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Abstract

Shotgun proteomics with Liquid Chromatography (LC) coupled to Tandem Mass Spec-
trometry (MS/MS) is a key technology for protein identification and quantitation. Pro-
tein identification is done indirectly: detected peptide signals are fragmented by MS/MS
and their sequence is reconstructed. Afterwards, the identified peptides are used to in-
fer the proteins present in a sample. The problem of choosing the peptide signals that
shall be identified with MS/MS is called precursor ion selection. Most workflows use
data-dependent acquisition for precursor ion selection despite known drawbacks like
data redundancy, limited reproducibility or a bias towards high-abundance proteins.
In this thesis, we formulate optimization problems for different aspects of precursor ion
selection to overcome these weaknesses.

In the first part of this work we develop inclusion lists aiming at optimal precursor ion
selection given different input information. We trace precursor ion selection back to
known combinatorial problems and develop linear program (LP) formulations. The first
method creates an inclusion list given a set of detected features in an LC-MS map. We
show that this setting is an instance of the Knapsack Problem. The corresponding LP
can be solved efficiently and yields inclusion lists that schedule more precursors than
standard methods when the number of precursors per fraction is limited. Furthermore,
we develop a method for inclusion list creation based on a list of proteins of interest.
We employ retention time and detectability prediction to infer LC-MS features. Based
on peptide detectability, we introduce protein detectabilities that reflect the likelihood
of detecting and identifying a protein. By maximizing the sum of protein detectabilities
we create an inclusion list of limited size that covers a maximum number of proteins.

In the second part of the thesis, we focus on iterative precursor ion selection (IPS)
with LC-MALDI MS/MS. Here, after a fixed number of acquired MS/MS spectra their
identification results are evaluated and are used for the next round of precursor ion
selection. We develop a heuristic which creates a ranked precursor list. The second
method, IPS LP, is a combination of the two inclusion list scenarios presented in the
first part. Additionally, a protein-based exclusion is part of the objective function.
For evaluation, we compared both IPS methods to a static inclusion list (SPS) created
before the beginning of MS/MS acquisition. We simulated precursor ion selection on
three data sets of different complexity and show that IPS LP can identify the same
number of proteins with fewer selected precursors. This improvement is especially
pronounced for low abundance proteins. Additionally, we show that IPS LP decreases
the bias to high abundance proteins.

All presented algorithms were implemented in OpenMS, a software library for mass
spectrometry. Finally, we present an online tool for IPS that has direct access to the
instrument and controls the measurement.



Zusammenfassung

Flüssigkeitschromatographie (LC) gekoppelt mit Tandemmassenspektrometrie
(MS/MS) ist eine Schlüsseltechnologie für die Proteinidentifikation und Quan-
tifizierung in proteomischen Proben. Dabei werden Proteine indirekt identifiziert:
detektierte Peptidsignale werden durch MS/MS fragmentiert und anschließend wird
die Peptidsequenz rekonstruiert. Über die identifizierten Peptide werden schließlich
die Proteine in der Probe identifiziert. Das Problem der Auswahl der Peptidsignale,
die über MS/MS sequenziert werden sollen, heißt Precursor-Ionen-Selektion (PS). Die
meisten Selektionsverfahren benutzen rein intensitätsbasierte Ansätze – sogenannte
Datenabhängige Akquisition (DDA) – trotz bekannter Schwächen wie Datenredundanz,
begrenzter Reproduzierbarkeit oder einer Neigung zur Identifikation häufiger Proteine.
In dieser Arbeit entwickeln wir für unterschiedliche Aspekte der PS Formulierungen
als Optimierungsprobleme mit dem Ziel den bekannten Schwächen entgegenzusteuern.

Im ersten Teil der Arbeit werden für unterschiedliche Anfangsinformationen optimale
Inklusionslisten erstellt. Dabei führen wir PS auf bekannte kombinatorische Probleme
zurück und entwickeln Formulierungen als Lineare Programme (LP) zur Lösung der
Probleme. Die erste Methode basiert auf einer Liste von LC-MS-Features. Wir zeigen,
dass sich diese Situation auf das Rucksackproblem zurückführen läßt. Das zugehörige
LP erstellt effiziente Inklusionslisten, die mehr Precursor enthalten als Standardmetho-
den, wenn die Anzahl an Precursor-Ionen pro Fraktion begrenzt ist. Außerdem entwick-
eln wir eine Methode basierend auf einer Liste an zu identifizierenden Proteinsequenzen.
Wir benutzen Schätzverfahren für RT und Detektierbarkeit um repräsentative LC-MS-
Features für diese Proteine vorherzusagen. Basierend auf der Peptiddetektierbarkeit
führen wir eine Proteindetektierbarkeit ein. Indem wir die Summe dieser maximieren,
erstellen wir eine größenbeschränkte Inklusionsliste, die eine maximale Anzahl an Pro-
teinen abdeckt.

Im zweiten Teil der Arbeit beschäftigen wir uns mit iterativer PS (IPS) mit LC-MALDI
MS/MS. Dabei werden nach einer bestimmten Anzahl an aufgenommenen MS/MS-
Spektren deren Identifikationsergebnisse ausgewertet und diese zur weiteren PS be-
nutzt. Wir entwickeln einerseits eine Heuristik, die eine priorisierte Inklusionsliste er-
stellt. Für die zweite Methode, IPS LP, kombinieren wir die beiden LP-Formulierungen
aus dem ersten Teil und erweitern sie um eine proteinbasierte Exklusion. Für die
Auswertung vergleichen wir unsere IPS-Methoden mit einer statischen Inklusionsliste
(SPS), die vor Beginn der MS/MS-Messung erstellt wurde. Wir simulieren die PS auf
drei Datensätzen mit unterschiedlicher Komplexität und zeigen, dass IPS LP die gleiche
Proteinanzahl wie SPS identifiziert, dabei aber weniger MS/MS-Messungen benötigt.
Diese Verbesserung wird insbesondere für Proteine mit geringer Abundanz deutlich.
Außerdem können wir zeigen, dass die Neigung zur Identifikation häufiger Proteine
gesenkt wird.

Unsere Algorithmen wurden als Teil von OpenMS, einer Softwarebibliothek für Massen-
spektrometrie, implementiert. Im letzten Teil stellen wir außerdem ein Onlinetool vor,
dass direkten Zugriff auf das Massenspektrometer hat und die Messungen steuert.
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Chapter

1
Introduction

The publication of a first version of the human genome by the Human Genome
Project [1] was an important milestone at the beginning of this century. Along
with the genome sequence it became obvious that former estimations concerning
the number of protein-coding genes had to be adjusted downwards from 30,000
- 40,000 genes estimated with the draft version of the genome [2, 3] to around
20,000 - 25,000 [1]1. The number of proteins these genes are translated into is sev-
eral orders of magnitude larger due to post-transcriptional and post-translational
events such as alternative splicing and various post-translational modifications.
This high number reflects the key role that proteins play in virtual every im-
portant biological process: they catalyze biochemical reactions, act as structural
components of cells, and participate, amongst others, in cell signaling and im-
mune responses.

In analogy to the notion of genome, the term proteome was proposed.
The proteome is defined as “the PROTEin complement expressed by a
genOME” [5]. As such, it comprises the set of proteins expressed in a given
biological system at a specific time point. In contrast to the genome, which is
essentially the same in all cells and does not change during the life span of an
organism, the proteome is highly dynamic. The expressed proteins vary between
cell types, different environmental conditions, cell cycle states etc.

In the following, we give a short introduction into protein structure and the
analysis of samples by Liquid Chromatography Tandem Mass Spectrometry (LC-
MS/MS). This provides the background needed for the motivation of the thesis.

1.1. Proteomics

1.1.1. Protein structure

Proteins are chains of amino acids whose sequence is coded in the genome. Protein
synthesis is a two-step process. First, DNA is translated into messenger RNA
(mRNA) which is, after some processing, translated into the protein sequence.

1The current Gencode version 14 lists 20,078 protein-coding genes [4].
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Figure 1.1.: Peptide bond. Two amino acids are covalently bonded in a dehydration reac-
tion that includes a loss of water.

There are 20 amino acids that occur in proteins and are encoded in the genome.
All of them consist of three functional groups: the carboxyl group COOH, the
amino group NH2 and the side chain R. The side chain is specific for each amino
acid and determines its physico-chemical properties like charge, hydrophobicity,
and size to name only a few. In a peptide, the amino acid chain is built by
peptide bonds which link the amino group of one amino acid to the carboxyl
group of another amino acid (Figure 1.1). The peptide end with a free carboxyl
group is called C terminus, the amino end is denoted as N terminus. A linear
chain of amino acids is called a polypeptide. A protein consists of one or more
polypeptides whose C, N and O atoms linked in the peptide bonds form the
protein backbone. The combination of all amino acid side chains defines the
three-dimensional structure of a protein and its functional properties.

1.1.2. Proteomic workflows

The term proteomics describes the analysis of proteins and whole proteomes,
their expression profiles, functions, structures, and interactions. Initially, protein
analysis focused on the study of single proteins. However, proteomics is a strongly
technology-driven research area, where developments, especially in the field of
biological mass spectrometry and separation technology, have enabled detection
of several thousand proteins in small quantities of biological samples.

In early proteomic workflows, much effort was invested into separating the sam-
ple proteins prior to MS analysis. Particularly, high-resolving two-dimensional
gel electrophoresis became the core technique for protein separation. As mass
spectrometers evolved, especially with regards to sensitivity and speed for pep-
tide sequencing with tandem mass spectrometry (MS/MS), it became possible
to efficiently identify proteins based on fragment ion analysis of individual pro-
teolytic peptides in mixtures, thus alleviating the need for protein fractionation
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Figure 1.2.: Workflow for shotgun proteomics. The protein mixture to be analyzed
is first enzymatically digested, usually with trypsin. The resulting peptide mixture is then
fractionated via liquid chromatography. After chromatographic separation the peptides are
ionized and separated by their mass-to-charge (m/z) ratio in the mass spectrometer. The m/z-
ratios of the ions are recorded, resulting in mass spectra where the signal intensity reflects the
amount of ions detected at each m/z-value.

prior to proteolytic digestion and MS analysis. Instead, crude protein mixtures
are subjected to enzymatic digestion, and the produced complex peptide mixtures
are separated by liquid-chromatography (LC) coupled to MS. This analytical ap-
proach has been termed “shotgun proteomics” in analogy to shotgun genomics
and is now a standard approach to gain information about the identity and quan-
tity of the proteins in a specific sample.

In a typical LC-MS setup (illustrated in Figure 1.2), peptides in a sample are
first separated by liquid chromatography based on their physico-chemical prop-
erties like hydrophobicity. The LC system is coupled to a mass spectrometer,
either directly or indirectly via fractionation onto a target plate which is inserted
into the mass spectrometer. Inside, the peptides are ionized and their mass-to-
charge-ratios (m/z) are determined. The signal intensity at a specific m/z-value
depends on the amount of ions present with this m/z which makes it possible to
measure the peptide quantity present in the sample. In order to obtain structural
information for a peptide ion, it is fragmented in the mass spectrometer and the
m/z-values of the fragment ions are recorded in a mass spectrometer. This pro-
cess is called tandem mass spectrometry (MS/MS). By means of these fragment
ions it is possible to partially derive the peptide sequence. Afterwards, the pep-
tides are mapped onto proteins. Thus, the proteins present in the original sample
can be reconstructed. In this thesis we focus on how to decide which peptide ion
signals shall be sequenced. This decision is called precursor ion selection. We
demonstrate why it is an important issue in proteomics after a short excursus
into the nature of MS data.
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(a) (b)

Figure 1.3.: LC-MS map. (a) A zoom into a LC-MS map. (b) LC-MS map of a peptide
feature.

(a) (b)

Figure 1.4.: Peak characteristics. (a) Isotope pattern. (b) Peak parameters.

The nature of MS data

LC-MS analysis of a sample results in a three-dimensional map, see Figure 1.3
(a) for a zoom into one. Each data point is characterized by three values: the
RT at which the MS spectrum was recorded, the measured mass-to-charge ratio
m/z and the number of detected ions, i.e., the signal intensity.

Peptide signals usually occur in several consecutive scans, building an RT elution
profile. In m/z dimension, the peptide signal consists of several isotopic peaks,
their distance depending on the peptide ion’s charge z, Figure 1.4 (a) shows a
charge one isotope pattern. Each peak can be described by certain characteristics
like its m/z-value, its maximal height, its area under the curve (which usually
builds the peak intensity after signal processing) or its full-width-at-half-max
(FWHM). These parameters are displayed in Figure 1.4 (b). All MS peaks be-
longing to the same peptide signal at a distinct charge form a so-called LC-MS
feature, see Figure 1.3 (b) for a zoom into an LC-MS map showing a feature.
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1.2. Motivation

For peptide sequencing via MS/MS the peptide ions of interest are isolated and
further fragmented. The isolation window is mainly as small as possible to isolate
all ions in question so that the interference with other ions with a similar m/z-
value is minimized. The standard workflow uses an MS spectrum, a so-called
survey scan, to determine them/z-values of all compounds present in the analyzed
fraction. Usually, many more signals are detected in the survey scan than can be
selected for MS/MS. Even low complexity samples, like a standard containing 20
proteins, produce more peptide ions than can be fragmented in a single run [6, 7].
The two different ionization techniques Electrospray Ionization (ESI) and Matrix-
assisted Laser Desorption/Ionization (MALDI) pose different constraints on the
sample usage: The main limitation with ESI-MS/MS is time, as the sample
is analyzed on the fly during elution from the column. In contrast, MALDI-
MS/MS, being performed off-line, is limited by the sample available for each
fraction. In a standard workflow the highest signals in the spectrum are selected
for fragmentation via MS/MS. This procedure is one possible implementation
of the so-called data-dependent acquisition (DDA). Some companies use “Data
directed analysis” or “information dependent acquisition” to denote the same
procedure as Thermo Fisher trademarked the term “Data-Dependent” [8]. With
DDA, first a survey MS spectrum is acquired and processed. Then, based on
some predefined rules such as a specific charge state or a minimal signal intensity
ions for MS/MS are selected [8].

One of the main problems when using DDA in LC-MS/MS is the limited re-
producibility of replicates. Small variations in the signal intensities of peptide
ions might result in different sets of selected precursors and thus lead to differ-
ent peptide and protein identifications. For instance, a systematic study from
Tabb et al. [6] showed an overlap in peptide identifications of only 35-60% in
technical replicates. The reproducibility at protein level was similar. Liu et al.
[9] analyzed 9 LC-LC-MS/MS samples recorded with the same settings. In the
cumulative protein set only 35% of the proteins were found in all runs, while 24%
were identified in only one run.

Another important problem is the high dynamic range of protein abundances in
biological samples. For instance, the plasma proteome spans 12 orders of mag-
nitude between the most abundant protein serum albumin and cytokines, which
are of great relevance as they drive disease processes [10]. LC-MS/MS with DDA
has the tendency to identify peptides from high abundant proteins [6, 9]. How-
ever, in many cases it is not the high abundance proteins we are interested in.
Additionally, proteins that are used as biomarkers for diseases (e.g., prostate-
specific antigen) are usually present in a concentration several magnitudes lower
than the most abundant serum proteins [11]. There are experimental procedures
such as immunoaffinity precipitation to deplete these high abundant but analyti-
cal mainly unimportant proteins [12–15]. However, they are time-consuming and
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Figure 1.5.: Distribution of significant peptide evidences. Human cell lysate with
13,546 detected features, 1,074 significant peptide identifications matching 670 proteins. While
most proteins have only one peptide identification there are a few proteins with more than 10
peptide matches.

expensive, and change the sample stoichiometry, posing a problem for protein
quantification. Additionally, the removal of proteins like albumin, which bind
a variety of compounds including other proteins, might result in the loss of low
abundant proteins [11].

Furthermore, the high redundancy achieved with DDA is unnecessary. Once a
protein is identified the detection of additional peptides usually does not yield
further information. Figure 1.5 shows the number of significant peptide evidences
per protein for an LC-MS/MS analysis of a complex human cell lysate. It can
be seen that a few proteins assemble each more than 10 peptide identifications,
whereas the majority is identified by only one peptide. Limiting this redundancy
might lead to an increased number of protein identifications.

As a peptide usually elutes from the column over several fractions, there are often
several possibilities to fragment it. Hence, high abundant peptides would be se-
lected several times with normal DDA, without providing more information. This
also means, that we can decide whether to fragment a specific peptide depending
on other signals present in the same fraction in order to optimize the number or
the set of selected precursors.

An advantage of DDA is that no additional information about the sample is
required. It can be used straight away to discover unknown proteins in a sample.
However, there are many cases where prior information about the signals in the
sample is available. Here, directed approaches that “search” for signals of interest
are usually more suitable.

In the last paragraphs we illustrated common problems with the standard pre-
cursor ion selection strategies. These problems show why it is important and
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promising to apply more elaborate precursor ion selection strategies. Especially
MALDI, where LC and MS are decoupled and there is no time constraint, is
well suited for more sophisticated approaches. In the following, we describe two
different precursor ion selection scenarios and how they can be traced back to
combinatorial problems.

1.3. Precursor ion selection as Knapsack

Problem

Precursor ion selection based on an existing LC-MS feature map can be seen
as an adaptation of the Knapsack Problem. This is a well-known combinatorial
problem: Given a set of items with each having a weight and a value assigned
and a knapsack with a weight limit, we want to find a set of items that does not
exceed the knapsack’s weight limit and has the highest possible value.

Loosely speaking, imagine we want to board a plane with only hand luggage.
Now, we have a set of cosmetics we would like to take, that each have a certain
volume and a price as illustrated in Figure 1.6. Safety regulations at the airport
allow only liquids that fit into a one liter bag, our knapsack. So we want to find
a set of cosmetics that fits into the bag and reaches the maximal possible value
(and we thus have to invest the smallest possible amount of money to buy the
rest we cannot take). 2

In our LC-MS/MS setup, each spectrum corresponds to a knapsack. Here, the
weight limit is the number of possible MS/MS spectra per RT bin. The value of
a precursor is its intensity and each precursor has the same weight 1. An LC-
MS/MS run consists of multiple spectra, thus we have a multi Knapsack Problem.
In our setup, we have the additional constraint that each observed feature shall
be selected only in one spectrum as a precursor. The goal is to find a maximal
number of precursors given our set of features. By formulating this task as a
combinatorial problem, we can develop a linear program (LP). Solving the LP
yields the demanded precursor set.

1.4. Precursor ion selection as Hitting Set

Problem

In proteomic studies one is often interested in protein identification and/or quan-
tification. However, as protein identification is done indirectly by inferring pro-
teins from sequenced peptides, often only the number of peptide identifications

2For hand luggage at the airport more constraints apply, but for simplicity we leave it at the
ones stated above.
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Figure 1.6.: The Knapsack Problem. Illustrated through cosmetics when packing the
hand luggage for airplane travel. The plastic bag represents the knapsack with the volume
limit of 1 l. The cosmetics each have a weight and a value. The goal is to find a set of cosmetics
with maximal weight that does not exceed the volume limit of the knapsack.

is tried to maximize. Incorporating peptide-protein relations into the precursor
ion selection might prevent identification of a few abundant proteins with many
peptides while the protein majority lacks peptide evidences.

In our approach, we trace precursor ion selection back to the Hitting Set Problem,
another well-known combinatorial problem. As illustrated in Figure 1.7, we have
given a set of circles and a set of rectangles which separate the circles into groups
that may partially overlap. In our application, peptides correspond to circles
and proteins are represented by rectangles. The aim is to find a minimal set
of peptides or circles so that each protein or rectangle is “hit” by at least one
peptide or circle. Again, we can formulate a linear program for this precursor ion
selection problem. This way, we achieve a targeted selection of peptides for all
proteins of interest. In practice, we need to adapt the original Hitting Set Problem
as peptides shared by several proteins are favored over unique peptides and thus,
we cannot distinguish between proteins that share peptides. Additionally, for
precursor ion selection, the selected peptides need to be translated into precursor
ions. Thus, m/z and RT need to be reliably predicted. Furthermore, not all
tryptic peptides of a protein can be observed in a given experimental setup. For
instance, very hydrophobic peptides strongly interact with the LC column and
thus might never elute with standard gradients [16]. Other peptides might have
a low ionization efficiency. Thus, for each setup and protein one can define a set
of proteotypic peptides that can be observed frequently. With machine learning
techniques, weights can be predicted for each peptide reflecting its proteotypicity.
By incorporating these weights into the LP formulation, the selected precursors
correspond to a representative set of peptides for each protein.
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Figure 1.7.: Hitting Set Problem. Given a set of rectangles and a set of circles lying in
the rectangles, find a minimal set of circles so that each of the rounded rectangles is hit by at
least one circle. One possible minimal set is shown in purple.

1.5. Iterative precursor ion selection

In the last sections, we briefly described two scenarios for inclusion list creation
prior to MS/MS acquisition. Now, we are introducing a different concept: it-
erative precursor ion selection. As MALDI allows to interrupt the MS/MS ac-
quisition, it is possible to incorporate the information about peptide and protein
identifications obtained so far into the current precursor ion selection step and
then continue with MS/MS acquisition. We combine the two presented inclu-
sion list problems with an exclusion strategy aiming at avoiding the selection of
precursors possibly belonging to already identified proteins.

1.6. Contributions

In this thesis, we address the described problems of DDA and develop tools that
help to circumvent them.

• We develop strategies for inclusion list creation based on a formulation of
the selection process as optimization problem. We exemplarily explain two
different scenarios for inclusion lists and show that these can be traced back
to known combinatorial problems. Our framework allows for easy adaption
of the selection depending on the aim of the study. We make use of protein-
peptide relations and the 3D nature of peptide signals in LC-MS in order
to select an optimal set of precursors. We develop protein detectabilities
as a measure for protein coverage achieved with predicted precursors and
utilize them in our setup.

• We introduce an iterative precursor ion selection procedure that combines
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the discovery nature of DDA with directed MS/MS. This approach is espe-
cially suited for LC-MALDI MS/MS where the sample is “frozen in time”
on the target plate. We develop a simple proof-of-concept heuristic and
show that applying this approach leads to protein identifications using sig-
nificantly less selected precursors than standard procedures.

• Thereupon, we develop a mathematical formulation for the iterative pre-
cursor ion selection addressing the problems observed with the heuristic.

• The presented methods are implemented as part of OpenMS, an open-source
C++ software library for mass spectrometry.

• We implemented an online version of the iterative precursor ion selection
that has direct access to the mass spectrometer and controls the measure-
ment. This tool has a graphical user interface that allows to easily adapt the
parameters for both the acquisition as well as for the processing of MS/MS
spectra.

1.7. Thesis outline

Following this introduction, we present an overview of the background needed
for the rest of this thesis in Chapter 2. We start with a description of LC-MS
instrumentation. Afterwards, we explain how to derive peptide and protein iden-
tifications from MS/MS spectra. Then, the prediction of peptide characteristics
is briefly introduced. Finally, we give an introduction to linear programming.

Chapter 3 summarizes the current state of the art in precursor ion selection
for LC-MS/MS and presents the different approaches to peptide sequencing with
MS/MS.

In Chapter 4 we describe the samples used for algorithm evaluation. This is
followed by a short overview of the sample preparation, data acquisition and
processing. Model training for prediction of peptide characteristics is explained
and finally evaluated.

In Chapter 5 we present different problems for inclusion list creation with LC-
MALDI MS/MS, translate them into optimization problems and evaluate the
solutions. First, we show how to formulate the selection of LC-MS features as
maximization problem and compare that to other methods. This is followed by
targeted inclusion lists created based solely on protein sequences without prior
MS acquisition.

Chapter 6 describes how precursor ion selection can be adapted during MS/MS
acquisition depending on the results achieved so far. We present two iterative
algorithms that we developed. On the one hand a heuristic that proceeds on a
ranked list of precursors. The ranking is adapted throughout the measurement
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based on the identification results. Then, we combine the two problems presented
in Chapter 5 and use them in an LP formulation that maximizes the number of
selected features and targets at confirming protein hits (proteins with peptide
evidences that did not yet exceed a given significance threshold).

Chapter 7 presents details of the implementation of the tools described in this
thesis. Furthermore the OnlinePrecursorIonSelector is presented, a graphical tool
that has access to the mass spectrometer and controls the measurements. This
is followed by a conclusion in Chapter 8.

1.8. Related publications

The heuristic iterative precursor ion selection presented in Chapter 6 was de-
scribed previously in a publication in the Journal of Proteome Research [17].
The contributions were as follows: Zerck and Gobom developed the main idea.
Zerck, Nordhoff and Gobom designed the experiments and performed the eval-
uation. Lukaszewska, Resemann and Zerck performed the measurements. Zerck
implemented the algorithm. Reinert provided supervision.

Chapter 5 was described in a publication in BMC Bioinformatics [18]. The it-
erative precursor ion selection with linear programs presented in Chapter 6 was
introduced in the same manuscript. Here, the contributions were: Zerck de-
veloped the LP formulations, did the implementation and evaluation under the
supervision of Reinert. Nordhoff was involved in the conception of the study.





Chapter

2
Background

In this chapter, we present the experimental and mathematical background
needed in the following chapters. First, we give a short introduction to liquid
chromatography and mass spectrometry. Afterwards, we describe how to re-
trieve information about the peptides and proteins present in the sample and
how to determine statistical significance of the identifications. This is followed
by an overview of the prediction of peptide properties using machine learning
techniques. Finally, we present an introduction to linear programming and a few
well-known combinatorial problems, onto which the problems described in the
next chapters can be traced back.

2.1. Liquid chromatography-Mass spectrometry

2.1.1. Liquid chromatography

Because proteomic samples are highly complex, it is not possible to analyze them
directly via mass spectrometry. A preceding separation step is added to reduce
the complexity, e.g., 2D electrophoresis or chromatographic techniques. Liquid
chromatography (LC) is the most widely used approach in MS-based proteomics,
hence we are focusing on it.

In LC, analytes are separated by their different interaction behavior with the mo-
bile phase (solvent) and the stationary phase (the solid material of the chromato-
graphic media). The stationary phase exhibits functional groups that interact
with the analyte molecules and the mobile phase. Depending on the physico-
chemical properties of the analyte, the mobile phase, and the stationary phase,
the analyte components take different times to flow through the column. The time
a molecule needs to elute from the column is called retention time (RT). It is spe-
cific for the molecule in a given setup, molecules with similar physico-chemical
properties elute at similar RTs. The LC system can be coupled directly to the
mass spectrometer. This is most commonly done with ESI-MS. For MALDI-MS,
usually discrete fractions are collected by time onto a MALDI sample plate.

13
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Figure 2.1.: Electrospray ionization process.

2.1.2. Mass spectrometry

A mass spectrometer consists of the three main components: ion source, mass
analyzer, and detector. In the ion source the conversion from neutral molecules to
gaseous ions takes place. These ions are separated according to the ratio of their
mass to charge (m/z) in the mass analyzer and afterwards the detector records
the mass spectrum, which contains the information in what quantity ions were
detected [19–21].

While several different mass spectrometric ionization techniques have been discov-
ered, there are two which are used in proteomics: Electrospray Ionization (ESI)
and Matrix-assisted Laser Desorption/Ionization (MALDI), which are briefly in-
troduced in the following sections.

Electrospray Ionization

Electrospray Ionization (ESI) for MS was developed in the lab of John Fenn in
1984 [22]. This study was based on the work of Malcolm Dole [23] from 1968, who
proposed Electrospray Ionization to produce beams of charged macromolecules.
Figure 2.1 gives an illustration of ESI.

When an LC system is directly coupled to the ESI source, the eluent flows through
the electrospray needle, which has a high potential difference to the counter elec-
trode applied to it. Thereby, positively charged droplets form, consisting of an-
alyte and solvent molecules. The solvent evaporates while the droplets move to
the counter electrode. This means an instability of the droplets, that finally leads
to singly and multiply charged analyte molecules.
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Figure 2.2.: MALDI ionization and fractionation.(a) A fractionator spotting the sample
after LC separation onto the MALDI target plate. (The photo was taken by Klaus-Dieter
Kloeppel.) (b) MALDI ionization process.

Matrix-assisted Laser Desorption/Ionization

Matrix-assisted Laser Desorption/Ionization (MALDI) was developed simultane-
ously by Michael Karas and Franz Hillenkamp [24] at the University of Muenster
(Germany) and Koichi Tanaka at Shimadzu Corporation (Japan) in 1987 [25, 26].
Here, the analyte is embedded into the crystal lattice of an organic solution
called matrix, with a high molar excess of matrix typically between 100:1 and
10,000:1 [26]. Usually, the sample is either prepared using the thin-layer method
onto previously prepared microcrystalline layer of the matrix, or both solutions
are mixed and afterwards applied onto the target plate (dried droplet). Figure 2.2
shows a fractionator spotting the fractionated sample after LC separation onto
the MALDI target plate.

For ionization, the crystalline sample is irradiated with a brief laser pulse, by
which the matrix molecules absorb most of the energy, leading to desorption. In
this process, matrix molecules entrain the embedded analyte molecules, which are
also transferred into gas phase. Ionization of the analyte can occur at any time
during this process [26]. For peptides, mainly singly-charged ions are produced,
while larger biomolecules yield more multiply charged species.

Mass analyzer

MALDI is most frequently used in conjunction with a time-of-flight analyzer
(TOF). Figure 2.3 gives a schematic overview of a TOF analyzer. Here, after
ionization the ions are accelerated in a strong electric field, then enter a field-free
region, where they drift freely until they hit the detector. The ions are separated
according to their molecular weight, as lighter ions are faster than heavier ones.
The flight time t of an ion can be converted into an m/z-value using the following
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Figure 2.3.: Time-of-flight mass spectrometer with reflector. The reflector corrects
for small kinetic energy differences of ions with the same m/z-value as faster ions penetrate
deeper into the reflector.

equation:

t = a

√
m

z
, (2.1)

where a is an instrument specific constant. In order to increase the resolution,
Reflector-TOF instruments use an electrostatic mirror after the drift region to
correct for different energies of ions with the same m/z-value. Higher energetic
ions penetrate deeper into the reflector, thus having a longer path to the detec-
tor [27].

The resolution of an instrument is defined at a specific m/z-value as ratio of the
m/z of a peak and its full-width-at-half-max (FWHM). It is a measure of how
good an instrument can separate (isotopic) peaks. Depending on the type of
instrument, the resolution can be approximately constant over the mass range
as for Quadrupoles and Ion traps, linear for QTOFs and TOFs or for Orbitraps
inversely proportional to the square root of m/z [28].

An important parameter for the analysis of an LC-MS run is mass accuracy, which
can be calculated as absolute value using the theoreticalm/z of a compoundmtheo

and the observed value mobs

maabs = |mobs −mtheo|, (2.2)

or, which is commonly used nowadays, relatively as parts-per-million (ppm):

marel = 106 · |mobs −mtheo|
mtheo

. (2.3)

2.1.3. Tandem Mass Spectrometry

In tandem mass spectrometry, a second MS step is performed on previously iso-
lated peptide ions. Usually, peptide ions, the so-called precursor ions, are isolated
within a small m/z window. These ions are then subjected to further fragmenta-



2.1. Liquid chromatography-Mass spectrometry 17

H2N CH

R 1

C

O

CH

R 2

C

O

CH

R 3

C

O

NH NH NH CH

R 4

COOH

x3 x2 x1y3 y2 y1z3 z2 z1

a1 a2 a3b1 b2 b3c1 c2 c3
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Roepstorff’s nomenclature [31].

Table 2.1.: Fragmentation techniques for MS/MS and their primary ions [29, 34].

Name Abbreviation Primary ions

Collision-induced dissociation CID b, y
Electron-capture dissociation ECD c, z
Electron-transfer dissociation ETD c, z
Electron-detachment dissociation EDD a, x
MALDI-Post source decay PSD b, y
MALDI-In-source decay ISD c, z

tion. Depending on the instrumentation this step is performed in an additional
analyzer as in Triple quadrupoles and TOF/TOF instruments, or consecutively
within the same analyzer like in ion traps [29]. For peptide ions, the most widely
used fragmentation method is collision-induced dissociation (CID). After isola-
tion of the precursor ions, they get accelerated using an energy potential. Then
the precursor ions collide with neutral gas molecules like helium, nitrogen or ar-
gon. During the collision the internal energy increases, which leads to peptide
fragmentation at specific bonds [29, 30]. Typical fragment ion types occurring
after MS/MS are illustrated in Figure 2.4. According to Roepstorff’s nomencla-
ture [31], ions with the charge retained on the N-terminal side are denoted as
a, b or c ions, depending on the position of the fragmentation with respect to
the peptide bond. Analogously, fragment ions with the charge retained on the
C-Terminus are called x, y and z ions.

Different fragmentation methods produce different types of ions, for an overview
see Table 2.1. Thus, the use of complementary ionization techniques can help to
improve peptide identification rates [32, 33].
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2.2. Peptide identification

2.2.1. Generation of peptide-spectrum matches

After signal processing of the MS/MS spectra, we want to assign peptide se-
quences to them. There exist two complementary approaches: database searching
and de novo sequencing.

Given protein sequences of a given species, database search methods compile a
set of peptides that lie in the m/z-range of the precursor of the specific MS/MS
spectrum. Theoretical spectra are generated for this peptide set and matched to
the MS/MS spectrum. Various database search tools were developed, examples
are Sequest [35], Mascot [36], X!Tandem [37], and OMSSA [38]. See [39, 40] for
an overview and evaluation of some of the most prominent database search tools.

There exist several scenarios where a database search is not sufficient to iden-
tify peptides in a sample. These include samples from species with unsequenced
genome, protein sequence variants or splice isoforms and the analysis of pep-
tides with non-proteogenic or modified amino acids as they appear in bacteria or
fungi [29]. Examples for the various de novo sequencing tools are Lutefisk [41, 42],
SeqMS [43, 44], and Pepnovo [45]. There also exist de novo approaches which
exploit the complementary nature of different ionization methods like CID and
ETD [32, 33]. See [46] for an evaluation of different de novo tools.

Figure 2.5 shows an MS/MS spectrum with the theoretical spectrum of the best
matching peptide. The matching peaks of the b- and y-ion series are annotated.

2.2.2. Scoring of PSMs

All tools that generate peptide-spectrum matches (PSM) rank these for each
spectrum according to some scoring scheme. However, these scores cannot easily
answer the question which PSM is correct, as score distributions for correct and
incorrect matches overlap. There has been much effort in the last years to assign
statistical scores to PSMs, facilitating the decision which PSM can be considered
correct. The task to decide whether a PSM is a true or a random match is a
classification task. In the following sections we are shortly presenting different
statistical measures used for scoring of PSMs.

Construction of incorrect PSMs

In order to develop statistical scores we need to study the occurrence of random
PSMs. This is often done using decoy databases which contain amino acid se-
quences that should have similar properties as the original database (e.g., AA



2.2. Peptide identification 19

Figure 2.5.: Annotated MS/MS spectrum with the theoretical spectrum of the highest
scoring peptide (DAQIFIQK) underneath. Visualized with TOPPView [47]. The matching
peaks of the b- and y-ion series are annotated with their corresponding peptide fragment.
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composition, number of tryptic peptides, peptide length and mass) but contain
sequences that do not occur in the original database. Hits in such a database
are all false positives. Decoy databases can be constructed by shuffling or revers-
ing the original sequences, also random sequence construction approaches exist.
However, there is no consensus which method is the best. See Bianco et al. [48]
for a comparison of different construction methods. There are also disadvantages
of the decoy database approach. First, the search space is increased which also
increases the search time. Besides, such a database cannot be constructed for all
applications such as error-tolerant searches or de novo sequencing.

p- and E-Values

One of the most commonly used statistical measures is the p-value. Given a null
hypothesis, it is the probability to achieve a result at least as extreme as the
observed. In other words, it describes the probability that a result occurs simply
by chance given a true null hypothesis. In our case the null hypothesis would
be that a given peptide is not represented by the assigned MS/MS spectrum.
Without a loss of generality we assume in the following a scoring scheme where
higher scores indicate better scores. Following Käll et al. [49], the p-value for a
PSM with score s can be calculated as

p(s) =
#decoy PSMs with score ≥ s

#decoy PSMs
. (2.4)

However, as we want to calculate a score for all PSMs, this test is performed
many times and thus needs to be corrected for multiple testing. Otherwise, with
several thousand PSMs the percentage of small p-values simply by chance is not
negligible, thus the number of correct PSMs would be overestimated.

Similar to the p-value, several search engines calculate a so-called E-value which
can be interpreted as the expected number of peptides with a score at least as
high as the observed score simply by chance [50]. This way the E-value corrects
for the number of candidate peptides in the database. However, the E-value also
does not account for the number of spectra being matched [50].

A simple correction method for multiple testing is the Bonferroni correction,
where p-values are divided by the number of tests that are performed. How-
ever, the corrected p-value is very conservative and overestimates the fraction of
spurious hits.

The two statistical measures we briefly introduce in the next sections account for
multiple testing.
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False discovery rates and q-values

Storey and Tibshirani [51] propose a method to calculate false discovery rates
(FDR) and q-values based on p-values. They approximate the FDR for a given
p-value threshold t as

FDR(t) ≈ E [#{null pi ≤ t; i = 1, ...,m}]
E [#{pi ≤ t; i = 1, ...,m}] . (2.5)

p1 . . . pm are the m p-values we are considering, null pi is a p-value of a feature
for which the null hypothesis is true. In the case of PSMs this corresponds to
an incorrect PSM. The denominator can be simply estimated by the number of
observed p-values ≤ t. When correctly calculated, the null p-values are uniformly
distributed. Thus, the probability of a null p-value ≤ t is given by t [51]. Hence,
the numerator can be estimated as π̂0·m·t, with π̂0 being the estimated proportion
of truly null features. This leads to an estimated FDR:

F̂DR(t) =
π̂0 ·m · t

#{pi ≤ t; i = 1, ...,m} . (2.6)

In the literature, there exist two similar ways to calculate the FDR for PSMs. The
above FDR definition requires information about the number of incorrect PSMs
which is often acquired via decoy databases as hits in this database ideally are
truly random. Target-decoy searches can either be done in two separate searches,
once searching the target database and once searching the decoy database, or in
one search using a combined target-decoy database. Following the FDR calcula-
tion from Equation 2.5, this leads to the estimation of the FDR as

F̂DR(s) =
2 ·Nd

Nd +Nt

, (2.7)

where Nd is the number of hits to the decoy database passing threshold s and Nt

the number of target hits passing the threshold [52–54]. The numerator should
correspond to the number of incorrect hits, which is unknown. However, it is
assumed that there are as many false hits to the normal database as there are
hits to the decoy database.

A similar estimation is:

F̂DR(s) =
Nd

Nt

· π̂0, (2.8)

which is used by Käll et al. [49, 55] for separate target-decoy searches. Here, π̂0

is used to correct for the overestimation of incorrect matches given by Nd.

There also exist approaches which calculate the FDR without decoy databases,
e.g., with spectral probabilities [56] or a mixture modeling approach [57].

A drawback of the FDR is that a smaller score threshold can lead to a smaller
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estimated FDR [49]. Storey and Tibshirani [51] addressed this problem in the
context of genome-wide studies by proposing the q-value. Käll et al. [49] intro-
duced this term in the context of PSMs. Here, the q-value for a given PSM with
score s is defined as the minimal FDR-threshold at which the PSM is accepted.

Posterior (Error) Probabilities

False discovery rates are suitable when one is interested in a group of proteins,
e.g., when determining which proteins are expressed in a cell type or when one
is looking at sets of PSMs [50]. In contrast, if we are interested in a specific
peptide or protein, calculating posterior error probabilities (PEP) is the method
of choice [50]. Sometimes the PEP is also referred to as local FDR [50, 54].

The PEP for a PSM of peptide p and spectrum s gives the probability that the
observed PSM is incorrect [50]. Or as Käll et al. [50] state a PEP of 0.01 implies
a probability of 99% that peptide p was in the mass spectrometer during the
creation of s. This posterior probability (PP) is calculated as:

PP = 1− PEP (2.9)

The basic assumption in the calculation of PEPs is that the distribution of search
engine scores actually consists of two parts: one distribution for incorrect PSMs
and another one for correct matches. Typical distributions used for incorrect
matches in the mixture model are Gumbel or Gaussians [58].

Parameters for the mixture model are learned using labeled training data, in our
case the labels are target or decoy, reflecting in which part of the database the
best PSM is found. Learning is done with an Expectation-Maximization (EM)
approach. In the expectation step, posterior probabilities are estimated using
Bayesian statistics and initial guesses for the mixture model parameters. In the
maximization step, estimated probabilities are used to fit the distributions and
thus to adapt the model parameters [58].

The posterior probabilities are calculated using Bayes’ law. The PEP for a peptide
with score s is:

p(−|s) = p(s|−)p(−)
p(s|−)p(−) + p(s|+)p(+) . (2.10)

p(−) and p(+) are the prior probabilities of a false and a correct match. The
probabilities of achieving score s given that a match is false or correct are denoted
as p(s|−) and p(s|+). They can be calculated using the score distributions of the
correct and incorrect matches.

A widely used tool that computes posterior probabilities, not PEPs, is Peptide-
Prophet [59]. In this thesis we used the tool IDPosteriorErrorProbability [58],



2.3. Protein identification 23

Score

F
re
q
u
e
n
y

A

p(s|+)p(+)

p(s|-)p(-)

Bs

Target scores

Decoy scores

Figure 2.6.: The relation between FDR and PEP. The blue line represents a histogram
of peptide scores. The two black lines represent the distribution of the target and decoy scores.
The FDR is calculated using the areas under the scoring distributions as FDR = B

A+B
, where A

and B are the number of target and decoy scores > s. When calculating the PEP, the heights of

the distributions are used : PEP = p(s|−)p(−)
p(s|−)p(−)+p(s|+)p(+) . Figure reproduced from [50] and [61].

available as part of TOPP [60].

The relation between FDR and PEP is shown in Figure 2.6. See Käll et al. [50]
for a detailed comparison of FDR and PEP.

2.3. Protein identification

In the last sections we introduced measures for peptide identification significance.
In the following, we address the problem of deriving protein identifications from
given peptide identifications.

2.3.1. Protein inference

The protein inference problem describes the task of assigning peptide matches to
protein identifications. This is particularly challenging since peptides might occur
in more than one protein. Thus, more than one correct solution exists. These
peptides are called degenerate or shared peptides. In general, we are interested in
a minimal protein list explaining all given peptide identifications. Such a scenario
is often referred to as Occam’s razor [62], which is a principle that prefers to select
the solution among several possible solutions which makes the smallest number
of assumptions. Fig 2.7 shows the protein inference problem for a small set of
peptide identifications a1 to a8. The minimal set of proteins covering all peptide
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P1 P2 P3 P4 P5

a1 a2 a3 a4 a5 a6 a7 a8

Proteins

Peptides

Figure 2.7.: The protein inference problem. Given a peptide set {a1, . . . , a8} and a
protein set {P1, . . . , P5}, we want to find a minimal set of proteins that covers all peptides.
Here, the set {P1, P2, P4, P5} is the minimal set.

identifications is {P1, P2, P4, P5}.

2.3.2. Protein identification measures

Even if we have found such a minimal solution of protein identifications, it remains
unclear which identifications should be trusted. Peptide identification algorithms
usually provide a measure of confidence such as score or probability as presented
in the last section. Peptide confidences need to be combined to yield a measure of
protein identification confidence. Although several different methods have been
already proposed up to now, there exist no established criteria for determining
whether a protein has been identified in an experiment. In the following, we
introduce common strategies, including simple (unique) peptide counting and
probability-based criteria.

Unique peptide counting

In 2004, the journal Molecular & Cellular Proteomics published its MCP guide-
lines that included publications standards [63]. Due to the rising number of
publications containing peptide and protein identification data, Carr et al. pro-
posed guidelines for authors about the information that should be included in
their manuscripts. An important aspect addressed proteins identified by a single
peptide hit. The authors claimed that proteins supported by only one peptide
hit are more likely to be incorrectly assigned than proteins with two or more
peptide hits. Today this is known as “two-peptide rule” [64], a widely accepted
recommendation among experimentalists to require at least two unique peptide
matches for a protein identification [65, 66]. However, by discarding single-hit
proteins many high-quality protein identifications are lost [65, 66] as in a typical
high-throughput experiment several hundred proteins are “one-hit wonders” [65].
As Higdon and Kolker [65] show, the false-discovery rate decreases with the num-
ber of peptide identifications required for a protein identification, making it hard
to legitimate the need for two and not three or more peptide identifications per
protein. Gupta and Pevzner [66] showed that the one-peptide rule outperforms
the two-peptide rule in terms of FDR, i.e., they show that two medium score hits
are more likely to occur simply by chance than one high scoring hit.
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False Discovery Rates

Similar to the FDR calculation for peptides, see Section 2.2.2, an FDR on protein
level can be computed using a decoy database [67, 68]. However, again this does
not tell us anything about the probability of a single protein to be present in a
sample as the FDR provides a measure of global error rate. Evaluating the FDR
on different scores and determining an optimal threshold can be used for filtering.

Probability based protein identification

Several approaches exist to compute protein probabilities based on peptide iden-
tifications [65, 69–72]. Probably the best-known method is ProteinProphet devel-
oped by Nesvizhskii et al. [70] in 2003. ProteinProphet constructs minimal pro-
tein lists explaining all peptide identifications using the expectation-maximization
(EM) algorithm. It computes a protein probability as the probability that at least
one of the corresponding peptide identifications is correct. In Figure 2.8 an ex-
ample is shown. First, peptides are grouped according to their corresponding
proteins. Then, the probability that protein proti is in the sample can be com-
puted as

P (proti) = 1−
∏

pepk∈proti

(1− P (pepk)), (2.11)

with P (pepk) being the posterior probability of peptide pepk. Peptide probabil-
ities are adjusted by using the number of peptides corresponding to the same
protein. Degenerate peptides are given an iteratively determined weight, thereby
keeping the protein list minimal [70].

Li et al. [71] use Gibbs Sampling to calculate a protein list that maximizes the
joint probability of protein indicator variables given peptide indicator variables.
An indicator variable can only have the values 0 or 1, in our case a peptide or pro-
tein indicator variable is 1 if the peptide/protein was identified and 0 otherwise.
As prior probabilities the authors use predicted peptide detectabilities adjusted
by estimated protein abundances.

2.4. Prediction of peptide characteristics

Based on their amino acid composition peptides display different characteristics
upon LC-MS/MS analysis. One property discussed in this thesis is the detectabil-
ity of a peptide in a given LC-MS/MS setup. The detectability is the probability
to detect and to identify a peptide by LC-MS/MS. This includes the probability
of the peptide eluting from the LC column in the observed time frame, being
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>sp|P01178|NEU1_HUMAN Oxytocin-neurophysin 1 OS=Homo sapiens GN=OXT PE=1 SV=1

MAGPSLACCLLGLLALTSACYIQNCPLGGKRAAPDLDVRKCLPCGPGGKGRCFGPNICCAEELGCFVGT

AEALRCQEENYLPSPCQSGQKACGSGGRCAVLGLCCSPDGCHADPACDAEATFSQR

AAPDLDVR

      p = 0.43

CQEENYLPSPCQSGQK

     p = 0.57
     p = 0.79

CAVLGLCCSPDGCHADPACDAEATFSQR

  p = 0.76} max p = 0.79

P(sp|P01178|NEU1_HUMAN)  = 1 - (1-0.79)(1-0.43)(1-0.76) = 0.97

Figure 2.8.: Protein probability calculation. Given peptide identifications with cor-
responding peptide probabilities, the protein probability is calculated as the complementary
probability that none of the peptides is identified correctly. Reproduced from [70].

ionized in the ion source, having an m/z-value that can be detected by the mass
spectrometer, the ion being selected as precursor, the ion’s suitability for fragment
ion analysis, and the correct identification of the peptide.

Another important characteristic is the retention time of a peptide in a specific
LC setup. Many different types of chromatographic media exist that separate
peptides depending on, e.g., size, charge, polarity, or hydrophobicity.

There exist machine learning tools for the prediction of these peptide character-
istics. In the next section we shortly describe the tools used in this thesis.

2.4.1. RT Prediction

Different approaches have been developed for predicting retention times. Often
machine learning techniques like support vector machines (SVMs) [73–75] or arti-
ficial neural networks [76] are used. In our study, we used the approach by Pfeifer
et al. [74] as it showed a good performance, requires a relatively small number of
training peptides, and is easily available as part of TOPP [60].

In their study, Pfeifer et al. developed the (paired) oligo-border kernel
((P)OBK). The approach directly works on the amino acid sequence of peptides
and also distinguishes between different post-translational modifications (PTMs).
The OBK tries to identify signals or motifs in the borders of peptides, where bor-
der corresponds to the leftmost and rightmost residues and is of fixed length. The
POBK used in this work considers the left and right border in one common oligo
function and thus can detect similarities between opposite borders. The POBK
is used in a Support Vector Regression (SVR) as the labels (in our case the RTs)
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are continuous. Using a training set of high-confidence peptide identifications, a
model is learned with the TOPPtool RTModel. The trained model can then be
used to predict RTs for new peptide sequences.

2.4.2. Prediction of peptide detectabilities

Similar to the RT, the detectability of a peptide can be predicted. This can either
be a classification problem, where we try to distinguish between observable and
unobservable peptides.1 Or, as in our case, the labels are continuous likelihoods
reflecting whether a certain peptide can be detected, so again SVR in conjunction
with the POBK is applied. We use the TOPPtool PTModel [77] which needs
a number of high confidence peptide identifications and additionally a set of
undetectable peptides to train a model.

2.5. Linear programming

2.5.1. Introduction to linear programming

Linear programming is an optimization technique where a linear objective func-
tion should be optimized subject to linear equality and/or inequality constraints.
Bertsimas and Tsitsiklis [78] define a linear programming problem (LP) as: Given
a cost vector c = (c1, ..., cn), we want to minimize the linear objective function
c′x =

∑n
i=1 ci ·xi over all vectors x = (x1, ..., xn) subject to linear constraints. For

each constraint i a vector ai and a scalar bi are given. The three kinds of con-
straints (≥,≤,=) are formed using three index sets S1, S2 and S3. Additionally,
size constraints on the variables xj can be given. Thus, an LP can be written as:

min
∑

i

ci · xi (2.12)

subject to: a′ix ≥ bi, i ∈ S1, (2.13)

a′ix ≤ bi, i ∈ S2, (2.14)

a′ix = bi, i ∈ S3, (2.15)

xj ≥ 0, j ∈ S4, (2.16)

xj ≤ 0, j ∈ S5. (2.17)

The variables x1, ..., xn are the decision variables and every vector x that satisfies
the constraints is called a feasible solution. A vector x that is a feasible solution
and that minimizes the objective function is an optimal solution. In short the

1The observable peptides are also often called proteotypic peptides.
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LP can be written as:

min
∑

i

ci · xi (2.18)

s.t.: Ax ≥ b, (2.19)

where A is am×nmatrix and the rows a′1, ..., a
′
m build the constraints as a′ix ≥ bi.

A constraint of the form a′ix ≤ bi can be reformulated as (−ai)′x ≥ −bi. Equality
constraints a′ix = bi can be reformulated using the two constraints a′ix ≥ bi and
a′ix ≤ bi.

During this thesis we are mainly dealing with maximization problems which can
be easily converted into minimization problems as minimizing c′x is equivalent to
maximizing −c′x. Problems where the variables xi are required to be integer are
called integer linear programming problems (ILP). Problems with both integer
and continuous variables are mixed integer programming problems (MIP).

In the following sections we introduce three combinatorial problems, which are
part of Richard Karp’s 21 problems, for which Karp showed the NP-completeness
in 1972 [79].

2.5.2. Hitting Set

In Section 1.4, we gave a short introduction to the Hitting Set Problem. In the
following, we are deriving a mathematical formulation.

An instance of the Hitting Set problem is given by a universe U and a family of
sets S = S1, .., Sn, with Si ⊂ U ∀i. The goal is to find a subset P of U so that
|P | is minimal and P ∩ Si 6= ∅ ∀i [79]. The verbal formulation can be translated
to the following ILP:

min
∑

j

xj (2.20)

s.t.: ∀i :
∑

j∈Si

xj ≥ 1 (2.21)

∀j : xj ∈{0, 1}. (2.22)

Here, xj is an indicator variable which is one, if circle j is part of the minimal
set P and zero otherwise. In Figure 1.7, U is built by all circles, the subsets Si

are displayed via the rounded rectangles. A possible solution P is given by the
purple circles.
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Figure 2.9.: Set-Covering Problem. Given a set of circles and a set of rectangles covering
subsets of the circles, find a minimal number of rounded rectangles that covers all dots. The
red rectangles are an optimal solution.

2.5.3. Set Cover

An instance of the Set-Covering Problem is given by a universe U and a family
of sets S = S1, .., Sn, with Si ⊂ U ∀i and every element uj of U belongs to at
least one set Si. The goal is to find a set C of subsets of U , so that the number
of subsets in C is minimal while C still covers all elements of U [79, 80]. An
example is illustrated in the Figure 2.9.

The Set-Covering Problem can be formulated as ILP:

min
∑

i

yi (2.23)

s.t.: ∀j∈U :
∑

i:j∈Si

yi≥1 (2.24)

∀i : yi∈{0, 1}. (2.25)

yi is an indicator variable which is one, if set Si is part of the minimal cover and
zero otherwise.

The Set Cover and the Hitting Set Problem are equivalent and can be transformed
into one another.

2.5.4. Knapsack

The Knapsack Problem is another well known combinatorial problem. We intro-
duced a real life example in Section 1.3. In the following, we give a more technical
introduction.

Mathematically speaking we have given a set of items I = i1, ..., in. Each item
has a weight wi and a value vi and an indicator variable xi, which is 1 if item i
is part of the solution and 0 otherwise. Now, the goal is to maximize the sum



30 2. Background

of the selected items’ values while the sum of item weights does not exceed cap.
The optimization problem looks as follows:

max
∑

i

xi · vi (2.26)

s.t.:
∑

i

xi · wi<cap (2.27)

∀i : xi ∈{0, 1}. (2.28)
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3
Related work

In a standard LC-MS/MS workflow especially when using ESI-MS the most fre-
quent precursor ion selection strategy is data-dependent acquisition (DDA), where
after each survey MS scan the highest signals are selected for further fragmen-
tation [81, 82]. This precursor ion selection is incorporated into most of the
machine vendor’s software packages. As already pointed out in the motivation,
DDA yields only a limited reproducibility in technical and biological replicates.

In this chapter, we present an overview of existing precursor ion selection strate-
gies. These can be categorized in the following main classes:

• DDA, as a tool for discovery proteomics it requires no prior information
about the analyzed sample and it can be easily applied as it is implemented
as standard procedure in most mass spectrometers;

• Exclusion list approaches that prevent fragmentation of uninteresting or
redundant signals;

• Directed MS/MS based on inclusion lists requires knowledge about the pep-
tide signals, for instance

– based on a map of detected LC-MS features,

– based on interesting signals that show a difference in their abundance
between samples,

– or they target known proteins using their proteotypic peptides;

• Iterative procedures or real-time precursor ion selection that change the
precursor ion selection during the MS/MS run.

Furthermore, in the last years data-independent acquisition was developed where
no precursor ion selection is performed prior to fragmentation. In the following
sections we present the approaches beside DDA more elaborately.

31



32 3. Related work

3.1. Exclusion lists

Peptides elute over a certain time from the LC system and thus occur principally
in more than one MS scan. In consequence, with normal DDA, high abundant
peptide signals are selected several times. Through a simple approach called
dynamic exclusion (DEX) this redundancy can be circumvented by excluding the
m/z-values of already fragmented precursors. Usually, this is done in conjunction
with (absolute or relative) retention time windows. Additionally, exclusion lists
can contain m/z-values of certain widespread contaminants like keratin or of
internal standards used for calibration.

Exclusion lists are often used in conjunction with replicate analyses of a sam-
ple [82–87]. Here, the exclusion list is updated after each analysis and con-
tains the fragmented signals or identified precursors of earlier analyses. This
approach often leads to a higher number of unique peptide identifications in
replicate runs [84] and an overall higher number of protein identifications than
simple repetitions [87]. The additional peptides identified by using exclusion lists
are often among the low abundant signals [82]. Rudomin et al. [82] could addi-
tionally observe an increased sequence coverage of the identified proteins. Yet,
exclusion lists in conjunction with DDA still select only high abundant signals
which is problematic with complex biological samples where the dynamic range
often spans several orders of magnitude. Furthermore, Claassen et al. [88] showed,
based on predictions, that after a certain number of repetitions only the number
of false positive peptide discoveries increases while the number of true positives
remains the same.

3.2. Directed MS/MS

A complementary concept to excluding uninteresting signals is directed
MS/MS [89–92] where one is looking for specific signals of interest. One pos-
sibility for a directed precursor ion selection are inclusion lists that contain m/z-
values (and often an RT window) of the peptides of interest. Usually, inclusion
lists are static, meaning that they are fixed prior to MS/MS analysis. The inter-
esting signals can be based on MS data from one or more LC-MS analyses that
are used to determine the molecular mass profile of all features in the sample.
This profile can then constitute the basis for precursor ion selection. This ap-
proach is typically used with LC-MALDI MS due to its offline nature where MS
and MS/MS acquisition can be performed separately in time.

Gandhi et al. [93] used an inclusion list based strategy to reduce redundancy
for 2D-LC-MALDI-MS/MS. Peptide signals were clustered according to their
first dimension elution profile and the most promising fraction was chosen for
fragmentation. This decision was based on the signal-to-noise ratio (SNR). This
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way the authors could identify the same number of unique peptides as DDA with
a smaller set of precursors. Juhasz et al. [10] combined experimental depletion of
high abundant proteins with 2D-LC-MALDI-MS/MS. They utilized an inclusion
list of detected LC-MS features and combined it with the exclusion of unwanted
signals. The authors applied this approach to monitor peptide abundance levels
for cardiovascular disease markers.

There are also several studies where inclusion lists were applied to LC-ESI
MS/MS: Different groups showed that inclusion lists created from a consensus
map of the detectable LC-MS features can yield various improvements. Rinner
et al. [90] used the so created inclusion lists for the study of protein interactions.
Hoopmann et al. [94] and Schmidt and co-workers [92] showed that this approach
can lead to a higher number of identified peptides, especially for precursors of low
abundance, compared to DDA. Picotti et al. [91] showed that for tryptic digests
of single protein samples the number of peptide identifications per protein can be
drastically increased. Sandhu et al. [95] compared DDA, directed MS/MS using
inclusion lists, and Multiple Reaction Monitoring (MRM). In their study, tran-
scription factors (TF) and bovine serum albumin (BSA) were spiked in known
concentration into a complex tryptic digest of lysated breast cancer cells in order
to analyze the limits of detection for the different methods. Sandhu et al. could
show that inclusion lists based on known peptides lower the required amount of
spiked BSA or TFs significantly in order to identify the protein of interest when
comparing to DDA. Jaffe et al. [96] used inclusion lists as a first step in biomarker
detection. With their help long lists of biomarker candidates can be shortened to
the peptides that are detectable in a specific setup. For these candidates MRM
assays can then be developed for verification.

Hattan and Parker [97] proposed a precursor ion selection based on a consensus
LC-MS map of several replicates. Additionally, the authors used statistical tests
to detect significant differences in different sample groups. Their proposition was
to target precursor ion selection specifically at sample differences and similarities.
In this way, the efficiency of MS/MS acquisition in the context of information
retrieval can be improved as less sample, time and effort is spent on uninformative
signals. Neubert et al. [98] used the method of Hattan and Parker to detect
differentially expressed proteins in E. coli with label-free LC-MALDI MS/MS.

Recently, Yan et al. [99] developed Index-ion Triggered Analysis (ITA) where
for each targeted peptide, a heavy index peptide is synthesized which triggers
the MS/MS of the light target ion independent of the light ion’s abundance.
Additionally, for each target peptide a reference peptide is synthesized which
is used for quantification. This approach is more sensitive than inclusion list
approaches especially for low abundant target peptides and it does not rely on a
highly reproducible LC run. However, a clear drawback is the need of synthesizing
two peptides per target peptide which makes it probably not suitable for high-
throughput analyses.
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In a recent study, Schmidt et al. [100] used an repetitive directed selection strategy
with LC-ESI-MS/MS to monitor protein abundances at different cell states of a
microorganism. Two initial DDA runs were used to create a map of detectable
features. The detectable but yet unsequenced features were then inserted into
inclusion lists. After these inclusion runs, additional inclusion lists were created
based on proteotypic peptides for this organism observed in previous studies and
on predictions. With the protein and peptide identifications achieved with this
procedure a set of proteotypic peptides per protein was selected and together
with a set of labeled peptides inserted into a new inclusion list. This allowed
quantitative time course measurements of perturbed cells with a relatively small
number of precursors.

3.3. Data-independent acquisition

A complementary approach for MS/MS is the so-called MSE technology, concur-
rent peptide fragmentation or data-independent acquisition [101–106]. In MSE

each survey MS scan is usually followed by a fragmentation spectrum where all
peptide ions are concurrently dissociated. Thus, practically no precursor ion se-
lection is done. This results in highly complex fragment spectra. Algorithms
for deconvolution of mixture spectra were developed that use LC elution profiles
of precursor and product ions to construct MS/MS-like spectra for all simulta-
neously fragmented peptides [105, 107]. Blackburn et al. [106] compared MSE

to DDA and showed that MSE can yield a higher protein sequence coverage es-
pecially for low abundance proteins. Geromanos et al. [108] argued that MSE

is more suitable for quantification than DDA as all precursor and product ions
are recorded during the peptide’s entire chromatographic elution leading to more
comprehensive product ion spectra.

3.4. Iterative and real-time precursor ion

selection

The presented approaches for inclusion and exclusion list generation are often
applied in repetitive analyses where previously acquired LC-MS/MS data are
used to guide the precursor ion selection of the current run. In contrast to that,
with iterative precursor ion selection (IPS) not all tandem spectra are recorded
at once. Rather acquisition is suspended after a certain number of MS/MS spec-
tra. Then, information from identification results obtained so far can be used
to guide the selection in the following iterations. This means that with IPS the
same LC-MS data is used for the whole analysis, whereas with repetitive analysis
replications are used with the associated drawbacks like limited reproducibility
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(see Section 1.2).

The advantage of an iterative exclusion of unwanted signals was shown by Scherl
et al. [109] for protein digests fractionated on gels. The authors included m/z-
values of tryptic peptides of already identified proteins into the DEX list, thus
preventing fragmentation of signals pointing to already identified proteins.

Recently, Liu et al. [110] presented an iterative MS/MS acquisition (IMMA) tool.
Similar to a study conducted for this thesis [17], Liu et al. exploited the offline
nature of LC-MALDI MS/MS and changed the precursor ion selection during
ongoing MS/MS acquisition. Unlike our approach, Liu et al. concentrated on
excluding ions from the precursor list with different filters. First, a peptide frac-
tional mass filter that classifies m/z features as peptides or non-peptides based
on their excess to nominal mass ratio. This filter makes use of the observation
that peptide masses are unevenly distributed and can be clustered into narrow
equidistant regions separated by approximately 1 Da. 1 Besides, proteotypic pep-
tides of previously identified proteins are set onto an exclusion list with predicted
RTs and computed m/z-values. The proteotypicity prediction is used to increase
the specificity of the exclusion.

Lately, real-time peptide identification was applied for targeted precursor ion se-
lection with LC-ESI-MS/MS [111, 112]. Graumann et al. [111] incorporated a
so-called “intelligent data acquisition” together with real-time database search
into MaxQuant [113]. Their tool detects features or SILAC pairs while the cor-
responding peptide is eluting and triggers fragmentation of these on the fly. A
real-time version of the search engine Andromeda [114] was developed and used
for mass calibration during the measurement. Their work describes some proof-
of-principle examples like resequencing of a peptide feature based on the intensity
development of the eluting peptide. Bailey et al. [112] showed different applica-
tions of real-time peptide identification: the authors used RT predictions to create
inclusion lists on the fly thereby targeting 30 times more peptides per RT win-
dow than with offline scheduling. In their study, Bailey et al. [112] also observed
significant improvements of quantification results by resequencing the targeted
peptide. Besides, Bailey and co-workers improved localization of PTMs by trig-
gering an ETD MS/MS scan of peptides whose PTM could not be localized with
HCD MS/MS.

1This pattern is also illustrated in Fig. 6.2.





Chapter

4
Sample preparation and
data processing

In this chapter, we describe the samples used in the evaluation of our algorithms.
Sample preparation is explained and how the resulting LC-MS/MS data were
processed.

We used three samples of different complexity to evaluate the different approaches
which are listed in Table 4.1. A protein standard sample containing 48 human
proteins in equimolar concentrations provides a well-defined basis for the evalu-
ation. The proteins are known, so we have a gold standard to work with. As
pointed out in Section 1.2, biological samples have a high dynamic range of pro-
tein abundances. In order to investigate the influence of the high dynamic range
on our algorithms we used two biological samples for evaluation, one of medium
and one of high complexity.

In the following, we give a description of the sample preparation. This is followed
by data processing and model training for PT and RT prediction. Model training
is exemplarily evaluated on one of the samples (figures for the other samples are
given in the supplement A.2).

4.1. Sample description

Sample 1 was the Universal Proteomics Standard (UPS1, Sigma-Aldrich), con-
sisting of 5 pmol each of 48 human proteins. The protein standard was dissolved
in 25 µL 50 mM NH4HCO3/10 mM nOGP. After adding 5 µL 25 mM DTT the
sample was incubated for 30 min at 37◦C. Then 5 µL 50 mM IAA were added and
the mixture was again incubated for 30 min at 37◦C. The sample was diluted by
adding 85 µL H2O. 2µL of trypsin (100 ng/µL) were added and the sample was
incubated at 37◦C over night. The digest was acidified and diluted by addition
of 380 µL of 0.1% TFA and stored in 10µL aliquots, containing 100 fmol of each
of the 48 proteins, at -20◦C. We analyzed four technical replicates of UPS.

Sample 2 was the 50S ribosomal subunit, consisting of 33 different proteins, and
isolated from Escherichia coli as described previously [115]. It was a gift from
Dr. Fucini (Max Planck Institute for Molecular Genetics, Berlin). The sample

37
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Table 4.1.: Sample overview

Name Description

UPS Universal protein standard consisting of 48 human protein in
equimolar concentration.

50S 50S ribosomal subunit of E. coli, consisting of 33 proteins.
HEK293 Tryptic digest of cell lysate of HEK293 cells.

was subjected to tryptic digestion as previously described [116]. 6 µL sample,
corresponding to 1 pmol 50S subunits, were used for each LC-MS analysis. We
measured this sample in four replicates.

The third sample is a tryptic digest of the total proteome of 10,000 HEK293 cells.
This sample was analyzed in the contest of the 13th Workshop for micro methods
in protein chemistry in Martinsried. It was prepared and provided by the group of
Prof. H. Meyer (Medical Proteome Center, Ruhr University Bochum, Germany).
The peptide lyophilisate was dissolved in 20 µL 0.1% TFA.

4.2. LC-MS sample preparation

All samples except Sample 3 were analyzed on an 1100 Series Nanoflow LC system
(Agilent Technologies, Waldbronn, Germany). The mobile phases were Buffer A:
1% acetonitrile and 0.05% TFA and Buffer B: 90% acetonitrile and 0.04% TFA.
The samples were separated using a 100 min gradient. The Agilent 1100 fraction
collector spotted fractions of LC-effluent onto MALDI sample plates from min 14
to 77 every 30 seconds. The gradient started with 100% Buffer A, after which
the concentration of Buffer B was set to 3% after 5 min and increased to 15%
after 8 min. Then Buffer B was linearly increased to 45% over 60 min. At min
73 Buffer B was set to 95% and held at 95% for 5 min.

Prior to HPLC analysis AnchorChip 800/384 targets (Bruker Daltonics, Bremen,
Germany) were prepared with thin layer of CHCA matrix as previously described
[116]. All mass spectra were acquired on a Bruker Ultraflex III MALDI TOF-
TOF equipped with a 200 Hz solid state smartbeam laser. Positively charged
ions of m/z 800-4000 were detected, for Sample 3 this window was extended to
m/z 700-5000, and thousand single-shot spectra were accumulated at ten differ-
ent positions. Monoisotopic peaks were determined using the algorithm SNAP,
implemented in the FlexAnalysis 3.0 software (Bruker Daltonics). Except for
Sample 3 all spectra were internally calibrated using two peptides present in
the matrix solution (Angiotensin I 1296.6853 Da and ACTH (18-39) 2465.1989
Da). Monoisotopic peaks in successive spectra were combined to compounds and
selected for MS/MS analysis using the software Warp-LC 1.1 (Bruker Daltonics).

Sample 3 was analyzed on an Easy-nanoLC (Bruker). Mobile phases were Buffer
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A, consisting of 0.5% TFA, and Buffer B with 90% acetonitrile and 0.05% TFA.
We used a 205 min gradient for the first ten minutes 98% Buffer A and 2% Buffer
B. Afterwards, Buffer B was linearly increased to 35% over 120 min. Then, it was
further increased to 70% over 60 min and finally it was increased to 100% over
10 min. Fractions were spotted from the 37th to the 165th min every 10 seconds,
resulting in 768 spots on two targets. Half of the sample (10 µL) was injected.

4.3. Peptide identification

For peptide identification, we performed database searches using X!Tandem [37]
(release CYCLONE (2010.12.01)) via XTandemAdapter from TOPP [60] as wrap-
per of the search engine. We searched the Swiss-Prot protein sequence database
in Release 2011 08 with the taxonomy limited to E. coli for sample 2 and human
for the other samples, unless otherwise stated. A combined database of a decoy
and a normal version was used for searching. The other search settings were:

• 25 ppm precursor mass tolerance,

• 0.3 Da fragment mass tolerance,

• +1 as minimal and maximal precursor charge,

• carbamidomethylation as fixed modification (except for Sample 3),

• methionine and tryptophane oxidation as variable modification,

• 1 allowed missed cleavage and

• a tryptic cleavage site.

After the search, the peptide hits were annotated as target or decoy hits using
TOPP’s PeptideIndexer. Then, PEPs were computed using IDPosteriorError-
Probability. Finally, peptides were filtered to retain only the target hits. All
tools were used in version 1.9. Afterwards the posterior error probabilities (PEP)
were transformed into identification probabilities using P = 1 - PEP.

4.4. RT and detectability model training

Before we can apply our algorithms, we require certain information about every
peptide in the underlying database. This includes the m/z, which can be easily
computed for all peptides using the molecular masses of the amino acids, the
RT and the detectability. Incorporating predicted RTs and detectabilities into
our setup allows to reduce the risk of erroneously assigning a peptide in the
database to an observed LC-MS feature. The RT limits the search space for
matching features in the LC-MS map, the detectability limits the set of peptides
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Figure 4.1.: Experimental vs. predicted retention time for (a) the protein standard
and (b) the HEK293 sample. The Pearson correlation is 0.94 (UPS) and 0.96 (HEK293).

to be considered. We used SVMs to predict both RT and detectability for our
setup. Therefore, it was necessary to train models as explained in Sections 2.4.1
and 2.4.2.

The training set for the RT model consisted of peptides identified with a probabil-
ity of at least 0.99. For samples measured in replicates, the training set consisted
of merged IDs from all but one run. We performed a 10-fold cross validation to
determine the best parameter set. In Figure 4.1 experimental and predicted RT
are plotted for the UPS and HEK293 sample. We can see a high correlation of
experimental and predicted RTs leading to Pearson’s correlation coefficients of
0.94 and 0.96, respectively.

Two peptide sets are required for detectability model training, a positive one
containing the proteotypic peptides and a negative set with unobserved or unde-
tectable peptides. The positive set was composed of peptides identified with a
PEP < 0.01 (for replicates merged from all but one run). We know the sample
composition for UPS and the 50s ribosomal subunit, so these identifications were
filtered for protein sequences contained in the UPS and 50s sample. In order to
create the negative set of undetectable peptides, protein sequences of the positive
set were assembled. Then, these were in-silico digested and filtered for the exclu-
sion of all peptide hits found in any of the runs irrespective of the identification
score. Furthermore, negative peptides that are substrings of identified peptides
or that contain substrings of identified peptides are filtered out. After filtering
we thus retrieve a set of peptides that belongs to the observed proteins but the
peptides itself were not observed and can therefore serve as negative peptide set.
Additionally, the negative peptide set was filtered for size, as in our setup we only
observe peptides with an m/z between 700 Da and 5000 Da (complex data set)
or between 780 Da and 3600 Da (all other data sets). Besides, the HEK293 data
set was filtered for proteins with at least four peptide identifications to keep the
negative sequence set at a reasonable size.
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We used balanced data sets for model training. Thus, negative peptides were
randomly drawn from the whole negative sequence set as the number of negative
peptides exceeded the number of positive ones. We used a 10-fold cross-validation
to learn the model parameters.

4.4.1. Evaluation of the detectability model

We validated the detectability models with a method proposed by Pfeifer [117].
As explained in section 2.4.2, the SVM learned which amino acids are important
to distinguish detectable from undetectable peptides. When evaluating the model
training we first show these important amino acids at the different positions of
the peptide termini in a heatmap. Then, we compare this heatmap with a Two
Sample Logo (TSL) [118] which determines enriched and depleted AAs of the
positive sequence set using a statistical test. Enrichment or depletion in this
context means that an AA is over- or underrepresented in the positive set. The
TSL requires two multiple sequence alignments, one of the positive and one of the
negative sequences. Hence, peptide sequences were aligned on their C-Terminus
as the peptides differ in length. In this section, we focus on the evaluation of
the UPS sample, complete figures for the remaining samples can be found in the
supplement A.2.

We applied a POBK which considers both peptide ends simultaneously, thus
a strong signal in the heatmap at position i corresponds to peptide positions
i and n − i + 1, where n is the peptide length. The SVM showed a strong
depletion of arginine and lysine at the borders (Figure 4.2) what is confirmed by
the TSL (Figure 4.3). Another strong signal in the heatmap is the enrichment
of the aromatic AAs phenylalanine and tyrosine which is also visible in the TSL.
The enrichment of aromatic AAs for MALDI experiments was also detected by
Pfeifer [117] and is confirmed by the literature [119]. The strong depletion of the
same AAs at the high positions in the heatmap is interesting as most peptides are
shorter than 22 AAs and can not produce a signal at these positions. However, a
bias to longer negative sequences was observed in the training data. The longest
positive peptide consists of 20 AAs, the longest negative of 34 AAs, which might
explain this phenomenon.

Finally, we compared the differences in peptide probability and predicted de-
tectability (Figure 4.4). The predicted detectability is mostly smaller than the
peptide probability but the histogram shows that the detectability can indeed be
a predictor for the ability of a peptide to be identified. The mean difference is
0.05 with a standard deviation of 0.37, the median is 0.18.



42 4. Sample preparation and data processing

Figure 4.2.: Visualization of POBK for UPS. Produced with MATLAB scripts from Nico
Pfeifer[117]. The plot shows the signals for both termini together, hence position i corresponds
to AAs at position i and n− i+ 1 (where n refers to the peptide length).

Figure 4.3.: Two Sample logo [118] for the high-scoring peptide identifications and the
unobserved peptide sequences of the protein standard. Enriched AAs are shown at the top,
depleted AAs at the bottom. Sequences were aligned at their C-Terminus and the position is
given with respect to the longest peptide.
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Chapter

5
Inclusion list creation as
optimization problem

Inclusion lists are widely used for directed LC-MS/MS analyses as pointed out in
Chapter 3. Depending on the aim of a study, several approaches are conceivable.
In this chapter we introduce two strategies. First, given a survey MS feature
map, e.g., as obtained from a first LC-MS run, we construct an inclusion list
that maximizes the number of selected precursors. Thereupon, we develop an
inclusion list solely based on protein sequences of interest in the sample to be
analyzed. In both approaches we are interested in the optimal set of precursors,
thus we develop an objective function and formulate the inclusion list creation as
linear program (LP).

5.1. Inclusion lists for a given feature map

Assume we have recorded an LC-MS feature map, e.g., as is typically the case
for LC-MALDI analyses due to the decoupled steps of LC and MS. Standard
data-dependent precursor selection (DDA) chooses the highest signals in each
spectrum, even if this means selecting the same feature again and again at dif-
ferent retention times. A more sophisticated selection would account for the 3D
nature of the LC-MS feature and contains each feature only once, ideally at the
RT with its maximal signal intensity. However, such a greedy approach (GA)
might lead in total to a lower number of selected precursors than a global strat-
egy as shown in a mock example in Figure 5.1. Here, a frequently occurring
problem is that feature maxima are not equally distributed over the spectra. In
spectra crowded with feature maxima, the MALDI sample may be depleted be-
fore MS/MS spectra of all selected precursors can be recorded. Additionally, in
crowded spectra there is also an increased risk of occurrence of features with
m/z -values too close to permit clean isolation of one precursor for MS/MS.

In the following section, we develop a formulation of the feature based inclusion
list creation as optimization problem.

45
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Figure 5.1.: Illustration of precursor ion selection strategies. (a) LC-MS map of four
features. (b) MS spectral view of the map. The colored markers show the selected precursors
for each of the strategies, green with DDA, blue with GA and red with the ILP. Assuming a
limited number of precursors per spectrum, here 2, feature c is never chosen by DDA and with
GA again only features a, b and d are selected while in spectrum S3 no MS/MS spectrum is
acquired. Only ILP allows to select all features at once.
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Table 5.1.: Variables and constants used in the LP formulations throughout this
chapter.

Variable Explanation

xj,s Indicator variable, 1 if feature j is selected in spectrum s,
0 otherwise

xj Indicator variable, 1 if feature j is part of the solution,
0 otherwise

intj,s Normalized signal intensity of feature j in spectrum s
caps Maximal number of MS/MS precursors in spectrum s
h Maximal number of times a feature is selected as precursor
dpi Detectability of protein i
zi −log(1− dpi), higher values reflect a better detectability
dk Detectability of peptide k
ai,k Indicator variable, 1 if peptide k is part of protein i,

0 otherwise
ws RT window size
tp Predicted RT
max list size Maximal number of elements in inclusion list
pk Probability that peptide k was identified correctly
c Minimal protein probability to declare a protein identified

5.1.1. Problem formulation

Given a set of detected LC-MS features, our goal is to select a maximal number of
these as precursors for fragmentation. Two constraints have to be fulfilled: first,
for each spectrum the maximal possible number of precursors, also referred to as
spot capacity, may not be exceeded. Second, the number of times a feature is
selected as precursor is limited by a specified number h. This problem is related
to the Knapsack problem, as pointed out in Section 1.3. However, now we are
dealing with features potentially spanning more than one fraction. Our goal is
to make a global precursor ion selection, and not a separate selection for each
fraction.

For each feature we have a set of indicator variables xj,s that are 1 if feature
j is selected in spectrum s as precursor and 0 otherwise. The x-variables are
weighted by intj,s which corresponds to the intensity of feature j in spectrum s
normalized by the maximal intensity of feature j in any spectrum (see Table 5.1
for an overview on ILP variables and constants used throughout this chapter.).
This way, all features have normalized intensity values between 0 and 1, thus high
intensity features are not favored over low intensity ones. Yet, for each feature,
a spectrum with higher signal intensity is more likely to be chosen than a lower
intensity spectrum. Absolute feature intensities can be considered instead of
normalized intensities as well. However, in this case the sum of signal intensities
of the precursors is maximized and not the number of precursors. Our constraints
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are that each feature must not lead to more than h precursors and that each RT
bin has at most cap precursors. The ILP formulation looks as follows:

max
∑

j,s

xj,s · intj,s (5.1)

s.t.: ∀s :
∑

j

xj,s ≤ caps (5.2)

∀j :
∑

s

xj,s ≤ h. (5.3)

Inequation 5.2 ensures that the maximal number of selected precursors, caps, for
spectrum s is not exceeded. Due to Inequation 5.3 each feature will only be
selected in h spectra or less.

In our implementation, we solve the ILP formulation using the GNU Linear Pro-
gramming Kit (GLPK, www.gnu.org/software/glpk/). The solution provides
values for all xj,s and all features j where xj,s = 1 are part of the final inclusion
list. Due to Constraint 5.3, xj,s can only be 1 for at most h spectra s for each pre-
cursor j. In our standard settings we set h = 1, thus each precursor is scheduled
in a specified fraction.

5.1.2. Results

Evaluation workflow

We want to evaluate a variety of settings for inclusion list creation, so a simulation
study is best suited for this purpose. However, the spectra themselves are not
simulated, only the precursor ion selection. This means that an LC-MS sample
was exhaustively measured including all possible MS/MS spectra. Afterwards,
different settings were applied for the inclusion list creation. The evaluation
workflow is illustrated in Figure 5.2.

In the evaluation, inclusion lists were mapped onto observed LC-MS feature maps.
If a feature from the inclusion list overlaps with an observed feature we assumed
that the inclusion list feature can generate the same MS/MS spectrum as the
observed feature. This is a strong assumption, as it also implies that for a given
feature the fragmentation works with (almost) equivalent quality in all fractions,
that it occurs in. However, as the reproducibility even of “simple” technical
replicates is limited [6], this approach is the only possibility to differentiate real
performance differences from differences resulting from replication issues.

www.gnu.org/software/glpk/
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Figure 5.2.: Evaluation workflow. First, the samples are analyzed by extensive LC-
MS/MS, resulting in an LC-MS feature map and a number of MS/MS spectra. These build the
data pool for all evaluation experiments that simulate precursor ion selection upon the data.

Algorithm evaluation

We evaluated four different strategies, namely GA, DDA and ILP that were
illustrated in Figure 5.1 and DDA with dynamic exclusion of each scheduled
precursor for the following two fractions enabled (DEX). We applied the selection
strategies to the UPS, the 50S and the HEK293 sample. The maximal number of
precursors per RT bin varied from 1 to 40, leading to inclusion lists of increasing
size for each approach. For each strategy we counted the number of selected
unique features to ensure that features which are selected more than once as
precursor are considered only once. Figure 5.3 shows the results for UPS and
50S. As expected, ILP and GA, the two methods that make use of the feature
information, clearly outperform DDA and DEX. ILP is also considerably better
than GA: with about 18-20 precursors per RT bin all possible features can be
selected as precursors while GA requires around 25 precursor per RT bin to
do so. In turn, DDA and DEX do not allow to select all features present in
the data set within the limit of 40 precursors per RT bin. Although the toy
example in Figure 5.1 appears to be fictitious, the results show that there is a
clear performance difference between ILP and GA. Especially for the biological
relevant 50S sample this difference is significant.

In Figure 5.4 we can see the results for the complex HEK293 sample. Here, the
difference of DDA and DEX compared to GA and ILP is even more significant
than in the previous example. Only less than half of the LC-MS features are
selected for fragmentation. Interestingly, GA and ILP perform similar up to a
capacity of fifteen precursors per fraction, where ILP starts to perform better. At
the maximal capacities of 20 and 25 GA selects around 400 and 650 precursors
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Figure 5.3.: Evaluation of feature based selection. For four different strategies the
number of selected LC-MS features (each features counted once, even if selected several times)
is shown against the number of maximal precursors per fraction for (a) the UPS sample and
(b) the 50S sample. The results with the ILP are in red, for GA in blue, for DDA in green, and
for DEX in magenta.
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Figure 5.4.: Evaluation of feature based selection for the HEK293 sample. For four
different strategies the number of selected LC-MS features (each features counted once, even if
selected several times), is shown against the number of maximal precursors per fraction using
the HEK293 data set. The ILP results are given in red, DDA in green, DEX in magenta and
GA in blue.

less than the ILP. At the capacity limit of 40 none of the strategies selects all
of the 13,546 features. The GA selection consists of 13,484 features while ILP
selects 13,539 features. Hence, for all evaluated samples in all tested settings the
ILP yields the maximal number of scheduled features.

Figure 5.5 (a) shows the number of LC-MS feature maxima in each RT bin for
the HEK293 sample. Clearly, there are many RT fractions where the number of
feature maxima exceeds 20, which is a realistic spot capacity in our setup. The
histogram in Figure 5.5 (b) of the number of fractions with a given number of
feature maxima gives a brief overview about the number of spectra exceeding a
certain capacity.

As next step, we want to consider the run times. The CPU times for solving the
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Figure 5.5.: Distribution of feature maxima for HEK293 sample. (a) shows a his-
togram of feature maxima per fraction. There are many fractions where the number of features
exceeds 20, which is a realistic spot capacity in our setup. (b) shows how many fractions exceed
a given spot capacity.
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Figure 5.6.: Times for solving the feature-based ILP, measured by evaluating the
HEK293 sample.
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ILP with the solver from GNU Linear Programming Kit (GLPK) were measured
in 15 experiments on an Intel Xeon X5550 with 2.67 GHz. In each of the exper-
iments the maximal RT bin capacity ran from 1 to 40 as shown in the previous
figures. For UPS, the CPU times for solving the ILP varied between 0.04 and
0.05 seconds, no dependency on the parameter settings has been observed. For
the 50S data set the CPU time were below 0.01 s. Whereas for the HEK293 data
the solving time clearly increased with a higher number of allowed precursors per
RT bin up to 27 allowed precursors per fraction where ≈ 11 s are needed for
the solution (Figure 5.6). Interestingly, for RT bin capacities higher than 27 the
CPU times start decreasing again down to ≈ 8.8 s. A possible reason for this
decrease is that the number of conflicts is smaller with a higher bin capacity as
there less spectra remain that exceed their capacity than with a smaller limit.
Another interesting observation is that maximal running time coincides with the
beginning of the plateau in the number of protein identifications (see Figure 5.4).
In summary, the times for solving the ILP are acceptable for all of the tested
samples.

5.2. Inclusion lists for a given list of protein

sequences

There are many experimental setups where researchers are not interested in max-
imizing the number of identified features, but want to observe a defined set of
proteins under various conditions. This can also be done using inclusion lists,
even without previous LC-MS runs of each protein set where the LC-MS signa-
ture of the sample is determined. Thus, we are now interested in optimizing the
selection given a set of proteins of interest, but without prior knowledge of the
LC-MS data. Ideally, we want to find a set of precursors such that each protein
of interest is sufficiently characterized. We explain in Section 5.2.1 what this ex-
actly means and how we compute this. As we have no previously acquired LC-MS
data to base our precursor selection on, we have to predict LC-MS features as
explained in the next paragraph.

Figure 5.7 shows the three layers of the problem: the highest layer presents the
proteins of interest. Using their sequences, an in silico digestion leads to a set
of tryptic peptide sequences. As shown in section 4.4 it is possible to reliably
predict the RT and the detectability of a peptide given only its sequence if well
trained models for the used experimental setup exist. After the prediction, we
retrieve a set of candidate features. Now, we use an LP formulation to select a
subset and to define an RT window for each feature.
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Figure 5.7.: The protein sequence based ILP inclusion list creation. Given a set of
protein sequences P1 to P6 we can calculate the tryptic peptides a1 to a11. For all peptides
we can calculate their m/z-values, predict their RT and whether they are detectable in a given
LC-MS setup. In our example peptides a3 and a10 are not detectable. The goal is to select a
set of features that yields the best protein detectability.

5.2.1. Protein detectabilities

First, we need to find a measure to determine when a protein is sufficiently charac-
terized. In Section 2.3.1 we dealt with different methods for protein identification.
Here, we want to use a probabilistic formulation similar to the basic formula used
in ProteinProphet [70].

The probability that protein i is identified correctly (in the following shortly called
protein probability) can be computed via the probabilities of the corresponding
peptides to be identified incorrectly, as shown in Equation 2.11 in Section 2.3.1.
Accordingly, we can calculate the protein probability as probability that at least
one of the peptides is identified correctly, see Figure 2.8 for an example.

However, in our case we do not have peptide probabilities. We use peptide de-
tectabilities as analogies as they represent the likelihood that a peptide is de-
tectable and identifiable in a given experimental setup. Thus, we can define a
protein detectability of protein i as:

dpi = 1−
∏

k

(1− ai,kxkdk), (5.4)

where ai,k is an indicator term which equals 1 if peptide k is part of protein i
and 0 otherwise. dk is the detectability of peptide k. Additionally, we have an
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indicator variable xk which is 1 if peptide k is part of the solution and 0 otherwise.

Finally, we want to formulate a problem with linear constraints, thus we need to
reformulate the product term using the logarithm:

1− dpi =
∏

k

(1− ai,kxkdk) (5.5)

⇒ log(1− dpi) =
∑

k

log(1− ai,kxkdk) (5.6)

⇒ log(1− dpi) =
∑

k

xk · log(1− ai,kdk). (5.7)

The last conversion is valid as xk can only have the values 0 or 1. If it is 0, in both
equations 5.6 and 5.7 we add 0 and if it is 1, we add log(1− ai,kdk) in equations.

In the following section we use the protein detectability calculation in our for-
mulation of the protein sequence-based precursor ion selection as optimization
problem.

5.2.2. Problem formulation

In Section 1.4 we introduced an approach for a protein-based precursor ion se-
lection using the Hitting Set Problem. This means we select a minimal set of
peptides that covers the whole protein set. This approach has two problems in
practice. First, by construction, it favors shared peptides over peptides that are
unique for each protein as the number of selected peptides is minimized. This
can be circumvented by maximizing the number of proteins and penalizing for
the number of selected peptides. This way we retrieve a minimal peptide set
covering a maximum number of proteins. The second point is that we cannot
select peptides directly, as not all theoretical tryptic peptides are observed and
identified in practice. As explained before we use the detectability to account for
that. Altogether, this means we want to find a set of peptides, so that the sum of
protein detectabilities is maximal, the inclusion list does not contain more than
max list size precursors in total and each RT bin has at most cap precursors.
This yields the following ILP formulation:
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s s+1s-1s-2 s+2
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Figure 5.8.: RT window constraint. The predicted RT of a peptide is indicated by the
dashed line. The solid lines depict the RTs of the survey MS spectra. The nearest spectra to
the predicted RT has index s. The RT window shows how many spectra “left” and “right” of
spectrum s are included in the ILP formulation.

max
∑

i

zi (5.8)

s.t. : ∀s :
∑

k

xk,s ≤ caps (5.9)

∀k,s : xk,s ≤ xk (5.10)

∑

k

xk ≤ max list size (5.11)

∀k :
∑

s/∈[tp−ws,tp+ws]

xk,s = 0 (5.12)

∀i : zi = −
∑

k,s

xk,s · log(1− ai,kdk) (5.13)

∀k,s : xk,s, xk ∈ {0, 1}. (5.14)

zi is depending on the protein detectability dpi as explained in the previous sec-
tion. From dpi ∈ [0, 1] follows that log(1− dpi) ≤ 0. For high protein detectabil-
ities log(1 − dpi) is approaching −∞. Thus, by maximizing the sum of zi, the
additive inverse of log(1− dpi), we maximize the sum of protein detectabilities.

Constraint 5.12 ensures that only those spectra s can be chosen for peptide k
that lie in an RT window of size ws around the predicted RT tp, hence that lie
in the interval [tp − ws, tp + ws], see Figure 5.8 for an illustration.

By solving the ILP formulation we receive a set of variables xk,s = 1 that build
the inclusion list. In this setup, we provide RT windows for each precursor in the
inclusion list. Thus, for each peptide k there can be multiple xk,s = 1.
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Figure 5.9.: Peptide IDs obtained with protein sequence-based LP. Inclusion list
creation via a protein based ILP formulation for the protein standard, (a) the inclusion list
size vs. the number of peptide identifications, (b) the gain in peptide identifications with the
increasing inclusion list size. The gain is the number of additional peptide IDs obtained with
the last size limit increase. The RT window varied from 100 to 500.

5.2.3. Results

The inclusion list creation with protein sequence-based ILP was evaluated on the
protein standard. We trained RT and PT models as described in section 4.4.
The training set consisted of peptide identifications from three LC-MS/MS ex-
periments. The fourth LC-MS/MS run that has not been considered for model
training was used in the evaluation. Inclusion lists were created using the ILP
formulation. During the evaluation, we compared the precursors of the inclusion
list with the actually observed features. If an observed feature overlapped with
a predicted precursor, the peptide annotation of this feature was assigned to the
predicted feature. This way, we evaluated the number of peptide and protein
identifications an inclusion list would deliver. In this context, a protein was de-
clared as identified if the protein probability calculated using Equation 2.11 is at
least 0.99.

Figure 5.9 (a) shows the absolute number of peptide identifications against the
inclusion list size. We used RT window sizes of 100, 300 and 500 seconds, illus-
trated in green, blue and red. The figure shows that the increase in the number
of peptide identifications correlates with the inclusion list size. Interestingly, this
effect depends strongly on the RT window size. Using a smaller window clearly
reduces the gain of the increase in inclusion list size. Figure 5.9 (b) explicitly
emphasizes this effect. Here, we show the additional number of obtained peptide
IDs for each stepwise increase of the inclusion list size. The highest gain can
always be achieved for an RT window of 500 s.
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Figure 5.10.: Protein IDs obtained with protein sequence-based LP. Inclusion list
creation via a protein based ILP formulation for the protein standard, (a) the inclusion list
size vs. the number of protein identifications, (b) the gain in protein identifications with the
increasing inclusion list size. The RT window was varied from 100 to 500.

As we are evaluating the protein based inclusion list creation, the more impor-
tant aspect is the number of protein identifications. Figure 5.10 (a) shows the
number of protein identifications against the maximal inclusion list size. Again,
we assessed the performance of the inclusion list using different RT window sizes,
100, 300 and 500 s. For all RT window sizes we see that the maximal number
of protein identifications is achieved with about 900 precursors. A further in-
crease in inclusion list size does not yield an improvement. The absolute number
of identified proteins decreases with a decreasing RT window size. An inclusion
list with around 500 precursor already yields 32 or 33 protein identifications for
all window sizes. Figure 5.10 (b) shows the gain in protein identifications with
increasing the inclusion list size. An interesting aspect is that the number of
protein identifications is partly higher than the number of peptide IDs (using the
same threshold). This is due to the computation of the protein probability where
several medium quality peptide IDs, for themselves not significant, can be added
up to a significant protein ID.

The effect of the RT window size is shown in Figure 5.11. We can see that the
number of identified peptides increases almost linear with the RT window. The
RT range of the underlying experiment was only 2880 s, thus an RT window size
of 1000 seconds covers more than two third of the whole experiment rendering
the RT prediction somewhat irrelevant. We compared two settings in Figure 5.11
(b): an inclusion list size containing maximally 1000 precursors (green) and an
inclusion list not limited in its size (red). Both settings yield very similar results.
The plot shows that already an RT window of 150 seconds yields 34 identified
proteins. Any further increase of the RT window only leads to 1 or 2 more protein
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Figure 5.11.: Effect of RT window size. Inclusion list creation via a protein based ILP
formulation for the protein standard, (a) the RT window size vs. the number of peptide iden-
tifications, (b) the RT window size vs. the number of protein identifications. The inclusion list
size was either unlimited or set to 1000.

identifications. These results justify smaller RT windows.

Next, we wanted to determine the value of a good detectability prediction. We
compared the results obtained with our trained model with inclusion lists created
with either a constant detectability set to 1 for all peptides or with a randomly
assigned detectability (Figure 5.12). Both inclusion lists perform considerably
worse than the one obtained with the trained model. In the end, all settings
lead to the same number of protein identifications, yet the required number of
precursors is very different. Especially, with complex samples where the number
of theoretical tryptic peptides clearly outranges the number of possible precursors
the usage of the detectability might make a clear difference.

So far, we only considered the well defined UPS sample for evaluation, now we
apply the LP-based inclusion list to a biological relevant sample, the 50S riboso-
mal subunit of E. coli. The proteins building the ribosomal subunit are known
which is a prerequisite of the protein sequence-based selection. However, in con-
trast to the UPS sample the proteins are not equimolar and thus represent a more
realistic setting. The number of observed features was smaller than with the UPS
sample, so already with around 600 precursors a maximal number of proteins is
identified (Figure 5.13) in all tested settings. Now, the performance of small RT
windows of 100 s is considerably worse than the one of larger windows. However,
again RT windows of 200 s yield a maximal number of identified proteins.

We measured the running times for solving the ILP again on a Xeon X5550
(Figure 5.14). The solving times are clearly increasing with larger RT windows.
Another time-relevant factor is the maximal inclusion list size: a smaller limit
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Figure 5.12.: Results with random or constant detectability.
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Figure 5.13.: Inclusion list creation using a protein sequence-based ILP formula-
tion for the 50S sample. (a) The number of protein identifications against the inclusion list
size, (b) the RT window size vs. the number of protein identifications.
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Figure 5.14.: CPU times for solving the protein sequence-based ILP, measured by
evaluating the UPS sample.

implies more conflicts and thus requires more time to solve. However, again all
times are feasible.

These results show that our ILP formulation delivers very efficient inclusion lists
solely based on predictions. It enables a direct control of the amount of “protein
confidence” by optimizing the protein detectability. This way, we retrieve an
optimal precursor set for each parameter setting. The ILP formulation can be
easily adapted to consider not all peptides of a protein (weighted by their pre-
dicted detectability), but a specific set of predefined peptides that can be used
for quantification. For instance, Schmidt et al. [100] used such a set of around
5,000 peptides belonging to 1,680 proteins of a human pathogen to monitor their
expression levels at 25 different states.



Chapter

6
Iterative precursor ion
selection

In the last chapter, we described different inclusion list problems and how to
solve them with ILPs. However, especially with MALDI-MS/MS, it is possible
to change the inclusion list during MS/MS acquisition as the sample is “frozen
in time”. We are able to perform analyses on the MS/MS data we got so far and
let the results influence the next precursor ion selection. So in this chapter, we
introduce iterative precursor ion selection (IPS).

In each iteration a specified number of MS/MS spectra is recorded and a database
search is performed in order to identify the peptide signals. Afterwards, pep-
tides are matched onto proteins. Here, we distinguish between already identified
proteins which exceed a given probability c and protein candidate hits with a
probability < c. IPS has two goals: on the one hand, to find more peptide hits
for protein candidates so that they exceed the significance threshold with one of
the next selected precursors. On the other hand, we want to identify as many
proteins as possible, hence sequencing peptides from already identified proteins
yields only redundant information and is uninteresting. Thus, these signals shall
be excluded.

In the next paragraph, we briefly explain how, given a set of peptide identifica-
tions, a minimal protein set is determined. Thereafter, we introduce a heuristic
strategy for iterative precursor ion selection. Following that, we show how IPS
can be formulated as linear program using a combination of the problems pre-
sented in Chapter 5. We evaluate both IPS strategies regarding different aspects
like mass accuracy and sample complexity. Additionally, we discuss different ter-
mination criteria and finally present exemplarily two adaptations of the original
LP formulation.

6.1. Protein inference

The protein inference problem, explained in section 2.3.1, is an instance of the
set-covering problem presented in section 2.5.3 what is used in several protein
inference approaches [120, 121]. Here, all peptide identifications form the universe
U and sets of peptide IDs being part of the same protein build the subsets Si.

61
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Now, we want to find the minimal list of proteins, the set C, explaining all peptide
identifications. Therefore, we have indicator variables yi, which are 1 if protein i
is part of the minimal list and 0 otherwise. Then, the ILP formulation looks as
follows:

min
∑

i

yi (6.1)

s.t.: ∀j :
∑

i

ai,j · yi ≥ 1 (6.2)

∀i : yi ∈ {0, 1}. (6.3)

ai,j is an indicator variable, it is 1 if peptide j is part of protein i and 0 otherwise.
Constraint 6.2 ensures that every peptide j is part of at least one protein i.
Solving the ILP leads to a minimal protein list for which protein probabilities
can calculated using one of the basic formulas of ProteinProphet as described in
section 2.3.2.

In the next section, we introduce a heuristic that works on a ranked list of pre-
cursors. Subsequently, we present a formulation of IPS as linear program.

6.2. Heuristic

The heuristic iterative precursor ion selection (HIPS) presented in this section
was published in the Journal of Proteome Research [17]. Figure 6.1 gives an
overview on the workflow that is described in the next subsections. The following
two subsections are adapted from [17].

6.2.1. Method

HIPS retrieves an LC-MS feature map and starts by ranking the features accord-
ing to their score (see Figure 6.1 for the complete workflow). In our setting, the
score reflects the ability of a feature to produce interpretable fragment spectra.
Thus, it considers signal intensity and the existence of neighboring peaks which
fall into the isolation window and therefore result in hard-to-interpret mixture
spectra. It is computed by Bruker’s WarpLC software. After feature ranking, the
top scoring features are fragmented by MS/MS. A database search is performed
and the retrieved proteins are categorized as identified or uncertain candidates.
Afterwards, the feature map is compared to the m/z-values of tryptic peptides of
all retrieved protein sequences. The score of features with m/z-values that match
the in silico calculated peptides of already identified proteins is decreased as their
selection is less likely to result in newly identified proteins than the fragmentation
of other features. Conversely, fragmentation of features that match in silico cal-
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Figure 6.1.: Workflow of heuristic IPS. HIPS receives a feature map, an LC-MS map and
a preprocessed database. It ranks the features and chooses the top entries for fragmentation.
After MS/MS acquisition, a database search is performed. When a new significant protein ID
was retrieved, the masses of its tryptic peptides are queried from the preprocessed database
and matching features are shifted down in the feature list. When only a protein candidate was
found, all its matching features are shifted up with the intention to safely identify the protein
within the next iterations.

culated peptides of uncertain candidates are more likely to result in identifications
than fragmentation of other features, and thus their score is increased.

After recalculating the scores of the features, MS/MS analysis is performed on
the next top entries in the list. A new database search is performed with this
MS/MS data set, and the identification results are combined with the previously
retrieved results. This process is repeated until the set termination criteria have
been fulfilled (see Section 6.4). The number of acquired MS/MS spectra per
iteration, referred to in the following as step size, was set to 1 unless otherwise
stated.

6.2.2. Rescoring

HIPS uses a simple strategy for changing the score of the features: if a feature
has a mass matching a peptide of an already identified protein its score is ba-
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sically halved, and if it matches an uncertain candidate, its score is set to the
maximal score present in the list. However, often more than one peptide matches
a given experimental m/z-value within the tolerated error range. The number of
matching peptides varies depending on the m/z, the searched database, and the
error tolerance. To account for this ambiguity, a weighting factor was used when
rescoring the entries in the feature list. It is based on the frequency of peptide
masses in the sequence database used for protein identification. To decrease the
influence of the database size, the weights are scaled to the maximum relative
frequency.

The weighting factor for a peptide with mass m is calculated as

w(m) = 1− f(m)

fmax

, (6.4)

where f(m) is the frequency of mass m in the database (within a specified error
range) and fmax the maximal frequency. If m is very common in the database,
i.e., the mass matches many different peptides, the weighting factor will be close
to 0. For low-frequency masses it will be close to 1.

If a feature c with mass m is shifted down in the list its new score sdown is
calculated as follows:

sdown(c) = s(c)− s(c)

2
· w(m) = s(c)

(

1− w(m)

2

)

. (6.5)

For a very common mass, w is small and hence the score of the feature is decreased
by only a small amount. Conversely, with a high weighting factor the score is
approximately halved.

Analogously, the new score of a feature c that matches an uncertain protein
candidate is increased:

sup(c) = s(c) + (smax − s(c)) · w(m) = s(c) (1− w(m)) + smax · w(m). (6.6)

Here, a low weighting factor, i.e., a low frequency of mass m, leads to a new and
higher score. The score can maximally be smax, which is the maximum score
found in the initial feature list. With the new score the feature is among the top
entries. As the order of features is based on their initial score and the frequency
of their masses in the database, the features that are most likely to give good
identification results are at the top.
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Figure 6.2.: Distribution of tryptic peptides with 1 allowed missed cleavages computed
using Swiss-Prot with taxonomy limited to human. (a) Mass distribution of charge 1 peptides,
(b) RT and detectability distribution for two selected m/z bins. The minimal experimental RT
is given by the dashed line.

6.2.3. Peptide mass distribution

An obvious drawback of HIPS is that the matching of features and peptides is
solely based on their m/z-values. When large databases or complex samples
are analyzed this inherently leads to a high number of erroneous assignments of
theoretical peptides to observed features. For illustration, Figure 6.2 shows the
distribution of peptide m/z-values in bins of 0.01 Da width1 for Swiss-Prot with
taxonomy human and 1 allowed missed cleavage. In extreme cases more than
250 distinct peptides fall in the same bin and are indistinguishable using only
their m/z. Considering the largest bin containing 275 peptides, RT prediction
eliminates already 34 peptides which have a predicted RT below the minimal
RT in the experiment (Figure 6.2 (b) upper part). This bin contains peptides of
lengths between 5 and 7 AAs, the majority has low detectability values. When we
take a closer look at a second bin with m/z-values between 1202.62 and 1202.63,
we can see that the RT distribution is wider, thus enabling a better resolution
when RT and m/z are both considered for peptide-feature matching. Again, this
bin contains many peptides with low detectability values what limits the possible
number of matching peptides even further.

After introducing this heuristic approach to IPS and presenting the potential
problem of erroneous peptide-feature assignments, we are now describing a for-
mulation of IPS as optimization problem. It incorporates RT and peptide de-
tectability to overcome the presented drawback of HIPS.

1This bin width corresponds to a mass accuracy of 10 ppm for m/z-values around 1,000 Da.
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6.3. IPS as mixed integer linear program

In Chapter 5, we introduced different inclusion list creation problems that use an
ILP formulation. We want to adapt these approaches to an iterative precursor
ion selection and want to combine the feature map-based approach with the
protein sequence-based approach into one iterative selection strategy. The goal
is twofold: first, we want to identify as many proteins as possible and second, we
want to maximize the number of selected features. As we have both integer and
non-integer variables, we are now dealing with a mixed integer program (MIP).

We start with the feature map-based ILP as presented in section 5.1 extended
by an additional constraint limiting the number of selected precursors per iter-
ation. For each feature j, we have several indicator variables xj,s that are 1 if
feature j is selected as precursor in spectrum s and 0 otherwise. After solving
the MIP, we retrieve a precursor set for which we trigger the acquisition. All xj,s

corresponding to a feature selected in spectrum s are fixed to 1 for all future iter-
ations. Afterwards, the MS/MS spectra are subjected to a database search and
each resulting PSM is assigned to its corresponding proteins. Here, we distinguish
between different cases:

• A match to a new protein not yet exceeding the protein probability thresh-
old c. We want this protein to exceed c as soon as possible, so we aim at
selecting precursors for this protein. We add a new variable for this protein
to the MIP formulation and consider all features within a certainm/z-range
of its tryptic peptides in the corresponding coverage constraint.

• A match to a new protein exceeding c. Again, we add a new protein variable
to the MIP and consider all corresponding LC-MS features in its coverage
constraint. However, as we have found enough evidence for this protein, any
new peptide match only yields redundant information. Hence, we want to
exclude these peptides from future selections. Therefore, the contribution
to the objective function is decreased for all corresponding features.

• A match to a known protein not yet exceeding c. The coverage constraint
of the protein is updated to contain the peptide probability of the newly
identified peptide.

• A match to a known protein now exceeding c. Again the coverage constraint
is updated with the peptide probability. Additionally, as in the second item,
the contribution to the objective function is decreased for other features
corresponding to the newly identified protein.
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Figure 6.3.: Deviation of predicted and experimental RT (a) for HEK293, and (b) for
UPS. The histograms show the observed deviations, the red curves represent an approximated
Gaussian.

6.3.1. Calculating probabilities for the matching of
theoretical peptides and LC-MS features

In the last section, we vaguely spoke of corresponding features which denote
the set of features matching theoretical tryptic peptides of a protein determined
by in silico digestion. In the following, we describe how we calculate matching
probabilities for theoretical peptides and observed LC-MS features.

With the machine learning tools presented in sections 2.4.1 and 2.4.2 we are able
to predict RT and detectability (PT) of a peptide given only its sequence. Using
these two values, we want to estimate a probability that a certain feature in an
LC-MS feature map corresponds to a theoretical peptide, both have m/z-values
within a predefined mass range. As simplification we consider RT and PT to be
independent. Mass accuracy is not directly included in the probability, it is only
used to derive a set of peptides matching the particular feature. Then, matching
probabilities are computed for this set.

The RT deviation can be approximated by a Gaussian distribution as shown
exemplarily in Figure 6.3 for two data sets. Thus, the probability that a predicted
RT tpred is truly shifted by x spectra can be calculated as:

P (tpred − tobs = x) =
1

σ
√
2π
· e−

1

2

(

tpred−x−µ

σ

)2

. (6.7)

LC-MS features occur in several consecutive spectra which are all considered
for RT probability calculation. As shown in Figure 6.4, the probability that a
feature f corresponds to a predicted RT tpred can be determined as the probability
that the predicted RT deviates at least x1 and at most x2, where x1 and x2

denote the difference between predicted RT and maximal or minimal observed
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Figure 6.4.: Probability calculation for the matching of theoretical peptides and
LC-MS features. For feature j its maximal and minimal observed RT are determined and
their distance to the predicted RT is denoted by x1 and x2, respectively. Then the area under
a Gaussian distribution, with preset mean and standard deviation, between x1 and x2 gives the
probability that the RT prediction error lies between x1 and x2.

RT, respectively. Thus, they can be computed as

x1 = tpred −max tobs and x2 = tpred −min tobs. (6.8)

This leads to the probability rp,j that the predicted RT of peptide p is truly
shifted so that it lies within the RT range of the observed feature j as indicated
by the gray area in Figure 6.4:

rp,j =P (x1 ≤ tpred − tobs ≤ x2) (6.9)

=P (tpred − tobs ≥ x2) − P (tpred − tobs ≥ x1) (6.10)

=

∫ x2

−∞

1

σ
√
2π
· e− 1

2
(
x2−µ

σ
)2 −

∫ x1

−∞

1

σ
√
2π
· e− 1

2
(
x1−µ

σ
)2 . (6.11)

As said before, we assume RT and PT to be independent. Thus, combining the
RT probability with the detectability of a peptide leads to the probability mp,j

that an observed feature j corresponds to a predicted peptide p:

mp,j = rp,j · dp. (6.12)

mp,j is computed for all features j with an m/z within the specified error range
around the theoretical m/z of peptide p, this set of features is denoted as Mp.

6.3.2. MIP formulation

In the following, we want to incorporate the significance of a protein identification
into the MIP. Therefore, we need the protein probability calculation as explained
in Section 2.3.2, which gives us the probability Pi of protein i to be correctly
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identified, and a minimal protein probability c to declare a protein identified.
Thus, we demand

Pi ≥ c (6.13)

⇒ log(1− Pi) ≤ log(1− c) (6.14)

⇒ log(1− Pi)

log(1− c)
≥ 1. (6.15)

The transformation above is only valid for Pi and c < 1, otherwise we enter a
pseudocount instead. This way, we can define the indicator bi which is 1 if Pi ≥ c
and 0 otherwise:

bi =

⌊
log(1− Pi)

log(1− c)

⌋

. (6.16)

bi is used in the exclusion part of the objective function. It indicates for which
proteins, and thereby for which features matching theoretical peptides of these
proteins, the contribution to the objective function is decreased as their proba-
bility already exceeds the threshold c.

This leads to a formulation of the combined MIP with an objective function
composed of three parts: An inclusion and an exclusion part accounting for
the number of identified proteins and a third part which maximizes the num-
ber of selected LC/MS features. The constraints account for the protein cov-
erage (Constraints 6.18, 6.19), the maximal number of precursors per fraction
(Constraint 6.21), the number of times a feature can be selected as precursor
(Constraint 6.22), and the number of selected precursors in each iteration (Con-
straint 6.23). The protein coverage constraint (Inequation 6.18) consists of two
parts: one is computed by the peptide probabilities and the other part by con-
sidering matching theoretical peptides for unidentified and so far not selected
features.
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max

protein-based inclusion
︷ ︸︸ ︷

k1
∑

i

zi +

feature-based inclusion
︷ ︸︸ ︷

k2
∑

j,s

xj,s · intj,s

−
exclusion

︷ ︸︸ ︷

k3
∑

i

bi ·
∑

p

∑

j∈Mp

∑

s

mp,j · ai,p · xj,s (6.17)

s.t.:

∀i : zi ≤
log(1− Pi)

log(1− c)

+

∑

p

∑

j∈Mp

∑

s xj,s · log(1− ai,j ·mp,j)

log(1− c)
(6.18)

∀i : zi ∈ [0, 1] (6.19)

∀j,s : xj,s ∈ {0, 1} (6.20)

∀s :
∑

j

xj,s ≤ caps (6.21)

∀j :
∑

s

xj,s ≤ 1 (6.22)

∑

j,s

xj,s ≤ precs+ step size. (6.23)

The workflow for the iterative precursor ion selection with MIP (IPS LP) is shown
in Figure 6.5. The algorithm starts with a feature-based ILP formulation and
during ongoing analysis fills in the protein coverage constraints and adds the
protein-based parts to the objective function. The pseudocode for IPS LP is
shown in Algorithm 1.
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Figure 6.5.: Workflow for the iterative precursor ion selection with MIPs. Starting
from an LC-MS map and a feature map, the iterative precursor ion selection creates a feature-
based MIP and solves it. This way, a set of precursors is selected for which MS/MS acquisition
is triggered. After a database search new protein hits are inserted into the MIP formulation
and all MIP variables are updated. Afterwards, the MIP is solved again, leading to a new set
of selected precursors.

Algorithm 1 Iterative precursor ion selection

createInitialLP(feature map)
solveLP()
solution indices← getLPSolution()
all protein ids← {}
i← 1
while ¬ terminate() do
for s ∈ solution indices do
f ←getFeature(s)
acquireMSMS(f)
prot ids← getProteinIds(f)
for p ∈ prot ids do
if p /∈ all protein ids then
all protein ids.insert(p)
addProteinCoverageConstraint(p)

end if
end for
updateLP()

end for
solveLP()
solution indices←getLPSolution()
i← i+ 1

end while
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6.4. Termination of iterative acquisition

A major goal of the presented iterative methods is to save sample and analysis
time by completing the MS/MS analysis earlier. Thus, we need to define criteria
when to stop the acquisition. Possible termination criteria are:

• Maximal time/spectra: A user defined maximal analysis time or maxi-
mal number of MS/MS spectra is reached. This is completely independent
of the identification results.

• Maximal number of protein/peptide IDs: A user defined maximal
number of protein or peptide identifications is reached. This is algorithm-
dependent and can result in significantly different numbers of acquired
MS/MS spectra and thus analysis time.

• Maximal number of MS/MS spectra without peptide/protein ID:
For a given number of spectra, no new identification was achieved, either
on peptide or on protein level.

• Minimal level of efficiency: The efficiency of the MS/MS analysis falls
below a user defined minimal value. Efficiency can be defined as the number
of identifications per MS/MS spectrum. Again, this can be done on protein
or peptide level.

• Minimal level of “local” efficiency: The local efficiency of the MS/MS
analysis falls below a user defined minimal value. In contrast to the effi-
ciency defined in the last point, this is the number of identifications in the
last x MS/MS spectra. This value depends heavily on x, if x is chosen too
small the variation is quite high what might result in early termination.

6.5. Optimal solution

In this chapter, we present strategies for precursor selection made during MS/MS
acquisition, which is influenced by the results of previously acquired MS/MS
spectra during the same experiment. Thus, the presented methods are online
algorithms which receive their input, the results of MS/MS processing, not as a
complete set but as a sequence of input portions. Hence, the future input is not
known to the system yet and the algorithm can only act based on the knowl-
edge given by the previous input. A typical performance evaluation of online
algorithms is done with competitive analysis [122, 123], where a given online al-
gorithm is compared to an optimal offline algorithm, the adversary. Similar to
that, we want to compare the performance of IPS with the optimal offline pre-
cursor ion selection that knows all peptide and protein identifications in advance.
This optimal solution can be computed after the acquisition of all LC-MS/MS
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data and is presented in the next section.

6.5.1. Problem formulation

We want to find a minimal set of precursors such that all proteins of interest are
identified, each feature is selected not more than h-times as precursor and each
RT bin has not more than cap precursors. Similar to the inclusion list strategy
presented in Section 5.2 this is an extension of the Hitting Set Problem as pre-
sented in section 2.5.2. However, in contrast to the original problem, where a
minimal hitting set is sought-after, for our problem such a minimal set would
usually mean that we cannot distinguish between proteins sharing the same pep-
tide and thus the same feature. This is addressed in the protein inference, where
indistinguishable proteins are grouped together and are counted as one protein
ID. By maximizing the number of protein IDs, we aim for peptides separating
these protein groups.

The complete MIP formulation looks as follows:

max k1
∑

i

yi − k2
∑

k,s

xk,s (6.24)

s.t.: ∀s :
∑

k

xk,s ≤ caps (6.25)

∀k :
∑

s

xk,s ≤ h (6.26)

∀i : yi ≤
∑

k,s xk,s · log(1− ai,kpk)

log(1− c)
(6.27)

∀i : yi ∈ [0, 1] (6.28)

∑

j,s

xj,s ≤ precs+ step size (6.29)

∀k,s : xk,s ∈ {0, 1}. (6.30)

In the following results section, we compare performances of the iterative ap-
proaches to the optimal solution.

6.6. Results

In this part we evaluate both IPS strategies and compare them to the optimal
solution and a static precursor ion selection (SPS), an inclusion list created before
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starting the MS/MS acquisition. This inclusion list is ranked by a score reflecting
amongst other things the feature’s intensity and the existence of nearby peaks
that may cause interferences in the MS/MS spectrum. It is created using WarpLC
from Bruker Daltonics. In the evaluation, we focus on the following subjects:

• Mass accuracy

• Sample complexity

• Abundance of identifications

• RT bin capacity

• Parameter robustness

• Step size

• Database size

• Termination criteria

• Run times

Afterwards, we present two adaptations of the MIP formulation. First, we are
using a different ID criterion for proteins, the two-peptide rule which was intro-
duced in Section 2.3.2. We show that it can be easily incorporated into the MIP
and evaluate the performance of the different strategies when this ID criterion is
applied. Next, we adapt the precursor ion selection to process RT fractions in a
sequential order. This can also be done with minor changes to the MIP formula-
tion. Finally, we evaluate the sequential MIP on a complex sample. Unless noted
otherwise, we use the following weights for IPS LP: k1 = 10, k2 = 1 and k3 = 10.

6.6.1. Mass accuracy

We evaluated IPS with varying mass accuracy on the UPS sample. Figures 6.6
(a), (c) and (e) show the number of identified proteins over the number of selected
precursors for decreasing mass accuracy. The three selection strategies are shown
in blue (SPS), green (HIPS) and red (IPS LP). Both iterative methods perform
better than SPS for 10 and 25 ppm mass accuracy. With a low mass accuracy of 50
ppm HIPS is to some extent worse than SPS. This is due to erroneous assignments
of hypothetical peptides to observed LC-MS features. This risk rises with the
allowed mass error tolerance. For IPS LP this dependence is less pronounced.
This is expected, as the incorporation of RT and PT prediction reduces the
number of false assignments.

The performance difference of the IPS approaches compared with SPS is more
explicitly shown in Figures 6.6 (b), (d) and (f), where the difference in the number
of precursors required to identify a given number of proteins is shown in percent
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with respect to SPS. For 10 ppm mass accuracy both IPS methods perform very
similar, except one outlier of HIPS. For 25 ppm the performances divide: although
both methods can save up to 40% precursors compared to SPS, with ongoing
analysis IPS LP performs superior. For 50 ppm, HIPS is partly significantly
worse than SPS, requiring around 40% more precursors.

For comparison, the optimal solution (OPT), computed after acquisition of all
MS/MS spectra and their processing, is included in Figure 6.6. This perfect com-
petitor, that knows all peptide IDs and which proteins they are part of, shows the
minimal number of spectra necessary to identify all proteins. Its performance is
therefore independent of the mass accuracy.2 With 10 ppm mass accuracy, it se-
lects 41 precursors to identify 40 proteins. For both 25 and 50 ppm, 37 precursors
are required to identify all 37 proteins. For all three tested mass accuracies, the
online methods perform comparable to OPT up to around 10 identified proteins.
However, for the final number of protein IDs the precursor saving for IPS LP
is around 1/4th of the one for OPT. This is expected as OPT is constructed
so that every precursor contributes directly to the protein identifications. Both
IPS methods try to select precursors that are likely to contribute to a protein
identification. However, there are several reasons such as bad fragmentation or
wrong peptide-precursor assignment that might lead to an unidentified peptide
or a different peptide identification than expected.

As a next step, we compared the order in which the precursors were selected with
the different selection strategies. So for each feature, we compared the iteration
in which it was selected for the different strategies. In Figure 6.7 the ranks are
shown for 10 ppm mass accuracy. For clarity, the diagonal is plotted in gray.
Dots below it refer to precursors that are chosen earlier with IPS than with SPS.
Negative values for IPS LP indicate that these precursors are never selected with
IPS LP. For both IPS methods, we can see two trends. First, a large portion of
precursors are selected later with IPS due to the exclusion part of the algorithms.
A second trend is the line below the diagonal which basically follows the order
of SPS. These precursors are not shifted by HIPS or are selected based on the
feature-based inclusion part of IPS LP, respectively. However, due to exclusion
of other precursors they are selected earlier with IPS than with SPS.

6.6.2. Sample complexity

In the last paragraph we analyzed the performance of IPS on the UPS sample, an
equimolar protein standard. In the following, we apply the methods to biologically
relevant samples that contain proteins in varying abundances. Figure 6.8 (a)
shows the results for the 50S sample, Figure 6.8 (b) for the HEK293 sample. In
both cases the mass accuracy was set to 10 ppm.

2The slightly results are due to different database search results obtained for varying mass
accuracies.
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Figure 6.6.: Iterative precursor ion selection for UPS: (a), (b) 10ppm, (c), (d) 25 ppm,
(e), (f) 50 ppm. (b), (d) and (f) show the relative difference in the number of precursors needed
to identify a given number of proteins with respect to SPS.
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Figure 6.8.: IPS on biological samples: Iterative precursor ion selection with 10 ppm
mass accuracy. The relative difference in the number of precursors needed to identify a given
number of proteins with respect to SPS is shown for (a) 50S and (b) HEK293.
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For the medium complexity 50S sample, IPS LP can save up to 40% precursors,
on average it saves 15%. In order to identify the first three proteins both IPS
methods require more precursors than SPS, however the absolute values are -1
and -2 for IPS LP and between -3 and -6 for HIPS, so this represents no drastic
difference. Yet, HIPS also gets worse for higher number of protein IDs (22 and
24). Here, the relative difference is around -20% what translates to an absolute
value of -33 and -71, respectively.

When looking at the difference in the number of required precursors for the high
complexity HEK293 sample, we can see that at the beginning the heuristic works
better than the MIP, which results in a maximal saving of 25% for HIPS and
around 17% for IPS LP.

It is clearly visible, that for both samples the performance of both IPS strategies
decreases with increasing number of identified proteins. This is expected as both
are constructed in a way that in later stages of the experiment precursors are
chosen which are less likely to improve the result. However, with IPS LP this
decrease is much less pronounced than with HIPS. This can be explained on the
one hand by the reduction of erroneous precursor-peptide assignments through
RT and PT prediction. Additionally, IPS LP is looking for a global optimum,
whereas HIPS selects its precursors in a greedy fashion which at the beginning
yields good results but finally performs inferior.

For both biological samples, the difference between OPT and both IPS methods is
more explicit than with UPS showing that there is further room for improvement
for IPS.

6.6.3. Abundance of identifications

As pointed out before, intensity-based selection by construction is biased towards
high abundance proteins and peptides. With our method, we aim at limiting
the identified peptides for high abundance proteins to the number necessary for
protein identification. This restriction shall increase the number of identified low
abundance proteins. In the following analysis, we estimated protein abundance
as mean feature intensity of all corresponding peptide identifications.

In Figure 6.9, we focus on two aspects. First, we compare the number of peptide
identifications covering the 10% most abundant proteins. Here, we observe that
for both IPS methods the total peptide number is smaller than for SPS for a
large part of the experiment. For HIPS, the total peptide number starts to rise
significantly after around 3,500 selected precursors. This steep increase can be
explained by previously downranked precursors that are selected at that stage.
A similar effect can be seen for IPS LP, however, the increase occurs after 5,500
spectra. Again, it is probably a result of the exclusion part of the LP formulation.
These results show that for the biggest part of the experiment the identification
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Figure 6.9.: Abundance of identifications: For the HEK293 sample with 10 ppm mass
accuracy high and low abundance protein identifications are analyzed. Protein abundance is
estimated as the mean intensity of all features with a corresponding peptide identification. (a)
The number of identified peptides for the 10% most abundant proteins. (b) The number of
protein identifications among the 10% least abundant proteins.

bias towards high-abundance proteins is less pronounced with IPS LP than with
intensity-based selection methods.

In Figure 6.9 (b), we analyzed the number of identified low intensity proteins. We
considered the 10% least abundant proteins and counted the number of protein
identifications. We observe that IPS LP identifies the low abundant proteins ear-
lier than SPS. Similar to the situation when looking at all protein identifications
(Figure 6.8 (b)), HIPS is the best method at the beginning. After around 2,000
iterations its performance drops and HIPS is worse than the other two evaluated
methods.

6.6.4. RT bin capacity

In a next step, we analyzed the influence of the maximal number of precursors
per fraction, in the following called RT bin capacity, on the performance of the
different selection methods. We varied the maximal capacity between 3 and
20 and show the number of protein identifications in Figure 6.10. The optimal
selection identifies the maximal possible number of proteins already at a capacity
of 3 precursors, thus varying the threshold does not change the performance and
so these results are not shown in Figure 6.10.

For the three other methods the total number of identified proteins is similar
only for capacities above 10 precursors per spot. When the spot capacity is very
limited, IPS LP is able to identify more proteins in total than the other two
methods. This implies, that IPS LP might especially be of value in situations
where the sample amount is limited.



80 6. Iterative precursor ion selection

20
0

30
0

40
0

50
0

5 10 15 20

# 
id

en
tif

ie
d 

pr
ot

ei
ns

RT bin capacity

SPS
HIPS
IPS_LP

Figure 6.10.: Influence of RT bin capacity: Iterative precursor ion selection for HEK293
for 10 ppm mass accuracy. The total number of proteins IDs with a limited rt bin capacity is
shown.

Interestingly, for a bin capacity of 10 precursors IPS LP identifies one protein
less than SPS. Looking closer at the identified proteins revealed that IPS LP
identified 25 proteins that were not identified with SPS which in turn could
identify 26 proteins not found by IPS LP. The majority of these protein differences
are due to different selected precursors yielding different peptide IDs. However,
we also observed differences due to shared peptides: One of these IDs is O15020
which has two peptide IDs, p1 and p2, assigned. p1 was identified with low
probability not exceeding the significance threshold. p2, whose precursor was not
chosen by IPS LP, was identified with a significant probability. However, it is a
shared peptide and other proteins that it is part of were identified before O15020.
Thus, the contribution to the objective of the corresponding precursor of p2 was
decreased due to the MIP’s exclusion part. This illustrates the potential problem
of shared peptides with IPS LP.

6.6.5. Parameter robustness

As shown in Section 6.3.2, the MIP formulation consists of three parts, protein-
based inclusion, feature-based inclusion, and protein-based exclusion, which are
weighted by terms k1, k2 and k3, respectively. An obvious question is how robust
is the system against different values for these weights and if each kind of sample
requires a specific set of values. Thus, we analyzed our three samples for various
parameter sets and show the results in Figure 6.11 (a) and (b) for UPS, in (c) and
(d) for 50S, and in (e) for HEK293. In our analysis, we fixed k2 = 1 as setting
it to 0 results in early termination due to the absence of positive contributions
to the objective function. As expected, setting k1 = k3 = 0 leads to the same
performance as SPS as only the feature-based inclusion is switched on. For UPS,
we can see that additionally switching on the protein-based inclusion with k1 = 1
only leads to a temporary improvement between protein IDs No. 26 and 30. A



6.6. Results 81

similar pattern can be seen for 50S, here the protein inclusion leads to a perfor-
mance decrease for the first 4 protein IDs. However, as discussed in Section 6.6.2
this is insignificant in terms of absolute precursor number differences. In general,
setting k1 = 1 does not yield a great performance improvement as the weight
of 1 is too low to compensate for the weight of all features. A protein adds a
contribution of zi, which is maximally 1, weighted by k1. Whereas each feature
adds a contribution in the same range as zi weighted by k2 and the number of
features can easily exceed the number of proteins by an order of magnitude.

For 50S, in the region between protein ID No. 4 and 10 especially instances with
k1 = 10 reach good results showing that here the protein-inclusion dominates the
MIP and yields a good performance. Thereafter, a medium value of k1 = 5 yields
similar results. For this sample, switching on only the exclusion yields a constant
performance improvement of approximately 10%. Comparing k1 = 10, k3 = 0
(blue curve in Figure 6.11 (d)) and k1 = 0, k3 = 10 (green curve in Figure 6.11
(c)) to k1 = 10, k3 = 10 (dark green curve in Figure 6.11 (d)) shows that the
combination of inclusion and exclusion yields a better performance than both
individually. Additionally, after each performance improvement due to protein
inclusion follows a decrease, which is partly compensated if exclusion is switched
on. Switching on the exclusion in general leads to a smoother curve compared to
switching on inclusion. Similar observations can be made for UPS, Figure 6.11
(a) and (b), however, here all tested IPS LP instances perform never worse than
SPS.

The complex HEK293 sample behaves differently: switching on the protein ex-
clusion part of the LP results in a performance almost completely similar to the
one achieved with both inclusion and exclusion enabled. Thus, for this sample
protein-based exclusion has more influence on the precursor ion selection than the
protein-based inclusion. A lower weight for exclusion (k3 = 1) produces inferior
results to k3 = 10, whereas a higher value of k3 = 100 saves more precursors up
to 400 identified proteins. Afterwards, this instance requires around 5% more
precursors than SPS. This effect is probably due to erroneous precursor-peptide
assignments during the exclusion and shows that too large values for k3 might
impair the results. In general, we observe that k1 = 10, k2 = 1, k3 = 10 yields
good results on all tested samples.

6.6.6. Step size

During IPS, in each iteration a database search has to be performed, the minimal
protein list updated and the MIP formulation updated and solved. This results
in a run time overhead as it is analyzed in Section 6.6.9. Choosing larger step
sizes means decreasing the number of times these computations have to be made.
In order to analyze the influence of the step size on the performance, step sizes
were varied from 1 to 1000 for both iterative methods (Figure 6.12) using the
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Figure 6.11.: Iterative precursor ion selection with varying weights. (a) and (b) UPS,
(c) and (d) 50S, and (e) HEK293.
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HEK293 sample.

Both methods show a different behavior with varying step sizes. For small to
medium step sizes (1 to 100) HIPS performs similar up to around 100 protein
identifications where step size 100 starts to perform inferior to the others. In the
region between 250 and 450 protein IDs step sizes 1 and 10 are clearly superior to
larger step sizes. Whereas for the last 50 protein IDs there are only minor differ-
ences between the step sizes, here the performance of HIPS approaches the one of
SPS. While step size 500 is never better than lower step sizes, the largest tested
size 1000 is in the region between 300 and 500 protein IDs partly better than
smaller sizes. With this large number of precursors per iteration the erroneous
assignments of theoretical peptides to observed features is less influential.

With IPS LP the biggest differences can be observed for the first 120 protein IDs.
Afterwards, differences between step sizes 1 to 100 are negligible. Here, probably
the feature-based selection part dominates the objective function and therefore
the performance of IPS LP approaches the performance of SPS for all step sizes.
In contrast to HIPS, large step sizes of 500 or 1000 are never better than smaller
ones as one would expect if the assignment of features and theoretical peptides
works reasonably well.

In summary, we observe that a step size of 10 seems to be a good trade-off between
run time overhead and performance for both methods.

6.6.7. Database size

For the previous analyses, we used Swiss-Prot with limited taxonomy as database
for peptide identification. In the following, we use databases with higher num-
ber of protein entries, namely IPI human (version 3.87 with 91,464 entries) and
the complete Swiss-Prot database (Release 2011 08 with 531,473 entries), and
evaluate the results of IPS on the UPS and HEK293 data sets (Figure 6.13).

For the UPS sample with IPI human, we can see that HIPS performs very com-
parable as before with Swiss-Prot human (Figure 6.6 (b)). The same holds for
IPS LP apart from the last three protein identifications. As we have seen be-
fore, changing weights for the exclusion part can have a big influence. Thus, we
tested lower values for k3 and observed that these do not clearly improve the
performance. When the complete Swiss Prot database is used for peptide iden-
tification on the UPS sample, up to 30 identified proteins all IPS methods save
between 15 and 20% precursors with respect to SPS. Thereafter, all IPS instances
perform worse than SPS. This is obviously due to erroneous exclusion of precur-
sors as using lowing values for k3 partly compensates for that. This behavior
is expected as Swiss-Prot contains homologous proteins of different species and
thus more shared peptides than the Swiss-Prot database limited to human. As
we have seen in Section 6.6.4 shared peptides can cause problems with our IPS



84 6. Iterative precursor ion selection

0 100 200 300 400 500

−
20

−
10

0
10

20

# identified proteins

 %
 p

re
cu

rs
or

 d
iff

er
en

ce
Step size 1
Step size 10
Step size 50
Step size 100
Step size 500
Step size 1000

(a)

0 100 200 300 400 500

−
20

−
10

0
10

20

# identified proteins

 %
 p

re
cu

rs
or

 d
iff

er
en

ce

Step size 1
Step size 10
Step size 50
Step size 100
Step size 500
Step size 1000

(b)

Figure 6.12.: Iterative precursor ion selection with varying step sizes for HEK293
with 10 ppm mass accuracy. (a) HIPS, (b) IPS LP. For both iterative methods the step size
was varied from 1 to 1000.
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Figure 6.13.: Database size: Iterative precursor ion selection for 10 ppm mass accuracy
with (a) UPS & IPI human, (b) UPS & Swiss-Prot, (c) HEK293 & IPI human, (b) HEK293 &
Swiss-Prot.
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approaches.

Figures 6.13 (c) and (d) show the results obtained with HEK293 on IPI hu-
man and Swiss-Prot, respectively. In both cases, HIPS performs worse than
SPS for a large part of the experiment. For IPI human, IPS LP with standard
values k1 = 10, k3 = 10 performs around 10% better than SPS except for the
last 50 protein IDs. Choosing lower values for k3 compensates for the late perfor-
mance breakdown, however, it also results in an overall worse performance. When
Swiss-Prot is used as database, IPS LP saves less precursors than with the other
databases and the breakdown in late experiment stages is bigger. However, in a
real experiment the analyzed organism is usually known and thus, the database
taxonomy can be limited.

6.6.8. Termination criteria

As the goal of IPS is an earlier termination of MS/MS analysis in order to save
time and/or sample amount, we now evaluate the performance of different termi-
nation criteria for the HEK293 sample. First, we are looking more closely at the
local efficiency as defined in Section 6.4. Therefore, we tested different window
sizes and show the results in Figure 6.14 (a) for IPS LP with varying window sizes.
As expected, a relatively small window size of 100 precursors has big fluctuations.
With larger window sizes, the efficiency curves are smoothed. In Figure 6.14 (b)
the local efficiency with a window of 1,500 spectra is shown for all three methods
together with a gray line indicating a threshold of 0.05. Looking closer at the
results for HIPS in the region between 5,000 and 6,000 selected precursors we can
observe a problem of this termination criterion. For more than 1,000 spectra, the
local efficiency of HIPS remains around 0.05, showing that setting the threshold
to 0.05 results in early termination and thus a bad performance for HIPS. How-
ever, that is in a large part due to erroneous assignments of peptides to LC-MS
features that were receiving a lower priority for selection in early iterations. When
they get selected in later steps they increase the efficiency again. This can also be
seen in Figure 6.8 where the performance of HIPS improves with higher numbers
of identified proteins. When looking at the total efficiency shown in Figure 6.15,
we can see that HIPS has the highest efficiency up to around 1,000 precursors.
Afterwards, it decreases and is below the line for SPS.

We tested all termination criteria presented in section 6.4 and show the number
of identified proteins and selected precursors in Table 6.1. When limiting either
the number of acquired MS/MS spectra or the number of identified proteins, the
results are very similar: HIPS performs worst, IPS LP best and SPS between
both but closer to IPS LP. When applying result-dependent termination criteria,
the results show a higher variability and are less predictable. For instance, when
the number of spectra without a protein ID is limited to 100 (number (3)), the
number of identified proteins is between 329 for SPS and 492 for IPS LP. With this
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Figure 6.14.: Local efficiency of IPS with 10 ppm mass accuracy for HEK293 sample. (a)
IPS LP with varying window sizes. (b) for all methods with window size of 1500.
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Figure 6.15.: Efficiency of IPS with 10 ppm mass accuracy for HEK293 sample.
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Table 6.1.: Results for different termination criteria.

# Termination
criterion

Method Threshold # identified
proteins

# precursors

(1) # spectra
SPS 4,000 428 4,000
HIPS 4,000 401 4,000
IPS LP 4,000 434 4,000

(2) # protein IDs
SPS 400 400 3,582
HIPS 400 400 3,962
IPS LP 400 400 3,333

(3)
# spectra w/o
protein ID

SPS 100 329 2,854
HIPS 100 435 4,689
IPS LP 100 492 5,529

(4) efficiency
SPS 0.1 452 4,521
HIPS 0.1 405 4,051
IPS LP 0.1 464 4,641

(5)
local efficiency
(window size
1,500)

SPS 0.05 491 5,350
HIPS 0.05 454 5,119
IPS LP 0.05 466 4,762

termination criterion, the latter approach selects almost twice as many precursors
as SPS. The local efficiency, number (5) in Table 6.1, shows a similar performance.
The total efficiency yields results comparable to the ones obtained with criteria
(1) and (2).

These results show that termination criteria have to be chosen with care. Result-
dependent methods like (3)-(5) can lead to an early termination due to local
fluctuations.

6.6.9. Run times

In the following, we are analyzing times needed to solve the MIP in each iteration.
All experiments were done on a machine with 72 GB RAM running with Intel
Xeon X5550 processors with 2.67GHz. All run time experiments were using the
HEK293 data set, which was the most complex in this study.

First, we measured run times for experiments with varying mass accuracy for
RT capacities of 25 and 5 precursors per fraction, see Figure 6.16. In general,
we can observe only a small difference in solving times between the tested mass
accuracies. In all runs, we see at least one leap in solving times. A closer look at
these leaps reveals, that all these are caused by a new protein hit which did not
exceed the significance threshold for a save protein identification. Hence, several
peptides are targeted by the inclusion part of the objective function. However,
in all observed cases this leap is not the first incidence of such a protein hit, all
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Figure 6.16.: Run times of IPS with varying mass accuracy for HEK293 sample. (a)
RT Capacity 25, (b) RT Capacity 5. Mass accuracy of 10 ppm, 25 ppm, and 50 ppm are
indicated by black, green, and red dots, respectively.

instances have several protein hits not resulting in a steep increase of MIP solving
time.

Limiting the number of precursors in each fraction results in a faster decrease
of solving times. Another effect is that after the first leap the solving times are
steadily decreasing without another leap as it can be observed for an RT capacity
of 25 precursors. But again, a smaller RT bin capacity does not result in higher
solving times although one would expect more conflicts as the total number of
realized precursors decreases down to around 3,000.

In the next step, we varied the number of selected precursors in each iteration,
also referred to as step size. In Figure 6.17 we show the solving times for 10
and 100 precursors per iteration for 50 ppm mass accuracy. Again, we tested RT
capacities of 5 and 25. In general, we notice a very similar behavior as with step
size 1. Thus, increasing the step size does not result in longer solving times. For
a fraction capacity of 25 for both step sizes we can observe a solving time outlier:
for a step size of 100 precursors solving the LP in this iteration takes nearly 5
seconds, more than 10 times the time than for all other iterations. Note that
this outlier is not due to a measurement error. It was consistently observed in
each of 10 separate runs. A similar outlier was already recognizable for a step
size of 1, see Figure 6.16 (a). For all three step sizes, the same feature was in the
selection set in the iteration leading to this long solving time. This feature leads
to a manipulation of the LP formulation that must have triggered the application
of heuristics enabled in GLPK. These heuristics resulted in longer solving times.

In summary, we can state that the main parameters of IPS like mass accuracy,
RT capacity and step size have minor influence on the time needed to solve the
MIP. In each iteration, before solving the LP formulation, it is manipulated, a
database search is necessary, and eventually the target plate moved to a distant
position. Each of these steps additionally influences the total time needed for an
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Figure 6.17.: Run times of IPS with varying step size for HEK293 sample with 50 ppm
mass accuracy. (a) Step size 10, (b) Step size 100. RT capacities of 5 and 25 precursors per
fraction are indicated by red and black dots, respectively.

iteration. Thus, in practice, especially the step size results in larger differences
in running time, for instance, because database searches of many spectra can be
parallelized, the LP is solved fewer times, and the target plate is moved less often
as precursors of the same fraction can be selected sequentially.

6.7. Adaptations

The MIP formulation can be easily adapted to variations of the precursor ion se-
lection problem. This is shown exemplarily for two scenarios in the next sections.
First, we use a different protein identification criterion, peptide counting, show
the adapted LP and briefly evaluate it. Afterwards, we formulate a sequential
precursor ion selection that chooses precursors following the order in RT dimen-
sion. This scenario is of special interest as it results in shorter analysis time in
practice because the MALDI target plate is not moved after each fragmentation
step.

6.7.1. ID criteria

There are various protein identification measures, as pointed out in section 2.3.2.
So far, we used protein probabilities in the MIP formulation, but it can be adapted
to incorporate other measures. In the following section we modify the formulation
for a peptide counting approach, the two-peptide rule. This means, we demand
at least two significant peptide IDs for an identified protein to exclude one-hit
wonders.

Instead of requiring a minimal protein probability, we now want to achieve a
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Figure 6.18.: Iterative precursor ion selection for UPS with two peptide rule. (a)
Percentage of saved precursors with iterative PS compared to SPS. (b) Rank of precursors in
SPS compared to rank in iterative PS, HIPS in green, IPS LP in red. For comparison, the gray
line shows the identity diagonal.

minimal number m of peptide identifications that exceed a given peptide prob-
ability threshold pthr. Therefore, we need to adapt constraints 6.18 and 6.19 in
the following way:

∀i : zi ≤
∑

j,s;ai,j ·pj≥pthr

xj,s +
∑

j,s;ai,p·mp,j≥mthr

xj,s (6.31)

∀i : zi ∈ [0,m] (6.32)

Inequation 6.31 counts the peptide IDs per protein that exceed the peptide ID
threshold pthr. ai,j is an indicator variable, which is 1 if peptide j is part of protein
i and 0 otherwise. Thus, it ensures that only peptides of protein i are counted
for its identification. The second part of Inequation 6.31 includes unfragmented
precursors that potentially contribute to protein i: all precursors that have a pre-
dicted weight mp,j ≥ mthr are considered. This triggers the selection of precursors
that are likely to stem from a peptide belonging to protein i. Constraint 6.32
ensures that at most m peptides are contributing to zi for each protein i, so
additional peptide identifications do not enhance the significance of a protein.

We evaluated the adapted iterative LP with the UPS sample using a mass accu-
racy of 10 ppm. In Figure 6.18 (a) the percentage of saved precursors with the
iterative strategies in comparison with SPS is shown. IPS LP requires on aver-
age around half of the precursors that SPS needs to identify a certain number of
proteins, the maximum saving is 72%. HIPS saves on average around 40% and
maximally 62%. The requirement of a certain number of peptide IDs per protein
is well suited for the targeted precursor ion selection with an LP, everytime a
peptide of a new protein is found this triggers targeting a certain set of peptides
of which at least one is necessary for protein identification.
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For analyzing further when the selection of different precursors is triggered, we
plotted the ranks of the precursors in IPS against their rank in SPS in Figure 6.18
(b). As in Figure 6.7, we included the diagonal in gray. Thus, points below the
diagonal correspond to precursors selected earlier with IPS than with SPS. The
ranks of IPS LP follow three trends: on the one hand, we have a certain number
of precursors over the whole rank range of SPS that are selected at late stages
or never with IPS LP. This behavior can be explained by means of the exclusion
part of the objective function. Second, we have a few points considerably below
the diagonal, which indicate precursors with a high weight in the inclusion part of
the objective function. Thus, these are precursors probably belonging to peptides
that shall support a protein hit. The majority of IPS LP precursor ranks follows
a line close to the diagonal but below it which corresponds to the feature based
inclusion part dominating the selection. When looking at the HIPS precursors,
we observe a similar division in three parts. Although here, the exclusion of pre-
cursors is less strict: compared to IPS LP the downranked precursors are selected
earlier. Compared to the ranks obtained with a probability based identification
criterion as shown in Figure 6.7, we can see that more precursors are selected due
to the protein-based inclusion. This is expected as two peptides are necessary
for a protein ID which always triggers protein inclusion after the first observed
peptide.

6.7.2. Online approach for sequential order of target
positions

An advantage of LC-MALDI-MS/MS is that the sample is fixed on a sample
plate so that precursors can be chosen independently of their RT. However, when
varying the RT the sample plate has to be moved. As this takes time, varying
the RT after each MS/MS acquisition might not be feasible when analysis time is
limited. Thus, in the following, we adapt the MIP formulation so that it proceeds
through the precursor set in a sequential order according to the fraction number.

We start with spectrum s∗ = 0. Only the capacity constraint of the MIP formu-
lation (Inequation 6.21) has to be adapted to account for the sequential selection:

∀s>s∗ :
∑

j

xj,s = 0 (6.33)

∀s<s∗ :
∑

j

xj,s = cap∗s (6.34)

∑

j

xj,s∗ = caps∗ (6.35)

Capacities of all fraction with lower number than s∗ are fixed at the number of
realized precursors in the fraction (cap∗s). The capacities of all fractions with
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Figure 6.19.: Iterative precursor ion selection with sequential precursor ion selec-
tion for HEK293 with 10 ppm mass accuracy.

a higher number than s∗ are set to 0. When all precursors in s∗ were selected
or when its capacity is reached, the next fraction is set as s∗. We evaluated
the sequential IPS and illustrated the results in Figure 6.19. Obviously, the
percentage in the difference of required precursors for a certain number of protein
identifications rises with ongoing analysis and reaches a maximum of around 35%
precursor saving after which it slightly drops again. Finally, IPS LP saves more
than 30% of the precursors. The steady performance increase is a result of IPS LP
selecting fewer precursors than SPS in most fractions. In the end, this sums up to
more than 4,000 saved MS/MS spectra without a loss in protein identifications.
Figure 6.19 shows an overview of the number of selected precursors per fraction
for SPS and IPS LP. With SPS, in the RT range between 3400 s and 7200 s
almost all RT bins are used to their full capacity. Whereas, with IPS LP only
very few bins are completely used. The large amount of saved precursors becomes
obvious for the sequential LP, however, it was already there for the non-sequential
experiments presented in previous sections. As with IPS LP, only precursors are
chosen that contribute a positive weight to the objective function the selection
stops if there are no more precursors with such a positive weight. This shows that
with IPS LP additional termination criteria as presented in Section 6.6.8 are not
essential for its performance.
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Figure 6.20.: Histogram showing the number of selected precursors per fraction
for HEK293 for 10 ppm mass accuracy and a sequential precursor ion selection. (a) SPS, (b)
ILP IPS. The red line show the total number of selected precursors.



Chapter

7
Tools and
Implementation

Throughout the last chapters, we focused on the algorithmic details and the eval-
uation. In this chapter we describe the implementation of the algorithms and
tools that were developed for this thesis. First, we describe OpenMS, a C++
software library for LC/MS analyses, in which all tools are implemented. Af-
terwards, the tools InclusionExclusionListCreator and PrecursorIonSelector are
introduced, which provide implementations of the algorithms presented in Chap-
ters 5 and 6, respectively. Following that, we present OnlinePrecursorIonSelector,
a tool that directly communicates with the mass spectrometer and controls the
measurements. It has a user-friendly graphical interface for easily setting up all
required parameters.

7.1. OpenMS

OpenMS is a C++ software library developed mainly by groups from the
Eberhard-Karls Universität Tübingen, the Freie Universität Berlin, the Univer-
sität des Saarlandes, and the ETH Zürich. It provides implementations of effi-
cient algorithms for common tasks in proteomics data analysis as signal process-
ing, quantitation, identification and file conversion. It is freely available at www.
openms.de. OpenMS provides data structures for efficient storing of basic MS
data objects like raw data points, peaks, features or spectra. It supports stan-
dard data formats such as mzML, mzData or mzXML. Additionally, OpenMS
includes TOPPView, a viewer for MS data. Built upon the OpenMS library,
The OpenMS Proteomics Pipeline (TOPP) is a selection of tools for the main
tasks in LC/MS data conversion and analysis which can be combined in work-
flows [60]. These workflows can be created using TOPPAS [124], which was used
for MS/MS processing done for this thesis. InclusionExclusionlistCreator and
PrecursorIonSelector, that are presented in the following sections, are available
as TOPP tools.
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7.2. InclusionExclusionlistCreator

The InclusionExclusionCreator can create both inclusion and exclusion list from
various input sources. Inclusion lists are created from:

• featureXML: When the tool receives a featureXML file as input, either
all features can be put into the inclusion list, or a selection based on the
feature-based ILP formulation as presented in section 5.1 can be performed.

• fasta: For a fasta file input either all tryptic peptides of the sequences can
be scheduled in specified charge states or a subset of these determined by
the protein sequence-based ILP formulation as presented in section 5.2.

MSSimulator [125], a tool for MS and MS/MS simulation, uses the feature-based
precursor ion selection in MALDI mode.

Similar to the inclusion list creation part also exclusion lists can be written for
different input types: additional to featureXML and fasta, exclusion lists can be
build upon identification results provided in an IdXML file. This can be used for
excluding already identified signals in replicate analyses of the same sample.

7.3. PrecursorIonSelector

The algorithms for iterative precursor ion selection as described in Chapter 6
are implemented in the tool PrecursorIonSelector. For both HIPS and IPS LP, a
preprocessing of the database used for peptide identification is necessary. HIPS
requires only the m/z values of all tryptic peptides and their frequency in the
database. This frequency is used to scale the heuristic rescoring. IPS LP addi-
tionally requires a trained RT and PT model. These can be created on a sample
representative for the used experimental setup of the sample to be analyzed. The
preprocessing for IPS LP contains m/z values, predicted RTs and detectability
values for all tryptic peptides present in the database. It needs to be created only
once for each experimental setup and can be reused for later analyses.

IPS LP creates an MIP formulation of the precursor ion selection problem.
The implementation uses GNU Linear Programming Kit (GLPK, www.gnu.org/
software/glpk/). First, an initial MIP formulation based on the feature-based
ILP is created. Throughout ongoing analysis it is filled with protein information
and solved in each iteration. Variables that turned 1 in the current iteration
are traced back to the corresponding precursor and then can be returned in an
inclusion list file.

PrecursorIonSelector offers a simulation mode that was used in the evaluation in
Chapter 6. In this mode, all peptide IDs are given as input and matched onto
the feature map. Hence, for each selected precursor the corresponding peptide is

www.gnu.org/software/glpk/
www.gnu.org/software/glpk/
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immediately known. Then, the whole IPS analysis is performed and the results,
the number of identified peptides and proteins per iteration, are returned in a
text file.

7.4. OnlinePrecursorIonSelector

The OnlinePrecursorIonSelector allows direct application of the PrecursorIon-
Selection tools on the MS instrument. It was developed to work on an in-house
Bruker Ultraflex III mass spectrometer.

7.4.1. Implementation

Bruker Daltonics provided access to the software components for instrument con-
trol through their C++ library. An additional OpenMS dependency was created
so that these components could be used directly out of OpenMS data structures
and algorithms.

Then, in each iteration the set of selected precursors is translated into Bruker
specific objects, the target plate moved to the current spot and the precursors’
fragmentation is triggered. After this step a database search is performed using
MascotOnlineAdapter and the MIP formulation is updated based on the identi-
fications as it is done in offline mode.

The tool works directly on MS data acquired with the same instrument and pro-
cessed with Bruker software. Thus, file adapters were written to handle Bruker’s
feature map and peak list XML formats.

7.4.2. GUI

OnlinePrecursorIonSelector offers a graphical user interface (GUI) to easily load
the required data and configuration files and to tune the main algorithm para-
meters. It was created using Qt (http://qt-project.org). Figure 7.1 shows the
GUI with its three main parts: instrument settings, database search settings and
iterative precursor ion selection settings. In the instrument settings part the file
containing instrument and MS/MS method specific parameters is chosen. These
parameters are tuned for each sample before the run. The main database search
settings can be changed directly, this includes the searched database, taxonomy,
precursor and fragment mass tolerances, and missed cleavages. In the iterative
precursor ion selection settings part there are the subsections termination and
identification criteria. Here the user can choose, if the MS/MS acquisition should
be stopped for instance when a certain number of proteins is identified or a maxi-
mal number of iterations is achieved. There are also efficiency related constraints

http://qt-project.org
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like no protein identification for the last x MS/MS spectra or a minimal efficiency
ratio. See section 6.4 for a detailed description of the termination criteria. For
protein identification, the user can choose between unique peptide counting and
a minimal protein probability calculated as described in section 5.2.1.

Figure 7.2 shows the File and Preprocessing dialogs. In the File dialog the user
can load required files like the CompoundList file, a Bruker specific XML file
similar to the OpenMS feature map file containing all features detected in the
MS data. The AutoXSequence file used for MS acquisition is also loaded here.
This file contains instrument and sample specific information and is needed for the
instrument control. Besides, previously acquired MS/MS spectra can be loaded,
e.g., for continuation of a stopped run. The preprocessing dialog allows to load,
create and save the database specific preprocessing. For preprocessing creation
the necessary RT and PT models can be specified.
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Figure 7.1.: The GUI of the OnlinePrecursorIonSelector.
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Figure 7.2.: Dialogs used in the OnlinePrecursorIonSelector.



Chapter

8
Conclusion

Precursor ion selection for MS/MS is an often disregarded topic. A typical work-
flow uses data-dependent acquisition provided by the mass spectrometer’s manu-
facturer software despite its known drawbacks like limited reproducibility. In
this thesis and the related publications we were among the first to systematically
address iterative precursor ion selection with LC-MALDI MS/MS (together with
Liu et al. [110]). Our aim is to go beyond maximizing the pure number of peptide
identifications towards a more protein centric view of precursor ion selection.

In the last years, a complementary development for LC-ESI MS/MS took place,
away from precursor ion selection to a simultaneous fragmentation of all ions in
a broader m/z window, the so-called data-independent acquisition or MSE which
we presented in Section 3.3. 1 This development may lead to the question why to
bother at all with precursor ion selection. However, these techniques pose major
problems to data processing as MS/MS spectra are composed of fragments from
different peptides. Typical processing approaches apply database searching either
using the mixture spectra or using artificial MS/MS spectra created on the basis
of elution profiles of fragment and precursor ions [126]. However, this analysis is
very error-prone. Additionally, large selection windows in m/z and low fragment
ion mass accuracy lead to overlapping fragment ions of different precursors, thus
making the analysis of mixture spectra even harder [126]. To overcome this, some
MSE studies used smaller window sizes, however, then multiple LC injections are
necessary to cover the full mass range. This is not suitable for high-throughput
experiments.

In this thesis we developed formulations of several precursor ion selection scenarios
as optimization problems and showed that they can be efficiently solved with
LPs. As we demonstrated with different adaptations, our methods can be easily
customized for different study requirements. For instance, Bertsch et al. [127]
developed an LP formulation for the related MRM scheduling problem.

1The window size can vary from the full mass range to a few Daltons [126].
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8.1. Inclusion lists

In this thesis, we presented methods for inclusion list creation based on a different
amount of available information. Given an LC-MS feature map, we showed how
to formulate a multiple Knapsack Problem for selecting a maximal number of
precursors given common constraints such as the maximal fraction capacity. This
way, we select more precursors for fragmentation than data-dependent or greedy
methods.

In protein quantification, often the proteins of interest are known. Thus, we
can use this information for inclusion list creation. Here, we showed that this
precursor ion selection problem is related to the Hitting Set Problem and can be
efficiently solved via LPs. We demonstrated that once a certain inclusion list size
is achieved a plateau in the number of protein IDs is reached. Larger inclusion
lists only increase the number of peptide identifications.

In our approach, a likelihood value for a protein identification is directly in-
cluded in the precursor ion selection: using peptide detectabilities, we calculate
a detectability value for the corresponding protein. By maximizing the sum of
protein detectabilities, we ensure that precursors are matching peptides of many
different proteins. This is of practical value for studying protein quantification
for large protein samples. For instance, Schmidt et al. [100] used a set of 5,000
proteotypic peptides to observe the expression levels of 1,680 proteins of a human
pathogen at 25 different states. Our method can be used to select such a set of
peptides and create an inclusion list for them.

Creating inclusion lists with LPs can facilitate a change in the order of the ana-
lytical workflow: the goal can be to look for differentially expressed signals first
and then target these for precursor ion selection given constraints as the maximal
number of precursors per fraction. As our method does not rely on a previous LC-
MS run it is also suited for LC-ESI MS/MS analysis when additional constraints
for considered charge states are included.

8.2. Iterative precursor ion selection

In Chapter 6, we developed two different approaches for iterative precursor ion
selection where not the entire precursors are scheduled before MS/MS acquisi-
tion starts. Instead, in each iteration a database search is performed and the
information obtained there guides the selection in subsequent iterations.

The first method, HIPS, is a heuristic that requires only the feature map and
knowledge about the database which is used for peptide identification. Then,
precursors that are likely to support a protein candidate are assigned a high pri-
ority. Whereas, precursors matching peptides of already safely identified proteins
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receive a low priority. This method identifies proteins using less precursors than
necessary with a static inclusion list created before the start of the analysis. Its
advantage is the limited amount of information needed for its application. Only
the database used for peptide identification is needed for preprocessing where
m/z-values of all tryptic peptides are computed. However, it has clear limita-
tions with respect to complex samples or bad mass accuracies where it suffers
from erroneous peptide-precursor assignments.

The second presented method, IPS LP, addresses this problem by incorporating
predictions for RT and peptide detectability. This way, IPS LP is less dependent
on the mass accuracy than HIPS as we showed in Chapter 6.6.1. IPS LP is a
combination of the two inclusion list approaches presented in Chapter 5 plus an
additional exclusion of peptides of already identified proteins. Although IPS LP
requires specified weights for the three parts of the objective function, our anal-
ysis showed that similar values could be used for various samples. In our case,
setting k1 = 10, k2 = 1, k3 = 10 worked well for all tested samples. Addition-
ally, analyzing different weights showed that the exclusion part of the objective
function has a bigger impact on the performance than the inclusion part. This
is not surprising, as many proteins were identified already by the first matching
peptide. So in many cases no further targeting of other peptides was necessary to
support a protein ID. The adaptation of the LP to require minimally 2 significant
peptides for a protein ID showed that in this case more precursors were selected
based on the inclusion part of the objective function.

We showed that IPS LP requires less precursors than standard DDA and HIPS in
almost all tested settings. We evaluated our algorithms on a well-defined protein
standard and two biological samples of very different complexity. We analyzed the
influence of different parameters on the performance of IPS. In Chapter 6.6.1, we
could show that IPS LP performs superior to standard DDA for all tested mass
accuracies. When the number of precursors per fraction is small, for instance
because of a limited amount of sample, we observed that IPS LP identifies more
proteins than the other methods. Furthermore, With IPS LP we are able to
limit the number of peptide identifications covering high abundance proteins.
This way, we can overcome the inherent bias of intensity-based selection methods
to find many peptides for a few frequently occurring proteins. A side effect
of this limitation is that lower abundance proteins are identified with IPS LP
considerably earlier than with SPS. We observed in Section 6.7.1 that especially
if more than one peptide is required for protein identification, IPS LP performs
superior to DDA and HIPS. This shows the potential of IPS LP for quantitative
analyses where usually several peptides are required per protein.

In Sections 6.4 and 6.6.8 we introduced and evaluated different termination cri-
teria which can be applied to iterative or standard DDA precursor ion selection.
Additionally, IPS LP has an intrinsic termination criteria as acquisition stops
when no variable has a positive contribution to the objective function. When
reliable models for RT and detectability are used, and thus the risk of false exclu-
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sions is minimized, this leads to a significant number of saved precursors without
performance loss.

We analyzed the solving times of the MIP formulation for different mass accu-
racies, fraction capacities and step sizes. In general, we observed solving times
below 1 second and none of the analyzed parameters showed a clear difference
in MIP solving times. However, altogether an iteration includes more than just
solving the MIP so that in practice larger step sizes might be beneficial. In sec-
tion 6.7.2 we examined the performance of a sequential order in terms of RT.
This way times for moving the target plate are minimized. We observed that
this sequential IPS LP selects over 4,000 precursors less than SPS to identify the
same number of proteins. Combining the sequential MIP with larger step sizes,
for instance by selecting all precursors for a fraction at once, might lead to a good
tradeoff between analysis time and the number of protein identifications.

As we have seen in Section 6.6.4, shared peptides, e.g., peptides that are part of
more than one protein, can represent an obstacle for IPS. Limiting the database
to the species of interest helps to decrease the amount of shared peptides by
reducing the number of protein homologues. It is questionable whether one can
decide which protein a shared peptide belongs to before all other peptide evidence
in the sample are analyzed. In our case we implemented an approach where
a minimal protein list is created. Thus, if a peptide is shared by proteins A
and B and there are other identified peptides for A but not for B, the MIP
presented in Chapter 6.1 chooses A over B. If no other peptides are available for
A and B, both are of equal value and one is chosen randomly. It is possible to
include other strategies for protein inference. There are many approaches that
solve the problem of peptide degeneracy in different ways. The widely used tool
ProteinProphet learns the weight for each protein using an EM algorithm [70].
Recently, Huang and He [128] presented a linear programming approach that uses
the joint probability that both a protein and its constituent peptide are present
in the sample.

8.3. Future directions

In our evaluation, we compared SPS and IPS to the optimal solution which can
be determined after the experiment when all MS/MS measurements are done.
Although a difference between online algorithms like IPS and the offline optimal
solution is expected as not all precursors yield the predicted identifications, this
comparison showed that there is still room for improvement. One possible exten-
sion would be the inclusion of a fractional mass filter. We showed in Figure 6.2
that peptide m/z values appear in clusters with approximately 1 Da distance.
Between these clusters no peptides occur. This characteristic can be used to dis-
criminate non-peptide from peptide signals. Additional to RT and PT prediction,
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Liu et al. [110] applied such a filter successfully for their IPS method. Another
possible extension would be to include a peptide mass fingerprinting (PMF) step
prior to MS/MS analysis. PMF was developed independently by several groups
in 1993 [129–133]. It is a technique used for protein identification based on the
peptide masses determined with an MS run. Applying PMF after the initial LC-
MS run yields a list of proteins whose corresponding peptides can be targeted
with LC-MS/MS. This might improve the efficiency of IPS and could result in a
greater impact of the protein-inclusion part of IPS LP.

In our current setup, we only allow fixed modifications and not variable PTMs.
However, it was shown that the number of modified peptides rises with decreasing
protein abundance [134, 135]. Thus, including variable PTMs into our methods
might lead to a higher number of identified low abundance proteins. Incorporation
of variable modifications has several consequences. First, the methods for RT and
PT prediction need to be able to cope with modifications which is the case for the
machine learning techniques we applied. However, a good training set containing
a representative set of PTMs is also required. A drawback is that by including
variable PTMs in our methods the set of theoretical peptides for a protein grows
exponentially. This implies a higher chance for false assignments of observed
precursor ions and theoretical peptides and might impair the overall performance
of our precursor ion selection. The higher number of candidate peptides also
increases the running time of the database search for peptide identification. A
compromise might be the inclusion of variable PTMs only at late experiment
stages when already a large number of high abundance proteins is identified.
Then, the PTMs might enhance the identification of otherwise hard to identify
low abundance proteins.

As pointed out repeatedly in this thesis, the amount of detectable precursors
often dramatically exceeds the amount of possible MS/MS measurements. This
problem can be addressed by running multiple repeat measurements and focusing
each time on different precursor ion sets. Thus, a possible extension of the meth-
ods presented in Chapter 5 would be the simultaneous creation of inclusion lists
for multiple experiments. This can be achieved by introducing a third index to
the precursor indicator variable which points to the experiment. This way xe,j,s

would be 1 if feature j is chosen in experiment e in fraction s. However, the num-
ber of experiments has to be limited or needs to be considered in the objective
function. Otherwise, the feature-based ILP formulation would create inclusion
lists for new experiments until no unscheduled feature is left. Alternatively, re-
sults of previous runs can be considered while creating the inclusion list. For the
feature-based inclusion this can be done by aligning the previous feature maps
to the current one and afterwards forbidding the selection of already identified
features.

In the future, it will be interesting to use iterative, result-driven precursor ion se-
lection for LC-ESI MS/MS. Therefore, a fast online database search is necessary.
Lately, Graumann et al. [111] and Bailey et al. [112] presented tools that incor-
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porate such a database search on the fly and used the results for mass calibration
during the measurement or targeted resequencing of peptides. Recently, Webber
et al. [136] published an open source framework for Thermo Fisher instruments
that hides the complexity of the instrument firmware from the user and enables
customized data acquisition via python scripts. This way, the development of
targeted selection strategies is significantly simplified. In order to use IPS LP for
ESI, multiple charge states of peptides have to be included into the LP formula-
tion. This increases the possible number of peptide matches in the database for a
precursor what might lead to more erroneous assignments and consequently to a
worse performance. However, the sequential LP formulation that was presented
in Section 6.7.2 showed a good performance and was a significant improvement
over data-dependent precursor ion selection. This is a promising result motivating
the development of a similar method for LC-ESI MS/MS.
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Figure A.1.: Experimental RT vs. predicted RT for the 50s sample.
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A.2. PT prediction

Figure A.2.: PT model evaluation for 50s sample: Two sample logo and heatmap.
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Figure A.3.: PT prediction evaluation for 50s sample: Histogram of differences of
peptide probabilities and detectabilities.

Figure A.4.: Two Sample logo [118] for the high-scoring peptide identifications and the unob-
served peptide sequences of the complex dataset. Enriched AAs are shown at the top, depleted
AAs at the bottom. The sequences were aligned at their C-Terminus and the position is given
with respect to the longest peptide.



122 A. Data

Figure A.5.: Visualization of POBK for complex dataset. Inspired by [117] and produced
with MATLAB scripts from Nico Pfeifer. The plot shows the signals for both termini together,
hence position i corresponds to AAs at position i and n− i+ 1 (where n refers to the peptide
length).
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Figure A.6.: Histogram of the difference between peptide probability and pre-
dicted detectability for HEK293.
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B
Abbrevations

AA Amino acid
AIMS accurate inclusion mass screening
BSA Bovine serum albumin
cdf Cumulative distribution function
CID Collision induced dissociation
DDA Data dependent acquisition
DEX Dynamic exclusion
EM Expectation-maximization
ESI Electrospray Ionization
FDR False-discovery rate
FWHM Full-width-at-half-max
GA Greedy approach
GLPK GNU Linear Programming Kit
HIPS Heuristic iterative precursor ion selection
HPLC High Performance Liquid Chromatography
HSA Human serum albumin
ILP Integer Linear Program
IPS Iterative precursor ion selection
IPS LP Iterative precursor ion selection with Linear Programming
ITA Index-ion Triggered Analysis
LC Liquid Chromatography
LP Linear Program
MALDI Matrix Assisted Laser Desorption/Ionization
MIP Mixed Integer Program
MRM Multiple Reaction Monitoring
MS Mass Spectrometry
MS/MS Tandem Mass Spectrometry
m/z mass-to-charge ratio
OPT Optimal solution
PEP Posterior error probability
PMF Peptide mass fingerprinting
POBK Paired Oligo-Border Kernel
ppm parts-per-million
PSM Peptide-spectrum match
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124 B. Abbrevations

PT Proteotypicity or detectability
PTM Posttranslational modification
RT Retention Time
SNR signal-to-noise ratio
SPS Static precursor ion selection
SVM Support Vector Machine
SVR Support Vector Regression
TOF Time-of-flight
TOPP The OpenMS Proteomics Pipeline
TSL Two Sample Logo
UPS Universal proteomics standard
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