. For each
1-ms bin, the averaged rate is computed by normalizing to the number of
contributing neurons and to the corresponding number of trials per neuron.
Abscissa: time from onset of saccades and fixations. C and D: frequency of
empirical coincidences, defined as pairwise joint firing within 5-ms intervals
computed from 1,369 simultaneously recorded cell pairs. E and F: difference of
the empirically observed and the expected coincidence rates, the latter being
derived from the corresponding firing rates. G and H: occurrence of unitary
events (UEs), i.e., events of joint firing that significantly exceed (5 %) the level
of coincident firing expected from the firing rates (Grün et al., 1999, 2002a,b,
2003).
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300 ms following the onset of saccades and fixations, respectively. Because of the variable

duration of these eye events, these interval durations were chosen to get a reasonable num-

ber of trials for reliable statistics (see METHODS). The estimation of temporal relations

among the spikes of simultaneously recorded neurons becomes difficult when discharge

rates are low and highly nonstationary, as is the case during the inspection of complex

scenes. Therefore we used the UE analysis. Here, we address correlated firing as unitary

events if the discharges of two neurons coincide within a window of 5 ms and if these co-

incidences significantly exceed what is predicted by the actual firing rates. To account for

nonstationary firing rates, comparisons are computed between the observed (empirical)

number of coincidences and the expected number of coincidences within a sliding window

(here: 50 ms wide) that is moved in 0.1-ms steps along the time series. In addition, pos-

sible non-stationarities of firing rates across the trials are controlled for by estimating the

firing rates and the resulting expected joint-probabilities on a trial-by-trial basis within

the sliding windows.

Table [2].1 (under heading D) shows the incidence of UEs, i.e., of coincident firing that

significantly exceeds expected levels for all cell pairs. During fixation on images, >34 % of

all cell pairs (n = 1,369) exhibited UEs. During cue fixations and saccades on images, 21

and 10 % of all pairs showed UEs, respectively, but the mean rate of UEs was much lower

than that during fixations on images (see Fig. [2].4H). In all other viewing conditions the

percentage of cell pairs showing UEs was <6 % and thus does not exceed the chosen level

of significance (5 %). The eye-movement-related time courses of the observed coincidences

and UEs, averaged over all cell pairs, are shown for the image condition in Figure [2].4G

and H. As expected, coincidences increase with firing rate but the precise time courses

of the respective increases differ (compare Fig. [2].4A and G). The reason is that there

is significantly more coincident firing than expected from the respective rates during the

early response phase. As the time course of the UEs indicates, this excess synchronization

of firing is transient, lasts for only about 40 ms, reaches a maximum already 50 ms after

onset of fixation (Fig. [2].4G), and decreases before the firing rates reach their maximum.

This excess synchronization is so marked that it is already clearly visible in the difference

between the observed coincidences and the coincidences predicted by the actual firing

rates (Fig. [2].4E and F). In the condition ”fixation on blank” (Fig. [2].4B, D, F, and H),

the observed coincidences are slightly higher than expected from the rates (Fig. [2].4F),

although this increase is not significant (Fig. [2].4H).

Controls

It can be argued that synchronous events are particularly likely if firing rates increase

jointly and abruptly, as occurs in response to rapidly changing stimuli. We examined this
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issue by intentionally destroying the exact timing of spikes while keeping the firing rate

profiles approximately constant. This is achieved by creating surrogate data by “dither-

ing” each individual original spike of each of the neurons within a given window around

the spike and reanalyzing the newly generated parallel time series in exactly the same

way as the original data. Similar approaches are described in Date et al. (1998); Gerstein

(2004), and Shmiel et al. (2006). As dithering width was increased from 0 to ±50 ms (cen-

tered at spike times), the maxima of the difference curves between observed and expected

coincidences decreased considerably (Fig. [2].5D). Accordingly, the UE rate dropped to

about 75 % at ±5 ms, to 50 % at ±10 ms, and approximated the level expected in the

case of independent firing at about ±40 ms (Fig. [2].5E). This decay rate corresponds

exactly to theoretical predictions derived for empirical coincidences that are successively

dithered under consideration of the size of the coincidence window and the temporal jitter

of the coincidences, indicating that the UEs were not due to transient rate co-variations

but are indications of excess synchrony (Pazienti et al., 2007, 2008). Pazienti et al. (2008)

showed that without the presence of excess synchrony there would be no decay at all.

Unavoidably, the firing rate profiles were also affected by the dithering and got smoothed

with increasing dither (Fig. [2].5A). As a consequence, the time course of the expected

coincidences was also affected (Fig. [2].5C). However, the effect of dithering was much

more pronounced for the observed than for the predicted coincidences. Dithering com-

pletely abolished the peak of observed coincidences around 50 ms after fixation onset.

Thus dithering is effective only on coincidences, which the UE analysis had identified as

nonspurious, thereby supporting the interpretation that the UEs arise from active syn-

chronizing processes.

To further corroborate this interpretation, we simulated spike trains that were either

completely independent or contained a known number of deliberately inserted coincident

spikes and then analyzed the data in exactly the same way as the experimental data. To

test whether the nonstationary rate profile of the experimental data (Fig. [2].6B, gray)

was causing a UE rate profile similar to that of the experimental data (Fig. [2].6A) we

simulated pairs of inhomogeneous Poisson spike trains with a firing rate profile that was

identical to that of the original data (Fig. [2].6B, gray). Thus these data included a

possible source for false-positive correlations, i.e., covariation of firing rate (Grün et al.,

2003). We generated a data set for 100 pairs of neurons and 100 trials per pair. For the

independent spike trains, the resulting UE rate (averaged over all pairs) (Fig. [2].6D)

shows no distinct peak and fluctuates around the low level expected from the 5 % sig-

nificance threshold. In contrast, when we injected additional coincident spikes (with a

coincidence rate profile shown in Figure [2].6B, black) and reduced the background rate
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Figure [2].5: Decreased synchronization with increasing dithering of spike
times. Dithering was applied to each individual spike of all data and the
dithered time series were analyzed for UEs as the original data (same param-
eters as in Fig. [2].3, i.e., coincidence width, 5 ms; sliding window width, 50
ms; here: shown for alignment relative to fixation onset only). Dither val-
ues varied from ±5 to ±20 ms in 10-ms steps, and from ±30 to ±50 ms in
20-ms steps (color code in C). A: average firing rates of all analyzed neurons.
Abscissa (for all plots): time from onset of fixations. B: frequency of empir-
ical and (C) expected coincidences. D: difference of the empirical and the
expected coincidences. E: significant coincidences/Unitary Events. Note that
dithering does not destroy all of the original coincidences. These remaining
coincidences depend on the ratio of the bin width (here 5 ms) over the dither
width.
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such that the total rate and the rate profile of the neurons remained the same as those

in the previous simulation, a prominent peak of UEs was detected. The choice for the

time course of the coincidence rate was based on one of our theoretical studies in which

we tested the detectability of intervals that included coincidences (Grün et al., 2002b).

We assumed Poisson statistics in the UE analysis, although being aware of the fact that

experimental spike trains typically deviate from that assumption. In the study of Pipa

et al. (2008) we showed that the spike train autostructure indeed has an impact on the

significance estimation of coincident spike events. We specifically tested for spike trains

with interspike interval (ISI) statistics given by a gamma-distribution and systematically

varied the shape factor of the ISI distribution, thereby modifying spike trains from highly

irregular to increasingly more regular firing. We found the false-positive rate to be at or

below the expected level, given the a priori significance level for realistically regular spike

trains (coefficient of variation values ranging from 0.2 to 0.8; Nawrot et al., 2008). Only

for unrealistically regular or highly irregular spike trains is the false-positive rate slightly

enhanced. Thus if spike trains are more regular than Poisson, the significance test assum-

ing Poisson statistics rather underestimates the significance. To test whether our result

of excess synchrony was not a result of false positives in the case of spike trains more

irregular than Poisson (e.g., as given by bursty processes), we performed an additional

control. We debursted the data, by excluding spikes that occurred within a time interval

of <5 ms after a former spike and reanalyzed the data again. Although in some data

sets the firing rate was considerably reduced, the occurrence and the time course of the

UEs, as shown for the original data, were preserved (not shown here). An alternative of

the significance test-based on an analytical description of the coincidence distribution for

such processes-is not known and hard to derive (see Pipa et al., 2008). Generating the

coincidence distribution by surrogate data is prone to errors: trial shuffling is not appro-

priate due to cross-trial nonstationarity, ISI shuffling would destroy potential second-order

structures within the spike trains, and other methods would affect the firing rates.

Grün et al. (2002b) showed that by varying the width of the analysis window it is pos-

sible to detect the existence and the width of the interval over which coincident spikes

were present. For analysis window sizes smaller that the interval of coincidences, not all

coincidences are detected and the UEs are underestimated. At the width of the window

that matches the interval of excess coincidences the significance curve exhibits a peak and

saturates for even larger windows. The center of the maximum always stays at the same

time. This is also evident in the data presented here (Fig. [2].7). By varying the width of

the analysis window from 20 to 60 ms we always found a maximum at 50 ms after fixation,

with a tendency of saturation after a width of 50 ms. This implies that regardless of the
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Figure [2].6: Comparison of real and simulated data. A: UE rate of the exper-
imental data during fixation aligned to fixation onset (as also shown in Fig.
[2].3). B: firing and coincidence rate profile used for the simulation. The gray
curve shows the average firing rate of all neurons (1-ms resolution). This firing
rate profile is then used in the simulations. For the case of independent neu-
rons (D), this time course is directly used to simulate inhomogeneous Poisson
spike trains. For dependent neurons (C), the firing of the simulated neurons
is composed of independent firing (background firing rate) and injected coin-
cidences at a rate corresponding to the profile shown in B (black). In the case
of injection of coincident spikes, the background firing rate was reduced by the
coincidence rate such that the neurons again had the same total rate as that
in the independent case. Each neuron was drawn with the same rate profile
and one neuron pair was simulated for 100 trials. Coincidences were inserted
with a temporal jitter of 5 ms. In all, 100 neuron pairs were simulated and
then analyzed in the same way as the experimental data (sliding window of
50 ms, allowed coincidence width of 5 ms). Time course of the UE rates of
the simulated data with (C) and without (D) coincidence injection.

52



Denise Berger 2. Synchronization in Primary Visual Cortex of Monkeys Viewing Natural Images

width of the analysis window, the method reliably detects the time course of nonspurious

coincidences that seem to be spread over an interval of about 50 ms. Taken together,

Figure [2].7: UE profile as a function of analysis window width. Data were
analyzed as for Figure [2].4G for various analysis window widths (20 to 60 ms
in 10-ms steps, color coded). The UE profiles exhibit an increasing maximum
for increasing analysis window width, which is most strongly expressed for
window size 40-60 ms. The peak height saturates for window sizes >50 ms.
The peak of these curves is at the same point in time (50 ms after fixation
onset).

these controls indicate that the unitary event analysis applied here reliably detects the

incidence and the time course of excess synchrony in nonstationary time series and ignores

spurious, rate-dependent coincidences.

[2].4 Discussion

In contrast to previous studies (e.g., Vinje and Gallant, 2000), we have not attempted

to establish relations between eye movements and neuronal responses resulting from the

passage of individual RFs over particular contours of the visual scene. Rather, we were

interested in the relations between response variables such as discharge rate and spike

synchronization during the various phases of visual scanning movements. Because our

animals were free to direct their gaze to any location on the images, the actual stimulus

for the cells changed with each saccade. Thus we measured the average behavior of cells

under natural viewing conditions. We reasoned that this should allow us to detect char-

acteristic, eye-movement-related response patterns and the results suggest that this was

indeed the case. The application of multielectrode recordings revealed for the first time
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a fixation-related, transient increase of response synchronization. This increase in coin-

cident firing is dissociated from the later increase in neuronal firing rate, suggesting that

temporal coordination of discharges may play a role in the initial processing of signals in

V1.

Methodological considerations

Because of the spike-sorting procedure that we applied to extract single-cell responses

from the tetrode signals it is likely that we underestimated the incidence of synchronous

firing. If cells recorded from the same tetrode discharge in precise synchrony, the respec-

tive spikes superimpose in a complex way and are excluded from analysis (Gray et al.,

1995). This limited our ability to detect synchronous firing of pairs of neurons recorded

by the same tetrode and it also precluded detection of synchrony among cells recorded

from different tetrodes if two cells recorded from one tetrode fired in precise synchrony

with a third cell, recorded by another tetrode. Of a total of 1,369 pairs 262 were cells

recorded from the same tetrode and 1,107 from distant electrodes. Thus we may have

underestimated the incidence of synchronous firing by & 20 %.

Functional implications

Several arguments suggest that the unexpectedly high incidence of synchronous firing was

due to synchronizing neuronal interactions rather than a by-product of stimulus-induced

covariation in firing rate. First, the statistical methods developed for the analysis of syn-

chronous firing, the unitary event analysis, is specifically designed to eliminate spurious

coincidences caused by joint rate increases. Second, the controls with dithering spike times

provided independent evidence that the UEs were not due to rate covariations. Third,

our simulations with artificially injected spikes showed that pure rate covariation could

not explain the high incidence of UEs.

Interestingly, the phase of enhanced synchrony set in right at the beginning of the rate

increases and reached its maximum 40 ms before the peak of the rate increase. Because

UEs are virtually absent during saccades and because retinal response latencies cover a

range of 30 to 60 ms, this implies that the synchronizing mechanism operates already and

preferentially on the very first spikes evoked by the newly fixated parts of the image.

A mechanism capable of achieving such rapid synchronization has recently been identi-

fied (Fries et al., 2007). When the visual cortex is engaged in oscillatory activity in the

gamma-frequency range, neurons in columns with related feature preferences oscillate in

synchrony probably because of strong reciprocal connections between these columns. This

has the effect that the onset latencies of responses to stimuli driving coherently oscillating

columns become synchronized because they can fire only during the depolarizing phase
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of the oscillation cycles (Engel et al., 2001; Fries et al., 2001, 2007, see also Volgushev

et al., 1998, for a related in vitro study). As a result this may lead to an increased syn-

chronization of the very first spikes of responses to stimuli that match the preferences of

synchronously oscillating columns.

A further mechanism suggesting that visually induced first spikes have a supportive role in

synchronization, based on an internal, saccade-locked signal, was recently hypothesized.

It was shown that there is a pronounced saccade-related, evoked local field potential (LFP)

signal (Bartlett et al., 1976). This in turn could serve as a reference signal to realize the

proposed amplitude-to-temporal code conversion suggested by Fries et al. (2007). Thus

the saccade-evoked LFP would provide the reference frame for the timing of induced spikes

and, in particular, would favor the first incoming spikes. There are first results supporting

this hypothesis (Ito et al., 2008) that will be reported elsewhere.

For scene segmentation and object perception, stimulus features that share similarities

tend to be bound together. Since neurons encoding related features engage in synchronous

gamma oscillations, it has been proposed that these oscillations serve the translation of

connectivity patterns into specific constellations of response synchronization that in turn

support rapid feature-specific synchronization of discharges (Fries et al., 2001). This pro-

posal is based on the evidence that precise synchronization of spikes selectively raises the

saliency of the synchronized discharges and thereby favors their further joint processing

(for review see Singer, 1999). The rapid synchronization of spikes in the early postsac-

cadic fixation could thus be a reflection of such a temporal coding mechanism.

It has been concluded from measurements of recognition times that in V1 computations

required for elementary scene analysis have to be accomplished within a few tens of mil-

liseconds (Fabre-Thorpe et al., 2001). Because this allows for only a few spikes per neuron,

it has been proposed that information should be encoded not only in the discharge rate

but also in the precise temporal relations between the individual discharges of neurons.

The present results support this scenario and suggest that the visual cortex possesses a

mechanism to complement rate codes with a fast temporal coding strategy adjusting the

timing of individual spikes. As suggested by the saccade-related occurrence of oscillatory

activity, this precise synchronization could be due to saccade-related oscillatory activity

of corollary origin. Several arguments make it appear likely that this corollary signal

is related to mechanisms of attention. There is abundant evidence for a close relation

between the mechanisms that control attention and saccadic eye movements, respectively

(Corbetta et al., 1998; Everling, 2007). Moreover, attentional mechanisms have been

shown to modulate the oscillatory patterning of neuronal responses, which in turn modu-

lates synchronous discharges. Focused attention and expectations are associated with an
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anticipatory entrainment of cortical networks in both beta and gamma oscillations (Fries

et al., 2001; Roelfsema et al., 1997) and responses to attended stimuli exhibit stronger

oscillatory patterning in the gamma-frequency range and stronger synchronization than

responses to nonattended stimuli (Schoffelen et al., 2005; Steinmetz et al., 2000; Tiitinen

et al., 1993). To further examine this possibility, field potential oscillation must be ana-

lyzed and related to the timing of spike discharges.

However, at this stage the possibility should not be dismissed that spike synchroniza-

tion is caused in addition by retinal or thalamic mechanisms. There is evidence that

the discharges of retinal ganglion cells are not independent and can become synchronized

with millisecond precision in a stimulus-specific way (Meister et al., 1995; Neuenschwan-

der and Singer, 1996). These synchronized volleys are transmitted with high temporal

fidelity by the lateral geniculate nucleus (Castelo-Branco et al., 1998; Usrey and Reid,

1999). Moreover, corticofugal projections to the lateral geniculate have been shown to

have a synchronizing effect (Sillito et al., 1994). Both the retinal and the corticofugal

synchronizing mechanisms induce coincident firing in neurons responding to continuous

contours, suggesting the possibility that this early synchronization contributes to scene

segmentation (Stephens et al., 2006). So far these synchronizations have been studied with

stationary flashed or continuously moving contours. Therefore it is unknown whether the

stimulation caused by the sudden arrest of rapidly moving contours, such as those occur-

ring at the end of saccades, can induce such synchronization.

In conclusion, our data revealed that scanning of natural scenes is associated with a

rapid succession of distinct fixation-related activation patterns that consist of a transient

increase in excess coincident firing that is followed by a transient increase in discharge

rate. This suggests the action of a fast-acting synchronizing mechanism that is in good

agreement with the evidence that basic operations of scene analysis must be accomplished

within a few tens of milliseconds in V1, most likely requiring temporal coding strategies.
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Abstract

Chances to detect assembly activity are expected to increase if the spiking activities of

large numbers of neurons are recorded simultaneously. Although such massively paral-

lel recordings are now becoming available, methods able to analyze such data for spike

correlation are still rare, because it is often infeasible to extend methods developed for

smaller data sets due to a combinatorial explosion. By evaluating pattern complexity dis-

tributions the existence of correlated groups can be detected, but their member neurons

cannot be identified. In this contribution, we present approaches to actually identify the

individual neurons involved in assemblies. Our results may complement other methods

and also provide the opportunity for a reduction of data sets to the “relevant” neurons,

thus allowing us to carry out a refined analysis of the detailed correlation structure due

to reduced computation time.

Keywords: massively parallel spike trains; spike synchrony; higher-order correlation;

data mining
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[3].1 Introduction

Synchronized presynaptic spiking activity is known to have a higher efficacy in generating

output spikes than non-coordinated spike timing (Abeles, 1982). Therefore temporal co-

ordination of spike timing is a commonly accepted signature of neuronal assembly activity

(Gerstein et al., 1989; Abeles, 1991; Singer et al., 1997; Harris, 2005). Consequently, ap-

proaches to detect assembly activity have focused on the detection of correlated spiking

activity on a millisecond time resolution.

With massively parallel recordings becoming available at an accelerating rate (Csicsvari

et al., 2003), chances to observe the signature of assembly activity are improving. How-

ever, currently we still lack the corresponding analysis tools (Brown et al., 2004). Most of

the existing methods are based on pairwise analysis, e.g. (Aertsen et al., 1989; Kohn and

Smith, 2005; Shmiel et al., 2006). Approaches to analyze correlations between more than

two neurons exist, but typically work only for a small number of neurons (Abeles and

Gerstein, 1988; Tetko and Villa, 2001; Dayhoff and Gerstein, 1983a; Grün et al., 2002a,b)

or consider only pair correlations when analyzing the ensemble (Schneidman et al., 2006;

Shlens et al., 2006; Berger et al., 2007; Eldawlatly et al., 2009) (a set of neurons is seen

as an assembly if most of them are pairwise correlated).

It is usually infeasible to simply extend existing methods that identify individual spike

patterns to massively parallel data due to a combinatorial explosion. Therefore we tried

new approaches that evaluate the complexity distribution (Staude et al., 2007; Grün et al.,

2008) or the intersection matrix (Schrader et al., 2008), which can handle massively par-

allel data and analyze it for higher-order spike patterns. These methods are able to detect

the presence of higher-order correlation, but do not identify neurons that participate in

the correlation. The goal of the present study is to resolve this issue: we want to directly

identify neurons that take part in an assembly as expressed by coincident firing. Our

aim is not, however, to determine the order of the correlation in which they are involved,

but to provide an efficient tool to reduce the data set to the relevant neurons, which will

then be examined in detail in further analysis. We present three different methods, all of

which rely on the idea to detect whether an individual neuron is involved more often in

any kind of coincident event than can be expected by chance.

[3].2 Generation of Test Data

In order to demonstrate our approaches we make use of four data sets of N = 100 parallel

spike trains, which contain different types of correlations or independent processes. The

data sets are generated by a stochastic model, which has its origins in Grün et al. (1999);

66



Denise Berger 3. Identification of Neurons Participating in Cell Assemblies

Kuhn et al. (2003), and Grün et al. (2008). The basic assumption is that the activation

of an assembly is expressed by synchronous spiking of its member neurons. Due to the

typically blind sampling from the cortical tissue, the chances to observe a number of

neurons from one assembly are rather small. This enters our modeling by assuming that

only a small percentage of neurons are correlated—the rest fires independently.

[3].2.1 Stochastic Model

Simultaneous spike trains are modeled as parallel, binary processes realized as stationary

Bernoulli processes. The simplest form realizes fully independent processes with prede-

fined firing rates λi per neuron i, thus defining the occupation probability pi = λi · h per

time bin of length h for each process. Such realizations model the basic activity of the

N neurons. Without further insertion of correlated spiking they serve as control data sets

(“rate model”, Set1 in Fig. [3].1).

Assembly activity is modeled by coincident spiking activity in a subset of m out of the

N neurons: a hidden “mother” process of rate α is realized, from which spikes are copied

into m selected child processes with probability ǫ. ǫ may be 1, so that all m processes

receive a copy of a spike of the hidden process. In this case all m neurons exhibit coin-

cidences of order m (Set2 in Fig. [3].1). Alternatively, and presumably more realistic for

experimental data, ǫ can be chosen < 1. In this case the resulting coincidences within the

m neurons are on average composed of ǫ · m < m spikes with a random composition of

spiking neurons per event (Set3 in Fig. [3].1).

Finally, the correlated and uncorrelated spike trains are merged. The spike train of a child

process is then composed of “background” firing and of spikes involved in coincidences.

The total firing rate is λi = λi,b + α · ǫ, where λi,b is the background rate and λi,c = α · ǫ

the coincidence rate. Trivially, the firing rates of each process can be predefined, and the

background firing rate can be adjusted accordingly.

Multiple assemblies can be generated analogously by using one hidden process per assem-

bly. The sets of neurons, to which the spikes are copied from each of these processes,

may overlap or not. The total rate of neurons taking part in more than one assem-

bly is composed of the sum of the assembly coincidence rates and the background rate:

λi = λi,b +
∑

j λi,cj
with assembly index j (Set4 in Fig. [3].1).

[3].3 Analysis of Assembly Membership

We explored the performance of three approaches to identify whether a neuron is part of

a correlated group of neurons.
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Figure [3].1: Sketches of the data sets used to test our methods. In the
realizations, all of the N = 100 neurons in Set2, Set3, and Set4 have a total
firing rate of λi = 20 Hz, i ∈ [1 . . .N ]; coincidence firing rates are λc = 5 Hz.
Set1: rate model of independent firing, composed of two groups of neurons of
different firing rates (λi = 50 Hz, i ∈ [1 . . .m], m = 10 (box), and λi = 20 Hz, i ∈
[m+1 . . . N ]). Set2 and Set3 contain one assembly of m = 10 neurons generated
with parameters [ǫ = 1, α = 5 Hz] and [ǫ = 0.4, α = 12.5 Hz], respectively. Set4
contains two assemblies (ǫ = 1) with m1 = 7 and m2 = 8 neurons within m = 10
neurons, 5 participate in both assemblies. Background firing rates have been
chosen in such a way that the total rate of λi = 20 Hz is preserved.

[3].3.1 Spike Shuffling

In all three approaches explored here, we compute a different test statistic from the

data, each of which is based on a different basic idea. Since there are certain obstacles

to finding the distributions of these test statistics under the null hypothesis that the

considered neuron is not part of an assembly, we rely on a spike shuffling procedure

instead. First we compute, for a neuron i under consideration, the test statistic from

the data. Then we shuffle the spike times of neuron i in order to make it independent

of all other (observed) neurons, recompute the test statistic, and compare the results.

Spike shuffling and recomputing the test statistic is repeated sufficiently often. Therefore

counting the number of times the result of a shuffling trial meets or exceeds the result

obtained on the actual data and dividing this number by the total number of trials yields

a p-value. This p-value measures the probability that a result as obtained on the actual

data would be obtained by chance if neuron i was independent of all other neurons.

Note that we shuffle only the spikes of neuron i; all other spikes are left unchanged.

As a consequence, the correlation structure among all other neurons is preserved—only
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correlations of neuron i with other neurons are destroyed.

[3].3.2 Background Rate Estimation (BRE)

With the model outlined above, the probability that a neuron i fires in a given time bin

may be decomposed into two constituents: the background firing probability, denoted by

θi = λi,b ·h (where h is the length of a time bin), and the coincidence probability, denoted

by ξi = λi,c · h, which captures the joint influence of all assemblies neuron i participates

in. Since we assume that the hidden processes that generate the background and the

coincident spikes are independent, the effective firing probability is ηi = θi + ξi − θiξi.

We want to determine whether neuron i participates in an assembly or not, that is,

whether ξi > 0 (alternative hypothesis) or ξi = 0 (null hypothesis). Due to the above

equation we have ξi = ηi−θi

1−θi
. Note that ηi can easily be estimated from the data, namely

as η̂i = ki/k, where ki is the number of time bins in which neuron i fires and k is the total

number of time bins. As a consequence we can easily derive a statistical test if we can

estimate the background firing probability θi.

To derive the estimator for θi, we consider a set of N independent neurons without

assemblies (i.e. ∀j; 1 ≤ j ≤ N : ξj = 0). The probability p0 that no neuron fires

in a time bin is p0 =
∏N

j=1
(1 − θj) and the probability pi0 that only neuron i fires is

pi0 = θi

∏N

j=1,j 6=i(1− θj). It follows pi0

p0
= θi

1−θi
and therefore θi = pi0

pi0+p0
. Obviously, p0 and

pi0 can easily be estimated, namely as p̂0 = k0/k and p̂i = ki0/k, respectively, where k0

is the number of time bins in which no neuron fires and ki0 the number of bins in which

only neuron i fires.

The crucial insight is now that the probabilities p0 and pi0 remain unaffected if neurons

participate in assemblies, because both refer to time bins with at most one spike. However,

coincident firing, by its very definition, means that more than one neuron fires in the same

time bin. As a consequence, θi can be estimated, even in the presence of coincident firing,

as θ̂i = ki0/(ki0+k0). The actual test whether neuron i participates in an assembly checks

whether ξ̂i is sufficiently large so that the null hypothesis ξi = 0 can be rejected. A natural

test statistic, estimating the fraction of coincidence spikes, is

tBRE
i =

ξ̂i

η̂i

=
η̂i − θ̂i

η̂i(1 − θ̂i)
.

A p-value can then easily be derived by using the spike shuffling procedure described in

Section [3].3.1.

As a generalization of this approach one may consider to estimate the background firing

rate of neuron i not only from the time bins in which at most neuron i fires, but also
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from those time bins, in which a maximum of r, r ≥ 0, other neurons fire (r = 0 yields

the case discussed above). This provides an indication whether neuron i participates in

assemblies with more than r + 1 neurons. However, one should be aware that for r > 0 a

possible participation in assemblies of smaller size (at most r+1 neurons) can obscure the

participation in larger assemblies (more than r + 1 neurons), because in this case we are

not estimating the true background firing probability, but the firing probability resulting

from background firing and participation in small assemblies.

[3].3.3 Conditional Pattern Complexities (CPC)

The approach presented in Section [3].3.2 only considers whether some other neuron j,

j 6= i, fires or not, but neglects how many and which other neurons fire and how often

they fire together with neuron i. The approaches studied in this and the next section try

to exploit such additional information.

The most natural approach is to take into account how many other neurons fire, on

average, together with neuron i. If neuron i participates in one or more (large) as-

semblies, there should be several time bins in which it fires together with several other

neurons. Hence the average complexity of patterns involving neuron i should be larger

than expected by chance. Formally, we use xi = 1

ki

∑k

l=1
τ(i ∈ Il)(|Il| − 1) and x̄i =

1

k

∑k

l=1
(|Il| − τ(i ∈ Il)), where Il is the index set of the neurons that fire in the l-th

time bin and τ(ϕ) is 1 if ϕ is true and 0 otherwise. Obviously, xi is the average pattern

complexity in those time bins in which neuron i fires (with spikes of neuron i removed).

On the other hand, x̄i is simply the overall average pattern complexity (again with spikes

of neuron i removed). With this, a natural test statistic is

tCPC
i =

xi − x̄i

x̄i

.

A p-value can again be derived by using the spike shuffling procedure described in Sec-

tion [3].3.1.

[3].3.4 Conditional Spike Frequencies (CSF)

In a second approach we take into account how often other neurons fire together with

neuron i. The idea is that if neuron i participates in one or more assemblies, it should fire

more often together with certain other neurons (those also in the assemblies) than can be

expected by chance. In order to take care of different firing rates, we use the number of

excess spikes to form a test statistic: we compute for each neuron j, j 6= i, the difference

between the number of spikes observed together with a spike of neuron i and the expected

70



Denise Berger 3. Identification of Neurons Participating in Cell Assemblies

number of such spikes, estimated as kiη̂j . Since only excess spikes tell us about possible

correlations, negative differences are ignored. Formally, the test statistic is

tCSF
i =

1

n

n
∑

j=1,j 6=i

τ(kij > kiη̂j)(kij − kiη̂j),

where kij is the number of time bins in which both neuron i and neuron j fire and (as

above) τ(ϕ) is 1 if ϕ is true and 0 otherwise. A p-value is derived by the same shuffling

procedure described above (see Section [3].3.1).

[3].3.5 Results

Due to limitations of space, we can present detailed results only for one of the three

approaches. We chose CPC (Section [3].3.3) because of two reasons: in the first place,

BRE (Section [3].3.2) proved to be a fairly weak method in our experiments, at least for

r = 0. The reason is mainly the small number of time bins in which only the considered

neuron i fires (small ki0), which leads to an unreliable estimate and thus a high variance.

Performance improves for r = 1 and becomes reasonably good for r = 2, but still falls

short of the performance of the other two methods. Therefore we chose to discard BRE,

even though we believe that the estimator of the background firing rate used in it is a

relevant insight. Secondly, even though the performance of CSF (Section [3].3.4) was

actually the best in our experiments, the approach requires an estimate of the expected

number of spikes for the other neurons. This can turn out to be a severe hindrance for

analyzing real spike trains, for which firing rates may be non-stationarity, and made us

favor the CPC approach.

CPC results for the four data sets are depicted in Fig. [3].2. Each diagram shows the

value of the test statistic and a box plot indicating the distribution of the spike shuffling

results for each of the 100 neurons. For Set1 the test did not produce a significant

result for any of the neurons, since they are independent. For the other three data

sets (Set2–Set4) it is detected that the first 10 neurons have excess coincidences, thus

exactly identifying the neurons involved in assemblies. For Set2, significance is highest,

which corresponds to the fact that all correlated neurons participated with probability

ǫ = 1 in the coincident events. Significance is slightly reduced for Set3, which is due

to the decreased participation probability (ǫ = 0.4) in the coincidences. For Set4 also

all neurons taking part in assemblies are reliably detected. Significance is higher for the

neurons participating in both assemblies as compared to the ones participating in one of

the assemblies only.
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Figure [3].2: Analysis results for Set1 to Set4 using CPC. In each panel, box
plots show the distribution (thick box: 5% to 95%, thin box: 1% to 99%, gray
whiskers: minimum to maximum) of the shuffling results (s = 105 trials) for
each neuron i (ids ordered, along the x-axis). Outside the whiskers, results
are significant on a 1/s level. The test statistic value tCPC

i obtained on the
actual data is shown as a bowtie.

[3].4 Discussion

We presented three simple test statistics to identify neurons that are involved in assem-

blies. All of them test for a given neuron whether it is more often involved in a coincidence

spike event than can be expected by chance. To do so, BRE relies on a background rate

estimator (which we believe to be relevant in its own right), CPC analyses the coincidence

complexities of the parallel spike trains, and CSF aggregates pairwise frequency compar-

isons. To assess their performance, we applied these statistics, using a spike shuffling

approach, to massively parallel spike trains generated by stochastic models that allow for

defining different spike correlation structures.

Our approaches are a perfect addition to methods that provide information of presence

of higher-order correlation in data, but do not identify the individual neurons involved.

Reducing data sets to the relevant neurons only helps to considerably reduce computation

time in further analysis steps that aim at identifying the detailed higher-order correlation

structures e.g. considering information geometrical measures (e.g., Shimazaki et al., 2009;
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Amari, 2001) or approaches based on accretion (Gerstein et al., 1978).
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Abstract

The chance of detecting assembly activity is expected to increase if the spiking activities

of large numbers of neurons are recorded simultaneously. Although such massively par-

allel recordings are now becoming available, methods able to analyze such data for spike

correlation are still rare, as a combinatorial explosion often makes it infeasible to extend

methods developed for smaller data sets. By evaluating pattern complexity distributions

the existence of correlated groups can be detected, but their member neurons cannot be

identified. In this contribution, we present approaches to actually identify the individual

neurons involved in assemblies. Our results may complement other methods and also

provide a way to reduce data sets to the “relevant” neurons, thus allowing us to carry out

a refined analysis of the detailed correlation structure due to reduced computation time.

Keywords: massively parallel spike trains; spike synchrony; higher-order correlation;

data mining
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[4].1 Introduction

Synchronized presynaptic spiking activity is known to have a higher efficacy in generating

output spikes than non-coordinated spike timing (Abeles, 1982). Therefore temporal co-

ordination of spike timing is a commonly accepted signature of neuronal assembly activity

(Gerstein et al., 1989; Abeles, 1991; Singer et al., 1997; Harris, 2005). Consequently, ap-

proaches to detect assembly activity have focused on the detection of correlated spiking

activity on a millisecond time resolution.

With massively parallel recordings becoming available at an accelerating rate (Csicsvari

et al., 2003), the likelihood of observing the signature of assembly activity is improving.

However, we currently still lack the corresponding analysis tools (Brown et al., 2004).

Most of the existing methods are based on pairwise analysis, e.g., Aertsen et al. (1989);

Kohn and Smith (2005), and Shmiel et al. (2006). Approaches to analyze correlations be-

tween more than two neurons exist, but typically only work for a small number of neurons

(Abeles and Gerstein, 1988; Dayhoff and Gerstein, 1983a; Grün et al., 2002a,b; Tetko and

Villa, 2001) or only consider pair correlations when analyzing the assembly (Schneidman

et al., 2006; Shlens et al., 2006; Berger et al., 2007; Eldawlatly et al., 2009) (in these ap-

proaches a set of neurons is seen as an assembly if most of them are pairwise correlated).

It is usually infeasible to simply extend existing methods that identify individual spike

patterns to massively parallel data due to a combinatorial explosion. Therefore in pre-

vious studies we tried new approaches that evaluate the complexity distribution (Staude

et al., 2007; Grün et al., 2008) or the intersection matrix (Schrader et al., 2008), which

can handle massively parallel data in reasonable computational time and analyze it for

higher-order spike patterns. These methods are able to detect the presence of higher-order

correlation, but do not identify neurons that participate in the correlation. The goal of

the present study is to resolve this issue: we want to directly identify neurons that take

part in an assembly as expressed by coincident firing. Our aim is not, however, to deter-

mine the order of the correlation in which they are involved, but to provide an efficient

tool to reduce the data set to the relevant neurons, which can then be examined in detail

in further analysis. We present two different methods, both of which rely on the idea of

detecting whether an individual neuron is involved in any kind of coincident event more

often than can be expected by chance.

The paper is organized as follows: in Section [4].2 we discuss methods of generating surro-

gate data from given spike trains, which we need in order to obtain reference distributions

for the test statistics that are introduced in Section [4].3. In Section [4].4 we apply our

test statistics to several artificial and one real-world data set and assess their performance.

Finally, in Section [4].5 we evaluate our findings and draw conclusions about the useful-
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ness of our approach. This study is based on a former contribution (Grün et al., 2009),

and is extended here by a systemtic study of parameter dependencies, and the analysis of

simulated network data and neuronal data.

[4].2 Generation of Surrogate Data

Our methods of detecting neurons that are participating in an assembly consist of two

ingredients: a test statistic (following section) and a procedure to generate surrogate data

(this section), which is needed to estimate their distribution.

[4].2.1 General Procedure

In all approaches explored in this paper we compute a different test statistic from the

data, each of which is based on a different basic idea (see Section [4].3). Unfortunately,

there are certain obstacles that prevent us from easily finding the distributions of these

test statistics under the null hypothesis that the considered neuron i is not part of an

assembly. Therefore we rely on the generation of surrogate data from the original data

set in order to estimate this distribution. The surrogate data set is created in such a way

that a neuron i under consideration, if it is part of an assembly, becomes independent of

all other neurons, or at least is considerably less dependent on the other neurons than in

the original data set.

The general test procedure is as follows: first we compute, for the neuron i under con-

sideration, the test statistic on the original data set. Then we generate a surrogate data

set in one of the ways described below, recompute the test statistic, and compare the

results. Generating surrogate data sets and recomputing the test statistic is repeated

sufficiently often (unless otherwise stated, 5000 times). Finally, counting the number of

times the result of a surrogate run meets or exceeds the result obtained on the actual

data and dividing this number by the total number of runs yields a p-value. This p-value

measures the probability that a result as obtained on the actual data would be obtained

by chance if neuron i was independent of all other neurons (where what exactly is meant

by “chance” is made precise by the surrogate generation method).

[4].2.2 Problems of Generating Surrogate Data

In general, the procedure with which surrogate data is generated is fairly critical for the

validity of a test for assembly activity, because it implicitly represents the null hypothesis.

As a consequence, a common argument against a chosen surrogate generation method is
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that it represents a (much) too restricted null hypothesis. In such a case obtaining a

significant test result could be explained not only by the original data actually having the

property tested for, but also by some other, unrelated property, which should have been

covered by the null hypothesis, but was not. In principle, the null hypothesis must cover

the full complement of the property tested for (which, of course, represents the alternative

hypothesis). The “worst” data model in this complement—that is, the data model that is

most likely to produce, by chance, data that looks like as if it was generated by a model

having the property tested for—determines the significance of a test result.

A closer analysis reveals that this problem cannot in general be fully overcome for a test

for assembly activity, because the complement of assembly activity is too large. In this

complement there are data models that are so close to models exhibiting assembly activ-

ity (that is, models that can, with a high probability, generate the same data), that it

is almost impossible to obtain significant p-values. In order to cope with this problem,

one has to restrict the null hypothesis. However, at the same time one must take care

to restrict it only to such an extent that the restrictions can reasonably be considered

harmless (where “harmless” means that only such models are excluded of which we are

fairly certain that they are impossible).

In practice, it is this idea that underlies the desire to preserve, as much as possible, certain

properties of the original data, which are not directly connected to the property tested

for, but could explain a significant test result. Unfortunately, there is no consensus about

which properties should or must be preserved. Examples include the overall and local

firing rates of the neurons, the distribution of inter-spike intervals, the number of spikes

per time bin etc. For an extensive discussion of this problem see Grün (2009).

In addition, the more properties one tries to preserve, the more complex and more expen-

sive (in terms of computing time) generating surrogate data sets becomes. If one recalls

that a large number of surrogate data sets have to be generated in order to be able to

compute a sufficiently small and reliable p-value, the required computation time is a se-

rious concern.

As a consequence, we confine ourselves here to fairly simple methods of generating sur-

rogate data with the following argument: we see our method mainly as a preprocessing

method and always assume that the findings of our methods are later substantiated with

more detailed and statistically more powerful tests. Our predominant goal is to reduce the

number of neurons that have to be subjected to this more detailed and thus also (again in

terms of computing time) more costly analysis. Therefore we can afford to have a few false

positive results, because it can reasonably be assumed that they will be detected as such

in subsequent steps. However, we cannot tolerate false negatives, since then neurons that

are actually relevant would be excluded from further analysis. Relying on a too restricted
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null hypothesis, implemented as an over-simplified surrogate generation method that does

not preserve all relevant properties of the original data, may produce additional false pos-

itives but will not produce false negatives. For the purposes of preprocessing, we therefore

prioritize speed over accuracy and use simple surrogate data generation methods.

[4].2.3 Spike Shuffling in Time

One of the simplest and fastest ways of generating a surrogate data set in which a consid-

ered neuron i is independent of all other neurons, is to shuffle the spike times of neuron i.

That is, the spikes of neuron i are reassigned from their original time bins to time bins

that are randomly chosen from the available ones. Note that we shuffle only the spikes of

neuron i; all other spikes are left unchanged. As a consequence, the correlation structure

between all other neurons is preserved—only correlations of neuron i with other neurons

are destroyed.

Obvious advantages of such a shuffling scheme are that it preserves the number of spikes

of the considered neuron, changes the number of spikes per time bin by at most 1 (only

a spike of the considered neuron can be removed or added), is easy to program, and fast

to execute. However, it has the serious disadvantage that in real world data firing rates

are not constant over time (for an extensive discussion of this issue see Grün, 2009).

If we assume that the neurons under consideration change their firing rates coherently

(the firing rate rises or falls for all neurons in parallel), there is a fairly simple, but nev-

ertheless surprisingly effective approach to cope with varying spike rates: we simply see

the number of spikes in a bin as a (very coarse) indicator of the general neuronal activity

level. We may then derive an estimate for the probability of a spike occurring in a time

bin j as follows: let Il be the index set of the neurons that fire in the l-th time bin, and

let k be the total number of time bins. Then we may define the probability of randomly

assigning a spike of some neuron i to a given time bin j as

πj =
|Ij | + c

∑k

l=1
(|Il| + c)

,

where c is a correction term that in similar contexts is known as the Laplace correction.

Formally, this correction term can be justified with arguments from Bayesian statistics

(Bolstad, 2007), where it is derived from an uninformative prior distribution. This prior

distribution is a uniform distribution here, because formally we consider a polynomial

distribution over the time bins. This prior distribution is then modified with the data

distribution using Bayes’ rule. As a consequence, the Laplace correction c introduces

a tendency towards a uniform distribution and may be chosen in [0, +∞). For c = 0
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the number of spikes in a bin relative to the total number of spikes directly determines

the probability of assigning a spike to this time bin. Formally, this yields a maximum

likelihood estimation of the time bin probability, because no weight is assigned to the

uniform prior distribution; one relies entirely on the available data. For c → ∞ we

obtain, as a limiting case, the uniform spike shuffling scheme described above: each time

bin has the same probability of having a spike assigned to it, regardless of the number

of spikes it contains. Values 0 < c < ∞ introduce a limited tendency towards a uniform

distribution, which becomes stronger for greater values of c.

[4].2.4 Trial Shuffling

In real recordings of parallel spike trains it is often the case that some kind of stimulus is

presented to the subject and then the neuronal response to this stimulus is recorded for

a certain period. In order to reduce the effects of random influences that may be present

in a single instance, several trials of presenting the stimulus and recording the response

are carried out.

If multiple trials are available, one may use trial shuffling to generate surrogate data. In

trial shuffling the spike trains of a neuron i under consideration are randomly assigned

to other trials, thereby replacing the original spike trains in the respective trials. Even

though all trials must, of course, be aligned w.r.t. the onset of the stimulus, the individual

spike trains vary sufficiently due to their stochastic nature, such that neuron i becomes

independent of the other neurons in terms of the precise timing of spikes across the

neurons. At least it is plausible to assume that existing dependences will be considerably

reduced due to the independence of the trials.

However, one should be aware that because of similar responses due to the same stimulus,

trial shuffling can hide assembly activity that is actually present, despite the independence

of the trials. In particular this is the case if the assembly response is sufficiently exact in

time (relative to the stimulus onset), so that trial shuffling does not destroy the dependence

between the neurons. As a consequence, trial shuffling can lead to false negatives, which

is a critical disadvantage for our approach (see Section [4].2.2).

In addition, plain trial shuffling has the disadvantage that the number of available trials

limits the achievable p-values: suppose there are s trials. Then one is the original data

and the spike train of the neuron i under consideration can be moved to at most s − 1

other trials in order to obtain surrogate data. Even if in all of these s − 1 cases the

obtained statistic value is less than that obtained on the original data, all we can say

about the p-value is that it is less than 1/(s− 1). Since s usually ranges only in the order

of a few dozen, it may not even be possible to obtain a significant test result. The fact
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that we can use any trial as the original data and all other trials to generate surrogates

does not amend this drawback, because this only provides us with s independent p-values

(cf. Pipa and Grün, 2003).

In order to improve this situation, we concatenate the individual trials into one long data

set and compute the test statistic once on the entire set. Then the trial segments of the

spike train of the neuron i under consideration are shuffled to obtain a surrogate data set.

As a consequence, the number of surrogate data sets that can be generated is considerably

increased, because any permutation of the trial segments of the spike train (except the

identity, that is, the case in which all trial segments are at their original positions) yields

a surrogate data set.

However, one should be aware that this scheme is also open to criticism: suppose that

two different permutations move a given trial segment into the same location. Then the

terms of the test statistic that result from the time bins in the corresponding trial are

necessarily the same for both permutations. This may have the effect that the obtained

distribution of the test statistic exhibits less variation than the actual distribution. If

avoiding this effect is made a strict requirement, only t− 1 permutations (other than the

identity) can be defined. In this case there is no advantage over separate trials.

Nevertheless we believe that such a trial shuffling scheme is reasonable. In the first place,

the fraction of terms of the test statistic that are identical for two permutations will be

relatively small unless the total number t of trials is very small. Hence the effect on the

variability of the test statistic is likely negligible. Secondly, reducing the variability of the

test statistic for surrogate data has at most the effect of creating false positive results.

However, as already argued in Section [4].2.2, we can afford a few false positive results,

because later processing steps should remove them.

[4].3 Test Statistics

We explored the performance of two approaches to identify whether a neuron is part of a

correlated group of neurons.

[4].3.1 Conditional Pattern Complexities (CPC)

The first approach to identify neurons participating in assemblies is based on the idea

that such neurons should have, on average, more neurons firing together with them in the

original data than in the surrogates. In other words, if some neuron i participates in one or

more (large) assemblies, there should be several time bins in which it fires together with

a larger number of other neurons. Hence the average complexity of patterns involving
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neuron i should be larger than can be expected by chance. Formally, we use

µ(i) =
1

Ti

T
∑

l=1

τ(i ∈ Il)(|Il| − 1) (4.1)

and

µ̄(i) =
1

T

T
∑

l=1

(|Il| − τ(i ∈ Il)),

where Il is the index set of the neurons that fire in the l-th time bin, T is the total number

of time bins, Ti the number of time bins in which neuron i fires, and τ(ϕ) is 1 if ϕ is true

and 0 otherwise. Thus, µi is the average pattern complexity in those time bins in which

neuron i fires (with spikes of neuron i removed), while µ̄i is simply the overall average

pattern complexity (again with spikes of neuron i removed). A natural test statistic is

tCPC(i) =
µ(i) − µ̄(i)

µ̄(i)
. (4.2)

A p-value can be derived by using the surrogate data generation procedures described in

Section [4].2.

An obvious way to improve this measure is to weight large complexities more strongly

than smaller ones, because large complexities are, intuitively, more indicative of assembly

activity. A simple technical means to achieve such weighting is to raise the complexities

to a user-specified power α:

µα(i) =
1

Ti

T
∑

l=1

τ(i ∈ Il)(|Il| − 1)α

and

µ̄α(i) =
1

T

T
∑

l=1

(|Il| − τ(i ∈ Il))
α.

In other words, instead of a simple mean of the pattern complexities, we employ higher

moments. The resulting test statistic is

tCPC
α (i) =

µα(i) − µ̄α(i)

µ̄α(i)
. (4.3)

[4].3.2 Conditional Spike Frequencies (CSF)

In a second approach we take into account how often other individual neurons fire together

with neuron i. The idea is that if neuron i participates in one or more assemblies, it should
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fire more often together with certain other neurons (those also in the assemblies) than

can be expected by chance. In order to be insensitive to differing firing rates, we use the

number of excess spikes to form a test statistic: we compute for each neuron j, j 6= i, the

difference between the number of spikes observed together with a spike of neuron i and

the expected number of such spikes, estimated as Tiη̂j with η̂j = Tj/T , where Ti and Tj

are the number of time bins in which neurons i and j, respectively, fire and T is the total

number of time bins. Since only excess spikes tell us about possible correlations, negative

differences are ignored. Formally, the test statistic is

tCSF(i) =
1

N − 1

N
∑

j=1,j 6=i

τ(Tij > Tiη̂j)(Tij − Tiη̂j), (4.4)

where Tij is the number of time bins in which both neuron i and neuron j fire and (as

above) τ(ϕ) is 1 if ϕ is true and 0 otherwise. As for the conditional pattern complexity

(see above), we may consider weighting a large number of excess spikes more strongly

than a small number, as a large number is certainly more indicative of assembly activity.

In order to achieve this, we once again introduce a user-specified power α to which the

number of excess spikes is raised:

tCSF
α (i) =

1

N − 1

N
∑

j=1,j 6=i

τ(Tij > Tiη̂j)(Tij − Tiη̂j)
α. (4.5)

As another straightforward variant, one may relate the excess spikes to the expected

number of spikes, because a higher firing rate also leads to a higher variation in the actual

number of observed spikes and thus makes a large number of excess spikes more likely. In

this case, the measure reads (with the optional power α already added):

tCSF
α (i) =

1

N − 1

N
∑

j=1,j 6=i

τ(Tij > Tiη̂j)

(

(Tij − Tiη̂j)

Tiη̂j

)α

.

However, it is not immediately clear whether this modification improves or deteriorates

the sensitivity of this measure. In this paper we confine our study to the unmodified

version.

A p-value is derived by the same surrogate generation procedures described above (see

Section [4].2).
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[4].4 Results for Different Test Data Sets

We tested our statistics in three scenarios: data that was generated using the stochastic

model (Section [4].4.1) that specifies the coordinated activity we desire to detect (see

Section [4].4.2), data that was generated by simulating a large network of neurons into

which a synfire chain was embedded (see Section [4].4.3) and real spike train recordings

from cat visual cortex (see Section [4].4.5).

[4].4.1 Stochastic Model of Assembly Activity

The model of coordinated neural activity we adopt here has its origins in Grün et al.

(1999); Kuhn et al. (2003), and Grün et al. (2008). The basic assumption is that the ac-

tivation of an assembly is expressed by synchronous spiking of its member neurons. Due

to the typically blind sampling from the cortical tissue, the chance of observing a number

of neurons from one assembly is rather small. This enters our modeling by assuming that

only a small percentage of neurons are correlated—the rest fire independently.

In our correlation model simultaneous spike trains are modeled as parallel, binary pro-

cesses realized as stationary Bernoulli processes. The simplest form realizes fully indepen-

dent processes with predefined firing rates λi per neuron i, thus defining the occupation

probability pi = λi · h per time bin of length h for each process. Such realizations model

the basic activity of the N neurons. Without further insertion of correlated spiking such

independent spike trains serve as the control setting (“rate model”, labeled “Indep” in

Fig. [4].1).

Assembly activity is modeled by coincident spiking activity in a subset of M out of

the N neurons: a hidden “mother” process of rate λc is realized, from which spikes are

copied into the M selected child processes with probability ǫ. If the probability is 1 all M

processes receive a copy of each spike of the hidden process. In this case all M neurons

exhibit coincidences of order M (labeled “SIP” in Fig. [4].1). A process of this type is

also called a single interaction process (SIP) (Kuhn et al., 2003).

Alternatively, and presumably more realistically for experimental data, the copy proba-

bility can be ǫ < 1. In this case the resulting coincidences within the M neurons are

composed of ǫ ·M < M spikes on average, with a random composition of spiking neurons

per event (labeled “MIP” in Fig. [4].1). A process of this type is also called a multiple

interaction process (MIP) (Kuhn et al., 2003).

Finally, the correlated and uncorrelated spike trains are merged. The spike train of a child

process is then composed of “background” firing and of spikes involved in coincidences.
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Figure [4].1: Sketches of different settings of our stochastic model. Indep:
independent spike trains, but differing firing rates; SIP: single assembly, single
interaction process; MIP: single assembly, multiple interaction process; mSIP:
multiple assemblies, single interaction processes.

The total firing rate is λi = λb,i + λc,i, where λb,i is the background rate and

λc,i = λc · ǫ (4.6)

the coincidence rate. Trivially, the firing rates of each process can be predefined, and the

background firing rate can be adjusted accordingly.

Multiple assemblies of neurons can be generated analogously by using one hidden process

per assembly. The sets of neurons to which the spikes are copied from each of these

processes may overlap or not. The total rate of neurons that take part in more than one

assembly is composed of the sum of the assembly coincidence rates and the background

rate: λi = λb,i +
∑m

j=1
λc,ij with assembly index j, 1 ≤ j ≤ m, where m is the num-

ber of assemblies (labeled “mSIP” in Fig. [4].1). Note that multiple assemblies can be

modeled—just like single assemblies—with a copy probability ǫ = 1 or with ǫ < 1. In the

latter case, each assembly may even use a different copy probability ǫj , so that we have

λc,ij = λc,j · ǫj , where λc,j is the firing rate of the j-th assembly and ǫj the corresponding

copy probability.

These stochastic models (with no groups, one group, and several groups of correlated neu-

rons) specify what we understand by the assembly activity we desire to detect. Of course,

these models are not exhaustive in capturing what may be understood by “assembly
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activity”, but merely define the focus of our study.

[4].4.2 Results on Stochastic Model Data
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Figure [4].2: Analysis results for data sets representing the settings Indep,
SIP, MIP, and mSIP using tCPC

1 (left) and tCSF
1 (right). All sets are composed

of N = 100 neurons. In Indep, neurons 1–10 (M = 10) have a higher firing
rate (λ = 50 Hz) than the rest of the neurons (λ = 20 Hz). In SIP, MIP
and mSIP the first M = 10 neurons are involved in synchronous events, the
rest are independent. All neurons have the same firing rate, λ = 20 Hz. The
coincidence firing rate of the assemblies is λc = 5 Hz. The synchronous events
in MIP are generated with a copy probability of ǫ = 0.8. In each panel, box
plots show the distribution (thick box: 5% to 95%, thin box: 1% to 99%,
gray whiskers: minimum to maximum) of the shuffling results (s = 105 runs)
for each neuron i (ids ordered along the x-axis). Beyond the extent of the
whiskers, results are significant on a 1/s level. The test statistic values tCPC

1

and tCSF
1 obtained on the actual data are shown as bowties.

[4].4.2.1 Test Statistic Per Neuron

In a first experiment to demonstrate our approaches we make use of data sets generated

by the stochastic model (Section [4].4.1) In these data sets we have full control over the

statistics of the spike trains (stationary Poisson) and the correlation structure between

the neurons. Thus, the analyses of these data serve as a proof of principle.

Figure [4].2 shows results from the four data sets analyzed using the test statistics tCPC

(left) and tCSF (right). The data sets are composed of N = 100 parallel spike trains

of which the first M = 10 neurons either have a different firing rate then the rest of

the neurons (“Indep”) or are correlated via synchronous spike events (“SIP”, “MIP”,

“mSIP”). Each diagram shows the value of the test statistic (bowtie) and a box plot
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indicating the distribution of the surrogate data results (spike shuffling in time) for each

of the 100 neurons. The spike shuffling procedure was chosen as uniform, because the

data are generated as stationary Poisson processes.

For “Indep” the tests did not produce a significant result for any of the neurons, since they

are independent. For the other three data sets (“SIP”, “MIP”, “mSIP”) the tests detected

that the first 10 neurons have excess coincidences, thus exactly identifying the neurons

involved in assemblies. Significance is highest for “SIP”, due to the fact that all correlated

neurons participated with probability ǫ = 1 in the coincident events. Significance is

slightly reduced for “MIP”, but all neurons participating in the assembly are still reliably

detected.

For the mSIP setting all neurons taking part in assemblies are also reliably detected.

Significance is higher for the neurons participating in both assemblies as compared to the

ones participating in only one of the assemblies.

[4].4.2.2 False Positive and False Negative Rate as a Function of Assembly

Size

In the following we investigate how assembly size affects the quality of detection in two of

the four settings identified in Section [4].4.1, namely SIP and MIP. In addition, we make

use of the additional parameter α introduced in Section [4].3 and explore α = 1 (default,

standard form of the measures) and α = 3 for both test statistics tCPC and tCSF, and thus

consider a total of four measures.

Figure [4].3 depicts the false positive (FP) and false negative (FN) rate for the four

test statistics (indicated by different colors) as a function of assembly size M and total

number of recorded neurons N . The FN rate is derived as the percentage of neurons

that participate in assembly activity but are not detected (with a significance level of 1%;

positive y-axis). For a low coincidence rate of λc = 1 Hz and a small number of neurons

involved in the assembly (M = 5 for N = 100 for SIP and MIP, see Figure [4].3a,b) the

percentage of FN is very high, in particular for MIP (close to 100%). Interestingly, for

larger numbers of observed neurons (N = 1000, Fig. [4].3c,d) even for a smaller percentage

of neurons involved in assemblies (M = 10, i.e., M/N = 10/1000 = 1/100 as compared to

5/100 in Fig. [4].3a,b) the percentage of FN is lower. If we consider the case that 5% of

neurons are involved in assemblies (i.e., M = 5 for N = 100 and M = 50 for N = 1000),

significant FNs can be observed for the smaller neuron set, whereas no FNs occur for the

larger set. For the SIP cases, increasing the assembly size leads to a fast drop of the

FNs, for MIP the decrease is more gradual. This is true for all four test statistics. The

percentage of false positives (Fig. [4].3, negative y-axis), i.e., neurons wrongly detected as
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Figure [4].3: False positive and false negative rate as a function of assembly
size M . Each panel shows the FN rate as bar plots (positive y-axis) and FP
rate (negative y-axis, and inset) for each type of data set (a): SIP, N = 100; (b)
MIP, N = 100, ǫ = 0.8; (c) SIP, N = 1000; (d) MIP, N = 1000, ǫ = 0.8. Each panel
contains a sets of grouped bars (colors indicate the results for the different test
statistics tCPC

1 , tCPC
3 , tCPC

1 , tCSF
3 ; see legend) for each M . Each bar represents the

mean of 10 realizations, and the error bar indicates one standard deviation.
All data sets have stationary firing rates (all neurons λ = 20 Hz), a stationary
coincidence rate of λc = 1 Hz, and a duration of k = 10, 000 time steps of
h = 1 ms. Significance level was 1%. For generation of the surrogates (5000
repetitions) spikes are shuffled with uniform distribution in time.

assembly members, are very low in all cases, i.e., at about the level expected by the chosen

significance level of 1%. There is no obvious difference in the number of FPs generated

between the different data sets or test statistics.
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Figure [4].4: FP rate and FN rate as a function of the coincidence rate λc =
1, 2, 3, 4, 5 Hz shown for a) SIP and b) MIP with N = 1000 neurons and M = 10
assembly members. Display style and other parameters as in Figure [4].3.

[4].4.2.3 Impact of Coincidence Rate on False Positives and False Negatives

In the previous paragraph we showed that the smaller the assembly size, the harder it is

to detect all of its members. Here we demonstrate the dependence of the FP and FN rate

as a function of the coincidence rate λc for a small assembly size (M = 10) to discuss a

worst case scenario (see Figure [4].4). Here different test statistics lead to quite different

results. tCSF
3 achieves very good detection (low FN rate, FP ≈ 1%) for all coincidence rate

levels for both SIP and MIP data. In contrast, the other test statistics result in a high FN

rate (over 50%) for the SIP data with a small coincidence rate, but this drops to 0% as

the coincidence rate increases from 1 to 2 Hz. Thus the presence of at least 2 Hz ·10, 000

ms = 20 SIP events leads to a perfect detection (Figure [4].4a). For N = 100 (not shown

here) we found comparable results for increasing coincidence rate. In the case of MIP,

the detection of assembly members becomes gradually better with increasing coincidence

rate, and all assembly neurons are detected for λc ≥ 4 Hz (Fig. [4].4b). tCSF has the

fastest decay of FNs, whereas tCPC performs worst.

The excellent performance of tCSF
3 for MIP can be explained by the following example. For

a coincidence rate of λc = 1 Hz, approximately 10 MIP events are in the data. Due to the

copy probability of ǫ = 0.8, on average only M · ǫ = 8 neurons of the assembly participate

in a synchronized event. Within these 10 occurring synchronous events a specific pair

of neurons has on average 0.82 · 10 = 6.4 coincident spike events. A pair will have in

total approximately 10.1 coincidences composed of background ((λ − λc) · h)2 · T = 3.61

and injected coincidences (6.4). This exceeds by approx. 6.1 the expected number of
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(λ · h)2 · T = 4. Since tCSF
α sums over all pairs neuron i has with other neurons, all M − 1

pairs containing the neurons of the assembly will contribute with this difference.

This can be expressed in more formal way by considering expected values. tCSF takes the

sum of the pairwise correlations between neuron i and all other neurons. For coincidences

of neuron i ∈ {1, . . . , M} with neurons also ∈ {1, . . . , M}, the contributions exceed the

expected value and M −1 terms add to the sum. Inserted coincidences occur at Tc = Tλc

times with probability ǫ2. The rest of the spikes that occur outside of injected events

contribute to chance coincidences with their background rate λ − λc. The summands

of neuron i with the other N − M neurons contribute according to the variance of the

independent pairings compared to the expected value p2T , each with a term nσ. This is

approximated by

1

N − 1
(M − 1)(ǫ2Tc + (T − Tc)(h(λ − λc))

2) (4.7)

+
1

N − 1
(N − M) · nσ.

In contrast, if we consider a neuron that is /∈ {1, . . . , M}, all N−1 terms in Eq. 4.7 contain

only terms according to the variance of the realizations, i.e., approx. 1

N−1
(N − 1) · nσ.

Clearly, for a fixed number of neurons N , the larger the assembly size M the more terms

contribute with large coincidence counts, resulting in a larger significance and fewer FNs.

For a fixed relation of M/N , the contribution of the excess coincidences (first term)

increases as N increases, while the noise term (second term) decreases. Thus, with more

neurons observed but the same relative amount of neurons in the assembly (here for M = 5

in N = 100 cmp. to M = 50 in N = 1000), detection improves.

The coincidence rate λc enters as a factor in the term of the excess coincidences, and

contributes only to the product of the firing probabilities and thus only little to reducing

the chance coincidences originating from background spikes. The noise term is not affected

by the injected coincidences. Thus increasing the coincidence rate has a strong effect on

the resulting significance, and thereby indirectly reduces the FN rate.

The difference of SIP and MIP is due to the value of ǫ2. MIP is defined as ǫ < 1, and

therefore has a lower contribution to the excess coincidences than SIP, which explains the

reduced sensitivity for MIP as compared to SIP processes.

In contrast, tCPC evaluates the number of neurons that fire coincidently with neuron i.

We now present an analytical approximation of tCPC considering expected values in the

context of the stochastic model by following the line of arguments introduced in Grün

et al. (2008). Let us first calculate the average complexity of a neuron that is part of the

M neurons receiving injected events. The spikes of that neuron can be divided into spikes
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happening at times of occurrences of injected events and at times between the injected

events. At injection times the total complexity is composed of the injected events of

complexity ǫM − 1 (the subtraction of 1 is not to count the spikes of neuron i itself)

plus the complexity due to independent firing of the N −M independent neurons. Their

complexity follows a Binomial distribution (Grün et al., 2008) with probability p = λh

and complexities up to N − M and yields on average a complexity of (λ · h) · (N − M).

These combined events (first term in Eq. 4.1) occur Tc = λcT times

((ǫM − 1) + λh(N − M)) · λchT. (4.8)

At spike times when there was no injected event, coincidence patterns occur by chance.

Their complexity is composed of chance coincidences of the N−M neurons with occurrence

probability λh as above, and chance coincidences of the M neurons with probability (λ−

λc)h. The latter component has a complexity (λ−λc)hM (mean of Bernoulli distribution

with probability (λ − λc)h in M processes).

In Eq. 4.2 for tCPC we compare the actual values to the values derived from shuffling

the spikes of neuron i. This situation is almost the same as considering an independent

neuron of the N − M neurons that did not receive injected events. In the following, we

assume the case of i ∈ {1, . . . , M} with shuffled spike times. The shuffled spikes meet

the chance coincidences of the N −M neurons and the by chance injected events of order

Mǫ − 1 with a probability λhλc

ǫ
h. Thus we get as the sum of these complexities

((Mǫ − 1) + λh(N − M)) · λh
λc

ǫ
hT. (4.9)

The rest of the spikes of neuron i that did not fall on an injected event occur with

probability (λ− λc

ǫ
). At these times chance coincidences may occur with the background

spikes of neurons ∈ {1, . . . , M} and with spikes of the other N −M−1. Their complexity

and occurrence times are very similar to the case with i ∈ {1, . . . , M}.

Thus the difference between the complexity conditional on spikes of neuron i ∈ {1, . . . , M}

(Eq. 4.8) and the complexity conditional on the shuffled spike times of neuron i (Eq. 4.9)

is the number of time points at which they occur. This clearly demonstrates the depen-

dence of the coincidence rate. For increasing N (cmp. Fig. [4].3b and d) the complexity

due to the N − M background neurons increases with N for fixed M , but due to the

summing across their number of occurrences it still improves the test statistic.

All these arguments also hold for the test statistics for α > 1, however, due to the ex-

ponential weighting the discussed contributions of the excess coincidences are even more

emphasized.
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Figure [4].5: Dot displays of data from network simulations. a) Network with
embedded synfire chain (5000 neurons are displayed) the neurons in the lower
part of the display (here 2000) are part of the synfire chain. Synfire runs can be
observed after stimulation at times 0.31s and 0.89 s. b) Same connectivity in
the network as in a) but without stimulation of the synfire chain. c) Simulation
of a network with purely random connectivity (no embedded synfire chain).
d) Visualization of spike time randomization per neuron for the data shown
in a). The displays show time segments of 1 sec duration.

[4].4.3 Data Generated from a Synfire Chain Model

The second experiment to illustrate our technique is based on spike data from a simu-

lated neural network containing an embedded synfire chain (Abeles, 1991). The network

is based on the balanced random network proposed in Brunel (2000) and contains 64, 000

excitatory and 16, 000 inhibitory neurons firing at 4.2 Hz. The neuron model implements

current-based integrate-and-fire dynamics with postsynaptic currents (PSCs) represented

98



Denise Berger 4. Efficient Identification of Assembly Neurons within Massively Parallel Spike Trains

Parameter Value

membrane time constant 10 ms
membrane capacitance 250 pF
threshold 20 mV
refractory period 0.5 ms
rise time of PSC 0.3258 ms

Table [4].1: Neuron model parameters

as α-functions, for a detailed description see Morrison et al. (2007). The model parameters

are given in Table [4].1. Each neuron receives 6000 synaptic inputs. For the inhibitory

neurons and excitatory neurons that are not part of the synfire chain, 3840 inputs are

drawn randomly from the local excitatory population, 960 from the local inhibitory pop-

ulation, and the rest are considered to be connections from remote excitatory neurons,

represented as independent Poisson processes firing at 14 Hz. The peak value of recurrent

excitatory and inhibitory PSCs are 38.5 pA and −231 pA respectively.

The embedded chain consists of 20 pools of 100 excitatory neurons. Each neuron in a

pool receives synaptic input from each neuron in the previous pool. To ensure robust

propagation of synfire activity, the peak strength and synaptic delay of a feed-forward

connection are set to 61 pA and 1.5 ms respectively. Each chain neuron also receives 3740

inputs drawn randomly from the local excitatory population with a reduced peak strength

of 37.56 pA, and inhibitory and remote connections as described above. Except for the

feed-forward connections, synaptic delays are given by k ·h, where h is the computational

step size (0.1 ms) and k is drawn from a uniform distribution between 1 and 29.

To activate synfire chains the first pool in the chain is stimulated with a large synchronous

pulse at irregular intervals with a Poisson rate of 1 Hz (SFC). To provide a control case,

the embedded synfire chain is not specifically stimulated (SFCu). A further control case

is provided by a network that does not contain a synfire chain, i.e., all neurons have the

same input statistics (NoSFC). The respective synfire data sets are recordings of 100 s

duration of N=5000 neurons from these networks. k of these are randomly sampled from

the 2000 synfire chain neurons, the other N-k excitatory neurons are randomly selected

from the rest of the network. The sampling degree k was chosen as 10%, 25% and 100%.

All simulations were performed in NEST (Gewaltig and Diesmann, 2007); the simulation

scripts are available from the authors on request.
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Figure [4].6: FN and FP for data of a SFC network with stimulated SFC. All
panels show FP (dashed lines) and FN rates (solid lines) as a function of base
line level for the spike time randomization (x-axis). The graphs of different
colors in a panel represent different sample sizes of the SFC (k=200,500,2000)
within a total of N=5000 observed and analyzed neurons. Each of the different
panels displays the results for a specific test statistic (a: tCPC

1 , b: tCPC
3 , c: tCSF

1 ,
d: tCSF

3 ).

[4].4.4 Results on Synfire Chain Data

[4].4.4.1 Embedded and Stimulated Synfire Chain

One obvious feature of the simulated network data is the oscillatory nature of the activity

(Fig. [4].5a-c) which is a well known feature of balanced recurrent random networks. The

key factors influencing the strength and frequency of the oscillations are the comparative

strengths of excitatory and inhibitory synapses, the strength of the external stimulation

(Brunel, 2000) and the distribution of the synaptic delays (Tetzlaff et al., 2005). In

extreme these factors lead to fully synchronous activity. Here we chose parameters that

result in asynchronous irregular activity, i.e., there is little synchrony between the neurons

and each spike train is irregular. Nonetheless, some oscillatory structure can be observed.

Irrespective of the origin of these oscillations, the generation of the surrogates have to be

carefully chosen to avoid false outcomes. Surrogates with uniform spike shuffling clearly
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destroy the oscillatory feature (Fig. [4].5d), which leads to false positive detections in the

data with stimulated SFC (Fig. [4].6, ’u’) as well as for non-stimulated SFC or even when

no SFC is embedded (see Fig. [4].7, ’u’). Thus a spike shuffling approach that accounts

for the coherent rate oscillations of the neurons as introduced in Section [4].2.3 seems to

be more appropriate. To this end we consider the population histogram as an estimate for

the inhomogeneous weighting of shuffle times including an additional base line. If neurons

were not coherently oscillating, the estimator of the population histogram would not be

appropriate.

The level of the base line is a free parameter and has to be chosen according to the degree

of modulation of the population firing rate. Since we know which neurons are members of

the synfire chain we can systematically vary the base line level and evaluate the resulting

FP rate. Fig. [4].6 illustrates that the larger the base line, the higher the FP rate (dashed

lines). This effect is to a large extent independent of the chosen test statistic (panels a-d),

but differences are more prominent dependent on the sample size k of the neurons from

the total of 2000 members of the synfire chain. When all synfire chain neurons are sampled

(k=2000, green dashed), the FP rate abruptly changes from 0% FP to a high level. For

sample sizes smaller than 2000, the increase of FP with base line is more gradual. In

summary, a base line level of 5 leads to a 0% FP rate, independently of the test statistic

or sample size.

In contrast, the FN rate (Fig. [4].6, solid lines) depends strongly on the test statistic used.

The FN rate typically decreases with base line level, and the smaller the sample size k

the higher the FN rate. However, for test statistic tCSF
3 no FNs occur (Fig. [4].6d), even

for small sample sizes. Thus a choice of tCSF
3 and surrogates with a base line level of 5

lead to perfect detection of the member neurons of the synfire chain. Different base line

levels may be tolerated at the price of a higher FP rate if further analysis emphasizing

higher-order analysis of the data is performed.

[4].4.4.2 Controls

Since data from the network containing a non-stimulated synfire chain and the network

with no embedded synfire chain also exhibit the oscillatory firing rate coherent across

neurons, we tested the FP rate as a function of base line level (Fig. [4].7) for these control

data sets as well. The FP rates behave indistinguishably from the data with stimulated

synfire chains (Fig. [4].6) and do not show any dependence on the test statistic chosen.

This holds true for FPs for the subset of k neurons selected from the synfire neurons

and for neurons from the rest of the network (compare FP1 and FP2 in Fig. [4].7). Data

with no embedded synfire chain show the same results. This confirms that the oscillatory
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Figure [4].7: FP rates of SFCu and NoSFC data as a function of the base line
level of the surrogates (spike time randomization; x-axis). Each panel displays
the results for a different test statistic (a: tCPC

1 , b: tCPC
3 , c: tCSF

1 , d: tCSF
3 ). The

curves within each panel show the percentage of FPs for different sampling
sizes from SFCu (r = 200, 500, 2000 (all), of a total of N = 5000 analyzed
neurons). False positives are distinguished between FPs from neurons that
are members of the embedded chain (FP1, solid lines) and neurons that are
part of the rest of the network (FP2, dashed lines). The cyan curves show the
FP rate for N = 5000 randomly selected neurons from a network without an
embedded chain (NoSFC).

structure in the data, which is not related to the synfire activation, is responsible for

increasing FP rates for increasing homogeneity of the surrogates. The best generator of

FPs is uniform shuffling.

[4].4.5 Real World Spike Data

After having tested and calibrated our analysis approach, we finally demonstrate its ap-

plicability to neuronal data. We chose to apply it to a data set recorded from cat visual

cortex that we have extensively studied with other analysis methods, so that we can

compare the results.
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Figure [4].8: Analysis of parallel spike trains from cat visual cortex. a) Dot
display of 84 multi-unit spiking activities recorded simultaneously during low
intensity full flash stimulation. The dot display shows the 3rd trial of low
intensity stimulation lasting for 2.7 sec. b) Results of pairwise correlation
analysis and subsequent clustering of groups of inter-correlated MUAs of the
same data, but all trials 16 are considered. (Figure modified from Berger
et al., 2007) c) Comparison of the results of the pairwise correlation analy-
sis and our identification of potential assembly member neurons using tCSF

3 .
Surrogates are generated by trial shuffling. Each dot in the scatter display
shows the rank of each MUA according to the the number of involvements in
significant pairwise correlations (x-axis; rank of 1 corresponds to the highest
number) and the ranking according to the value of the test statistic (tCSF

3 ) using
trial shuffling for surrogates (y-axis; rank 1 corresponds to highest value).

[4].4.5.1 Experimental Procedures

Parallel spike recordings were obtained by a 10 × 10 electrode grid (Utah electrode array,

Bionic Technologies, Inc., Salt Lake City, UT, USA) covering an area of 3.6 mm × 3.6 mm

of cat visual cortex (Warren et al., 2001). Data were recorded from area 17 of anesthetized

cat under full flash treatment. Data were recorded either under spontaneous condition,

i.e., without visual stimulation, or with a full flash stimulus. The intensity of the latter was

changed alternatingly from high intensity to low intensity, each presented for 0.51 sec and

2.7 sec, respectively. Experiments were performed under animal care and experimental

guidelines that conformed to those set by the NIH (National Institute of Health). Animals

103



Denise Berger 4. Efficient Identification of Assembly Neurons within Massively Parallel Spike Trains

were obtained from the University of Utah Animal Resource Center. Description of the

animal preparation, maintenance, and surgery procedures is fully described in Warren

et al. (2001) and Nordhausen et al. (1996).

[4].4.5.2 Previous Results

In Berger et al. (2007) we analyzed the spiking activities recorded from the grid of elec-

trodes for pairwise correlations. High intensity (HI) and low intensity (LI) epochs were

separated into different data sets and analyzed separately. For simplicity we restricted

ourselves to the evaluation of the multiple-unit activities (MUA), which here were com-

posed of a mixture of typically 3 neurons. The cut-off for considering a MUA for the

correlation analysis was a minimal firing rate of 1 Hz. Some electrodes were broken. This

left us with 83 parallel MUA spike trains for LI and HI. From these we computed the

cross-correlations (CCH) (Perkel et al., 1967) for all possible MUA pairs. To evaluate

the significance of the correlation, we used a boot-strap method (spike dithering, Pazienti

et al., 2008) that accounts for the changes in firing rate of the neurons. Spike correlation

between two MUAs was considered significant if the original CCH exceeded the mean of

the surrogate CCHs (100 surrogates, smoothed with a box car kernel of width 10 · h) by

2 σ (i.e., a significance level of 5%). As a result 78/3402 pairs for HI and 203/3402 for LI

were significantly correlated.

We noticed that individual MUAs were often not only correlated with a single other MUA,

but typically with more than 2 (up to 9). This led us to a graph theoretical analysis to

discover whether groups of inter-correlated MUAs can be identified. In a first step we

identified cliques with at least more than 2 members, i.e., groups of MUAs that are all-to-

all mutually correlated. Since these turned out to exist abundantly and with overlapping

membership, we further grouped them using the criteria of a minimal overlap of one mem-

ber. Interestingly, as a result the graph decomposed into a small number of completely

disjoint subgraphs (see Fig. [4].8b). These clusters of highly inter-correlated neurons also

clustered in cortical space with a similar space constant to orientation tuning maps found

by optical imaging (Kenet et al., 2003), strongly suggesting a relationship between them.

[4].4.5.3 Comparison of Analysis Results

We re-analyzed the neuronal data with the approach presented here to identify potential

assembly neurons. The dot display of the simultaneous spike trains of the cat visual

cortex data (Fig. [4].8a) indicate non-stationarities in the firing rates. Additionally the

firing rates of the different MUAs seem to change their rates in a coherent manner. These

could be seen as arguments to use the weighted spike time shuffling procedure for the
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test statistic tCPC
1 tCPC

3 tCSF
1 tCSF

3

po (%) 95 89 95 95

pnoo (%) 22 20 23 21

r 0.71 0.70 0.74 0.71

Table [4].2: Comparison of the results. The pairwise analysis revealed 67/84
MUAs to be significantly involved in pairwise correlations. The respective
analysis with our various test statistics revealed the percentage of neurons
that were detected by both methods po relative to the total number of neu-
rons detected by the pairwise analysis. Thus the complement indicates what
percentage of neurons was not detected by using the test statistics as com-
pared to the pairwise analysis. pnoo indicates the percentage of MUAs detected
by the test statistics but not with the pairwise analysis, relative to the total
number of MUAs detected by the respective test statistic. r indicates the cor-
relation coefficient of the comparison of the rankings of the two approaches
(cf. Fig. [4].8c for tCSF

3 ).

generation of the surrogate data. However, it seems that not all neurons participate in

this rate modulation, but either have another modulatory rhythm or do not modulate their

rate. Thus, estimating the weighting distribution via the population histogram would not

be appropriate for all neurons. Therefore we choose trial shuffling for the generation of

the surrogates, and selected the onset of the low intensity stimulus as trigger times.

The correlation structures in the real world data are unknown to us. However, we have

already studied the chosen data set extensively using other analysis methods, and it is

of interest to determine whether different analysis strategies lead to consistent results.

Here we aim to identify whether individual MUAs are members of groups of neurons that

exhibit synchronous spiking activity, whereas in the former study we identified groups of

MUAs by significant pairwise correlation and the high degree of multiple involvements

in correlation and their strong overlap. Table [4].2 demonstrates that the results of the

two approaches agree well. The overlap in detection of identical neurons involved in

synchronous events was 95% for all but for tCPC
3 . Besides these the test statistics also

detected MUAs as potential assembly members which were not detected by the former

analysis. Their number relative to the total number detected by the respective test

statistic is on average 21%. So, if we would perform the pairwise analysis again with

the set of MUAs selected by our test statistic, the additionally detected MUAs would

be filtered out. However, some of the previously detected MUAs involved in significant

correlation are not be detected and thus also the correlation between respective pairs.

Candidates for the non-detected ones are MUAs involved in only a few correlated pair

correlations since our test statistic exhibits larger values for multiple involvements in
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correlated groups (cf. Fig. [4].2, bottom graphs).

We further explored this by comparing the number of involvements of the individual MUAs

in pairwise significant correlations to the strength of significance in the test statistic. For

the latter we use the actual values of the test statistic normalized to the width of the

surrogate distribution represented by the difference of its 0.99 and 0.01 quantile to avoid

fluctuations due to differences in the firing rates. These values are used to rank the MUAs.

On the other hand, we use the number of pairwise involvements in pairwise correlations

for ranking. As a result each MUA has two ranks, which is displayed in form of a scatter

plot for all MUAs (Fig. [4].8c). Clearly, the rankings by the two analyses are strongly

correlated (correlation coefficient r = 0.71) as shown for tCSF
3 . Table [4].2 shows similarly

high correlation coefficients for the other test statistics as well, which indicates that this

result is rather robust. Multiple involvements in correlated activity of a single MUA is

reflected in a larger value of the test statistic.

The pairwise correlation analysis revealed multiple involvements in correlated pairs, and

grouping of many correlated pairs in clusters of highly intra-correlated members. This

may hint at the existence of higher-order correlation between the neurons in one cluster,

or at involvement in many, strongly overlapping assemblies. This could not been decided

on the basis of the previous analysis, but requires additional higher-order analysis which

are currently being developed (Shimazaki et al., 2009; Staude et al., 2009), which make

use of similar measures used here for the test statistics.

[4].5 Discussion

We presented two simple test statistics, each parameterized with two different values

(α = 1 and α = 3), to identify neurons that are involved in assemblies. Both of these

statistics test for a given neuron whether it is involved in a coincidence spike event more of-

ten than can be expected by chance. To do so, tCPC analyses the coincidence complexities

of the parallel spike trains, and tCSF aggregates pairwise frequency comparisons. In order

to assess their performance, we applied these statistics, using a spike shuffling approach,

to massively parallel spike trains (either 100, 1000, or 5000) generated by stochastic mod-

els and network simulations, and to real-world neural spike data. The data generated by

the stochastic model served to test and calibrate the test statistics, because these models

enable us to define different spike correlation structures, rate of correlation occurrence

and number of processes involved in the correlation. Our various test statistics are very

sensitive with a high detection rate and a low false positive rate that corresponds to the

applied significance level. The false negative rate was high for very low coincidence rates
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or very small percentage of neurons involved in the correlation, for N = 100 and N = 1000

respectively, but drops drastically for larger values. The statistic tCSF
3 (that is, tCSF with

α = 3) generally behaves best. We conclude that our approach proves to be a reliable

tool for the detection of potential assembly members.

The data generated by network simulations revealed additional properties that were not

present in the stochastic model data. The firing rates of the neurons appear to be non-

stationary in time, with a high oscillation frequency (about 100 Hz). As a consequence

the way to generate the surrogates used for evaluating the significance of our measures

had to be adjusted. Our results clearly demonstrate that a uniform spike shuffling is a

strong generator of false positives. If instead the spike shuffling is performed according

to an estimator that is based on the population firing rate, the false positive rate can

be reduced close to zero if the modulation of the shuffling probabilities as a function of

time is high (i.e., low base line). The control data, which do not contain any activated

synfire chains, also exhibit large FP rates for increasing base line. Obviously, the present

coherent rate oscillations generate a high amount of synchronous events, which, if ignored

by e.g., uniform shuffling, would be interpreted as the existence of precise spike synchrony.

Interestingly, the false negative rate is close to zero for tCSF
3 , even for smaller numbers of

neurons sampled from the embedded synfire chain. Although a sampling of 200 out of

2000 neurons sounds large as a percentage, the number of neurons sampled from an indi-

vidual group of the synfire chain, in which synchronous spike events occur, is rather small

(200/20 = 10), a number comparable to the assembly size M studied for the stochastic

model data.

After having tested our approach in simulated data we applied it to neuronal parallel

spike data from cat visual cortex. We chose this particular data because we have already

studied the chosen data set extensively using other analysis methods, in particular pair-

wise with subsequent clustering. Thus, we know that the data contain correlated spiking,

in particular groups of neurons that are highly intra-correlated. Our analysis using our

simple test statistics revealed an almost perfect detection of all the neurons that were

involved in significant pairwise analysis. The MUAs that were not detected are likely to

be the ones that were involved only in very few pairwise correlations. The number of

involvements in pairwise analysis was clearly shown to correlate with the significance of

the test statistics. On the other hand, we learned from our test with the stochastic model

that the larger the assembly size, i.e., the order of correlation, the better the detection

by our test statistic. Preliminary results suggest that the identified clusters on the basis

of the former pairwise reflect higher-order correlations between MUAs in a cluster. Grün

et al. (2008) and Staude et al. (2007) showed that the complexity distribution indeed

indicates the presence of higher-order correlation in data. A preliminary analysis of the
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same data based on accretion (Gerstein et al., 1978; Berger et al., 2009a) also revealed

strong evidence that higher-order correlated groups of neurons are present. In conclusion,

we are confident that our test statistics, which either considers the complexity of patterns

or the pairwise correlations, picks up the presence of larger groups of correlated neurons.

Existent methods for correlation analysis (Grün et al., 2002a,b; Shimazaki et al., 2009;

Amari, 2001) and in particular higher-order correlation analysis of such high-dimensional

data is very time consuming and often not applicable due to the immense memory con-

sumption or computation time. In contrast, the test statistics we presented here prove

to be very efficient and fast and is able to digest easily recordings of an order of 1000 s

of parallel processes. Thus the approach proves to be an efficient method of reducing the

data set to the relevant neurons, which could be followed by detailed higher-order analysis

spike dithering, (e.g., Shimazaki et al., 2009; Amari, 2001). Due to the efficiency of the

method one may also think of a time dependent application that may recover dynamical

changes of the correlation structure. Thus, our approaches are a valuable addition to

methods that provide information on the presence of higher-order correlation in data,

but do not identify the individual neurons involved. Reducing data sets to the relevant

neurons helps to reduce computation time considerably in further analysis steps.
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Abstract

In order to uncover possible mechanisms guiding the eye movements during free viewing,

we investigated the statistics of the eye movements of three monkeys freely exploring

natural images. Therefore, in a first step we analyze the spatial distributions of the

fixation points and correlate them with the saliency features of the images explored. As

a result we find that guidance of eye movements is for most of the presented images

determined by low level features as represented by the saliency of the images. However,

for images that contained primate faces the fixation positions are not explained by the

exogenous, stimulus features but indicate involvement of endogenous activity. In a next

step, we investigate features of the eye movement trajectories to capture their sequence

dependence. Fixations on images cluster in space which are interpreted as regions-of-

interest. A Markov chain analysis reveals that these regions are not randomly visited

during eye movements, but eye movement trajectories are organized in sequences of local

explorations of the regions-of-interest. These result resemble close similarities to visual

behavior of humans and thus encourage further work on free viewing monkeys to relate

neuronal activity to behavioral paradigms that involve attentional aspects.
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[5].1 Introduction

Eye movements are known to indicate attention and internal state of humans (Noton

and Stark, 1971a; Biedermann, 1987). Human eye movements in free viewing conditions

have been extensively studied in the last decades starting from Buswell (1935) and Yarbus

(1967). It has been shown, that humans are strongly attracted by low-level features in the

images expressed in the saliency of the images (Itti and Koch, 1999a, 2001). On the other

hand, human eye movements are also strongly affected by objects which are meaningful

to their requested behavior (Yarbus, 1967; Just and Carpenter, 1967). Although several

models have been proposed to functionally account for such visual attention of humans

(see, e.g., Wolfe, 1994; Milanse et al., 1995; Tsotsos et al., 1995; Itti et al., 1998), it re-

mains unclear how the brain processes such information and guides the eye movements.

Obviously it would be of high interest to understand the brain mechanisms underlying

active vision. Electro-physiological studies in animals can access the neuronal level but

are typically performed with optimal stimuli in the receptive fields of the recorded neurons

under fixation requirement (e.g., Hubel and Wiesel, 1968; Maunsell and Newsome, 1987),

or where the task required precise eye movements to pre-defined target locations(Vinje and

Gallant, 2000). Thus studies that involve free viewing of natural scenes, are required to

allow studying viewing under natural conditions. However, such paradigms are typically

not used in animal experiments, since it makes the analysis of neuronal data hard due to

the lack of ’trials’. Thus, retrieving a better understanding of eye movement strategies

of monkeys can provide new experimental paradigms and insights. First indications of

similar visual behavior of monkeys and humans was shown in a speed categorization task.

Monkeys perform only with slightly decreased accuracy but greater speed than human

observers (Fabre-Thorpe et al., 1998; Thorpe et al., 1996). These results reveal striking

similarity between monkeys and humans regarding rapid processing of natural scenes.

Nevertheless, it remains to be investigated whether or not this similarity generalizes to

viewing under natural conditions, when attentional processes and eye movements take

effects.

In order to uncover possible mechanisms guiding the monkeys’ fixations during free view-

ing, we here investigate the eye movements of monkeys, while they were allowed to freely

explore natural images. In particular we are analyzing the spatial positions the monkeys

fixate on and the strategy they use to explore the images. Thus, in the first part of this

paper, we investigate in how far image features defined by their saliency determine the

guidance of eye movements and fixation positions in contrast to potentially meaningful

items. We find that the eye movements are mainly saliency driven with the exception if
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primate faces are contained in the images.

In the second part we investigate how the images are explored, i.e., whether the monkeys

employ a certain strategy in the spatial sequence of fixation positions while scanning the

images. Using a mean shift algorithm we determine clusters of a high density fixation

positions to investigate then the scan path by a Markov chain analysis. We find that

image exploration is non-random but involve a strategy where region-of-interests (ROIs)

are locally explored before directing attention to a new ROI.

[5].2 Methods

[5].2.1 Experiment

Three adult, male capuchin monkeys (Cebus apella) weighing 3-4 kg served as subjects

for this study. All experiments followed institutional and NIH guidelines for the care

and use of laboratory animals. All surgical and recording procedures are described in

Maldonado et al. (2008). After the animals participated in the recordings, their head

post, eye coils, and manipulator were removed. After full recovery the animals were

donated for adoption (Maldonado et al., 2008). The animals were seated in a chamber

dimly lit at the low scotopic level. A selection from a total of 11 pictures, with a size

of 30 x 40 cm, of different natural scenes were presented in random order on a 21-inch

computer monitor, with a frame rate of 60 Hz comprising a total visual angle of 30 × 40

degrees, located 57 cm in front of the animal. Each image was presented up to 3 times

in a single recording session. The animals were allowed to freely explore natural images

(in the following referred to as images). The experimental protocol required the animals

to maintain their gaze for up to 5 s within the limits of the visual image in order to be

rewarded. The images were presented interleaved with blank frames containing a single

central fixation spot (referred to as fixation cue), in order to maintain alertness, which

the animals had to fixate (within a 1o window) for 1 s in order to be rewarded. Fig. [5].1

shows a sketch of the time course of the experiment. Vertical and horizontal eye position

were monitored throughout the experiment by the use of a search coil driver at 2 kHz

(DNI Instruments, Resolution: 1.2 min of arc and then digitized (see Judge et al., 1980,

for details).

[5].2.2 Detection and Statistics of Eye Events

We developed an automatic algorithm to extract different types of eye movements from

the eye traces (Maldonado et al., 2008). Eye movements are categorized in two different
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Figure [5].1: Time course of the experiment. Images, blanks and blanks with
fixation spot (white dot) were presented in interleaved manner, with a pause of
2-3 s between image and fixation cue. Monkeys had to keep their gaze within
the limits of the images or blanks for 3-5 s, and had to fixate the fixation cue
for 1 s. Successful behavior was rewarded with a drop of juice. Per session a
set of 4-7 different images (out of 11) were presented in random manner. The
size of the images and blanks was 30 × 40 cm, which corresponded to a visual
angle of 30 × 40 degree.

groups, i.e., saccades and fixations (cf. Fig. [5].2a,b), according to the following criteria:

Saccades are defined as eye movements with an angular velocity higher than 150o/sec,

lasting for at least 5 ms. In addition, saccades are required to exhibit a minimum accel-

eration of 170o/sec2. Fixation periods are classified as eye positions lasting at least 100

ms within 1o of the gaze location reached at the end of a saccade. Data which can not

been assigned into one of the two categories, are not been taken into account for further

analysis. Only pairs of unambiguous saccade-fixation sequences are considered for further

analysis.

Basic statistics of fixation and saccade durations pooled over all experiments are shown in

Fig. [5].2c,d. The distributions of fixation durations of two monkeys (d and m) reveal high

similarities, with a mean fixation duration of 0.31 s similar to the duration of fixations in

humans (between 0.26 and 0.33 s) during scene perception (Castelhano and Henderson,

2007). The distribution of fixation durations of one of the monkeys (s) however differs

from the others. The fixation durations of that monkey (s) shows a broader distribution,

with its mean value of 0.42 s shifted to the right in comparison to that of the other two
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monkeys (d and m).
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Figure [5].2: Statistics of duration of eye movements. a. Example of a pre-
sented image (image no. 3) with the scan path (white lines) during one single
image presentation. The red dots indicate the positions of fixations. b. Time
course of eye positions during the same trial (upper trace: horizontal, lower
trace: vertical). Fixations are marked in red, saccades in green, and unclas-
sifiable events are colored in black. c. Distributions of saccade durations
(bin width: 5 ms) and d. distributions of fixation durations (bin width: 50
ms), pooled over all sessions and all images presentations, separately for each
monkey (d: blue, m: green, s: red).

[5].2.3 Saliency Maps

In order to relate the visual foci of the monkeys as expressed by the fixation positions

on the images, we will finally correlate fixation maps (cf. Section [5].2.4) to the saliency

maps. The saliency maps of the individual images is calculated according to the model by

Itti et al. (1998). This model is inspired by the neural architecture of the early primate

visual system and consists of multi-scale feature maps that allow the detection of local
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discontinuities in intensity, color, and orientation.

The images presented to the monkey are segregated into three separate feature maps,

one for intensity, color, and orientation, as described in detail by Itti et al. (1998). In

a second step, each feature is re-organized into a center-surround arrangement that is

characteristic of receptive field organization (Hubel and Wiesel, 1962), and highlights

the parts of the scene that strongly differ from their surroundings. This is achieved by

the difference between fine and coarse scale applied to the feature maps to extract local

enhanced intensities for each feature type. In the last step these conspicuity maps are

normalized to the total number of maps and added to yield the final saliency map s(x, y)

(see Fig. [5].4a).

[5].2.4 Fixation Maps

As a measure for the regions in the images that preferably attract the interest of the

monkeys we compute a fixation map for each image and monkey. All fixations on a

particular image are pooled across different experiments and trials (see Fig. [5].5a for

examples) to calculate the 2D-probability distribution of the fixations f(x, y). Therefore

we discretized the images (original resolution: 600 × 800 pixel) into 2D-bins (x,y) of

30 × 40 pixels. Within each bin the number of fixations are counted and the resulting

2D-histogram is normalized by the total number of fixations that entered the histogram

to yield a probability distribution.

[5].2.5 Similarity of Maps

To quantify the similarity between the saliency map of an image and the respective fixa-

tion map we calculate the Kullback-Leibler distance (KLD) (Kullback and Leibler, 1951)

between the two. The KLD is an information theoretical measurement for the distance

between two probability density functions (pdfs), here s(x, y) and f(x, y) defined as:

KLD(s, f) =
∑

x

∑

y

s(x, y)log
s(x, y)

f(x, y)

The KLD measures the ’closeness’ between two pdfs. It is always nonnegative. The

smaller the KLD, the higher the similarity between the two pdfs, with its lower bound at

zero, if the two pdfs are identical.

To evaluate the significance of the measured KLD value (KLDact) we calculate the distri-

bution of the KLD assuming independence of the two maps (KLDind). This is achieved

by a ’random viewer’ where the same number of fixation points as in the original viewing
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behavior are distributed randomly (homogeneously) onto the image. The KLDind be-

tween the random viewing fixation maps and the original saliency map are computed for

1000 times to generate the distribution of KLD values under independence, thus allowing

to perform the significance test for the original KLD at a level of 1 % (cf. Fig. [5].4b).

For visualization purposes (cf. Fig. [5].4c), we show for each image the difference of the

actual KLD value and the mean of the independent values: ∆KLD = KLDind −KLDact.

Positive values of ∆KLD denote a higher similarity between the actual fixation and

saliency map than expected, indicating that the saliency map is a good predictor for

eye movements. On the contrary, negative values signify that the distance between the

actual fixation map and the saliency map is larger than expected when assuming random

viewing. Significant deviations from independence are marked by an asterisk.

[5].2.6 Spatial clustering of fixation positions

In order to investigate the existence of particular regions-of-interest (ROI) defined as ar-

eas with high density of fixation positions, we identify spatial clusters of fixations by use

of the mean shift algorithm (Funkunaga and Hostetler, 1975; Comaniciu and Meer, 2002)

adapted for eye movement data (Santella and DeCarlo, 2004). This is an automatic,

entirely data-driven method, that derives the number and arrangement of clusters deter-

ministically.

It starts from a set of N fixation positions with xi and yi, i ∈ 1, .., N , being the horizontal

and vertical positions of fixation position vi on the 2D screen. The clustering algorithm

proceeds iteratively, while moving with each iteration each of the points to its new po-

sition s(vi) depending on the weighted mean of proximity and density of points vj with

i 6= j around the reference point: s(vi) =
∑

j k(vi − vj)vj/
∑

j(vi − vj). The kernel is

defined as a Gaussian with a mean and variance of 0: k(v) = exp(x2 + y2)/σ2
s with σs

assumed here as 2.5 cm, which correspond to 2.5 degrees of visual angle. Thereby the

positions are iteratively moved into denser configurations by estimating the gradient of

the density of points at vj as s(vj)− vj . The procedure is stopped after convergence. All

fixations are assigned to a cluster with those fixations, whose reference points lay within

a diameter of 1o apart. Robustness to extreme outliers is achieved by limiting the support

of points at large distances as defined by the kernel k(v).

In order to discard outliers, we additionally apply a significance test to disregard clusters

containing only a very small fraction of the data which deviate from expectation of inde-

pendence. For a significance test on the estimated cluster, we simulate fixation positions

(same number as in the original) of a ’random viewer’ and apply also on these data the

mean shift algorithm. This is repeated 100 times for each image. For each we calculate
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the expected number of fixation positions per cluster and their density. An original cluster

of fixation positions is identified as significant, when the number of fixations and their

density exceeds the mean ± 2 sd of the cluster derived from the random viewers. Only

if a cluster is identified as significant, it will enter the analysis described in the following

section.

[5].2.7 Transition probabilities between fixation clusters

The statistical properties of the scan paths the monkey chose to explore an image is

analyzed by a Markov chain (MC) analysis (Markov, 1913). A MC is a sequence of

random variables with propagation through a chain of states in accordance with given

transition probabilities. These are estimated from the data by the normalized frequency

how often a specific state xj transits into any particular other state xl or stays within

the same one: Pj,l = P (Xt+1 = xj |Xt = xl). Per image, we assume the identified clusters

of fixation points as its states. The transition probabilities from any one state of these

states to any other are represented in matrix form. The state of the system at step t with

t = 1, ...T − 1, with T being the total number of fixations on an image, is derived via

Pr(Xt+1 = x|Xt = xi, .., X1 = x1) = Pr(Xt+1 = x|Xt = xi) for all states xi ∈ x1, ..xn.

Thus we assume that the scan paths of the monkeys satisfy the Markov property, i.e.,

that, given the present state, the past states are independent.

For better intuition, the MC is visualized by a transition graph, in which the vertices are

identified with the states. The graph has oriented edges from each vertex to any other,

which are weighted with the corresponding transition probability between the respective

states. Whenever the transition probability equals zero (Pj,l = 0), no connection is made

between the two vertices. In addition, each vertex has an edge to itself weighted by the

probability of staying within the same state in the next step. For visualization purposes

we represent the transition probabilities by the thickness of the edges (cf. Fig. [5].5a),

and thereby deviate in the graphical display from conventional transition graphs.

In order to interpret the transition probabilities derived by the MC we compare them to

the transition probabilities assuming homogeneous chance probabilities of the transitions

between any two fixations. Based on the numbers of fixations fm of each state xm, we

calculate the expected transition probabilities for each state xi to every other state xj by

P (Xt+1 + xj |Xt + xi) =
fj

T
, with T the total number of transition steps.
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[5].3 Results

[5].3.1 Topology of Fixation Locations

In a first step we investigate the topology of fixation positions of the different monkeys

(s, d, and m) on the individual images (see Fig. [5].3 for examples). For two of the

monkeys (d and m), the spatial distribution of fixation locations clearly shows dense

clusters of fixations which differ significantly depending on the image. These clusters are

assumed to reflect regions-of-interest of the monkey. Overall, monkeys d and m show a

similar characteristics in the topology of eye positions for the individual images. However,

the fixations of the third monkey (s) show different distributions compared to the other

monkeys. In addition, his fixation distributions do not differ for the different images, but

form a large cluster within the lower left part of the images, irrespective of the content of

the images. Additional clusters are not observed.

Figure [5].3: Spatial distribution of fixations on example images. Each column
corresponds to one of four example images (shown right). Distributions of
fixation positions (dots) are collected from all presentations of the respective
image, over all sessions. Left three columns: fixation positions per monkey
and images; right three columns: same data, with presented images underlaid.
Merged fixation positions from the four images above are shown in the bottom
row.
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[5].3.2 Saliency as driving force for non-primate images

In the next step of our analysis we take into account the features of the images to uncover

if the fixation positions are related to the images. In particular we are interested to what

extent stimulus-driven or attention related factors influence the gaze position. To capture

stimulus-driven components of the fixations we estimate the saliency of the features of

the images by computing their saliency map based on the model by Itti et al. (1998)

(see Methods, Section [5].2.3). This model combines three different conspicuity maps

that consider orientation, intensity, and color into one saliency map (see Fig. [5].4a for

examples). To quantify the correlation between fixation positions (see green dots on the

saliency maps in Fig. [5].4a) with the saliency maps, we derive for the same images also

its fixation maps (see Methods, Section [5].2.4). We capture the similarity between the

saliency and the fixation map by their Kullback-Leibler distance (see Methods, Section

[5].2.5). Significance of the actual KLD is derived by comparison to the KLDs resulting

from random viewing. For better illustration of similarity we express the difference to

the KLD of the random viewer by the difference (∆ KLD) of the actual KLD values

and the mean of random fixation positions. Figure [5].4c shows the results for each of

the images and for each of the monkeys. Positive entries mark images for which the

fixation distributions are fully explained by the salient features, whereas negative entries

mark images where the fixation positions are not explained by the saliency map. Entries

marked by an asterisk signify images for which the monkey’s fixation pattern differed

significantly from a random viewer (see Methods, Section [5].2.5).

For monkeys d and m the KLD was significantly (P<0.01) smaller than a random viewer

for about 75% of the images (in 8 of 11 images for monkey d and 4 of 5 for monkey m),

i.e., the fixation maps were very similar to the saliency maps. Thus, for these the saliency

maps are good predictors for the fixation positions on these images. However, for the

remaining images the KLD is significantly larger than expected by a random viewer, i.e.,

the fixation map differs significantly from the saliency map and thus may be interpreted as

avoidance of salient features. The contents of these images differs systematically from the

former ones. They show faces of primates, while the former did only contain non-primate

animals. Images containing primates were primarily fixated close to the primates eyes,

areas that do not exhibit salient features.

For monkey s the results are totally different. The KLDs do not significantly deviate

from expectation in all of the cases. This is consistent with the observation that this

monkey did not ’explore’ the images as the other two monkeys did. Instead he kept his

gaze within the lower left part of the image, irrespective of the presented image. Thus, it

is highly likely that for this monkey the behavioral training failed. Exploration was not
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controlled in the experiments but the monkeys were rewarded when they kept their gaze

on the image, also when the monkey fixated only on a restricted area.

In summary, we find for the fixation positions of the monkeys that actively explore the

natural scenes are driven by low-level image features, if the images did not show primates.

In case of images showing primates the eye movements are driven by other mechanisms,

most likely by attentional aspects since primate faces provide to other primates very

important cues for their social live.

Figure [5].4: Correlation of saliency and fixation maps. a. Saliency maps for
3 example images combined with fixation positions of monkey d (green dots)
pooled from all sessions and all trials. b. KLDs resulting from correlating
saliency maps and fixations maps (same data as in a.). Actual KLDs are
marked by vertical lines, KLD distributions of random fixation positions (1000
drawings) are shown as histograms. Different colors mark the three example
images shown in a. c. Differences (∆ KLD) of actual KLD value and mean
of random fixation positions for all images (x-axis, images below). Colored
bars per image correspond to the ∆ KLDs from the different monkeys (blue:
monkey d; green: monkey m; brown: monkey s). Stars mark ∆ KLDs that
deviate significantly from expectation (P<0.01). Green X mark images which
had not been presented to monkey m.
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[5].3.3 Sequence of ROI exploration

The cluster analysis of monkey d and m reveals that the fixation positions on a particular

image cluster in space and do not appear homogeneously in space (cmp. Fig. [5].3).

Application of an automatic clustering approach (see Methods, Section [5].2.6) revealed

typically 3-5 significant fixation clusters on the images presented to monkey d and m.

For monkey s no significant clusters could be extracted. Thus for this reasons and the

fact that monkey s did obviously not actively explore the images, we exclude this monkey

from the following analysis which concentrates on mechanisms underlying the scan path.

In order to investigate the chronological order in which these ROIs are visited, we explore

the scan paths of image explorations by applying a Markov chain (MC) analysis on the

eye movement trajectories (see Methods, Section [5].2.7). We assume the extracted ROIs

as Markov states and derive by the MC analysis the transition probabilities for staying

within a cluster and for transition from one cluster to the next. Data underlying one

transition graph are pooled from all eye movement sequences to all presentations of the

same image to one monkey. Figure [5].5a shows examples of eye movement sequences for

a few presentations of the same image. The identified fixation clusters are illustrated in

Figure [5].5b and the transition graphs between these three identified clusters are shown

in Figure [5].5c. To derive significance of the actual transition probabilities, we compare

them to chance transition probabilities assuming homogeneous probabilities between any

two fixations. As a result we find for the majority of the identified clusters across all

images (87 % (40 out of 46) for monkey d, and 95% (19 out of 20) for monkey m). that the

probabilities to stay within the clusters are significantly higher than expected by chance.

On the contrary, the transition probabilities between clusters are for the majority of the

cases (60/97 transitions for monkey d, and 83/134 transitions for monkey m significantly

lower than chance. These results are summarized as distributions in Figure [5].5c and d.

The comparison of the distributions of the actual and the expected transition probabilities

reveals that they are significantly different for both conditions, and holds true for both

monkeys (Wilcoxon test P< 103).

To summarize, the Markov chain analysis reveal that the monkeys primarily saccade

between fixation positions within the same, local cluster, and are saccading out of the

cluster into others or to the background with lower probability. These results show no

dependence on the contents of the images, in particular with respect to primates. Thus

the monkeys seem to perform local explorations, interrupted by jumps to new regions-of-

interest for further exploration.
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c.

b.a.

d. e.

Figure [5].5: Transition probabilities between clusters of fixations for monkey
d viewing image 2. a. Example of eye movement trajectories during explo-
ration in 22 different trials (different colors). b. Spatial clusters (n=3) of
fixation positions extracted by the mean shift algorithm. Fixation points in
the respective clusters are colored in red, cyan, and magenta. c. Transition
graphs between identified clusters (b.) interpreted as the states of the model
(same colors as in b.). Fixations that do not fall into any of the identified clus-
ters are collected into the background state (dark blue box). Experimental
transition probabilities are indicated in black, expected probabilities assum-
ing random transitions in gray. STOP refers to trial ends after exceeding
the maximal image presentation time. d. Experimental (black) and expected
(red) distributions of the probability to stay within the same cluster and of e.
transition probabilities to change between clusters
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[5].4 Discussion

Investigation of the topology of fixation locations showed in two out of the three investi-

gated monkeys (monkey m and d) specific spatial patterns of fixation positions dependent

on the presented images. One of the three monkeys (s), however, showed a completely

different viewing behavior. His fixations did not differ for the different images, but were

rather restricted to a limited area of the image frame. Given the consistent behavior of

the other two monkeys, we have to assume that this monkey did not learn to explore the

images but rather to keep his gaze within the lower left quadrant of the frame, irrespec-

tive of the contents of the image. This is highly likely since the experiment did not ask

for a certain task besides staying with the gaze somewhere within the image, thus the

monkey was nevertheless awarded. This view is also supported by the correlation analysis

of fixation positions and saliency maps, which shows no indication that the fixations of

the monkey were driven by features of the images. Therefore we restricted our analysis

of the sequence analysis of the scan paths to the monkeys that explored the images, and

therefore will in the following discuss the results of monkeys m and d.

Their fixations cluster in space, i.e., on locations of the images that appear to be relevant

to the monkeys and we interpret these clusters as region-of-interests. Similar viewing

behavior was found in humans which observe complex scenes by restricting their fixations

to locations rich of details instead of distributing their attention evenly across the entire

scene. The scene, therefore, can be divided into informative features and redundant re-

gions as for humans (Mackworth and Morandi, 1967; Yarbus, 1967; Krieger et al., 2000).

To get insight into the mechanisms that guide the visual exploratory behavior of the

monkeys, we analyzed the images for salient features. Theses are are likely candidates for

the attraction of the monkeys’ gaze since no particular task was requested in contrast to

studies in humans where the subjects were involved in search tasks or had to judge the

content of the images (Yarbus, 1967). We find that for approximately 75% of the images

their saliency maps are good predictors for the fixation positions suggesting that the eye

movements are mainly driven by low-level features.

However, for the remaining images the eye movements seem not directly related to salient

features of the images. Common to the images is that they contain faces of primates

(monkeys or humans). This viewing behavior may be rather attributed to top-down

mechanisms, where attention to meaningful details of the objects determines the location

of gaze. These results resemble similarity to those found in humans where the choice of

fixation positions was shown to be either driven by bottom-up (exogenous) or by top-

down (endogenous), internal or external factors (McKelvie, 1976). Thereby, faces play a
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particular role and are probably the most important visual stimuli in primate social com-

munications (Bruce and Young, 1998) as these can provide significant cues to intention

and mental state of other individuals (Bruce and Young, 1998; Emery, 2000; Andrew,

1963; Anderson, 1998). Similar observations exist in non-human primates. At an early

age, monkeys respond appropriately to the expressions of other individuals (Mendelson

et al., 1982), and have been shown to be able to recognize the faces of other individuals

(Rosenfeld and Van Hoesen, 1979).

In psychological studies it was shown that the sequences of saccades and fixations are

relevant for perception (Noton and Stark, 1971b). We find that the monkeys fixate prefer-

ably at certain locations on the images, and the eye movements between these regions-of-

interests are not random. The Markov chain analysis revealed that the monkeys primarily

saccade within positions of a region-of-interest, i.e., locally explore, before directing their

eye movement by a larger saccade to a new region-of-interest (global exploration). This

finding is consistent with the hypothesis that large saccades to new areas are followed

by local, short saccades to near-by positions for refinement of the percept (Körner et al.,

1999; Ullman, 1995). Thus our results indicate that the monkeys actively explore the

visual scenes.

Experiments including active vision, i.e., without the request that eyes fixate on a pre-

defined position, are hard to find in experiments that involve electro-physiological record-

ings since they do not contain repetitive, identical trials and thus are hard to analyze.

This study provides new approaches to data from free viewing animals and thus open new

routes for experiments that aim to relate neuronal activities to natural behavior. Electro-

physiological studies that involve the presentation of natural stimuli such as movies to

fixating animals already show that the perspective of a simple stimulus-response relation

is becoming questionable (Vinje and Gallant, 2000; Yen et al., 2008). Data appear much

more variable which cannot be simply related to stimulus features, but higher-order brain

areas and attentional effects obviously play a role. Active vision includes self-initiated

eye-movements and thus naturally involves a combination of internal and external driv-

ing forces. Active vision is fast: within the duration of a fixation (about 200 ms) visual

input enters the system, visual information is processed and the next new eye movement

is initiated. This requires fast processing and leaves an individual stage of the nervous

system only very limited time for computation (about 10 ms, Thorpe et al., 1996). Thus,

electro-physiological studies of active vision need to include the dynamics of processing as

suggested by models of the visual system (Körner et al., 1999; Van Rullen et al., 1998b)

which predict temporal coordination of neuronal activities. Recently, Maldonado et al.

(2008) presented first evidence that spike synchrony is involved early in the processing in
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the visual system. Ito et al. (2009) found evidence that a signal activating large popu-

lations of the visual system (local field potential) occur locked to saccade onset thereby

providing an internal reference signal for the coordination of neuronal activity induced

by visual input. It is highly likely that this signal is modulated along the scan-path

or as a function of attention thus providing the ground for context-dependent neuronal

processing.
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Correlated spiking activity in the primary visual cortex

The first issue analyzed in this thesis concerns the question of the temporal coordina-

tion of neuronal activity in the primary visual cortex. I presented correlation analyses

from (1) massively parallel recorded multi-unit activities (MUAs) from anesthetized cats

during spontaneous activity and visual “full-flash” stimulation (Chapter 1), and (2) si-

multaneously recorded single-unit activities from three monkeys during free exploration

of natural scenes (Chapter 2). Both analyses showed that neurons of the primary visual

cortex significantly correlate their spiking activity, with a high precision (<10 ms), beyond

the effect attributable to co-variations of the firing rates. On the one hand, synchrony

occurs spontaneously, between MUAs, which form distinct highly intra-correlated groups,

and is also present during full-flash treatment. The occurrence of synchronization during

spontaneous activity unveils an intrinsic property of the network embedded in the primary

visual cortex. On the other hand, the locking of the synchronization to behavior gives

insights into the functional mechanisms of visual information processing.

In the first study (Chapter 1, Berger et al., 2007), we could find several, distinct highly

intra-correlated MUA groups (referred to as GICs) in the absence of stimuli and during

full-flash treatment. The correlation effect is stronger during low intensity full-flash stim-

ulation than during spontaneous activity. This can be explained as during this protocol

all neurons within the visual field received the same external stimulus. This should there-

fore lead to an equal elevation of the intrinsic network. However, during high-intensity

full-flash stimulation these synchronization effects are reduced in terms of numbers of cor-

related MUA pairs, as well as in number and size of the GICs. One possible explanation

could be that if the stimulation is too high all neurons are strongly activated, and the

high discharge rate may become indistinguishable from synchrony.

The occurrence of correlations between adjacent MUAs appears to originate in the colum-

nar architecture of the primary visual cortex, where neurons with the same orientation

preference are organized in a column (Hubel and Wiesel, 1962, 1963, 1968). As orientation

preferences change smoothly moving tangentially in the primary visual cortex, orientation

columns are repeated regularly and precisely over the cortex. Thus, neurons recorded from

adjacent electrodes have in general the same or at least similar orientation preferences. If

neurons with the same orientation tuning are synchronized, then there must be correlation

between both, MUAs located in the same column and MUAs which lie in another column

with the same orientation preference. This is reflected in the measurement of distance

dependences of correlated MUA pairs during spontaneous activity (cf. Fig. [1].4), and

during stimulation. The occurrence of correlation between MUA pairs appeared to be

distance dependent. Nearby MUAs are correlated, but the synchronization decreases as
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the distance increases. When the distance becomes comparable to the typical distance

between identically oriented columns, the frequency of synchronization between neurons

increases again. Indeed, the spatial scale of the GICs corresponds to that of orientation

columns found by optical imaging, using voltage-sensitive dye, in anesthetized cat area

17, as observed e.g., by Kenet et al. (2003) (cf. Section [1].2.3, Fig. [1].3). The authors of

this study showed that different orientation maps activate dynamically and systematically

during spontaneous activity. We expect therefore the GICs to be dynamically correlated

and alternatingly active. Preliminary analysis has shown that this is indeed the case for

higher-order synchronized MUA groups, which match the GICs emerged in the pairwise

analysis (Berger et al., 2009a, see Fig. 4a). Another important observation, adding cre-

dence to the possibility that GICs are a reflection of the underlying network organization

in area 17, is that correlation maps were highly similar for all three different recording

conditions (see Fig. 4b).
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Figure 4: a. Higher-order synchrony (HOS) in cat visual cortex during low-
intensity full-flash stimulation, after segmentation of data into quasi-stationary
time segments. At different times, different sets of MUAs exhibit HOS. Veri-
fication by trial shuffling. b. Pairwise analysis (cf. Chapter 1 for details) for
low intensity (LI), spontaneous (SP) and high intensity (HI) activity.

Our results are in agreement with a series of other studies. Ts’o et al. (1986) investigated
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cross-correlations between cortical neurons in anesthetized cat in respect to long-range

horizontal connections, i.e., distances of up to several mm. Their study suggests a high

degree of inter-connectivity between cells that have the same orientation preference within

- as well as between - columns, therefore strongly supporting the interpretation of our re-

sults. Das and Gilbert (1999) investigated short-range interactions in anesthetized cat

area 17 and observed that neighboring cells in a range of up to 500 - 800 µm show spike

correlations independently of the orientation preferences. However, we found correlations

on a broader scale of distance. All but one GICs have spatial extents that exceed such

a short-range interaction. An additional and important difference between their experi-

ments and ours is the type of stimulus used. Here, we investigated spontaneous activity as

well as activity under full-flash treatment, whereas Das and Gilbert (1999) used isolated

optimally tuned bars in the receptive fields of the neurons. More comparable to our results

is the study by Tsodyks et al. (1999) in anesthetized cat area 17/18 who found orientation

maps under spontaneous activity that is related to the tuning of the individual cortical

neurons using voltage-sensitive dye imaging. He concluded that the underlying functional

architecture is associated to tuning properties. In Chapter 4 we applied a test statistics

for identifying potential assembly members on the same data sets. The analysis resulted

in an almost perfect detection of the MUAs detected by the pairwise analysis, confirming

the results found by pairwise analysis (Berger et al., 2009b). The only undetected MUAs

were not members of the GICs (see discussion below).

Spontaneous activity is believed to play an important role for generation of synchronous

responses (Fries et al., 2001; Kenet et al., 2003; Blumenfeld et al., 2006; Singh et al., 2008),

providing the basis for rapid synchronization during stimulus input. However, whether

or not our results point towards a functional relevant role of synchronization, or solely

reflecting the underlying network architecture would need to be systematically tested.

The second study of correlation analysis between neurons of the primary visual cortex

presents an analysis of data from three awake and behaving monkeys (Chapter 2, Maldon-

ado et al., 2008). The monkeys were allowed to freely explore natural scenes (presented as

still images). In order to relate the correlations to the eye events of fixations and saccades,

unitary events have been analyzed in a time resolved manner, aligned to the eye events.

Moreover, since the actual stimulus changed with each saccade and the recorded neurons

were different for each session, the average neuronal behavior was evaluated, allowing us

to detect characteristic eye movement-related response patterns.

We could show that precise correlations were strongly locked to the onset of fixations

during image presentation and occurred between 30 to 90 ms after fixation onset. This

effect cannot be explained by the rate change, as the rate and the synchrony show dif-
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ferent temporal dynamics, the discharge rate peak being at 90 ms after fixation onset

and then decreasing to near baseline levels within 200 ms, whereas the synchrony episode

started 30 ms after fixation onset and ended by the time the discharge rate had reached

its maximum (cf. Section [2].3, Fig. [2].4). On the contrary, during the control period

–when the monkeys scanned a blank screen– only small changes in firing rates occurred,

and no excess synchrony was detected. These results suggest a functional relevance of

synchronization between neurons.

With each onset, a new visual stimulus is conveyed to the brain, with a fixation period

typically lasting 100 to 200 ms. Thus, feature extraction and object identification must

be accomplished within approximately 200 ms. Support of this hypothesis is given by

Fabre-Thorpe et al. (2001). In their study, psychophysical experiments involving with

humans performing object identification led to similar conclusions about the processing

speed of primary visual cortex. The authors claimed that in early stages of visual pro-

cessing computations required for elementary scene analysis have to be achieved within

a few tens of milliseconds. Based on the hypothesis that initial image processing occurs

within the first tens of milliseconds after image presentation, Guyonneau et al. (2004)

proposed that feature extraction, scene segmentation, and object recognition should be

accomplished by exchanging only a few spikes per neurons. In this scenario, integration

of firing rates across a neuronal population would not be feasible. Therefore, it has been

proposed that information is encoded in the precise timing of action potentials.

Our results support this hypothesis. Comparison between the dynamics of rate modu-

lation and synchrony showed that the rate change is much slower than the occurrence

of excess synchrony, as it reached its maximum approximately 40 ms before the peak of

the rate increase. Response latencies cover a range of 30 to 60 ms, which implies that

potential synchronizing mechanisms operate already and preferentially on the very first

spikes evoked by the newly fixated parts of the image.

A mechanism capable of achieving such rapid synchronization has recently been identified

by Fries et al. (2001, 2007). They observed that neurons with related feature preferences

are engaged in synchronous oscillations. This has the effect that the onset latencies of

responses to stimuli driving coherently oscillating columns become synchronized, where

neurons fire only during the depolarizing phase of the oscillation cycles (Engel et al., 2001;

Fries et al., 2001, 2007). A recent analysis by Ito et al. (2009) on the same data set we have

analyzed, showed that there is a strong beta-band oscillation in the local field potential.

The oscillation is strongly locked to saccade onset and continues into the successive fixa-

tion period, and visually induced spikes are phase locked to this oscillation. The authors

suggest that the oscillations serve as a corollary signal enabling precise timing of spikes

in V1 and thereby providing a mechanism for synchronization.

141



Denise Berger Discussion

Fries et al. (2001, 2007), and Engel et al. (2001) suggested that fast synchronization oc-

curs between neurons with related features. In our study, the analysis was performed

by averaging across all neurons; thus the link between orientation tuning and synchrony

cannot be directly drawn. A challenging next step would be to test whether neurons with

the same orientation preference are primarily involved in the synchronization we have

found.

Another challenging question would be to test in how far the synchronous activity found

during spontaneous activity resembles the activity during free viewing behaviour. Ito

et al. (2009) suggested that the initiation of the saccade generates oscillations, which in

turn synchronizes the neurons during vision. Synchrony during spontaneous activity may

be an intrinsic phenomenom, solely reflecting the connectivity of V1, and not functionally

involved in viewing. However, as argued above many studies suggest that spontaneous

activity is important for the initiation of rapid synchronization. Moreover, it has been

suggested that spontaneous activity reflects the internal state of the brain and might be

influenced by context, attention or perceptual memories (Blumenfeld et al., 2006). When

it comes to our results, it is worth noting that there are some important differences be-

tween the first and the second study presented. Indeed, the first analysis was performed

on anesthetized cats, the second other on on awake and behaving on monkeys. Further ex-

periments would be needed to complete the framework, e.g. by recording multi-electrode

arrays in the absence of behavior and during free viewing.

In conclusion, our work suggests that synchrony is mechanism for information processing

employed by the visual cortex, that may operate by fine tuning the timing of neurons.

Correlations between MUA pairs appear to be well organized even in the absence of stim-

uli, particularly when distance dependent correlations are compared to orientation tuning

in distinct columns. Since oriented stimuli were not used here, MUA correlation is not

to be attributed to orientation tuning. Nevertheless, it can be surmised from these re-

sults that these correlations of neuron pairs are linked according to orientation tuning.

Moreover, the visual cortex possesses a mechanism to complement rate code with a fast

temporal coding strategy, adjusting the timing of individual spikes for fast initial image

processing.

On the approach to identifying higher-order correlations

The second topic addressed in this thesis is the identification of higher-order synchrony

in neuronal data (Chapters 3 and 4). The cell assembly hypothesis (Hebb, 1949) predicts

higher-order correlations, i.e., involving large sets of neurons. However, there are two

problems in verifying this hypothesis, causing lack of convincing evidence. Firstly, the
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combinatorial explosion of the parameter space dimension is the major limitation of all

available methods for analyzing more than two neurons. Even for pairwise approaches

the task is hard, as the number of parameters grows quadratically with the population

size. Secondly, restrictions of electrophysiological recording tools allowed only recently

neuronal recordings of more than a few neurons. Abeles (1991) and Diesmann et al.

(1999) suggest that the number of synchronized neurons are in the order of 100, with

80% of those neurons participating per activation. However, even with big arrays of elec-

trodes, the chance to record all the neurons participating in an assembly within a set of

only a few hundreds of recorded neurons is rather low, since the recorded neurons will

be dispersed over a few cortical hyper-columns. Conversely, it is likely that most of the

processes within the set are statistically independent. That is, the chance is high that

most of the recorded neurons do not participate in correlations. To address these issues,

we developed the following two test statistics, enabling selection and identification of cor-

related neurons: (1) conditional pattern complexity (tCPC), which evaluates the number

of neurons firing in coordination with a tested cell, and (2) conditional spike frequency

(tCSF ), which evaluates the average pairwise correlation the tested neuron is involved in

(Chapters 3 and 4, Grün et al., 2009; Berger et al., 2009b). Each one of the methods tests

for a given neuron whether it whether a neuron is involved in coincidence spike events

more often than expected by mere chance. The methods are able to rapidly and reliably

detect neurons participating in assembly activity. A limitation is that the methods do

not provide information about which neurons a given test neuron is correlated to, but

only whether the neuron participates in correlations at all. Grouping and clustering of

correlated neurons should be addressed by further steps of analyses case by case.

tCPC and tCSF were tested on networks of different types and size: 100 and 1000 neurons

network generated by stochastic models, and 5000 neurons network generated by com-

puter simulations. In the case of the stochastic model network, we tested the performance

of our methods by varying the size and the number of the correlated assemblies, the rate

of correlations, and the number of the simulated neurons. Our results showed that both

methods are extremely powerful, showing a high detection rate and a low false positive

(FP) rate. The latter is of the order of the applied significance level. The false negative

(FN) rate was high only in the case where the coincidence rates or the percentage of neu-

rons involved in the correlation were very low (for N = 100 and N = 1000, respectively).

However, FN rates dropped drastically and reached 0% for larger values of at least one

out of the two parameters (cf. Section [4].4.2, Fig. [4].3 and [4].4). Interestingly, tCSF

achieves a lower FN rate even for the worst case scenarios. As the method is thought

to be a pre-processing tool, it is crucial to achieve a FN rate of 0%, i.e., not missing

any correlated neurons. The FP rate, on the other hand, is not so critical, as FPs can
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be excluded in subsequent steps of analysis. Over all, for reasonable assembly sizes and

correlation rates the methods achieve perfect detection of all neurons potential assembly

members and FP rates of 1-2 %, proving to be both effective and reliable tools, with tCSF

generally slightly outperforming tCPC .

The data set generated by network simulations contained a synfire chain embedded in a

network of 64000 excitatory and 16000 inhibitory neurons. The embedded chain consisted

of 20 pools of 100 excitatory neurons, thus involving 2000 neurons. A set of 5000 neu-

rons containing k randomly sampled synfire chain neurons was sampled from the network

and analyzed, with k=200, 500, or 2000. As a control, the same analysis was performed

on (1) the same neuronal network with the synfire chain not being activated, and (2) a

network which did not contain any synfire chain. These data sets contained additional

features not present in the stochastic model networks. For example, the firing rates were

non-stationary in time, with a high oscillation frequency (cf. Section [4].4.3, Fig. [4].5).

Our results clearly demonstrated that uniform spike shuffling is a strong generator of

FPs, which was the case for the data with embedded assembly activity as well as for the

control data. Obviously, the coherent rate oscillations in the data generate a high amount

of synchronous events by chance, which, if ignored (as by uniform shuffling) would be

interpreted as the existence of precise spike synchrony. Shuffling the spikes according to

an estimator based on the population firing rate, the FP rate can be reduced to almost

zero, if in addition the modulation of the shuffling probabilities as a function of time is

kept high (i.e., low base line). Interestingly, the FN rate is close to zero for tCSF , even

for smaller numbers of neurons sampled from the embedded synfire chain. Although a

sampling of 200 out of 2000 neurons sounds large as a percentage, the number of neurons

sampled from an individual synfire chain group, i.e., synchronous at a given time, is, with

an average of 10 neurons, rather small (200/20).

Having tested our approach in simulated data we applied both methods to the same

neuronal parallel spike data from cat visual cortex, which was already analyzed for pair

correlations in Chapter 1 (Berger et al., 2007) and discussed above. This resulted in an al-

most perfect detection of all the MUAs that were involved in significant pairwise analysis.

The MUAs that were not detected were those involved in only a few pairwise correlations,

and were not members of the pre-detected highly intra-correlated MUA groups (GICs).

The number of involvements in pairwise correlations was clearly shown to correlate with

the significance of the test statistics (tCPC and tCSF ) (cf. Fig. [4].8). On the other hand,

tests with the stochastic model showed that the larger the assembly size, i.e., the order of

correlation, the better the detection by our test statistic. The results presented in Chap-

ter 1 suggest that the identified clusters reflect higher-order correlations between MUAs
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(see discussion above). Indeed, preliminary analysis of the same data based on accretion

(Gerstein et al., 1978; Berger et al., 2009a) likewise revealed strong evidence of higher-

order correlated groups of neurons. Furthermore, identical results were obtained on the

reduced data set, i.e., after application of the test statistics, and on the complete one,

without any loss of significant correlated neurons. Thus, data reduction to the relevant

neurons leads to a substantial improvement in terms of computation time.

In conclusion, our methods successfully pick up the presence of large groups of correlated

neurons. Although both test statistics showed an overall good performance, tCSF gener-

ally performs better, achieving the lowest FN rates even in the worst case scenarios. This

method allowed the detection of all synfire chain neurons, even if only a small number

of neurons are sampled. Existing methods of correlation analysis (Grün et al., 2002a,b;

Shimazaki et al., 2009; Amari, 2001), particularly higher-order correlation analysis of such

high-dimensional data, are very demanding in terms of computation time and memory

consumption, and often may not be applicable at all. On the contrary, the test statistics

we presented proved to be highly efficient and able to easily digest recordings of several

thousand of parallel processes. Our approaches are a valuable addition to previous meth-

ods that provide information on the presence of higher-order correlation in data, but do

not identify the individual neurons involved (Staude et al., 2009). Moreover, they are de-

signed for reducing the data set to the relevant neurons, which can be followed by a more

detailed higher-order analysis (e.g., Shimazaki et al., 2009; Amari, 2001). Future work

will address the next processing stages. These involve grouping the detected significantly

correlated neurons into the different pools of the synfire chain. Due to the efficiency of the

method one may also think of a time dependent application that may recover dynamical

changes of the correlation structure.

From neuronal mechanisms to behaviour

In the last part of my thesis, I presented a detailed behavioral study of eye movements

of monkeys freely exploring natural scenes (Chapter 5, Berger et al., 2009c). The eye

movements were recorded at the same time as the activity of single neurons. The cor-

relation analysis of the single-units, aligned to fixation onset, was already presented in

Chapter 2 and discussed above. There, correlations were averaged across fixation onsets,

irrespective of the image content or attended image object, as well as across neurons,

and animals. Two reasons motivated us to investigate the eye movement behavior in

details, in particular to relate the synchronous events to the different classes of fixations.

First, it has been shown that attentional mechanisms modulate the oscillatory patterns

of neuronal responses in V1, which in turn modulates synchronous discharges (see, e.g.,
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Luck et al., 1997; Chawla et al., 1999; Brefczynski and DeYoe, 1999; Gandhi et al., 1999).

Second, each fixation provides a novel stimulus to the brain, but averaging across fixations

this distinctions are lost. However, during active vision the eye positions are voluntarily

chosen by the subjects, which results in the absence of identical, repetitive trials. This in

turn makes statistical analyses not feasible. To approach the question how the stimulus

affects correlated activity during image exploration, we investigated the eye movements

of the monkeys. By classifying fixations into different categories we created “trials”, thus

providing an approach that allows statistical analysis of electrophysiological data.

The investigation of the topology of fixation locations resulted in specific spatial patterns

of fixation positions, which depend on the presented images, in two out of the three mon-

keys (cf. Fig. [5].3). The eye fixations of the third monkey, however, did not alter for

different images, but were rather restricted to the lower left quadrant of the image frame.

As the experiment did not assign any specific task (besides keeping the gaze within the

image), we concluded that the third monkey did not learn to explore the images. There-

fore, further analyses were restricted to the first two monkeys.

The fixation positions form clusters in space, which we interpreted as region-of-interests

(ROIs). Similar viewing behavior was found in humans. These observe complex scenes

by limiting their fixations to details-rich locations instead of distributing their attention

evenly across the entire scene. An image, therefore, can be divided into informative and

redundant regions (Mackworth and Morandi, 1967; Yarbus, 1967; Krieger et al., 2000).

To gain insight into the mechanisms guiding the visual exploratory behavior of the mon-

keys, we extracted from the images all salient features, considered good candidates for

attracting the eye focus of the monkeys. We found that in approximately 75% of the

images the resulting saliency maps are good predictors for the fixation points, suggesting

that the eye movements are mainly driven by low-level features. In the remaining images

the salient regions were visited far less frequently than expected. However, we noticed

that the latter images all contained faces of primates. When presented with those images,

both monkeys focused primarily on the eyes, thereby avoiding the ’high’ salient regions

(cf. Fig. [5].4). This second strategy of directed vision might be attributable to top-down

mechanism, where attention to meaningful object details determine the gaze distribution.

Our results closely resemble those found in humans where the choice of fixation points

were shown to be either driven by bottom-up (exogenous) or by top-down (endogenous)

- internal or external factors (McKelvie, 1976).

A further analysis concentrated saccades performed between successive fixations by con-

sidering the sequence of eye fixations (cf. Fig. [5].5). The use of a Markov chain model

revealed that the monkeys are primarily making saccades within a region of interest, i.e.,

locally exploring restricted areas in the scene before directing their attention to a new
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region of interest (global exploration).

Summarizing, these results indicate that monkeys explore natural scenes by making di-

rected eye movements to regions that provide them visual information, either in terms

of saliency or in terms of meaningful items, such as eyes, in cases of images containing

primates. Overall, characteristics in the fixation patterns in two out of three monkeys

showed similarities to those in humans. Previous results have shown striking similarities

between primates and humans on the rapid processing of natural scenes. However, here

we analyzed for the first time the eye movements of monkeys during prolonged viewing

of natural scenes. Our results suggest that the similarities in eye movement behavior

between humans and monkeys applies even more generally.

Our work was made possible by combining detailed eye movements measurements and

the absence of a pre-defined task (free viewing). Due to difficulties in analyzing electro-

physiological data not containing repetitive, identical trials, experiments including active

vision typically require subjects to fixate on a pre-defined position. The studies presented

here provide new approaches of analyses and open new routes for experiments that aim

to relate neuronal activities to natural behavior. It is now possible to relate the neuronal

activity to the different features which attract the individual fixations. A challenging

question that remains to be addressed involves the analysis of images of primates and

images containing non-primate objects in order to contrast the corresponding neuronal

activities, and relate these results to correlation analysis (Chapter 2). Another subject of

future investigation is the comparison between the first fixation in a ROI to the subse-

quent ones, as well as to the last fixation in the ROI and to fixations on the background.

Further insights into attentional mechanisms would be provided by the comparison of

neuronal responses between the two monkeys attentively exploring the scenes and the

third monkey, who did not explore the different scenes.

A final word

This thesis presented evidence of synchronous firing of primary visual cortex neurons

suggesting synchrony as a mechanism employed by the cortex for information encoding

and decoding. On the one hand, the presence of correlations during spontaneous activity

reveals that synchrony is an intrinsic property of the network, supporting the hypothesis

that correlation is linked to the orientation tuning of the neurons. On the other hand,

neuronal correlations in awake monkeys during free viewing is temporally strongly locked

to behavior, suggesting that synchronization provides a mechanism for fast image process-

ing. Whether or not synchronized neurons share the same orientation preference remains

to be tested systematically. This requires additional experiments with adequate stimuli.
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Specifically testing in how far the correlation maps found during spontaneous activity

are altered during vision compared to spontaneous activity is similarly required. To ap-

proach the question how the stimulus affects correlated activity in absence of repetitive

trials, fixations were classified in different categories. The results showed that two out

of three monkeys were actively exploring the presented images. As attention has been

shown to affect neuronal behavior, comparison between the attentive monkeys and the

non-attentive monkey would give further insights into the attentional mechanisms em-

ployed by the visual cortex. Moreover, the two monkeys actively exploring the scenes

seem to distinguish and employ different viewing strategies for images containing primate

faces and images containing non-primate objects. In the first image class, the attention of

both monkeys was significantly drawn to meaningful objects - such as the eyes and mouth

of the primates - thereby avoiding salient regions of the images. In the second class of

images, the monkeys eye position have been shown to be significantly drawn to the image

saliency. Comparing neuronal behavior in relation to these classes of images would be

highly interesting, and may answer the question whether attention is a top-down driven

(case of primate images) or bottom-up driven (for non-primate object cues) mechanism.

The sequence of fixation reveals in both monkeys and for all images, that exploration is

not random, but a high level strategy of first local exploration within a region-of-interest

(ROI) is followed by a shift to a new ROI (global exploration). Therefore, fixations can

be further divided according to the novelty of input, i.e., the first fixation within a ROI

versus the subsequent ones. Analysis of neuronal behavior which takes into account the

different fixation and image classes would be important for further understanding of the

strategy employed by the visual cortex.

Another topic we addressed in this thesis concerned the higher-order correlations in neu-

ronal data. Due to the high number of correlations found in the highly correlated MUA

groups (cf. Chapter 1), we believe that MUAs are not only involved in pairwise correla-

tions but also exhibit higher-order correlations. In this framework we provided two test

statistics for detection and identification of assembly activity in massively parallel data

sets (Chapters 3 and 4, respectively). Application on simulated data showed that these

methods are able to select and detect the correlated neurons within large data sets. The

methods do not provide information about assembly membership, which needs to be ana-

lyzed in a further study. However, they provide a fast way to select relevant neurons, and

thereby significantly reduce a data set. This solves the issues of all existent methods for

higher-order correlations, often not applicable due to the immense memory consumption

or computation time. The test statistics we presented proved to be very efficient, fast,

and reliable, and are able to analyze several thousands parallel processes.

Application of these test statistics to the huge data sets of cat visual cortex yield an
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almost perfect detection of the MUAs previously identified by pairwise analyses. Only

the MUAs that were not members of any GIC were not detected. As the methods per-

formed better with increasing assembly size we can conclude that they are tuned to better

identify higher-order synchronized neurons rather than neurons which participate only in

pair correlations. Indeed, preliminary analysis of higher-order correlations corroborate

this hypothesis, and suggests the presence of higher-order synchrony in the data (Berger

et al., 2009a). Moreover, higher-order correlated groups are in agreement with the GICs

found by pairwise analysis. The results on the reduced data set after application of the

test statistics, and on the whole data set are identical. Therefore, the reduction of the

data set does not lead to a loss of neurons, but rather helps to reduce computation time

considerably in further analysis.
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Zusammenfassung

Die meisten Neurone des V1 weisen eine topologische Anordnung in Kolumnen auf, die

bei optimaler Reizung ihre neuronale Aktivität erhöhen. Enkodierungsprozesse komplexer

Stimuli lassen sich, vom statistischen Standpunkt aus gesehen, nicht abschließend durch

Frequenzerhöhungen der Aktionspotentiale erklären. Moderne Theorien der primären

Sehbahn beinhalten räumliche sowie zeitliche Aspekte zur Informationsverarbeitung. Ins-

besondere die Hypothese der Zellassemblies postuliert dynamisch interagierende Gruppen

von Neuronen als Grundbaustein kortikaler Informationsverarbeitung. Während simul-

tane Ableitungen von vielen Neuronen immer häufiger Anwendung finden, ist der fehlende

experimentelle Beweis für die zeitliche Kodierungshypothese den fehlenden adäquaten

Analysemethoden zuzuschreiben.

Die vorliegenden Dissertationsschrift untersucht die grundlegenden Mechanismen neu-

ronaler Aktivität im visuellen Kortex während des Sehvorgangs. In diesem Kontext wer-

den neue Strategien vorgestellt, die die Analyse einer großen Anzahl simultan abgeleiteter

Neuronen ermöglicht.

Im ersten Teil dieser Doktorarbeit präsentiere ich Ergebnisse einer paarweisen Korrelation-

sanalyse von simultan abgeleiteten V1 Neuronen von Affen während der Exploration von

natürlichen Szenen. Desweiteren wird die Korrelationsstruktur von multi-unit Aktivitäten

des primären visuellen Kortex anästhesierter Katzen analysiert. In diesem Zusammenhang

beantworte ich die folgenden Fragen: In welcher Beziehung steht die kortikale Karte von

Orientierungsselektivitäten zu der zeitlichen Kodierungshypothese? Wie ist die Beziehung

zwischen 1. korrelierter neuronaler Aktivität, Distanz und räumlicher Anordnung auf dem

Ableitgitter und 2. korrelierter neuronaler Aktivität und Sehverhalten ?

Eine paarweise Korrelationsanalyse ist nicht ausreichend, um Assemblies herauszufiltern.

Existierende Methoden für die Analyse von Korrelationen höherer Ordnung sind jedoch

aufgrund ihres exponentiell wachsenden Aufwandes mit steigender Neuronenanzahl nicht

anwendbar. Aus diesem Grund entwickelte ich zwei neue Methoden zur Identifikation von

Assemblyneuronen. Beide Methoden detektieren schnell und zuverlässig Neurone, die an

Korrelationen beteiligt sind.

Die vorliegende Arbeit bietet neue Einblicke in die Kodierungsstrategien von Neuronen

des primären visuellen Kortex. Die gezeigte Kopplung zwischen Synchronisation und Fix-

ationsbeginn, sowie die räumliche Anordnung synchronisierter Neurone, welche mit der

von Orientierungskolumnen übereinstimmt, untermauern die Hypothese, dass Neurone

visuelle Informationen über zeitpräzise Aktionspotentiale kodieren. Desweiteren schafft

diese Arbeit eine Grundlage für weitere Korrelationsanalysen mit Hilfe von zwei hoch



effizienten Methoden für die Identifizierung von Synchronisationen höherer Ordnungen.

Die Augenbewegungsanalyse stellt neue Herangehensweisen an Daten von explorierenden

Tieren vor, und eröffnet somit neue Wege um neuronale Aktivitäten mit dem Verhalten

in Verbindung zu bringen.
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