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i.     Summary 

 

In the global effort of translating systems biology research into clinical applicability, 

metabolomics harbors great potential for blood-based medical diagnostics. Gas 

chromatography-mass spectrometry (GC-MS) is a popular platform for metabolomics 

and aims at the identification and quantification of metabolites in biological samples of 

interest.  

This dissertation describes efforts that span a wide spectrum of systems biology and 

concludes with the first promising steps of its translation into the clinically relevant 

context of systems medicine. It was aimed at understanding how the physiological 

states of organ metabolism are reflected in the blood metabolome through the dynamic 

monitoring of a hypometabolic state in mice and an exercise regime in a human 

volunteer. These biological investigations were made possible by method and extensive 

software development.  

A novel software package named SILVIA that provides functions for faster and more 

complete processing of GC-MS data is presented. It allowed for the in-depth analysis 

of a metabolically dynamic process in liver, muscle, white adipose tissue, cerebrospinal 

fluid, and blood serum. Daily torpor, the process under investigation, is a 

hypometabolic state similar to hibernation and is employed by small rodents to 

conserve energy during times of low food availability. It is characterized by precipitous 

drops in metabolic rate, core body temperature, heart rate, blood pressure, and breathing 

rate. 

The discovery of mechanisms that control the entry into, maintenance of, and arousal 

from hypometabolic states are of importance to many medical issues of our time, 

including, but not being limited to, ischemia and reperfusion injury as well as other 

trauma injuries, autoimmune diseases, and cancer.  

In addition to novel findings of hepatic gluconeogenesis and changes in amino acid 

metabolism during torpor, as well as a contribution of glycolysis to torpor arousal, the 

data were able to confirm a metabolic suppression during torpor entry in both liver and 

muscle. Importantly, by monitoring both organs and blood serum metabolomes 

simultaneously, it was possible to attain a rudimentary first glance at how organ 

physiology is reflected in blood, and translate mechanistic insight gained in mice to the 

human blood metabolome. A combination of a fast, simple, and minimally invasive 
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blood sampling method with GC-MS technology was developed and employed in a 

proof-of-principle study of a human volunteer undergoing an exercise regime. With the 

additional establishment of a method for robust absolute quantification by use of 

internal isotopologue standards, blood metabolomics in human patients to categorize 

disease phenotypes and provide diagnostic insights in a clinical setting might soon be 

within reach. 
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ii.    Zusammenfassung 

 

Als Teil globaler Bemühungen, systembiologische Forschung in den klinischen 

Anwendungsbereich zu übersetzen, birgt die Metabolomforschung großes Potential für 

die blutbasierte medizinische Diagnostik. Von zentraler Bedeutung ist hierbei die Gas 

Chromatographie-Massen Spektrometrie (GC-MS), mit deren Hilfe Metabolite 

identifiziert und quantifiziert werden können.  

Diese Dissertation beschreibt umfassende Bemühungen auf verschiedenen Ebenen der 

systembiologischen Forschung und liefert Ansätze für deren Übersetzung in den 

Kontext der systemmedizinischen Verwendung. Ziel dieser Arbeit war es, durch die 

dynamische Nachverfolgung experimentell veränderter physiologischer Zustände 

(Torpor in Mäusen, sportliche Belastung in Menschen), die Zusammenhänge zwischen 

metabolischen Abläufen in den Organen und der Zusammensetzung des 

Blutmetaboloms zu verstehen. Ermöglicht wurden diese Studien durch methodische 

und informatische Neuentwicklungen. 

Um eine schnellere und vollkommene Prozessierung von GC-MS Daten zu 

gewährleisten, wurde die Software SILVIA speziell entwickelt. Durch sie war erstmals 

die detaillierte Analyse eines metabolisch dynamischen Prozesses in der Leber, 

Muskulatur, dem Fettgewebe, Cerebrospinalfluid, und Blutserum möglich. Der an 

Mäusen untersuchte, als Torpor bekannte Prozess ähnelt dem Winterschlaf. Dieser 

hypometabolische Zustand ermöglicht es kleinen Säugetieren, Energie in Zeiten 

geringer Futtervorkommen einzusparen. Er ist durch extremes Abnehmen der 

metabolischen Rate, Körpertemperatur, Herzfrequenz, Atmungsfrequenz, und des 

Blutdrucks charakterisiert. 

Mechanismen die dem Eintritt, der Aufrechterhaltung, und des Verlassens des Torpors 

zugrunde liegen, könnten bedeutsam sein für die medizinische Behandlung einer 

Vielzahl menschlicher Leiden wie Ischämie, Reperfusions- und Traumaschäden, und 

Autoimmun- und Krebserkrankungen. 

Neben der Entdeckung aktiver hepatischer Glukoneogenese und Veränderungen der 

Aminosäurehomöostase im tiefen Torpor, sowie aktiver Glykolyse während des 

Erwachens, konnten die Daten eine bereits beschriebene Hemmung des Leber- und 

Muskelstoffwechsels im Torporeintritt bestätigen. Durch zeitgleiches Erfassen von 

Organ- und Blutmetabolomen war es möglich, sowohl ein erstes rudimentäres 
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Verständnis für die Reflektion physiologischer Zustände der Organe im Blut zu 

erlangen, als auch in der Mausstudie gewonnenes mechanistisches Verständnis auf den 

Menschen zu übertragen. 

Dank der Verknüpfung der uns verfügbaren GC-MS Technologie mit einer schnellen, 

simplen und minimalinvasiven Methode der Blutentnahme am Menschen wurde an 

einem Volontär eine Machbarkeitsstudie durchgeführt, in der die physiologische 

Reaktion auf eine sportliche Belastung im Blutmetabolom erfasst wurde. 

Mit der Etablierung einer weiteren Methode, die eine robuste absolute Quantifizierung 

durch Verwendung messungsinterner isotopologischer Standards erlaubt, ist der Traum 

von klinisch anwendbarer metabolomischer Blutdiagnostik nun in greifbarer Nähe. 
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1. Introduction 

 

Systems biology aims at the quantitative characterization of the constituents of life and 

promises great opportunity for a deeper understanding of biology, but its realization 

does not only require advances in technology and methodology. The change from 

qualitative assessments and interpretations of biological systems to the confrontation 

with massive quantitative datasets, a single experiment often containing vastly more 

information than is possible to consider in its entirety without computational aid, 

requires sophisticated bioinformatic and mathematical support. This is true not only for 

data analysis but also for the processing of raw machine data, the correct treatment of 

which forms the basis of and is therefore crucial for identification, quantification, and 

subsequent biological interpretation. The use of omics technologies in systems biology 

has thereby transformed life science research itself, as its quantitative nature and strong 

ties with complex technology necessitates changes in both perspectives and skill sets. 

 

The “omics” technologies, namely genomics, transcriptomics, proteomics, and 

metabolomics, aim at the complete identification and quantitative characterization of 

the molecular constituents of their respective domain (Likić et al. 2010). From 

determining genome sequences and the mapping of epigenetic landscapes across the 

genome, to measurements of abundances of the various RNA species, sequencing 

technology has provided insight into the true scale of regulatory processes that control 

the flow of information from DNA sequence to protein translation. Proteomics, in 

combination with other technologies, has allowed for measurements of protein 

abundance, dynamics, and interactions, and has further delved into investigations of 

their regulation through posttranslational modifications (PTMs) (Yaoyang Zhang et al. 

2013). Metabolomics, including lipidomics, has begun to determine the constituents of 

metabolism and their abundance, and with recent improvements is now able to elucidate 

the dynamic changes and mechanisms that provide the energy for and biochemical 

building blocks of life (Kosmides et al. 2013; Milne et al. 2013).  

 

Metabolomics occupies a rather unique niche in the world of omics: While genomics, 

transcriptomics, and proteomics document genotype or a momentary snapshot of the 

expression thereof, they provide no measure of phenotypic consequence. Even 
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proteomics investigating PTMs to assess the state of activity of proteins does not 

measure the phenotype caused by the differing states of activity.  

 

Proteomics and transcriptomics are therefore used in combination with assays 

measuring a function of interest and disturbing the RNA/proteins hypothesized to be 

causally involved. In contrast, metabolomics measures metabolite abundances and 

therefore the phenotype of the metabolic state of the cell, similar to assessing the 

migratory behavior of a cell by observing its movement under a microscope. 

Transciptomics and proteomics, in this context, would instead provide information 

about the abundance of mRNA and the corresponding proteins required for movement.  

 

Metabolomics measures the consequence of the composition and activity of the cellular 

machinery involved in metabolism, whereas proteomics and transcriptomics provide a 

measure of the composition and theoretical potential of the machinery. While the 

interpretation of transcriptomic, proteomic, and metabolomic data could in theory 

correlate well, the plethora of regulatory mechanisms within and in between the 

biological layers of DNA, RNA, proteins, and metabolites makes this unlikely. In fact, 

stark differences between coding RNA and corresponding protein abundances have 

been proven (Schwanhäusser et al. 2011). 

 

In the future, the combination of all omics technologies may provide the greatest 

understanding of biological systems, when all their components can be quantitatively 

assessed simultaneously to obtain a near complete representation. In the meantime, 

metabolomics might contain the greatest diagnostic potential (Kosmides et al. 2013). It 

is able to measure the manifested metabolic phenotype of homeostatic and pathological 

states, and its interpretation is greatly simplified by established knowledge of metabolic 

networks and reactions. Partial or systemic metabolic states can be inferred from 

pathway intermediate abundances and relationships between metabolites that are 

important branching points between pathways, so that despite the inability to assign 

observations to the altered behavior of specific enzymes, major re-routing of carbon 

flow and significant bottlenecks are often easily identified. 

 

Blood is currently one of the most important sources of information for medical 

diagnostics. It is one route of communication between organs and might therefore 
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represent their intercommunication and the overall physiological state of the body. 

Metabolite accumulation and/or depletion might signal changes in activity of specific 

metabolic pathways, indicate specific requirements during times of metabolic 

challenge, or represent organ dysfunction during measurements of the steady state.  

 

There are a multitude of panels measuring a selection of metabolites, hormones, or 

proteinaceous species in blood to attain information on bodily functions (Song et al. 

2014). Its complete metabolic characterization in the form of blood metabolomic 

analysis would represent a dramatic improvement in systems medicine for two main 

reasons: The greater number of metabolites measured, known and unknown, as well as 

their relationships to one another contain vastly more information than obtained from 

much smaller panels. This increased information content will greatly facilitate the 

classification of patients as normal or pathological as well as the elucidation of 

mechanisms underlying poorly understood diseases, metabolic and otherwise, in 

humans. Both classification and mechanistic investigations will be most successful 

when complemented by studies in animal models that concurrently monitor organ and 

blood metabolomes to understand how the physiology of organs is reflected in the 

blood.  

 

It is the goal of this dissertation to present recent efforts in improving both technical 

aspects of and biological understanding through metabolomic analysis of blood for both 

mechanistic studies and, in the near future, medical diagnostics. It is split into three 

major components, each consisting of an introduction, results section, and discussion, 

which together span a wide spectrum of the interdisciplinary nature of systems biology. 

Their interrelation is considered throughout and summarily discussed in the final 

section of this thesis.  

 

At first, I will introduce and present Maui-SILVIA, a software package that provides 

critically improved and faster data processing capabilities. Secondly, I will present a 

comprehensive metabolomic investigation of torpor. Torpor is a hypometabolic state 

similar to hibernation which, in addition to being of great medical interest in itself, 

serves as a first attempt to decipher the interrelationships between the organ and blood 

metabolomes. Furthermore, I will describe a proof-of-principle study in a human 

volunteer that addressed technical issues of sample acquisition and measurement, and 
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drawing on insights gained in the torpor study, warranted a first interpretation of organ 

behavior from the blood metabolome in humans. Finally, mechanistic insights from 

mice were translated into the context of the human blood metabolome, and an 

experiment establishing a method for near optimal normalization and quantification of 

human patient blood samples to improve technical robustness and reproducibility is 

shortly described. Altogether, this dissertation addresses and provides possible 

solutions for some of the most crucial issues that need be resolved before metabolomics 

can be translated into the realm of diagnostic systems medicine. 
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2. Maui-SILVIA 

2.1 Introduction 

Metabolomics is an umbrella term for the use of several different technologies to 

achieve an identical goal: the identification and quantification of metabolites in a given 

sample. Three common technological platforms are nuclear magnetic resonance 

(NMR), liquid chromatography-mass spectrometry (LC-MS), and gas chromatography-

mass spectrometry (GC-MS), each of which have their respective merits and 

disadvantages (Dunn et al. 2011). The large variety of chemical characteristics of 

metabolites in biological samples is such that a complete metabolomic coverage, 

including lipids (a field of research on its own that has been termed lipidomics 

(Blanksby & Mitchell 2010)), requires a combination of technological platforms 

(Zhang et al. 2012). 

 

GC-MS provides the means to measure a large variety of polar and apolar metabolites. 

The system employed in the Kempa laboratory has been optimized for the 

characterization of the central carbon metabolism (CCM) and is able to track many of 

the intermediates of glycolysis, the tricarboxylic acid (TCA) cycle, the urea cycle, 

amino acid metabolism, nucleotide metabolism, ketone bodies, glycerol and its 

derivatives, and is able to resolve even the highly similar sugars and their derivatives. 

Furthermore fatty acid species and their derivatives can also be characterized.  All data 

described hereafter were obtained from a LECO GC time-of-flight (TOF) mass 

spectrometer. For information on sample preparation and more details on methodology, 

please refer to the Materials and Methods of the torpor and Campus Run sections. 

 

Proteomic research has witnessed the development of many commercial and non-

commercial types of analysis software.  Two commonly used in the academic research 

setting at this time are MaxQuant and the open source software OpenMS, both of which 

are actively maintained by a core of developers (Sturm et al. 2008; Cox & Mann 2008).  

 

In contrast, metabolomics is a much less advanced field of research when it comes to 

bioinformatic analysis of raw data generated by mass spectrometers, with many 

different labs having developed their own solutions and only some being actively 

maintained (Smith et al. 2006; Katajamaa et al. 2006; Lisec et al. 2006; Lommen & 
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Kools 2012; Xia et al. 2009).  The gold standard of data processing in the Kempa Lab 

has therefore been the use of the commercial LECO ChromaTOF software in 

combination with MetMax (Kempa et al. 2009). Despite several shortcomings of 

ChromaTOF that will be highlighted in the relevant results sections, it has proved most 

useful because it allows for the manual visual inspection and correction of each 

processing step, so that despite the inconvenience, frequently occurring errors, and 

immense demands on time, experienced users are able to vouch for the validity of all 

measurements. Nonetheless, several factors, among other important considerations, 

made a novel software solution absolutely essential: 

 

1) The increasing experiment complexity led to a greater number of samples to be 

processed, the inconvenience and time consuming inefficiencies of 

ChromaTOF prohibiting in-depth analysis. 

2) While identified compounds could be tracked across experiments, ChromaTOF 

provided no solution to record and maintain information on unknown peaks, 

rendering the majority of information contained in biological samples 

inaccessible. 

3) Several newly developed methods in the Kempa Lab went far beyond the 

intended uses of ChromaTOF, making their implementation ever more 

inconvenient and time consuming to the point of impracticality.  

 

I therefore decided to search for a software framework that allowed for its modular 

extension so as to incorporate new software analysis functionality specifically 

optimized for developed methodology. Maltcms User Interface (Maui, 

http://maltcms.sourceforge.net/maui/, March 2014) is a Java software based on the 

Netbeans Rich-Client Platform written by Nils Hoffmann from the University of 

Bielefeld (Hoffmann 2014). It is a user interface for the processing and exploration of 

GC-MS, LC-MS, and two-dimensional GC-MS data, and based on his published 

algorithms that were collectively named Maltcms (Hoffmann et al. 2014; Hoffmann et 

al. 2012). After exploring the available GC-MS data analysis tools mentioned before, 

none of which were satisfactorily documented, maintained, or conveniently extendable, 

I decided to use Maui as the basis on which to build a custom software solution through 

novel implementation of the following functions: 
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1) Automated retention index (RI) calculation.  

2) Quality control, normalization, and sample alignment. 

3) Improved compound identification by combining an identification mixture 

developed previously in the Kempa lab, improved library search algorithms, and a 

novel interface to enable subsequent rapid manual supervision and correction. 

4) A more robust quantification strategy. 

5) Automation of an absolute quantification strategy developed previously in the 

Kempa lab. 

6) The recording of unknown peaks resulting in a dynamically extendable “unknown 

library”. 

7) Manual correction of peaks incorrectly defined by the error-prone ChromaTOF 

software.  

8) The ability to handle stable isotope standards for normalization and absolute 

quantification.  

9) An automation of the calculation of 13C label incorporation of pulsed stable isotope 

resolved metabolomics (pSIRM) experiments (methodological paper by Matthias 

Pietzke and Christin Zasada currently under review at Cancer and Metabolism) (Liu et 

al. 2012). 

 

The collection of modules that accomplish these tasks was named SILVIA, and stands 

for:  

Selective compound normalization,  

Integration of unknowns,  

Label incorporation,  

Visual alignment aided  

Identification, and  

Absolute quantification,  

and will be discussed in the following sections.  

 

Functions inherent to Maui (programmed by Nils Hoffmann and co-workers) will from 

now on be referred to as “Maui”, whereas my contributions will be referred to as 

“SILVIA”. The results section will walk through a SILVIA GC-MS project and 

describe the function and use of the most important novel modules contained in 

SILVIA. The software has removed the main data processing bottleneck to allow for 
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the full annotation of biological samples (including unknown peaks) and implements 

key algorithms that allow the methodology developed to make metabolomics robust 

and reproducible to come to fruition. Its simplicity and user-friendliness allows 

previously complicated and involved tasks to be carried out by non-expert personnel, 

altogether moving GC-MS metabolomics from an involved research task towards a 

time-efficient and broadly accessible technology, an essential step on the road to 

becoming a diagnostic platform. 

 

2.2 Materials and Methods 

2.2.1 SILVIA Programming 

SILVIA was programmed as a collection of NetBeans modules, and like Maui, is based 

on NetBeans Rich-Client Platform Development, a Java framework that supplies 

reliable, tested, and flexible application architecture 

(https://netbeans.org/features/platform/, March 2014). 

2.2.2 Data Pre-Processing 

Samples were measured on a LECO GC-TOF (see methodological details in the 

Materials and Methods of the torpor section). The LECO ChromaTOF software, 

Version 4.50.8.0, served to acquire the raw data and was used for initial processing, 

consisting of resampling (sample reduction rate = 4, Mass bins of 70-600, export into 

peg format), baseline subtraction of individual mass bins and peak detection (baseline 

offset = 1, data points for smoothing = 13, peak width = 4, signal to noise ratio = 50). 

The raw data and associated peaklists were then exported in netcdf and csv formats, 

respectively. Raw and peak data served as input for Maui-SILVIA, the use of which 

will be described in extensive detail in the results section. Briefly, retention indices 

were calculated, cinnamic acid (an internal standard, see below) annotated and used for 

normalization of variations in sample preparation, identification and quantification 

mixes were annotated and used for identification and absolute quantification, 

respectively. An in-house “Ident” database, the Buch Metabolome Database (BMD, 

unpublished), and the Golm Metabolome Database (GMD) were used for the 

identification of metabolites (Kopka et al. 2005). Compound quantification is based on 

the five most abundant masses of the library mass spectrum of each individual 
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metabolite (see Results). The final data matrix was exported as a csv file and further 

processing conducted using R (see R-References). 

2.2.3 Cosine Similarity Measure 

The similarity between two mass spectra is calculated by cosine similarity that is 

penalized by the difference in RI between library and sample metabolite. The cosine 

similarity function of the ucar.ma2.MAVector Java class was employed and adheres to 

the common cosine similarity equation: 

 

where A and B are the two mass spectrum vectors being compared and n the number 

of masses in each mass spectrum. Since the intensities of masses are never negative but 

start at 0 (not detected), the cosine similarity between two mass spectra will range from 

0 to 1.  Multiplication of the cosine similarity by 1000 provides a more convenient 

number format, so that a perfect match of two vectors would produce a similarity score 

of 1000. Since peaks are matched not only based on mass spectrum similarity but also 

their RI, the reverse search employs a simple penalty scheme to avoid false positive 

matches based on mass spectrum similarity of metabolites whose RIs do not match the 

library metabolite. In these cases, the RI is the defining feature that differentiates 

between true and false positive identifications (see Identification Reference and 

Reverse Library Search). The similarity score multiplied by 1000 is penalized as 

follows when searching from the Ident reference into samples: 

RI Difference 

(RI units) 
< 1.5 

> 1.5 

< 3 

> 3 

< 4 

> 4 

< 5 
> 5 

Score Penalty (%) 0 3 5 7 15 

 

While there are mathematically more elegant penalty strategies (such as the use of 

sigmoid functions to determine penalty magnitude as RI differences increase), this 

simple strategy has proved sufficient. The minimal score for a positive identification 

was set to 800. 
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2.3 Results 

2.3.1 GC-MS Data Structure 

The two characteristics that uniquely identify metabolites using a GC-MS system are 

the time they take to traverse the GC column (retention time, RT) as well as the mass 

spectrum resulting from the fragments they produce after electron impact ionization 

(Skoog et al. 2007).  

 

The elution of metabolites off a GC column is identical in behavior to other 

chromatography systems, in that each metabolite, as long as it does not co-elute with 

another, produces a single peak. One of the key features of a GC-MS data processing 

software is therefore the identification, or “calling”, of peaks throughout the 

chromatogram, each peak corresponding to a chemical species (Figure 2.1).  

 

The spectra are composed of a range of masses the MS detector can detect and count, 

the counts of individual masses commonly referred to as intensities. The relative 

intensities of distinct masses correspond to fragments created after electron impact 

ionization and together comprise the mass spectrum of a given metabolite (Figure 2.1). 

In contrast to measurements of, for example ultraviolet light (UV) absorption  

employed on other chromatography systems, the peaks in a GC-MS chromatogram are 

not a result of a single signal but represent the sum of intensities of a range of masses, 

called the total ion count (TIC), over time. Each MS sampling time point therefore 

contains intensity values for all masses it is able to detect at that time. The second 

crucial function of a GC-MS data processing software is therefore the assignment of a 

mass spectrum to each peak called in the chromatogram. The combination of its RT 

and mass spectrum provides a fingerprint that, assuming infinite GC resolution, allows 

for the unique identification of any given chemical species.  
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Figure 2.1 – The chromatogram of a GC-MS sample. The chromatogram displays 

column retention time on the x-axis and arbitrary intensity units on the y-axis. Plotted is the 

total ion count (TIC), meaning the sum of intensities of all masses detected at each sampling 

time point. The peak corresponding to the amino acid serine is indicated by a vertical line and 

its mass spectrum, composed of the relative intensities for individual mass bins (unit resolution 

in our case), displayed.  

 

ChromaTOF records the raw data acquired by the GC-MS system, which contains all 

mass spectra obtained at all sampling time points, altogether comprising the complete 

information obtained from the sample. Additionally, it contains reasonable basic 

processing and peak calling algorithms that were used for all data described in this 

dissertation. SILVIA takes both raw data and corresponding files containing all peaks 

called by ChromaTOF (peaklists) as input, and is thus able to build on the available 

functions of ChromaTOF while maintaining the ability to draw on the true raw data 

where necessary.  

 

2.3.2 Project Initialization 

A typical SILVIA project consists of a wash sample (containing only processed 

solvents and the alcane mix), four identification (Ident) mix samples (A, B, C, and D), 

eight quantification (Quant) mix samples (dilutions 1:200, 1:100, 1:50, 1:20, 1:10, 1:5, 

1:2, 1:1), and the biological samples in technical and biological replicates. In the case 

of the torpor dataset described in this thesis, each tissue was treated as a separate 

project. Each tissue project included one set of Ident and Quant mixes, as well as several 

washes in between samples, and each of the seven biological states consisted of three 

biological replicates measured in technical duplicate. This resulted in roughly one 

hundred samples measured per tissue for a total of five hundred samples.  
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All data was acquired and pre-processed in LECO’s ChromaTOF software with 

satisfactory quality. First, the data was “resampled” by averaging four spectra into one, 

a four-fold data reduction and concurrent four-fold reduction in time resolution that 

does not significantly reduce analytical power.  Next, baselines for each mass bin were 

calculated and subtracted, after which peak detection was carried out. Resampled, 

baseline-corrected data were exported in netcdf format, and identified peaks in csv 

format.  

 

Maui creates projects in the form of db4o databases, a Java and .NET native open source 

object database by Versant (www.db4o.com, March 2014), with references to the large 

netcdf raw files as its basis and allowing for the import of the corresponding peaklists 

in csv format. It also provides methods to import metabolite databases for peak 

identification into the project database, which SILVIA converts into a structure 

identical to the peaklists of samples to allow for the visualization of the metabolite 

databases along with the samples (described below). With all data imported and 

metabolite databases converted in the project database, the user is ready to calculate the 

peak retention indices. 

 

2.3.3 Retention Index Calculation 

The combination of gas chromatography and mass spectrometry allows for the 

identification of metabolites based on the two properties being measured: the time it 

takes for a metabolite to travel through the column (RT), and the masses produced when 

it is fragmented (by electron impact ionization in this case). Since some metabolites 

have identical components and only differ in their spatial arrangement (hexoses, for 

instance), they produce identical or nearly identical mass spectra, so that the only way 

to reliably differentiate them is to detect the sometimes subtle differences in RT. It is 

therefore critical to align two samples to one another in such a way that technical 

variability can be reduced mathematically. This is accomplished by the addition of 

standard substances to every sample, a so-called alcane mix, consisting of a number of 

alcanes that do not occur in biological systems and are robustly measured by a GC-MS 

system. By normalizing the RTs of sample peaks to the RTs of the peaks corresponding 

to the alcane standards, one can calculate a retention index (RI) that is more comparable 
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between different samples, as all column differences affect absolute RTs of alcanes and 

sample compounds alike, while their relative time differences remain constant.  

 

To automate the calculation of the retention index for all samples in a given project, 

SILVIA searches a wash sample (containing only processed solvents and the alcane 

mix) routinely measured before, in between, and at the end of sample batches, for the 

alcane peaks. Given the RT of the alcanes in the wash, it creates a search window within 

which it looks through all other samples to identify alcanes by spectral matching using 

cosine similarity measure without any penalties. It then displays its suggestions in the 

novel visualization interface described below to allow for manual inspection and, if 

necessary, correction. After manual confirmation of the correct identification of all 

alcanes in all samples by the user, SILVIA calculates retention indices for all peaks in 

the peaklists of all samples based on the principles of gas chromatography retention 

indeces first described by Kovats (Kovats 1958). 

 

2.3.4 Quality Control and Normalization 

To control for pipetting inaccuracies and MS injection volume differences between 

samples in a batch of measurements, another internal standard in the form of cinnamic 

acid (CA) is added to the samples at the very beginning of biochemical processing. CA 

is a stable plant metabolite that elutes off the GC column at a time when few other 

metabolites of interest elute. Since it is added to all samples at the same concentration, 

differences in CA amounts measured between samples reflect sample preparation and 

injection differences. CA can then be used to normalize the samples to one another by 

calculating and adjusting all other metabolite intensities by the ratios of CA levels 

between the samples. SILVIA automatically calculates and adds this normalization 

factor to the peaks’ characteristics, and after setting the quantification masses (see 

below), calculates and exports both the raw and CA-normalized intensities for each 

peak. By furthermore providing a plot of CA intensities of all samples in a project, 

SILVIA allows the user to easily spot more severe technical errors and with a simple 

selection interface exclude erroneous samples from further processing and analysis, 

providing a convenient quality control report at the very beginning of data processing. 

 



21 

 

2.3.5 Identification Reference and Reverse Library Search  

Since metabolites are identified by the combination of RT (or RI) and their mass 

spectra, the more reproducible these two variables are and the more closely they match 

the library data, the higher the confidence in the identification. Mass spectra quality is 

largely dependent on metabolite abundance, which is beyond improvement once 

samples have been measured. However, the RI information content can be optimized.  

 

Even though the normalization from RT to RI described previously improves 

identification robustness, some metabolites with near-identical or identical composition 

and therefore very similar mass spectra are also so similar in RI that a confident 

identification cannot be guaranteed. This technical difficulty can be overcome by 

obtaining an empirical representation of column performance for each individual 

sample batch on the particular day of measurement using the Ident mix.  

 

It is composed of a large number of metabolites routinely detected in biological samples 

and split into four separate mixtures that contain different combinations of metabolites 

that are difficult to differentiate.  

 

An example will serve best to explain the reasoning: Let us consider two sugars that 

have identical spectra and elute at almost the same time, for example glucose and 

galactose. Ident mixes A and C would contain galactose, and mixes B and D glucose. 

By aligning the Ident mixes to one another using the RI information calculated before, 

one can unambiguously determine the exact RI of glucose and galactose on a particular 

column on a particular day, even if they differ only marginally, by looking at the peaks 

of Ident mixes A, B, C, and D. Should a sample of interest in the measurement batch 

contain a peak at the retention index of the two peaks in A and C, it can be confidently 

identified as galactose. Would the sample peak RI match those of Ident mix B and D, 

it would be identified as glucose (Figure 2.2).  

 

By first identifying all metabolites in the Ident mixes unambiguously because of the 

inherent binary code of the mixtures, we can create a measurement batch-specific 

metabolite library called the Ident “reference”, which allows us to differentiate 

metabolites that we would not be able to using the metabolite library alone.  
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Figure 2.2 – An example of the binary nature of the Ident mix to allow for 

unambiguous identification of highly similar metabolites. The TIC of Ident mix A 

(black), B (blue), C (red), and D (green) display the peaks of galactose and glucose. Although 

their RI is very similar and within possible technical variation, obtaining a batch-specific RI 

for each compound by use of the Ident mix leads to unambiguous identification of these two 

highly similar sugars in biological samples. 
 

Another advantage of determining batch-specific RIs even for more easily identifiable 

metabolites is that the library search needs to consider smaller time windows in which 

to search for a metabolite. If the algorithm tries to look for alanine, for example, and 

the RI of the library and sample is known by experience to differ up to 5 RI units, the 

algorithm would have to look at all peaks within at least a 10 RI unit window (library 

RI +/- 5 units) and compare them to the library peak of interest. If the Ident reference 

restricts RI differences to within a single unit, algorithm execution time and 

misidentifications, which have to be manually corrected subsequently, are decreased. 

 

Some weaknesses in the library search conducted by ChromaTOF have been eliminated 

in SILVIA as well. While ChromaTOF starts with each peak in a sample and searches 

its library to find a possible match, leading to many different peaks being identified as 

the same metabolite (especially those similar in spectrum) and ignoring the RI 

information entirely, SILVIA uses what I have termed a reverse search (RS). SILVIA 

starts in a metabolite library (or the Ident reference) and uses the RI information to 

create a RI unit window in all of the samples being analyzed. It then only compares the 

library spectra with those of peaks within the RI window and gives them a score based 

on cosine similarity between library and sample spectra that is weighted by a penalty 

for RI unit differences. A score threshold prevents low confidence assignments, and the 

user is left with at most one peak identification per metabolite in the library per sample, 
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massively reducing the amount of time spent manually correcting senseless 

redundancies.  

 

2.3.6 Visualization of GC-MS Data: The Annotation Interface 

 

ChromaTOF visualizes GC-MS data with line plots representing chromatograms. 

Individual lines represent different samples, mass bins, or both; peaks are indicated by 

numbered vertical lines and their mass spectra shown in a separate window with various 

combinatorial options (such as showing a library spectrum, a peak spectrum, and the 

difference between the two) (Figure 2.3). While this is useful for few samples or few 

masses, the chromatograms become unintelligible when working with larger datasets 

(Figure 2.4). Furthermore, every step required to validate the library search or correct 

mistakes seems unintuitive and takes several clicks, which is tolerable for a low number 

of metabolites in a few samples, but becomes impractical when working with a dataset 

as large as the torpor study or, as desired for diagnostics, measurements from hundreds 

of patients. In addition, ChromaTOF is prone to freezing up and loosing painfully 

validated identifications, which happens more frequently the larger the datasets.  

 

 

Figure 2.3 – The ChromaTOF interface for visual examination of GC-MS data. 
The left panel shows the chromatogram of a sample with two peaks as indicated by the vertical 

lines. The mass spectrum of the currently selected peak (blue line) is displayed in the right 

panel. 
 

The novel approach to GC-MS data visualization implemented in SILVIA facilitates 

the identification and correction of peaks to allow for the manual supervision of a 

hundred or more samples simultaneously. It consists of two windows, one displaying  
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Figure 2.4 - The ChromaTOF interface for visual examination of GC-MS data. An 

example of the unintelligibility of a small section of the chromatogram in the ChromaTOF 

interface when visualizing eight samples and the peaks detected therein simultaneously. 
 

the RI information (RIview) and the other the full mass spectra of selected peaks 

(MSview) (Figures 2.5 and 2.6). The RIview lists all samples currently being annotated 

on the y-axis, with the currently selected metabolite library (or Ident reference) always 

in the first row, and the RI on the x-axis. Each peak called by the ChromaTOF software 

is represented by a thin vertical box that displays only binary information (a peak being 

present or not present), meaning that all peaks, no matter what kind of spectrum or what 

intensity, have the same width and height.  The interactive RIview visualization is based 

on the extensive customization of the IntervalBarRenderer and CategoryPlot classes of 

the open source Java package JFreeChart (http://www.jfree.org/jfreechart/, March 

2014). It leads to a fast and clear representation of the peak data and looks not unlike a 

western blot turned by ninety degrees. As can be immediately and intuitively grasped, 

peaks that lie directly underneath one another have a near-identical RI and therefore 

very likely correspond to the same metabolite. Peak groups and regions of high and low 

peak density are intuitively recognized.  

 

The information lacking in the RIview is displayed in the MSview that contains four 

rows of graphs that are also generated using customized JFreeChart classes. The top 

middle panel always displays the mass spectrum of the library peak currently selected. 

The middle panels of the three rows below display the mass spectra of the three peaks  
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Figure 2.5 – The RIview. Sample names are listed on the y-axis and the RI on the x-axis. 

The first row is occupied by a metabolite library or the Ident reference. Each peak detected in 

a sample is represented by a bar, its color indicative of different processing steps. This intuitive 

visual representation renders peak groups easily discernible and aids the visual investigation of 

GC-MS data. 

 

 

Figure 2.6 - The MSview. The top middle panel displays the mass spectrum of the currently 

selected library metabolite. The three rows underneath display the mass spectrum of peaks that 

have been putatively identified as the library metabolite, as well as the mass spectra of the peaks 

to the immediate left and right. The top left panel shows the difference between the library entry 

and the average spectrum of identified peaks. Masses used for quantification (Top5) are 

indicated in red, all others in the mass spectrum in black. A similarity score indicates the 

confidence in the putative identification. The intensities of the Top5 and other masses (Total) 

give an indication of peak size.  
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selected in the three samples highlighted in the RIview, as well as their neighboring 

peaks to the immediate left and right. The top left panel displays the difference 

spectrum of the library peak subtracted from the average of the mass spectra of the 

identified peaks. Each spectrum caption contains the total intensity of the peak in black 

and the cumulative intensity of the Top5 masses of the library spectrum in red, which 

will later be used to quantify the abundance of the metabolite (see “Quantification 

Masses”). The workflow with the new interface is as follows: 

 

1) The user selects a library from which to search into the samples and performs a RS.  

Two examples would be the search from an Ident library into the Ident mixes or from 

the Ident reference into biological samples as shown in the figure (Figure 2.7). The RS 

looks for every metabolite in the database in all the samples in a defined RI window (as 

described above). If it finds one peak to be a likely match, it colors that peak red in the 

RIview, and putatively assigns it the metabolite name. After the RS is complete, all 

putative identifications are red, while all other peaks remain black.  

 

 

Figure 2.7 – Overview of the Ident mixes before and after the reverse search (RS). 
On the left are Ident mixes before the completion of the RS. On the right, peaks putatively 

identified as library matches are colored red. 
 

2) As even the optimized RS will make mistakes, the next phase uses the interface for 

manual revision and correction of putative identifications. The interface can be 

controlled by either using the mouse to click on the buttons in the RIview or MSview 

windows or keys and keyboard shortcuts that are more convenient and time efficient. 

While the specific key bindings are not important, the system is designed so that the 

left hand controls the MSview and the right hand the RIview. When using “next” or 
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“previous” in the RIview, metabolites ordered by RI in the metabolite library are 

selected. The RIview jumps to the RI of a given library metabolite and displays the 

peaks that were found in the RI window in the samples that were searched. To 

differentiate peaks actively being displayed in the MSview, all peaks putatively 

identified as the currently selected library metabolite are colored blue, while other 

peaks identified as other metabolites from the library are still red, and all others black 

(Figure 2.8). The user can then use the “Previous samples” and “Next samples” buttons 

in the MSview to navigate the y-axis, and traverse the peaks of individual samples with 

the “previous” and “next” buttons in the different rows. When moving in the horizontal 

direction, the originally suggested peak remains blue, while the actively selected peak 

turns orange in the RIview, with the spectrum in the middle of each row in the MSview 

always displaying the actively selected peak (blue, or orange after horizontal 

movement) (Figure 2.8). To change an assignment, each row in the MSview has an 

“Accept peak” button, which moves the assignment for the current library compound 

in the current sample to the orange peak, turning it blue. Once all peaks have been 

confirmed, and if necessary, changed, the peak group can be accepted by the “Accept 

group” button in the MSview, which locks them from further modification and marks 

them as available for export and quantification. Once a peak group is accepted, its peaks 

are displayed as green when the peak group library compound is selected, and gray 

when another library compound is selected (Figure 2.9).  

 

Figure 2.8 – Different peak 

colors indicate different stages 

of processing. Red peaks are 

putative library matches identified 

by the RS. Blue peaks are putative 

library matches of the currently 

selected library metabolite, which 

are simultaneously displayed in the 

MSview. Horizontal movements 

within a sample color the currently 

selected peak orange, while the 

original suggestion remains blue. 

Gray peaks have been manually 

validated as true identifications of a 

different library metabolite. 
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Figure 2.9 – Green and gray 

indicate the completion of the 

manual validation of peak 

identifications. Peak groups that 

have been validated and accepted as 

true identifications of a library 

metabolite are colored gray, or if 

currently selected, green. 

 

 

 

 

Other options of the SILVIA annotation interface include the “Set NotFound” option, 

which is used when a metabolite is not present in a sample but was erroneously found 

by the RS, a “Set Found” option, when a peak was not detected by the RS but is present 

upon manual inspection, “Fuse Left” and “Fuse Right”, which allow for the fusion of 

peaks, an action necessary when ChromaTOF erroneously called a single peak as two 

separate peaks, and “Duplicate”, which allows for the duplication of peaks when 

ChromaTOF erroneously called two peaks as a single peak or when two metabolites 

co-eluted. They can be duplicated without affecting their quantification if the two 

metabolites do not share any quantification masses (see below), which is most often the 

case.  

 

2.3.7 Unknown Peaks/Metabolites 

 

While there are several metabolite libraries with spectral and RI information measured 

by GC-MS systems freely available online, the only stringent way of positively 

identifying a peak as a certain metabolite is to have measured the metabolite on the 

GC-MS setup in use. To validate or create a library, one should buy a collection of 

metabolites of interest and measure them singly to be certain of their RI and mass 

spectrum.  

 

The Kempa lab Ident library contains many biologically relevant metabolites and can 

be extended by using the Golm Metabolome Database (GMD) created at the Max-

Planck-Institute in Golm, Germany, which uses a setup very similar to our own (Kopka 
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et al. 2005). However, the vast majority of peaks detected in a biological sample cannot 

be confidently identified, either because a similar spectrum does not exist in an 

available library or because spectrum and RI do not match any library entry well 

enough.  

 

In general, of about three to five hundred peaks detected in a biological sample, only 

about ninety can be identified. Considering only these “known” metabolites in 

downstream analysis leads to an information loss of up to 80%, so that there is great 

interest in being able to keep track of and quantify unknown peaks. If their spectra and 

RIs can be recorded, they can be searched for in other unrelated samples, and once 

identified in the future by manual validation, can be reconsidered in samples where they 

were tracked as “unknown”.  

 

Since there are different levels of confidence in metabolite libraries (highest in the Ident 

reference, next highest in the library of metabolites that have been measured on our 

setup (BMD, Buch Metabolome Database), next highest the GMD), SILVIA employs 

a layered approach to metabolite identification. First, the user annotates samples with 

the Ident reference, where peak groups of high confidence are “locked” (as described 

above). Once the entire Ident reference has been searched for, the user repeats the same 

for the BMD, and then the GMD, where all metabolites identified in the previous, 

higher confidence library can no longer be searched or edited. The Ident reference 

therefore searches all peaks, the BMD only those that were not annotated as an Ident 

metabolite, and the GMD searches only those that are neither Ident nor BMD. After 

annotating the three libraries, the remaining peaks are considered “unknown”.  

 

To create the first unknown library, SILVIA considers all not already annotated peaks 

and attempts to find peak groups, meaning a collection of peaks in different samples 

that have nearly identical spectra and RIs. The stringency of these two parameters is 

high (similarity score of 950 or above), because a library of low quality spectra is not 

useful. It therefore collects all peak groups that have at least three members with a high 

spectral similarity based on the cosine similarity measure (another quality control step, 

because a library spectrum should be an average of several “real” spectra) and thereby 

creates a putative unknown library. This putative library is then loaded into the SILVIA 

annotation interface where the user can now manually correct the putative library 
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entries. Once all peaks of sufficient quality have been annotated in all of the samples, 

SILVIA calculates an average spectrum for every “locked” peak group, assigns an 

unknown identification number, and allows for its export into the database msp file 

format. SILVIA then renames the recorded unknowns appropriately in the project and 

quantifies them using the Top5 strategy as described below.  

 

After the creation of the initial unknown library, every user can discover new unknowns 

in new projects. To do so, one first annotates the Ident reference, the BMD, the GMD, 

and then the most current unknown database. All remaining peaks have never been 

recorded before, and by following the steps described above, one can then annotate and 

collect new unknowns into the project and export them in the library format. New 

unknowns are then simply added to the most current unknown library. Over time as 

more and more samples of different kinds are measured, a point should be reached 

where no “new unknowns” are discovered.  

 

To improve the understanding of biology using metabolomics, a key step will be the 

creation of a near-perfect library, in which all peaks measurable on a given setup are 

known. The ultimate goal, therefore, is to move all unknown and GMD metabolites into 

the BMD (meaning that they have been identified and measured on our setup in a 

purified form), and to include metabolites that are difficult to distinguish into our Ident 

mixes to achieve unambiguous near-perfect and near-complete coverage of the 

metabolome of interest. Tracking and quantifying as of yet unknown peaks is a first 

and very significant step towards achieving that goal, as it lends tremendous additional 

power to computational investigations of datasets by vastly increasing the number of 

features that can be used to compare different samples. 

 

2.3.8 Quantification Masses 

 

The quantity of a metabolite is reflected by the number of times its fragments are 

detected in the mass detector of the MS. These mass counts are expressed in units of 

intensity and together comprise the mass spectrum of the metabolite. On the one 

extreme, it is possible to quantify metabolite abundance by choosing the intensity value 
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of a single specific mass out of all masses that result from its ionization. On the other 

extreme, one could sum all intensity values of all masses of the metabolite.   

 

The masses used to quantify a metabolite need to be specific to the metabolite of 

interest, as co-eluting compounds that have a mass in common would otherwise lead to 

an overestimation of its abundance. Additionally, masses at the detection threshold do 

not robustly represent the abundance of their metabolite as their detection is likely non-

linear and prone to stochastic variation. Furthermore, the variation of detection of a 

single mass is likely to be higher on average than the detection variation of the average 

of multiple masses. One therefore looks for a compromise in the quantification strategy. 

The selection of multiple quantification masses decreases technical detection variation 

and makes the quantification more resistant to near-detection threshold issues and non-

specific masses. Nonetheless, one should refrain from including masses that are often 

measured near the detection threshold as well as those that are not specific for the 

metabolite of interest, as the inaccuracies of quantification increase with their 

contribution to the quantification strategy.   

 

ChromaTOF allows the user to manually set a single or multiple quantification masses. 

However, when having to validate them for five hundred peaks by manual input, it 

becomes impractical. SILVIA therefore automatically selects the five most abundant 

(Top5) masses of the library spectrum for each metabolite individually, known or 

unknown, for quantification. It is also possible to specify a group of masses for each 

metabolite individually if it is known that masses other than the Top5 are more robust 

and/or specific. SILVIA calculates the area under the curve of the intensities of each of 

the Top5 masses for every peak. It recovers the intensities out of the raw files and sums 

them into a cumulative area representing the metabolite abundance. This “raw area” is 

saved in the project database for each peak and subsequently multiplied by the CA 

normalization factor calculated previously to produce the “area”. Both “raw area” and 

“area” are measured in intensity units and can be exported for downstream analysis.   

 

The Top5 approach has several advantages over the previously employed single-mass 

quantification strategy in ChromaTOF. Mainly, the quantification is more robust due 

to the greater number of masses considered. Furthermore, users need not spend any 

time manually verifying and correcting quantification masses. Datasets generated using 
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SILVIA are more comparable since every user uses the same quantification masses for 

every peak and when more optimal masses for individual compounds are determined 

in the future, the improvement can be integrated centrally to make it available to all 

other users as soon as possible. 

 

2.3.9 Absolute Quantification - Quant Mix 

 

With the relative quantification strategy described in Quantification Masses, one is able 

to compare the same metabolite measured in different samples. The ultimate goal, 

however, is to determine their absolute concentrations in the biological samples to be 

able to consider stoichiometric ratios and have a way to compare measurements not 

only within a single experimental batch, but also across experiments, time, and 

machines.  

 

One possible solution is the use of the Quant mix created by Matthias Pietzke and Stefan 

Kempa. It is a mixture of metabolites in a dilution series of known absolute amounts. 

The Quant mix is measured at the beginning of an experimental batch and serves as a 

reference for biological samples measured closely thereafter, thereby allowing for the 

conversion of their intensity values to absolute concentrations by application of 

metabolite-specific linear regression equations from the dilution curve of the Quant 

mix. The procedure, reproducibility, and other technical details of the Quant mix can 

be viewed in Matthias Pietzke’s dissertation at the Free University of Berlin, 2014.  

 

SILVIA allows for the speedy annotation of the Quant mix samples, the determination 

of the intensities of the contained metabolites as described in Quantification Masses, 

fits a linear regression to the dilution curve intensities to produce the linear regression 

equation and provides the absolute quantities of the metabolites in the biological 

samples of interest in a convenient csv export format.  

 

 

2.3.10 Data Export 
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After calculating the RIs, normalizing to cinnamic acid values, annotating and creating 

the Ident reference, annotating the Quant mix and biological samples using the SILVIA 

annotation interface, and setting quantification masses for all metabolites, SILVIA 

allows for the convenient export of both relatively and absolutely quantified 

compounds in csv format. The resulting export is a data matrix with one dimension 

representing all biological samples of the project, the second dimension listing the 

identified metabolites, and the content of the matrix being either their relative or 

absolute abundances in every sample. Further data analysis is then carried out in R. 

 

2.3.11 SINQ – Stable Isotope Normalization and Quantification 

 

Due to the mass difference in the carbon isotopes 12C and 13C, mass spectra of 

isotopologues are distinct (for example, glucose with six 12C atoms vs. glucose with six 

13C atoms), while the metabolites have essentially identical RIs. The additional neutron 

in 13C leads to a +1 mass shift of a fragment that contains one 13C atom, a +2 mass shift 

of a fragment that contains two 13C atoms, and so on (Figure 2.10).  

 

Figure 2.10 – Mass spectrum differences between 12C and 13C-containing glucose. 
Mass shifts of individual fragments (blue = 12C, red = 13C) correspond to the number of carbon 

atoms they contain. Ratios of intensities of mass pairs (for example, 319 (12C) and 323 (13C)) 

are used in SINQ to absolutely quantify metabolite abundance. Please note that the fragment of 

mass 147 represents the derivatization agent and is therefore not shifted. This figure was kindly 

provided by Matthias Pietzke and only slightly modified. 
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When adding a 13C-containing metabolite standard of known concentration to a sample, 

the ratio of the 12C (sample compound) to 13C (labeled standard) allows for the 

calculation of the absolute concentration of the sample compound (Meija & Mester 

2008). This strategy is known as isotope dilution and has major advantages both over 

the CA normalization and the absolute quantification using the Quant mix:  

1) Each compound is automatically and individually normalized to its 

13C standard, which is identical in all samples, requiring no global CA 

normalization. 

2) The quantification is relative to a metabolite measured in the same sample, at 

the same time, and is not subject to potential technical variation-induced errors 

of comparing across measurements and time.   

 

This strategy of normalization and quantification was employed on the human serum 

dataset acquired in collaboration with the group of Prof. Dr. Tobias Pischon described 

later in this dissertation. SILVIA contains a list of empirically validated 12C and 13C 

mass pairs for each SINQ standard. The absolute concentration of the sample 

metabolite is then calculated by multiplication of the ratio of intensities of the 12C and 

13C mass pair with the known quantity of the 13C standard (Figure 2.11). SILVIA 

automates this calculation of the absolute concentration and the data export for SINQ 

metabolites in the format described above. 

 

Of particular note to datasets containing 13C labeled compounds are the “Fuse left” and 

“Fuse right” options in the annotation interface only briefly mentioned before. Because 

13C compounds are slightly heavier than their 12C counterparts, their migration through 

the column is not exactly identical, and the ChromaTOF software has a tendency to 

split the two metabolites into two separate peaks (called peak deconvolution), which 

prevents the user from calculating meaningful ratios because the mass pairs used to 

calculate the ratio are not contained in a single peak and mass spectrum. SILVIA allows 

a quick resolution of these cases by allowing the user to fuse adjacent peaks into a single 

one, correcting the well-meant feature of separating non-identical metabolite species. 
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Figure 2.11 – Calculation of the absolute quantity of a sample metabolite using 

SINQ. A) An example of the isotope “flute” of a fragment of a metabolite is shown. The m+0 

mass corresponds to the fragment containing only 12C atoms. The m+1 and m+2 intensities 

correspond to the fraction of fragments containing naturally occurring 13C. B) An example of a 

fragment spectrum in the presence of a 13C SINQ standard. In this example, the empirically 

determined “mass pairs” are m+0 and m+2, on which the quantification will be based. To 

calculate the absolute concentration of the sample metabolite, the sum of the intensity of its 

m+0, m+1, and m+2 fragment is divided by the intensity of the m+2 fragment corresponding 

to the 13C SINQ standard. The percentage of naturally occurring m+2 intensity relative to the 

m+0 fragment from the sample metabolite is determined from the fragment flute in either Quant 

or Ident mix samples (which do not contain the SINQ standards) and is then subtracted. The 

absolute quantity is then calculated by multiplication of the obtained ratio by the absolute 

amount of 13C SINQ standard added to the sample. This figure is a modification of a figure 

kindly shared by Matthias Pietzke and Christin Zasada. 

 

 

 

2.4 Discussion 

 

The data processing and visualization modules contained in SILVIA address the issues 

of handling large data volumes, identifying new and tracking unknown peaks, as well 

as providing the computational tools to efficiently use several methodological 

developments. Whereas previously a smaller fraction of all available information from 

experiments was recovered and more time than was necessary to measure the samples 

on the GC-MS was required to do so, SILVIA has sped up the data processing so that 

the processing of the torpor screen described below, whose measurement required three 

weeks, was in its entirety completed within four days, for the first time considering 

every single peak, known or unknown (Figure 3.4). SILVIA has realized the full 
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potential of the Ident and Quant mixes, and incorporates algorithms to handle both 

pSIRM (not described) and SINQ experimental setups, the data required for which had 

to previously be manually extracted and processed. It provides for the first time the 

means for in-depth analysis of a dataset as large and complex as the torpor screen, and 

in combination with the incorporation of the SINQ methodology, has readied our 

technological platform to advance beyond basic research into the realms of diagnostic 

medicine that is characterized by both large data volume and the need for high 

reproducibility, robustness, and comparability over a large time span. 

 

The development of SILVIA, however, has not yet reached its full potential. It is now 

equipped with modules optimized for manual inspection and correction, with little 

emphasis having been placed so far on true automatization. It is my goal in the near 

future to use machine learning and artificial intelligence approaches to improve peak 

calling and identification of metabolites so as to further decrease the amount of time 

required for data processing.  

 

For example, the RS currently implemented uses a cosine similarity measure and RI-

dependent penalties to compare library and sample metabolites and finally provides a 

score of confidence of the identification. This approach is identical for all metabolites, 

although different metabolites show differences in RI variation and mass spectrum 

quality. To consider the metabolite specific GC-MS behavior and thereby create a 

metabolite-specific RS, I plan to train logistic regression and/or neural net classifiers 

for every library metabolite with validated training data from a variety of biological 

samples. This requires a large manually verified labeled dataset (peaks that correspond 

to the metabolite in question and those in the surrounding that could be false positive 

matches). With the development of SILVIA and its use in the Kempa lab, hundreds of 

biological samples from cell culture and animal experiments have been processed in 

the last months, providing sufficient training data to create metabolite-specific artificial 

intelligence classifiers in the near future.  

 

The SILVIA modules now in existence will be used for extensive troubleshooting of 

these classifiers and will allow the user to manually validate and correct inaccuracies. 

The final goal is to reach a state in which a blood metabolome, and eventually any 

metabolome, can be confidently processed without human supervision in its entirety. 
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This will not only decrease processing time but also make the technology more 

available to non-specialists. It is possible that GC-MS and other omics systems will be 

used on a daily basis in hospitals around the world to aid in diagnostics, and it is my 

goal to contribute significantly to this future by creating automized data-processing 

systems. Apart from the clinic, the less time researchers will have to spend on technical 

details and data processing, the more time will be available for biological interpretation 

of acquired data, the step where medically relevant knowledge is created. Removing 

the bottlenecks of data processing should shift the proportion of time researchers spend 

on their projects towards the extraction of biological mechanisms from metabolomic 

datasets, thereby increasing the rate of knowledge acquisition. 
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3. Metabolic Changes During Daily Torpor in Mice 

3.1 Introduction 

3.1.1 Daily Torpor – A Hypometabolic State 

Daily torpor is a physiological hypometabolic state similar to hibernation that serves to 

conserve energy by drastically lowering the core body temperature (CBT), the 

maintenance of which is especially costly for small animals with a high surface to 

volume ratio. Whereas hibernation is employed to bridge the cold and food scarce 

winter and can last for months, intermitted by only short periods of rewarming, daily 

torpor is observed in many small mammals and birds and occurs during the daily resting 

phase, usually lasting between a few and ten hours. In hypometabolic states, the 

metabolic rate (MR), CBT, heart rate (HR), breathing rate (BR), and blood pressure 

(BP) drop precipitously (Geiser 2004; Swoap 2008; Morhardt 1970). Example values 

for daily torpor can be viewed in Table 1.    

 

Species 

CBT 

normal 

[°C] 

CBT 

Torpor 

[°C] 

MR 

normal 

[ml O2/(gh)] 

MR 

Torpor 

[ml O2/(gh)] 

HR 

normal 

[bpm] 

HR 

Torpor 

[bpm] 

BP 

normal 

[mmHg] 

BP 

Torpor 

[mmHg] 

Mus 

musculus 
37.4 19 1.47 0.3 612 158 118.6 62.3 

Table 1. Example values of core body temperature (CBT), metabolic rate (MR), heart rate 

(HR), and systolic blood pressure (BP) in the laboratory mouse Mus musculus (Hudson & Scott 

1979; Swoap & Gutilla 2009). 

 

The torpor cycle consists of an entry phase during which the CBT slowly and MR 

quickly decrease, a maintenance phase during which the CBT and MR stabilize at their 

minimal value, and an arousal phase during which the animal returns to euthermia, 

which is accompanied by a stark increase of the metabolic rate before CBT rises (Swoap 

2008).  

 

The physiological changes observed in daily torpor are greatly exacerbated in 

hibernation, where CBTs of below 0°C have been reported for the arctic ground squirrel 

(Urocitellus parryii), periods of apnea can last for more than an hour, and metabolic 

rates can drop to well below 5% of awake animals (Geiser 2004; Barnes 1989). While 
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hibernation is arguably the most extreme of hypometabolic states, and some might 

argue therefore the most interesting, it is a diverse phenotype. Most ground squirrels 

that have been studied maintain their deep torpor CBT at or below 5°C, whereas bears 

are known to hibernate at a CBT of above 30°C (Tøien et al. 2011). Their relative 

savings differ as well, and the reasons for the differences in magnitude of CBT are 

under debate. Nonetheless, it is a reasonable assumption in the field of hypometabolic 

research that the essential underlying physiological mechanisms, although the 

magnitude of their expression might differ between species, are likely very similar 

between the different forms of hibernation and daily torpor. The entry into, maintenance 

of, and exit from hypometabolic states represent a controlled alteration of nearly all 

measureable functions of mundane physiology, and the understanding of many of them 

would be relevant to some of the most pressing medical issues of the modern world. 

Known neurological and molecular mechanisms will be introduced next, before 

describing but a subset of observations that justify the interest in hypometabolism of 

medically-oriented research. 

 

3.1.2 Neurological Regulation of Hypometabolic States 

Crude ablation studies in the brain have provided evidence for the involvement of three 

regions of the hypothalamus in hibernation and torpor, corresponding to three defining 

characteristics of hypometabolic states:  

 

1) Suprachiasmatic nucleus (SCN) - Timing of occurrence 

2) Preoptic area/anterior hypothalamus (POA/AH ) - CBT regulation 

3) Arcuate nucleus (ARC) - Energy homeostasis 

 

The SCN in the hypothalamus contains the “master clock” of the body, in which the 

transcription and translation of so-called clock genes function in negative feedback 

loops as a timer. While all other tissues, for example the liver, have their own clocks, 

the SCN synchronizes the body through autonomic and humoral signaling, and is itself 

set by the light-dark cycle, called the “Zeitgeber” (Radziuk 2013). While the SCN is 

involved intricately in the circadian rhythm of the sleep-wake cycle among other 

physiological mechanisms, it has also been shown to play a crucial role in the regulation 

of hibernation. When radiofrequency-induced lesions were applied stereotaxically to 

ablate the SCN in golden-mantled ground squirrels (Spermophilus lateralis), the 
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number of torpor bouts during hibernation increased by 159%, the total time spent in 

hibernation by 58%, and periodic arousals from torpor were 47% longer. Some squirrels 

stayed in hibernation for almost two years, clearly showing the importance of the SCN 

in the temporal control of hibernation (Ruby et al. 1996). However, denervation of 

serotonin fibers innervating the SCN seemed to have no effect whatsoever on daily 

torpor in Djungarian hamsters (Phodopus sungorus) (Ouarour et al. 1995). Whether the 

SCN therefore only plays a role in seasonal hypometabolic states and is unimportant 

for daily torpor induced by food restriction is as of yet unresolved. Nonetheless, torpor 

occurs only during an animal’s inactive phase, making its involvement, even if more 

subtle, likely (Geiser 2004). 

 

The POA/AH is critically involved in euthermic CBT regulation and is said to contain 

both temperature-sensitive neurons, responsible for sensing local brain temperature, as 

well as neurons that integrate brain temperature information with the temperature 

sensed in peripheral tissues and the skin to coordinate cold- or heat defense mechanisms 

such as sweating, shivering, vasoconstriction or vasodilation, and behavioral 

adaptations (Morrison & Nakamura 2011). Electrolytic POA/AH lesions were shown 

to be lethal after eleven to twelve days in hibernation in thirteen-lined ground squirrels 

(Citellus tridecemlineatus), presumably due to an inability to arouse from low CBTs 

(Satinoff 1967). Despite the caveat that crude ablations in the brain are difficult to 

interpret due to the high probability of damaging neuronal extensions originating in 

other brain regions, considering the known role of the POA in euthermia maintenance, 

it is very likely that the POA neurons play a crucial role in the CBT regulation during 

torpor as well. 

 

Repeated postnatal monosodium glutamate (MSG) treatment produces neuronal 

degeneration primarily in the ARC, which integrates peripheral leptin, insulin, and 

other metabolic signals to regulate food intake, energy expenditure, and more generally, 

energy homeostasis (Könner et al. 2009). Upon MSG ablation of the ARC in Siberian 

hamsters (Phodopus sungorus), a reduced incidence of photoperiod-dependent torpor 

was observed, a difference that persisted even after body weight normalization through 

food restriction (Pelz et al. 2008).  ARC ablation also prevents mice from entering daily 

torpor upon food restriction (Gluck et al. 2006).  

 



41 

 

3.1.3 Molecular Mechanisms of Daily Torpor 

Recently, molecular mechanisms underlying the torpor phenotype have been 

elucidated, the strongest evidence provided by use of genetically modified mice in 

combination with pharmacological studies. 

 

Leptin is a protein hormone that is secreted by white adipose tissue (WAT) in direct 

proportion to WAT abundance and has been shown to be involved in energy 

expenditure and food intake regulation (Friedman & Halaas 1998; Zhang et al. 1994; 

Flier 1998). It signals to several sites in the body, among them neurons in the ARC 

(Könner et al. 2009). Its involvement in torpor was first demonstrated by the 

observation that ob/ob mice, which contain a mutation in the leptin gene, spontaneously 

enter torpor despite their vast fat stores and without prior food restriction (Webb et al. 

1982). Furthermore, continuous application of leptin prevents or blunts torpor 

responses in Siberian hamsters, establishing low leptin levels as a required permissive 

signal for torpor entry (Freeman et al. 2004).  Other metabolic phenotypes, like that of 

the Farnesoid X nuclear receptor knock-out mouse, have been linked to torpor 

susceptibility by altering leptin levels (28). Similarly, dopamine β-hydroxylase knock-

out mice cannot synthesize norepinephrine (NE) and epinephrine (Epi), two of the 

major neurotransmitters of the sympathetic nervous system (SNS) that controls a 

variety of homeostatic functions in counterbalance with the parasympathetic nervous 

system. The knock-out mice were unable to enter torpor, and their phenotype traced to 

a peripheral NE requirement for torpor induction signaling through the β3-adrenergic 

receptor whose activation initiates lipolysis in WAT and the inhibition of leptin release 

(Swoap et al. 2006; Swoap & Weinshenker 2008). Without the permissive signal of low 

circulating leptin indicating energy shortage, mice appear unable to enter torpor.  

 

The downstream effects of low leptin levels are entirely unclear in the context of 

hypometabolic states. A first step towards enlightenment has been taken by a recent 

study of the G protein-coupled orphan receptor GPR50, which is expressed in the 

dorsomedial nucleus (DMN) of the hypothalamus and in tanycytes, which line the third 

ventricle in direct contact with the cerebrospinal fluid (CSF). GPR50 knockout mice 

require less food restriction to enter torpor. While GPR50 expression is induced by 

leptin, leptin administration was unable to blunt the strong torpor response. GPR50 is 

therefore likely downstream of leptin signaling in the DMN (Bechtold et al. 2012).  
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Leptin, however, is not the sole metabolic signal regulating torpor entry. A-ZIP/F-1 

mice, which through a genetic ablation have essentially no WAT and like ob/ob mice, 

low leptin levels, much more readily enter torpor than wildtype controls. However, this 

phenotype was not rescued by leptin administration, indicating that while low leptin 

levels are required for torpor induction, they are not sufficient. The animals rely on 

more than just low leptin levels to detect energy deficiencies and to make the decision 

to enter torpor, which is further supported by the simple fact that ob/ob mice are not in 

torpor at all times (Gavrilova et al. 1999).  

 

Following the evidence of elevated ghrelin levels during torpor (a hormone involved in 

food-intake regulation and satiety), Gluck and others found that peripherally 

administered ghrelin significantly deepened torpor bouts in mice (Gluck et al. 2006). 

Upon ARC ablation by MSG, where many ghrelin receptor-containing neurons reside, 

mice failed to enter torpor at all and ghrelin administration had no inductive effect. The 

two major pathways regulating food intake and energy homeostasis in the ARC are the 

neuropeptide Y (NPY), representing orexogenic signaling, and the anorexigenic α-

melanocyte stimulating hormone (α-MSH) pathways. Both Ay mice, defective in the α-

MSH pathway, and npy -/- mice showed a blunted torpor response. Ghrelin had its 

torpor deepening effect only in the Ay knock-out mice, indicating that the torpor 

exaggerating effect of ghrelin is signaled through the NPY population in the ARC. 

Ghrelin is the second metabolic hormone besides leptin significantly involved in torpor, 

both signaling at least in part through ARC neuronal pathways. 

 

To my knowledge, all reported phenotypes of altered torpor are of metabolic origin. 

Uncovering the metabolic changes that occur before and during torpor to discover the 

crucial signals enabling its induction, progression, and termination, are therefore 

elemental for its understanding.  

3.1.4 Metabolic Changes in Daily Torpor  

Since metabolic rate anticipates the fall of CBT, much research has been aimed at the 

identification of mechanisms of metabolic suppression that are independent of low 

body temperature effects during torpor entry.  
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Several studies have found respiratory adjustments in both hibernators and torporic 

animals that retain carbon dioxide and thereby cause the acidification of their blood and 

tissues to varying degrees of severity (P. E. Bickler 1984; P. Bickler 1984; Nestler 

1990b; Nestler 1991; Nestler 1990c; Nestler 1990a). This acidosis is thought to cause 

metabolic suppression to differing degrees in different tissues, but mechanistic 

explanations are often variable, likely resulting from the use of many different model 

organisms. Observations most comparable to daily torpor in mice will be considered in 

detail in the discussion of this section. As a side note, brain acidosis is hypothesized to 

reduce the temperature set-point in the hypothalamus, providing a potential explanation 

for the controlled decline in body temperature during hibernation and torpor entry 

(Matsumura et al. 1987; Schaefer & Wünnenberg 1976; Wright & Boulant 1985).  

 

Another avenue of investigation is the characterization of enzyme activity of tissue 

isolates of hibernating and control animals. In this way, mitochondrial activity has been 

characterized in tissues isolated from torporic and non-torporic animals. Different 

studies generally span the entire interpretive range of unchanged, decreased, or 

increased enzyme or mitochondrial activities. Again, the disagreements might stem 

from different model organisms and sampling time points, but likely also from different 

biochemical preparations of enzymes and mitochondria. The general disagreement was 

summarized in a comprehensive review (Staples & Brown 2008). Observations made 

in model organisms most relevant to daily torpor in mice will be considered in detail in 

the discussion. 

 

Even if the evidence for particular enzyme activities or overall mitochondrial activity 

were in agreement, the interpretation of the commonly used assays is arbitrary. Enzyme 

productivity is not only determined by its state of activity in a purified context, but 

influenced by localization, substrate abundance, and other in vivo factors. Similar to the 

low correlation between mRNA and corresponding protein abundance, in vitro enzyme 

abundance or activity does not necessarily correlate with in vivo reaction rates 

(Schwanhäusser et al. 2011). Rather, the assays measure a part of the cellular potential 

to carry out reactions, rather than the actual phenotype, as a fully activated enzyme 

without substrate is biologically inactive.  
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Metabolomic analysis, in contrast, provides information about the actual abundance of 

metabolites and might allow the determination of pathway activity by inference. Only 

a few investigations have attempted metabolomic analysis of hypometabolic states by 

studying the hibernation phenotype, analyzing the metabolic composition of the liver 

using NMR and LC-MS, and blood serum using LC-MS or a combination of LC-MS 

and GC-MS (Nelson et al. 2009; Nelson et al. 2010; Serkova et al. 2007; Epperson et 

al. 2011).  

 

Serkova and others used NMR on liver samples taken from thirteen-lined ground 

squirrels that were either summer active, in the late torpor phase when CBT was lowest, 

or in the entry phase of one of the hibernation torpor bouts (Serkova et al. 2007). They 

identified forty-three metabolites, thirty-six of which differed in at least one of the three 

phases. They found glucose, lactate, alanine, and succinate decreased, and the ketone 

body β-hydroxybutyrate to be increased in the two torpor phases when compared with 

summer active controls. Additionally, betaine and glutamine appeared highest in the 

late torpor phase, whereas the lipid classes phosphocholine and phosphatidylcholine 

were decreased. They concluded that an accumulation of ammonia is buffered by a 

production of glutamine, carbohydrate metabolism is substituted by lipolysis and 

ketone consumption, and that phospholipids may serve as a source for betaine to 

increase osmotic protection.  

 

In a second study using LC-MS on liver tissue collected in entry, deep, exit, and 

interbout arousal states, as well as a summer control, fourteen metabolites were 

identified (Nelson et al. 2009). Four of these metabolites were carnitine esters that were 

all decreased in entry and deep torpor, similar to tryptophan, phenylalanine, and 

tyrosine. Inosine, a purine metabolism intermediate, and uridine were also decreased in 

deep torpor, but during the interbout arousal recovered to levels similar to the summer 

controls. Flavin nucleotides were decreased during entry and deep torpor, but elevated 

during exit and the interbout arousal when compared to the summer animals, indicating 

a general correlation with metabolic rate. While cholesterol sulfate (in the NMR study, 

cholesterol was significantly increased), sphingosine, and a lipid were decreased in the 

deep, exit, and interbout arousal phases, the fatty acid hexadecanedioic acid was the 

only measured metabolite accumulating during the deep torpor phase, consistent with 

fatty acid, lipid, and triacylglycerol accumulation described in the previous NMR study. 



45 

 

Although the two studies gave general indications about liver metabolism in 

hibernation, it is difficult to draw detailed conclusions from only fourteen metabolites 

in one study, or forty-three measured in only two torpor phases in the other.  

 

The same group of investigators also performed an LC-MS study on blood serum in the 

same squirrel species in the deep and interbout arousal phases, and active spring 

squirrels, finding significant changes in around one hundred putative metabolites, of 

which they validated twenty-five (Nelson et al. 2010). They found carnitine esters to 

be decreased during torpor, as previously observed in the liver, just like tyrosine and 

methionine, all of which recovered to near spring active levels in the interbout arousal. 

However, pantothenate was increased four-fold in the deep phase compared to the other 

stages. All fatty acids measured showed a trend of accumulation during the deep phase, 

with interbout arousal levels elevated compared to the spring control.  

 

The most comprehensive metabolomics study was performed on blood serum using 

both GC-MS and LC-MS technologies and measured in cooperation with a company 

specializing in metabolomic analysis (Epperson et al. 2011). Thirteen-lined ground 

squirrels were sampled in seven stages, identifying a total of two-hundred-thirty-one 

compounds. The study defined a biomarker signature for hibernation torpor bouts and 

provided evidence that interbout arousals might be required in hibernation to reestablish 

homeostatic levels of several metabolites that either accumulate or are depleted during 

deep torpor, but whose levels return to pre-torpor abundance before entering the next 

torpor bout. The most significant observation was an accumulation of modified amino 

acids in the late phase that were rebalanced in the interbout arousal. Similarly, a large 

group of metabolites showed the opposite pattern, including glycine, methionine, and 

threonine. Several metabolites increased specifically in the exit phase, among them 

fatty acids, glycerol, and succinate.  

 

The authors focused their discussion on modified amino acids, antioxidants, and 

different free fatty acid species. However, none of the four metabolomic studies was 

able to provide mechanistic insight from metabolite abundances or has investigated the 

essential parts of energy metabolism in detail: glycolysis, the TCA cycle, the urea cycle, 

and crucial pathway intermediates thereof that might provide information about the 

activity and direction of metabolic pathways. It is also of note that none of the studies 
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have investigated more than a single tissue at the same time, and only one study 

contained all relevant time points to be, in principle, able to deduce mechanisms of the 

progression of metabolic changes through torpor. The meaningful mechanistic 

interpretation of this last study was complicated by the fact that blood is not a single 

active tissue, but the connection between many.    

 

I therefore decided to investigate the metabolome of mice in blood serum, CSF, liver, 

muscle, and WAT in all six phases encompassing the entire torpor phenotype using a 

GC-MS setup that has been optimized to address central carbon metabolic pathways. 

The study was designed with two purposes in mind:  

 

1) To provide a metabolic atlas of critical tissues and body fluids throughout torpor 

so as to elucidate the mechanisms underlying metabolic changes driving the 

entry into, progression of, and exit from daily torpor in mice. 

2) To obtain a metabolomic dataset of both organs and blood simultaneously 

sampled throughout a process in which strong metabolic changes occur in order 

to gain first insights into the reflection of organ metabolic states and their 

interactivity in the blood metabolome.  

 

While the second purpose reflects the overall theme of this dissertation, researching 

hypometabolic states is not a mere academic exercise, as it may well be of aid in 

alleviating a variety of medical complications.  

 

3.1.5 Clinical Implications of Hypometabolic Research 

As BR and HR decrease during the entry phase of torpor, less oxygen is distributed 

throughout the body, carbon dioxide concentrations increase, and the blood and tissues 

acidify to varying degrees as a consequence (P. E. Bickler 1984; Nestler 1990a; Nestler 

1990b). Due to the lower circulation rate, nutrient availability decreases and cellular 

waste products are removed more slowly. All of these changes are reversed quickly 

during the return to euthermia, in which high breathing rates and a fast return to 

metabolic activity occur before the return to euthermic circulation, without ill effect on 

the animal (Carey et al. 2003). This cycle observed in natural hypometabolic states is 

analogous to the ischemia-reperfusion injury cycle that occurs in humans. In this 

pathology, blood supply to part of an organ is first restricted or blocked for a time 
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(called ischemia) and then reinstated (called reperfusion). Ischemic damage is due to 

nutrient/oxygen deprivation and waste/reactive oxygen species accumulation, while 

reperfusion injury results, from among other mechanisms, an overreaction of the 

immune system to the blood-deprived tissue (Datta et al. 2013; Sanderson et al. 2013; 

Schofield et al. 2013). The number one and two causes of death in middle- to high-

income countries, ischemic heart disease and stroke/cerebrovascular disease, are caused 

by ischemia and reperfusion injury (WHO, http://who.int/mediacentre/ 

factsheets/fs310/en/, March 2014).  

 

Importantly, studies have shown an increased resistance to ischemic-reperfusion injury 

damage of animals undergoing hypometabolic states (Drew et al. 2001). These 

beneficial effects have been attributed to increased resistance to nutrient and oxygen 

deprivation, as well as the lack of an overreaction of the immune system during the 

waking phase of the torpor cycle (Bouma et al. 2012). Induced hypometabolism may 

therefore not only benefit ischemia and reperfusion injury patients, but could be 

applicable for many other kinds of physical trauma in which tissue injury results in 

similar circulatory problems, including, but not being limited to, surgical procedures 

that are performed on millions of patients worldwide every year (Aslami & Juffermans 

2010).  

 

Furthermore, a group of autoimmune diseases have in common the underlying 

phenotype of an immune system that is overactive, either causing unwarranted 

inflammation or erroneously recognizing its own body as foreign. Examples of 

mistakenly initiated immune responses are the progressive destruction of the myelin 

sheath in multiple sclerosis, the chronic inflammation of cartilage in joints in 

rheumatoid arthritis, or the continuous damaging of the digestive tract in Crohn’s 

disease, among many others (Bandzar et al. n.d.; Broux et al. 2013; Pablos & Cañete 

2013). Debilitating dermatological diseases like psoriasis or atopic dermatitis are also 

attributed to deregulated immune responses and afflict 1-4% of the general population 

(Saito 2005; Parisi et al. 2013). Gaining an understanding of how the immune system 

in the arousal from torpor is repressed to prevent reperfusion injury might allow for a 

more physiologic suppression of an overactive and misguided immune system in 

several autoimmune diseases in humans.  
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In addition, tumor-preventative effects, decreased susceptibility to induced and 

spontaneous lung tumors, and suppressed mitotic activity have been attributed to daily 

torpor in mice (Koizumi et al. 1992; Koizumi et al. 1993; Koizumi et al. 1996). While 

the molecular mechanisms are yet to be elucidated and their interpretation complicated 

by the simultaneous occurrence of energy restriction and torpor, it is possible that the 

metabolic change to fat metabolism during food restriction leading up to torpor plays a 

significant role. In fact, the prescription of a ketogenic diet, which minimizes 

carbohydrate intake and increases the consumption fat, leads to an accumulation of 

ketone bodies in the blood and is said to “starve” tumors, most of which are notoriously 

glucose-dependent (Hamanaka & Chandel 2012; Klement 2013; Simone et al. 2013; 

Woolf & Scheck 2014). Ketone bodies have been attributed cytoprotective effects as 

well as significant signaling functions and therefore might contribute to an increased 

resistance to cancer observed in torporic mice (Newman & Verdin 2014; Maalouf et al. 

2009). Whatever the mechanistic details, torpor might provide new insights into 

mechanisms of tumor suppression.  

 

Due to the wide theoretical applicability of beneficial effects observed in 

hypometabolic states, a major effort in hypometabolism research has been directed at 

the identification of signals that mediate torpor entry. It is the hope that in the future, 

humans will be able to enter hypometabolic states at will to protect themselves from 

ischemic injury and reperfusion damage, suppress their immune system when 

necessary, extend their lifespan, and facilitate spaceflight to distant planets (Bouma et 

al. 2012).  

 

So far, most investigations have been focused on the mechanisms of torpor entry only, 

which are often reduced in complexity to mechanisms of metabolic suppression only, 

with less emphasis on mechanisms of arousal, which appears to be assumed to simply 

“happen” once the metabolic suppression is alleviated.  

 

The first evidence of the existence of torpor-inducing molecules came from a report 

claiming that blood from a hibernating animal was able to induce hibernation in 

another, leading to the concept of a hibernation induction trigger, or HIT. The results, 

however, were not reproducible and contested heavily (Dawe & Spurrier 1969; Dawe 

et al. 1970; Wang et al. 1988; Bouma et al. 2012).  
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More recently, hydrogen sulfide (H2S), which is known to be able to inhibit 

mitochondrial respiration by competing with oxygen in binding to cytochrome c 

oxidase, was used to cause a reversible inhibition of metabolism. H2S treatment of mice 

was tried in various concentrations and led to a metabolic rate decrease of 90% and a 

concurrent CBT decrease to about 2 °C above ambient temperature, reminiscent of that 

observed in daily torpor (Blackstone et al. 2005). While the results are reproducible in 

mice, reports in larger animals are less consistent and represent an area of active 

research (Haouzi et al. 2008; Li et al. 2008; Simon et al. 2008). While H2S holds 

promise for metabolic suppression, it is quite obviously artificial and has little to do 

with natural hypometabolic states other than the manifestation of their ultimate 

symptoms. 

 

A group in Texas identified adenosine-monophosphate (AMP) in blood as a marker for 

torpor. Injection of AMP decreases CBT and induces transcription of makers associated 

with the circadian rhythm and torpor phenotype. Since the involvement of the circadian 

clock in the SCN is known to be crucial in hibernation, AMP was proposed as a 

compound of importance in inducing torpor physiologically (Zhang et al. 2006). In 

direct response, a paper with the title of “AMP does not induce torpor” was published 

a year later, using a series of experiments to show that adenosine-diphosphate (ADP), 

adenosine-triphosphate (ATP), and adenosine were as effective in lowering the CBT of 

mice as AMP. Furthermore, the rate of CBT decrease in response to any of the adenine 

nucleotides was twice that observed in natural torpor, while the heart rate dropped to 

below natural torpor levels within a minute instead of over a period of about thirty-five 

minutes. Finally, the AMP response was observed even in animals that cannot enter 

torpor because of an ARC ablation, and could be blunted by pharmacologically 

blocking adenosine receptors, further questioning the specificity of AMP in the natural 

torpor phenotype (Swoap et al. 2007). In a follow-up paper, the same authors further 

investigated the role of adenosine receptors, and were able to show that adenosine 

signaling is required for torpor expression, a central adenosine signaling block 

provoking premature torpor exit (Iliff & Swoap 2012). Similarly, adenosine stimulation 

in the brain was found to play a significant role in hibernation in arctic ground squirrels 

(Olson et al. 2013). While AMP is elevated during daily torpor and adenosine signaling 
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of importance, it appears that neither is involved in the triggering of the induction of 

torpor under physiological conditions. 

 

Of considerable current interest is the naturally occurring thyroid hormone derivative 

3-iodothyronamine, also referred to as T1AM. It was initially identified as an agonist 

of the G protein-coupled trace amine receptor TAR1, whose administration induced 

strong CBT and heart rate decreases (Scanlan et al. 2004; Panas et al. 2010). It has 

recently been used to provoke sustained mild torpor for up to two days by administering 

multiple doses in laboratory mice with resulting CBTs between 28 and 33 °C, which 

are target temperatures for human patients in trauma surgery (Ju et al. 2011). Its role in 

the natural progression of torpor, however, is unstudied. 

 

In conclusion, while some factors are known to inhibit metabolism and decrease CBT, 

an endogenous ligand inducing natural hypometabolism like daily torpor has not yet 

been identified. By metabolomic analysis of different tissues, blood serum, and the 

CSF, I hoped to obtain candidate molecules that peaked before and/or during the entry 

or exit phases of torpor, thereby potentially signaling the induction or reversal of a 

hypometabolic state. Future studies could then attempt to induce daily torpor by 

supplication of such a factor in mice and other organisms on the road to metabolic rate 

control in humans. 

3.1.6 Daily Torpor as a Model System 

The hypometabolic states of daily torpor and hibernation are closely related and may 

therefore have the same or very similar underlying molecular mechanisms. I selected 

daily torpor as my model system for three principal reasons: First, hibernation studies 

commonly trap wild animals, not only restricting the line of research to particular areas 

of the world, but also requiring considerable time to be spent in the field, very likely 

necessitating expert knowledge as to the handling of wild animals. Secondly, even 

inbred mice display large biological variation that need not be increased by sampling 

from unstudied, potentially very variable and ever-changing wild populations to 

unnecessarily complicate analysis. Thirdly, mice are a widely used model system, 

allowing for the use of all the genetic tools and already created knock-out mice to study 

the molecular mechanisms of torpor, allowing for the validation of hypotheses arisen 

from metabolomics datasets and other mechanistic studies. 
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3.2 Materials and Methods 

3.2.1 Animals and Experimental Design 

All mice were females of the C57/Bl6-j mouse strain provided by Charles River. Mice 

were ordered at the age of seven weeks, kept in quarantine for four weeks, and then 

acclimated for three weeks to the 30 °C housing temperature in a customized Tissue 

Culture incubator (KB720, Binder GmbH, Germany) to allow for adequate air 

ventilation. The mice were provided with food and water ad libitum (Ssniff, Germany, 

Art. No. V1124-300) and maintained on a twelve hour light/dark cycle (light from 

06:00 to 18:00 hours). At the start of each experiment, mice were transferred to custom 

cages built by the MDC workshop, the ceilings of which consist of a thin metal grid 

that can easily be removed by a sliding mechanism, allowing the infrared camera to 

monitor the surface temperature of up to twelve mice simultaneously (Figure Setup). 

To initiate torpor, food restriction was carried out at 18:00 hours. Twenty-four hours 

later the ambient temperature was dropped to 17 °C. Mouse surface temperatures were 

monitored online using the InfraTec Irbis3 software, and mice removed at desired 

sampling time points throughout the torpor process. All mouse housing, care, and 

experiments were registered with and approved by the appropriate federal authorities 

(State of Berlin; TVV042911; G0051/11). 
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Figure Setup – The experimental 

setup for the study of daily torpor 

in mice.  
A Binder tissue culture incubator was 

modified to allow for air exchange (not 

visible), light/dark cycling, equipped 

with an infrared camera (top middle) and 

a grid-system of custom mouse cages 

that allowed for monitoring of mouse 

body surface temperatures. Also visible, 

but not employed in this study, is a 

telemetry system to record core body 

temperature.  

(eigene Abbildung, Henning Kuich, 

2011) 

 

 

 

 

3.2.2 Infrared Surface Body Temperature Monitoring 

The infrared camera VarioCAM hr was obtained from InfraTec (Dresden, Germany). 

It was mounted in the modified Binder Tissue Culture Chamber. Mouse surface 

temperatures were monitored online to determine torpor stages using the InfraTec 

Irbis3 software supplied with the camera. 

3.2.3 Sample Collection 

Mice were collected at seven distinct time points, consisting of a control “baseline” 

phase, a “pre” torpor phase, the “entry”, “deep”, and “exit” torpor phases, and after 

having completed a bout of torpor and recovered euthermic body temperatures (“post”). 

In the baseline phase, mice were at 30 °C ambient temperature and had food and water 

available ad libitium. The pre phase was sampled 2-3 hours prior to the expected time 

of torpor entry. Entry was defined as a surface temperature that was declining and 

below 23 °C. The deep phase was defined as surface temperatures below 20 °C for over 

2.5 hours. The exit phase was defined as a rising surface temperature, just having 

reached 23 °C. The post phase was collected 1 to 1.5 hours after surface temperatures 

recovered to pre phase levels and animals were observed to be physically active. All 

mice were anaesthetized in a box containing isofluorane until unresponsive to a tail 
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pinch. First, CSF was extracted after having removed an area of fur in the neck by 

inserting a small butterfly needle between the spinal canal and the base of the mouse 

skull. Immediately after CSF collection, the mouse was killed by cervical dislocation. 

Blood was taken from the neck wound after decapitation, and immediately spun at 

7,000 rcf at 4 °C in a tabletop centrifuge for 90 seconds to obtain blood serum. Organs 

were dissected after opening the body cavity, the WAT being of the epididymal kind, 

the muscle being sampled from the quadriceps femoris. The average time of tissue 

collection after isofluorane anaesthetization was approximately ninety seconds. 

3.2.4 Metabolite Extraction 

Liver, muscle, and WAT were pulverized using the BioPulverizer (Biospec Products, 

Cat. No. 59012N) in a frozen state. Of the resulting tissue powder, 50 mg were 

suspended in 1 mL ice cold MCW (5:2:1, methanol, chloroform, water, respectively), 

likewise 5 µL blood and 1.5 µL CSF were suspended in 200 µl MCW, and shaken at 

4 °C for one hour. Next, half the volume of MCW of Milli-Q-filtered water (EMD 

Millipore, USA) was added, and samples were shaken for another 30 minutes at 4 °C. 

They were then centrifuged at 20,000 rcf in a tabletop centrifuge to separate the polar 

from the lipid phase at 4 °C. Polar and lipid phases were collected separately and dried 

in a Speed Vac (Martin Christ, Speed Vac RVC 2-33 CD, Cooling Trap alpha 2-4 LD 

plus) over night. 

3.2.5 Sample Derivatization 

In order to enable metabolites to transition into the gas phase without pyrolysis, a 

chemical derivatization has to be carried out in which certain chemical groups are 

modified so as to render the resulting product more volatile. To do so, dried tissue, 

blood serum, and CSF extracts were resolved in 20 µL, 10 µL, and 10 µL of 

methoxyamine hydrochloride (MEOX), respectively, and shaken at 30 °C for 1.5 hours. 

N-methyl-N-(trimethylsilyl)-trifluoroacetamide (MSTFA) containing the alcane 

mixture (see Alcane Mix) was then added to the samples (80 µl for tissues, 30 µL for 

blood serum and CSF), and shaken at 37 °C for one hour. The samples were then 

centrifuged at 10,000 rcf for 10 minutes and 30 µL (tissues) or 15 µL (blood serum and 

CSF) were transferred into glass vials (Th. Geyer) for GC-MS measurement. 
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3.2.6 Alcane Mix 

n-decane, n-dodecane, n-pentadecane, n-octadecane, n-nonadecane, n-docosane, n-

octacosane, n-dotriacontane, and n-hexatriacontane, together comprising the alcane 

mix, were dissolved in hexane and combined to a final individual concentration of 

2 mg/mL. This alcane mix was added to the MSTFA solvent during the derivatization 

procedure at a final concentration of 2% v/v. 

3.2.7 Quantification Mix 

The Quant mix is composed of a total of 63 compounds (stock concentration 1 mg/mL 

in 50 % MeOH). A dilution series of empirically determined concentrations from 1:1, 

1:2, 1:5, 1:10, 1:20, 1:50, 1:100 to 1:200 was prepared, aliquoted, dried under vacuum 

and stored at -20 °C. One set of quantification standard was derivatized in parallel with 

each batch of torpor samples and measured at the beginning of each measurement batch. 

For more details, please refer to Matthias Pietzke’s dissertation at the Freie Universität 

Berlin, 2014. 

3.2.8 GC-MS Configuration 

Metabolomic analysis was performed on a gas chromatography coupled to time of flight 

mass spectrometer (LECO-Pegasus III- TOF-MS-System, LECO), supplemented with 

an auto-sampler (MultiPurpose Sampler 2 XL, Gerstel). Tissue samples, blood sera, 

Ident and Quant mixes were injected in split mode (split 1:5, injection volume: 0.8 µL,) 

and the CSF in splitless mode (injection volume: 0.8 µL) in a temperature-controlled 

injector (CAS4, Gerstel) with a baffled glass-liner (Gerstel). The following temperature 

program was applied during sample injection: Initial temperature of 80 °C for 

30 seconds followed by a ramp with 12 °C/minute to 120°C and a second ramp with 

7 °C/minute to 300 °C and final hold for 2 minutes. Gas chromatographic separation 

was performed on an Agilent 6890N (Agilent) gas chromatograph, equipped with a VF-

5ms-column of 30 meters length, 250 µm inner diameter and 0.25 µm film thickness 

(Varian). Helium was used as carrier gas with a flow rate of 1.2 mL/minute. Gas 

chromatography was performed with the following temperature gradient: 2 minutes 

heating at 70 °C, first temperature gradient with 5 °C /minute up to 120 °C and hold for 

30 seconds, subsequently a second temperature increase of 7 °C/minute up to 350 °C 

with a hold time of 2 minutes. Spectra were recorded in a mass range of 60 to 600 u 

with 20 spectra/second at a detector voltage of 1750 V. (This method description was 
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kindly supplied by Matthias Pietzke and Christin Zasada from a methodological paper 

currently in revision and only slightly modified). 

3.2.9 Data Analysis and Imputation 

Acquisition, pre-processing, and processing of GC-MS data is described in the 

Materials and Methods and the Results of the Maui-SILVIA section. 

The intensities of different derivatization products of individual metabolites were 

summed. Furthermore, since some bioinformatic analysis, for example principle 

component analysis, is only possible when a final datamatrix contains no missing 

values, I have employed the following imputation strategy: For any metabolite that was 

measured in at least a single biological replicate of any phase within each tissue, the 

biological replicates of each phase either contained no, one, two, or three missing 

values. In the case of a single missing value, a value of ½ the intensity of the lowest 

intensity detected for the metabolite was assigned. For two missing values, each was 

assigned a tenth, and for three missing values, each was assigned one hundredth of the 

lowest intensity detected for the metabolite. The imputation was chosen because 

detecting metabolites in more or fewer biological replicates does give an indication of 

the abundance of the metabolite in a certain biological state.  

3.2.10 Statistics and Graphing 

All analysis and graphs were produced in R, using the packages ggplot2, reshape2, 

scales, plyr, doBy, psych, nFactors, GPArotation, PerformanceAnalytics, cluster, rgl, 

corrgram, and agricolae (see R-References). The correct understanding of the line plots 

displayed in this dissertation is essential and therefore needs detailed explanation.  

All data representations observed throughout are captured in three example graphs 

(Figure 3.1). The y-axis indicates the log2 value of the fold change of each torpor phase 

(for the Campus Run each round) relative to the initial condition (baseline phase for 

torpor, R0 for the Campus Run). All error bars throughout this thesis represent the 95% 

confidence interval of the respective data point, so that non-overlapping error bars 

likely indicate a significant difference. The gray shadow marks the confidence interval 

of the initial condition for convenience.  

Example metabolite A is representative of all metabolites that were detected in all 

biological replicates of all phases and therefore no imputed values were plotted (Figure 

3.1).  
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Figure 3.1 – Examples of metabolite line plots as a guide to the visualizations 

employed in this dissertation. Metabolite A is representative of all metabolites that were 

detected in all biological replicates of all time points.  The colored line in metabolite B 

represents the mean of only those biological replicates that were measured for every time point. 

Missing error bars indicate that the metabolite was measured in only a single biological 

replicate. Black long-dashed lines represent imputed data. The unimputed data of the baseline 

condition plotted in metabolite C is not zero due to high biological variation in the baseline 

condition. (Base= baseline; Pre=pre entry) 

 

Metabolite B serves as an example where imputed data (always black long-dashed 

lines) is displayed in addition to unimputed data (always a continuous line colored 

according to the tissue/fluid displayed) (Figure 3.1). Since the data are plotted relative 

to the first data point, the shape can vary strongly from the unimputed shape if values 

in the first data point are imputed. Unimputed datapoints represent the average of all 

measured data, ignoring those biological replicates where the metabolite of interest was 

not detected. If the metabolite was detected in only a single biological replicate, no 

confidence interval is displayed.  

Metabolite C represents a special case in that the first data point is not zero as would 

be expected of the log2 of a fold change of one (Figure 3.1). This occurs when the initial 

condition has high biological variation, as all data points correspond to the average of 

the log2 of fold changes to the average intensity of the initial condition, rather than the 

log2 of the average of fold changes. This allows for the determination and representation 

of confidence intervals of the initial condition to which all others are compared and 

provides a more realistic representation of the initial condition.  

Kruskal-Wallis statistical analysis was performed using the R package agricolae. It is 

the rank-based non-parametric equivalent of a one-way analysis of variance (ANOVA) 

and tests whether samples originate from the same distribution. It does not assume a 

normal distribution of the residuals and can be employed when group sizes are not 

equal, which was the case in this dataset as the test was performed using unimputed 

data only (Kruskal & Wallis 1952). Multiple testing was corrected for by the use of 
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False Discovery Rate (FDR) correction supplied by the agricolae package (Benjamini 

& Hochberg 1995). Note that FDR was used for correcting multiple testing only across 

the torpor phases within each compound and does not account for the total number of 

metabolites tested. 

Hierarchical clustering was performed in R using the average linkage method, unless 

otherwise specified. 

 

3.3 Results 

3.3.1 Global View 

In order to study the metabolic changes occurring during the induction, progression, 

and termination of torpor, blood serum, CSF, liver, muscle, and WAT were sampled in 

each of six crucial phases of torpor from three mice each, and the polar component of 

metabolites analyzed on a LECO GC-TOF mass spectrometer (Figure 3.2). The 

numbers of total features detected, metabolites identified, and metabolites absolutely 

quantified using the Quant mix are summarized in Table 2.  

 

Tissue # Peaks # Metabolites # Unknown # Abs. Quantified 

Liver 372 88 284 49 

Muscle 354 72 282 41 

WAT 265 63 202 34 

Blood 313 63 250 38 

CSF 432 50 382 19 

Table 2. Overview of the number of peaks detected, metabolites identified, and metabolites 

absolutely quantified in the torpor study.  

 

Principal component analysis (PCA) of all five tissues revealed the most distinct tissue 

to be the CSF (Figure 3.3). It is separated from the other tissues by principal component 

one (PC1), the component containing most of the variation of the dataset. PC2 spreads 

the liver samples and separates both muscle and liver from WAT and the blood serum 

samples. PC3 separates the muscle from liver tissue, and PC4 contains mostly the 

variation within blood samples. PC5 separates WAT from blood samples,  
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Figure 3.2 – The torpor phases during which tissues and body fluids were sampled. 
An illustrative surface temperature trace of a mouse undergoing torpor is used to indicate the 

distinct phases of torpor during which samples were collected. Three mice were sacrificed at 

each of the six sampling points and their tissues and body fluids collected. (FR=Food restricted; 

ambient temperature was 30°C at baseline, and 17°C in all other phases)  

 

 

 

 

 

 

 

Figure 3.3 – Principle 

components of the torpor 

dataset.  
Plotting the first five principle 

components (PCs) indicates that 

they contain all information 

required to distinguish the 

tissues collected in the torpor 

study from one another. The 

tissue most unlike any other is 

the CSF, which is separated from 

the other tissues by PC1, the 

component containing most of 

the variation in the dataset.  
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so that all tissues can be distinguished clearly in at least one of the first five principle 

components, supporting the observation made during annotation of the dataset that 

there are clear differences between the tissues, especially in respect to unknown peaks 

but also the behavior and presence or absence of known metabolites. 

 

Hierarchical clustering shows highest relatedness within tissues and clearly separates 

the CSF from the other tissues in agreement with the PCA. A heatmap of the data 

provides an overview of the hierarchical clustering result and the overall structure and 

volume of the data (Figure 3.4).  

 

 

 

Figure 3.4 – A heatmap of hierarchically clustered intensity data of all tissues in 

the torpor study. Hierarchical clustering indicated that relatedness was highest among 

samples of the same tissue or body fluid. The CSF is most distinct, containing a large block of 

metabolites that were either not or only rarely found in the other tissues.  
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From this global analysis, one can conclude that a good quality data matrix was 

obtained for the experiment, lending credibility and confidence to the following 

analyses of the tissues and their metabolic changes during torpor. To decide on a point 

of entry into the vast dataset, I performed Kruskal-Wallis tests on all known metabolites 

in all tissues (Figure 3.5). Clearly, the organ undergoing the most significant changes 

is the liver. Since it is the organ responsible for carbohydrate homeostasis as well as 

the major site of fatty acid oxidation and ketone body production, as well as the urea 

cycle, the liver represents a central hub of energy homeostasis. The fundamental goal 

of torpor is the conservation of energy in times of need, in which it is reasonable to 

assume the liver to play a central role. Taken together with the evidence of it being the 

most dynamic of all tissues under investigation, the understanding of its mechanisms 

of action will likely be required to gain insights into the process as a whole.  

 

Figure 3.5 – The number of significantly 

changed metabolites throughout torpor by 

tissue. The number of known metabolites with 

significant changes in at least one torpor phase as 

determined by Kruskal-Wallis tests is highest in 

liver, followed by the blood and muscle. WAT 

had the fewest significant changes. This pattern 

holds true when considering also unknown 

metabolites (not shown). 

 

3.3.2 Liver 

PCA of liver samples indicates a high similarity of biological replicates of each phase 

and the distinctiveness of the torpor phases (Figure 3.6). In fact, the phases are arranged 

in such a way that a movement from one to the next phase through the PC1 and PC2 

coordinate system results in a half circle. PC1 clearly separates the baseline phase from 

the other phases, the deep phase being its extreme opposite. PC2 contains three main 

groups made of the baseline, pre-torpor, and entry, the deep phase, and the exit and 

recovery phases.  

 

Both non-deterministic k-means clustering and deterministic hierarchical clustering 

group the biological replicates of the different torpor phases into distinct clusters 

(Figures 3.7 and 3.8). As can be seen in the dendrogram of the hierarchical clustering,  
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Figure 3.6 – Principle component 

analysis of liver samples.  
Plotting the first two principle 

components of the liver samples 

results in a strong grouping of 

biological replicates, with all phases 

being separated well in the first two 

principle components. The trajectory 

of the torpor process through the 

Cartesian space of PC1 and PC2 is that 

of a half-circle, starting at the top left 

and ending in the bottom middle. 

(Base = Baseline; Pre = Pre phase). 
 

 

 

 

the baseline samples are most distinct from all other phases, likely reflecting the 

fundamental difference in liver metabolism in the fed versus unfed states already 

indicated by PC1 of the PCA. As observed when plotting the first two principal 

components, exit and recovery are closely related to one another, as well as the entry 

and deep phases.  

 

 

 

Figure 3.7 – Dendrogram of 

the hierarchical clustering of 

liver samples using the 

average linkage method.  
All biological replicates of the 

torpor phases are clustered 

together. The baseline phase forms 

a lone branch, the exit and 

recovery phases form another. In 

the third branch of pre, deep and 

entry phases, the deep and entry 

phases are more closely grouped. 
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Figure 3.8 – k-means clustering 

of liver samples.  
The silhouette plot of k-means 

clustering of six clusters of the liver 

samples shows that biological 

replicates of the torpor phases form 

strong clusters (the higher the width 

value, the stronger the cluster), 

indicating that the distinct 

physiological states of torpor are also 

metabolically distinct in the liver. 

 

 

 

 

To understand the mechanistic changes that occur during torpor in the liver which allow 

for such a clear separation of the torpor phases, I performed a factor analysis of the 

Pearson correlation matrix of known metabolites measured in the liver, excluding 

unknown peaks from this kind of analysis as the interpretation of their function is not 

possible at this time.  

 

Several packages in R exist to predict a reasonable estimate for the number of 

underlying factors of a correlation matrix. I used the nScree function from the nFactors 

package, which for the liver samples suggested four factors (see R-References). 

 

The first factor (F1) contains metabolites that increase or decrease relative to the 

baseline condition, and never return to their baseline levels. While the mechanistic 

interpretation of this group is difficult as there is no specific pathway enriched in the 

factor, it is nonetheless informative that there is a group of compounds that differ 

strongly between the fed and unfed states. This factor corresponds to the PC1 that 

clearly separates the baseline condition from all other torpor phases. Prominent 

examples of F1 that make physiological sense in separating the fed and unfed states 

are:  
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1) Glycerol, which is known to be produced during fatty acid mobilization from 

triglycerides, 2) -hydroxybutyrate, which is the ketone body produced by fatty acid -

oxidation during times of starvation in the liver, as well as 3) maltotriose, which as a 

trisaccharide indicates an abundance of carbohydrates in the fed state (Figure 3.9).  

 

 

Figure 3.9 – Selected important members of F1 in liver. Glycerol and the ketone body 

-hydroxybutyrate were elevated in all phases relative to the baseline. Maltotriose, in contrast, 

was only detectable in the baseline condition, indicating a lower abundance of carbohydrates 

in times of food deprivation.  

 

 

The other three factors will be considered together to deduce changes in metabolic state 

throughout the torpor phases.  

 

F3 contains maltose, a disaccharide of two molecules of glucose, glucose itself, and the 

two most abundant glycolysis intermediates, glucose-1/6-phosphate and fructose-6-

phosphate (glucose-1-phosphate and glucose-6-phosphate are difficult to clearly 

distinguish on our GC-MS setup in most conditions; however, this does not influence 

the interpretation and conclusions of the study presented here). Also in F3 is the 

oxidized form of glucose called gluconate, lactose (a disaccharide of glucose and 

galactose), and fructose, which is known to enter glycolysis through fructose-6-

phosphate directly or by first being converted to fructose-1-phosphate before entering 

at the level of fructose-1-6-bisphosphate (Leite et al. 2011). Another F3 member, 

pantothenate, is a vitamin required for acetyl-CoA synthesis, a cofactor required for 

pyruvate, the last glycolysis intermediate, to enter the TCA cycle. F3 further contains 

the two TCA cycle intermediates malate and fumarate. Taken together, F3 appears to 

represent glycolysis and the catabolic TCA cycle (Figure 3.10). Generally, phosphate 

intermediates like fructose-6-phosphate and glucose-1/6-phosphate are most abundant 

when glycolysis is “turned on”, leading to the interpretation that glycolysis and the 
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TCA cycle are active in the baseline state and decline during the entry and deep torpor 

phase. During waking, the pathways are turned back on and remain active afterwards. 

The evidence for the “off” state of the TCA cycle and its turning back on afterwards 

might appear weak from malate and fumarate alone, but are further supported by the 

behavior of citrate and succinate (Figure 3.11). Citrate accumulates towards the deep 

phase while succinate levels drop, indicating a block of TCA intermediate cycling. This 

block might be resolved when succinate increases, followed by a decrease in citrate 

levels, during the exit and post phases, respectively.  

 

 

Figure 3.10 – The major constituents of F3 

in liver represent glycolysis and the TCA 

cycle.  
A) Illustration of the positions of the members of 

F3 in glycolysis and the TCA cycle. 

B) The changes in abundance of F3 members 

suggest a decrease in glycolytic and TCA cycle 

activity during the pre, entry, and deep phases, and 

a subsequent increase in activity during torpor exit 

and thereafter. 
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Figure 3.11 – Citrate and succinate behavior during torpor in liver. In support of 

TCA cycle activity suppression during the early torpor phases, an accumulation of citrate and 

concurrent decrease in succinate levels occured during torpor entry, indicating a lack of carbon 

flow through the catabolic TCA cycle. The reversal of this observation during the exit and post 

phases indicate the reactivation of the TCA cycle during arousal. 

 

 

F4 prominently features the essential amino acids cysteine, phenylalanine, and valine, 

the amino acid metabolism intermediate hypotaurine, as well as proline and the urea 

cycle intermediate ornithine (Figure 3.12). F4 therefore indicates an accumulation of 

essential amino acids, as well as a concurrent increase in urea cycle and other amino 

acid metabolism intermediates towards the deep phase. Interestingly, threonine, 

isoleucine and lysine (essential), as well as glutamate, pyroglutamate (to be interpreted 

as a combination of glutamine, glutamate, and pyroglutamate) and serine also show an 

accumulation in the deep phase. Asparagine, also a component of the urea cycle, 

displays an increasing trend similar to ornithine (Figure 3.13). Taken together with urea 

and putrescine levels increasing during and accumulating after the deep phase, one can 

conclude that two phenomena might be encoded in this factor:  

 

1) Amino acid accumulation and conversion: Since essential and other amino acid 

levels increase without food intake, there are three possible sources of these amino 

acids: a protein synthesis inhibition in liver, an active protein degradation in liver, or 

the import of amino acids from the blood released, most likely, from muscle tissue.  

2) An active metabolizing of amino acids: As indicated by urea cycle components 

ornithine and asparagine and the following accumulation of urea and putrescine, as well 

as the production of the processing intermediate hypotaurine (Figure 3.13). 
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Figure 3.12 – Members of F4 in liver. The accumulation of essential amino acids 

(cysteine, phenylalanine, and valine), an amino acid processing intermediate (hypotaurine), and 

the urea cycle intermediate ornithine indicated an inhibition of protein synthesis, amino acid 

uptake from blood, or active proteolysis, as well as active amino acid catabolism during torpor 

in liver.  
 

 

Figure 3.13 – Amino acid accumulation and urea cycle activity in liver during 

torpor. Amino acids not part of F4 tended to accumulate relative to the food restricted non-

torporic pre-phase in the deep torpor phase. Furthermore, the urea cycle intermediate 

asparagine showed a trend of increasing during the deep phase, and both putrescine (urea cycle) 

and urea itself were elevated in the deep phase and thereafter, lending further support to the 

notion that amino acids are processed during the early phases of torpor. 
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The metabolization of amino acids in liver is evident from the data and in accordance 

with the current state of knowledge. The major site of amino acid metabolism, in fact, 

has been said to be the liver, the only tissue besides the intestine in which the full 

complement of urea-cycle enzymes is expressed (Morris 2002). Furthermore, amino 

acid utilization in the liver, especially alanine, to fuel gluconeogenesis has been 

observed during both sleep and exercise (Bass & Takahashi 2010; Wagenmakers 1998). 

 

It is, however, considerably more difficult to differentiate between the three possible 

mechanisms leading to the general amino acid accumulation in liver. On the one hand, 

it has been found that during prolonged starvation, amino acids, most of which are 

glucogenic (meaning that they can be used to produce glucose through 

gluconeogenesis), are released by muscle tissue for uptake by the liver and kidney 

where they may fuel gluconeogenesis (Brosnan 2003). However, muscle breakdown 

seems not to be a method of choice for obtaining amino acids for fuel in hypometabolic 

states. In fact, hibernation is an active field of study for muscle wasting researchers, 

where clear evidence has shown that hibernators retain most muscle mass and function 

even after months of inactivity, while much shorter timeframes would render most 

people strongly debilitated (Lee et al. 2010). Whether or not this argument is applicable 

to daily torpor has not been investigated and, due to the much shorter periods of 

inactivity in daily torpor, might not be appropriate.  

 

An inhibition of protein synthesis has been described for both hibernation and daily 

torpor and the liver is known to be able to carry out proteolysis (Mortimore et al. 1989; 

Knight et al. 2000; Berriel Diaz et al. 2004). Theoretically, therefore, all three 

mechanisms of active proteolysis, accumulation due to an inhibition of protein 

synthesis, and amino acid uptake from blood might contribute to the amino acid 

accumulation in liver. Even when analyzing the behavior of amino acids throughout 

torpor in liver, blood, and muscle simultaneously, I could not find any clear pattern of 

behavior for all amino acids or specific subsets (Supplementary Figure 1). While the 

source of the amino acids cannot be resolved definitively here, it is clear that amino 

acids are accumulating in the liver and being metabolized during the early torpor 

phases.  
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F2 contains three key metabolites that can fuel gluconeogenesis: Alanine, lactate, and 

glycerol-3-phosphate. Also part of the factor are sorbitol, a metabolite that can be 

converted to either glucose or fructose, as well as the two sugar acids galacturonate and 

glucuronate, one of which can be converted to glucose in few steps. Also part of this 

factor are succinate and citrate, which instead of directly playing a role in 

gluconeogenesis more likely reflect the concurrent decrease in TCA cycle throughput, 

as well as pyroglutamate and threonine that represent the concurrent accumulation of 

amino acids and their breakdown. The compounds able to provide fuel for 

gluconeogenesis decrease during the entry into torpor and reach their overall lowest 

levels in the deep phase, recovering only during the waking and post phases (Figure 

3.14). This evidence points towards active gluconeogenesis during the early part of 

torpor, while the following increase in abundance during the waking and post torpor 

phases are likely caused by the restarting of glycolysis at that time.  

 

 

Figure 3.14 – Members of F2 in liver. F2 features three gluconeogenesis substrates 

(alanine, glycerol-3-phosphate, and lactate), their depletion during torpor potentially 

representing active gluconeogenesis. The other members of F2 displayed a similar pattern and 

might contribute to glucose production as well.   

 

Combining the evidence of factors F2, F3, and F4, the following picture emerges: 

Glycolysis and the TCA cycle are active in the fed control states, and are subsequently 

decreased during the early torpor phases. In these early phases, gluconeogenesis is 

active, reaching its peak (or endpoint) during the entry and deep phase, concurrent with 
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amino acid breakdown, the products of which partially fuel gluconeogenesis. As the 

animals wake, glycolytic activity returns and brings about a decrease in 

gluconeogenesis and amino acid catabolism (Figure 3.15). 

 

 

 

Figure 3.15 – Metabolic 

pathway activities in liver 

throughout the torpor process.  
The activity of glycolysis and the 

catabolic TCA cycle (red), amino 

acid accumulation and processing 

(blue), and gluconeogenesis (green) 

in liver throughout the torpor cycle 

are illustrated. High activity is 

represented by high color opacity. 

 

 

 

 

One is most confident in declaring a pathway to be active when one sees the 

accumulation of intermediates and its end products, like lactate or pyruvate for 

glycolysis. Similarly, one should see the accumulation of the end product of 

gluconeogenesis, glucose, in liver or blood serum. Indeed, blood glucose levels rise 

during the deep torpor phase in blood already (as does glucose in the muscle and WAT, 

where it seems to be taken up in preparation for the waking phase and after), while liver 

glucose levels are lowest, indicating an active release of glucose by the liver. In fact, 

the deep torpor phase has the lowest absolute concentration of glucose in the liver while 

the ratio of absolute liver to blood glucose concentration is lowest (Figure 3.16). While 

the kidney is known to be capable of gluconeogenesis as well, it is likely that the liver 

plays a large, if not the predominant role in producing and supplying glucose during 

torpor (Mitrakou 2011). To study the involvement of kidney metabolism in torpor, I 

have also collected kidney tissue in all phases from the same mice as described in this 

thesis, and will measure and analyze them in the near future.  
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Figure 3.16 – The ratio of hepatic to blood serum glucose concentration. Absolutely 

quantified glucose levels in liver and blood, as well as their ratio show that the lowest liver to 

blood glucose ratio occurred during the deep torpor phase when the liver seemed to supply the 

blood serum, and through it, other organs, with glucose to prepare for the energetically 

demanding process of torpor arousal.  
 

The requirement of a highly active gluconeogenesis during the early torpor phases has 

several reasonable justifications. For one, waking from torpor means increasing the 

body temperature by at least 17 °K, which poses a large energetic need. This is mostly 

accomplished by general metabolic activity, skeletal muscle-dependent shivering, and 

brown adipose tissue-dependent (BAT) non-shivering thermogenesis (Oelkrug et al. 

2011). BAT contribution is likely negligible in this study due to acclimatization 

conditions that strongly decrease BAT function and abundance (Cannon & Nedergaard 

2011). In fact, during the dissection of the mice under study, BAT was usually not 

visible in the neck region where it is commonly most abundant. While it is possible that 

the remaining and elsewhere located BAT depots contribute, mitochondrial uncoupling 

is not necessary for torpor arousal (Oelkrug et al. 2011). A definitive contribution of 

glucose to fuel the waking process, however, is indicated in increases in lactate in liver, 

muscle, and blood serum in my dataset (Figure 3.17, see below).  

 

 

 

Figure 3.17 – Relative changes in lactate 

levels observed in liver, muscle, and blood 

serum.  
The increase in lactate levels in liver, muscle, 

and blood serum observed between the deep and 

exit phases are indicative of significant glucose 

utilization during torpor arousal. 
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Glucose levels might therefore be instrumental in signaling when the animal is 

energetically capable of rewarming. Interestingly, glucose levels in CSF, to which 

critical brain regions like the energy and thermoregulatory centers in the hypothalamus 

have access, return already during the exit phase to levels observed in the fed state 

(Figure 3.55). This makes glucose an ideal candidate for being a permissive exit signal 

sensed in the brain. 

 

In conclusion, the liver appears to have two distinct phases in torpor. During the early 

phases, it processes amino acids and uses all available resources (lactate, alanine, 

glycerol-3-phosphate) for gluconeogenesis, before returning to a glycolytic state during 

the exit phase and afterwards. Its production of glucose raises blood, muscle, WAT, 

and CSF glucose levels already during the deep phase, presumably supplying itself and 

the rest of the body with part of the energy required to fuel rewarming and the 

reestablishment of the tissues’ pre-torpor homeostatic states. 

  

3.3.3 Muscle 

Muscle tissue metabolism during torpor is of interest because muscle is the major site 

of amino acid storage of the body and is of crucial function during the rewarming phase, 

when the animals shiver to raise their body temperature to euthermic levels.  

 

PCA of the muscle samples clearly groups biological replicates of the different torpor 

phases together, with PC1 separating the fed baseline state from the food restricted 

torpor stages, similar to what was observed in liver (Figure 3.18). k-means clustering 

produced the greatest average silhouette width when searching for six clusters, their 

individual large silhouette widths indicating stable clusters as observed in liver (Figure 

3.19). Hierarchical clustering showed greatest relatedness between biological replicates 

from the different phases, leading to the overall conclusion that similar to the structure 

of the liver data, the muscle metabolome is distinct in each of the torpor phases (Figure 

3.20). Hierarchical clustering showed the baseline to be isolated from the other samples, 

likely reflecting the difference between fed and unfed metabolism in muscle and 

mirroring PC1. In fact, the overall structure of the relationships of the phases to one 

another using hierarchical clustering is nearly identical between muscle and liver.  
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Figure 3.18 - PCA of muscle 

samples.  
Plotting of the first two PCs of muscle 

samples shows strong grouping of 

biological replicates and all phases being 

separated well. The trajectory of the 

torpor process through the Cartesian 

space of PC1 and PC2 is similar to that 

observed in liver, but does not so strongly 

resemble a half-circle. (Base = Baseline; 

Pre = Pre phase). 

 

 

 

 

 

 

Figure 3.19 – k-means clustering of muscle samples.  
The silhouette plot of k-means clustering of six clusters of the 

muscle samples shows that biological replicates of the torpor 

phases form strong clusters, indicating that the distinct 

physiological states of torpor are also metabolically distinct in 

muscle. 

 

 

 

 

 

 

 

Figure 3.20 – Dendrogram of hierarchical 

clustering of muscle samples using the average 

linkage method.  
All biological replicates of the torpor phases are 

clustered together. The baseline and pre phases each 

form a single branch. The exit and recovery, as well as 

the entry and deep phases are more closely related to 

one another.  

 

 

To gain mechanistic insights into the metabolic 

changes during torpor in muscle, I performed a 

factor analysis of the Pearson correlation matrix of all known compounds identified in 

muscle samples. F1 contains the glycolysis intermediates fructose-6-phosphate and 
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glucose-1/6-phosphate, the fructose glycolysis entry intermediate fructose-1-

phosphate, glycerol-3-phosphate, also able to feed into glycolysis, as well as the two 

glycolysis end products pyruvate and lactate. Also part of the factor, but anti-correlated 

with glycolytic intermediates, are isoleucine, proline, valine, and -hydroxybutyrate 

(not shown), which, as observed in the liver, accumulate towards the deep torpor phase.  

 

The glycolysis-related metabolites in F1 show a pattern quite similar to that observed 

of glycolysis in the liver, predicting high glycolytic activity in the fed state, decreasing 

activity towards the deep phase where they reach their lowest abundance, followed by 

an increased activity during the waking phase and afterwards (Figure 3.21). This pattern 

likely reflects the fact that muscle is actively in use in both fed and unfed states when 

the animals are actively moving about (baseline and pre-entry, respectively). During 

torpor, when the animals do not move, glycolysis is shut down, and starts anew when 

shivering and metabolic activity is required to rewarm the animal and it becomes 

mobile again thereafter (exit and post).  

 

The major difference in behavior between glycolytic metabolites in liver and muscle 

are glucose and pyruvate. Whereas glucose in liver is lowest in the deep phase, its 

abundance in muscle at that point already begins to increase, excluding it from F1 in 

the muscle, and likely representing the anticipation of arousal from torpor in muscle 

when glucose will be needed to fuel rewarming (Figure 3.22). The second difference is 

that pyruvate levels in the liver are unchanged in the torpor phases while in muscle they 

behave like lactate and the glycolysis intermediates (Figure 3.22). This difference is 

likely due to the fact that the liver turns on gluconeogenesis during the early torpor 

phases, while the muscle does not. Pyruvate is both an intermediate in glycolysis and 

gluconeogenesis and is the first gluconeogenic intermediate produced out of alanine, 

which appears to be actively funneled into gluconeogenesis in the liver. Pyruvate levels 

are therefore constant in all phases in the liver, as it is either produced during glycolysis 

or, when glycolytic activity is low, gluconeogenesis.  
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Figure 3.21 – Members of F1 in muscle. The members of F1 in muscle are part of the 

upper glycolysis or serve either as glycolytic substrates or are products thereof. Three amino 

acids are also included.  Together, they indicate glycolytic activity decreasing during torpor 

and its increase upon torpor arousal. Similar to what was observed in liver, some amino acids 

also accumulated in the deep torpor phase.  

 

 

 

Figure 3.22 – 

Differences of pyruvate 

and glucose behavior in 

liver and muscle.  
Whereas liver glucose 

levels (blue) were lowest in 

the deep torpor phase, 

muscle glucose levels 

(orange) were observed to 

increase at that time. Liver pyruvate levels (blue) were constant throughout torpor, likely 

balanced by glycolytic and gluconeogenic activities. In muscle (orange), levels decreased in 

accordance with other glycolytic markers, indicating that gluconeogenesis did not occur during 

torpor in muscle. 
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It is also likely that TCA cycle activity is decreased in muscle in accordance with 

glycolytic activity, as especially succinate and -keto-glutarate, but also malate and 

fumarate levels are decreased in deep torpor (Figure 3.23). In accordance, one of the 

primary sources of TCA cycle fuel, pyruvate, is drastically depleted as mentioned 

above.  

 

 

 

Figure 3.23 – TCA 

cycle intermediates in 

muscle during torpor.  
Similar to observations in 

liver, TCA cycle 

intermediate abundance, 

especially -keto-glutarate 

(keto-Glutarate), decreased 

in accordance with low 

glycolytic activity during 

torpor. 

 

 

 

 

Furthermore, some essential and non-essential amino acids accumulate also in muscle 

and are part of F1 (Figure 3.21), whereas many others, including the processing 

intermediate hypotaurine, either show no significant changes or even decreases in 

abundance (Figure 3.24). The accumulation could again be interpreted as protein 

degradation or an inhibition of protein synthesis, and in muscle most likely serves to 

release amino acids into the blood stream to be taken up by the liver and/or kidney as 

gluconeogenic fuel. As discussed before, there are several lines of argument to support 

any combination of possibilities on the definitive source of the accumulating amino 

acids, and they cannot be conclusively determined in this study. To resolve the 

possibilities, further studies employing more tailored assays would be beneficial and, 

in combination with this dataset, may lead to a sound conclusion. 

 

F3 in muscle is composed of a group of metabolites that differentiate the baseline phase 

from all other phases, either by an increase or decrease in abundance that does not return 

to original levels. It includes the amino acids lysine, glutamine, tyrosine,  
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Figure 3.24 – Amino acid behavior in muscle differs from that observed in liver. 
Several amino acids, as well as the processing intermediate hypotaurine, either show no 

changes or even decrease during torpor in muscle, indicating little if any amino acid 

accumulation and processing in muscle. 

 

 

and creatinine, ribose (a five-carbon sugar), sucrose (a disaccharide), as well as 

triethanolamine and ethanolamine-phosphate (both intermediates of phospholipid 

metabolism) (Figure 3.25).  

 

 

 

Figure 3.25 – Members of F3 in muscle are diverse and differentiate the baseline 

from all other sampling time points. While the diversity of metabolites in F3 makes it 

difficult to define an underlying connection, they seem to represent metabolic activities that 

either decrease strongly or increase as a result of food restriction, differing little throughout 

torpor (with the exception of glutamine and creatinine in the deep phase only). 
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While the diversity of the group makes it difficult to deduce a common underlying 

connection, it is certainly of note that:  

 

1) Creatinine levels are generally decreased in muscle in the unfed states, and seem to 

sharply rise during the deep torpor phase.  

2) Lysine and tyrosine, two metabolically distinct amino acids, are only detectable in 

the fed state. 

3) Glutamine is not detectable in the baseline and deep phase, while having similar 

levels in the other phases. 

4) Ribose is elevated during starvation, an effect that is exacerbated during torpor. 

5) Sucrose as well as phospholipid synthesis intermediate abundance is decreased 

strongly during the unfed states. 

 

F2 is composed of two metabolites that did not significantly change during the course 

of torpor as well as nicotinamide, phosphoenolpyruvate (PEP), and putrescine, all three 

of which showed different patterns and have no known relation so that I am unable to 

interpret F2 (Figure 3.26). However, it is interesting to note that the derivative of the 

antioxidant vitamin C, dehydroascorbic acid dimer, does not change during torpor, 

since other antioxidants have been found to accumulate during the deep torpor phase in 

hibernators in liver (Nelson et al. 2009). 

 

 
Figure 3.26 – Members of F2 in muscle. Although it is difficult to interpret the 

mechanisms underlying this factor, it is of interest to note that the dehydroascorbate dimer, a 

derivative of the antioxidant vitamin C, does not change during torpor.  
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F4 on the other hand contains four metabolites that are of approximately stable levels 

before, and then increase to a constant level during and after the deep phase. F4 contains 

the sugar alcohol mannitol and sugar acid glucuronate, as well as urea and phosphoric 

acid monomethyl ester (PAME). The changes in glucuronate and PAME are not 

significant, while those in mannitol are significant but minimal in magnitude (Figure 

3.27).  Urea does significantly increase; however, neither ornithine nor asparagine was 

detected in any muscle sample, and putrescine levels actually continuously decreased 

over the course of torpor (Figure 3.26). It is most probable that urea is taken up by 

muscle from the blood, as the only two tissues known to express the full complement 

of urea-cycle enzymes are liver and the intestine (Morris 2002). 

 

 

Figure 3.27 – Members of F4 in muscle. The fourth factor is defined by metabolites that 

rise during and remain elevated after the deep torpor phase. Whereas changes in mannitol are 

significant but minimal, and those in glucuronate and PAME statistically insignificant, 

increases in urea are difficult to attribute to urea cycle activity in muscle as the tissue does not 

express a full complement of urea cycle enzymes and none of the urea cycle intermediates 

displayed a pattern in accordance with its activity. 

 

In conclusion, the muscle shows two glycolytic phases, similar to the liver. During the 

pre phase when animals may still move about, glycolysis is at a level comparable to 

that observed in the baseline phase. As the animals enter torpor, glycolysis decreases 

and seems to stop during the deep phase, at which point glucose levels rise, together 

with certain amino acids. In contrast to the liver, gluconeogenesis does not appear to be 

active while glycolysis is inhibited, as evidenced by pyruvate levels decreasing during 
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the entry and deep phase and in line with the liver and kidneys being the only 

gluconeogenic organs (Figure 3.22). The reduction of the gluconeogenic source lactate 

is most likely caused by its release into blood which is common muscle behavior and 

part of the Cori cycle (Brooks 1998). Whereas some amino acids accumulate, others 

are unchanged or show the opposite behavior. While urea does accumulate towards the 

end of torpor likely due to passive uptake, the urea cycle intermediates themselves are 

either not detected or decrease over time in accordance with the urea cycle being 

unavailable to muscle tissue.  

 

3.3.4 White Adipose Tissue 

 

WAT represents the fat storage of the body in the form of triglycerides that are released 

during food restriction when glycogen stores in the liver are depleted. It is therefore of 

interest during torpor since the process occurs in times of starvation during which fats 

form the basis of the main source of energy. Fatty acids and glycerol are released by 

WAT and taken up by the liver, where fatty acids undergo -oxidation to produce 

acetyl-CoA and the ketone body -hydroxybutyrate and glycerol may enter 

gluconeogenesis (Wu & Windmueller 1979; Lass et al. 2011; Quiroga & Lehner 2012). 

Furthermore, WAT seems to play an essential role in torpor regulation, as it is the site 

of leptin secretion and its genetic near-ablation strongly alters the torpor phenotype 

(Gavrilova et al. 1999).  

 

PCA of WAT did not so clearly separate the different phases from one another as seen 

in liver and muscle, although there appears to be some grouping (Figure 3.28).  This is 

in agreement with the observation that WAT had the lowest number of significantly 

changed metabolites throughout torpor (Figure 3.5). PC1 appears to separate the 

baseline and pre phases from the other torpor phases, while PC2 is skewed by a single 

biological replicate of the deep phase. k-means clustering produced the largest 

silhouette width when allowing the formation of seven clusters, in which one biological 

replicate each of the baseline and the deep phase formed a separate group, and the deep 

and exit phases belonged to a single cluster (Figure 3.29).  
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Figure 3.28 – PCA analysis of WAT 

samples.  
Plotting the first two PCs of WAT samples 

shows a less distinctive grouping of 

biological replicates than observed in liver 

and muscle. This is in accordance with the 

WAT containing the least number of 

metabolites having significantly changed in 

at least one torpor phase. (Base = Baseline; 

Pre = Pre phase). 
 

 

 

 

 

Figure 3.29 – k-means 

clustering of WAT 

samples.  
The silhouette plot of k-means 

clustering of seven clusters of 

the WAT samples shows that 

biological replicates form 

strong clusters only for the pre 

and recovery phase, and a 

weaker one for the entry 

phase. One replicate of the 

baseline and deep phases each 

form singlet clusters, the other 

deep replicates being grouped 

with those of the exit phase, 

indicating a strong similarity 

of the deep and exit phases in 

WAT that was not found in 

liver or muscle. 
 

 

 

Hierarchical clustering mirrored the observations made in the k-means analysis, in that 

one baseline and one deep phase were distant from the other replicates (Figure 3.30 A). 

However, if the “Ward” method was used, which favors the formation of equally-sized 

clusters, all biological replicates were assigned appropriately (Figure 3.30 B) (Ward 

1963). 
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Figure 3.30 – Dendrograms of hierarchical clustering using the average and Ward 

linkage methods. A) Despite the weak k-means clustering and PCA result, hierarchical 

average linkage clustering grouped most biological replicates appropriately, with the exception 

of an outlier deep phase. B) Using the Ward linkage method, which favors the formation of 

equally-sized clusters, all biological replicates clustered together. The pattern of relationships 

between the phases is distinct from liver and muscle: baseline and pre, exit and deep, as well 

as entry and recovery phases were most related. 

 

In contrast to both liver and muscle, the baseline phase did not form a lone branch, but 

instead was grouped with the pre phase as separate from the other torpor phases. 

Another interesting difference is the closer relation on the one hand of the entry and 

recovery phases, and on the other hand the exit and deep phases. While the phase 

relationships in liver and muscle indicated that consecutive phases were most alike 

during torpor and that strong changes occurred in the metabolome between baseline 

and the pre phase, pre phase and entry, as well as the deep phase and the exit, WAT 

appears to be more symmetrical, in that the baseline and pre phases, the entry and 

recovery phases, as well as the deep and exit phases are more similar. Detailed 

interpretation of global clustering is always precarious, but at the very least the 

conclusion that the WAT behaves quite differently from both liver and muscle might 

be safely made.  

 

The comparatively fewer changes in WAT are further reflected by the fact that factor 

analysis of the Pearson correlation matrix of metabolites measured in WAT samples 

produced only two factors, whereas four were suggested for liver, muscle, blood serum, 

and CSF. 
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F1 represents compounds that are similar in baseline and the pre phase, but then 

increase in abundance and thereby differentiate the first two phases from the others. 

Most metabolites in F1 are unfortunately measured with high variability, and the 

majority of them are either statistically insignificant or contain many imputed values, 

thereby reducing the confidence of interpretation (data not shown). The few exceptions 

are urea, which, as in muscle, increases towards the deep phase and remains elevated 

at a constant level throughout the rest of the phases; glycerate, which has no significant 

changes; and threonate, whose role in mammalian metabolism to my knowledge is 

entirely unclear (Figure 3.31).   

 

 

Figure 3.31 – Members of F1 in WAT. The strongest contributors to the factor showed 

increased abundance after the pre phase and remained elevated thereafter. The underlying 

mechanism is not discernable at this time, and most changes are statistically insignificant. The 

exceptions were threonate, whose role in mammalian metabolism is unclear, and urea. 
 

F2 contains metabolites that are highest during the entry, deep and exit, or during deep 

and exit phases only. Unfortunately, interpretation of most of these is again hampered 

by many imputed values and high biological variation (Figure 3.32). However, three 

exceptions are -hydroxybutyrate, citrate, and valine, all three of which rise during 

entry, peak during the deep phase, and then fall off again during arousal. Citrate 

accumulation was observed in the liver as well; however, interpretation of its levels in 

the WAT are complicated by the disagreeing levels of other TCA cycle intermediates. 

Malate and succinate are elevated from the entry  
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Figure 3.32 – Members of F2 in WAT. F2 is characterized by metabolites that 

accumulated towards, peaked in, and decreased after the deep phase. Unfortunately, half the 

metabolites contain many imputed values. However, -hydroxybutyrate, citrate, and valine 

accumulated strongly in the deep phase.  
 

phase onward, while fumarate, which was measured with the least biological variation, 

appears unchanged with a trend of slightly decreased levels (Figure 3.33). Assuming 

the hypothesis of the WAT being a rather passive tissue, the observed pattern of TCA 

intermediates, which is reflected also in pyruvate and other members of F1, might 

simply be one of a tissue that is neither regulating an active inhibition, nor a selective 

activation of any particular pathway. Rather it might represent a tissue in which 

metabolites accumulate and are converted in accordance with enzyme kinetics chiefly 

influenced by the changing body temperature.  

 

 

Figure 3.33 – TCA cycle intermediates do not decrease in WAT. Unlike in liver and 

muscle, malate and succinate levels did not decrease during torpor, but showed high biological 

variation throughout. Fumarate was slightly decreased relative to baseline, but did not change 

between any of the torpor phases.  
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Since the factor analysis in WAT was not as successful as in liver and muscle, an 

examination of metabolites grouped by known pathways or chemical characteristics 

was undertaken to discern mechanistic insights. While most amino acids did not 

significantly change and many contained imputed values, the general trend was one of 

accumulation towards the deep torpor phase, with the exception of alanine and 

phenylalanine (Figure 3.34), mirroring the general amino acid trend in liver and muscle 

but being much less pronounced, mostly statistically insignificant, and likely 

biologically entirely irrelevant.  

 

 

Figure 3.34 – Amino acids in WAT during torpor. While most amino acids contained 

imputed values and showed high biological variation, a trend of accumulation towards the deep 

phase was discernible in some. 

 

Metabolites involved in lipolysis, such as the ketone body -hydroxybutyrate and 

glycerol, are of considerable interest especially in WAT as it is the source of the 

triglycerides whose breakdown produces them. -hydroxybutyrate strongly increases 

in the pre phase and remains elevated throughout the rest of torpor (Figure 3.35). 

Glycerol, which in blood is frequently used as a marker for triglyceride breakdown, is 

highest during the pre phase, decreases during the entry and deep phase, before 

increasing again during exit and the post phase. Although of low magnitude in WAT, 

this behavior is mimicked by glycerol in blood, validating it as a lipolysis marker and 

lending support to the hypothesis that fat mobilization occurs during the starvation 

phase in which animals are active, is suspended during torpor, and begins anew when 



85 

 

the animals become active again (Figure 3.36). This fits well with fatty acids and their 

products representing the main fuel source during starvation, and torpor arousal 

requiring both glucose and fatty acids as suggested by this dataset and other 

investigations (Viscarra & Ortiz 2013).  

 

 

Figure 3.35 – Lipid store mobilization and indicators of lipolysis in WAT. Similar 

to what was observed in the other tissues, -hydroxybutyrate levels were strongly increased in 

all food restricted time points. Glycerol levels were elevated relative to baseline during the pre 

and exit phases when fatty acid release is known to occur. 

 

 

 

 

 

Figure 3.36 – Glycerol behavior 

in WAT is mimicked in blood. 
Glycerol levels in blood (red) closely 

mimic the behavior observed in WAT 

(green), validating it as a marker of 

lipid mobilization during torpor. 

 

 

 

 

Another curiosity observed in WAT is that glucose levels do not change between the 

baseline and pre phase, unlike in any of the other tissues. Glucose actually increases in 

abundance above baseline levels during the deep torpor phase and remains elevated 

even in the post phase (Figure 3.37). Similarly intriguing is the fact that glycolysis 

intermediates are only observed, even if only in two and four out of six animals for 
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glucose-1/6-phosphate and fructose-6-phosphate, respectively, during the deep and exit 

phase (Figure 3.37). Their levels either passively increase due to the higher availability 

of glucose, or indicate glycolysis actually being activated during those time points, the 

energy gained possibly required for the increase in lipid mobilization during the exit 

and post phase. PEP and pyruvate, on the other hand, are most abundant during the 

entry and deep torpor phase, which could reflect an accumulation due to an inability to 

enter the TCA cycle (Figure 3.37).  

 

 

Figure 3.37 – Glycolysis behaves unexpectedly in WAT. Whereas glycolytic 

intermediates are decreased in liver and muscle during torpor, glucose, upper glycolysis 

intermediates, as well as PEP and pyruvate appear to be elevated in WAT. Whether this is a 

passive thermal effect or of biological significance cannot here be determined. 
 

It is also quite possible that most of the interpretation attempted beyond that of 

triglyceride, glycerol, and fatty acid release is biologically insignificant as much of the 

data is imputed or statistically insignificant. The main purpose of WAT during torpor, 

in terms of the central carbon metabolism, might simply be the mobilization of 

triglycerides and fatty acids during the pre and exit phases, the degree of which being 

strongly correlated with glycerol abundance in both WAT and blood.  Its crucial 

involvement in torpor, for example by controlling leptin levels, is unquestioned; this 

involvement, however, might simply occur predominantly outside the scope of the 

central carbon metabolism that was investigated here. 
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3.3.5 Blood Serum 

 

The blood serum metabolome is of great interest during torpor and any other 

physiological process, and of course particularly in the context of the theme of this 

dissertation, because it is the direct path of communication between the different tissues 

of the body. It is both a means of signaling and a way to deliver metabolites from their 

site of production to where they are required. It is therefore crucial to read its 

metabolomic changes not from the perspective of an organ consuming or producing, 

but rather a tissue that takes up, delivers, and buffers metabolite pools.  

 

PCA of blood serum samples showed a good grouping of biological replicates of the 

different phases when plotting the first two PCs, with only one pre phase being 

separated from its other two biological replicates (Figure 3.38). k-means clustering 

produced a maximal average silhouette width when six clusters were allowed to form, 

with pre and recovery phases forming two mixed clusters, implying a close relation 

between the two phases already indicated in the PCA (Figure 3.39). Hierarchical 

clustering successfully grouped all biological replicates together and stands in 

agreement with both k-means clustering and PCA (Figure 3.40).  

 

The relatedness of the torpor phases in blood serum is different from liver, muscle, and 

WAT. The baseline is clearly separated from the other phases, representing the blood 

metabolome difference between the fed and unfed state, similar to liver and muscle. 

Interestingly, the entry phase forms an individual branch, whereas in the other tissues 

it was either grouped with the deep phase (liver/muscle) or the recovery (WAT). I 

would argue that the entry phase being distinct, and being both in PCA and hierarchical 

clustering distant from the pre phase, is indicative of an abrupt change that would be 

expected if its composition encoded the decision or required preparation to enter torpor. 

If the pre and entry phases were very similar, it would seem that the pre phase is used 

to establish a permissive state, and once reached to completion, would allow torpor 

entry. While this might still be the case, the dominant effect is one of great changes 

between two consecutive phases that likely represent the cumulative effect of many 

small changes in the metabolomes of organs. While the changes in liver, muscle, and 

WAT individually might be small between the pre and entry phase, they can signal a 

major physiological state change in blood if the  
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Figure 3.38 – PCA analysis of blood 

serum samples.  
Plotting the first two principle components of the 

blood serum samples results in the strong 

grouping of biological replicates, with all phases 

being separated in the first two principle 

components with the exception of a single pre 

phase.  

 

 

 

 

 

 

 

 

Figure 3.39 - k-means clustering of 

blood serum samples.  
The silhouette plot of k-means clustering 

of six clusters of blood serum samples 

shows that biological replicates of the 

individual phases form strong clusters. 

The exceptions are the pre and recovery 

phases that form two mixed clusters, and 

therefore appear to be very similar. 

 

 

 

 

 

 

Figure 3.40 - Dendrogram of 

the hierarchical clustering of 

blood serum samples using the 

average linkage method. All 

biological replicates of the torpor 

phases are clustered together. The 

baseline phase forms a lone branch 

as observed in the liver and muscle. 

The entry phase surprisingly forms 

another lone branch despite being 

closely related to others in liver, 

muscle, and WAT. The high 

similarity of the pre and recovery 

phases observed in k-means 

clustering is also reflected. 

intraorgan changes are 

composed of different metabolites that are representatively released into circulation. 
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Alternatively, when strong physiological changes occur that are not distinguishable in 

the blood serum metabolome, some tissue must compensate another tissue’s needs by 

balancing its demand, rendering the blood a “buffering system”. Philosophically 

speaking, one would assume those components that are most crucial for organ function 

to be buffered, while those allowed to vary strongly might either serve a signaling role 

or are of lesser importance but nonetheless useful as passive biomarkers.  

 

Considering the blood serum from a perspective of a buffering system allows for a 

reasonable explanation of why the pre and post phases are more closely related to one 

another than to any other phase. The pre phase represents the stable starvation state in 

blood serum, and it is reasonable to assume that the mice, once they have completed 

the torpor cycle, will attempt to quickly recover to the fundamental starvation state. In 

order to do so, re-establishment of blood metabolite levels should occur quickly so as 

to supply the organs with what they need to return themselves to their respective food-

restricted homeostasis. The return to blood homeostasis should therefore occur more 

quickly than the re-establishment of the starvation state within the organs, which either 

still produce to compensate the demand of others, or yet are in a state of strong demand.  

 

Furthermore, the relationship between the deep and exit phases is closer in blood than 

in liver and muscle, not displaying the strong separation that occurs between the other 

two phases in which a crucial decision, that of entry between the pre and entry phase, 

has to be made. While the data clearly show functional changes in both liver and muscle 

between the deep and exit phase, the blood appears to be a buffer that has already been 

established during the deep phase through the accumulation of, for example, both 

glucose and several amino acids (see below). It seems that the organs load the blood 

with metabolites required for exit during the torpor phases, the blood metabolome 

thereby anticipating the metabolic requirements in crucial organs to exit torpor.    

 

Factor analysis of the Pearson correlation matrix of all known metabolites measured in 

blood serum produced four factors.  

F1 contains metabolites that decreased from the baseline to the deep phase and then 

increased towards baseline levels, as well as three that showed the anti-correlated 

pattern. Among the first group are alanine, lactate, and pyruvate, three of the endpoints 

of glycolysis and entry points of gluconeogenesis; malate and fumarate, two TCA cycle 
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intermediates; as well as uracil and uridine, -hydroxybutyrate and ethanolamine 

(Figure 3.41). Alanine, lactate, and pyruvate show patterns that are in accordance with 

glycolytic and gluconeogenic activity as outlined in the previous sections, their levels 

high during glycolytic periods, and their levels dropping strongly when they fuel 

gluconeogenesis in the liver.  Malate and fumarate patterns in blood seem to represent 

the general, although in the tissues less pronounced TCA cycle inhibition during torpor. 

Similarly, blood citrate levels mirror its accumulation in liver and WAT towards the 

deep phase, but behave opposite the tissues in the pre and post phase (Figure 3.42). It 

is interesting to note that many of these metabolites show clear differences in levels 

between the pre and entry phases.  

 

 

Figure 3.41 – Members of F1 in blood serum. Alanine, lactate, pyruvate, malate, and 

fumarate behavior in blood serum represent the glycolytic inhibition and depression of the TCA 

cycle during torpor in liver and muscle. Lactate rising in the exit phase indicates the return of 

glycolytic activity during torpor arousal. -hydroxybutyrate levels behaved similarly in blood 

serum, liver and muscle (data not shown). Uracil, uridine, and ethanolamine are also part of F1 

but their contributions to the torpor phenotype are at this time unresolved. 
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Figure 3.42 – Citrate levels in 

blood serum, liver and WAT. 
Citrate levels in blood serum (red) 

increase in accordance with the 

accumulation observed in the deep 

phase in liver (blue) and WAT (green).  
 

 

 

 

F2 contains metabolites that are decreased in the pre and entry phases when compared 

to baseline, but then accumulate in the deep phase to below, above, or original baseline 

levels and remain relatively constant thereafter. This factor contains glucose, 

glucuronate, mannitol, pantothenate, cytosine, and the amino acids methionine, proline, 

pyroglutamate, and threonine (Figure 3.43). It is representative for the amino acid 

accumulation seen primarily in liver and to a lesser extend in muscle, as well as the 

buffering hypothesized before. It appears to be stocked with metabolites necessary to 

support the exit from torpor like glucose, and more generally contains metabolites that 

are similar in deep and exit phases with the exception of pyroglutamate and threonine 

that are quickly cleared in the exit phase. An alternative to the hypothesis of 

preemptively enriching metabolites required for arousal is the possibility of metabolite 

accumulation or depletion, the re-establishment of original levels of which 

necessitating arousal, an idea previously proposed for hibernation (Epperson et al. 

2011). Most likely is a combination of both. 

 

F3 contains compounds that are similar in both the pre and post phase like 2-

hydroxyglutarate and the sugar acid threonate, but also contains with glycerol the 

primary indicator for the mobilization of fatty acids, the second major fuel source aside 

from glucose (Figure 3.44). The behavior of glycerol in blood serum is mimicked in 

WAT, leading to the conclusion, as mentioned before, that lipolysis is active during the 

pre phase, turned off during torpor, and resumes upon exit.  
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Figure 3.43 – Members of F2 in blood serum samples. The factor contains metabolites 

that decreased initially and then recovered during the deep phase to or above baseline levels. 

While detailed interpretation is difficult, it is interesting to note that glucose abundance 

increased already in the deep phase. Similarly, several amino acids accumulated in the deep 

phase in agreement with an accumulating trend observed in the tissues.  
 

 

Figure 3.44 – Members 

of F3 in blood serum 

samples.  
This factor contains only 

two metabolites that were 

not largely imputed, 

namely glycerol and 

threonate. Whereas the 

function of threonate in 

mammalian metabolism is 

unclear, glycerol levels in 

blood corresponded to 

known phases of lipid 

mobilization (pre, exit, and 

post). 
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F4 contains only three metabolites, two of which are largely imputed, but generally 

represents those metabolites that render the exit phase distinct from all others. In the 

case of glycerate, the only metabolite in the factor measured reliably, the exit phase 

features its lowest abundance that recovers to near pre phase levels in the post phase 

(Figure 3.45).  

 

 

Figure 3.45 – Members of F4 in blood serum samples. The fourth factor contains only 

a single metabolite without largely imputed values, namely glycerate. Its abundance decreased 

during the exit phase and its functional significance is unclear at this time. 

 

 

In conclusion, the blood serum is powerful in representing the overall physiological 

state of an animal. The TCA cycle suppression in tissues is represented in lowered TCA 

intermediates (Figure 3.41, see malate/fumarate), and the general amino acid 

accumulation observed in both muscle and liver is at least partially reflected 

(Figure 3.43). Most apparently mirrored, however, is the use and management of the 

primary fuel sources glucose and fatty acids. The mobilization of fat stores is indicated 

clearly by glycerol levels, which correspond strikingly with glycerol levels measured 

in WAT (Figure 3.36). Similarly, both glycolytic activity of muscle and liver is 

reflected in serum glucose, lactate, and pyruvate levels, which also serve to discern 

periods of gluconeogenesis (Figure 3.46). Especially the ability to infer fuel source 

regulation, but also the general sense of being able to draw reasonable conclusions 

about organ function based on their reflection in the blood serum metabolome served 

as motivation for the Campus Run experiment, and represents the first successful 

systematic study of how organ physiology is reflected in the blood serum metabolome. 
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Figure 3.46 – Glucose, pyruvate, and lactate levels in blood serum reflect times of 

gluconeogenic and glycolytic activity observed in liver and muscle. Decreasing 

glucose, pyruvate, and lactate levels during the early torpor phases indicated the depression of 

glycolytic activity in liver and muscle. Further lactate depletion and concurrent glucose level 

increases in the deep phase indicated hepatic gluconeogenesis. The resumption of glycolysis 

during torpor arousal was reflected in pyruvate and lactate levels increasing in the exit phase.  

 

3.3.6 Cerebrospinal Fluid 

 

The CSF is of interest in the study of torpor because it can be sensed by and released 

into by key areas of the hypothalamus that contain, among other crucial homeostatic 

centers, those that control body temperature and energy expenditure. It is known to 

maintain appropriate concentrations of neurotransmitters and considered to play an 

active role in brain state and general neuronal communication and likely contains 

immense diagnostic and mechanistic information for both physiological and 

pathophysiological processes (Zappaterra & Lehtinen 2012; Smolinska et al. 2012). 

 

Plotting the first two principal components of PCA of CSF samples displayed an 

interesting pattern that is unlike any of the other tissues (Figure 3.47). The exit, deep, 

and recovery phases are in close proximity to each other, while the baseline and pre 

phases are furthest removed from each other and the conglomerate of aforementioned 

phases. The entry phase is located between the pre and the deep/exit/post phase cluster. 

k-means clustering produced the maximal silhouette width when six clusters were 

allowed to form, correctly clustering all biological replicates of distinct phases together 

(Figure 3.48). Hierarchical clustering failed to group one recovery replicate 

appropriately when using the average linkage method, but was able to do so 

successfully when employing the Ward linkage method of hierarchical clustering 

(Figure 3.49). I found the pre and baseline phases to form one of the two major 

branches. The deep and exit phases are closely related in congruence with k-means  
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Figure 3.47 – PCA analysis of CSF 

samples.  
Plotting the first two principle components of 

the CSF samples results in a strong grouping 

of biological replicates; however, the deep, 

exit, and recovery phases are in very close 

proximity.  

 

 

 

 

 

 

 

Figure 3.48 – k-means 

clustering of CSF 

samples.  
The silhouette plot of k-

means clustering of six 

clusters of CSF samples 

shows that biological 

replicates of the torpor 

phases form reasonably 

strong clusters, despite the 

deep, exit, and 

recovery phases appearing 

quite similar in PC1 and 

PC2. 

 

 

 

 

 

clustering and PCA, with the recovery and entry phases located between them and the 

pre/baseline branch. An interesting observation is that the CSF and blood serum show 

clearly different structures of relatedness among the torpor phases. Whereas the 

baseline and pre phases are quite similar in the CSF, they are least related in blood 

serum. Similarities in blood serum between baseline and entry and pre and post phases 

are not observed in CSF, the only commonality between the two tissues being the 

relatedness of the deep and exit phases.  
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Figure 3.49 – Dendrograms of hierarchical clustering of CSF samples using the 

average and Ward linkage methods. A) In accordance with the k-means clustering and 

PCA, hierarchical clustering using average linkage grouped all biological replicates together, 

with the exception of a single recovery phase. B) Using the Ward linkage method, which favors 

the formation of equally-sized clusters, all biological replicates clustered together. Baseline and 

pre phases form one branch, the entry another, and the deep, exit, and recovery phases appear 

closely related as indicated by the plotting of PC1 and PC2. 

 

Factor analysis of the Pearson correlation matrix of all known metabolites measured in 

CSF revealed four factors. F1 contains metabolites that distinguish the first or the first 

two phases from all others. It is composed entirely of nucleotide derivatives and amino 

acids, their abundance either strongly decreasing or dropping below detection limits in 

the entry torpor phase and never recovering thereafter (Figure 3.50). Three members of 

the factor, adenine, uracil, and pyroglutamate (a mixture of glutamine, glutamate, and 

pyroglutamate), are of special interest, as they themselves or their derivatives may 

function as neurotransmitters or signal by interaction with cell surface receptors in the 

central nervous system (Dalziel & Westfall 1994; Ciana et al. 2006; Zhou & Danbolt 

2014). Proline, which shows a similar pattern and curiously peaks during the exit phase, 

has also recently been described as an active neurotransmitter (Takemoto 2011).  

 

F2 contains metabolites in which the exit phase has similar abundance levels as 

observed in the fed baseline state. This factor contains glucose, glycerate, mannose, 

triethanolamine, and uridine (Figure 3.51). As hypothesized earlier, the brain is an ideal 

site for sensing when it is energetically possible to exit torpor, and therefore metabolites 

that peak before or during the exit qualify as candidates to carry that information. Since 

the decision is likely based on energy availability, a direct sensing  
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Figure 3.50 – Members of F1 in CSF samples. F1 is characterized by metabolites that 

decreased in abundance steadily between baseline and pre, and then more strongly during the 

entry phase, and never recovered their original levels thereafter. Of special interest here are 

adenine, pyroglutamate, uracil, and proline, as they have known signaling functions and/or 

serve as neurotransmitters in the central nervous system. 
 

 
Figure 3.51 – Members of F2 in CSF samples. Metabolites in F2 showed an initial 

decrease in abundance but recovered to baseline levels during the exit phase of torpor. Of 

special interest here is glucose, which may serve as an indicator of sufficient carbohydrate 

stores to allow for initiation of torpor arousal. 
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of glucose levels might be sufficient for the decision to be made. In this second factor, 

glucose also shows the highest dynamics, its levels dropping the lowest and recovering 

entirely in the exit phase before decreasing again in the post phase, its range having the 

potential to encode more information than other metabolites in the factor. In this line of 

argument it is of note that there are two other compounds that show a distinct peak in 

the exit phase but are not part of F2, namely fructose and an unknown compound 

(Figure 3.52). It would be interesting to see in future studies if glucose, fructose, or the 

unknown compound (once identified) levels are able to influence torpor exit timing.  

 

 

Figure 3.52 – Fructose and an unknown metabolite peak during the exit phase. Of 

special interest are compounds that peaked during the exit phase in the CSF, as they could prove 

instrumental in mediating arousal from torpor. Fructose and an unknown metabolite shown here 

displayed such behavior. 
 

 

F3 contains the sugar alcohols arabitol and ribitol, as well as citrate, their commonality 

being a sharp drop in abundance in the post phase. Anti-correlated but also in the factor 

are putrescine, hypoxanthine, and α-α-trehalose, all of them measured at the detection 

level threshold and containing many imputed values (Figure 3.53). The only reasonable 

conclusion that can be drawn from this factor is a requirement of arabitol and ribitol 

during the exit phase or immediately after waking, the reasons for which, however, are 

not obvious at this point in time. F4 is made up of only two compounds whose values 

are largely imputed, so that its in-depth consideration is of little conclusive power. 
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Figure 3.53 – Members of F3 in CSF samples. F3 is characterized by metabolites that 

differentiate the post phase from all others. Of interest here is the disappearance of arabitol and 

ribitol between the exit and post phases, which might indicate their requirement as substrates 

for some metabolic pathway in order to facilitate torpor exit. 

 

The brain is an organ with a high energetic demand, and while other tissues might 

largely be at rest, certain areas of the brain maintain activity even during the deepest 

torpor phases when overall metabolism is lowest. One example of this constant 

vigilance is the observation that animals even in deep torpor are in full control of their 

body temperature, as local brain temperature changes elicit compensatory heat-

generating responses (Heller et al. 1977).  

 

While textbook knowledge states that glucose is the favored and primary energy source 

for the brain, ketone bodies have received much attention recently because of their 

apparent involvement in and beneficial contribution to brain metabolism (Nugent et al. 

2014; Yifan Zhang, Kuang, LaManna, et al. 2013; Yifan Zhang, Kuang, Xu, et al. 2013; 

Woolf & Scheck 2014). One of the surprises of this study was that ketone bodies are 

already present in high concentrations during the fed baseline state, and only mildly 

increase during starvation when compared to other tissues (Figure 3.54). Similarly, 

while glucose abundance does decrease in starvation, its levels never drop as much as 

in blood or other tissues, and recover to baseline levels already during the exit phase, 

whereas they never recover in blood, liver, and muscle (Figure 3.55). It appears 

therefore that the CSF is regulated quite separately  
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Figure 3.54 – Absolute concentrations of -hydroxybutyrate across tissues during 

torpor. While ketone bodies commonly serve as markers of food restriction and starvation, 

and are only detected during such times in blood, muscle, liver, and WAT, high concentrations 

of -hydroxybutyrate were found in CSF in the fed state with the subsequent starvation causing 

only a mild increase in its abundance. This indicates that ketone bodies are in abundant supply 

in the CSF at, presumably, all times.  
 

from the rest of the body, likely due to the fact that many metabolites have active 

signaling roles in the central nervous system but not in the periphery. Additionally, the 

metabolic demands of the brain even during torpor might require a higher level of 

energy supply, as evidenced by both glucose level decreases being blunted and ketone 

bodies being available at all times. It is therefore the relative abundance and ratio of 

glucose to ketone bodies that changes during times of starvation and the torpor phases, 

and might be more useful to determine fuel availability and selection in CSF rather than 

the presence or absence of β-hydroxybutyrate (Figure 3.56).  

 

 

Figure 3.55 – Glucose levels in CSF vary 

less strongly and recover to baseline 

levels during torpor exit. In addition to 

glucose levels dropping lower in liver (light 

blue), muscle (light orange), and blood serum 

(light red) than CSF during torpor, glucose 

levels in CSF (black) recover to those observed 

in the fed state already in the exit phase of 

torpor. 
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Figure 3.56 – Glucose and 

-hydroxybutyrate ratios 

throughout torpor in CSF.  
Since both glucose and ketone bodies 

were present in CSF at all time points 

sampled in this study, a ratio between 

their absolute concentrations might be 

more indicative of fuel source 

selection. Indeed, the ratio of glucose 

to -hydroxybutyrate is highest in the 

fed state, returning towards similar 

values during the exit phase. This 

could be indicative of glucose playing 

an important role in the brain during 

torpor arousal. 

 

Similarly to the glucose level differences in CSF and blood serum, many other 

metabolites that vary in accordance throughout torpor do so to a lesser degree in CSF 

(Figure 3.57). Furthermore, many metabolites that are cellular intermediates without 

known signaling mechanisms in the brain show either completely different behaviors 

in blood serum and CSF, or differ drastically in specific torpor phases (Figure 3.58). 

The blood-CSF differences can have three potential causes: 1) brain-specific 

production, 2) brain-specific consumption, or 3) a selective transport between the blood 

and CSF in the blood-cerebrospinal-fluid barrier, which is maintained by choroidal cells 

of the choroid plexus. 

 

In accordance with the choroid plexus, which produces CSF from blood in the first 

place, being “one of the most understudied tissues in neuroscience“, specifics about 

metabolite filtering or selection between blood and CSF have not been systematically 

studied (Lehtinen et al. 2013). It is therefore extremely difficult to interpret the 

observed differences, because the choroid plexus and in addition the numerous 

astrocytes, known to be metabolically versatile and supportive of the neuronal 

populations, are likely major contributors to metabolite level regulation (Rossi et al. 

2007; Sonnewald et al. 1994). The choroid plexus, for example, is involved in the 

maintenance of neurotransmitter levels (i.e. glutamate (measured as pyroglutamate), 

glycine, adenosine/adenine, proline, etc…), compounds that in the rest of the body 

would be considered from a metabolic rather than a signaling perspective.  
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Figure 3.57 – Metabolite abundance changes are less pronounced in CSF when 

compared to blood serum. CSF (gray) and blood serum (red) levels of many metabolites 

vary similarly, but do so to a lesser degree in CSF. This difference is best exemplified by the 

six metabolites displayed. 

 

 

Figure 3.58 – Metabolite behavior in CSF and blood serum are in disagreement in 

most instances. CSF (gray) and blood serum (red) levels of several metabolites either behave 

entirely differently throughout torpor (glycerol, lactate, pyruvate, citrate, methionine), or vary 

only in specific phases of the torpor cycle as exemplified by glycerate. 
 

These data suggest and are in congruence with the choroid plexus and glial cells acting 

as regulatory organs for the central nervous system-specific circulatory fluid CSF. 

Similar to what the liver accomplishes for the rest of the body (with contributions from 
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other organs), they appear to control fuel source availability and other important 

metabolite levels quite independently from the blood serum, creating a milieu in the 

central nervous system that can be considered metabolically separate from the rest of 

the body.  

 

In conclusion, one of the most striking observations made during the torpor study was 

the strong difference between the blood serum and CSF metabolomes. In the general 

overview section both PCA and hierarchical clustering indicated the CSF to be the most 

distinct tissue (Figures 3.3 and 3.4). While the CSF contains many new unknown peaks 

that certainly separate it from other tissues, many metabolites that were found in both 

blood serum and CSF either behaved utterly different or their amplitudes of change 

were lower in CSF. While differences in composition are known, this study the first to 

track a dynamic process like torpor in both blood serum and CSF and shows the true 

extend of their dissimilarity. Particularly interesting from an energetic point of view 

were the behaviors of glucose and -hydroxybutyrate in the CSF, the former potentially 

signaling that enough energy is present to facilitate rewarming by its levels increasing 

to fed-state levels during the exit phase, and the latter being already present in high 

concentrations during the fed state, when it is below detection threshold in all other 

tissues and commonly considered as a marker of starvation only. 

 

3.4 Discussion 

 

In this study, I have monitored metabolic changes in liver, muscle, WAT, blood serum, 

and CSF that occur throughout the full torpor cycle to gain insight into the mechanisms 

regulating entry into, maintenance of, and arousal from torpor. Furthermore, the size of 

the dataset allowed for the first time a systematic investigation of how the blood serum 

and CSF metabolome compositions differ, and how the blood serum metabolome 

reflects organ physiology throughout a metabolically diverse biological process. 

 

The dataset can be judged to be of high quality due to the fact that hierarchical 

clustering was able to separate the individual tissues from one another, as well as the 

biological replicates of the distinct torpor phases in each of the individual tissues. 

Clustering of the torpor phases within each tissue, in combination with correlation 
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matrix-based factor analysis and study of specific crucial pathways allowed for the first 

time the formulation of mechanistic hypotheses regarding the metabolic changes 

occurring in liver, muscle, WAT, blood serum, and CSF.  

 

Generally, metabolic mechanisms of entry into and arousal from torpor are of greatest 

interest, as they represent the two crucial decision points of torpor. Marking both the 

beginning and end of the process, they are each accompanied by drastic metabolic 

changes. Torpor entry is suspected to be mediated by a mechanism, or multiple 

mechanisms, of active metabolic suppression. Arousal from torpor is an energetically 

demanding process as animals need to raise their CBT by almost 20 °C, which is 

accomplished by a combination of shivering thermogenesis, non-shivering 

thermogenesis in the form of uncoupled mitochondrial activity in BAT, and passive 

heat generation as a result of general metabolic activity throughout the body. While the 

exact contribution of these factors to the process of rewarming is unknown, shivering 

and passive heat generated from an active metabolism likely contribute most in our 

study as BAT is not required for torpor arousal and our acclimatization protocol 

minimized BAT mass (personal observation) and thermogenic potential (Cannon & 

Nedergaard 2011; Oelkrug et al. 2011). It is of interest to note that wild torporic animals 

have frequently been observed to expose themselves to sunlight to aid in the rewarming, 

saving even more energy by minimizing shivering and BAT-dependent thermogenesis 

(Geiser & Drury 2003). The animals in this study were observed to shiver extensively, 

and without significant contributions from BAT or sunlight, the only other contributing 

factor to rewarming was likely passive heat generated by overall metabolic processes. 

Metabolic changes during torpor and their relation to the current state of knowledge, as 

well as the insights gained into the organ-derived metabolic signatures in blood serum 

will be discussed in detail in the following sections. 

 

3.4.1 Liver 

I found two distinct metabolic phases in the liver, one occurring during the earlier 

phases of entry and deep torpor, and the other occurring during the exit and after 

waking.  
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Because of the decrease and disappearance of glycolytic intermediates and lactate 

during the early phases, as well as an accumulation of citrate relative to succinate, both 

glycolytic and TCA cycle activities appeared to be diminished. There are several lines 

of evidence supporting both glycolytic and mitochondrial suppression during daily 

torpor in liver. Respiratory retention of carbon dioxide just prior to torpor entry causes 

a significant acidosis in blood and several tissues, with strongest effects on the brain 

and muscle, but nonetheless possible effects on liver (P. Bickler 1984; Nestler 1990b; 

Nestler 1990a). In support of this, several enzymes in upper and lower glycolysis, most 

notably pyruvate dehydrogenase (PDH), were found to be significantly less active in 

deep torpor when compared to euthermic controls (Heldmaier et al. 1999). 

Mitochondrial activity was similarly found to be decreased by both active suppression 

and passive temperature effects in both dwarf Siberian hamsters and three strains of 

laboratory mice, including C57/Bl6, comparing deep torpor and euthermic controls 

(Brown & Staples 2010; Brown et al. 2007). It is therefore a reasonable conclusion that 

a combination of active and passive metabolic suppression, both at the level of 

glycolysis and mitochondrial activity, plays a key role in mediating the entrance into 

and possibly maintenance of daily torpor in liver. 

 

Due to lactate, alanine, and glycerol-3-phosphate disappearance, concurrent amino acid 

accumulation and processing, as well as the rise of glucose levels in blood and other 

tissues, gluconeogenesis appears to be active in torporic livers in mice. While there 

have been no investigations focusing on gluconeogenesis to provide a conclusive and 

comprehensive sense of its activity, several indications exist which are, at least, not 

contradictive to this novel finding. First, the activity of two out of four gluconeogenic 

enzymes, when compared to euthermic controls, showed an increasing trend, though 

neither was statistically significant. The other two enzymes were neither statistically 

significant nor indicated a trend, in the least indicating that the gluconeogenic potential 

of the liver is maintained during deep torpor. Other authors have mentioned that carbon 

dioxide accumulation in tissues during torpor might potentiate gluconeogenesis 

(Walker et al. 1983). While the gluconeogenic potential does not seem to change, the 

drastic reduction in glycolysis and mitochondrial activity might contribute, or in a sense 

“allow”, for gluconeogenesis to take place.   
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The competing hypotheses of active protein degradation, protein synthesis inhibition, 

or amino acid acquisition from blood serum could not be differentiated by this dataset. 

Amino acid metabolism has received no attention in the study of daily torpor, except 

that both transcription and translation appear to be suppressed, as indicated by 

decreases in polysome complexes during the deep phase compared to euthermic levels 

(Berriel Diaz et al. 2004). The study is in accordance with an almost identical study 

with identical results carried out in hibernating squirrels, leading to the conclusion that 

the energetically demanding processes of transcription and translation are repressed 

during both hibernation and torpor (Knight et al. 2000).  

 

Since, to my knowledge, autophagy has never been investigated in daily torpor or 

hibernation, studies of proteasome-mediated proteolysis in hibernation provide the only 

indications on the activity of protein degradation during torpor. Two studies from the 

same group were able to show an accumulation of ubiquitinylated proteins, as well as 

a depression of proteasome-dependent proteolysis in liver during hibernation, the effect 

being mostly due to the low CBTs of hibernators. Nonetheless, even at torporic 

temperatures, the inhibition was significant (Velickovska et al. 2005; Velickovska & 

van Breukelen 2007). While this at first appears to argue against active proteolysis, the 

inhibition was not total. In fact, a group specifically studying the maintenance of muscle 

mass and contractility after months of immobility in hibernation showed evidence in 

hibernating bats that the maintenance of muscle mass is mediated by a constant, low 

level of proteolysis that is counterbalanced by short periods of amino acid and protein 

homeostasis being reestablished during the interbout arousal (Lee et al. 2010). Since 

the post torpor phase in this dissertation is quite similar to the hibernation interbout 

arousal, the same mechanism might be at play in daily torpor in both liver and/or 

muscle, as we observe most amino acid levels return to pre phase levels after 

accumulation in both tissue and blood serum. It is therefore possible that active 

proteolysis, even if partially suppressed at the level of the proteasome as compared to 

euthermia, is nonetheless less suppressed than protein synthesis, causing an 

accumulation of amino acids in the deep torpor phase. Additionally, the accumulation 

could be caused by autophagic mechanisms that are yet to be investigated in the context 

of hypometabolism.  
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It is of note also that an accumulation of modified amino acids has been observed in 

blood plasma from hibernating squirrels in the only other extensive metabolomic study 

(Epperson et al. 2011). Amino acids in liver in our study showed comparable behavior 

in the NMR and LC-MS metabolomic studies of liver from hibernators, given the caveat 

that far fewer phases were sampled (NMR study), and comparability between summer 

active ground squirrel and fed or starved mouse metabolism is not guaranteed. One 

clear difference between the datasets are the branched-chain amino acids valine, 

leucine, and isoleucine, which accumulated in the deep phase of torpor, and decreased 

significantly in the deep hibernation phase when compared either to hibernation entry 

or the summer active control (Serkova et al. 2007; Nelson et al. 2009). The reasons for 

this difference are unclear. Nonetheless, strong and indisputable evidence from my 

study indicates urea cycle activity during early torpor with a subsequent accumulation 

of urea in both liver and the blood, which to my knowledge represents the first report 

supportive of amino acid catabolism being crucially involved in daily torpor. 

 

Glucose, alanine, succinate, and lactate are of mechanistic interest and showed similar 

patterns in my and the NMR dataset. Inosine and uridine, which were found in the LC-

MS study, are also in agreement with my dataset.  

 

The second phase of liver metabolism begins in the exit and continues into the post 

phase. It is marked by an increase in the glycolysis product lactate, a rise in glycolytic 

intermediates, as well as the removal of the TCA cycle block at the level of citrate, 

indicating that the inhibition of glycolysis and the TCA cycle that allowed for 

gluconeogenesis is alleviated and a glycolytic metabolic signature established. 

Curiously, none of the studies cited above measured changes in enzymatic or 

mitochondrial activity during torpor exit, focusing mostly on metabolic suppression as 

a mechanism of torpor entry. It is suggested, considering the rise in metabolic rate and 

respiratory quotient information, that mainly lipids fuel rewarming, but glycogen 

reductions are seen both in liver and muscle, an observation consistent with our results 

indicating the restart of both glycolysis and mitochondrial activity during arousal from 

daily torpor (Nestler 1990b; Nestler 1991; Heldmaier et al. 1999). It is also interesting 

to note that glucose and glycogen appear to play a crucial role in heart metabolism 

throughout torpor, lending further support that the major gluconeogenic tissue of the 

body, the liver, has to meet a known glucose demand during torpor (Nestler 1991).  
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Because of the possibility of the kidney playing a role in gluconeogenesis during torpor, 

I have planned to measure kidney samples from the mice used in this study for all 

phases in the nearest possible future. It is my hope to then be able to attribute the relative 

contribution of liver and kidney gluconeogenesis to the observed increases in glucose 

levels in blood serum, WAT, muscle, and the CSF. 

 

While the liver is generally considered to obtain its energy from fatty acid oxidation, 

glycolytic activity might be required to contribute to the various energetic demands 

during torpor exit. The liver needs to reestablish pre-torpor homeostatic levels of 

cellular components; for example, it has to return to a protein composition that has been 

depleted to provide amino acids to fuel gluconeogenesis during the entry and deep 

torpor phase.  

 

Taken together, the metabolomic analysis of liver has revealed glycolytic and TCA 

cycle inhibition at the beginning of and during torpor in accordance with reports in the 

literature. Novel findings are an active period of gluconeogenesis fueled by lactate, 

glycerol-3-phosphate and alanine, with evidence of concurrent protein degradation and 

active amino acid catabolism during torpor, as well as glycolysis being active in support 

of fatty acid oxidation and ketone body use during torpor exit. The liver appears to be 

crucial to supply sufficient carbohydrates to the rest of the body during torpor to allow 

for the glycolytic contribution to rewarming especially in muscle. I also hypothesize 

that glucose production and secretion of the liver might contribute to rising glucose 

levels in the CSF, which may contribute to signaling that sufficient energy is available 

to fuel the arousal from torpor. 

 

3.4.2 Muscle 

 

The muscle most likely contributes to torporic physiology by being the largest potential 

source of amino acids, and by contributing most of an animal’s body mass, thereby 

representing the largest potential source of heat generation. As discussed before, heat 

generation during the warming phase in our study is likely a combination of shivering 
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and passive heat produced by general metabolic activity, the muscle likely contributing 

much, if not most, even to the latter.  

 

In this study, skeletal muscle underwent two major phases of metabolism, analogous to 

those observed in the liver. During the early phases, both glycolysis, because of low 

glycolysis intermediate, lactate, and pyruvate abundances, and the TCA cycle, seem to 

be suppressed. This idea is supported by muscle experiencing the strongest acidosis 

during daily torpor and a report describing the specific inhibition of the glycolytic 

enzyme phosphofructokinase (PFK) in hibernating ground squirrel muscle in torporic 

conditions (Nestler 1990a; Somero 1981). Furthermore, a study of glycolytic enzyme 

binding of substrates in daily torpor in deer mice provided evidence for decreased 

binding capacity in glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase, as 

well as PFK (Nestler et al. 1997). Using 14C glucose as substrate and measuring 

14C-containing carbon dioxide release, muscle glucose oxidation was shown to be 

inhibited by lowered temperature, acidosis, and substrate availability reminiscent of 

torpor (Nestler 1992). Muscle mitochondrial respiration capacity, however, was found 

to be unaffected by daily torpor in the Djungarian hamster in a study that was able to 

confirm liver mitochondrial suppression (Kutschke et al. 2013). Taken together, 

previous studies are therefore in accordance with our results showing a more subtle 

decrease in TCA cycle intermediates than in the liver, not contradicting, however, a 

TCA cycle suppression and intermediate decrease due to a lower substrate availability 

(pyruvate) as evident in my dataset, caused by a strong glycolytic inhibition during the 

early phases of daily torpor.  

 

The second major phase begins in the exit and continues into the post phase, where 

glycolytic intermediates, lactate, and pyruvate increase, concomitant with TCA cycle 

intermediate abundances recovering to levels observed before torpor entry. As 

described for the liver, I suggest that both glycolysis and the TCA cycle, fueled both by 

glycolytic substrates and the available ketone bodies and fatty acids, contribute to 

increased general metabolic activity as well as the fueling of the intense shivering of 

animals observed during rewarming (in accordance with this hypothesis, shivering 

appears to make use of both glycolytic and oxidative muscle fibers (Haman et al. 

2004)). While the arousal from torpor has received as little attention in the literature in 

muscle as in liver, one line of evidence supports the observation of the glycolytic 
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inhibition being lifted immediately before the beginning of the exit phase. A quick rise 

of respiratory quotient just prior to the stark increase in metabolic rate fueling torpor 

exit is said to release carbon dioxide, thereby lifting tissue acidosis and, presumably, 

partially the glycolytic inhibition in muscle, which should progressively lessen as CBT 

increases (Nestler 1990b). In accordance with glycolytic activity contributing to 

rewarming is the observation that muscle glycogen stores are significantly depleted 

between the deep and exit phase in deer mice (Nestler 1991). 

 

The only unresolved observation, as described in the liver section of the discussion, is 

the amino acid accumulation during the deep torpor phase. Further studies are required 

to attain a final conclusion.  

 

3.4.3 White Adipose Tissue 

 

WAT is the tissue in which the fewest significantly changed metabolites were observed, 

and displayed high biological variation in compounds that appear to be tightly regulated 

in the other tissues examined. Its metabolic role in daily torpor has so far been reduced 

to glycerol and fatty acid release into the blood stream, from where the liver takes them 

up and processes them to ketone bodies and glucose for the rest of the body.  

 

Interestingly, no metabolic studies have been conducted on WAT in daily torpor, and 

very few in hibernation research. The hibernation studies have mostly focused on the 

mechanisms and timing of fat accumulation (Wang et al. 1997; Baumber & Denyes 

1963; Cochet et al. 1999). However, two studies considering lipolysis in WAT 

described an inhibition of WAT lipolysis during the deep hibernation phase and 

provided evidence for release of triglyceride stores during arousal from hibernation 

(Spencer et al. 1966; Dark et al. 2003). Despite the many metabolites identified in 

WAT, the two conclusions of the papers are identical with the only two conclusions 

that can be confidently drawn from this dataset. Considering glycerol abundances in 

both blood serum and WAT, WAT fat store mobilization is active during the pre phase, 

interrupted during the entry and deep phases, and reactivated during the exit and 

maintained in the post phase. No conclusive evidence for an active inhibition of the 

central carbon metabolism during torpor was obtained, and there is no literature on the 
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topic. If anything, there appears to be a paradoxical glycolytic activation during the 

deep torpor phase. This finding could be interesting in itself but is at this point 

inexplicable, or might be representative of peak detection and identification 

uncertainties at the mass spectrometer’s detection threshold.  

 

In conclusion, despite WAT being of great importance to torpor as the site of 

triglyceride storage and leptin secretion, its CCM appears to be metabolically passive 

apart from triglyceride release in the pre, exit, and post phases, the process being 

inhibited towards and during the deep torpor phase, indicating that its regulatory 

involvement in torpor might not be reflected in the central carbon metabolism. 

 

3.4.4 Cerebrospinal Fluid 

 

It was the intention to use the CSF metabolome to understand brain metabolism, just 

like sampling blood would provide information about organ metabolism. However, 

brain tissue in this screen was handled in a way that optimized the stability of 

neuropeptides and their extraction from the hypothalamus, a protocol that is 

incompatible with metabolomic analysis. The project investigating neuropeptides 

during torpor is conducted independently of this dissertation. It was my hope that the 

metabolite levels in CSF would be in general very similar to those found in blood, so 

as to be able to attribute strong differences to brain metabolism. However, nearly all 

metabolites measured in both CSF and blood behaved differently, so that the lack of 

metabolic information from brain tissue is extremely unfortunate. The simultaneous 

effects of neuronal metabolism, glial cell metabolism, and apparently very selective 

exchange with the blood as determinants of CSF composition render me careful and 

hesitant to avoid overinterpretation in the face of too many unknown factors. 

 

Despite being unable to uncover detailed mechanisms of brain metabolic changes 

during torpor from the CSF, some intriguing observations were made. CSF contained 

the second fewest significantly changed metabolites, and the changes in those 

metabolites that corresponded well in behavior with the blood metabolome were of a 

smaller magnitude. Furthermore, many metabolites behaved very differently, altogether 
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indicating that metabolite levels in CSF are actively and independently controlled 

(Figures 3.57 and 3.58).  

 

Interestingly, -hydroxybutyrate, which is detected in blood only during food 

restriction and starvation, was present in significant levels in the fed state, increasing 

less upon food restriction than observed in blood and other tissues. Another potential 

significant observation is that glucose levels initially drop in the pre and early phases 

and begin to rise in the deep phase, as observed in the blood, but then actually recover 

to be identical to those observed in the fed state. While there is no evidence in the 

literature of glucose playing a signaling role during the waking phase in daily torpor, a 

reasonable suggestion is that glucose levels in the CSF are sensed, and when 

sufficiently high, presumably indicating sufficient carbohydrate reserves, provide a 

permissive signal for the arousal phase to begin. In accordance with this idea is a report 

that tanycytes, which line the third ventricle of the brain, can sense glucose 

concentration similar to pancreatic -cells and may play a role in T3 availability in the 

hypothalamus to drive metabolic rate (Bechtold et al. 2012).  

 

Although I have found no reports on cerebral metabolism in daily torpor, an in vivo 

metabolomics study has been performed in hibernating squirrels with the use of NMR 

(Henry et al. 2007).  The authors analyzed animals in fall, spring, deep hibernation and 

interbout arousals. They found an increased phosphocreatine to creatine ratio in deep 

hibernation, indicating stored energy, and observed no significant changes in myo-

inositol and lactate levels, the latter two corresponding to what I have observed in CSF 

(Figures 3.58 and 3.59). Constant levels of lactate are in stark contrast to those observed 

for blood in my and other datasets, but make sense in light of glycolytic enzyme activity 

being unchanged in brain from hibernating squirrels despite significant brain acidosis 

(Heldmaier et al. 1999). Glucose concentrations were highest during interbout arousals, 

but even in deep hibernation elevated when compared to both fall and spring animals. 

While glucose levels rose during the deep and exit phase relative to the entry phase, 

glucose never increased above the fed control in any torpor phase in CSF. It is therefore 

possible that the brain levels of glucose are elevated relative to the CSF during both 

torpor and hibernation, but this remains to be validated by a study measuring both CSF 

and brain metabolites simultaneously. The most significant finding of the study were 
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decreased levels of both glutamine and glutamate, which was interpreted as a means to 

suppress excitatory neuronal transmission by neurotransmitter depletion. Similarly, I 

observed reduced levels of pyroglutamate (to be interpreted as a combined 

representation of glutamine, glutamate, and pyroglutamate levels) in CSF throughout 

torpor, with a first decrease occurring between the pre and entry phases, and a second 

between the deep and exit phases (Figure 3.50).  

 

 

 

Figure 3.59 – Myo-inositol in CSF. There occurred 

no significant changes in myo-inositol levels in CSF 

throughout the torpor study. 
 

 

 

In conclusion, despite the limiting circumstance of the lack of brain metabolome data, 

the little information obtainable from the literature seems to be in line with the CSF 

metabolomes acquired in this study. The CSF does not correlate with behavior of the 

blood metabolome in any meaningful way, and it remains to be seen if the greatest 

diagnostic potential for brain metabolism lies in the metabolomic analysis of CSF or 

blood, or requires a combination of both.   

 

 

 

 

3.4.5 Blood Serum and Perspectives 

 

The blood metabolome is of special interest to the study of any physiological process 

as it contains a conglomerate of information from all tissues of the body. Demands of 

a tissue can be reflected by sudden depletions of required metabolites, whereas the 

accumulation of others may signal increased activity of specific pathways. As 

suggested in the title of this dissertation, the goal of this and future research is to 

understand the blood metabolome in such detail that it becomes possible to judge 
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metabolic imbalances of organs, allowing for the diagnosis of pathologic physiology 

and gain hints as to the molecular mechanisms of diseases in human patients.  

 

In this context, this metabolomic study of daily torpor provided the means to monitor 

extreme metabolic changes in relevant tissues, as well as their reflection in the blood 

serum. Since torpor is mainly an energetic phenotype, fuel availability and fuel 

selection were of primary interest. One intention was to study how the torpor blood 

metabolomes would reflect both the demands and supply of metabolic fuel, as well as 

relative activities of CCM pathways of the organs at specific times of the torpor cycle.  

 

Indeed, both gluconeogenesis in liver and fat store release from WAT were faithfully 

represented in blood glucose and glycerol levels. Similarly, glycolytic activity in 

muscle and liver before torpor and during the waking phases, as well as its inhibition 

during the early phases of torpor, were reflected in levels of lactate, alanine, and 

pyruvate. TCA cycle repression in liver and muscle correlated with malate levels and 

the disappearance of fumarate in blood, and amino acid accumulation, observed both 

in liver and muscle to varying degrees, correlated with similar increases in blood for 

many of the amino acids. Lastly, urea levels in blood rose in accordance with those in 

liver, so that in conclusion, all major metabolic pathways and their activity assessable 

using GC-MS technology were at least partially represented in the blood metabolome. 

These observations inspired and motivated the second part of this thesis and have 

determined the direction of my future research undertakings. 

 

To my knowledge, only one study has monitored metabolite levels in blood during daily 

torpor, finding patterns identical to those observed in this dissertation for glucose, -

hydroxybutyrate, and lactate (Nestler 1991). However, the study failed to capture the 

dynamic nature of lactate and glucose within torpor phases, as only the pre, deep, and 

post phases were assessed.  

 

Blood serum has been the subject of two metabolomic studies in hibernating ground 

squirrels, using LC-MS and a combination of LC-MS and GC-MS (Nelson et al. 2010; 

Epperson et al. 2011). The LC-MS-only study mainly measured fatty acids and 

derivatives thereof. Only three metabolites were detected in common: tyrosine, 
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methionine, and pantothenate, all of which behaved differently in the torpor and their 

dataset.  

 

These differences were replicated in and are explicable under consideration of the much 

more extensive second study which employed both LC-MS and GC-MS. Several amino 

acids, among them tyrosine and methionine, showed behavior either opposite or simply 

different from that observed in this dissertation, while others (leucine, isoleucine, 

alanine, glycine, valine, and others) similarly accumulated during the deep 

torpor/hibernation phase. Likewise, one of the major findings of the study was a strong 

accumulation of modified amino acids, most of them essential, which was suggested to 

be a salvaging mechanism to ensure reestablishment of muscle mass and protein 

homeostasis during the interbout arousal in hibernation.  

 

It therefore seems that one major and novel difference between daily torpor and 

hibernation is the behavior of amino acids. While some do not correspond in the two 

processes, others are specifically modified in hibernation. Amino acids in general 

appear to be “protected” because urea levels, an indicator of amino acid metabolization, 

remained unchanged throughout hibernation. Conversely, amino acids do appear to be 

utilized in daily torpor, as urea cycle activity in liver, as well as urea accumulation in 

both liver and blood serum were observed. Curiously, artificially raising urea in the 

blood of hibernating squirrels provokes premature arousal, providing a mechanistic 

justification for the observed difference (Fisher 1964). 

 

Pantothenate (vitamin B5) is required for acetyl-coA synthesis, a cofactor involved in 

many biochemical reactions, among them facilitating the entry of ketones and fatty 

acids into the TCA cycle for energy production. Its high availability during hibernation 

arousal might indicate a reliance on lipolysis products to fuel rewarming, the 

predominant hypothesis in hibernation research (Nestler 1991; Nestler 1990b). This is 

further supported by the TCA cycle intermediate succinate specifically increasing 

during hibernation arousal, which was not observed for daily torpor. Furthermore, the 

observation of increased glucose levels in the deep, and pyruvate and lactate levels in 

the arousal phase in my dataset were not observed in the hibernation study. Taken 

together, the evidence indicates a potential second novel major difference between daily 

torpor and hibernation, in that daily torpor appears to use a combination of glycolysis 
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and lipolysis during waking, while the hibernating phenotype seems to be nearly 

exclusively using lipolytic fuel.  

 

Fatty acid levels behave similarly in studies of daily torpor and the metabolic studies in 

hibernators, just like the major ketone body, -hydroxybutyrate, and the lipolysis 

indicator in blood plasma, glycerol (Nestler 1991; Epperson et al. 2011; Nelson et al. 

2010). It can therefore safely be concluded that lipolysis is inhibited in the deep phases 

of, and turned back on during arousal from both torpor and hibernation, in accordance 

with WAT lipolytic activities characterized in hibernation and my own dataset. 

 

In conclusion, the blood serum data revealed for the first time strong evidence of 

metabolic differences between hibernators and animals that employ daily torpor to 

conserve energy. Firstly, amino acid abundance and their metabolism appear to be 

differentially regulated, and the urea cycle significantly active only in daily torpor. 

Secondly, while hibernators appear to rely exclusively on lipid species and ketone 

bodies to fuel rewarming, the data provided strong evidence for the additional use of 

glucose in the arousal from daily torpor in mice and its prior production through hepatic 

gluconeogenesis. Only ketone body behavior and the lipolytic activity of WAT were 

identical between hibernators and mice, its suppression during deep torpor being lifted 

in the arousal phase. Crucially, only the concurrent monitoring of organs and blood 

serum as well as the extensive metabolite coverage allowed for insights into the 

coordinated interplay of organs, such as the anticipatory gluconeogenesis and glucose 

release by the liver in preparation for the glycolytic demand of muscle, and likely other 

tissues, during torpor arousal. 

 

Beyond the study of daily torpor, the simultaneous metabolomic analysis of organs and 

blood serum throughout a metabolically dynamic process has for the first time 

demonstrated the degree to which metabolic states of organ physiology are reflected in 

metabolite abundances in blood serum. Inspired by the encouraging results obtained in 

mice, I decided to investigate the human blood metabolome throughout a metabolically 

dynamic process to take another step towards medical diagnostics. The experiment has 

been named “Campus Run” and its results will be described in the next section. 
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4. Campus Run 

4.1 Introduction 

In light of the mechanistic insights obtained by determining metabolic states in 

consecutive stages throughout the torpor process, as well as the strong reflection of 

pathway-specific organ metabolism in the blood, a study that similarly sampled many 

stages of a process to assess its dynamic metabolic character was performed. In the 

context of translational systems biology, this study was to complement the animal-

model based study of torpor by investigating a human volunteer directly so as to 

translate the molecular lessons learned from mice into interpretations of the human 

blood metabolome. 

Working with human patients or volunteers brings about new challenges; for example, 

the sampling procedure becomes of paramount importance. Ideally, the sampling site 

should be easily accessible the sampling itself minimally invasive, fast, and simple so 

as to minimize variation. It was therefore decided to make use of full capillary blood 

obtained by finger lancing devices that are well known to diabetic patients. After a short 

pricking sensation, a droplet of capillary blood is obtained (between ten and twenty 

microliters) that is sufficient to perform all analyses described in this section. This kind 

of sampling is extremely fast, simple, convenient, and tolerable. Thus, it will greatly 

facilitate dynamic monitoring of metabolic processes in humans. 

 

The intent of the study was not to fully understand a physiological process, but to create 

a proof-of-principle dataset. We decided to track the metabolomic changes in full 

capillary blood during an exercise regime for the following reasons: 

 

1) The general metabolic response to physical exercise has been studied 

extensively and is, to a certain level of detail, textbook knowledge. 

2) We were unable to find metabolomic studies on a short timescale throughout 

exercise from full capillary blood; rather, most studies focus on before/after or 

athlete/non-athlete comparisons or measure only a few metabolites (Romijn et 

al. 1993; Krug et al. 2012; Banfi et al. 2012). 

3) There is great interest in the beneficial effects of sports and it is one of the most 

effective preventative measures against metabolic and other diseases. 
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4) Elsewhere reported and commonly known as “hitting the wall”, I have often 

experienced a strong physical discomfort during exercise which, when 

continuing in spite of it, paradoxically turns into a feeling of elevation before 

abating into an “average” state that continues until the end of exercise 

(Stevinson & Biddle 1998; Rapoport 2010). It was of interest to determine 

whether this phenomenon would be reflected in the blood metabolome. 

 

This dataset can be viewed as a realization of a simple, convenient sampling procedure 

that has been made compatible with a technological platform with which detailed 

hypothesis-driven research can address specific hypotheses in human patients the 

future. The detailed monitoring of effects of dietary regiments, catabolic states as 

experienced in cancer, and the extensive physiological changes occurring in many 

intensive care patients are only a small number of possibilities.  

 

The study described in this section was carried out in collaboration with Tobias Opialla, 

a PhD student under supervision of Prof. Dr. Simone Spuler and Dr. Stefan Kempa. He 

contributed equally to this project. The initial conception of the experiment arose from 

a conversation between Tobias, Stefan, and myself, with my having pitched the initial 

idea. I served as the volunteering subject in the “Campus Run”, whereas Tobias was 

responsible for collecting, biochemically processing, and measuring the samples on the 

GC-MS. The annotation of the polar phase metabolites was performed by me, whereas 

Tobias annotated the lipid phase. The data analysis, figure preparation, and conclusions 

were acquired through a tight collaborative effort with equal contributions in all 

respects. 

 

4.2 Materials and Methods 

4.2.1 Sample Collection 

Full capillary blood was obtained by puncture of fingertips using a lancetting pen (BD 

OneTouch comfort, 0.2mm, 33G). 10 µL were collected and immediately added to ice-

cold MCW. The extraction, derivatization, and GC-MS measurement procedure for 

both polar and lipid phases was identical to the one used for blood serum samples in 
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the torpor study. Polar phase metabolites were measured in technical duplicate, fatty 

acids in the apolar phase only once. 

4.2.2 Data Analysis and Imputation 

Data was acquired and preprocessed as described in the Materials and Methods section 

of the torpor study, and processed using Maui-SILVIA. Data was not imputed, as there 

were no biological replicates measured. Samples where a metabolite was not found 

were assigned the default value of 0 to allow for principle component analysis and 

clustering using full data matrices. The Campus Run samples were normalized by the 

sum of intensity of all peaks contained in each sample instead of CA. This 

normalization by overall intensity was employed here because the human volunteer did 

not take in fluids during the exercise regime and the blood was notably “thicker”, 

meaning more concentrated, in some phases when compared to others, leading to 

observations of nearly all metabolites strongly increasing or decreasing in accordance 

in certain samples. All analysis was carried out using R and the packages referenced in 

the R-References section.  

4.2.3 SINQ - Isotope Standards and Sample Preparation 

A full list of isotope standards used for the SINQ study (see Campus Run discussion) 

can be found in the supplementary section. 50 µL of blood serum samples were added 

to 1 mL MCW containing the isotope standard compounds in appropriate 

concentrations (Supplementary Table 1). Samples were extracted, derivatized, and 

measured on the GC-MS like the blood serum samples of the torpor study, and analyzed 

using Maui-SILVIA as described earlier. Graphs were generated using R and 

referenced packages. 
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4.3 Results 

4.3.1 Experimental Design 

To assess the dynamic changes in the full blood metabolome during exercise in a human 

subject, the following experimental design was employed. After an overnight fast 

(12 hours), the first sample was taken as a pre-exercise (R0) control. I then ran around 

the MDC campus, the distance of one round being 2.2 kilometers, collecting samples 

after each round for a total of six rounds. The one exception was round three (R3), in 

which the “hitting the wall” feeling was experienced and I took a shortcut in fear of 

missing this crucial time point (Figure 4.1 A). The R6 sample represents the sample 

immediately after completion of the last round, and a final sample was taken after lunch 

(a salad and two wiener sausages) about an hour after the exercise as a representation 

of post-exercise recovery (post lunch, or PL). Please note that each round took a little 

over ten minutes, the entire run of six rounds having lasted about one hour and ten 

minutes. The experiment was designed not for reproducibility (a single volunteer), but 

rather to allow for flexibility to sample at crucial time points. 

 

At the time of every sampling event, I reported my personal feeling of well-being 

(Figure 4.1 B). I experienced a strong feeling of discomfort (or “hitting the wall”) after 

exercising for roughly twenty-five minutes (R3). This feeling occurred much earlier 

than I expected, likely due to the overnight fast. The immediately following “high” 

occurred in R4, after which the rest of the run was classified as “average” from an 

energetic standpoint of feeling, although muscle fatigue began to be felt in R5 and more 

strongly in R6. 

 

We measured a total of ninety key metabolites of glycolysis, the TCA cycle, the urea 

cycle, ketone body production, amino acid metabolism, and fatty acid species, as well 

as 124 unknown features. Thirty-nine of the known metabolites were absolutely 

quantified using the Quant mix. While most blood markers for exercise currently in use 

are proteinaceous and indicate different levels of muscle, liver, kidney, or heart damage 

and/or function, blood metabolites measured are usually restricted to glucose, global 

free fatty acids, glycerol, lactate, and creatinine (Banfi et al. 2012). This is, to our 

knowledge, the first metabolomic analysis of full capillary blood in ten-minute intervals 
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during exercise in humans, although similar studies with less frequent sampling have 

been performed using blood plasma and different MS technologies (Krug et al. 2012). 

 

 

 

Figure 4.1 – States of physiological well-being are reflected in the metabolome of 

human capillary blood. A) A map of the MDC campus, made by Tobias Opialla using 

OpenStreetMap, shows the running trail in orange and the shortcut used in R3 in light orange. 

B) An illustrative diagram displaying the reported feeling of physical well-being throughout 

the exercise regime. C) PCA of the technical replicates of the Campus Run shows a clear 

separation of most sampling time points from one another when plotting the first two PCs. D) 

Hierarchical clustering using the average linkage method grouped the sampling time points into 

clusters that correspond with the reported feeling of well-being. 
 

4.3.2 States of Well-Being are Reflected in the Blood Metabolome 

To investigate the degree of relation between the different sampling time points, each 

technical replicate of each time point was treated as an individual sample. This is not a 

statistical trick, as we have refrained from any kind of statistical analysis in this single 

subject dataset. It merely serves to show that technical replicates are more similar to 

one another than to other sampling time points (with the exception of R5 and R6, which 

appear to be nearly identical), underlining our technical reproducibility and ability to 

resolve biological differences in the samples of distinct sampling points.  
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As can be clearly observed in PCA and hierarchical clustering, technical replicates are 

most alike to their counterpart (Figures 4.1 C and D). When considering the different 

sampling time points in relation to one another (hierarchical clustering), a surprising 

picture emerges: The time points in which personal well-being was perceived to be 

most similar are more closely related. The R0 control, the “high” phase (R4), and the 

PL sample formed one branch. The second major branch was made of all other time 

points of the run, with R3 being the least related to those during which I felt best. 

Incredibly, the individual feeling of well-being appeared to be reflected in the 

metabolomic signature obtained from a single drop of capillary blood.  

4.3.3 Fuel Utilization and Mobilization 

Glucose is considered the most important fuel source in muscle during strenuous 

exercise, but remains important even in exercise conditions that optimize the 

mobilization and use of fat reserves. It stems from a combination of internal muscle 

glycogen stores and plasma glucose that is taken up mainly via GLUT4 transporters 

(Rose & Richter 2005). 

 

Tracking glucose dynamically, we have observed an initial decrease in blood levels 

occurring in R1, likely corresponding to muscle glucose uptake and its concurrent 

utilization as indicated by lactate production upon exercise initiation (Figure 4.2). 

Glucose levels increased in R2 and then minimally overshot R0 levels in R3, 

representing the release of glucose after its mobilization from glycogen stores in the 

liver. During R3 and R4, lactate was cleared from the blood, which is in accordance 

with the activation of the Cori cycle in which lactate produced in muscle is taken up by 

the liver to fuel gluconeogenesis (Brooks 1998). Glucose levels then reached a plateau 

in R4, R5, and R6, while lactate accumulated in R5 and R6 as muscle fatigue became 

noticeable. In PL, the levels of glucose returned to those observed at R0. This behavior 

is in agreement with the current literature (Goodwin 2010; Zinker et al. 1990). 

Glycerol levels were found to increase during R1, indicating fatty acid release at 

exercise onset, but immediately decreased in R2. They reached their maximum in R4 

and R5 (Figure 4.3). The two most abundant fatty acids (palmitate and stearate)  
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Figure 4.2 – Glucose and lactate behavior during the Campus Run. Glucose levels 

initially dropped in R1, likely due to muscle uptake, recovered by R3, and then settled to an 

intermediate level in R4, R5, and R6, before returning to R0 levels in PL. Lactate levels 

increased abruptly at exercise onset, decreased towards R4 before increasing again in the last 

two rounds where muscle fatigue was felt, and dropped to R0 levels after exercise completion. 

 

showed a corresponding pattern, with two periods of blood level increases in 

accordance with glycerol in R1 and R4 (Figure 4.3). One exception was the PL phase, 

where the fatty acid abundances rose without a concurrent increase in glycerol levels. 

This post-exercise phenomenon has been observed in other exercise regimes and likely 

does not indicate fatty acid uptake from food (Romijn et al. 1993; Bahr et al. 1990; 

Yuen et al. 2012). Interestingly, in the first phase of glycerol and fatty acid release in 

R1, glycerol levels dropped in R2 but fatty acids remained elevated, whereas the second 

release in R4 showed the reverse, with fatty acids decreasing between R5 and R6 and 

glycerol levels remaining elevated in R6. This observation is in line with improved fatty 

acid uptake into muscles due to FAT/CD36 transporter translocation as exercise 

progresses (Jeppesen & Kiens 2012). It is also of note that between R2 and R3, when 

fatty acid levels decreased, -hydroxybutyrate levels rose and remained elevated before 

accumulating extensively at the PL sampling time point (Figure 4.3).  

 

Taken together, a picture emerges in which the very start of exercise relies heavily on 

muscle and blood glucose and the glycolysis thereof as indicated by glucose and lactate 

behavior. The initial glucose uptake is overcompensated by the liver through 

mobilization of its glycogen stores. Concurrent with the glucose depletion, an initial 

burst of fatty acid release is immediately followed by ketone body production during a 

time when lactate serves as a substrate for gluconeogenesis. By R4, glucose levels 

stabilize, likely balanced by gluconeogenic output from the liver, glycolysis in the  
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Figure 4.3 – Lipolysis during the Campus Run. Based on glycerol, palmitate, and 

stearate (the two most abundant fatty acids measured) levels, two phases of fatty acid 

mobilization occurred during the Campus Run (R1 and between R4 and R5). The ketone body 

-hydroxybutyrate was produced following the initial lipolytic wave in R1 and remained 

elevated thereafter, accumulating vastly once the physical activity was concluded. 

 

active muscle, and additional energy being available in the form of fatty acids and 

ketone bodies. The switch from a strongly glycolytic to a state in which lipolysis 

actively contributes to satisfying energy requirements is also mirrored in the 

abundances of TCA cycle intermediates, whose increase in blood likely corresponds to 

increased TCA cycle activity in muscle. While intermediates are lowest in R0 and R1 

samples, they increase rapidly in R2 and remain elevated thereafter until PL (Figure 

4.4). 

4.3.4 Amino Acids 

The third potential fuel source for the body are amino acids. However, amino acid 

metabolism in muscle during exercise has been considered to contribute minimally to 

meeting energetic demands (Hargreaves 2000; Wagenmakers 1998). Two important 

roles that amino acids could play are the replenishment of TCA cycle intermediates and 

provision of alanine and glutamate to the blood stream, which in the liver can be used 

to fuel gluconeogenesis (Wagenmakers 1998). The degree to which amino acid 
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metabolism of muscle and liver are reflected in blood were not entirely clear in the 

torpor study and have not been systematically studied in sufficient detail in exercise to 

provide a simple explanation of amino acid behavior observed in the Campus Run.  

 

 

Figure 4.4 – TCA cycle intermediates during the Campus Run. TCA cycle 

intermediates rose in the blood after the initial wave of fatty acid release in R2, and remained 

elevated thereafter until exercise completion. This is in accordance with the initial phase of 

physical exercise being fueled mostly by glucose and glycogen stores, after which a 

combination of fatty acids and carbohydrates are metabolized in muscle. 

 

Nonetheless, it is worth reporting the observed changes in amino acid abundance as 

well as urea cycle intermediates to gather a first impression. Urea levels first dropped 

and then recovered to R0 levels in R3, after which a continuous but minor increase was 

observed until PL (Figure 4.5). Muscle proteolysis and amino acid breakdown can 

occur after glycogen stores are depleted in muscle, and urea and ornithine levels became 

concurrently elevated shortly after the major wave of glucose release and the activation 

of the TCA cycle, whose intermediates amino acids are known to produce (De Feo et 

al. 2003; Wagenmakers 1998). 

 

The two major amino acid species secreted from muscle to be taken up by the liver are 

alanine and glutamine (Wagenmakers 1998). Alanine increased in R2, peaked in R4, 

and returned to R0 levels at PL, whereas pyroglutamate (a combination of  
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Figure 4.5 – Amino acid metabolism during the Campus Run. Urea levels first 

decreased, then recovered to baseline levels in R3, and increased mildly thereafter. Ornithine, 

an important urea cycle intermediate, showed a similar behavior.  
 

glutamine, glutamate, and pyroglutamate) remained stable at R0 levels after a transient 

drop in R1 (Figure 4.6). Interestingly, alanine behaved differently in the Campus Run 

than during torpor, where its clearance from blood was interpreted as it being used for 

gluconeogenesis. In the Campus Run, lactate could be the primary metabolite used by 

the liver to produce new glucose, with alanine either playing a less or no significant 

role. Alternatively, it is possible that alanine was secreted in such abundance that the 

rate of liver uptake was insufficient to significantly deplete blood alanine levels. 

 

 
Figure 4.6 – Alanine and glutamine during the Campus Run. The two major amino 

acids released by muscle to fuel gluconeogenesis in the liver and kidney are alanine and 

pyroglutamate (a combination of glutamine, glutamate, and pyroglutamate). Alanine levels 

increased and peaked in R4 before falling back to baseline levels after exercise completion. 

Pyroglutamate first decreased in R1, recovered to baseline levels in R4, and remained stable 

thereafter. 

 

Branched-chain amino acids (BCAA) and aromatic amino acids showed a similar 

behavior, in that their levels first decreased in R1, and then recovered or overshot in R3 

after which they remained fairly stable (Figure 4.7 A and B). The one exception  
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Figure 4.7 – BCAA and aromatic amino acids in the Campus Run. A) BCAAs 

uniformly decreased in R1, recovered or overshot baseline levels in R3, and remained fairly 

stable thereafter. B) A similar behavior was observed for tryptophan and tyrosine. 

Phenylalanine decreased initially, its lowest level observed in R3, increased shortly in R4, 

decreased in R5 and R6, and rose again after exercise completion.  
 

was phenylalanine, which displayed a behavior unlike any other amino acid. Generally, 

it appears that many amino acids were decreased in R1 and then recovered to differing 

degrees, either reaching R0 levels, overshooting them, or remaining slightly lower, but 

generally displaying stable levels from R3 and R4 onwards (Figure 4.8).  

 

 

 

Figure 4.8 – Other amino 

acids in the Campus Run. 
Amino acids displayed here 

represent the most common 

amino acid trend in the Campus 

Run, in that their abundance 

decreased in the first two rounds 

after which they recovered and 

remained fairly stable thereafter. 
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As a validation of our dataset and especially amino acid behavior, we have found a 

correlation between certain amino acids and glucose abundance as described in a report 

using a similar physical exercise regime and measuring metabolites with a MS-based 

kit (Figure 4.9) (Krug et al. 2012). 

 

 

Figure 4.9 – Glucose correlates with a 

selection of amino acids in the Campus 

Run.  
Pearson correlations of glucose with certain 

amino acids reported in a study using a 

similar exercise regime and metabolomics 

approach was replicated in the Campus Run. 

(Blue indicates a positive correlation; the 

color depth and circle area colored 

correspond to the strength of correlation). 

 

 

 

 

In conclusion, most amino acids followed the trend of an initial depletion in R1 and 

subsequent recovery to R0 levels in R3. At that time, ornithine and urea levels rose, 

indicating urea cycle activity. This evidence is reminiscent of amino acid and urea cycle 

behavior during the early phases of torpor in liver, muscle, and blood serum, and will 

be considered in more detail in the discussion below. 

4.3.5 Hypoxia 

Metabolite levels measured from full blood, as used in this study, are a combination of 

those found in erythrocytes and other blood cells and those freely circulating. While 

there have been no systematic comparisons between metabolite levels in full blood and 

serum, some metabolites are known to be found nearly exclusively in a certain tissue 

or, as in the case of 2,3-bisphosphoglycerate (2,3-BPG), in erythrocytes. It has been 

established as a marker for hypoxia, its accumulation causing an increased affinity of 

hemoglobin for oxygen, thereby enhancing oxygen delivery to tissues in need (Benesch 

& Benesch 1967). Interestingly, 2,3-BPG was absent in R0, R1, and R2 samples, but 

measured in high abundance in R3 before it decreased in R4, disappeared in R5, and 

detected in lower abundance in R6 and after exercise completion (Figure 4.10). 
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Hypoxia in erythrocytes therefore occurred during the time of strongest physical 

discomfort, its subsequent decrease coinciding with improved well-being. 

 

 

Figure 4.10 – Hypoxia in 

erythrocytes during the Campus 

Run.  
2,3-BPG was undetectable until 

peaking in R3, the round of greatest 

physical discomfort, after which it 

decreased to disappearance in R5. It 

was detected again in the final round 

and to a lesser degree after exercise 

completion. 
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4.4 Discussion 

4.4.1 The Campus Run 

The Campus Run experiment has served well as a proof-of-principle study to show that 

the dynamic investigation of physiological processes with our convenient sampling 

method and metabolomic analysis has immense potential to provide mechanistic insight 

into human metabolism. Future studies with higher numbers of volunteers and 

concurrent monitoring of muscle and blood metabolism are already planned in 

collaboration with ECRC researchers at the MDC, the ethics application for the 

proposed experiments having already been approved by the Charité. In fact, the 

feedback to the Campus Run was so positive and encouraging that a manuscript is in 

preparation and will be submitted for publication at the time of completion of this 

dissertation. 

 

While I am timid to interpret in detail a study with a single volunteer, several interesting 

observations have been made.  

 

Glycolytic activity, plasma glucose uptake, and fatty acid mobilization that have been 

described or hypothesized to occur during exercise have been observed in the Campus 

Run with a greater time resolution than ever before. An increase of mitochondrial 

activity, as indicated by TCA cycle intermediate abundance, immediately followed the 

initial burst of lipolysis, and the major ketone body β-hydroxybutyrate was produced 

in response to the energetic challenge of exercise after fasting, its appearance usually 

considered indicative of starvation. 

 

The hypoxia marker 2,3-BPG appeared and peaked during the sampling time point of 

greatest physical discomfort in R3. This was also the time point during which the body 

seemed to try to establish a balance of many metabolites and reach a new equilibrium 

of fuel source management, the success of which in combination with a reduction in 

experienced hypoxia was reflected in a brief feeling of elevation. The behavior of amino 

acids that were measured in both the Campus Run and a different but comparable study 

was similar (Krug et al. 2012). Overall, the information of physical well-being was 

encoded in the metabolome of a single drop of capillary blood throughout exercise, 
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indicating that the decoding of blood metabolome composition and its dynamics might 

provide biologically meaningful insights into human physiology.  

 

Beyond the consideration of exercise physiology and the medically relevant 

hypometabolic state of daily torpor, this dissertation aimed at the translation of model 

system-based systems biology into clinical applicability.  This transition is never trivial 

and often not overcome. There are two principle difficulties: 1) the translation of 

biological insights from model systems to humans and 2) the level of maturity required 

for a technology to transcend basic research, where it is employed successfully by virtue 

of few highly trained individuals that ensure reproducibility and high data quality. Both 

are addressed in the following two sections. 

4.4.2 Translational Systems Biology – From Mouse to Man 

Mechanistic insights into metabolism are most easily obtained when tracking a process 

dynamically, as exemplified by both the torpor and Campus Run studies. While it might 

be possible to draw diagnostic insight from a single metabolomic measurement in the 

future, the elucidation of human physiology at this time might therefore be most 

successful by studying physiological responses to defined challenges. One challenge 

common to both mice arousing from torpor and the human volunteer during the Campus 

Run was the initiation of muscle activity in a starved state. It occurred as shivering 

thermogenesis between the deep and exit phase of torpor and in the form of exercise 

initiation between R0 and R1 of the Campus Run. 

 

The comparison of the two datasets are complicated by the difference in the species of 

origin, unknown differences in blood serum and full capillary blood metabolomes, and 

the times of sample measurement being separated by many months. These difficulties 

are exemplary for attempts at translating model system studies into the human context. 

To circumvent them, a measure independent of absolute metabolite intensities is 

required to remove technical and inter-species variation (there is no way at present to 

correct for the full blood to blood serum differences). 

 

Metabolite intensity ratios are independent of the absolute intensities and may react 

more sensitively than changes in abundance of single metabolites. Since fuel source 

selection and glycolytic activity were strongly reflected in both the torpor and Campus 



132 

 

Run studies, ratios of metabolites that are routinely detected in both blood serum and 

full capillary blood with relation to these processes of interest were formed between the 

deep and exit phases, as well as the R0 and R1 sampling time points (Figure 4.11).  

 

 

 

Figure 4.11 – Ratios of key metabolites of glycolysis, fat store mobilization, and 

the TCA cycle in blood are indicative of pathway activities in internal organs. An 

illustration of glycolysis and the TCA cycle is displayed. Metabolites used to build ratios are 

colored red and other pathway intermediates black. Ratios are plotted as the log2 fold change 

to the initial condition. Campus Run ratios are plotted in red, torpor ratios in black. Ratios 

between glycerol and metabolites involved in glycolysis indicate the mobilization of fat stores. 

Ratios between glucose and the glycolysis end products pyruvate and lactate, as well as ratios 

between pyruvate and the TCA cycle intermediates citrate and malate indicate the strong 

activation of glycolysis during exercise initiation and torpor arousal. The differences in 

magnitude of changes of ratios between torpor and the Campus Run are due to the anticipatory 

accumulation of glucose through hepatic gluconeogenesis during the deep torpor phase. This 

pre-emptive supplication of future fuel did not occur previous to exercise initiation in the 

Campus Run, rendering the magnitudes of change more extreme.  
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The ratio between glycerol and glucose increased in both the Campus Run and torpor 

in agreement with fat store mobilization at those time points. Similarly, the increase in 

glycolytic activity observed in both datasets was reflected in decreasing ratios of 

glucose to lactate, glucose to pyruvate, and glycerol to lactate, indicating the conversion 

of glucose to the end products of glycolysis. It is interesting that in all ratios that contain 

glucose, the ratio changes were identical in direction but of a smaller magnitude in 

torpor. This difference reflects the glucose accumulation in blood through hepatic 

gluconeogenesis during the deep phase of torpor, which anticipated the subsequent 

glucose requirement during arousal. Such an anticipatory process did not take place in 

the Campus Run so that the challenge to maintain homeostasis was likely of a greater 

magnitude. The glycolytic activation in both processes was also reflected in the 

increasing ratios of pyruvate to the TCA cycle intermediates citrate and malate, 

suggesting that pyruvate was generated faster than it was able to enter the TCA cycle. 

Indicated by the decreased ratio of pyruvate to lactate, the increased pyruvate 

production and its accumulation relative to TCA cycle intermediates was compensated 

by its abundant conversion to lactate. The smaller magnitude in the pyruvate to lactate 

ratio in torpor was due to a much stronger increase of lactate levels during the Campus 

Run when compared to that having occurred during torpor arousal (data not shown). 

 

Taken together, these data show that ratios of blood metabolites measured before and 

after a challenge can encode the pathway activity of the organs being challenged, and 

that the direction of these ratio changes are translatable from mice to men. Crucially, 

the major differences observed in ratio magnitudes represent the differences in torpor 

and exercise physiology, in that the orchestrated process of torpor anticipates and 

buffers the energetic need through blood glucose enrichment, a process not observed 

prior to exercise initiation. Additionally, the challenges were not identical, and whereas 

the initial phase of exercise is reliant on glycolysis, shivering thermogenesis appears to 

make use of both glycolytic and oxidative muscle fibers (Haman et al. 2004). 

Differences seem to therefore be largely independent of blood cell contributions to the 

full blood metabolome when directly compared to serum. Please note that this holds 

true also for the novel diagnostic ratios described below. In conclusion, metabolite 

ratios as observed in these studies can in principle contain two vital pieces of 

information in the diagnostic context: 1) the direction of change in key ratios might 
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encode which pathways change in activity, and 2) the magnitude of change might be 

reflective of the degree of activity changes.  

 

The concept of using specific challenges for diagnostic purposes is not novel and 

employed, for example, in glucose-tolerance tests to diagnose diabetic patients. The 

great improvement in using GC-MS technology is the ability to concurrently measure 

and analyze the response of a much greater number of metabolites indicative of a 

greater variety of metabolic pathways, with their interrelationships expressed as 

“diagnostic ratios” promising novel insights into a variety of pathologies. 

 

One example of potential novel diagnostic ratios corresponding to physiological 

processes directly translated from the mouse model-based torpor study to the human 

Campus Run metabolome concerns changes in amino acid homeostasis. In the torpor 

study, several amino acids were observed to accumulate towards the deep torpor phase 

in liver, muscle, and blood, with a concurrent increase in ornithine levels in liver and a 

subsequent accumulation of urea, indicating both an amino acid accumulation due to 

proteolysis or an inhibition of protein synthesis, as well as active amino acid 

catabolism. Searching for a representation of this shift in amino acid metabolism during 

torpor led to the discovery of the ratios of the two essential BCAAs isoleucine and 

valine to the closely related amino acids glycine and serine (Figure 4.12 A). All four 

ratios increased upon amino acid accumulation and processing and subsequently 

decreased after arousal from torpor when protein synthesis presumably resumes 

(Figure 4.12 C) (Berriel Diaz et al. 2004). 

 

Proteolysis actively contributes to muscle physiology during exercise and occurs upon 

depletion of muscle glycogen stores (De Feo et al. 2003; Wagenmakers 1998). 

Importantly, the ratios indicating amino acid accumulation and catabolism in torpor 

spiked during R3 in the Campus Run when greatest physical discomfort, the abundance 

of ketones and fatty acids in blood, and the increased abundance of TCA cycle 

intermediates (which amino acids are known to produce) are in congruence with muscle 

glycogen depletion and proteolysis (Figure 4.12 B). In support of active amino acid 

catabolism during this time in the Campus Run, urea levels displayed a sharp increase 

in R3 (Figure 4.12 C). Interestingly, a second, although less pronounced spike in three 

of the four ratios occurred in R6 and was followed by another sharp, although less 
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pronounced increase in urea levels immediately thereafter. I therefore propose these 

four ratios to be representative of a shift of amino acid metabolism towards a more 

catabolic state, their mechanistic origin having been first discovered in mice and then 

successfully translated into the context of human blood metabolomics to hopefully be 

of diagnostic value in the future. 

 

 

Figure 4.12 – Diagnostic ratios indicating proteolysis in blood serum of mice are 

translatable to full capillary blood metabolomics in a human volunteer. A) The 

ratios of isoleucine to glycine and serine, as well as valine to glycine and serine are greatest in 

the early torpor phases in blood serum (red) when amino acid accumulation and processing was 

observed in liver (light blue) and, to a lesser extent, muscle (light orange). B) The diagnostic 

ratios discovered in mice are consistent with proteolysis occurring in the Campus Run during 

a time (R3) in which they have previously been observed in studies of human exercise 

physiology. A second, less pronounced peak in R6 might be indicative of a second wave of 

protein degradation during a time in which muscle fatigue was experienced. C) Urea levels rise 

immediately after diagnostic ratios indicate proteolysis in both mice (between entry and deep 

phase, Urea-Torpor) and humans (R3, and to a lesser extent, PL, Urea-CR), indicating 

subsequent amino acid catabolism. 
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4.4.3 Translational Systems Biology – From Bench to Bedside 

 

In addition to the translation of biological insight from model system-based 

experiments into the context of human physiology, two major issues need to be resolved 

before the proof-of-principle Campus Run study and its simple yet powerful sampling 

strategy can be moved into a clinical context: 

 

1) Beyond the use of ratios, a useful large-scale diagnostic metabolomic assay 

should ideally determine absolute metabolite concentrations in such a way that 

comparability between different patients measured at different time points and 

even on different machines is guaranteed. Only by robustly and reproducibly 

obtaining absolute metabolite concentrations can the full potential of 

metabolomic diagnostics be realized, as future meta-analyses on thousands of 

patient samples to classify physiological patterns and discover mechanistic 

insights can only be as powerful as the comparability of the underlying data.  

 

2) Reasonable estimates of the biological variation of known and unknown 

metabolites that are detectable in human blood are required in order to be able 

to realistically distinguish biologically significant from insignificant differences 

in metabolite abundance and their ratios.  

 

A study addressing the latter issue is planned and will soon be under way. It will profile 

roughly four hundred male and female volunteers of different ages and various physical 

conditions, record physiological and physical characteristics, and collect information 

on dietary habits in order to obtain a reasonable representation of the biological 

variation of the general population.  

 

An implementation of a possible solution for issues of reproducibility, robustness, and 

absolute quantification has in principle been established in collaboration with the 

Pischon lab at the ECRC/MDC in Berlin-Buch. Stable isotope normalization and 

quantification (SINQ) is an isotope dilution strategy to absolutely quantify and 

normalize patient serum and full blood samples by means of internal heavy isotope 

standards. The concept of isotope dilution is not novel in the context of MS but is 

nonetheless technically challenging (Meija & Mester 2008). It had not been employed 



137 

 

before measurement of the patient sera provided by the Pischon group as it was beyond 

practical and efficient use before its computational processing was implemented in 

SILVIA. 

 

In the SINQ methodology, samples are supplemented with 13C containing standard 

metabolites in known quantity in the first step of the sample preparation procedure (in 

this case carried out by Julia Diesbach, a technician in the Kempa Lab). They therefore 

undergo all processing steps identically to their patient-derived 12C counterpart, and 

therefore contain all processing variation information. 13C-containing and 12C-

containing metabolites (isotopologues) behave essentially and are detected identically 

in GC-MS, meaning that they co-elute and their mass spectrum contains both signals 

from the 12C sample metabolite and the 13C standard. The fact that the 13C reference 

metabolite is treated, passes the GC, and is detected in the MS at the same time and in 

an identical way makes isotope dilution in theory the best internal quantification 

standard.  

 

Using SILVIA, comparing 13C signal with 12C signal abundance allows for the 

calculation of the relative intensity of 12C to 13C metabolite fragments, and given the 

known concentration of 13C standard added to the sample, SILVIA calculates the 

absolute concentration of the patient’s target metabolite. The natural abundance of 13C 

in metabolite fragments is taken into consideration (see Maui-SILVIA Results section). 

Because all samples contain identical standards as internal controls, one obtains a near 

perfect normalization, absolute quantification, and comparability between different 

samples. At the risk of being disproved in the future by a currently unforeseeable 

development, the use of 13C standards for absolute quantification and normalization 

represents the best technically possible strategy to date (Meija & Mester 2008). Its 

implementation is therefore a significant success. 

 

Using the SINQ strategy, an analysis of a first set of human patients’ blood serum was 

carried out to attain a feeling for the reproducibility and biological variation of 

metabolite abundances. In this proof-of-principle study, twenty-five metabolites in over 

eighty patients were normalized and absolutely quantified using SINQ (Supplementary 

Table 1, Figure 4.13). As exemplified by the symmetric nature of the boxplots for all 

metabolites, most patients fitted well into a normal distribution of metabolite 
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abundances, with some metabolites having mild and others strong outliers. While this 

is a preliminary result, it is already of potential significance. It indicates that the 

biological variation appears to fit near-normal distributions for all metabolites (Figure 

4.13, data not shown), and furthermore that the isotope dilution method has been 

established in the form of SINQ. The study in collaboration with the Pischon lab will 

now consider in detail the technical aspects of reproducibility and compare SINQ to 

other absolute quantification strategies currently in use, as well as correlate metabolite 

levels with other physiological parameters of the patients in an attempt to discover 

biomarkers or potential mechanisms of pathological states. 

 

 

 

Figure 4.13 – Distributions of SINQ-quantified metabolites in human blood 

serum. Box-plots of six metabolites quantified with SINQ show near-normal distributions 

with no, one, or a few outliers (each spot represents a single patient, red points and lines indicate 

outliers) in human blood serum obtained from a patient cohort in collaboration with AG 

Pischon.  
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In summary, the Campus Run itself, the translatability of mechanistic observations of 

a model system-based basic research study to human physiology as assessed by full 

capillary blood metabolomics, and successful implementation of SINQ provide the 

proof-of-principle evidence required to advance towards mechanistic and diagnostic 

insights from blood metabolomics in human disease.  
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5. Conclusions and Perspective 

 

This dissertation describes recent efforts in trying to realize the full potential of 

metabolomics for mechanistic studies in systems biology research and its translation 

into systems medicine in the form of full capillary blood metabolomics. Its ambitious 

scope encompasses many facets of the systems biology approach, including 

methodological and extensive computational developments, the extensive metabolomic 

analysis of several tissues and body fluids throughout a biological process of medical 

relevance, as well as the first steps of their translation into the context of human systems 

medicine. 

 

With SILVIA, I have developed software that for the first time allowed the efficient 

processing of manually validated data of a large number of samples, facilitating 

methodological developments and vastly improving user-friendliness. Using SILVIA, 

the metabolically dynamic process of daily torpor was assessed in mice, providing 

novel and time-resolved mechanistic insights into liver, muscle, and WAT function. 

Due to its extensive coverage of metabolites and concurrent analysis of several tissues, 

CSF, and blood serum simultaneously and throughout a biological phenomenon, it 

revealed the surprising extend of differences between the blood serum and CSF, and 

allowed for a first rudimentary understanding of how organ metabolism is reflected in 

the blood metabolome during the entry into, maintenance of, and exit from a 

hypometabolic state.  

 

In collaboration with Tobias Opialla I developed a method to combine a simple, fast, 

minimally invasive, and convenient patient blood sampling procedure with the GC-MS 

technological platform. It was employed in the Campus Run study to show that 

subjective grades of feeling of well-being were encoded in the changes of the full 

capillary blood metabolome over the course of an exercise regime. Similar to the torpor 

study, the Campus Run blood metabolomes reflected metabolic process known to occur 

in muscle and liver during exercise and both recapitulated and extended previous 

findings. Crucially, changes in diagnostic ratios concerning fuel source utilization and 

amino acid homeostasis observed in blood serum metabolomes of mice during torpor 

were translatable into the context of the human full capillary blood metabolome during 
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exercise. In combination with the first successful implementation of the isotope dilution 

quantification strategy SINQ, the methodological maturity of metabolomics might be 

sufficient to be instructional in human patient-based research and medical diagnostics 

in the near future. 

 

In their combination, the studies presented in this dissertation exemplify a first 

implementation of a strategy of translational systems biology that I believe will be 

instrumental in elucidating metabolic mechanisms of human diseases.  

 

This strategy is composed of three basic elements. First, continuous development of 

high quality software will facilitate methodological advances and increase the 

processing speed, user-friendliness, and validity of GC-MS, or in a more general 

context, omics data. Secondly, studies dynamically tracking the metabolic changes 

occurring in both organs and blood in model systems like the laboratory mouse will 

lead to an understanding of how organ physiology and pathophysiology are reflected in 

the blood metabolome. Finally, continuous investigation and the resulting accumulation 

of human blood metabolome data of the homeostatic state and specific challenge 

protocols will allow for both classification of patients into disease, prognostic, and 

treatment option categories, and, using insights gained from corresponding model 

system studies, the understanding of disease mechanisms.  

 

It is my hope that with this three-tiered strategy, metabolomic profiling will soon 

advance to be a standard of care in hospitals around the world, aiding doctors in 

diagnostic decisions and providing a plethora of data from which novel mechanistic 

knowledge can be generated. 
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6. Publications 

 

6.1 Maui-SILVIA 

 

Publication of the SILVIA software package has been held back in favor of patenting 

its visualization and processing approach in combination with the Ident mixes. The 

“Erfindungsmeldung” has been completed and will soon be under scrutiny before the 

finalization of a patent application at Ascenion GmbH, Berlin. 

 

6.2 Torpor 

 

Publication of the torpor study has been held back in favor of measuring the kidney 

samples in addition to liver, muscle, WAT, blood serum, and CSF. The manuscript 

should be completed and submitted by Summer 2014. 

 

6.3 Campus Run 

 

The Campus Run study will be submitted for publication at the time of completion of 

this thesis. 
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7. Supplement  

 

 

Supplementary Figure 1 – Amino acids in blood serum, liver, and muscle during 

Torpor. Plots of all detected amino acids showing their changes in abundance in blood serum 

(red), liver (blue), and muscle (orange). While correlations between all three tissues can be 

observed for some amino acids (isoleucine, valine), most behave differently, making a 

generalized conclusion about the site/s of proteolysis and/or secretion difficult. 
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Supplementary Table 1 – 13C standards used in the SINQ study. 

 

Catalog No. Isotope Produced By Supplier 
Concentration in 

Sample (mM) 

604623-1G Alanine Sigma Sigma 2.664 

CNLM-539-H-1 Arginine Campro Scientific Eurisotop 0.091 

750824-SPEC Asparagine Sigma Sigma 0.601 

488607-100MG Citrate Sigma Sigma 0.206 

488615-500MG Creatinine Sigma Sigma 2.103 

415553-250MG Fructose Sigma Sigma 0.132 

CS01-183_417 Glucose Campro Scientific Eurisotop 8.597 

CLM-1822-0.5 Glutamine Campro Scientific Eurisotop 4.235 

279439-250MG Glycine Sigma Sigma 0.526 

604771-SPEC Isoleucine Sigma Sigma 0.605 

CLM1579 Lactate Campro Scientific Eurisotop 0.695 

490059-1G Leucine Sigma Sigma 0.303 

CNLM-291-H-PK Lysine Campro Scientific Eurisotop 0.420 

603899-SPEC Malate Sigma Sigma 0.030 

736147-SPEC Ornithine Sigma Sigma 0.115 

490091-250MG Phenylalanine Sigma Sigma 0.120 

654183-SPEC Proline Sigma Sigma 0.207 

CLM-2440-1 Pyruvate Campro Scientific Eurisotop 0.071 

604720-100MG Serine Sigma Sigma 0.377 

CS01-183_762 Sorbitol Campro Scientific Eurisotop 0.009 

485349-500MG Succinate Sigma Sigma 0.013 

604836-SPEC Tryptophan Sigma Sigma 0.117 

486264-500MG Uracil Sigma Sigma 0.035 

603430-SPEC Urea Sigma Sigma 2.621 

490164-1G Valine Sigma Sigma 0.677 
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