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Abstract 

While models of path dependence can explain how organizations fail, the notion of 

organizations overcoming lock-in remains ambiguous. Although first means to 

unlock paths were proposed in management literature, systematic testing if and 

how unlocking is possible still needed further elaboration. Therefore the 

dissertation at hand sheds some light on unlocking by integrating the logic of 

escaping organizational paths into a four-phase model of path dependence and 

testing how turnover, reconfiguration of the organizational structure and a top 

management team affect the process of unlocking organizational paths. These 

means were selected because prior literature hinted to their effectiveness in 

unlocking paths. To show how unlocking can occur, a computer simulation model 

based on the organizational learning model of March (1991) is derived, that takes 

into account individual learning based on the similarity between agents.  

The results of computer experiments show that heterogeneity can be preserved 

over the path formation process under certain conditions. Furthermore, the 

findings emphasize that heterogeneity in conjunction with an exogenous shock 

facilitates the unlocking of organizational paths according to the four-phase model 

of path dependence. Without such exogenous pressure the organization is, in 
contrast to prior models, not able to escape lock-in.  

With concern to the question how turnover, reconfiguration and a top management 

team influence an organizations ability to unlock paths, the results vary depending 

on the similarity parameter. The similarity parameter takes into account that 

organizational members prefer similar individuals to learn from and avoid to learn 

from dissimilar individuals. If the similarity value is set to a high value, learning 

from dissimilar individuals is impeded, set to low values individuals are more likely 

to learn from dissimilar others. The computer experiments indicate that for low 

similarity values turnover proves to be more effective compared to reconfiguration, 

and for high similarity values, reconfiguration of the organization through rotation 

of agents is advisable. In contrast, replacing the top management team proves to 

be effective over all similarity values. These differences in the effectiveness of 
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means can be attributed to the presence of heterogeneity in individual beliefs, their 

capability of learning from others and the coordination between individuals in the 
organization.  
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Zusammenfassung 

Das Berliner Drei-Phasen-Modell pfadabhängiger Prozesse erklärt, wie die 

Handlungsfähigkeit von Organisationen aufgrund selbstverstärkender Effekte 

eingeschränkt werden kann. Das Phänomen Pfadbruch, bei welchem 

Organisationen etablierte Pfade verlassen, wird darin nur unzureichend 

beschrieben. Obwohl in der Managementliteratur verschiedene Möglichkeiten zum 

Aufbrechen von Pfadabhängigkeiten diskutiert werden, fehlt eine systematische 

Überprüfung, ob und wie organisationale Pfade gebrochen werden können. Die 

vorliegende Arbeit beleuchtet diesen Aspekt durch die Integration der Logik des 

Pfadbruchs in das Vier-Phasen-Modell von Sydow et al. (2005). Anschließend wird 

getestet, wie Fluktuation, Restrukturierung und ein Management-Team einen 

Pfadbruch beeinflussen. Um diesen nachzuweisen, wird eine Computersimulation 

verwendet, welche auf dem organisatorischen Lernmodell von James March 

(1991) basiert. Unter der Berücksichtigung, dass Individuen in ihrer Fähigkeit zu 

lernen limitiert sind, wird ein similarity Parameter eingeführt, der die 

Lernwahrscheinlichkeit, und damit den Lernerfolg, an die Ähnlichkeit von 

Individuen innerhalb einer Organisation koppelt. Ein hoher similarity Parameter 

erschwert das Lernen von Individuen mit geringer Ähnlichkeit, während ein 

niedriger similarity Parameter Lernen von Individuen mit geringer Ähnlichkeit 
erleichtert. 

Die Ergebnisse der Computerexperimente zeigen, dass unter bestimmten 

Gegebenheiten Heterogenität während des Pfadformierungsprozesses erhalten 

bleiben. Verbunden mit einem exogenen Schock wird durch Heterogenität das 

Aufbrechen von Pfadabhängigkeiten ermöglicht. Dies bestätigt ein Vier-Phasen-

Modell pfadabhängiger Prozesse, in welchem der Pfad nach der Lock-In-Phase 

gebrochen wird. In Übereinstimmung mit der Pfadtheorie können Pfade dabei nur 
durch Druck von außen verlassen werden.   

Inwiefern Fluktuation, Restrukturierung und ein Management-Team die Fähigkeit 

einer Organisation Pfade zu verlassen beeinflusst, variieren die Ergebnisse. Die 

Experimente zeigen, dass für niedrige Werte des similarity-Parameters, das 
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Auswechseln von Individuen effektiv ist, während für hohe Werte des similarity-

Parameters, Restrukturierung durch Rotieren von Individuen innerhalb einer 

Organisation empfehlenswert ist. Ein Auswechseln des Management-Teams 

manifestiert sich über alle similarity Werte hinweg als effektiv. Diese Unterschiede 

in der Effektivität der Strategien zum Pfadbruch kann durch die Präsenz von 

Heterogenität in den Überzeugungen von Individuen, durch die Fähigkeit von 

anderen Individuen zu lernen und durch die Koordination zwischen Individuen 
erklärt werden.  
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1. Introduction 
Turbulent environments demand organizations to balance flexibility and efficiency 

in order to ensure competitiveness and long-term success (Bingham, et al., 2007). 

Especially in fast moving and hypercompetitive industries, strategic flexibility and 

steady rejuvenation are vital for organizations in order to respond to changes in 

their environment (Volberda, 1996). An example for a company that managed to 

remain flexible and adapt to changes is International Business Machines (IBM). 

During its history, IBM faced several crisis, due to changing market landscapes, 

and underwent successful organizational transformation processes (Maney, 2003). 

While there are organizations, like IBM, that master profound transformation 

processes, numerous cases of organizations failing to adapt to new realities are 

known as well (Romanelli & Tushman, 1994). For example, Kodak and Polaroid 

did not achieve to change its business model from analog to digital imaging 

technologies (Lucas & Goh, 2009; Tripsas & Gavetti, 2000). Eventually, the once 

successful companies had to file for bankruptcy. Because of such detrimental 

effects, management scholars are interested in barriers that impede organizational 

change processes (Tidd & Bessant, 2009). Among the large numbers of 

explanatory approaches, the concept of organizational path dependence gained 

momentum in management research (Sydow, et al., 2009). Initially, the concept 

was utilized in the field of economics to explain suboptimal market outcomes, due 

to the diffusion of inefficient technologies (Arthur, 1989; David, 1985). 

Management scholars adopted and transferred the concept to the domain of 

organizations in order to explain how the scope of strategic choices narrows down 

over time until strategic flexibility is lost (Holtmann, 2008). Over the last decade, 

most of the research covering organizational path dependence focused on this 

issue, revealing how once successful firms were sucked into the dynamics of self-

reinforcement, eventually ending up in a suboptimal stable equilibrium (Ericson & 

Lundin, 2013). Having an understanding of the effects of self-reinforcing 

mechanisms on the formation of organizational paths, as well as contextual 

circumstances responsible for paths to emerge, is useful to prevent harmful 

behavior in the first place. But while the concept of path dependence can explain 
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why and how Polaroid (Tripsas & Gavetti, 2000) or Kodak (Pandza & Thorpe, 

2009) failed, it still misses to explain cases like IBM, where organizations are stuck, 

but eventually change to adapt (Gerstner, 2002). A possible barrier studying how 

organizations break free from paths is that the concept of path dependence 

originally did not intend to explain unlocking. Although means were proposed on 

how to unlock paths (Castaldi & Dosi, 2005; Sydow, et al., 2005), prior literature 

remains purely theoretical and does not prove if these means may actually break 

paths. Apparently, since then, only little effort has been put into extending the 

theory to include the logic of unlocking paths into the stage model of organizational 

path dependence proposed by Sydow, et al. (2009) (for an exception see Ericson 

and Lundin (2013)). But, knowing the potentially self-destructive consequences of 

lock-in, integration into the framework to examine the conditions and the process 

of unlocking is needed. The dissertation at hand therefore attempts to shed light 

on the field of unlocking organizational paths by integrating the logic of unlocking 

into the organizational model of path dependence. This is achieved through 

merging the original model of technology adoption with the organizational three-

phase framework of path dependence, and extending it with mechanisms and 

intentional means that allow for unlocking. Therefore, the research contributes to 

organizational theory, and provides a framework to explore new directions in path 

research. Besides that, the work aims to stimulate the emergent discussion on 

path independence (Ericson & Lundin, 2013). That is, scholars should examine 

ways of how organizations can prevent, control, escape, or forecast rigidifying 
processes in organizations.  

 

1.1 Research Objective  
Objective of the work is to integrate the logic of unlocking into the theoretical three-

phase model of path dependence. Furthermore, means for unlocking paths by 

intentional actions through the management of an organization are derived. To 

achieve this goal, the task is to develop a model left ajar on the original definition 

of path dependence, as a stochastic process governed by contingency and self-
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reinforcement, while simultaneously considering the possibility of unlocking. 

Building upon prior literature in organizational path research, the case of 

individuals unlocking paths in organizations through their behavior has to be 

viewed in particular. After the model that takes unlocking into account has been 

developed, a simulation model which tests the effects of the individual behavior on 

unlocking has to be build. Furthermore, intentional actions of the management to 

break paths have to be derived from literature and included in the model, and must 

be tested subsequently. Literature on organizational change frequently names 

reconfiguration of the organization (Karim, 2006; Karim & Mitchell, 2000), labor 

turnover (Nystrom & Starbuck, 1984), and top management influence (Wiersema & 

Bantel, 1993) as means to overcome rigidities. These organizational means to 
unlock paths are tested with the help of a computer simulation model. 

 

1.2 Research Questions 
Based on the previous remarks, first the issue on how to extend the concept of 

path dependence has to be answered and second, intentional means influencing 

the breaking of organizational paths must be explored. Therefore, two independent 
research questions arise: 

Research Question 1: 

How can the logic of unlocking be included into a model of organizational path 
dependence?   

Research Question 2: 

How do (a) turnover, (b) reconfiguration, and (c) a top management team affect 
the probability of unlocking organizational paths? 
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1.3 Dissertation Outline 
The dissertation comprises seven chapters to answer the research questions. This 

chapter briefly referred to the motivation for conducting research on the unlocking 

of organizational paths, and stated the research questions. In order to obtain a 

deeper understanding of the path dependence concept, the current state of path 

research is reviewed in the second chapter. Commencing with increasing returns 

in technology adoption and the constituting properties of path dependence, the 

concept is subsequently transferred to an organizational context. Here, a 

theoretical framework provides the basis for studying organizational paths and 

gives guidance on how to capture path dependence in organizations. Having an 

understanding of how paths evolve, means for unlocking organizational paths are 

derived in a next step. In order to close the research gap by answering the 

research questions, a scientific methodology has to be found. Chapter three hence 

argues that the computer simulation is an appropriate method for examining 

organizational paths. As simulation studies are scarcely used in management 

research, characteristics and relevance of the method are briefly explained. Finally, 

chapter three introduces a structured guide for conducting computer simulations 

as a fundament for theory building and the dissertation at hand. Referring to the 

guide, the fourth chapter discusses established simulation models in management 

and path research. This facilitates the selection of a reference model, 

incorporating the properties of path dependent processes. After implementing and 

validating the reference model, it is gradually extended to include independent and 

dependent variables of the research hypothesis. The underlying assumptions of 

the model and the parameter implementation are comprehensibly stated to 

convince the reader of the model. In chapter five, the extensive simulation 

framework is used to conduct three experimental studies for investigating how 

organizations may unlock paths. The first set of experiments focuses on the 

emergence of organizational paths, dependent on the micro behavior and the 

effect of exogenous shocks on the ability to unlock paths. The second 

experimental study analyzes how restructuring, through the rotation of individuals 

within the organization, and employee turnover affect the breaking of 
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organizational paths. In the last set of experiments a hierarchical level, having 

normative influence on individuals in the organization, is introduced. Then, it is 

examined how this may contribute to the unlocking of organizational paths. The 

results of the experiments are summarized in chapter seven. Furthermore, chapter 

seven provides an outlook for further research and highlights the limitations of the 
dissertation.
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2. Theoretical Background 
	  

The broad application, and often imprecise definition, of “path dependence” in 

social research makes it necessary to state what is actually meant by the term 

path dependence (Sydow, et al., 2009). A precise definition of path dependence 

will help to understand the difficulties when it comes to unlocking. Furthermore, the 

research must be embedded into a broader understanding of how organizations 

behave in general. Therefore, this section will provide a literature review on the 

concept of path dependence, give a clear definition of path dependence, and link it 

to prior organizational theory. Finally, the literature on unlocking of paths is 
reviewed and a four-stage model of path dependence is proposed. 

 

2.1 Path Dependence in Technology Adoption 
Increasing returns, leading through contingent "small events" to inefficient market 

monopolies, are central to the concept of path dependence in technology adoption 

(Arthur, 1989; David, 1985).1 Considerations on how increasing returns affect 

economic outcomes have a long history, and date back to noble-prize winning 

research on international trade and monopolistic competition (Dixit & Stiglitz, 1977; 

Krugman, 1979; Marshall, 1890).2 But, it was only in the 1980s that the potentially 

negative effects of random small events became part of the discussion on 

increasing returns in economics (Arthur, 1983; David, 1985). Later, Arthur 

expressed the idea of how increasing returns in technology adoption may lead to a 

suboptimal stable equilibrium state through contingent small events, and named 

the resulting process “path dependent” (Arthur, 1989). Research on increasing 

returns was already motivated by the discussion on circumstances of how an 

inferior solution could achieve market monopoly (Krugman, 1979). But, Arthur in 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Small events are “outside our knowledge” (Arthur, 1994: 14), taking place at the beginning of the 
process, and not averaged away over time. Sydow, et al. (2009) draw an analogy to the butterfly 
effect. The butterfly effect explains how small changes in initial conditions may have a large impact 
on the whole system. 
2 See Krugman (1998) for a detailed research chronology on increasing returns in the field of 
business and economics. 
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particular considered the case of how contingent events under a regime of 

increasing returns may result in locking an economy to an inferior technology 

(Arthur, 1989). The main argument for this was that if economic agents have to 

choose between different technologies for adoption, chance could give a 

competitive edge for one technology at the very beginning of the diffusion process. 

As a result of the early lead, the utility of adopting this technology increases and, 

because of that, the technology is further adopted by utility maximizing actors.3 A 

self-reinforcing circle of increasing utility accompanying further adoption may 

eventually lead to a situation, where one technology crowds out alternative 

technologies and dominates the market. Strikingly, the development of which 

technology is cornering the market solely depends on the self-reinforcement of 

initial random small events, and not on the long run performance of the technology. 

The explosiveness of this argument lies in the statement that historical 

contingencies in the adoption process have serious effects on the final outcome, 

and may even lead to sustained economical inefficiencies (David, 2007). To 

underline this argument, Arthur (1989) developed a simple analytical model using 
an extended stochastic Pólya urn, which will be briefly described subsequently. 

 

2.1.1 Arthur's Extended Pólya Urn 

In this model of path dependence, two types of agents (R- and S-Agents) are 

assumed to choose between two different technologies (A and B). The agents 

possess distinct natural preferences for each of the two technologies, and 

sequentially have to choose between adopting either technology A or B in random 

order. Equally distributed, half of them naturally prefer technology A (R-agents) 

and the other half prefer technology B (S-agents). A parameter a captures the 

preference of R-agents (aR) and S-agents (as) for technology A, and a parameter b 

vice versa for technology B (bR, bs). Each agent bases its adoption choice on a 

payoff maximizing rule, which depends on its natural preference for one of the two 

technologies and on the number of agents who have previously adopted 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 Reasons for increasing utility include network effects, learning effects or adaptive expectations. 
Section 2.1.2 describes these effects in detail. 
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technology A (nA) or B (nB). To what extent these previous adoptions influence an 

agents’ payoff is captured by the two dissemination parameters r and s. For 

constant returns, the parameters are zero, for diminishing returns negative, and for 

increasing returns positive. Hence, in the case where the parameters are positive, 

the payoff for agents is increasing with the number of prior adoptions. As the 

sequence of agents adopting a technology is random, one type of agent may by 

random be overrepresented in the course of time, and hence its preferred 

technology may gain a lead. The advantage may be so striking, as to make the 

other type of agent switch towards this technology, because the payoff from prior 

adoptions exceeds the payoff received from their initial natural preference. Hence, 

once crossing a permissible boundary, both agents will choose the same 

technology, while the other technology will be locked out of the further technology 

adoption process. At the end of the adoption process, one technology will corner 

the market, because of the increasing returns and the contingent choices made by 

the adopters at the beginning of the adoption process. Figure 1 exemplarily 

depicts the adoption process under increasing returns, showing how the stochastic 

random walk property changes once a boundary is crossed. Here, after the lower 

boundary is crossed, both adopters choose technology B and exclude technology 
B from further adoption. 

 

 

Figure 1: Sequential adoption process of two technologies by agents with different natural 

preferences (Arthur, 1989: 120) 

120  T H E  E C O N O M I C  J O U R N A L  [ M A R C H  

n choices in total have been made. We will write the difference in adoption, 
n, (n )  -n,(n) as d,. The market share of A is then expressible as 

Note that through the variables d, and n - the difference and total -we can fully 
describe the dynamics of adoption of A versus 3. In this constant-returns 
situation R-agents always choose A and S-agents always choose 3,regardless of 
the number of adopters of either technology. Thus the way in which adoption 
of A and 3 cumulates is determined simply by the sequence in which R- and 
S-agents 'line up'  to make their choice, nA(n)  increasing by one unit if the next 
agent in line is an R, with n,(n) increasing by one unit if the next agent in line 
is an S, and with the difference in adoption, d,, moving upward by one unit or 
downward one unit accordingly. T o  our observer, the choice-order is random, 
with agent types equally likely. Hence to him, the state d, appears to perform 
a simple coin-toss gambler's random walk with each 'move' having equal 
probability 0'5. 

A leads Difference in 
adoptions 
of A andB 

Both adopter types choose A1 
R-types choose A .  S-types choose B 

Total adoptions 

Both adopter types chooseB. I Lock-in 
B leads 1 to B 

Fig. I .  Increasing returns adoption: a random walk with absorbing barriers 

In  the increasing-returns case, these simple dynamics are modified. New R- 
agents, who have a natural preference for A, will switch allegiance if by chance 
adoption pushes B far enough ahead ofA in numbers and in payoff. That is, new 
R-agents will 'switch' if 

Similarly new S-agents will switch preference to A if numbers adopting A 
become sufficiently ahead of the numbers adopting B, that is, if 

Regions of choice now appear in the d,, n plane (see Fig. I ) ,  with boundaries 
between them given by ( 2 )  and (3). Once one of the outer regions is entered, 
both agent types choose the same technology, with the result that this 
technology further increases its lead. Thus in the d,, n plane (2) and (3) 
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Interestingly, as shown by Arthur (1989), this process outcome only holds in the 

case of increasing returns, while under a diminishing or constant returns regime 

the process will lead to an equally shared market between the two technologies. 

The properties of a path dependent process are hence governed by random 

events in the adoption sequence, as well as the increasing returns to adoption. 

Proving that this combination may indeed result in a potentially inefficient outcome, 

namely the chance that a superior technology is not adopted by utility maximizing 

agents, a simple stochastic Polyá urn model was extended by Arthur (1989) to 
depict a path dependent process. 

The general purpose of conducting stochastic urn experiments is to make 

propositions about how chance and probabilities influence the outcome of a time-

dependent process (Johnson, et al., 2005). A special case is the Pólya urn, which 

is particularly suitable to describe self-reinforcing processes (Mahmoud, 2009). 

Basically, the Pólya urn can be perceived as a container initially filled with one red 

and one black ball. From there, the procedure is as follows: randomly one ball is 

drawn from the container in each discrete time step, its color is observed, and then 

put back into the container with an additional ball of the same color. Drawing a 

black ball from the container at the beginning, for example, increases the 

probability of drawing black in the next round to two thirds.4 By continuously 

repeating this drawing process, the proportion between red and black balls 

eventually approaches one out of an infinitely number of equilibrium states (Page, 

2012). For greater clarity, the Pólya urn process is simulated for one hundred 

consecutive draws and six iterations according to the guideline of Hand (2006). 

Figure 2 depicts the results of this Pólya urn process. Even if not a representative 

sample, the results in Figure 2 show the importance of early draws. After 

approximately fifty draws, the process converges towards an equilibrium state, 

making the drawing probabilities more predictable. While the results confirm the 

importance of small events at the beginning, the Polyá urn does not reflect the 

case of a dominant technology and market lock-in (Arthur, 1983). Instead, the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 More generally, when at time t a total of x balls are drawn and of these x balls b are black then the 
probability of drawing a black ball at time t+1 is (b+1)/(t+2) (S. M. Ross, 2009). 
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shares converge in the Polyá urn towards a stable equilibrium. In order to reflect 

the lock-in phenomenon, the Pólya urn needs to be extended by the nonlinearities 
inherent in path dependence (Arthur, 1989). 

 

	  

Figure 2: Own calculations for proportion of black balls in the Pólya urn using Excel 

	  

In contrast to the linear Polyá urn, drawing a ball in a non-linear urn increases the 

probability of drawing the same color in the next round disproportionately. Due to 

that, the process rapidly moves away from an initially unstable equilibrium towards 

one of only two stable equilibriums, eventually remaining there indefinitely. In 

these stable equilibriums, the probability of drawing a ball of a certain color is 

either zero or one, hence integrating lock-in. Figure 3 shows the drawing 

probabilities for a non-linear Polyá urn, computed with the Excel spreadsheet tool 

according to Hand (2006), for six iterations and one hundred consecutive draws. 

The urn model now depicts path dependence by including the draws of the balls 

as random small events, increasing returns in the drawing process through the 

non-linear behavior, and a lock-in into one out of two stable equilibriums as the 
outcome of the process. 
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Figure 3: Own calculations for the extended non-linear Polyá urn using Excel 

 

Based on this representation of path dependence in technology adoption, 

properties for a path dependent process have been derived, defining the presence 

or absence of a technological path (Arthur, 1989). Also, the case of increasing 

returns allows to distinguish the process from similar concepts, because it exhibits 

some special properties (Sydow, et al., 2009). The properties of an increasing 

return regime are listed in Table 1 and compared to the properties of constant and 
diminishing return regimes.  

 

Table 1: Properties of constant, diminishing and increasing returns (Arthur, 1989: 121) 

   

Predictable 

 

Flexible 

 

Ergodic 

Necessarily 

path-efficient 

 Constant returns Yes No Yes Yes 

 Diminishing returns Yes Yes Yes Yes 

 Increasing returns No No No No 

 

 

As stated in Table 1, Arthur attributes non-predictability, inflexibility, non-ergodicity, 

and possible inefficiency to a path dependent process, which distinguishes the 
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increasing returns case from other return regimes (Arthur, 1989). 5  As these 

properties are eminently important for the development and outcome of the 

process, and therefore the definition of path dependence, they will be briefly 
discussed.  

 

Non-Predictability	  

Since random small events determine the outcome of the process, it cannot be 

predicted which technology is going to dominate the market based on the initial 

conditions. In fact, the definition of randomness already includes the lack of 

predictability. A truly contingent sequence does not exhibit a distinctive kind of 

pattern and therefore contains no information about future events (Beltrami, 1999). 

However, more precisely, a path dependent adoption process only exhibits the 

property of non-predictability in the first steps of the process as the urn stores 

information about future draws through the information pattern induced by the 

increasing returns. As a result, if the process converges towards one of the 

absorbing barriers, it becomes increasingly predictable (and in the case of lock-in 

further adoption is inevitable predictable). This is because the probability of 

drawing a locked-in colored ball equals one and because no diversity is present 

within the urn. By implication, a lack of diversity implicates predictability (Page, 
2012).  

 

Inflexibility 

Once a technology is locked in, necessary policies or adjustments to unlock the 

technology increase without natural bounds. Due to the fact that increasing returns 

are not diminishing with the number of adopters in the extended Pólya urn model, 

the payoff for adopting a locked in technology approaches infinity under the 

assumption of an unlimited time horizon. Hence, to unlock or reverse the process, 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 Arthur (1989) shows that under a regime of constant and diminishing returns the market is equally 
shared by the two technologies and lock-in does not occur.  
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the necessary adjustment has to match the sum of previous payoffs for the 

currently locked in technology. In other words, with regard to the extended Pólya 

urn the magnitude of adjustment needs to match or at least converge towards the 

number of balls from the dominant color to allow unlocking. It is obvious that this is 

hardly possible if the number of balls from the dominant color approaches infinity. 

Although a model is always an abstraction, it can clearly be doubted that in reality 

returns are increasing to infinity. Assuming that a critical mass is achieved, the 

utility of a technology more than likely approaches an upper boundary where 

increasing returns tear off and become constant or diminishing (Rogers, 1991). 

Still, even when increasing returns are bound, adjustments can be too expensive 
or hard to implement, so that the outcome cannot be altered when put into practice.   

 

Non-Ergodicity 

In mathematics, non-ergodicity is defined by Birkhoff's ergodic theorem stating that 

the average of a time function has to be identical to the average of the associated 

space function in order to call a process ergodic (Birkhoff, 1931; DasGupta, 

2008).6 In particular, the average of all equilibriums must be the same as the 

average of different initial conditions equating to a process not being affected by its 

initial conditions. Vice versa, non-ergodic processes produce different outcomes 

for different initial conditions. Instead of one single history, the initial conditions can 

alter the long-term outcome and generate multiple histories. The process itself 

becomes dependent on its history and develops like a path where historical events 
influence future outcomes.  

 

Not Necessarily Path-Efficient 

When increasing returns of adoption and contingency are at work, the process 

may favor and lock-in inferior outcomes. On the other hand, according to the 

definition of Arthur (1994), a path dependent process can also be efficient when 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6 See DasGupta (2008) for a mathematical definition and proof of Birkhoff's ergodic theorem. 



 

	   15 

the superior technology is chosen by chance right from the beginning and locked- 

in. Therefore, the concept of path dependence originally emphasizes that it is 

possible to lock into inefficient solutions; inefficiency, however, is not a necessary 

condition to call a process path dependent (David, 2007). Nevertheless, the 

chance that inefficiencies may potentially arise although individual choices are 

rational contrasts the neo-classical economics tradition (Arthur, 1994; Liebowitz & 

Margolis, 1990). 

Carving out the properties of a path dependent process from a theoretical model is 

of great help to understand how paths develop, but proving that path dependence 

is indeed a real world phenomenon demands empirical evidence. A main critique 

is attributed to the concern that paths are purely theoretical and not observable in 

modern economies (Liebowitz & Margolis, 2013). Hence, to point out the empirical 

relevance of the theoretical definition of path dependence, several historical 

studies on technology diffusion building on the mentioned properties of path 

dependence have been conducted. Subsequently, some of the case studies 

examining path dependence are mentioned and discussed to convince the reader 
that paths emerge in economies and are indeed an observable phenomenon. 

  

2.1.2 From the Pólya Urn to the Real World  

The most prominent empirical example7 of path dependence in the adoption of 

technologies is the history of the QWERTY keyboard design, narrated by Paul 

David (1985). David describes the technological diffusion process along a timeline, 

starting from the development of the typewriter up to the modern computer age. 

The story goes like this: In 1867, a printer from Wisconsin filed patent for a 

typewriter with a four-row keyboard design that prevented jamming. Because it 

displayed the letters QWERTY in the top-row, this design is known as the 

QWERTY keyboard. Although the early years proved to be hard, as new 

competitors with alternative keyboard designs entered the market, the QWERTY 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7 According to Google Scholar (http://scholar.google.de/scholar?q=QWERTY) Paul David's "Clio 
and the Economics of QWERTY" was cited 5398 times (as of 26/2/2013). 



 

	   16 

design rapidly evolved in the 1890s. Eventually, it became a worldwide standard 

for keyboard designs. According to David (1985), the main reasons for QWERTY 

achieving market monopoly could be attributed to economies of scale, 

complementarities between technologies, and irreversibility of past choices. A 

success factor for the QWERTY keyboard was, for example, the 

complementarities between typists and keyboard designs. As typists had to 

acquire machine writing skills through extensive training, a standard keyboard 

design decreases costs, as they do not have to learn typing on different keyboard 

designs and companies could then draw from a larger pool of trained typists. 

Although, today there is no technical reason for not switching towards another, 

possibly more efficient, design, most keyboards still assemble the letters 
QWERTY in the top row.  

Building upon the historical narrative and case study methodology, researchers 

also extend the argument of path dependence to the evolution of other complex 

technologies (Arthur, 2009). Examples include the market dominance of the Video 

Home System (Cusumano, et al., 1992), the French (AZERTY) and German 

(QWERTZ) keyboard designs (Reinstaller & Hoelzl, 2009), chemical control of 

agricultural pests (Cowan & Gunby, 1996), railway gauges tracks in the American 

railroad industry (Puffert, 2002), quadraphonic sound systems (Postrel, 1990), 

gasoline engines for automobiles (Kirsch, 1996), alternating current electricity 

transmission technologies (David & Bunn, 1988), and light water nuclear reactors 
(Cowan, 1990).  

Furthermore, the studies describe the self-reinforcing mechanisms responsible for 

the assertion of a dominant technology in detail. In the literature on path 

dependence, four of these self-reinforcing mechanisms are widely known: 

economies of scale, network externalities, learning effects, and adaptive 

expectations (Sydow, et al., 2009). In the following, the four mechanisms are 
briefly explained.  

 

 



 

	   17 

Economies of Scale 

In economies of scale, an increase in the production output decreases the costs 

per unit made (Silvestre, 1987). Reasons for the decline in costs per unit can be 

the distribution of overhead costs on a larger number of output units, improved 

weighted average cost of capital, better exploitation of production capacities, or 

avoidance of indivisibilities in manufacturing equipment (Boyes & Melvin, 2008). 

Because of this, a product can be positioned on the market at a lower price, 

potentially increasing demand of consumers (D. D. Friedman, 1986). Increasing 

demand leads to higher production output, and therefore reinforces the cost down 

effect of economies of scale. This positive feedback loop may repeat itself, until 

the production costs per unit increase due to disposability of input goods or 

increasing coordination costs (diseconomies of scale). So, different to the 

increasing returns regime of Arthur (1989), the benefits of economies of scale are 

assumed to diminish over time. A good example is the supply of utilities, such as 

gas or electricity. For instance, real prices for electricity have dropped by 98% over 

a period of one hundred years between 1900 and 2000. The decrease in electricity 

production costs lead, over a self-reinforcing process, to the prevalence of 

electrical powered goods, such as lighting, telephones, or computers. Therefore, 

economies of scale also resulted in network effects. But, due to the external 

effects of electricity production, and the scarcity of raw materials used for energy 

production, prices are starting to increase again (Smil, 2006); economies of scale 
switched  towards diseconomies of scale. 

 

Network Effects 

Network effects are described as a change in the utility an economic agent derives 

from a good, due to the fact that others are also consuming or using the same or a 

similar good (Farrell & Saloner, 1986; M. Katz & Shapiro, 1985; Leibenstein, 1971). 

A network effect can be considered positive when the benefit of a single user or 

consumer is greater the larger the number of previous adopters. This is the case in 

the Polyá urn model of Arthur (1989). Here, agents decide on basis of prior 
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adoptions to maximize their utility. A further distinction can be drawn between 

direct, indirect, and two-sided network effects (Liebowitz & Margolis, 1994; Meyer, 

2012; Parker & van Alstyne, 2005).8 Direct network effects are present when an 

increase in usage of a service or good increases the benefit for an agent adopting 

this service or good. Numerous examples for direct network effects can be found 

in the communication and information industry. These include technological 

achievements, such as the telefax, landline telephones, mobile phones, or social 

networks, like Facebook or Linked-In. All of these services or goods have in 

common, that the benefit for a single user adopting one of these services or goods 

strongly depends on the installed user base. There would not be any utility or 

advantage in using a communication technology when there is no one to connect 

to. Indirect network effects are present when the number of available 

complementary goods increases with the size of the network. For example, it can 

reasonably be argued that the individual value of owning a home video player 

strongly depends on the number of blockbuster movies available for the video 

system. Further on, the number of blockbuster movies indirectly depends on the 

sold units of a video system. This is, because film studios will favor the device with 

most reach, and might distribute their products on this platform exclusively. 

Therefore, the individual benefit of an agent is only indirectly linked with the 

network size, as the distributors of movies determine to a great extent the 

attractiveness of a video system. In two-sided network effects the value of a 

network increases depending on the usage of two or more distinct groups. Take 

for example the diffusion of application enabled smartphones (Meyer, 2012). 

Consumers value the number of applications available for a specific operating 

system, and may base their smartphone purchasing decision on the size of an 

application ecosystem. At the same time, software developers value the number of 

previous adopters of said operating system. This is, because adopters of an 

operating system are potential customers for application developers. Comparable 

to a chicken-egg problem, consumers adopt smartphones with a specific operating 

system when a large amount of applications are available to download. On the 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8 Although literature suggests a variety of network effects two-sided, direct and indirect network 
effects are most commonly mentioned. See for example Sundararajan (2008).  
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other hand, developers only write applications if they are confident that enough 

users will download their app in order to make a profit. 9  Depending on the 

development of the user and app developer base, a specific platform can prevail 

and lock out competitors (Meyer, 2012). So, while size is important for all three 

types of network effects, interaction patterns to derive an individual utility might 

differ. For direct network effects, only adopters interact with each other, while for 

indirect and two-sided network effects, adopters interact with other groups.    

 

Learning Effects 

As an agent learns about a technology, by using it or through learning-by-doing, 

the technology might improve, and hence the benefit for adopting the said 

technology increases (K. J. Arrow, 1962). A self-reinforcing cycle, consisting of 

learning and further adoption, will eventually lock out other technologies, even if 

superior in the long run. Cowan & Gunby (1996) provide an example for learning 

effects by referring to the evolution of chemical pest control strategies in the 

agricultural industry. Prior to World War II biological, chemical, and cultural pest 

control strategies were equally applied. In the 1940s, the development of low-cost 

and effective chemical insecticides containing dichlorodiphenyltrichloroethane 

(DDT), which is now also known for its detrimental effects on the environment, 

altered the market situation. DDT rapidly replaced competing pest control 

techniques, not only in usage, but also in terms of research and development 

spending. Methods to improve chemical pesticides, instead of biological or cultural 

pest control strategies, were put into focus. Besides the effects of DDT on the 

environment, there is some evidence that chemical pesticides were the wrong 

choice with regard to the effectiveness of pest control. Instead, an integrated pest 

management, consisting of a mix between biological and cultural pest technologies, 

could be superior today, if similar learning effects were applied to the evolution of 

the technology. But, learning effects that occurred on different levels, make 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
9 A recent discussion on the diffusion of smartphone systems in two-sided markets can be found in 
Meyer (2012). 
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switching towards alternative pest controls difficult. First, at the individual level, 

farmers learned how to apply chemical pesticides and made specific investments 

for chemical pesticides. Switching towards another technology would need a 

process of unlearning, and therefore new investments (Starbuck, 1996). Second, 

on a global, respectively regional, level, learning effects, due to research and 

development efforts in chemical pesticides, installed monitoring systems, and 

declining production costs resulted in learning curve effects. So, learning effects 

on different levels contributed to the lock-in of a doubtful pest control technology 
and made switching to other options difficult (Cowan & Gunby, 1996).  

 

Adaptive Expectations 

At last, a mechanism known as a driver for path dependence is adaptive 

expectations. In adaptive expectations, agents form expectations about the 

diffusion of a technology. By adapting their own expectations towards the 

expectations of other agents, uncertainties inherent in future events are supposed 

to be reduced. Therefore, the adaptation of a technology is not only influenced by 

current individual benefits of adoption, but also depends on the expectation of 

which technology will dominate the market in the future (Beyer, 2010). In particular, 

with regard to technological standards and technologies exhibiting "winner-takes-

it-all" properties, adopters might align their decision for a technology towards the 

expected choices of other adopters (M. A. Schilling, 2002). Like a self-fulfilling 

prophecy, the faith in the superiority of a technology today, determines the 

prevalence of the technology in future. An example of adaptive expectations 

leading to the failure of a superior technology is Sony's digital audio tape (DAT) 

technology.10 Although, experts emphasized the advantages of DAT, compared to 

conventional compact cassette systems, one reason for consumers not adopting 

DAT can be found in the formation of negative adaptive expectations. As 

consumers doubted that the technology might become an industry-wide standard 

for recording and playing audio, they did not switch from the compact cassette 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
10 See Horner (1991) for an extensive case study of the digital audio tape.  
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technology to the digital technology. In a winner-takes-it all market, like audio 

recording, it is crucial to establish a standard in order to position a technology 

successfully on the market (Hill, 1997). Ignoring the superior audio quality of DAT, 

the negative expectations of consumers lead to the decline of the digital audio tape 

and instead, consumers quickly adopted the compact disc technology as 
successor of the compact cassette (Gandal, et al., 2000).  

As shown, researchers point to these four different self-reinforcing mechanisms as 

drivers for path dependence, and convincingly argue, using empirical evidence, 

that lock-in of technologies occurs. Nevertheless, a dispute in the economic 

research community has risen, attacking the core of the path dependence concept. 

As path dependence itself is an attack on core assumptions of neoclassical 

economics, critics doubted that these empirical studies really show cases of strong 

path dependence. If the critics were to be believed, research dealing with path 

dependence would be doubtful or even obsolete. Therefore, this argument needs 
to be further discussed. 

 

2.1.3 The Dispute about Path Dependence 

To most researchers of path dependence in organizations or technologies, the 

QWERTY keyboard design is seriously flawed, when compared to the Dvorak 

keyboard design (Arthur, 1989; Castaldi & Dosi, 2005; David, 1985; Sydow, et al., 

2009). In terms of typing speed and ergonomics, the Dvorak keyboard is, 

according to studies of path researchers, considered to be superior. But, the 

debate about the superiority of the Dvorak keyboard is still controversial, as its 

superiority, and the studies on which the claim of superiority is based, is 

vehemently questioned (Liebowitz & Margolis, 1994, 2013). Among these critics, 

Stan Liebowitz and Stephen Margolis seem to be the most persistent in 

emphasizing that the concept of path dependence is, as told by Arthur (1989) and 

David (1985), incorrect, or at least incomplete. Liebowitz & Margolis (2013) claim 

that small events and increasing returns on their own, as well as combined, cannot 

produce inefficient outcomes for an economy, at least not to a significant extent as 
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described by David (1985). In the course of the past two decades, Liebowitz and 

Margolis have published several papers which question the inefficiency argument 

of path dependence, and react to Arthur’s and David’s harsh11 remarks (David, 

1997, 1999, 2001, 2007; Liebowitz & Margolis, 1990, 1994, 1995a, 1995b, 1996, 

1999, 2013). To be precise, Liebowitz & Margolis do not question the existence of 

inefficiencies in markets, but instead highlight that increasing returns are just one 

constituting factor. Yet, increasing returns alone are not an accurate 

representation for mechanisms resulting in market failure and inefficiencies 
(Liebowitz & Margolis, 2013: 10): 

"...a market to be locked in to something that is widely understood to be inferior 

requires more than just increasing returns or network effects, but in addition that 

an array of potentially profitable internalizing activities fail. These extra conditions 

imply that the kinds of failures that David and Arthur predict, though possible, are 

likely to be uncommon or of little economic importance."  

In order to put more emphasize on this statement, Liebowitz & Margolis (1995b) 

developed a classified definition of path dependence, segmented according to 

their severeness of three different degrees of lock-in. First-degree path 

dependence describes a situation where the choices made by actors yield to an 

efficient outcome. Here, the best solution is chosen during the path process and 

locked in. This is comparable to the case of Arthur’s model, when initial small 

events and self-reinforcing effects favor the superior technology. There is no 

problem for neoclassical economics present in this case, as the market had 

selected the most efficient solution by locking out inferior technologies. On the 

other hand, it is in hindsight almost impossible to prove that the locked in 

technology is superior to other technologies (Gould, 2002). Second order path 

dependence refers to a situation where an inferior solution is locked in, but actors 

have chosen the best possible solution present at the time of their decision. Even 

though economic losses occur, the actors could not have done better, because 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
11 One of David's remarks on the inefficiency criticism of QWERTY (David, 1999: 9): "But, to 
suppose that it is substantively crucial to any of the interesting issues surround path dependence 
and its economic policy implications is just plain silly". 
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there was no superior solution available at this time, or agents did not know about 

this superior solution. Third degree path dependence exhibits inefficiency as 

actors could have known, or even did know, about the inferiority of the solution, but 

still have chosen to adopt it. In this case, lock-in could have been avoided by 

adopting agents. QWERTY is an example of third degree path dependence, 

according to David (1985). While the first and second-degree definitions of path 

dependence are consistent with regard to neoclassical theory, it is the third degree 

path dependence causing concerns for economists. Therefore, Liebowitz and 

Margolis deny the existence of third degree path dependence with noteworthy 

economic inefficiencies, and criticize the narratives on QWERTY and other 

technologies like VHS (Liebowitz & Margolis, 2013). Possibly, because of the 

substantial critique, Paul David eventually revised claims that path dependent 

processes need to be inefficient12 or have to include increasing returns to adoption, 

but broadly defined path dependence as "a dynamical process whose evolution is 

governed by its own history" (David, 2007: 92) with "no necessary connection 

exist[ing] between conventionally defined ‘‘increasing returns’’ and the 

phenomenon of path dependence" (David, 2007: 102). While this statement again 

emphasizes that the inefficiency criteria is not a necessary construct in the 

definition of path dependence, defining the concept solely as a historical process 

would ignore the constituting properties mentioned by Arthur (1989). Therefore, 

the necessary propositions of contingency and self-reinforcement should be 

included in order to differentiate path dependence from similar concepts, and to 

prevent it from being stunted to a “history matters” argument (Sydow, et al., 2009). 

Thusly, even if inefficiency is absent, path dependence remains an interesting 

phenomenon, because it highlights how random events influence economic 

outcomes and may lead to market monopoly (David, 2007).  

Despite the criticism, the concept of path dependence has been well established in 

literature on technology adoption (Vergne, 2013). The findings also had far 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
12 David (1997: 8): "Most prominent among the misapprehensions that have emerged in the 
literature during the past decade, at least to my way of thinking, is the notion that the condition of 
“path dependence” somehow is responsible for “market failures” which, in turn, result in persisting 
irremediable inefficiencies in the allocation of resources."  
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reaching consequences in other domains apart from economics (March, 1991; 

Martin & Sunley, 2010; Pierson, 2000). Management scholars adopted the concept, 

for instance to describe resistance to change in organizations. Although 

management scholars refer to Paul David and Brian Arthur, attention has to be 

drawn regarding the peculiarities of social systems in order to transfer the concept 

of technological paths to an organizational context.  

 

2.2 From Technologies to Organizations 
Various literature streams, such as population ecology (Carroll & Harrison, 1994), 

evolutionary economics (Dosi, et al., 2011; Nelson & Winter, 1982), or the 

behavioral theory of the firm (March, 1991), pick up the notion of organizational 

path dependence, and argue that routines, standard operating procedures, social 

interactions, communication patterns, or (behavioral) rules in organizations evolve 

path dependent and eventually impede change processes. But, while the concept 

is prominently adopted, theoretical grounding of path dependence in organizations 

still remained vague in these literature streams. In a recent endeavor to overcome 

these theoretical difficulties, a framework for organizational path dependence has 

been developed by Sydow et al. (2009). Sydow et al. (2009) recognized that the 

concept of path dependence is inadequately defined in management literature, 

and broadly used as an argument for how "history matters" in organizations. As a 

remedy for this deplorable state, they suggested a process oriented theoretical 

framework, divided into three consecutive phases, to define how an organizational 

path constitutes itself, and to provide a guideline for examining path formation 

processes. Although, the framework is strongly related to the early definition of 

path dependence in technology adoption, there are some differences worth 
mentioning.  
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2.2.1 A Framework for Organizational Path Dependence 

In the framework, the path formation process is divided into three consecutive 

development phases, where the set of path dependent properties defines and, at 

the same time, separates the phases from one another. Furthermore, instead of 

technologies, the objects of observation are strategic options, or the range of 

variety in strategic decisions, a company may pursue in order to adapt to its 

environment. 

 

	  

Figure 4: Three phases of organizational path dependence (Sydow, et al., 2009: 692)  

 

In Phase 1 an organization can choose among multiple options, while long-term 

consequences of choices are still unpredictable, because of uncertainties in the 

environment. However, the selection of one option may trigger a self-reinforcing 

process. In contrast to the initial situation of technology adoption, history matters in 

organizations (even in the early phase), while not determining the process right 

from the beginning. This is caused by the fact that organizations are rule guided 

social systems, composed of individuals with separate prior histories, and hence 

constraining the range of options (Kimberly, 1975). The grey shadow in Figure 4 

visualizes this restriction, by excluding options that cannot be pursued by the 

The transition from Phase II to Phase III—the
Lock-in Phase—is characterized by a further
constriction, which eventually leads to a lock-
in—that is, the dominant decision pattern be-
comes fixed and gains a deterministic charac-
ter; eventually, the actions are fully bound to a
path. One particular choice or action pattern has
become the predominant mode, and flexibility
has been lost. Even new entrants into this field
of action cannot refrain from adopting it. When
more efficient alternatives are available, indi-
viduals’ and organizations’ decision processes
and established practices continue to reproduce
this and only this particular outcome. The occur-
rence of a lock-in renders a system potentially
inefficient, because it loses its capability to
adopt better alternatives.

Figure 1 illustrates the process across the
three stages. This differentiated framework is
intended as a general model of path depen-
dence; its functioning, however, is likely to differ
from context to context according to the prevail-
ing conditions, particularly market versus hier-
archy. The contextual specifics when applied to
an organizational context—the target field of
this contribution—will be outlined in subse-
quent sections.

Preformation Phase

Phase I can be characterized as an open situ-
ation with no significantly restricted scope of
action. From a theoretical point of view, the

question that arises is how this initial state can
be conceptualized in more distinctive terms. The
technological path studies—if at all—have con-
ceived of the initial situation as being unre-
stricted. The search for alternatives starts from
scratch, and decisions are unconstrained.

Such framing of the first stage in the rational
choice tradition, however, paradoxically ignores
the fact that the development of a path is em-
bedded and connected with other developments;
it cannot be considered a completely separate
process without any imprints from the past. In
brief, history matters in the Preformation Phase
too. In organizations initial choices and actions
are embedded in routines and practices; they
reflect the heritage—the rules and the culture—
making up those institutions (e.g., Child, 1997;
March, 1994; Tolbert & Zucker, 1996). Institutions
are “carriers of history” (David, 1994), and his-
tory cannot be intermittent; it does not matter
only occasionally—it always matters! A concep-
tualization of the activities in the Preformation
Phase thus cannot start from scratch; it has to
account for institutional imprints.

On the other hand, history in this broad sense
is not destiny; we have to draw a clear distinc-
tion between historical-institutional influences
and imperatives. The notion of path dependence
does not refer to a state of determinacy from the
beginning; it sheds light on a tapering process
that possibly ends in a lock-in. Increasing path
dependence implies an initial scope of choice.
Otherwise, the theory would lose its very point:

FIGURE 1
The Constitution of an Organizational Path

692 OctoberAcademy of Management Review
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organization. A simple example of eliminating strategic options is stating the 

business purpose, which is necessary to register a business in Germany. Even 

under the best conditions, it is hardly possible for an organization registered as a 

bakery to pursue business in the automotive sector. With transitioning to Phase 2, 

a self-reinforcing process shapes a path by progressively narrowing down the 

scope of strategic options an organization may pursue. Originating from a critical 

juncture, which can be conceived as a set of choices already made in the first 

phase, a dominant regime develops, favoring the reproduction of a same small set 

of choices. Potential drivers for self-reinforcing mechanisms are, for example, 

organizational learning effects (Levinthal, 1997). Still, switching to other options is 

possible, but may be difficult, because the process becomes exceedingly 

irreversible over time. Building on self-reinforcement, instead of increasing returns, 

the framework includes behavior not necessarily driven by utility maximization, 

such as uncertainty avoidance, power preservation, or reduction of cognitive 

dissonance (Sydow, et al., 2009). Eventually, the self-reinforcing mechanisms lead 

to Phase 3, where the set of choices become locked in and render the process 

inflexible. Switching to other options is now hardly possible for the organization, 

and as a result potential inefficiency is implied. Compared to technological paths, 

the lock-in is described as a predominate behavior, or as Sydow et al. (2009: 695) 

point out, "an underlying core pattern". Different to the original definition is that 

there is at least some variation in organizational behavior, which in turn includes 

the notion of heterogeneity in organizations. Therefore, in contrast to the path 

dependence concept brought forward by Arthur (1989), the variation inherent in 

this definition of path dependence allows an organization to change, even though 

being locked-in. In the language of the Polyà urn, lock-in is now not a state where 

only one type of balls with one color is drawn from the urn, but there is a chance 

that another color might be drawn as well. Therefore, within this framework, the 

concept of path dependence is not only transferred to organizations, but also 

major adjustments have been made to the original concept. Besides introducing 

the possibility of variation, increasing returns are replaced with self-reinforcing 

mechanisms. Therefore, the self-reinforcing effects as drivers for an organizational 

path dependent process have to be adapted in order to account for the 
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peculiarities of social processes. According to the literature, four different 
organizational mechanisms can broadly be distinguished (see Table 2). 

 
Table 2: Self-reinforcing mechanisms in organizations according to Sydow, et al. (2009) 

Mechanism Remark 

Coordination Effects Adoption of the same rules, behaviors, or beliefs facilitates the interaction 

between individuals, as conformation reduces interaction costs and 

maintains internal consistency (D. Miller & Friesen, 1984). The self-

reinforcement of conforming behavior results in fixed patterns of tasks, 

routines, or rules in an organization, which are hard to abandon in the 

presence of environmental change. Examples include the rule-guided 

behavior in the newspaper industry to produce high-quality content, instead 

of exploiting online markets (C. G. Gilbert, 2005; Koch, 2008), or the 

inability of Polaroid to change from a razor-blade towards a digital business 

model (Gavetti, 2005). 

Complementary 

Effects 

Combining interrelated rules creates synergies by either lowering the costs, 

or increasing the benefit, of practicing them jointly (Stieglitz & Heine, 2007). 

Therefore, complementary rules, routines, or practices may be self-

reinforced and become dominant in an organization (Leonard-Barton, 

1992). One example for complementary effects potentially inducing path 

dependence, is the interrelatedness between R&D and marketing 

capabilities of organizations, adding up to a core competence (Prahalad & 

Hamel, 1990; Sydow, et al., 2009).  

Learning Effects According to the concept of learning curves, the efficiency of performing a 

task increases with the number of subsequent iterations, as gained 

experience facilitates to perform the task more reliable and faster. 

Furthermore, decreasing costs, because of learning, increases the 

attractiveness of the solution and may hence impede switching to other 

learning domains. The refinement of current capabilities may then crowd 

out the search for new domains (March, 1991, 2006). Additionally, learning 

effects are often further reinforced by coordination and complementary 

effects (Sydow, et al., 2009). 
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Adaptive 

Expectation Effects 

Because individuals in an organization are socially embedded, the 

formation of beliefs and preferences is influenced by the expectations of 

others around them. To fulfill the need to belong and for uncertainty 

reduction, individuals adapt the expected dominant belief set in order to be 

on the "winning side" (Sydow, et al., 2009). 

 

In addition to including variation and replacing increasing returns with self-

reinforcing mechanisms, two more differences worth mentioning are brought up by 

Sydow et al. (2009). First, the contingency assumption is softened compared to 

the extended Polyá urn and second, the notion of potential inefficiency is 

introduced. As contingency lies at the core of path dependence, changing this 
assumption might be problematic and therefore need further explanation.  

 

Contingency in Organizational Path Dependence  

To account for firm strategies, individual agency, and intentional behavior, Sydow 

et al. (2009: 693) propose, "a less randomized modeling" of path formation. 

Instead of describing individual behavior as an arrangement of random social 

events, agents are assumed to act on purpose and influence history through 

entrepreneurial actions (Garud & Karnoe, 2001). Ajzen’s (1991) theory of planned 

behavior even goes as far as predicting intentional behavior from attitudes, norms, 

and perceived behavioral control. From this, it can be assumed that individual 

behavior is not random, but more or less predictable. Yet, it is not the behavior that 

is random, but the interactions of deliberate actions bringing about complex, 

unintended, and unexpected consequences, which may be understood to be 

unpredictable or perceived as nearly random events (Weick & Roberts, 1993). 

That is, even if agents act intentionally, the outcomes may not be predicted in 

advance, because of the complexity in social interactions. Prominent examples, 

where such deliberate actions result in contingent events, can be found in the path 

creation literature, especially in the cases of the development of Viagra (de Rond 
& Thietart, 2007) or Post-It Notes (Garud, et al., 2010). 



 

	   29 

Furthermore, it must be abundantly clear what is meant by the term "less random". 

If randomness is defined as the lack of predicting future events, because of the 

absence of an underlying information pattern,13 a "less random" process would 

suggest the presence of at least some pattern, like in a pseudo-random sequence 

(Beltrami, 1999). This would infringe the original assumption that the beginning of 

a path dependent process is fully unpredictable, because an underlying pattern 

would at least allow for "some" prediction. To some extent, this assumption proves 

to be right, as history proceeds along pathways at least allowing for some 

prediction, even right from the historical origin (Hannan & Freedman, 1977). 

Therefore, maintaining the theoretical core of path dependence, I suggest 

including contingency in the following form: Agents in organizations make 

decisions deliberately, based on their prior experience. However, due to complex 

interactions, imperfect information, and bounded rationality, the consequences of 

these actions include some seemingly random elements that make accurate 

predictions near impossible. Even with the same initial conditions, these pseudo-

random elements may push the process in different directions, ensuring that the 
process is not deterministic, but at the same time allow for at least some prediction.  

 

Potential Inefficiency of Organizational Path Dependence 

While Arthur (1989) and David (2007) state that a path dependent process does 

not necessarily need to be efficient14, Sydow et al. (2009) argue that at least 

potential inefficiency must be present, because of an organizations inability to 

change. This potential inefficiency is severe enough to raise concerns about the 

lock-in state. Unlike inefficiency, potential inefficiency does not necessarily imply 

immediate economic loss, but is the mere inability to change when more efficient 

solutions are present, or might be present in the future (Holtmann, 2008). More 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
13 Beltrami gives an overview of what randomness exactly means by, for example, referring to 
probability theory, information theory, determinism, and the perception of randomness. Even 
though a complete definition of randomness should therefore include more than just the absence of 
patterns and the inability to predict future states using today's observations, a precise definition 
would go beyond the scope of the dissertation at hand. 
14 But also do not exclude the case where increasing returns lead to an efficient lock-in. 
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accurately, inefficiency can be described by an organization’s inability to change 

and is the outcome of a path dependent process (Petermann, et al., 2012). But, 

potential inefficiency is inherent in every organization and only depends on the 

severity of environmental change (Hannan & Freeman, 1984). Even highly efficient 

organizations may turn inefficient when facing tremendous environmental change, 

and may be unable to adapt. Furthermore, for organizations operating in a stable 

industry, the ability to adapt to all kinds of environmental changes might prove 

inefficient itself. Think of a match manufacturer A. Assume that matches are a 

homogenous good and customers are therefore very price sensitive. If the match 

manufacturer wanted to hedge against a change in consumer preferences, say 

that consumers prefer lighters instead of matches, it could invest in capabilities to 

produce lighters. Such investments may inflate the cost structure and that could 

lead to an increase in the prices of matches. If a competitor B does not hedge 

against the risk of changes in consumer preferences, but is locked-in to produce 

matches, it could potentially offer the matches cheaper compared to A. As 

matches are a homogenous good, customers would switch from A to B. In this 

scenario, flexibility proves to be inefficient compared to path dependence. Here, 

the lock-in of B with its potential inefficiency proves to be better than the hedging 

strategy of A, when the environment is stable. Because of that, the inefficiency 

criterion is somewhat ambiguous and depends on competition, environmental 

stability, and a point of reference. But, as David (2007) shows, path dependence 

remains interesting, even when not taking into account any kind of efficiency 

criterion. Because of that, organizational path dependence is defined left ajar on 

the definition of David (2007), and in accordance with the definition of Vergne & 
Durand (2010: 741):  

"as a property of a stochastic process which obtains under two conditions 

(contingency and self-reinforcement) and causes lock-in in the absence of [an] 

exogenous shock".  

This definition goes along with Sydow et al.’s model of path dependence, includes 

contingency, and excludes any efficiency condition. With this clear definition at 

hand, it is also possible to distinguish path dependence from related concepts in 
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organization science such as imprinting (Stinchcombe, 1965), structural inertia 

(Hannan & Freeman, 1984), commitment (Ghemawat, 1991), institutionalizing 

(Powell & DiMaggio, 1991), reactive sequences (Mahoney, 2000), or escalating 

commitment (J. Ross & Straw, 1993).  

Up to now, this view does only describe how organizations are trapped in a lock-in, 

but does not make any statements about how organizations can escape lock-ins. 

In the path dependence definition of Arthur (1989), David (1985), and the three-

phase framework of Sydow et al. (2009), the lock-in phase is infinitely reenacted, 

necessarily causing the downfall of an organization in the presence of 

environmental change. Such an overly deterministic and mechanistic view of 

organizations negates free will and individual agency, which are definitely 

characteristics of individual behavior (Bourgeois III, 1984). Garud and Karnoe 

(2003) describe the creation of new paths even as a process of “mindful deviation”, 

where individuals possess agency and are acting according to their beliefs. A 

more complete framework should include agency, and therefore the possibility that 

paths are not perpetuated forever, but may be unlocked either accidentally or 

intentionally. In order to include how organizations can escape paths, the next 

section reviews prior literature on unlocking of paths in technologies and 

organizations. 

 

2.3 The Unlocking of Path Dependence 
Early research on path dependence focused on the assertion of inefficient 

technologies under a regime of increasing returns, while the notion of switching 

from one locked in technology towards a new technological path, or unlocking a 

technological path, only received little attention in the literature. One problem is 

that Arthur's (1989) extended Polyà urn, as the prevalent illustration of 

technological path processes, is unable to capture this dynamics. Here, when the 

number of balls with a designated color exceeds an upper or lower boundary, the 

probability of drawing the opposite color tends towards zero, because of the 

unboundedness from increasing returns (Arthur, 1989). Based on this 
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representation of path dependence, locked in technologies remain unchanged in a 

stable equilibrium forever, thus negating the possibility of unlocking (Loch & 

Huberman, 1999). In conclusion, autonomy of actors is ignored, as the fate of a 

locked in technology cannot be altered in hindsight. But, as common sense 

suggests that “no path is forever” (Sydow, et al., 2009: 701), and convincing 

empirical cases are known where new technologies challenge market conditions, 

and sometimes even succeed, it can reasonably be assumed that the unlocking of 

technologies occurs (Martin & Sunley, 2010; Witt, 1997). Supporting this statement, 

Table 3 names a few selected empirical examples, directly linked to the literature 

on technological paths. It states empirical cases, where locked in technologies 

have been replaced, it is convincingly argued that technologies will be replaced in 

the near future, or that policies for escaping lock-ins were established. With regard 

to related literature in the field of innovation management, similar cases of radical 

and disruptive innovations breaking technological paths can be found, as for 

example solid state drives (Christensen, 1997), photolithographic alignment 
equipment (Henderson, 1993), or light emitting diodes (Sood & Tellis, 2011). 

 

Table 3: Examples for unlocking of technological paths 

Lock-in Successor  Source 

VHS DVD Dolfsma and Leydesdorff (2009) 

Gasoline vehicles Electric vehicles Cowan and Hulten (1996) 

35mm film Memory cards Munir and Matthew (2004) 

CFC-Refrigerators HFC-Refrigerators Araujo and Harrison (2002) 

Cassette Players CD Players Liebowitz and Margolis (1995c) 

Fossil power plants Renewable Energy del Rio and Unruh (2007) 
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In conclusion, comparing the behavior of the Pólya urn with phenomena observed 

in the real world shows that they do not correspond when it comes to unlocking. 
Witt (1997: 762) puts the argument it in a nutshell by stating that: 

"...there would be no point in speculating about detrimental effects of technological 

"lock-in", if there were no possibility of the situation being changed as the 

probability model of the generalized Pólya urn scheme literally claims. Experience 

teaches, of course, that, sooner or later, there will always be new rivals who 

threaten the market dominance of a technology or a variant." 

Because of the overwhelming empirical evidence on unlocking, the assumption of 

complete inflexibility, as claimed by the Polyà urn model, must be denied. The 

"overly static view of the social world" (Pierson, 2000: 265) implied by the model is 

justifiably reproached by critics to be a strong weakness of the concept (Pierson, 

2000; Rogers, 1991). In order to dispute the critics’ point of view, this weakness 

has to be addressed. Therefore, the case of unlocking has to be included in the 

model, and necessary conditions have to be derived without giving up the core of 

path dependence; namely, self-reinforcement, contingency, and lock-in (Kuhn, 

1962). David (2005: 187) gives a starting point for the inclusion of unlocking into a 

dynamic model of path dependence by hinting to the evolution of path dependence 
as a punctuated equilibrium process15:  

"Sudden shifts in structure, corresponding to the new evolutionary biologists’ 

notion of ‘punctuated equilibria’... may open up a way for the formulation of 

dynamic models that are compatible with ‘stage theories’ of development" 

Opposed to Darwin's evolutionary model, in which species gradually adapt to a 

changing environment, the punctuated equilibrium theory states that a long period 

of stability is interrupted by a sudden shock, where pressure for change prevails 

and a new species can evolve (Eldredge & Gould, 1972; Gould, 2007). 

Evolutionary biologists explain these discontinuities, resulting from a punctuated 

equilibrium process, by the existence of spatially isolated subgroups, evolving 

alongside a larger mother species. While the gene flow in the central mother 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
15 See also Martin & Sunley (2010: 70). 
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population causes homogenization of the gene pool, these forces are sometimes 

too weak for preventing the emergence of heterogeneous local differentiations. 

Within these small subgroups, a decoupled selection mechanism may be effective, 

possibly developing the split local species in a different direction compared to the 

mother species. In the case of abrupt environmental change and integration of the 

small subgroup into the larger population, the genes of the small subgroup may be 

selected and outcompete the gene set of the mother species. Eventually, the 

genes of the once isolated group might prevail, and the mother species becomes 

extinct (Gould, 1980). Although, proof of evolution in accordance with a punctuated 

equilibrium process remains inconclusive and controversial, the concept was 

successfully applied to describe phenomena related to the diffusion of new 

technologies and path dependence (Dawkins, 1996; Loch & Huberman, 1999). In 

fact, the notion of punctuated equilibrium shares similarities with the concept of 

path dependence (A. L. Schneider, 2006; Schwartz, 2004). Both concepts assume 

that contingent historical events have a serious impact on the outcome, that the 

process is not determined from the beginning, that the scope of choice is restricted 

by prior history, and that the occurrence of a stable equilibrium causes rigidity and 

(as a consequence) resistance to change (Gersick, 1991). But, while the 

punctuated equilibrium theory explains how phases of stasis are dissolved and 

populations adapt to new environments, the original concept of path dependence 

does not take environmental changes into account. However, if we take David's 

(2007) advice, and understand path dependence as a punctuated equilibrium 
process, the case of unlocking may be convincingly integrated in the concept.  

 

2.3.1 Unlocking Technological Paths 

The first attempt to explain how unlocking of path dependence as a punctuated 

equilibrium process can occur was undertaken by the geographic economist Ron 

Martin, who distinguished three different types of evolutionary path models, that 

raised the notion of unlocking. Martin and Sunley (2010) name these types the 

Setterfield-Type, the Non-Equilibrium-Type, and the David-Type. The Setterfield-

Type model assumes a broader definition of path dependence compared to the 
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previous definitions. In the Setterfield-Type model, unlocking of paths may occur 

without the presence of an exogenous shock or any other type of environmental 

change (Setterfield, 1999). Instead, the lock-in is conceived as being only 

temporarily, and the system may escape lock-in by an "endogenous process of 

innovating-out of equilibrium" (Martin & Sunley, 2010: 17). So, instead of triggering 

an organizational transformation process, the organization itself may be 

responsible for environmental change, for example, by enacting their views on the 

environment. In a computer simulation model K. D. Miller and Lin (2010) show the 

arising dynamics when organizations enact their beliefs on the environment. By 

this, the role of economic actors, like entrepreneurs, purposefully looking for 

opportunities to change the current status is highlighted, being similar to the notion 

of path creation (Garud, et al., 2010). The second type, the Non-Equilibrium-Type, 

excludes the whole notion of lock-in from the definition of path dependence. Here, 

a path dependent process is described as consisting of alternating phases of rapid 

and gradual evolution without convergence towards any kind of equilibrium state. 

Instead, technologies or social systems are supposed to evolve along trajectories. 

Furthermore, these trajectories are not only shaped by their own history, but also 

through co-evolutionary processes by interacting with adjacent technologies, 

industries, or institutions. Based on this definition, path dependence degenerates 

to a "dynamic open historical process" (Martin & Sunley, 2010: 18), which in the 

end may be broken down to a simple "history matters" argument (Sydow, et al., 

2009). While both of the prior models to some extent include the process of 

unlocking, the applied definition of path dependence is very broad and imprecise 

(Sydow, et al., 2005). A more restrictive model based on the original assumptions 

is thus advisable. The proposed David-Type model resembles the present 

definition of path dependence more closely, as a contingent process with 

increasing returns eventually locking into one of multiple possible stable 

equilibrium states. Extending the original definition of David by the notion of 

unlocking is achieved through including an exogenous shock in the environment 

as punctuation. This punctuation eventually de-stabilizes the system, and gives 

way to the selection of environments leading to the advent of new technologies or 

industries and emerging path dependent processes (Figure 5). The process of 
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path formation, stable equilibrium, and punctuated unlocking is continuously 

repeated, making the underlying logic of the model akin to the notion of S-curves 

in technology adoption and product life cycles (Loch & Huberman, 1999; Rogers, 
1962).  

 

 

Figure 5: Unlocking as a punctuated equilibrium process (Martin & Sunley, 2010: 17)  

 

An empirical example for a punctuated path dependent process with unlocking can 

be found in disk drive technologies (Christensen & Rosenbloom, 1995). Invented 

in the 1950s, the hard disk drive technology was until recently unrivalled for 

stationary data storage applications. With the advent of portable electronic 

technologies, such as digital cameras, solid-state storage technologies, with 

smaller form factor and shorter average access time, were developed to account 

for the peculiarities of mobile applications. Along the increasing need of mobile 

solutions for more memory, the storage size of solid state cards and drives 

increased. At the same time, prices per megabyte dropped to a point where it 

became feasible to use the storage technology for desktop or laptop computers. 

While nowadays hard disk drives are still mainly installed into desktop computers, 

solid-state disk drives abandoned their niche existence and, due to their 

The Place of Path Dependence 17 
 

 

shock disrupts that state (Figure 2). It is perhaps significant that all of the primary 

examples of path dependence cited by David (the QWERTY keyboard, VCR video, 

AC electrical current, light-water reactors) have been of technologies or 

technological configurations that once ‘locked in’ remained largely unchanged. 

These might be interpreted as examples of ‘stable equilibrium’ states, but they are 

clearly only one type of economic evolution, and arguably a restricted form at that. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:  The David-Type Model of Path Dependent Evolution 

 

  

 The second conception is of the Setterfield type, wherein path dependence 

processes generate a ‘temporary equilibrium’ outcome that then gives rise to a 

subsequent endogenous process of ‘innovating out’ of equilibrium. According to 

Setterfield, the very fact of the economic system in question (an industry, say) 

being in a state of ‘temporary equilibrium’ itself will tend to stimulate purposive 

behaviour by some economic actors to explore pre-emptive breaks from the 

locked-in technological-industrial activity in order to establish a new competitive 

‘temporary equilibrium’.  Path dependent economic evolution in this schema is 

one of a succession of ‘temporary’ equilibria’ (Figure 3). 
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advantages, may replace the computer hard disks in the long run. The lock in into 

the hard disk drive technology, and subsequent unlocking through the solid-state 

disk drives, is therefore corresponding to the punctuated equilibrium model. In the 

empirical example, the exogenous shock or punctuation can be attributed to the 
rise of digital cameras and MP3-players.  

Similar to the formation of technological paths, it can be assumed that social 

systems like organizations exhibit some peculiarities with regard to the unlocking 

of paths. With the knowledge of unlocking technologies, through punctuated 

shocks in the process, the notion of unlocking organizational paths is in the 
following examined along the same line. 

 

2.3.2 Unlocking Organizational Paths 

Processes of punctuated equilibrium are not only observed in the diffusion of 

technologies, but also in social processes on individual, group, and organizational 

level (Gersick, 1991). Here, the punctuated equilibrium process provides an 

explanation for abrupt organizational changes after long phases of stasis (D. Miller 

& Friesen, 1984; Romanelli & Tushman, 1994; Tushman & Romanelli, 1985). In 

longitudinal case studies on organizations like ICI, AT&T, Citibank, General Radio, 

or Prime Computers, it is convincingly argued that firms reinforce their internal 

structure and strategy towards a stable equilibrium state (Pettigrew, 1987; 

Romanelli & Tushman, 1994). The phases of stable equilibrium are punctuated by 

short periods of rapid change, triggered through an exogenous shock in the 

environment. This results in significant disruptions of firm structure, strategy, 

organizational membership, and/or business processes, eventually leading to 

convergence towards a new stable equilibrium (Tushman, et al., 1986). According 

to this view on social change, organizations repeatedly traverse periods of stable 

equilibrium, incremental adaptation, and inertia, punctuated by profound change 

and strategic reorganizations (Tushman & Romanelli, 1985). For instance, IBM 

has continuously reinvented its strategy and product lines, evolving from a punch 

card equipment manufacturer over mainframe producer towards an integrated 
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solution oriented infrastructure provider in the software and hardware industry 

(Hendron, et al., 2005; Maney, 2003). In punctuated equilibrium theory, 

organizational change is exogenously stimulated by environmental disruptions, 

potentially resulting in a decline of firm performance. Tushman & Romanelli (1985) 

further restrict this argument by stressing that only major or sustained declines in 

firm performance will trigger organizational transformation processes. Thus, it can 

be argued that radical change in the environment of an organization may evoke a 
fundamental change process.  

Yet, the research stream on punctuated equilibrium in organizational change is 

only loosely linked to the concept of path dependence. Nevertheless, it exhibits 

significant similarities as path researchers also highlight the necessity of 

exogenous shocks or external interventions to escape lock-ins (Sydow, et al., 2005, 

2009; Vergne & Durand, 2010). These exogenous shocks may open up a "window 

of opportunity" to escape harmful lock-in situations, for example by initiating 

entrepreneurial actions (Burgelman & Grove, 1996; Castaldi & Dosi, 2005). A first 

step in integrating the unlocking of paths into an organizational definition of path 

dependence was taken by Vergne & Durand (2011). Vergne & Durand (2011: 372) 

are not only precise in defining lock-in, but also in defining the necessary 
conditions for escaping paths in organizations:  

"Management scholars can think of lock-in as an organizational situation that can 

be altered only at a prohibitive cost and in response to strong exogenous 

pressures (e.g. economic crisis, radical technological change, political turmoil)." 

Just as in punctuated equilibrium theory, it is assumed that a radical exogenous 

shock is needed for unlocking organizational paths, as it puts strong pressure on 

the organization.16 This pressure might come from stakeholders outside of the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
16 Deviating from this view Pentland et al. (2011) show how path-dependent routines may cause 
endogenous change through variation. Within the model they define path dependence as a 
"process through which past actions influence the likelihood of future actions" (Pentland, et al., 
2011: 1490). As in the Setterfield-Type and Non-Equilibrium-Type model, this does not necessarily 
include the notion of lock-in.  

 



 

	   39 

organization or from people within the organization. For example, individuals within 

or outside of the organization may challenge the status quo of organizational 

leaders because of declining firm performance (Greve, 1998; Hendron, et al., 

2005). As a result, new dominant coalitions may form when established power 

structures corrode (Cyert & March, 1963). Like in the punctuated equilibrium 

theory, this statement agrees that an exogenous shock needs to trigger an 

organizational response for initiating necessary change processes. Apparently 

Vergne & Durand (2011) do not have an opinion on how this response must look 

like. According to Sydow et al. (2009), one could think of two possibilities for 

escaping organizational paths. Either the path is intentionally broken, for example 

by a change or transformation program, or actors in the organization stop 

reproducing the underlying pattern, which leads to the dissolution of so called 

"deep structures" and organizational paths (Gersick, 1991). The intention of 

actions to escape paths is therefore relevant to distinguish between path 

dissolution and path breaking. To explain the difference, and as a mean of 

illustration, one empirical example for path dissolution and one for path breaking is 

given subsequently. 

 
Path Dissolution 

A well-known example for path dissolution can be found in the case of Intel’s 

transformation from a computer memory company into a microprocessor company 

(Burgelman, 1994; Burgelman & Grove, 1996; Sydow, et al., 2005). Remarkably, 

the organizational transformation process was not initiated by the top management 

team, but members of the middle management helped to overcome Intel’s 

strategic disorientation (Burgelman & Grove, 1996; Inkpen & Choudhury, 1995). 

Following a simple decision rule, the middle management used the flexibility in 

their scope of action and ramped up production capacities for microprocessors at 

the cost of memory chip production. While the formal internal structure of the 

organization remained intact, change was nevertheless initiated through the 

adaptation and reconfiguration of established routines to the new environment. 

Eventually, the top management became aware of the importance of 
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microprocessors for the future of Intel, adjusted the strategy, and aligned the 
organization towards the new direction by restoring external fit (Siggelkow, 2001).  

An important factor for the dissolution of the memory path at Intel was the internal 

selection environment, allowing for the reallocation of resources, and the 

organizational culture, tolerating dissonance within the organization. Nevertheless, 

it is the task of the top management to value dissent in the organization, and to 

find a balance between the bottom-up and top-down forces in strategic 

management (Burgelman & Grove, 1996). As shown in the Intel case, it can be the 

same rules, routines, or mechanisms that lead to the organizational path in the first 

place that help an organization to escape lock-ins and make it an adaptive 

learning organization (Dodgson, 1993). While the dissolution of paths is an 

emergent process, breaking path dependencies includes the realization on the top 
management level for the need to change.   

	  

Breaking Paths 

An example of breaking path dependencies in organizations can be found in Liz 

Claiborne, a manufacturer and retailer in the apparel industry (Siggelkow, 2001). 

After a very successful period of growth and high profits in the 1980s, the 

company faced a serious decline in net income at the beginning of the 1990s. 

Reasons for the financial downturn were crucial changes in consumer preferences, 

product portfolio, and distribution channels. Although the shift in the environment 

was detrimental to the firm performance, the management team did not initiate 

necessary radical changes. Instead the top management preserved the internal fit 

by only changing the organization incrementally towards the new environment. 

Even worse, the strong internal culture and past success reinforced the confidence 

in the status quo. With the situation further exacerbating, an outsider COO was 

hired in 1994, eventually succeeding the CEO of Liz Claiborne in 1995. After the 

succession, the new CEO replaced the majority of the top management team with 

newly hired managers from outside the organization. Top management turnover is 

a common response for organizations facing environmental change, and is often 
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used to import new mental maps, to allow for second-order learning processes, 

and to unlearn gridlocked organizational routines (Lant, et al., 1992; Nystrom & 

Starbuck, 1984; Siggelkow, 2001). Indeed, the new top management team 

realized the need for reconfiguration, and performed wide-ranging changes in 

design, product portfolio, distribution, manufacturing, and product presentation. 

These changes were fit destroying, leading to a broadening of the scope of action 

and revitalization of Liz Claiborne that finally unlocked the organizational path. So 

in contrast to path dissolution the intentional actions of the top management to 
reconfigure the organization and change the strategy were decisive.  

While a clear distinction between the dissolution and breaking of organizational 

paths can be made, most of the literature on path dependence does not 

completely or does only insufficiently differentiate between these two constructs. 

Instead the literature on path dependence refers to the notion of de-locking, 

unlocking or breaking paths (Castaldi & Dosi, 2005; Ericson & Lundin, 2013; 

Hassink, 2005). In a similar vein this dissertation uses the unifying term of 

unlocking instead of differentiating between path dissolution and path breaking. 

The reason for this approach is that the dissertation focuses on how unlocking can 

occur on an organizational level and does not want to explain the intention of 

actions that lead to the unlocking of paths. Nevertheless it is important to know, 

that means of unlocking can be classified into path dissolution and path breaking. 

Subsequently the literature on means for unlocking paths is revisited to get an 
understanding of how organizations might potentially escape paths.  

 

2.3.3 Means for Unlocking Organizational Paths 
Unlocking is here simply being defined as an interruption of the dominant self-

reinforcing logic that brought about path dependence in the first place. 

Furthermore, this interruption has to open the scope of action for implementing a 

superior alternative (Sydow, et al., 2009). An alternative can be considered 

superior if the implementation of the alternative leads to higher firm performance; 

or in other words, a better adaptation towards a changed environment compared 
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to the status quo. Despite the potentially self-destructive effects of path 

dependence on organizations, the current research on how an organization or 

individuals in an organization should respond in order to unlock organizational 

paths, at least in a narrow sense, and adapt to the changes in the environment is 

according to Ericson and Lundin (2013) in a very early stage. Still, evidence on 

how these means influence organizational paths is missing. Table 4 provides an 

overview of means to unlock organizational paths proposed so far in the literature.  

 

Table 4: Review of literature on mechanisms to unlock organizational paths 

Mean Remark Source 

Invasion Invasions happen when cultural traits, organizational forms 

or individual beliefs that have been developed somewhere 

else diffuse into a social system. Such invasions occurred 

for example in modern American history. Here, 

conquistadors colonized America through invading territories 

of indigenous peoples. With regard to organizations 

invasions are usually less violent and refer to the 

emergence and adoption of, for example, management 

fashions, new ways of organizing, mergers & acquisitions, 

top management team turnover or cultural changes. 

Invasions force an organization to adapt to the new 

circumstances. Examples for invasions in organizations can 

be found in the introduction of tayloristic working principles, 

corporate social responsibility programs, lean manufacturing 

or total quality management (Castaldi & Dosi, 2005). 

Pressure for adopting new management principles may 

come from stakeholders, brought to the company by 

business consultants or implemented by the management 

itself (Sarkis, et al., 2010). In particular external consultants 

can be a powerful mean to uncover deadlocked routines, 

irritate the system through interventions and put path 

dependence on the strategic agenda (Sydow, et al., 2005).    

Castaldi and Dosi 

(2005); Karim and 

Mitchell (2000); 

Mahoney (2001); 

Spell (1999); 

Sydow, et al. 

(2005); R. 

Williams (2004) 
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Cognitive 

Dissonance 

 

A gap between the prescribed role of an individual, 

established social norms, or expectations and individual 

mental models, identities, or self-perceptions may accrue. 

This gap results in a conflict, named cognitive dissonance. 

Assuming that individuals have control over their beliefs they 

could either reduce cognitive dissonance by adapting their 

beliefs, manipulate others to change their beliefs or assign 

low importance to the dissonant beliefs. The second-case 

may initiate a second-order or double-loop learning process 

in the organization and can be a strong driver for unlocking 

paths (Argyris & Schoen, 1978).  

 

Akerlof and 

Dickens (1983); 

Burgelman and 

Grove (1996); 

Castaldi and Dosi 

(2005) 

Diverging 

behavior 

Deviant behavior of individuals in organizations may prevail 

against the self-sustaining forces of path-dependence. 

Eventually deviant behavior may cause a chain reaction in 

the organization and lead to new organizational structures. 

Castaldi & Dosi (2005) compare this behavior to the physical 

phenomenon of “symmetry breaking” where small 

deflections are decisive for the state of the whole system. 

An example for deviant behavior can be found in the 

corporate entrepreneurship literature with the “Post-it” case. 

The invention goes back to Spencer Silver, who accidentally 

invented a weak adhesive instead of super glue within a lab 

of 3M. Although diverging from the dominant logic of the 

company that adhesives have to be strong, he was able to 

mobilize resources and promote the glue successfully within 

the company. Art Fry eventually had the idea to use the 

weak glue to hold bookmarks. These bookmarks are now 

known as “Post-it” notes. 

Allen (1988); 

Castaldi and Dosi 

(2005); Garud, et 

al. (2010) 

By-product of 

path formation 

In this mean to unlock paths, the same mechanisms leading 

to lock-in in the first place are also responsible for the 

unlocking of organizational paths. Organizational routines, 

behavioral patterns, interaction structures or decision rules 

may be selected over multiple co-evolving selection 

domains. Changes in one of these selection domains may 

entail a mismatch between co-evolving domains. Eventually 

Bassanini and 

Giovanni (2001); 

Burgelman and 

Grove (1996); 

Castaldi and Dosi 

(2005); Coriat and 

Dosi (1998); 
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this mismatch triggers change to unlock paths. For example, 

the routine for capacity utilization of manufacturing 

equipment in the Intel case was originally developed to 

guarantee a demand-driven production. But as the external 

environment changed, declining memory prices and 

increasing competition, the same routine was responsible 

for the initiation of a company-wide transformation process 

(Burgelman & Grove, 1996).  

March (2006); 

Martin and Sunley 

(2010); Sydow, et 

al. (2009) 

Imperfect 

adaptation 

Rule guided behavior or the performative side of routines 

are never fully predictable but exhibit at least some variation 

in practicing rules or routines (Becker, 2006). This kind of 

variation induces flexibility into the organization and 

facilitates change processes eventually leading to the 

unlocking of an organizational path.   

Bassanini and 

Giovanni (2001); 

Pentland, et al. 

(2012)  

Heterogeneity Heterogeneity found in the beliefs of, for example, agents, 

corporate strategies, assigned job roles, technological know-

how, individual or group behavior, preferences, or 

organizational structures have a tremendous impact on the 

ability of an organization to effectively unlock paths. Actually 

heterogeneity may be observed as a meta mean for 

unlocking paths as without heterogeneity unlocking is 

according to the cybernetics law of variety impossible 

(Ashby, 1956).  

Ashby (1956); 

Bassanini and 

Dosi (2000); 

Castaldi and Dosi 

(2005) 

Reallocation 

of resources 

If an organization and the individuals within this organization 

possess excessive resources, reallocation of these 

resources can overcome persistence and induces change 

that eventually unlocks paths. Such uncommitted resources, 

named “slack resources”, may evolve in organizations 

during times of success. In a crisis, these resources can be 

assimilated or reallocated and enable an organization to 

unlock paths. For example, in a study on airlines Cheng and 

Kesner (1997) found that an increase in slack resources to 

enhance external market effectiveness also increases the 

extent to which airlines respond to environmental shifts. 

Sydow, et al. 

(2005); Bourgeois 

III (1981); Cheng 

and Kesner 

(1997); Nohria and 

Gulati (1996) 
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These means to unlock paths are similar in that they make use of or induce 

diversity into the organization. The term heterogeneity is casually used in 

management literature and sometimes referred to as variety, flexibility, differences, 

or diversity. Heterogeneity can be defined as "the distribution of differences among 

the members of a unit with respect to a common attribute" (D.A. Harrison & Klein, 

2007: 1200). Sources of heterogeneity are discussed very broadly in literature 

addressing gender, race, age, tenure, education, functional background, marital 

status, cognitive structures, prior experiences, attitudes, individual performance, 

affect, or network ties (Bingham, et al., 2007; D. A. Harrison & Klein, 2007; Page, 

2007). A drawback of current analytical models incorporating path dependence is 

that they do not allow for or explain the evolution of heterogeneity in organizations. 

For example, Arthur’s (1989) Pólya urn model of path dependence assumes that in 

the lock-in phase, heterogeneity is absent and therefore the adoption pattern is 

reproduced infinitely. After lock-in occurred, the number of balls from the color not 

locked in is so small that the probability of drawing this color tends to zero. 

Similarly, organizational learning models incorporating path dependence do not 

allow for deviant belief sets in the lock-in phase (K. D. Miller, et al., 2006). Here all 

agents in the organization reproduce one set of beliefs infinitely in the stable 

equilibrium. But this is in stark contrast to empirical observations that organizations 

exhibit heterogeneity and variation in behavior, even in the lock-in phase (Sydow, 

et al., 2009). Therefore, an extended model of organizational path dependence by 

building upon the model of Sydow et al. (2005) is proposed. In accordance with the 

notion of punctuated equilibrium an exogenous environmental shock may cause 

unlocking by the reallocation of heterogeneous resources or beliefs present in the 

lock-in phase. After unlocking has occurred, the process of path dependence may 

be experienced again, reflecting the properties of a punctuated equilibrium process. 

Figure 6 shows the proposed four-phase model of path formation and unlocking of 

Sydow et al. (2005). The first three phases describe the formation process of path 

dependence as already outlined in the three-phase framework. With unlocking, a 

fourth phase is added to the basic framework of organizational path dependence. 

But while Sydow et al. (2005) added the fourth phase, to explain the case of 

unlocking, the constituting exogenous shock needed to unlock paths is not 
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included. As already discussed, at the end of the lock-in phase an exogenous 

shock is needed to trigger the unlocking of paths. After the unlocking, the self-

reinforcing process may repeat itself and start over from Phase 1 of the formation 

process. Now the framework reflects a continuously and dynamic process of path 
formation and unlocking.  

 

	  

Figure 6: Adapted four-phase model of path dependence (Sydow, et al., 2005: 32)  

 

As these remarks are up to now only presumptions about how unlocking in 

organizations could occur, evidence is needed in order to credibly claim the validity 

of the model. Although means for unlocking paths have already been proposed, 

none of them were tested as prior research efforts mostly focused on the first three 

phases (Castaldi & Dosi, 2005; Sydow, et al., 2009). Sydow et al. (2005: 22) point 
this out by stating that: 

“It should be emphasized that none of these approaches deals explicitly with 

issues of path dependencies, not to mention provides a theory of unlocking paths 

that builds upon a theory of path constitution and specifies the conditions under 
which a once chosen path may be unlocked.” 

To prove that a process of path dependence can be unlocked, with the definition of 

path dependence being a process governed by increasing-returns, contingency 
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and lock-in, needs theoretical clarification. So, assuming that the four-phase model 

describes path dependence and unlocking correctly, unlocking must be possible 

after the lock-in phase. Furthermore, unlocking must be possible with one of the 

aforementioned means that induce or preserve heterogeneity. The question is how 

the logic of unlocking can be integrated in the four-phase model. To answer this 

question a method correctly capturing the path formation process and giving the 

possibility to unlock is needed. As a starting point, different methods applied so far 

in organizational research on path dependence are reviewed and discussed in 
order to find a suitable methodological approach.  
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3. Method for Examining the Unlocking of Paths 

 
Prior studies on path dependence made use of a broad set of methods. These 

methods include stochastic models (Arthur, 1989), historical narratives (David, 

1985; Mahoney, 2000), qualitative case studies (Gavetti & Levinthal, 2000; 

Holtmann, 2008), controlled laboratory experiments (Koch, et al., 2009; Langer, 

2011), structural equation models (Mallach, 2013), quantitative longitudinal studies 

(Schulte, 2013), computer simulations (Meyer, 2012; Petermann, et al., 2012; 

Seidel, 2012), and purely theoretical approaches (Pierson, 2000; Sydow, et al., 

2009). The variety of methodological approaches seems to reflect the manifold 

definitions of path dependence. 17  These inconsistent definitions lead to a 

discourse on how to test for properties of path dependence (Dobusch & Kapeller, 

2012; Garud, et al., 2010; Vergne & Durand, 2010). The present discussion is 

primarily about shortcomings of specific methods, when examining path 

dependence, and is split broadly into two groups. One, which emphasizes the 

advantages of qualitative approaches, like case studies for explorative theory 

building (Dobusch & Kapeller, 2012; Garud, et al., 2010), and another, which 

proposes controlled quantitative approaches, as for example computer simulations 

or laboratory experiments, for theory testing (Castaldi & Dosi, 2005; Vergne, 2013; 

Vergne & Durand, 2010). To overcome the methodological dispute, a clear 

definition of path dependence may prove helpful and give guidance in finding an 
appropriate research design. 

 

3.1 Methodological Issues in Path Research 
As previously mentioned, path dependence is defined “as a property of a 

stochastic process which obtains under two conditions (contingency and self-

reinforcement) and causes lock-in in the absence of exogenous shock” (Vergne & 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
17 In social science the definition of path dependence is not consistent. For example, different 
definitions of path dependence have been given by Mahoney (2000), Nelson and Winter (1982), 
Sydow, et al. (2009), Vergne and Durand (2010), Arthur (1989), David (2001) or Pentland, et al. 
(2012).        
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Durand, 2010: 737). The methodological consequences of this definition are to be 

discussed subsequently in detail. In particular, it will be elaborated how emergence, 

contingency, and lock-in affect the choice of a proper research design. 

Furthermore, emphasis will be put on the methodological difficulties in observing 

the unfolding of historical processes. 

 

3.1.1 Problems in Observing a Historical Process 
Since it is often only possible to observe one specific history at a time, making 

propositions about how, and sometimes even if, history matters is seriously 

hampered from an empirical point of view (Vergne & Durand, 2010). More 

precisely, in order to ex-post attribute the outcome of a process to stochastic 

events in history, students need to observe how the development of the process 

would have changed under different initial conditions and different historical events 

(Castaldi & Dosi, 2005).18 Only then it can be ensured that contingent events, that 

were identified as drivers for path dependence are responsible for the outcome. 

Else, it could be argued, that the outcome of the process was already determined 

by initial conditions or that different contingent events would have lead to the same 

result. But repeating a real world process with different histories ex-post and 

examining what would have changed is not feasible, therefore, it can not be 

assured if and how much history mattered (Gould, 1977). For example, with regard 

to the QWERTY narrative, it may be postulated whether the mentioned typewriter 

contests were crucial events for QWERTY to win the race, or if other events were 

more decisive (Liebowitz & Margolis, 2013). It even may be argued that the events 

were not decisive at all and QWERTY would always win, when rerunning the tape 

of history (Kay, 2013). In retrospect, one may only suggest or assume that some 

events were decisive. Yet, it cannot be affirmed with absolute certainty, if the 

events at hand are the ones driving the path formation process or if other, perhaps 

less obvious, events were more important. It remains ambiguous, if the history as 

perceived today, through narratives and case studies, actually reflect decisive 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
18 For an explanation why initial conditions and historical events have to differ in order to compare 
processes, see chapter two for remarks on non-ergodicity. 
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events, because we do not know what would have changed when the events 

played out differently (Vergne & Durand, 2010). Therefore, ex-post conducted 

research, such as case studies, may not rule out the possibility that other events 

were responsible for the outcome, or that history could not have been played out 
differently.  

In order to overcome the problems in ex-post analysis of paths, one could suggest 

observing history as it unfolds. Ethnographic approaches, like social anthropology, 

are known for yielding rich longitudinal data, and may prove helpful in examining 

unfolding processes over time (Van Maanen, 1979). But again, the importance of 

small events may not draw the attention of the researcher, because of individual 

bias’ or incorrect interpretations (Castaldi & Dosi, 2005). Also, it is only possible to 

observe one history, and not multiple histories, at a time, so the decisiveness of 

the contingent events may again be questioned. Furthermore, the feasibility of 

empirically observing paths in the making may be questioned, because of the long 

time frames involved. Take for example the amount of time it took QWERTY to 

achieve a stable equilibrium (David, 1985), or until an exogenous shock disrupts a 

company like the Bertelsmann Book Club (Holtmann, 2008). A solution to this 

dilemma is to use methods, which allow for taking control over history and are 

classified as “history friendly” (Malerba, et al., 2008). Instead of identifying crucial 

events as time passes, history may be artificially constructed by inducing these 

events into a controlled environment. Experiments, for example, provide 

researchers with the possibility to apply different treatments to groups and 

compare the results of groups having received a treatment to those who did not 

(Webster & Sell, 2007). By using an experimental design, the impact of history 

may therefore be studied while controlling for initial conditions at the same time 

(Koch, et al., 2009; Langer, 2011). When examining and comparing different 

historical processes, experimental research designs have an advantage over ex-

post conducted studies or ethnographic approaches. It is therefore advisable to 

make use of these “history friendly” methods, when examining the formation of 

paths. Besides the difficulties in proving that some events were decisive for the 
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outcome of the process, the need to show that these events are also contingent 
proves to be difficult as well.  

  

3.1.2 Problems in Validating Contingency  
The necessary condition of contingency, as a property of path dependence, puts 

the examination of organizational paths to a hard test. From a mathematical 

perspective, empirically validating contingency or randomness is impossible 

(Gödel, 1931; Vergne & Durand, 2010). Thus, empirical studies are challenged to 

falsify the contingency condition by attributing non-random patterns to the 

sequence of events that are responsible for the process outcome. Nevertheless, 

even if such patterns are not detected, the process may still be non-contingent, as 

there readily could be information unobserved by the researcher, perhaps too 

inconspicuous to detect. Simply escaping the dilemma by removing contingency 

as a necessary condition for path dependence would affect the theoretical core of 

the concept. In order to differentiate path dependence from similar concepts this 

must be avoided by all means (Kuhn, 1962; Sydow, et al., 2009). Therefore, a 

research design that at least allows reasonable assumption on the presence of 

contingency, or at least pseudo-randomness, needs to be chosen. This again 

demands a controlled environment, were it is possible to randomly induce events 

and examine the outcome in comparison to other events. So instead of empirical 

proving contingency, the research methodology itself allows to include 

randomness. Experiments (Koch, et al., 2009) or computer simulations (Seidel, 

2012) in research on organizational paths induce events, which may be 
considered random.   

 

3.1.3 Problems in Examining Emergence 
Individuals in organizations are socially embedded and interact with each other 

(Orlikowski & Yates, 1992). Interaction between individuals occurs, for example, 

through calls, informal chats, meetings, or e-mails. Since these interactions result 

in interdependencies between individuals and therefore a complex system, 
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unanticipated properties may “emerge”. Emergence can be defined according to 

Stacey (1996: 287) as:  
 

"...the production of global patterns of behavior by agents in a complex system 

interacting according to their own local rules of behavior, without intending the 

global patterns of behavior that come about. In emergence, global patterns cannot 

be predicted from the local rules of behavior that produce them. To put it another 

way, global patterns cannot be reduced to individual behavior."  
 

Emergence is an important property of path dependence, as paths "often unfold 

behind the backs of the actors" (Sydow, et al., 2011: 322). Yet, analytical research 

methods in social science have difficulties in bridging the gap between individual 

interactions and the emergent organizational behavior (Goldspink & Kay, 2004). 

Multi-level analysis and theories often apply individual concepts to higher levels, 

without taking into account the specific problems of aggregation (Felin & Foss, 

2005). Furthermore, conventional statistical methods assume a cause-effect 

relationship and do not account for nonlinearities in interactions between variables. 

Therefore, conventional statistical methods are insufficient to examine emergence 

(M. Schneider & Somers, 2006). To overcome the limitations of traditional methods 

in studying complex systems with emergent properties, once again, experimental 

methods prove useful (H. Arrow, et al., 2000). Further on, researchers from 

diverse fields (such as physics, genetics, politics, or economics) highlight the 

advantages of computer simulations in studying complex systems with emergent 

properties (Axelrod, 1997b; J. R. Harrison, et al., 2007). As simulations allow the 

observation of multiple interactions over long time frames, emergent properties 

can be traced back to the individual level; or as Castaldi & Dosi (2006: 108) put it, 

“from micro behaviors to system dynamics, and back”. Therefore, for examining 
and tracing emergence, simulations prove to be an effective method.   
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3.1.4 Problem of Lock-In Identification 

In the extended Polyá urn of Arthur (1989) lock-in is simply defined as an infinitely 

repeated stable equilibrium state. Once a technology is locked-in, agents decide to 

adopt only the locked-in technology and reject other available technologies. But, 

while the binary definition of a lock-in holds in formal models, the application of this 

definition on processes in the real world may be challenging. Nowadays, no one 

would claim that consumers are locked into VCR recorders or personal computers 

with 640k memory restrictions. This raises the question of whether consumers, or 

an economy, were truly locked into these technologies, or if it just was a period of 

meta-stable equilibrium leading to a superior technology in the long-term. But, 

although time is a crucial component of lock-in, it has not yet received much 

attention (for an exception see Vergne & Durand, 2010). Pragmatically, prior 

empirical studies suggest that a lock-in has occurred if the equilibrium persists 

over a “long” time frame, but have not defined what long means. For instance, the 

exact time point when QWERTY achieved a stable equilibrium, and even if the 

equilibrium is stable, remains unclear (David, 1985, 2007). Again, to overcome the 

difficulties of defining lock-in, experiments are of great help, as they may allow 

proving that the underlying patterns are reproduced, even if the potential for 

choosing another solution is given. For example, Koch et al. (2009) examine the 

impact of complexity in the individual decision-making process on lock-in through 

an experimental study, and show that individuals do not switch to superior 

solutions. Virtual experiments, by means of computer simulations, are also very 

precise in showing that lock-in occurred. As the state of a computer simulation can 

be observed at any time step, a lock-in can be defined by showing that the system 
does not change over time.          

In conclusion, for a historical process with contingent events, emergence, and 

lock-in, an experimental research design is suitable. Also, as previously argued, 

most qualitative and quantitative methods are not able to capture these properties 

altogether. Because of this, experimental studies are particularly suitable for 
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examining path dependence.19 Up till now, only a methodological recommendation 

was given to use an experimental method, such as a laboratory experiment or a 

computer simulation experiments. Therefore, the specific requirements for an 

experiment in light of the research problem are derived. As the research objective 

is to develop a model of organizational path dependence, including the logic of 

unlocking, the design has to allow for examining path formation, and subsequently 

the unlocking of accrued paths in organizations. To depict these processes, an 

experimental research design has to take care of the following characteristics: 

! First of all, the design must be capable of capturing the essence of an 

organization as a social system. Organizations are complex systems, 

consisting of individuals, which interact according to rules in order to 

achieve their goals (March, 1981; Simon, 1964). Organizations are viewed 

to adapt to their environment through such rule-guided behavior (B. Levitt & 

March, 1988). An organizational research design must therefore include 

interactions between individuals and provide an environmental context. 

 

! Second, the nonlinearities inherent in the self-reinforcing mechanisms of 

path dependence have to be traced back to the behavior of individuals 

within the organization. An experimental study must explain how the micro 

level of an organization, here individual actors and the interactions between 

these individuals, is influencing the emergent behavior of an organization 

(Castaldi & Dosi, 2005).  

 

! Third, a longitudinal research design is required for examining the three 

consecutive phases of path dependence and the additional unlocking phase. 

The four phases must be clearly distinguished, which makes it necessary to 

measure the current state of the system in the course of the process at any 

time.  

 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
19 Nevertheless it has to be highlighted that using a different definition of path dependence other 
research approaches may also be recommendable. 
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! At last, the research design must include the previously mentioned 

properties contingency, emergence, and lock-in. 

 

Reconstructing such a setting in a laboratory experiment could yield interesting 

findings. In particular, because results obtained through an laboratory experiment 

may be generalized and extrapolated to a world outside the lab (S. D. Levitt & List, 

2007). Also, laboratory experiments are well suited for examining path 

dependence at the individual or small group level (Vergne & Durand, 2010; 

Webster & Sell, 2007). But for studying organizational paths and the unlocking of 

organizational paths, laboratory experiments prove impractical. Including and 

controlling for all the previously mentioned properties is a too ambitious 

undertaking. For example, selecting a sufficient number of suitable participants 

with heterogeneous backgrounds found in real organizations, and afterwards 

observing the nonlinearities in their behavior, is hardly possible. Also, the 

complexities arising in organizations are hard to examine within a laboratory 

experiment (Zelditch, 1969). Computer simulation experiments offer a remedy by 

being capable to mirror organizations virtually. Therefore, simulations are of great 

help, when examining complex systems, like organizations, and their emerging 

properties over time (Lant & Mezias, 1992). Virtual experiments also allow for 

tracing the self-reinforcing mechanisms that lead to lock-in, observing and 

comparing multiple historical trajectories, and are especially suitable to examine 

the probability of lock-in (Vergne & Durand, 2010). 

Because of this, the dissertation applies the simulation methodology in order to 

answer the research questions. Before the state of the art in simulation research is 

reviewed and simulation experiments are specified, a proper introduction into the 

“art of simulation” (Axelrod, 1997a) will be given by delineating a simulation 

protocol, comparing different simulation methodologies, and mentioning examples 

of computer simulations in path research. 
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3.2 Artificial Organizations: The Simulation Methodology 
In a nutshell, computer simulations can be comprehended as virtual worlds, 

populated with artificial agents, that are behaving according to predefined fixed 

laws (J. R. Harrison, et al., 2007). Generally, these laws are formalized by, (a) 

parameters expressing the initial state of the model and, (b) parameters defining 

the transition probabilities between different states. Based on the assumptions 

made in the virtual worlds, experiments are conducted by varying the parameters 

of the model and then measuring changes in the outcome (Carley & Newell, 1994). 

New simulation frameworks and powerful computing technologies have lead to a 

rapid increase of simulation studies in the field of social science over the past two 

decades (Axelrod, 1997a; Ganco & Hoetker, 2009; Richiardi, et al., 2006). Some 

seminal findings have been achieved through computer simulations, as, for 

example, the tradeoff between exploration and exploitation organizations face 

(March, 1991), or the way organizations search for solutions to problems 

(Levinthal, 1997). Still, the method relegates a nice existence in leading journals, 

when compared to large-scale empirical or qualitative case studies. Particularly, in 

the field of management and organization research, computer simulations have a 

negligible impact beyond specialized simulation journals, potentially inhibiting 

dissemination to a broader audience (J. R. Harrison, et al., 2007). As possible 

explanations for this pitiful state, the lack of a common simulation protocol in social 

science (Richiardi, et al., 2006), limited methodological and philosophical 

understanding on the side of management scholars, as well as insufficient training 

in computational modeling have been identified (Davis, et al., 2007; N. Gilbert & 

Terna, 2000; J. R. Harrison, et al., 2007). While providing an extensive training is 

out of scope for the work at hand, enabling social scientists to understand the 

development, procedure, and results of computer simulations is feasible. 

Therefore, the goal of this section is to briefly classify the simulation into a broad 

philosophical and methodological framework, and to provide a standardized 
simulation protocol as a common theme for conducting simulation research.   
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3.2.1 Methodological and Philosophical Issues of Simulations  

The philosophy of research broadly distinguishes between two mindsets in 

scientific reasoning: deduction and induction. In deductive reasoning, bundles of 

hypothesis are postulated, based on assumptions about a phenomenon. These 

assumptions may then be translated into mathematical relationships. Afterwards, 

the hypothesis are empirically tested and then confirmed or rejected. A problem 

with deduction is, that social processes might be too complex for mathematical 

derivation (J. R. Harrison, et al., 2007). Conversely, inductive reasoning derives 

from empirical observations, explanations about generalizable relationships in 

order to build theory. A problem with empirical studies is, that data is difficult to 

obtain, because variables might be unobservable or difficult to measure (J. R. 

Harrison, et al., 2007). Classifying computer simulations either as deductive or 

inductive would neglect the peculiarities of the method. This is why simulations are 

often considered to be a “third way of doing science” (Axelrod, 1997b). In fact, 

computer simulations share similarities with both scientific approaches. Like in 

deductive reasoning, a computer simulation has to start with assumptions about a 

real world phenomenon. Based on these assumptions, a model is derived and 

transferred into computer code. Executing the computer code generates data from 

which conclusions about general relationships may be drawn by applying inductive 

methods. Instead of empirical data from the real world, the underlying rules in the 

simulation provide rich data about the consequences of the models assumption 

(Axelrod, 2007). By this, simulations eliminate the shortcomings in the deductive 

analytical models’ inability to capture the complexity of the real world and the 

difficulties in acquiring empirical data of inductive research. Simulations are 

therefore especially suitable when deductive or inductive approaches are not 

feasible or very difficult to apply (Carley, 1995). The dissertation follows the “third 

way of doing science” by proceeding in accordance with a simulation protocol, 
which shows elements of deduction and induction. 
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3.2.2 A Protocol for Simulation Research 

For qualitative methods, such as case studies (Yin, 2009), quantitative methods, 

like structural equation modeling (Schumacker & Lomax, 2010), and mixed 

methods (Jick, 1979), extensive literature with guidelines on research designs is 

readily available. The situation is quite different for simulation research, as there is 

no common standard guideline for conducting simulations. Social scientists 

counter that the freedom the simulation methodology provides may lead to a state 

of anarchy (Richiardi, et al., 2006). As a remedy for this situation, frameworks, 

protocols, and stage models to conduct simulation research have been proposed 

in order to provide a more structured approach to social simulations (Axelrod, 

1997a; Davis, et al., 2007; N. Gilbert & Troitzsch, 2005; J. R. Harrison, et al., 2007; 

Lorscheid, et al., 2011; Polhill, et al., 2008; Richiardi, et al., 2006). Capturing the 

essence of these different frameworks, a six-stage approach to simulation 

research will be described, which serves as protocol for deriving a simulation 
model and conducting virtual experiments.  

 

Stage 1: Methodological Fit of the Simulation	  

The starting point of every simulation research project has to be an intriguing 

research question, that suites the computer simulation methodology (N. Gilbert & 

Troitzsch, 2005). Simulations prove especially useful for research problems 

comprising of processes unfolding over long time frames and spanning over 

several observation levels (Davis, et al., 2007). If, in addition, the complexity of the 

object under analysis does not permit a closed form mathematical solution, and 

data is hard to obtain, the simulation method should be favored (Davis, et al., 

2007; J. R. Harrison, et al., 2007). Path dependence emerges in organizations 

from interactions between individuals, potentially unfolding over a longer period 

and, because of contingent events in the process, data is hard to obtain. 

Furthermore, obtaining data on the effects of different means to break paths is 

challenging. With concern to the state of theory building, simulations should be 

applied in a premature research stage, where simple theory already is in place, but 

understanding of concepts is still limited (Davis, et al., 2007). While it may be 
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argued, that the variety of empirical studies on path dependence already gives a 

good understanding of path formation, this is not true for the case of unlocking 

paths (Ericson & Lundin, 2013). As set out in Chapter 2, the logic of path 

dependence (Chapter 2.1 and Chapter 2.2) and first means for unlocking paths 

(Chapter 2.3) have been proposed, but theory is still porous and undeveloped. 

Furthermore, Chapter 3 provides an overview why experiments, and in particular 

virtual experiments, are suited for path research. Therefore, the simulation method 
seems to be a good fit for the research objective. 

 
Stage 2: Development of the Simulation Model 

The development of a simulation model comprises two tasks: first, the selection of 

a specific simulation approach and second, the derivation of a formal model. Davis 

et al. (2007) compares the selection of the simulation approach to choosing a 

theoretical framework, because a simulation approach implicitly makes theoretical 

assumptions about the object of interest. Hence, the selection of a simulation 

approach is always accompanied by underlying theoretical constructs. In order to 

build a formal model, preliminary considerations should be made with regard to the 

simulation model type. Chapter 4.1 and Chapter 4.2 will describe and compare 
simulation frameworks used in management research.   

Following this, a formal model capturing the most important assumptions about the 

phenomenon must be derived. Models are an abstract representation of the reality 

and used to explain ongoing processes in the world (Lave & March, 1975). Usually, 

models exhibit a mathematical form with systems of equations, serving as rules on 

how actors or organizations behave and interact. Processes in organizational 

models must at least comprise of individuals, social processes between these 

individuals, and an organizational structure connecting these individuals (Van Horn, 

1971). In the case of simulations, the formal model also depends on the 

assumptions of the chosen simulation approach. The development of a formal 
model is subject of Chapter 5.   
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Stage 3: Transferring the Formal Model into Computer Code 

After deriving the formal model, it must be transferred into machine-readable code. 

Chapter 5.7 is dedicated to the selection of a framework for transferring the model 

into code, explaining the characteristics making up good computer code, and 
highlighting the peculiarities of writing computer programs. 

 
Stage 4: Conducting Virtual Experiments 

The design of the virtual experiment has to be specified before it is performed, 

through altering parameters in the computer model. The experimental design 

consists of five items: initial conditions, time structure of the simulation, outcome 

measurements, number of iterations, and the number and range of variations (N. 

Gilbert & Troitzsch, 2005; J. R. Harrison, et al., 2007). While the transition from 

one state to another is defined by the rules in the model, initial conditions need to 

be specified before running the simulation. Afterwards, the length of the simulation, 

measured in number of steps, needs to be computed. Generally, a stable 

equilibrium state is used as stopping criteria (Axtell, et al., 1996). At the end of 

each time step or simulation run, the outcome of the current model state is 

measured and stored. To capture the behavior of the system, multiple iterations of 

the simulation are necessary, because random elements in the simulation make 

single runs not representative for the model (N. Gilbert & Troitzsch, 2005). The 

number of iterations therefore has to be computed. To examine the influence of 

parameter variations on the simulation results, all parameters are assigned a value 

range. Typically, the design of a computer simulation is supported by robustness 

analysis to trace the effects of variations on the outcome (Chattoe, et al., 2000). 
Chapter 5 includes the parameter variation and discusses the chosen parameters.       

Using the experimental design, the virtual experiments are then carried out, by 

repeating the simulation with different parameter settings. Variations in the 

parameters allow for statements with regard to the behavior of the model and are 

useful to build new theory. Besides varying the input parameters, experiments are 

conducted by unpacking a construct into subsequent constructs, varying the 
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assumptions of the model, or adding new features to the simulation model (Davis, 

et al., 2007). In Chapter 6, virtual experiments are derived, the simulation model is 

extended, and outcomes are measured. After the virtual experiments were 
conducted, the results must be prepared, analyzed, and discussed. 

  

Stage 5: Analysis and Discussion of the Results 

By preparing data, the task of translating the measurement outcomes of a 

simulation run into a form allowing for analyzing the data is meant. While some 

simulation tools prepare the data automatically, usually the researcher faces an 

extensive output, such as one written in an unformatted text file. The stored data 

then has to be transferred into a statistic or spreadsheet program like SPSS, 
Microsoft Excel, or Apple Numbers, where it can be further analyzed.  

In general, the output data of a simulation model may be analyzed in the same 

way as empirical data, but attention has to be drawn as simulations mostly exhibit 

non-linear relationships (J. R. Harrison, et al., 2007). A popular mean for preparing 

and analyzing large amounts of simulation data is by using two- or three-

dimensional graphs (N. Gilbert & Troitzsch, 2005). With graphs, the relationship 

between different parameters may be easily revealed and illustrated, or the 

behavior of a simulation model over time is examined. By uncovering formerly 
unknown effects or relationships, the results may contribute to theory building. 

 

Stage 6: Validation of Results 

In a final step, the findings of the simulation study should be confirmed by 

collecting empirical evidence. The outcomes may guide researchers to new 

strategies in obtaining empirical data, or hint to formerly unknown relationships, 

that can now be tested systemically. As the empirical testing of the simulation is 

beyond the purpose of the dissertation, further studies have to confirm the results 

of the simulation model. Nevertheless, Chapter 7 provides limitations of the study 
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and advice for further research. Figure 7 connects the structure of the thesis to the 
six stages of the simulation protocol. 

 

	  

Figure 7: Thesis chapters along the stage protocol for simulation studies
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4. State of the Art in Simulations 
	  

The history of simulation dates back to World War II, when it was first applied by 

John von Neumann and Stanislaw Ulam in the Manhattan Project to understand 

the behavior of neutrinos (Casti, 1996). Although some important modeling 

insights were achieved back then, the field of social science adapted the method 

only in the 1970s (for examples see Schelling (1971) or M. D. Cohen, et al. (1972)). 

Despite the early interest in simulations in the field of social science, the method is 

still new to most of the scholars in management research. In the 1990s, some 

seminal contributions were achieved in management research with help of 

simulations and the number of publications increased (for examples see March 

(1991), Levinthal (1997) or Lant and Mezias (1992)). But, publications still lagged 

behind in comparison to empirical studies (J. R. Harrison, et al., 2007). And while 

there are still researchers suspicious about the method, simulations gained a 
permanent place in the field of management research.  

	  

4.1 Simulations in Management Research  
The decision for a specific simulation approach is closely related to choosing a 

theoretical framework (Davis, et al., 2007). The type of simulation constrains, but 

at the same time qualifies, the researcher in exploring new theory. Commonly 

used computer simulation approaches in management research, and particularly 

in path dependence research, include system dynamics and agent based models, 

like NK-models or cellular automata (J. R. Harrison, et al., 2007).20 Each of the 

simulation approaches has its advantages and disadvantages. Therefore, in the 

following, an overview will be provided for identifying a suitable simulation 
approach. 

    

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
20 While, in general, one can think of further approaches, such as genetic algorithms, the 
discussion will be restricted to the most common simulation models (Davis, et al., 2007; J. R. 
Harrison, et al., 2007). 
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4.1.1 System Dynamics  

System dynamics models are used to describe the structure and behavior of a 

complex system as a whole, instead of modeling each part of the system on its 

own (Forrester, 1958). In system dynamics models, the interactions between 

individuals or units are usually formalized in a system of differential and difference 

equations, describing the current behavior. Furthermore, through rules in the 

model, future states of the system are predicted by the simulation (Forrester, 1980; 

N. Gilbert & Troitzsch, 2005). For that reason, system dynamics models are often 

used as “management flight simulators” (J. Sterman, et al., 2013). They allow 

investigating the consequences of different policies in a controlled virtual 

environment, before actually implementing it within the organization (J. D. Sterman, 

2000). Because of these properties, system dynamics models are not only used by 

social scientists for theory building, but also applied by practitioners in consulting 

firms and companies to assist the decision making process of management teams. 

Furthermore, the focus of the research interest lies often in the influence of initial 

conditions and input factors on the outcome of a process (Davis, et al., 2007).   

System dynamics models are constituted using a standardized modeling language, 

comprised of symbols known from thermodynamics. In particular, a system 

dynamic model is fully defined by an initial supply of objects, a time-dependent 

valve regulating the flow from the initial supply into inventories, flows between 

different inventories, and positive or negative feedback loops (Figure 8b). For a 

better understanding, the previously discussed generalized Pólya urn process is 

shown in a system dynamics stock and flow diagram with causal feedback loops in 

Figure 8a (Arthur, 1989; J. D. Sterman, 2000). The two bold arrows, at the top and 

bottom of the graph, symbolize flows from an inventory of white and black stones, 

regulated by a valve into a stock of stones. At each time step, the positive 

feedback loop R determines the order rate of the valve, defining the probability of 

drawing a white or black stone. If all stones from the inventory are exhausted, the 

simulation run is terminated and the end state of the system is observed. 
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(a) 

  

(b) 

 

Figure 8: (a) Stock-flow diagram of the Pólya urn process (see Sterman, 2000: 355) and, (b) 

legend of system dynamics symbols (N. Gilbert & Troitzsch, 2005: 30) 

 

Evolving around the system dynamics community, a variety of models have been 

developed for the purpose of theory building. With regard to path dependence, 

models examined the dynamics of scientific revolutions (Kuhn, 1962; J. D. 

Sterman & Wittenberg, 1999), network effects in the video recorder industry (J. D. 

Sterman, 2000), dynamics of complex technology markets (Schwaninger & Mandl, 

2012), distinguishable forms of path dependence respectively path independence 

in the insurance industry (Mandal, 2001), and propositions about tipping points in 

the path formation process (Bramson, 2008). Nevertheless, a major limitation of 

using the system dynamics approach in examining organizational paths is the 

restriction to the macro level. Instead of modeling how properties emerge from 

interactions, the emergent property itself is modeled (N. Gilbert & Troitzsch, 

2005). 21  But, considering that organizational paths emerge from interactions 

between individuals in an organization, the lack of simulating the micro-macro links 

is a significant limitation (Castaldi & Dosi, 2005). Therefore, a simulation approach 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
21 Schieritz & Milling (2003) draw an analogy to a forest: agent-based simulation is modeling the 
trees and examine, how they make up a forest, while system dynamics simulations model the 
structure of the forest as a whole. Regarding the concept of path dependence see also Meyer 
(2012). 
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30 System dynamics and world models

flows between containers controlled by valves: heating is a favourite exam-
ple for explaining the principles of feedback loops, and words referring to
bonding relations (Bunge 1979) are derived from words used for the same
target systems in many languages (for example, ‘influence’, according to
Webster’s Dictionary was originally ‘an ethereal fluid held to flow from the
stars and to affect the actions of humans’).

Figure 3.1: System dynamics diagram (redrawn from Forrester 1980:
Fig. 2.2a)
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Figure 3.1 shows the supply flow ( ) from the inexhaustible cloud
(source) into the ‘inventory’ through the valve ‘order rate’ which is con-
trolled (– – –) by the actual ‘inventory’, the ‘desired inventory’, and the
‘adjustment time’. Figures of the same kind may also be used to visualize
the control of more complex feedback loops, as in the case of models of
the dynamics of the world system. Such complex target systems and their
models show, however, that there are limits to the system dynamics diagram
technique: a diagram measuring 60 cm by 40 cm with a barely decipherable
legend (as on the back flap of Meadows et al. 1974) is hardly appropriate to
communicate an overview. This is because a whole system dynamics model
is represented by one single object with a vast number of attributes.
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is needed, which is capable of simulating a level made up of interacting individuals 

and observing the emergent effects, resulting from these interactions on an 

aggregate level. Recently, agent based models became popular for examining 

such emerging phenomena (Macy & Willer, 2002). 

 

4.1.2 Agent Based Simulations 

Traditional methods in social science may encounter problems in linking the 

behavior of individuals to the big picture of social structures (Ellis, 1999). The 

debate on the micro-macro divide, has a long standing history in social science 

(Alexander & Giesen, 1987). To bridge this gap, it has been proposed to use 

agent-based models for depicting the interactions between actors in an 

organization, and observing the emergent behavior of the social system (N. Gilbert, 

1995; Macy & Willer, 2002; Sawyer, 2003). In contrast to system dynamics models, 

the aim of an agent based model is therefore not the prediction of future system 

states, but emphasis is put on the explanation and understanding of emergent 

behavior on system level (Billari, et al., 2006). Likewise, and different to micro 

simulations, agent based models are made up of heterogeneous agents, acting 

autonomously based on their beliefs, cognition, or knowledge and taking actions 

according to a predefined set of behavioral rules (Conte, et al., 2001). More 

precisely, agents are not controlled by other agents, exchange information with 

peers on basis of a common language, react to perceived changes in their 

environment, and actively take actions to reach their goals (Woolridge & Jennings, 

1995). To meet these prerequisites, agent based models mostly include multiple 

agents, social structures with rules defining the communication between agents, 

and an exogenous environment influencing the decisions made by agents in the 

system (N. Gilbert & Troitzsch, 2005). Since agent based models are able to 

observe emergence and explain it through the dynamics on the micro level, the 

method was quickly adopted by researchers of organizational path dependence 

(Vergne & Durand, 2010). For instance, agent based models are used in path 

research to examine the assertion of self-reinforcing effects in hierarchical 
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organizations (Petermann, et al., 2012), diffusion processes in two sided 

technology markets (Meyer, 2012), organizational adaptation through learning 

(March, 1991), the influence of complexity and environmental change on 

organizational path dependence (Seidel, 2012), or the diffusion of open source 
business software (Bonaccorsi & Rossi, 2003).  

Within the agent based model approach, different types of frameworks are further 

distinguished. Apart from highly individualized models, using generic algorithms, 

cellular automata and NK models are particularly relevant for organizational 

research (N. Gilbert & Terna, 2000; Hegselmann, 1996). Strictly speaking, cellular 

automata are an antecedent to the modern agent based models (Morand, et al., 

2010; Schelling, 1971). Subsequently, both frameworks will be briefly described, 

have their underlying characteristics carved out, and the relevance for researching 
organizational paths will also be discussed.  

 

Cellular Automata 

Cellular automata represent a separate class in the field of agent based models, 

as interactions are assumed to be local and the spatial dimension remains fixed 

over the duration of a simulation run (Brandte, 2007; J. R. Harrison, et al., 2007). 

Broadly speaking, cellular automata consist of multiple cells with several possible 

states, arranged in a lattice or grid. The state of each cell itself depends on a set of 

rules and on the state of neighboring cells. Usually, the grid is a two-dimensional 

rectangle, however, it also can be three-dimensional or triangular. Common 

neighborhood definitions in a two-dimensional cellular automata are based on the 

work of von Neumann and Moore (Hegselmann, 1996; von Neumann, 1966).22 

Figure 9 describes the two different neighborhood typologies and possible 

interaction patterns. The local neighborhood definition takes a very simplistic 

approach on how individuals interact within an organization, compared to more 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
22 In these neighbourhoods the bond of interactions is defined by the Manhattan distance 
parameter r. 
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complex constructs, found in studies on social network analysis (Knoke & Yang, 
2008). 

 

 

Figure 9: Typology of neighborhoods in cellular automata: (A) von Neumann 

neighborhood (r=1), (B) Moore neighborhood (r=1), (C) Extended von Neumann 

neighborhood (r=2), (D) Extended Moore neighborhood (r=2) (Fonstad, 2006: 221)  

 

Because of the spatial interactions between cells, cellular automata are often used 

to examine emergent effects on macro level (N. Gilbert & Troitzsch, 2005). 

Literature in geographical economics, where location plays a major role, often 

make use of cellular automata to solve spatial problems with concern to land 

usage or economic development (Almeida, et al., 2008). Originating from this 

literature, extensive research on geographical path dependence was conducted. 

Examples include the investigation of the importance of geographic locations for 

path dependence in regional industry clusters (Brown, et al., 2005), the assertion 

of railway gauge tracks as technological standards in railway transportation 

systems (Puffert, 2002), and the historical agricultural development in western 

economies (Balmann, 1994). Apart from geographical economics, organizational 

simulation studies apply the cellular grid as a representation for firm structures and 

the bounded rationality of individuals in the field of management research (for 

examples see Brandte (2007), Lomi and Larsen (1996), K. D. Miller, et al. (2006), 

and K. D. Miller and Lin (2010)). By extending the grid representation with a 

tunable parameter for the interdependencies between interactions, the NK model 
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is another approach to take into account the spatial dimension of organizations 
and path dependence in an agent-based model (Leydesdorff, 2002).   

 

NK Models 

The NK model was originally developed to solve problems evolving around the 

evolution of species and genes in biology, but recently became a widely applied 

simulation framework in management research (for examples see Baumann 

(2008), Ethiraj and Levinthal (2004), Ethiraj, et al. (2008), Gavetti (2005), Levinthal 

(1997), Rivkin (2000), Rivkin (2001) and Siggelkow and Rivkin (2009)). In 

particular, NK models are used to address coordination and optimization problems, 

arising out of interdependencies in decision making, organizational structure, or 

between product parts. Regularly, these problems are challenging to solve 
empirically (Ganco & Hoetker, 2009).  

The NK model consists of one or more agents, searching for an optimal solution 

on a “performance landscape”. A performance landscape consists of 2N points, 

where every point has a specific performance value. Displaying the performance 

on the vertical axis would yield to a landscape, where the highest performance 

values form peaks. The combination of the letters NK in the model description 

stems from the two basic model parameters, defining the size (N) and ruggedness 

(K) of a performance landscape. More specifically, the parameter K defines the 

degree of interdependencies between the elements of a binary N-dimensional 

vector. To each element in the vector, a performance contribution value is 

randomly assigned, which depends on the performance of K other elements. 

Increasing K makes the performance landscape more rugged, as changing one 

dimension affects the performance of other dimensions. Agents are now supposed 

to search the performance landscape for the optimal solution, defined by the 

highest peak in the landscape. Furthermore, it is commonly assumed that agents 

only adapt new solutions, if they are superior to the current solution, and that the 

bounded rationality of agents restricts the search towards the local 
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neighborhood. 23  One stopping criterion for the search is, that agents cannot 

improve their performance, because all of its neighbors exhibit a lower 

performance value. Combining complexity and local search may impede agents to 

find the highest performing solution in the landscape and leave them on a local 

peak in the landscape (Kauffman, 1993). To put it another way, the search 

process in a rugged landscape can be compared to a mountain hiker, aiming to 

reach the highest summit without using a map. By solely relying on his sight, the 

hiker may be ascending the nearest mountain, only to find out, that surrounding 

summits are even higher and he missed to climb the highest peak. Figure 10 
exhibits an example for such a NK landscape. 

 

 

	  

Figure 10: Example of a rugged NK performance landscape with three local optima and one 

global optimum (Caldart & Oliveira, 2010: 99)  

 

With regard to the application of the model for building theory in path research, 

considerable attention must be given to the definition of path dependence in 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
23 This search heuristic refers to the notion of local search. Nevertheless, other heuristics may 
allow to search more globally, such as drawing analogies based on cognitive maps (Gavetti, et al., 
2005). 
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generalized NK models, as it is substantially different to the original definition 

(Frenken, 2006). While in NK models path dependence often refers to the path on 

which an agent moves through the landscape, the original concept of path 

dependence highlights contingencies and small events in the adoption process. 

Still, the NK model also has been applied, using the narrow definition of path 

dependence, for examining the influence of complexity and environmental change 

on organizational learning (Seidel, 2012). In this model, path dependence is 

described as follows: the organization starts at a random initial position on the 

landscape, guided by small events and a self-reinforcing learning process, before 

finally reaching a suboptimal local peak in the landscape, interpreted as lock-in. In 

a similar vein, evolutionary accounts examine co-evolutionary path dependence 

processes over multiple NK-landscapes for extending theory on path formation 
(Bassanini & Giovanni, 2001).  

Compared to system dynamics models, agent based simulation models are in 

general suitable to capture an emergent phenomena, like path dependence. As 

the focus of cellular automata is to explain the emergence of macro patterns from 

spatial micro interactions and how these patterns may change, it is an appropriate 

method for researching the formation of paths (Davis, et al., 2007). Following this, 

a formal agent based model based on the cellular automata approach will be 

derived. The next section will discuss existing models in management research 
with regard to their ability to capture the research objective. 

 

4.2 Selecting an Appropriate Simulation Approach 
In general, social scientists may build agent based simulation models either by 

starting from scratch or by extending already existing models (Davis, et al., 2007). 

A simulation-based research program may start with a simple model and then 

further elaborate it. For example, the basic NK model was first introduced by 

Kauffman (1993) and then subsequently expanded to explore, for instance, the 

effects of modularity on coordinating search (Baumann, 2008), the power of 

analogies in new environments (Gavetti, et al., 2005), or balancing inertia and 
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innovation (Hodgson & Knudsen, 2006). This simulation modeling procedure might 

be referred to as a building block approach, which amounts to adding complexity in 

a stepwise fashion to prior computer simulation models (J. R. Harrison, et al., 

2007). Instead of beginning with an extensive simulation model, the focus is first 

put on the most important mechanism and the outcome of the simulation is 

observed. This enables the researcher to understand the basic behavior of a 

model and qualifies him to study the consequences of more complex processes, 

by adding more features, afterwards. In addition, taking a well-known and 

empirical proven model as reference for simulation work strengthens the external 

validity of further extensions (Axelrod, 2003). Furthermore, Ethiraj and Levinthal 

(2009) argue, that adapting a simulation model, instead of building it from the 

ground up, has the advantage, that the properties of the simulation model are well 

explored and, that prior simulation modeling efforts facilitates comparison of the 

results. 

 

A well-known and empirical proven model, incorporating path dependence, is the 

organizational learning model of March (1991). Prior research extended the March 

model in order to investigate the effects of bounded rationality on the trade-off 

between exploration and exploitation (K. D. Miller & Martignoni, 2011), the impact 

of information technologies on organizational learning (G. C. Kane & Alavi, 2007), 

organizational processes that affect the variation and retention of knowledge 

(Rodan, 2005), different philosophical epistemologies in social interactions (K. D. 

Miller & Lin, 2010), the influence of tacit knowledge on organizational learning (K. 

D. Miller, et al., 2006), internal variety and environmental dynamism (Kim & Rhee, 

2009), or semi-isolation of groups in organizational learning (Fang, et al., 2010). 

As the organizational learning model already depicts a path dependent process, it 

may be used as a first starting point for further modeling efforts.  

 

4.2.1 The March Model: Simulating Organizational Learning 
By using an agent based computer simulation approach, James G. March (1991) 

explored the conflicting aspects in organizational learning between the exploitation 
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of current capabilities or competencies and the exploration of new opportunities. 

While exploration is characterized by terms like path creation, unlocking, 

experimentation, distant search, organizational slack, and radical innovation, the 

term exploitation includes path dependence, selection, optimization, execution, 

operations, or incremental innovation (He & Wong, 2004; March, 1991). Engaging 

only in one activity, exploration or exploitation, affects firm performance negatively, 

as they either “suffer the cost of experimentation without gaining many of its 

benefits”  (March, 1991: 71) or get “trapped in suboptimal stable equilibria” (March, 

1991: 71). As firm resources are limited, an organization must strike a balance 

between the opposing forces of exploration and exploitation (Gupta, et al., 2008). 

Because returns from exploration are less risky and revenues are realized earlier, 

organizations and its managers favor exploitation over exploration (Greve, 2007). 

The returns from this activity then further reinforce the exploitation of current 

competencies. It is this self-reinforcing nature of exploitation, which makes the 

process of adapting to an environment potentially self-destructive, eventually 

leading to path dependence (March, 1991). In order to validate the negative long 

run effects of exploitation, March developed a simulation model and drew on 

literature of organizational learning. Organizational learning is thereby defined, “as 

a change in the organization’s knowledge that occurs as a function of experience” 

(Argote, 1999: 31). In organizational learning theory, organizations are regarded 

as adaptive systems, which are shaped by their members through individual 

learning processes. These individuals are supposed to learn through an 

experienced based trial and error process (Levinthal & March, 1993). Then again, 

organizational rules, norms, structure, and standard operating procedures affect 

learning and the acquisition of knowledge on an individual or group level (Crossan, 

et al., 1999). The two levels, the organizational as well as the individual, are 

intertwined, may each hold learning barriers, and influence learning rates (J. 

Schilling & Kluge, 2009). Taking these considerations into account, the formal 

model depicts an organization as a set of learning agents, holding beliefs about an 

environment, and proceeds in five steps: 
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(1) The organization is operating in an exogenously given environment. As a 

representation for the environment an m-dimensional vector is initially stuffed with 

randomly assigned values of -1 and 1, taken from an equal distribution. While a 

value of 1 can be conceived as an environmental condition being present, a value 

of -1 describes the absence of the same condition. For illustrative purposes, 

imagine that an environment consists of four distinctive dimensions: consumer 

power, price sensitivity, competition, and transport infrastructure. A firm may 

operate in an environment, where consumers have high power (1), are sensitive to 

increase in prices (1), competition on the market is low (-1), and the transport 

infrastructure is fully developed (1). It is determined, that the four-dimensional 

environment vector <11(-1)1> describes the aforementioned environment. If an 

organization would mirror this vector, it is fully adapted to the environment. In the 

simulation model, the environment is initialized once at the beginning of each run 

and remains static in the basic model.  

 

(2) The organization consists of n agents holding beliefs about the environment. 

Instead of modeling the organization as a whole, it is assumed that n agents, 

indirectly interacting with each other, make up an organization. Just like the 

environment, agents are delineated as m-dimensional vectors. At the beginning of 

a simulation run, each agent vector is randomly initialized by assigning a value of -

1, 0, or 1, taken from an equal distribution, to each of the m dimensions. Through 

these values, agents are assumed to possess a set of beliefs about the 

environment. While 1 and -1 reflect the agent's opinion about the state of an 

environmental dimension, a value of 0 reflects, that an agent has no opinion or has 

no knowledge about an environmental dimension. An agent with the associated 

vector <100(-1)> correctly believes, that consumers have power (1), but wrongly 

assumes, that the transportation infrastructure is undeveloped (-1). With regard to 

the price sensitivity (0) or competition (0), the agent has no opinion, respectively 

does not know about the presence of these two dimensions. As initially all values 

are assigned randomly, the probability, that a belief of an agent corresponds to the 

true value of the environment, is on average one third. By learning from other 
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agents in the organization, the match between an agent’s belief set and the 

environment increases over time. 

 

(3) Learning in the organization takes place indirectly through an m-dimensional 

organizational code initialized with zeros on all dimensions. In every round, agents 

update in a random order each of their beliefs from an “organizational code” with a 

probability p1. The organizational code can be thought of as shared beliefs, culture, 

or norms in an organization, with the probability p1 reflecting the influence of the 

culture on individual agents within the organization. If a dimension of the code 

contains a zero, agents do not learn from the code on this dimension. As the code 

is initialized with zeros, agents will not learn from the code at the beginning.   

 

(4) The organizational code learns from the dominant beliefs of superior 

individuals in the organization. To allow for interactions between agents through 

an organizational code, the code must be updated. In the simulation model, the 

code is updated through indirectly learning from a group of “superior agents”. 

Superior agents are characterized by having a higher knowledge level, in 

comparison to the organizational code and other agents in the organization. This 

means, that superior agents match the environment on more dimensions as the 

code or other individuals. Specifically, individual or code knowledge is computed 

by taking the dot product of the agent or code vector with the environment vector 

and dividing it by the number of dimensions m. Among the group of superior 

agents, a dominant belief vector is computed by summing up the belief values on 

each dimension and over all agents. If the sum is positive, the value of the current 

dimension is set to 1, if the sum is negative, set to -1, if the sum is 0, the value is 

randomly set to 1 or -1 with equal probability. The dominant belief vector is 

therefore reflecting the majority view of the superior group in an organization. In 

each round, the code learns from the dominant belief vector with a probability of 

1− 1− p! !, where p2 is the learning rate of the organizational code from the 

dominant belief vector and k represents the number of individuals holding a 

dominant belief minus the number of individuals holding a minority belief. As the 

organizational code only learns from agents who match the environment on more 
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dimensions, the code knowledge increases over the duration of a simulation run, 

while the size of the superior group decreases. By that, the code adapts to the 

exogenous given environment over time. At some point in time, the code stops 

learning and is reproduced, as there are no more agents with higher knowledge 

levels in the organization. Because agents update their beliefs by learning from the 

code, they will eventually share the same beliefs in the organization, so that a 

stable equilibrium is achieved that cannot be escaped endogenously.   

(5) As measures for the performance of an organization, the average equilibrium 

knowledge and the organizational code knowledge are computed. For measuring 

the outcome of simulation runs and comparing the results for different learning 

probabilities, two performance measures based on knowledge levels are 

introduced: average individual knowledge and code knowledge. The knowledge of 

an individual agent is calculated by taking the dot product of its belief vector with 

the environment vector and dividing it by the number of dimensions m. Following 

this, the average individual knowledge is computed by summing up the knowledge 

of all agents and dividing the sum by the number of agents n. A special case of the 

average individual knowledge is the average equilibrium knowledge, which is the 

measured average individual knowledge, when an equilibrium state is achieved. 

More similar to the individual knowledge, the code knowledge is computed by 

taking the dot product of the code vector with the environment vector and dividing 

it by the number of dimensions m. The parameters used in the organizational 

learning model of March are summarized in Table 5. 

 
	  

Table 5: Simulation parameters used in the March model (March, 1991)  

Parameter Value  Remarks 

n 50 Number of agents within an organization 

m 30 Number of environmental, agent, and code dimensions  

p1 [0.1, 0.9] Probability of agents learning from the code 

P2 [0.1, 0.9] Probability of the code learning from a superior group 

it 80 Number of simulation iterations 
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Based on this model, March conducted virtual experiments, by altering the learning 

probability parameters p1 and p2 within a range of [0.1, 0.9] and observing the 

effects on average equilibrium knowledge and code knowledge.24 The findings 

were, that the highest average equilibrium knowledge is achieved for organizations 

where agents learn slowly, meaning that the learning probability p1 is low, from the 

organizational code, but the code rapidly adapts towards the dominant belief 

vector, meaning that p2 is high. While rapid learning on individual level is 

considered as good, the effects on an organizational level can be detrimental. The 

results confirm this statement, as organizations with high individual learning rates 

achieve equilibrium faster, but eventually, attain lower knowledge levels as 

compared to slow learners (Figure 11). This effect is caused by the suppression of 

superior beliefs through the organizational code, as the higher the learning rate of 

agents, the more likely it is, that a superior agent adopts beliefs inferior to its 

current set of beliefs. 

 

 

  
Figure 11: Achieved average equilibrium knowledge levels for different socialization and 

code learning rates (March, 1991: 76) 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
24 These values represent slow (0.1) and fast (0.9) learning. A value of 0.0 would lead to no 
learning at all, while a value of 1.0 leads to an immediate update of the belief vector.  
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The results call attention to a fundamental trade-off that organizations face. Either, 

they rapidly adapt towards an environment, potentially exploiting economics of 

scale, network effects, first mover advantages, and early learning curve effects, or, 

they spend more time exploring the possibilities and opportunities within their 

environment, eventually ending up with a higher performance, but achieving 

equilibrium slower (Suarez & Lanzolla, 2007). Because these options might be 

mutually exclusive, an organization has to strike a balance between these 

counteracting processes over time for being successful in the long run (Gupta, et 

al., 2008). But, as explorative activities like fundamental research, product 

development, or corporate venturing are linked to uncertain results, and returns 

are often lying in distant future, organizations tend to favor exploitation over 

exploration (Benner & Tushman, 2002; Uotila, et al., 2009).25 This is, because in 

contrast to exploration, exploitation generates immediate returns. At the same time, 

exploitation exhibits increasing returns, therefore potentially leading to path 

dependence (March, 1991). Indeed, March’s simple simulation model includes 

properties of path dependence and is suitable as a simple representation for a 

path formation process. At the beginning the outcome of the process is not known, 

and the scope of action is broad, as heterogeneous agents initially exhibit variety 

within the organization. As agents begin to learn from the code and get assimilated 

towards the organizational code, the average individual knowledge increases. But, 

at the same time, the scope of choice narrows down, as the internal variety of 

beliefs decreases (Kim & Rhee, 2009). In the end, agents converge to a 

homogenous set of beliefs and are locked in to reproduce the stable equilibrium.  

 

Compatible with the building block approach, March extended the base model 

successively and included personnel turnover, incremental environmental change, 

and heterogeneous learning rates. One notable result of the extensions is, that in a 

changing environment only personnel turnover counteracts the degeneration of 

organizational knowledge and allows for escaping the stable equilibrium (Figure 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
25 Scholars also highlight the negative effects of putting too much weight on exploration (Nohria & 
Gulati, 1996). Search processes may be aborted to early, attributed as unsuccessful, and, because 
of that, further search takes place (Levinthal & March, 1993). The problem here could be more 
described as path-independence, because over-exploration is increasing the scope of choices.  
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12). Turnover is constituted in the model by randomly replacing an agent in the 

organization with a turnover probability p3. A reason for knowledge detoriation is, 

that over time agents converge to one single view of the environment. In the case 

of change, and without turnover, agents still hold on to this homogenous view, 

impeding necessary adaptation processes. Inducing agents with random beliefs 

from outside into the organization, increases the variety and enables the 

organization to adapt. Yet, according to the law of requisite variety, the degree of 

adaptation depends on the amount of imported new beliefs (Ashby, 1956). 

 

 

 
Figure 12: Achieved average code knowledge for learning rates of p1=p2=0.5 in the 

presence of environmental change with and without turnover (March, 1991: 80) 

 

Transferring this proposition to the concept of path dependence would lead to the 

conclusion, that organizational paths can only be escaped by inducing variety 

through agents with heterogeneous beliefs from outside of the organization. But, 

as case studies have shown, paths can also be unlocked endogenously 

(Burgelman, 1991). Therefore, this assumption has to be neglected. Although the 

simulation model excludes a proper representation for unlocking, it was an early 
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attempt to capture the logic of organizational path dependence through a self-

reinforcing learning process.26 The simplicity of the model notwithstanding, it was 

extensively expanded over the last decades. While the original model possesses 

the aesthetics of a simple model, it assumed an over-simplistic view on an 

individual learning processes and organizational structure. Recent extensions of 

the March model suspended the restrictions in the learning mechanisms and used 

a more realistic representation of an organization by including a spatial dimension. 

 

4.2.2 Extending March: A Model with Interpersonal Learning 

In March’s model, individual learning takes place indirectly through an 

organizational code and does not account for the spatial dimension of learning. Yet, 

the location or prior knowledge of an organization or individual is important for 

effective learning (W. D. Cohen & Levinthal, 1990; Levinthal & March, 1993). 

Instead, March’s simulation model reflects a hierarchical learning scheme and 

does not allow for emergent properties, evoked by direct interactions between 

agents. In a strict sense, the global nature of the code dictates agents in the 

organization, while local interactions and organizational niches are neglected. But, 

these local interactions influence the learning process and are primary drivers for 

the emergence of path dependence (Anderlini & Ianni, 1996). In a similar vein, 

Garud and Karnoe (2003) argue, that the regional learning process in the Danish 

wind turbine industry lead to the emergence of a new technological path, and to 

the unlocking of an old path, through what they call “distributed entrepreneurship”. 

With regard to Garud and Karnoe (2003), a model of path dependence and 

unlocking must account for location and the spatial dimension of learning. In order 

to include location in the organizational learning mode of March, it has to be 

extended. Recent studies suspended the limitation of the March model by 

including direct learning through an interpersonal learning mechanism (see K. D. 

Miller, et al. (2006), K. D. Miller and Lin (2010), Fang, et al. (2010) and Kim and 

Rhee (2009)). In contrast to the learning model with organizational code, direct 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
26 March explicitly refers to David (1990) and Arthur (1984) with regard to the detrimental effects of 
increasing returns and local feedback processes in learning by experience. 
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learning is integrated in these models, by linking agents with each other either 

through a structure like a small-world network (Fang, et al., 2010), or by placing 

them in a cellular automata grid (Kim & Rhee, 2009; K. D. Miller & Lin, 2010). As 

outlined by Hegselmann (1996), the cellular automata grid is well suited to observe 

emergent effects of local interactions in social systems. When using a cellular 

automata approach, agents are positioned in a square grid, consisting of n cells. 

Each agent occupies one of the n cells. Compatible with the von Neumann 

neighborhood of the cellular automata, agents may update their beliefs from one of 

their four direct neighbors.27 This is in line with the behavioral concepts of myopia 

in learning (Levinthal & March, 1993) and local search (Levinthal, 1997). Learning 

from distant agents, by means of local search, needs the dissemination of beliefs 

to direct neighbors. The restriction to local neighbors slows down the learning 

process, in comparison to learning from an organizational code, where knowledge 

can be immediately distributed within the organization. The structure of an 

extended organizational learning model, taking into account the spatial dimension, 

is now briefly explained. Like in the March model, it is assumed that an 

organization is operating in an m-dimensional environment. Furthermore, an 

organization consists of n agents, each of them holding a set of beliefs about the 

environment. Despite these similarities, the interpersonal model has some unique 

characteristics. Subsequently, the procedure of the formal model is explained in 

three consecutive steps: 

 

(1) The environment and the organization consisting of n agents are created. A 

square grid with edge length 𝑛   is constructed, spanning a total of n cells. Each of 

the n cells accommodates one agent vector. The agent vectors are initially stuffed 

with random values of -1, 0, and 1 picked from an equal distribution. As in the 

March model, these values represent beliefs about the properties of an exogenous 

given m-dimensional environment. The grid is borderless, meaning that every cell, 

and therefore every agent, shares the same amount of neighbors in the grid. 

Neighbors are here defined as agents bordering north, east, south, and west of the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
27 Direct neighbors are those connected to the agent in the south, north, west and east.  
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agent in the grid (von Neumann neighborhood with a Manhattan distance of r=1). 

Agents that are positioned at the edge of the grid are hence able to learn from at 

least one agent from the opposite edge side.   

 

(2) Agents update their beliefs by learning from their direct neighbors. Each round, 

every agent learns from the best performing neighbor with a probability of p1. The 

learning sequence is kept random, preventing the emergence of misleading 

patterns. The knowledge level of an agent is used as a performance measurement 

and evaluated through computing the degree of accordance between an agent and 

the environment. In the case where more than one neighbor shares the highest 

knowledge value, an agent randomly selects one of these neighbors for updating 

its belief vector. In addition, updating only takes place if the knowledge value of the 

neighbor is higher than the knowledge of the selected agent. If the knowledge is 

lower, the agent refrains from updating its belief vector in the current round. 

 

(3) Measurement of organizational performance. As there is no organizational 

code, the performance of the organization is evaluated using the average 

individual knowledge measurement. The average individual knowledge is 

calculated by summing up all individual knowledge values, divided through the 

number of agents in the organization. The individual knowledge is, as in the March 

model, computed by taking the dot product of the agent and the environment 

vector and dividing it by the number of dimensions. The parameters used in the 

simulation model are summarized in Table 6.  

 
Table 6: Simulation parameters in the interpersonal organizational learning model used 

by Miller et al. (2006) 

Parameter Value  Remarks 

n 100 Number of agents within an organization 

m 150 Number of environment and agent dimensions  

p4 [0, 1] Probability of agents learning from one of its neighbors 

it 100 Number of simulation iterations 
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Based on the interpersonal model derived above, virtual experiments are 

conducted by K. D. Miller et al. (2006). In Miller’s experiments the learning 

probability parameter p4 is set to [0.1, 0.3, 0.5, 0.7, 0.9] and the average individual 

knowledge is measured. In general, the findings of the interpersonal learning 

model are confirming the exploration versus exploitation trade-off hypothesis 

(March, 1991; K. D. Miller & Martignoni, 2011; K. D. Miller, et al., 2006). Higher 

individual learning rates (p4) achieve equilibrium faster, but compared to slow 

learning rates, attain lower knowledge levels (see Figure 13). Yet, the impact of 

slow [0.1, 0.3] and fast [0.7, 0.9] learning rates is not as pronounced as for the 

original model. 

 

 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  
Figure 13: Average individual knowledge for learning rates ranging from slow to fast 

learning in the interpersonal learning model (Miller et. al., 2006: 715)  

 

Compared to the March model, the interpersonal learning model allows deeper 

drilling into the connection between spatial structure, path dependence, and 

organizational learning.28  But again, while prior interpersonal learning models 

reflect how an organization adapts through an individual learning process towards 

an exogenous environment, it does not include the notion of unlocking. Initial 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
28 See K.D. Miller & Martignoni (2011) for a review on interpersonal learning models.   
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efforts to examine the role of variety (Kim & Rhee, 2009) and diversity (K. D. Miller 

& Martignoni, 2011) were made, but did not refer to the unlocking of organizational 

paths. Nevertheless, as the interpersonal model allows illustrating the path 

formation process and can include concepts of diversity, it serves well as a starting 

point for the integration of unlocking into the model and evaluation of different 

means to unlock paths. 

 

	    



 

	   87 

5. Development of a Formal Model 
	  

 

Common sense suggests, that individuals are not similar in every facet and may 

disagree with each other. Therefore, it cannot be assumed that individuals are 

assimilated towards one unique view of the world (Jackson, et al., 1991). Even so, 

most of the interpersonal simulation models assume, that in a stable equilibrium 

only one belief set is reproduced. The occurrence of multiple stable equilibriums, 

at the same time, is hence excluded. Furthermore, as already emphasized in the 

organizational model of path dependence, it can be doubtful that locked-in 

organizations consist of organizational members with homogenous beliefs (Sydow, 

et al., 2009). For instance, Tripsas & Gavetti (2000) argue, that within Polaroid 

multiple views, and therefore potentially multiple equilibriums, on the future of 

digital imaging were present. But in the end, adaptation failed, because the top 

management was holding wrong cognitive representations about the environment 

and suppressed opinions deviating from the, in their view dominant, razor-blade 

business model. As most simulation models don’t take into account such diversity 

in beliefs during the lock-in phase, they also do not account for endogenous 

unlocking of organizational paths. Therefore, important drivers of unlocking path 

dependence, such as cognitive dissonance, individual heterogeneity, and variety in 

practicing routines, are missing in current models (Castaldi & Dosi, 2005). For 

example, with Intel it was the culture allowing for dissonance that eventually 

unlocked the “memory path” (Burgelman & Grove, 1996), and with Polaroid it was 

the suppression of divergent views with regard to the business model, inhibiting 

the unlocking of paths (Tripsas & Gavetti, 2000). A model which wants to examine 

the phenomenon of unlocking has to integrate heterogeneity in the beliefs of 

agents or among different groups of an organization, even in the presence of lock-

in. Furthermore, it has to include, that individuals are inherently different and 

therefore, organizations naturally exhibit internal variety (Fiol, 1994; Kim & Rhee, 

2009). Dosi & Winter (2000: 5) put it more vividly, by stating that "...a model 

without heterogeneity is like a flower garden without color". Therefore, in order to 

incorporate heterogeneity, the underlying logic of agents has to be more 
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sophisticated, than purely relying on the assimilation of each organizational 

member towards a unique view. While the March model already includes the 

turnover as a mean to induce variety in the organization, which restores the 

adaptive capability of an organization in presence of change, it still misses some 

important means to unlock paths. These means include, for instance, the 

reconfiguration of the organizational structure (Biggart, 1977; Karim & Mitchell, 

2000), influence of a top management team (Beckmann & Burton, 2008), or 

changes in the corporate strategy (Burgelman & Grove, 1996). Additionally, the 

models assume, that agents are seeking to maximize their performance with 

regard to an exogenous given environment by learning from superior agents within 

the organization. Furthermore, while the speed of learning has an impact on firm 

performance, the models neglect to incorporate if agents are even able to learn 

from other, potentially superior, agents. Learning may be difficult or hardly possible 

if cognitive distance between the beliefs of agents is too large, eventually impeding 

to tap into superior beliefs of other individuals or groups (W. D. Cohen & Levinthal, 

1990; Nooteboom, 2007). Also, the physical distance between agents in the 

organization could hamper efficient interactions for exchanging beliefs (Nonaka & 

von Krogh, 2009). It simply may not be possible for individuals in corporations to 

learn from far off agents in a different department, at least not face to face. A more 

realistic understanding of how individuals learn and update their beliefs has to 

include such barriers, by constraining the potential sources of learning to the 

proximity of the agents set of beliefs (Malmberg & Maskell, 2006; Wong, 2004). 

Lastly, it is an overly simplistic representation of an organization, when not 

accounting for different business units, groups, or cultures within organizations. 

Including that corporations consist of different groups, could impede learning 

processes (Schein, 2010), or result in recombination of knowledge (Fang, et al., 

2010). It is critical, then, to extend the basic interpersonal model with regard to the 

behavior of agents in the model and means to unlock paths. 
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5.1 Adapting the Behavior of Agents 
In an organizational learning model individuals are assumed to update their beliefs 

by a process of partner selection and subsequent learning from the selected 

partner (Dodgson, 1993). While in the basic interpersonal model selection takes 

place based on maximizing the individual knowledge criteria and learning rates are 

fixed, the model at hand will include a selection and learning rule, based on 

knowledge and the similarity of agents. In empirical studies on individual and 

organizational learning, it has been shown that similarity is an important factor for 

knowledge sharing (Darr & Kurtzberg, 2000). Such an updating process might 

explain how heterogeneity emerges on organizational level. Both parts of the 

process (selection and updating) will be discussed to derive a simple, but realistic, 

algorithm for the simulation model. 

 

5.1.1 Selection of a Learning Partner 

Economic rational-agent models highlight the utility maximizing behavior of actors 

in organizations or markets (Janssen, 1993). But, as decision makers lack perfect 

knowledge, because of their bounded rationality, they may not be able to maximize 

their individual benefit (Camerer, 1998; Simon, 1972). Instead, agents search for 

new solutions among a set of given alternatives in their direct environment and 

stop, when a satisficing solution has been found (Gavetti, et al., 2012). In the 

presence of substantial uncertainty, agents furthermore rely on standard operating 

rules, narrowing the decision space to neighboring alternatives (Cyert & March, 

1963). These ideas on how individuals search in organizations are captured by the 

behavioral theory of the firm. Inspired by this theory, behavioral models, like the 

organizational learning model, emerged. Still, in these models, selection of 

learning partners takes place according to an expected individual or organizational 

benefit. Organizational learning models take, for instance, the individual 

knowledge as the decision criteria for whom to learn from. In such models, 

individuals select the best or a better performing agent and update their beliefs 

according to the belief set of these superior organizational actors (Kim & Rhee, 
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2009; Lazer & Friedman, 2007; March, 1991; K. D. Miller & Martignoni, 2011). 

Reasons to assume that individuals update their beliefs according to an utility 

maximizing rule are stated by Kenneth and Fahrbach (1999), and include: actors 

wanting to achieve their ends through obtaining superior beliefs (D. Katz & Kahn, 

1978), reducing uncertainty in decision making (Radner, 1986), conserving or 

attaining their power within the organization (Burns & Stalker, 1961; Pfeffer & 

Salancik, 1978), or acquiring new knowledge out of pure curiosity (Freedman, 

1965).29 But, Kenneth and Fahrbach (1999) also argue, that individuals are not 

only maximizing their utility by learning from superior individuals, but furthermore 

either prefer learning from similar individuals or are unable to learn from distant 

knowledge bases (see also Byrne (1971), Friedkin and Marsden (1994), and 

McPherson, et al. (2001)). For instance, in social psychology, similarity is closely 

connected to attraction and exhibiting a positive relationship (Pfeffer, 1983; B. 

Schneider, et al., 1995). Experiments showed, that if individuals share the same 

beliefs, experiences, or opinions with others, they tend to like them more, are more 

willing to exchange knowledge with them, and feel personnel excitement (Byrne & 

Nelson, 1964; Darr & Kurtzberg, 2000). According to O'Reilly (1983), information 

exchanged with similar others is also more trusted and W. D. Cohen and Levinthal 

(1990) argue, that successful knowledge transfer occurs with a higher likelihood 

between similar actors. Additionally, individuals actively seek for information 

endorsing their decisions and avoid contradicting information sources, increasing 

the probability for choosing similar individuals to learn from (Festinger, 1950, 1957, 

1964). As individuals have difficulties to change existing elements of their beliefs, it 

proves to be hard to accommodate dissonant information (Starbuck, 1996). Hence, 

updating from a partner with a similar knowledge base is preferred. For example, 

Podolny (1994) argues, that similarity is a selection heuristic for individuals 

operating in uncertain markets. Another reason for learning from similar actors can 

be found in literature on barriers of individual knowledge exchange (Cabrera & 

Cabrera, 2002). According to Darr (2000), some common understanding has to be 

present as a basis for transferring knowledge between actors. Naturally, if an 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
29 See Kenneth & Fahrbach (1999) for a detailed overview on why agents adopt superior beliefs. 
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individual is unable to evaluate new knowledge and recognize its value, because 

of a large distance in the knowledge base, selection and learning is unlikely (W. D. 

Cohen & Levinthal, 1990; Schulze & Brojerdi, 2012). As individuals "perceive, 

interpret and evaluate the world according to mental categories which they have 

developed in interaction with their physical and their social/institutional 

environment" (Nooteboom, 2000: 71), new information deviating from their current 

beliefs may not draw their attention. In conclusion, it is reasonable to assume that 

actors in organizations do not select a peer based solely on performance criteria, 

but also take into account the similarity of its counterpart. Social systems in which 

actors update their beliefs in accordance with performance and similarity criteria 

are referred to as balance and information systems (see Kenneth and Fahrbach 

(1999) for a definition). Therefore, a selection rule incorporating both criteria 

includes a factor for performance and similarity. The starting point to derive a 

similarity-performance selection rule is the computation of individual knowledge 

(agent_know), used in the organizational learning models, where knowledge is 

simply computed by the dot product of the agent and the reality vector: 

 

𝑎𝑔𝑒𝑛𝑡_𝑘𝑛𝑜𝑤!!   =   
𝑏!!,!
⋮

𝑏!!,!
∙
𝑟!
⋮
𝑟!

 . 

 

Now, instead of taking only agent_know as basis for selection, a further factor 

incorporating similarity is added. Just like calculating the knowledge value, 

similarity between agents is computed by the dot product of the belief vectors for 

two neighboring agents ni and nj: 

 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦!!!!   =   
𝑏!!,!
⋮

𝑏!!,!
∙
𝑏!!,!
⋮

𝑏!!,!
  . 
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The larger the dot product of both vectors, the more the beliefs of the two agents 

correspond. Integration of balancing between similarity and knowledge is achieved 

by putting weights adding up to one in front of the statements. Here the parameter 

sim defines, how much weight is put on the similarity aspect and (1-sim) defines, 

how much weight is put on the knowledge aspect:  

 

𝑏𝑎𝑙𝑎𝑛𝑐𝑒  !!!! = 1− 𝑠𝑖𝑚 𝑎𝑔𝑒𝑛𝑡!"#$!! + 𝑠𝑖𝑚 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦!!!!   . 

 

An agent now selects the counterpart with the highest balance value in its direct 

neighborhood to learn from. Assuming the grid representation of the interpersonal 

learning model, a random agent Ai always has four neighbors compared to its own 

position: one in the north (AN), one in the east (AE), one in the south (AS), and one 

in the west (AW). At first, the agent Ai evaluates the balance value for each of its 

four neighbors: 

 

𝑏𝑎𝑙𝑎𝑛𝑐𝑒  !!!!   = (1− 𝑠𝑖𝑚)   𝑎𝑔𝑒𝑛𝑡_𝑘𝑛𝑜𝑤!! + 𝑠𝑖𝑚 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦!!!!  

𝑏𝑎𝑙𝑎𝑛𝑐𝑒  !!!!   =    (1− 𝑠𝑖𝑚) 𝑎𝑔𝑒𝑛𝑡_𝑘𝑛𝑜𝑤!! + 𝑠𝑖𝑚 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦!!!!  

𝑏𝑎𝑙𝑎𝑛𝑐𝑒  !!!!   =    (1− 𝑠𝑖𝑚) 𝑎𝑔𝑒𝑛𝑡_𝑘𝑛𝑜𝑤!! + 𝑠𝑖𝑚 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦!!!!  

    𝑏𝑎𝑙𝑎𝑛𝑐𝑒  !!!! =    1− 𝑠𝑖𝑚 𝑎𝑔𝑒𝑛𝑡!"#$!! + 𝑠𝑖𝑚 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦!!!!   . 

 

 

Based on the calculated balance values, a learning partner is chosen according to 

the following selection rule:  
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𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛!! = 𝑟𝑛𝑑

𝐴! , 𝑎𝑔𝑒𝑛𝑡_𝑘𝑛𝑜𝑤!! < 𝑏𝑎𝑙𝑎𝑛𝑐𝑒!!!!
𝐴! , 𝑎𝑔𝑒𝑛𝑡_𝑘𝑛𝑜𝑤!! <   𝑏𝑎𝑙𝑎𝑛𝑐𝑒!!!!
𝐴!, 𝑎𝑔𝑒𝑛𝑡_𝑘𝑛𝑜𝑤!! < 𝑏𝑎𝑙𝑎𝑛𝑐𝑒!!!!
𝐴! , 𝑎𝑔𝑒𝑛𝑡_𝑘𝑛𝑜𝑤!! < 𝑏𝑎𝑙𝑎𝑛𝑐𝑒!!!!  .

 

 

Agent Ai is then randomly selecting a neighbor with a balance parameter higher 

than the agents’ individual knowledge. If no superior agent is found in the 

neighborhood, then Ai suspends the learning process for the current round. 

Otherwise, the agent updates its belief from the randomly picked neighbor. The 

updating takes places according to a learning process, through which the 

organization will adapt to its environment. 

 

5.1.2 Interpersonal Learning within the Organization 

After the partner selection procedure has been carried out, learning of beliefs from 

the selected neighbor takes place. Learning describes the process of knowledge 

acquisition from individuals and serves on an organizational level as mechanism 

for adaptation towards an exogenous environment (Gavetti, et al., 2012). The 

above discussed simulation models from March (1991) and Miller (2006) set 

learning rates exogenously, to characterize the speed and accuracy with which 

knowledge is adopted by individuals. Studies applying the organizational learning 

model, but not focusing on the influence of learning probabilities on emergent 

outcomes, sometimes keep the learning rates fixed (Fang, et al., 2010; K. D. Miller 

& Lin, 2010). In this study, the learning probability is not exogenously altered, nor 

fixed, but endogenously determined by the current state of the model. Research 

on absorptive capacity implies, that learning performance reaches its maximum 

when new knowledge is closely related to prior knowledge and decreases 

depending on the novelty of the knowledge domain (W. D. Cohen & Levinthal, 

1990). In line with this concept, learning rates are adjusted with regard to the 



 

	   94 

similarity between actors in the model. The more beliefs are shared, the easier 

learning takes place between individuals, emphasizing the importance of similarity 

for the acquaintance of knowledge. Again, the similarity measurement is used to 

derive the learning probability. The learning_prob equation delineates such a 

simple learning rule: 

 

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑝𝑟𝑜𝑏!!!! =   
!"#"$%&"'(!!!!

!
 . 

 

After the selection and learning process has been formalized, the self-reinforcing 
mechanisms, necessary to consider a process path dependent, are explained.  

 

5.1.3 Self-Reinforcing Mechanisms 

Known self-reinforcing mechanisms leading to path dependence are learning, 

coordination, complementary, or adaptive expectation effects, where none of the 

effects must be mutually exclusive (Sydow, et al., 2009). The aforementioned 

formal model depicts self-reinforcing learning effects through the selection and 

learning process. While in the original organizational learning models the learning 

process was governed by one positive feedback loop, namely the self-reinforcing 

knowledge acquisition, the extended model integrates multiple positive feedback 

loops (Figure 14). At the beginning of a round, an agent Ai randomly selects 

another agent with a higher balance value and learns from the chosen agent, with 

the learning rate depending on the similarity value. Through the updating of the 

beliefs, Ai assimilates towards the other agent, increasing on the one hand the 

similarity value, and on the other hand obtaining new knowledge. As knowledge 

depends on the accordance of individual beliefs with the environment, the external 
fit of the organization increases as well, resulting in higher firm performance.       
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Figure 14: Self-reinforcing mechanisms in the selection and learning process  

 

Beyond that, with an increase in similarity the probability of learning also increases, 

meaning that agent Ai will on average update more beliefs compared to the 

previous round. Furthermore, as similarity and individual knowledge increases, the 

probability of maintaining the selected learning partner, the strength of the bond 

between the two agents, increases as well. This cycle continues, until the 

interaction pattern eventually becomes fixed. As now not only knowledge levels 

are used as selection criteria for whom to learn from, but also similarity, it could be 

the case, that in the equilibrium state of the model no shared understanding over 

all agents exists. This may result in heterogeneous views within the organization, 

potentially facilitating the unlocking of paths. But, as put forth by Vergne and 

Durand (2010), unlocking paths also needs an exogenous shock. The next section 

will therefore address, how environmental change, and specifically an 
environmental shock, is integrated into a formal model. 

 

5.2 Integrating an Exogenous Shock 
Organizations face the problem of changing environments (Duncan, 1972). 

Reasons for turbulence in the environment are, for example, the emergence of 

new technologies, changes in consumer behavior, or political instability (Kraatz, 

1998). While environmental change may provide new business opportunities for 

an organization, it can also be detrimental for previously acquired competencies 
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(Tushman & Anderson, 1986). Organizations may find, that their existing 

competencies, beliefs, or cultures are not suitable for environmental adaptation, 

and may even become obsolete or “core rigidities” (see for examples Kiesler and 

Sproull (1982), Leonard-Barton (1992), and Moorman and Miner (1997)). In the 

absence of an exogenous shock, path dependence may be of no concern for 

organizations, or even highly efficient (Barney, 1991, 2001). It may be only when 

the environment changes, that path dependence can become a problem (Sydow, 

et al., 2009). In accordance with the definition of path dependence and punctuated 

equilibrium, environmental change in the form of an exogenous shock is a 
necessary condition to unlock paths (Vergne & Durand, 2010).  

 

5.2.1 Definition of an Exogenous Shock 

An exogenous shock contrasts to other forms of environmental change according 

to four dimensions: frequency, amplitude, speed, and scope (Suarez & Oliva, 

2005). Frequency describes how often changes in the environment occur, 

amplitude describes the magnitude of deviation from the changed environment 

compared to the initial or previous environment, speed describes the rate of 

change, and scope describes the number of dimensions, which are affected by 

simultaneous disturbances. With these four dimensions, five types of 

environmental change can be distinguished (Table 7).  

 

Table 7: Typology of environmental change according to Suarez & Oliva (2005: 1022)  

Frequency Amplitude Speed Scope Type of environmental change 

Low Low Low Low Regular 

High Low High Low Hyperturbulence 

Low High High Low Specific Shock 

Low High Low Low Disruptive 

Low High High High Avalanche 
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While the influence of different types of environmental change on a path process 

may differ, the focus here is put on the specific shock. Using the classification of 

Suarez & Oliva (2005), a specific shock occurs rarely (low frequency), but abruptly 

(high speed), with a significant impact (high amplitude), in one specific industry 

sector (low scope). With this definition, the exogenous shock can be integrated 

into the model. 

 

5.2.2 Integration of an Exogenous Shock 

As the basic organizational learning model only accounts for incremental change, 

the model must be extended with the possibility to depict an exogenous shock. 

Furthermore, the constituting dimensions for change need to be transferred into 

the formal model. As the model only looks at one organization, and not at multiple 

organizations operating in different industries, the parameter for scope of change 

is dispensable. The frequency, speed, and amplitude dimensions are captured by 

the four parameters stated in Table 8. 

 

Table 8: Parameters for extending the simulation model with environmental change 

Parameter Dimension Value range Remarks 

turbulenceRate 

 

Frequency [0, 1] States the probability of change on each of 

the environmental dimensions.  

pointOfChange 

 

Frequency [1, steps] Defines specific points during the simulation 

run at which environmental change is 

initiated. 

turbulenceRange 

 

Speed [1, steps] Defines the duration of environmental change 

in periods. 

dimensions 

 

Amplitude [1, size] Defines the number of dimensions that may 

be changed. 

 

Using these parameters, different types of environmental change can be modeled, 

and the influence on a path process may be examined. For the exogenous shock, 
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the parameters are defined as follows. The probability that change occurs is set to 

one (turbulenceRate=1). As the shock occurs only once during a simulation run, 

there is only one pointOfChange. An exact value for pointOfChange is derived 

later through parameter variation. As put forth by Suarez and Oliva (2005), an 

exogenous shock happens immediately and takes place rapidly. In a formal model 

it is therefore assumed, that a shock takes one period (turbulenceRange=1). 

Furthermore, an exogenous shock affects all dimensions of the environment with 

equal probability (dimensions=size). Next, with turnover and reconfiguration, two 

intentional means for unlocking will be derived and included in the formal model. 

Turnover has been selected to examine how the invasion of new beliefs and 

heterogeneity affect unlocking, while reconfiguration illustrates the reallocation of 

resources through a process of rotating agents in the organization (see Table 4).  

	  

5.3 Integrating Turnover and Reconfiguration 
As previously investigated in the original March model, turnover of agents is a 

strong option to induce heterogeneity into an organization for facilitating adaptation 

(Alexander, et al., 1995; March, 1991). While the original model only examined 

turnover interplaying with incremental change, here the focus is put on the 

influence of turnover in the situation of an exogenous shock, and with a similarity 

based selection and learning mechanism. 

 

5.3.1 Turnover of Agents 

A considerable amount of organizational knowledge exists in the beliefs of 

individual members. For this reason, labor turnover can hamper the retention of 

knowledge in an organization (Hollenbeck, et al., 1995). If knowledge rests solely 

in individuals, organizational lock-in should be easily overcome by selecting 

individuals with obsolete knowledge and replacing them with individuals bringing in 

new beliefs (March, 1991). However, knowledge is not only embedded in 

individuals, but also in the interactions between them. Knowledge embedded in 

interactions is less likely to depreciate, compared to knowledge possessed by 
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individuals (see for examples Argote (1999), Argote, et al. (1990), and M. D. 

Cohen and Bacdayan (1994)). Knowledge embedded in interactions is thus more 

likely to survive turnover. Even so, labor turnover may provide a reframing of 

current views in the organization and eventually lead to change (March, 1981). A 

similar mean as turnover is the reconfiguration of organizational structure through 

the rotation of agents within the organization.  

 

5.3.2 Reconfiguration 
In literature on organizational renewal, reconfiguration, restructuring, or 

reorganization is seen as a mean to overcome inertia, which is closely related to 

the concept of path dependence (Bowman & Singh, 2007; Zajac & Kraatz, 2007). 

For example, research on moving organizational members across subunits 

suggests, that member rotation can be an instrument for stimulating the formation 

of new beliefs in groups, provided that they share some common practices (A. A. 

Kane, et al., 2005). While this may hint to a potential candidate for unlocking a 

path, one has to bear in mind the differences between the formal and informal 

structure of an organization. Managers have the ability to set a formal structure in 

organizations by assigning actors to certain tasks. In particular, the formal 

structure is defined through job roles, responsibilities, and communication 

structures between actors in an organization (Child, 1972). Managers may change 

this composition in their role as organizational architects (Jacobides, 2006). The 

resulting recombination may facilitate the flow of information and stop 

dysfunctional routines, allowing for the formation of new beliefs (Jacobides, 2006; 

Simon, 1962). Influenced by the formal structure, an informal structure emerges 

through unintended interaction patterns between actors. While managers could 

rapidly alter the formal organization, the informal organization may not be affected 

to the same extent (D. Miller & Friesen, 1984; Nickerson & Zenger, 2002). 

Therefore, interactions between individuals may perpetuate informally, though the 

formal structure already has been changed. This is in line with the argument by 

Sydow et al. (2009), that path dependence develops behind the back of actors and 

is governed by hidden rules. To examine the possibility of unlocking path 
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dependence by restructuring through the moving of members, the focus is here put 

on the informal interaction processes in the organization.  
 

5.3.3 Integration of Turnover and Reconfiguration 

In the original model, turnover is achieved by randomly picking an agent and 

replacing it with a probability p3 through a new agent with a randomly generated 

set of beliefs (March, 1991). In an interpersonal learning model, with a grid 

representing the organization, turnover is integrated similar: a cell of the grid is 

randomly selected and the associated agent is replaced with a defined probability. 

While with turnover a new agent from outside joins the organization, 

reconfiguration swaps the position of two agents inside the organization. The 

rotation of organizational members is achieved by randomly selecting an agent 

within the organization and rotating it with a random other agent in the organization. 

Table 9 gives a summary of the parameters used for turnover and rotation. 

 

Table 9: Parameters for the simulation of turnover and rotation 

Parameter Value Range Remarks 

turnoverRate [0, 1] Probability of an agent being replaced after an 

exogenous shock occurred 

rotateRate [0, 1] Percentage of agents changing position within 

the organization 

 

Up to now, the organization does only contain one hierarchical level. This 

restriction is suspended and a second hierarchical level, consisting of a top 

management team, is included in the model. The influence of a hierarchy on path 

formation is emphasized by Petermann, et al. (2012), but the effects of a hierarchy 

on unlocking need further elaboration, as changes in the top management team 
may result in the unlocking of an organizational path. 
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5.4 Integrating a Top Management Team 
The top management team determines the goals, rules, strategies, and structure 

of an organization (Pfeffer & Salancik, 1978). Because of the top management 

teams influence, power within an organization is assigned to those, who are most 

suitable to manage the current problems of the organization (Thompson, 1967). 

But, in the case of environmental turbulence and decline in firm performance, the 

power structure in organizations may shift. Power is then assigned to individuals, 

who are managing the interest of the company in the new context best (J. R. 

Harrison, 2008). Such changes in the composition of the management team during 

a crisis might result in an overall corporate strategic change (Wiersema & Bantel, 

1992). This is, because in a hierarchic organization the interpretation of the 

environment is strongly influenced by the management. Hence, bringing in 

members with new cognitive models about the world, could unlock existing 

organizational paths (Wiersema & Bantel, 1993). For example, an empirical study 

on Liz Claiborne, apparel retailer and manufacturer, revealed, that changes in the 

composition of the management team lead to the unlocking of an organizational 

path (Siggelkow, 2001). The possibility of unlocking paths through the order of a 

top management team is taken into account, by including a hierarchical level in the 

simulation model. More specific, the top management team is integrated into the 

model, based on prior modeling efforts of top management teams and dominant 

coalitions (J. R. Harrison, 2008; K. D. Miller & Lin, 2010). Following this literature, 

the top management team, and its influence on the organization, is integrated in 

four consecutive steps: 

(1) The top management team is funded at the beginning of each simulation run. 

Through the parameter bestPercentage, a defined percentage of agents with the 

highest individual knowledge levels in the organization are assigned the status of a 

top management team member. For example, if bestPercentage = 0.05 and n=100, 

the five agents with the highest knowledge value in the organization are assigned 

the status of a top management team member. 

(2) In each round, members of the top management team negotiate a firm strategy 
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by using a simple majority rule. The rule proceeds as follows: on each dimension 

beliefs are summed up and divided by the number of top management team 

members. The number of top management team members is computed by 

multiplying the parameters bestPercentage with n. If the sum on one dimension is 

greater than zero, a value of 1 is assigned to a strategy vector. When the sum is 

less than zero, a value of -1 is assigned. Otherwise, 0 is given. Repeating the 

procedure for each of the m dimensions, implicates an m-dimensional strategy 

vector. 

(3) After learning from their neighbors, agents in the organization update their 

beliefs from the strategy vector with learningProbabilityFromTMT. Two parameters 

capture the updating probabilities from the strategy vector, before 

(learningProbabilityFromTMTbefore) and after (learningProbabilityFromTMTafter) 

the shock in the environment occurred. 

(4) In the case of an exogenous shock in the environment, the top management 

team may be reconfigured by exchanging current members, either with successors 

from within the organization or randomly generated agents from outside of the 

organization. The exchange type of top management team agents is captured by 

the parameter takeBestforTMT. Additionally, the parameter turnoverTMT sets the 

number of agents being exchanged after the exogenous shock. The top 

management team simulation parameters are listed in Table 10. 

 

Table 10: Parameters for the simulation of the top management team 

Parameter Value Range Remarks 

learningProbabilityFrom

TMTBefore 

[0, 1] Probability of agents learning from the strategy 

vector, before an exogenous shock. 

learningProbabilityFrom

TMTAfter 

[0, 1] Probability of agents learning from the strategy 

vector, after an exogenous shock. 

turnoverTMT [0, 

bestPercentage*n] 

Number of agents getting turned over once, 

after the exogenous shock occurred. 

bestPercentage [0, 1] Percentage of best agents assigned to the TMT 
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takeBestforTMT [true, false] true: Top management agents get replaced by 

the best agent within the organization 

false: Top management agents get replaced by 

random agent from outside of the organization 

 

 

To evaluate and analyze the influence of similarity, exogenous shocks, agent 

rotation, turnover of agents, and top management team influence on the 

organization and its ability to unlock paths, parameters measuring the outcome of 

the simulation have to be defined.  

 

5.5 Simulation Measures 
Simulation models must include measures to evaluate the outcomes for the 

different parameter alterations and simulation runs (N. Gilbert & Troitzsch, 2005). 

Furthermore, without using accurate measures, a simulation may not reveal 

interesting results. Also, measurement types vary from one simulation framework 

to another. For example, the NK framework assigns to each point in the landscape 

a performance value and measures the average performance over all iterations, 

the number of steps until a peak in the NK landscape is reached, or how many 

times a global peak is achieved (Baumann, 2008). Organizational learning models, 

like the one from March (1991), measure performance by comparing agents within 

the organization to an exogenous given environment and take the average of the 

sum over all individual knowledge values (K. D. Miller & Lin, 2010). To retain 

comparability between different learning models, a knowledge based 

measurement parameter should be maintained (Sargent, 2010). In the derived 

model, the parameter sumAvgIndKnowledge is therefore used to measure the 

average knowledge of an organization. 

As extending the grid representation with a similarity based learning algorithm may 

allow for a stable equilibrium with heterogeneous beliefs in the organization, two 
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additional measures are integrated to capture these differences between 

individuals. First, the groups measure captures the number of different belief 

vectors within the organization, and is then a measurement for the number of 

groups within an organization. For example, a group value of two suggests, that 

there exist two different groups, each holding a unique set of beliefs about the 

environment. Second, a measurement captures directly the diversity of beliefs 

within the organization. Different to the group measure, the diversity measure 

captures the number of different beliefs in the organization. For example, a value 

of one suggests, that an organization is holding all possible beliefs and may 

therefore be capable to match any changes happening in the environment. Belief 

diversity is computed similar to the diversity measurement from Kim and Rhee 

(2009) by summing up the number of different beliefs (excluding zero) per 

dimension and dividing it by 2*n. Only when all agents would not have information 

about any dimension in the environment, will the diversity value drop to zero. 

Likewise, if the diversity value equals 0.5, all agents in the organization share the 

same set of beliefs.  

At last, measures for the unlocking of path dependence are defined. According to 

Sydow, et al. (2009), it first has to be assured, that the organization is locked into a 

stable equilibrium in order to capture the process of unlocking. A lock-in is reached, 

if the organization cannot escape an equilibrium state without exogenous pressure. 

In the formal model, lock-in is therefore achieved, when the average individual 

knowledge would remain stable infinitely (see also Seidel (2012) and Meyer (2012) 

for a similar definition of lock-in in simulation models). To check for stability, a 

simple measurement algorithm compares the present with the previous average 

individual knowledge value. If the difference between the two values equals zero 

over a fixed time frame, it is assumed, that the model remains in a stable 

equilibrium and lock-in has occurred. After the presence of a stable equilibrium is 

proven, a measurement for unlocking has to be derived. Unfortunately, the current 

definition of what is meant by unlocking of organizational paths remains quite 

fuzzy (Sydow, et al., 2009). Therefore, the minimum definition of unlocking is used, 

saying, that a superior alternative compared to the state after the exogenous 
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shock has to be implanted in the organization. In the model at hand, a superior 

alternative would mean, that the average individual knowledge level must exceed 

a threshold value after the exogenous shock occurred. Therefore, the measure 

threshold defines a value that has to be exceeded a certain period of time after the 

shock occurred. A second measure, named num_unlocking, counts the number of 

simulation runs over all iterations exceeding this threshold value. Defining the 

threshold value is done by means of parameter variation, carried out in the first 

experiment. The different measures are summarized in Table 11. 

 

Table 11: Measures for simulation outcomes 

Measure Value Range Remarks 

sumAvgIndKnowledge [0, 1] Averages the knowledge over all 

agents in the organization. 

groups [0, 100] Number of different belief vectors in 

the organization. 

diversity [0, 1] Percentage of different beliefs in the 

organization. 

threshold 

 

[0, 1] Defines a performance threshold 

value for when a path is considered 

to be unlocked. 

num_unlocking [0, 300] Counts the number of iterations 

where the performance threshold 

valued was exceeded. 

 

With the formal model at hand the influence of the individual decision rule on 

breaking organizational paths may be examined. But, in order to perform computer 

experiments, the model needs to be transferred into machine-readable code.  

 

5.6 Transferring the Formal Model into Computer Code 
Implementation of the model "should achieve three goals: validity, usability, and 

extendibility" (Axelrod, 2003: 7). First, concerning usability, it must be assured that 
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simulation results, simulation procedure, and computer code are in detail and 

comprehensibly outlined for oneself, and other researchers interested in the 

simulation model. Second, the computer simulation must be extendible to ensure 

that others are able to rerun the simulation for checking and verifying results, 

altering simulation parameters, or extending the model with new features. Third, 

the computer code must be internally valid, meaning that it has to be an accurate 

representation of the formal model. Furthermore, the possibility that results are 

caused by an error or bug in the computer code has to be convincingly ruled out. It 

should be recalled that validity here refers to the transformation of the model into 

computer code and does not make any propositions about the accuracy of the 
model, nor how, or if it does reflect reality (N. Gilbert & Troitzsch, 2005).  

Bearing these three goals for programming a simulation in mind, a computational 

framework for implementing the formal model must be found. In general, there are 

two distinct approaches for transferring the model into an executable computer 

program. Either an abstract modeling tool is applied or the model is directly 
implemented by using a native computer programming language.  

 

5.7.1 Modeling Software versus Native Programming Language 
Modeling software tools provide a virtual environment for the implementation of 

simulation models. Examples for software tools include Microsoft Excel, NetLogo, 

AnyLogic, Repast, Mason, or Matlab (see Nikolai and Madey (2009) for a 

comparison of software tools for computer simulations). Most of the modeling 

software comes with function libraries, sample simulation models, editors, and 

graphical user interfaces. Some of them even require no prior coding experience. 

For instance, NetLogo replaces a higher programming language through an 

abstract representation of agents and interactions between these agents. While 

the simplicity of modeling tools may facilitate the entry into the world of computer 

simulations, there are also potential drawbacks. For example, the abstraction 

inherent in such tools may not allow for extensive models, underlying functions 

may not be well documented, and rigid frameworks might impede the 
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implementation of elaborated simulation models (Macal & North, 2010). 

Furthermore, some of the aforementioned simulation software packages are 

expensive and may be out of scope for doctoral students in the social science.30 At 

last, replication and extensibility of the simulation model is restricted to a small 
group of people, who possess and understand the modeling software.  

Some of these limitations can be avoided by using a native programming language, 

like C#, Python or Java. The downside of this approach is that all of the 

aforementioned programming languages require, at least some, knowledge about 

object oriented design patterns and programming skills are needed. On the one 

hand, using a programming language gives flexibility, as there is fewer restrictions 

compared to modeling tools and functions are well documented. But, on the other 

hand, thorough consideration must be given if the effort of learning to code and 

write functions from scratch pays out. Because it is not often known in advance, 

how the model will look in the end, an accurate approximation of the costs is hard 

to obtain from the beginning on. Nevertheless, experienced simulation scientists 

recommend modelers with coding skills to use a higher programming language like 

Java (Axelrod, 2003). Java has the advantage of effortlessly switching between 

coding and testing, and there is plenty of documentation on the programming 

language itself, as well as tutorials. Java also is widely used, making it easy to get 

assistance if needed. For these reasons, the simulation model will be implemented 

by using the Java programming language with the integrated development 

environment Eclipse Kepler and the subversion tool Tortoise (Figure 15).31 Eclipse 

and Tortoise are available for free and facilitate researchers with expertise in Java 

to easily write, check, and extend computer code. 32  To further increase 

comprehensibility, the computer code is well commented and split into several 

classes. The measurement output is displayed in the console window and 

simultaneously written to an unformatted text file. Through a parameter the output 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
30 E.g. AnyLogic (www.anylogic.de) is priced at 4,800 € for the standard license (status as of 
August 2013). 
31 A subversion tool manages changes in files and allows recovering historical versions of the 
computer code. 
32 Java can be downloaded from www.java.com and Eclipse from www.eclipse.org and is available 
for all mayor operating systems. 
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can be adapted to display the results for each time step or to display the average 

results at the end of each simulation run. Text files are optimized for the import into 

Microsoft Excel for Mac 2011, which is used to prepare the data for analysis and 
generating charts.  

 

	   

 

While the choice of a suitable simulation framework can increase extendibility and 

usability, the issue of internal validity is largely independent from this decision. 

Therefore, after implementing the formal model into computer code, it is necessary 

to check for errors and if the implemented simulation is a valid representation of 

the formal model. Subsequently, a procedure to prohibit and detect errors and 
ensure the validity is proposed. 

	  

5.7.2 Validation of the Simulation Model 
Internal validity “addresses the extent to which a simulation functions in the 

intended manner” (Feinstein & Cannon, 2002: 430). Important to note is that 

Figure 15: Screenshot of the Java IDE Eclipse 



 

	   109 

internal validity does not make any propositions about how accurate the simulation 

model captures a real world phenomenon. To guarantee internal validity, it must 

be assured that the measurement results are due to the behavior of the simulation, 

and not because of errors in the computer code. But, checking the code for errors 

is a difficult exercise, as the complexity of simulation models can quickly get 

overwhelming (Axelrod, 2007). Especially distinguishing if emergent outcomes are 

based on the behavior of the model or are merely produced by a bug in the code 

proves to be hard. Hence, there is a great likelihood that the outcomes of the first 

implemented simulation models are due to computer bugs (N. Gilbert & Troitzsch, 

2005). To assure the internal validity of the model implementation, a procedure to 

identify errors has to be put in place. Left ajar on prior literature of simulation 

verification and validation (see Axelrod (1997a); Davis, et al. (2007); Feinstein and 

Cannon (2002); N. Gilbert and Troitzsch (2005); Sargent (2010)), a four-stage 

framework will ensure the correct implementation of the organizational simulation 

model: 

 

1. Replication: The simulation model is grounded on the organizational 

learning model of James March (1991). As a starting point, March’ original 

simulation model is replicated exactly and the main findings are compared. 

If the outcomes of the replication correspond to the original model, the 

conclusion is drawn that the replicated model is a valid representation of the 

original model. Only after the basic mechanisms are accurately replicated, 

the model is extended with interpersonal learning, using the cellular 

automata approach and sequentially more mechanisms are added. 

 

2. Robustness checks and calibration: Robustness checks comprises a family 

of methods, used to alter the input parameters, while at the same time 

measuring the changes in the simulation output (Richiardi, et al., 2006). 

Through this approach, the robustness of the model and its outcomes can 

be examined and guaranteed. Robustness checks are here conducted in 

order to ensure that results are stable within a value range. Calibration of 

the simulation model is used to define the initial parameters. Following the 
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call from Richiardi, et al. (2006) to use a rigorous calibration method, a 

systematic approach is applied to set the duration of the simulation, the 

number of iterations, number of dimensions, and the grid size. 

 

3. Validation: Error free code is hard to achieve and seldom possible (Das, 

2006). Yet, through means like debugging, testing, and bug fixing, most 

serious errors may be detected and eliminated. Most of the time, simulation 

scientists check and correct code to assure that results are not caused by 

errors (Axelrod, 2003).  

 

4. Plausibility checks: Finally, common sense is important to evaluate the 

validity of the simulation model. Exceptional results should draw the 

attention of simulation scientists and need to be double-checked in order to 

avoid wrong conclusions.   

 

As even small errors in the code may have major effects on the simulation 

outcome, this complex procedure has been chosen. Although bugs may never be 

entirely ruled out, it is expected that the four-stage approach is a proper mean to 

detect most of the bugs. Subsequently, the first two stages in the error correcting 
procedure will be briefly discussed and carried out.  

 
Stage 1: Replication 

In order to build upon prior models, simulation models should be replicated to 

understand the underlying mechanisms. Because of this, the simple organizational 

learning model of March is replicated before implementing the cellular automata 

grid model.33 To do this, the original model is transferred from BASIC into Java 

code and the resulting average individual knowledge is measured. Figure 16 

compares the findings of the March model with the outcomes of the replication. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
33 As the paper of 1991 did not include sufficient information to exactly replicate the results, the 
original code of the model proved to be helpful. I hereby thank James March for his help by 
providing the original code in Basic and his remarks on the simulation model. 



 

	   111 

Even though the model is replicated exactly, small deviations arise due to the low 

number of iterations used by March and the differences between the two 

programming languages.34 Still, all functions are implemented according to the 

original code, obtained from James March, and the results qualitatively mirror the 

simulation outcomes. 

 

 
(a) 

 

(b) 

 

Figure 16: Results of (a) the original March model (March, 1991: 76) and (b) the replication 

 

Therefore, it can be concluded that the replicated model is implemented correctly 

and can serve as a basis for further extensions.35 Furthermore, it is assumed that 

the replicated model does not contain any significant errors. In the next step, the 

model is extended by assigning each agent a position in a cellular automata grid, 

instead of learning from an organizational code. For determining the range of the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
34 Random number generators, function calls etc. are just a few examples where programming 
languages may differ. “Numerical identity” can only be achieved when the same random number 
generator is used (Axelrod, 1997a). An in-depth comparison of random number generators is out of 
scope.   
35 Extensions, like personnel turnover or incremental change, are also included in the replication, 
but graphs are omitted. The results qualitatively mirror the outcome of March’ organizational 
learning model. 
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simulation parameters, robustness checks are conducted in the second stage of 

the protocol.  

 

 
Stage 2: Robustness Checks and Calibration 

By variation of initial settings and simulation parameters the robustness of a 

simulation model is checked (Richiardi, et al., 2006). When the behavior of the 

model does not significantly change with variation in initial conditions and 

parameters, the model is conceived as robust. This increases the credibility of the 

simulation model (Harrison, 2007). For similarity, rotation, turnover, or top 

management influence the parameters are altered within a range from [0.01; 1.00] 

and no extreme outcomes in average individual knowledge were observed. This 

leads to the conclusion that the model exhibits a robust behavior within this value 

range. To calibrate the model, the number of iterations, length of the simulation run, 
size of the belief vector, and size of the grid is determined subsequently.  

 

Determining the Number of Iterations  

The required number of repeated simulation runs can be approximated using the 

dimensionless variation coefficient cv, defined as the ratio of the standard deviation 

s to the arithmetic mean µ (Lorscheid, et al., 2011). Beginning with a low number 

of iterations, the variation coefficient cv is computed and the number of iterations is 

increased until it reaches a stable equilibrium. From this point onwards, a further 

increase in iterations does not contribute to the accuracy of the model, but solely 

adds computation time. Figure 17 shows cv for up to 10,000 iterations and the time 

needed in seconds to conduct the iterations of the simulation. For 50, 100, and 

150 iterations, cv is fluctuating and stability is not achieved. From 300 iterations 

onwards, cv can be considered as stable, although there is some deviation when 
compared to 10,000 iterations. 

 



 

	   113 

	  

Figure 17: Graphical approximation of iterations according to Lorscheid et al. (2011) 

 

Yet, because of the trade-off between the time it takes to run the simulation and 

the accuracy of the outcomes, for further examinations 300 iterations have been 

chosen. Furthermore, as similar models repeat the simulation runs only 50 times 

(see K. D. Miller and Lin (2010)), the 300 iterations chosen here seem to be fairly 
sufficient.  

 

Determining the Duration of a Simulation Run 

The duration or length of a single simulation run in time steps or ticks must be 

chosen to allow for a stable equilibrium. Equilibrium is here defined as a stable 

state, where the system is in balance between the forces inherent in the model. 

The stable equilibrium at the end of a simulation run also equates to an 

organizational lock-in of a path dependent process. As measure for the equilibrium 

the stability of the average individual knowledge is used. It is assumed, that if the 

knowledge remains unchanged, the underlying interaction pattern between agents 

is unable to unlock a path. Figure 18 gives the maximum time steps after which the 

average individual knowledge does not change for similarity values of 0, 0.05, 0.1, 
0.15, 0.2, and 0.25 over 300 iterations, with a grid size of 10 and agent size of 75.  
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Figure 18: Maximum number of time steps needed until equilibrium is achieved  

 

The maximum number of time steps is 123. Increasing the number of time steps 

beyond 123 steps will add computation time, but, as the system remains 

unchanged, not provide further insights. Therefore, the optimal length of the 

simulation could be set to 123 steps. Yet, as only 300 iterations are conducted, 

choosing 150 time steps adds a safety factor of approximately 20 percent. As later 

experiments include an exogenous shock, the total length of the simulation is 

therefore doubled and set to 300 time steps. This procedure potentially allows 
achieving a new stable equilibrium after the shock occurred.  

 

Determining Grid Size and Number of Beliefs 

In this section, the model is calibrated with regard to the size of the grid and the 

number of beliefs. More particular, the influence of both parameters on the 

average individual knowledge and time to equilibrium is investigated. Figure 19 

depicts the influence of grid size on the two outcome parameters for grid size 

values of 2, 5, 10, 15, 20, and 50. The similarity value is kept fixed at zero. The 

results show that increasing the grid size has a positive effect on average 

individual knowledge and a negative effect on steps until equilibrium is achieved. 
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More agents in an organization hence increases firm performance, but slows down 
the propagation of beliefs. 

 

 

Figure 19: Calibration for the size of the grid holding belief size (m=75) fixed 

 

The finding that information in smaller organizations may be exchanged faster and 

more directly, as well as that organizations with more agents and possibly higher 

variety may be able to reach a higher average individual knowledge, sounds 

plausible. A special characteristic of the simulation model is observed for grid 

sizes smaller than five. For instance, in some simulation runs, for a grid size of two, 

no equilibrium is achieved. This is, because agents may be too dissimilar to 

effectively learn from each other. For grid sizes smaller than ten, the achieved 

average individual knowledge cannot attain very high values, because the belief 

variety within the organization is not sufficient for effective adaptation towards the 

environment. Arguably, enlarging the grid size has on the other hand the drawback 

of exponentially adding computation time. For example, having a grid size of ten 

takes approximately one minute for 300 iterations. While setting the grid size to 

fifty, the time needed to finish the simulation rises to over half an hour. In view of 

the tradeoff between grid size and simulation runtime, the grid size is therefore set 
to ten. A grid size of ten is equivalent of having 100 agents in the organization.  
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Similar results are obtained when varying the number of belief dimensions for the 

agents in the organization and the environment. Figure 20 illustrates the influence 

of the belief vector size on average equilibrium knowledge and steps until 

equilibrium for 5, 10, 30, 50, 75, and 100 belief dimensions. In general, the fewer 

beliefs an agent or the environment holds, the faster equilibrium is achieved, and 

the higher the average individual knowledge. Again, an exception has to be made 

for small belief size vectors, when the number of dimensions is less than ten. Here, 

the detoriation of knowledge is caused by a crowding-out effect. Due to the 

learning process, superior beliefs may be replaced, therefore influencing 

knowledge levels negatively. Again, like for the grid size, larger belief vectors 

exponentially increase the computation time of the simulation. Therefore, a belief 

size of 75 is chosen to balance the trade-off between accuracy and computation 
time.  

 

 

Figure 20: Calibration for belief vector size holding grid size (n=100) fixed 

 
Basic Parameters for the Interpersonal Learning Model 

With the conducted calibration for number of iterations, length of the simulation, 

grid size, and belief size, a set of initial parameters ensuring reasonable results 
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have been identified. Table 12 states the parameters on which variations were 
conducted, and the values chosen for the simulation are underlined. 

Table 12: Overview of the initial simulation parameters 

Parameter Variation Remark 

grid size 2, 5, 10, 15, 20, 50 Number of consecutive rounds 

individual beliefs 5, 10, 30, 50, 75, 100 Number of repeated simulation runs 

iterations 50, 100, 150, 300, 1000, 10000 Length and width of the grid 

time steps 300 

 

Number of beliefs the reality and agents 

are holding 

 
 

After the formal model has been transferred into computer code it is used to 

conduct virtual experiments for answering the research questions. The next 

chapter describes the structure of the experiments, performs the experiments, and 
analyzes the results.  
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6. Simulation Experiments 
	  

This chapter contains simulation experiments to answer the questions, how the 

logic of unlocking can be integrated into the path dependence framework and, how 

means like reconfiguration, turnover, and a top management team influence the 

probability of unlocking organizational paths. Before the experiments are 

conducted, a simulation model depicting the three-phase path formation process 

serves as a baseline. Experiments are then performed through extending the 

baseline model. In the first experiment, an exogenous environmental shock, as the 

triggering event for unlocking, is included. If organizations can escape the lock-in, 

it is concluded that the extended model integrates unlocking and depicts a four-

phase framework of path dependence. After assuring that the model captures 

unlocking, extensions to answer the second part of the research question are 

included. While the second experiment captures turnover and reconfiguration, the 
third experiment captures the influence of a top management team on unlocking.  

 

6.1 The Baseline Model: Path Formation  
The baseline model depicts a path formation process for the different similarity 

values. The results of the baseline model not only have to show that an 

organizations is locked into a stable equilibrium, but also that heterogeneity, 

necessary for endogenously unlocking paths, is maintained during the formation 

process. To comprehend the influence of the similarity parameter on heterogeneity 

only this parameter is altered, while all other parameters are kept fixed during the 

simulation run. Through this procedure, changes in the results of the simulation 

are directly linked to the similarity based selection and learning mechanism. To get 

a fundamental understanding of the basic simulation model and why the 

performance varies with the similarity parameter, the average individual knowledge 

is measured for all similarity values and the results are outlined in Figure 21. 
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Figure 21: Average individual knowledge for similarity values between 0 and 1  

 

Figure 21 shows the importance of the first six similarity values, ranging from 0 to 

0.25, as they exhibit a great impact on the change in the gradient of the curve. For 

similarity values greater than 0.3, the gradient only changes infinitesimal	   and 

further increasing the similarity value has little impact on the average individual 

knowledge. Constraining the similarity values for further experiments to a small 

subset, ranging from 0 to 0.25, therefore results in higher clarity and the time 

needed to conduct the experiments is significantly lowered. As the average 

individual knowledge is declining with an increasing similarity parameter, an 

explanation for this effect needs to be found, in order to understand the mechanics 

of the simulation model. Digging deeper into the spatial structure of the 

organization and the temporal progression of the simulation may therefore be 
helpful. 

 

6.1.1 Analysis of the Baseline Model  

The main finding in the baseline model is that the average individual knowledge 

decreases with an increasing similarity value. Until a similarity value of 0.1 only 

slightly and from there on rapidly, until eventually dropping to an average individual 

knowledge of zero for a similarity value of one. The explanation for this behavior is 
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that with an increase in the similarity parameter, individuals are also increasingly 

restricted to learn from like-minded agents in their neighborhood and are therefore 

not able or willing to tap into the knowledge of superior agents. This is in line with 

the concept of cognitive distance (Nooteboom, 1992) or individual absorptive 

capacity (W. D. Cohen & Levinthal, 1990), which says that prior experience 

impedes individuals to absorb distant knowledge bases without much effort. The 

similarity parameter hence reflects how difficult it is for individuals to tap into 

unknown knowledge domains. Darr and Kurtzberg (2000) emphasize that with 

increasing similarity between individuals, the effectiveness of search for new 

knowledge and the adoption of knowledge increases as well. The results of the 

simulation confirm Darr and Kutzberg’s results, as they show that an increase in 

the similarity parameter for selecting other individuals to learn from also hampers 

the effectiveness of organizational learning, decreasing the average individual 

knowledge. At the same time, a decrease in average individual knowledge means 

that agents must, to some extent, disagree with the environment vector. This leads 

to the question of whether all agents disagree with the environment to the same 

extent or if beliefs of agents differ from each other. For a deeper understanding of 

the belief distribution within an organization, a look at the spatial structure of the 

cellular grid proves helpful. In Figure 22, the cellular automata grid, as a 

representation for the structure of an organization, is depicted for exemplary single 

simulation runs. The grid has a width and height of ten cells, resulting in a total of 

one hundred cells. Each number in a cell represents an individual agent, and 

agents with an identical set of beliefs are assigned the same number. In this 

context, neighboring agents with the same number and therefore the same beliefs 

are assumed to belong to the same group. A group is in the grid defined as an 

entity consisting of one or more agents sharing the same beliefs, but differing from 

adjacent agents at least on one dimension. Analogies may be drawn to 

organizational units like sales, finance, manufacturing, or marketing departments. 

Each unit comprises individuals with different skills and educational backgrounds, 

making an organization heterogeneous. Furthermore, groups may differ in their 

composition with regard to the number of agents within the group and number of 

agents connected to agents of other groups. Agents in different groups may also 
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differ in how much the belief sets correspond with each other. For example, 

engineers working in manufacturing are probably more different compared to 

marketers, as compared to engineers in R&D. 

 

(a) similarityWeight = 0.00

 

(b) similarityWeight = 0.05

 

(c) similarityWeight = 0.10

 
 

(d) similarityWeight = 0.15

 

 

(e) similarityWeight = 0.20 

 

 

(f) similarityWeight = 0.25

 
Figure 22: Emerging group structure for similarityWeight values ranging from 0.0 to 0.25 

 

In the case where the similarity value equals 0 or 0.05, all agents in the baseline 

model share the same set of beliefs and therefore belong to the same group. A 

homogenous organizational structure emerges, where agents have indirect access 

to other beliefs through their neighbors as information flows unrestrained within the 

organization. For 0 and 0.05, the baseline model reflects the results of the 

interpersonal learning model of K. D. Miller, et al. (2006). Like in their interpersonal 

organizational learning model, no disagreement on the dimensions of the 

environment exists among the agents within the organization. These results also 
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match the findings of March (1991), where all agents share the same beliefs at the 

end of a simulation run. In both models, the equilibrium is characterized through a 

lock-in where all agents share the same opinion about the environment and 

therefore unlocking, without inducing new beliefs in the organization, is impossible. 

More interesting, and different to existing organizational learning models, from a 

similarity value of 0.05 and upwards, consensus disappears and multiple groups, 

holding divergent sets of beliefs, emerge. Now, agents also conform to similar 

peers instead of only imitating the agent with the highest performance. This 

behavior leads to the emergence of distinct groups within the organization. In a 

constant environment, these groups are stable and remain unchanged in 

composition after an equilibrium state is achieved. Such a fixed and rigid 

organizational structure is characteristic for a lock-in (Hite & Hesterly, 2001). Also, 

as the performance of an organization is defined through the match between the 

belief sets of agents and the environment, the presence of two or more groups 

implies, in most cases, superiority of one group over other groups, because the 

belief vectors differ. This explains the differences in average individual knowledge 

mentioned above. Furthermore, the stability of the average individual knowledge 

and number of groups implies that agents learn from neighbors of the same group, 

despite the possible superior knowledge of adjacent agents. Therefore, even in the 

case of multiple groups, the rigidity of the organizational structure in the 

equilibrium affirms the notion of lock-in on organizational level. But, unlike Arthur's 

urn model of path dependence, yet, in accordance with the three-phase model of 

organizational path dependence from Sydow, et al. (2009), variation in agent 

behavior is still possible on group level. Since in each round the selection 

algorithm searches the agent’s immediate neighborhood for better, or at least 

equally good, performing agents, and randomly selects one of them for updating 

beliefs, switching learning partners may also happen in a stable equilibrium.  

Indeed, observing changes in interactions shows that agents are not updating their 
beliefs from only one agent, but from a variety of neighbors within the group.36  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
36 A measurement parameter named switchingInteraction counts after each run how many times 
switching of learning partners took place.  
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Considering, that according to Vergne and Durand (2010) paths can only be 

unlocked if an exogenous shock occurs, it is important to note that variation alone 

does not suffice to unlock paths. Different to prior modeling efforts, like for 

example Peterman, et al. (2012), the simulation model reflects this assumption by 

allowing for variation, but at the same time highlights that unlocking cannot occur 

solely through this variation. Specifically, agents may locally switch their 

communication partner without influencing lock-in on the macro level. Furthermore, 

the higher the similarity parameter, the more groups emerge. Here, the similarity 

based selection mechanism causes a separation effect in the organization that 

leads to homogenous beliefs within a subunit, but heterogeneous beliefs across 

subunits. While the emergence of groups can be beneficial to the diversity of 

beliefs in the organization, it is, as shown, detrimental to the average individual 

knowledge, and therefore to firm performance. Figure 23 shows the correlation 

between number of groups and belief diversity in the organization. Both, belief 

diversity and number of groups, are a measurement for heterogeneity within an 

organization (see D. A. Harrison and Klein (2007) for a description of different 
heterogeneity measures).  

 

 

Figure 23: Number of groups and belief diversity over similarity values 
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As mentioned in Chapter 2, heterogeneity is a necessary condition for unlocking 

organizational paths. Without heterogeneity a broadening in the scope of options 

in the lock-in phase is not possible. Therefore, it may be assumed that 

organizations exhibiting a higher degree of belief diversity can unlock paths more 

easily. More interesting insights into the behavior of the simulation model and the 

accompanying path formation process may be revealed, by turning from the 

spatial dimension to the temporal dimension. Initially the average individual 

knowledge amounts to zero in the path formation process. This is, because at the 

beginning of the simulation run, a third of the agents in the organization are, on 

average, right about the state of an environmental dimension, and another third is 

wrong. The remaining third has no opinion or knowledge about the environment. 

Because agents in the organization learn from their peers as the simulation 

progresses, the average individual knowledge is expected to increase over time, 

until a stable equilibrium is achieved. While the aggregated results suggest a 

constant gradient, because of the properties of Monte Carlo simulations (see 

Mooney (1997)), the situation might be different for single runs. Therefore, Figure 

24 shows the progression over time for four independent single runs, instead of 
the aggregated results. 

 

 

Figure 24: Average individual knowledge over time for random single runs and a similarity 

value = 0.2 exhibiting changing (run 1 & 2) and constant gradients (run 3 & 4)  
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Surprisingly, in some simulation runs, phases of rapid growth are disrupted by 

phases of slow growth or near-stagnation (run 1 & 2), while in other runs the 

growth remains relatively constant until lock-in is achieved (run 3 & 4). The 

development of run 1 and run 2 bears analogies to the previously mentioned 

Setterfield-Type of path dependent evolution described by Martin and Sunley 

(2010), where a temporal meta-stable equilibrium is disrupted by endogenous 

change. But, special notice should be given not to confuse such a meta-stable 

equilibrium, or phases of slow growth, with lock-in. Lock-in is a state which cannot 

be escaped without the presence of tremendous exogenous pressure for change 

(see Vergne and Durand (2010)), while in the case of a meta-stable equilibrium, 

the system may change endogenously (see Romanelli and Tushman (1994)). In 

the simulation model the similarity based selection algorithm, and depending on 

that, the learning rate, give explanations for the dissolution of such meta-stable 

equilibriums. As agents select a learning partner based on knowledge and 

similarity, it might be that agents with the highest average individual knowledge 

are merely underrepresented in the learning sample and agents learn from more 

similar agents. Because learning increases similarity, the probability of learning 

from superior agents further decreases. As knowledge is not absorbed through 

agents in the organization, the growth of average individual knowledge may slow 

down. But, when knowledge from superior agents is eventually absorbed, it may 

trigger a chain reaction. Then, knowledge rapidly diffuses within the group or 

organization, initiating a phase of rapid growth in knowledge. Even more 

interesting is, that for runs with alternating phases of slow and fast growth (runs 1 

& 2), the average individual knowledge is higher as for organizations with one 

steady growth phase (runs 3 & 4). This result reflects the finding of March (1991) 

that slow learning will generate a higher knowledge level, but at the same time 

take longer to achieve a stable equilibrium, and that fast learning will result in a 
lower knowledge level, but achieving a stable equilibrium earlier.  

Having a look at the spatial and temporal dimension of the simulation model 

helped to obtain an understanding of the mechanisms in the model. Now, the 
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results will be discussed with regard to the concept of organizational path 
dependence. 

  

6.1.2 Discussion 
In contrast to the original interpersonal learning model, the model at hand depicts 

the emergence of groups, and therefore heterogeneity, due to the similarity value 

in the selection and learning mechanism. As previously argued, agents in 

organizations do not only learn from the best performing agents in the organization, 

but also learn from similar agents. Observing the learning process over time 

shows that it still resembles a three-phase path formation process. At the 

beginning, the diversity of beliefs has to be great enough to allow the organization 

to adapt towards different environments (Phase 1). Hence, the scope of options is 

nearly unrestricted and allows for different historical trajectories. Figure 25 shows 

the diversity of beliefs within the organization over the simulation time. In the first 

phase of path formation the belief diversity has to be one, in order to allow the 

organization to adapt towards all possible states of the environment. In Figure 25, 

the belief diversity at t=0 equals one, meaning that the organization can adapt to 

all possible states of the environment. Once the selection, and subsequent self-

reinforcing learning process, takes place, this variety narrows down (Phase 2) until 

the organization eventually locks into one out of multiple possible stable 

equilibriums, which cannot be escaped endogenously (Phase 3). Figure 25 shows 

the path formation process over time for the different similarity values and 

distinguishes the three phases from each other. Depending on the similarity value, 

Phases 2 and 3 are longer or shorter, but lock-in is still achieved. The distribution 

of time to lock-in over the similarity values is inverse u-shaped, with a maximum at 

similarityWeight = 0.2 and a minimum at similarityWeight = 0.25. Hence, the 

organizational learning process is shortest for similarityWeight = 0.25. In the basic 

interpersonal learning model, with a similarityWeight = 0, only one set of beliefs is 

reproduced (diversity = 0.5). This finding matches the results of March (1991) and 

K.D. Miller et al. (2006). Different to that, in a model including non-zero similarity 

parameters, more than one set of beliefs may be reproduced (diversity > 0.5) as 
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different groups emerge. As within each group potentially a different set of beliefs 

is reproduced, heterogeneity is partly preserved over the simulation run. Especially 

for similarityWeight > 0.10 the diversity of beliefs is maintained. Still, even though 

heterogeneity is present in the lock-in, the learning pattern would be reproduced 

infinitely without pressure to change from outside of the organization (Martin & 

Sunley, 2010). Therefore, it can be convincingly argued that the model resembles 

a path formation process, while at the same time allowing for the emergence of 

heterogeneity through groups. As already laid out, heterogeneity alone is not 

sufficient for unlocking organizational paths, as it needs an exogenous shock that 

potentially triggers a reaction (Vergne & Durand, 2010). The first set of 

experiments includes an exogenous shock in the environment and considers how 
paths may be unlocked through exogenous pressure. 

 

   

Figure 25: Three phases of path formation in the baseline model 
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6.2 First Set of Experiments: Inducing an Exogenous Shock 
The baseline model resembles the three-phase path formation process from 

Sydow et al. (2009), but, at the same time, allows for heterogeneity in the lock-in 

phase through the emergence of a group structure. In this section, a series of 

experiments is addressing the exogenous shock, or punctuation, that are, 

according to Vergne and Durand (2010), necessary to unlock organizational paths, 

and potentially extends the three-phase model to a four-phase model of path 

dependence. To account for an environmental exogenous shock in the simulation 

model, the environment vector is replaced with a randomly generated vector at 

time step 150. This value was chosen to allow enough time for lock-in to be 

achieved prior to the exogenous shock, and sufficient time thereafter, to enable the 

organization to recover from the shock. With this setting, the average individual 

knowledge and the number of groups are observed for the six similarity values. 

This helps to gather a better understanding of the extended model and to figure 

out how the model depicts a four-phase path unlocking process. In Figure 26, the 

results over the different similarity values are shown and compared to the baseline 
simulation model in the previous chapter.  

 

 

Figure 26: Influence of an exogenous shock in the environment on average individual 

knowledge and number of groups 
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What immediately stands out is that the results confirm the detrimental effects, 

found by March (1991) and Seidel (2012), of environmental change on the 

average individual knowledge. The negative consequences are especially 

apparent for the case of similarityWeight = 0, where the average individual 

knowledge over all iterations drops from 0.95 to 0. This result is not surprising, as 

prior to the shock agents in the organization shared the same beliefs over all 

dimensions and belief diversity equaled zero. According to Ashby’s law of requisite 

variety, the absence of diversity in beliefs impedes the adaptation towards a new 

environment (Ashby, 1956). Therefore, the organization is not able to recover from 
the exogenous shock.  

For all other similarity values, the average individual knowledge exceeds zero after 

the shock occurred and rises to a maximum for similarityWeight = 0.2. For 

similarity values bigger than 0.2, the average individual knowledge is again 

declining. As in the baseline model, with a static environment, the relationship 

between similarity and average individual knowledge is inverse u-shaped in the 

presence of an exogenous shock. Comparing the number of groups, at the end of 

each run, for the extended model with the number of groups of the baseline model, 

it can be recognized that the number of groups diminishes (Figure 26). As the 

number of groups is directly related to the diversity of beliefs within the 

organization, it can be concluded that endogenous adaptation towards the new 

environment reduces heterogeneity. With this, the similarityWeight parameter 

extends the internal variety argument of Kim and Rhee (2009), by proposing a 

mean how variety emerges within an organization independent of external beliefs. 

To further emphasize the positive effects of heterogeneity on organizational 

change, Figure 27 depicts the change in structure, as measured by the proportion 

of iterations where the organizational structure is modified over the similarity 

values. The modification of the organizational structure is defined as in how many 

runs the structure of the groups is altered. Here, the organizational structure refers 
to the size, number, and geometrical shape of groups in the grid. 
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Figure 27: Changes in organizational structure in dependence of similarity value 

  

Again, the results confirm prior findings that heterogeneity empowers an 

organization to change (see for example T. Kim and Rhee (2009), March (1981), 

Levinthal (1991) or Hambrick, et al. (1996)). While for a similarityWeight = 0, no 

changes in the organizational structure are observed, for values greater than zero 

the situation is different. Especially for values greater than 0.15, the organizational 

structure changes in over 50% of the simulation runs and for similarityWeight = 

0.25 the percentage approaches one. It can therefore be concluded that, through 

changes in an exogenous environment, organizational change is initiated through 

the same selection and learning process, which lead to lock-in in the first place. 

But, while organizational change is a necessary condition for a path to be 

considered unlocked, it is not sufficient. Change must also lead to a higher 

average knowledge compared to the situation after the exogenous shock to be 

considered as a “real choice” for an organization (Arthur, 1994; Sydow, et al., 

2009). But, it should also be recalled that unlocking may come at a cost and 

therefore affects firm performance negatively (Vergne & Durand, 2010). So even if 

the performance does not approach the performance values before the shock 

occurred, an organizational path may still be considered unlocked, because the 

organization changed and adapted to the new environment. To sum it up, it is safe 
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to assume that unlocking occurs if after an exogenous shock the average 

individual knowledge exceeds a certain threshold performance value. This value 

might be lower as the pre-shock performance value, but higher compared to the 

performance in the period the shock occurred. To define the threshold 

performance value, Figure 28 exemplarily exhibits the probability of unlocking for 

three different threshold values. The graph shows that qualitatively the results do 

not change for different threshold values. For all three threshold values the 

probability of unlocking increases until a similarity value of 0.2 and then decreases 

again for greater similarity values. As the qualitative results remain stable over the 
similarity value, for further experiments a threshold of 0.1 is chosen.  

 

	  

Figure 28: Probability of unlocking for different threshold and similarity values 

 

Although the organizational structure does not change for a similarity value of zero, 

unlocking of paths occurs in 18% of simulation runs. This contradicting behavior 

can be explained by the properties of the exogenous shock in the simulation model. 

As the new environment is randomly determined in period 150, it can occur that 

the old and new environment match to some extent, and the average individual 
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knowledge therefore does not drop to zero when this happens. 37 The reason why 

the average individual knowledge, over all iterations, after a shock still drops to 

zero is explained by the properties of how knowledge is computed. If an agent 

matches the environment on none of its dimensions, and does not possess any 

zeros in its belief vector, the individual knowledge equals -1. But, over all iterations, 

the negative knowledge values are offset by positive knowledge values, causing 

the average individual knowledge to equal zero.  

 

6.2.1 Discussion 
The results of the first set of experiments extend the three-phase model of path 

dependence to a four-phase model of path dependence by including an 

exogenous shock. As the selection and learning process can retain heterogeneity, 

depending on the similarity value, an exogenous shock is a trigger to overcome 

lock-in and to adapt towards the new environment. Because the unlocking of paths 

is not initiated through a purposeful action, but by the same mechanisms that lead 
to the lock-in, it can be interpreted as path dissolution.  

The results also show that heterogeneity is a necessary condition in order to 

effectively unlock paths. With increasing similarity value, and along with that 

increasing belief diversity, the probability of unlocking paths is increasing until a 

similarity value of 0.25. For a similarity value of zero, where no heterogeneity is 

present in the organization, the organizational structure remains unchanged and 

unlocking can only occur if some dimensions of the environment do not change 

during the shock. Escaping an organizational path where all dimensions change, 

and without inducing beliefs from outside the organization, is not possible. But, the 

results also call attention to the adverse side of too much heterogeneity. If agents 

posses increasingly diverse belief sets they are restricted in their learning 

capability, for similarity values greater than zero. In this case, heterogeneity, 

emerging through the learning process, hampers adaptation and eventually has a 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
37 While single cases could be observed where the performance increased after the shock, the 
average behaviour shows a significant drop.   
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detrimental effect on average individual knowledge, which is seen best for a 

similarity value of 0.25. Hence, an organization has to find the optimal balance 

between heterogeneity and average individual knowledge. Prior literature already 

points out the difficulties organizations face to "embrace and manage" (D.A. 

Harrison & Klein, 2007: 1199) heterogeneity within an organization or single 

groups.38 While heterogeneity may stimulate creativity, it can also lead to conflicts, 

disagreement, paralysis in decision processes, or excessive turnover (K. Y. 

Williams & O'Reilly, 1998). Besides that, it is the negative effects of heterogeneity 

on firm performance that impede organizations to embrace heterogeneity. But, the 

results of the first set of experiments show that only if an organization allows for, 

and is capable of nurturing, heterogeneous beliefs it can effectively unlock paths. 

Therefore, to allow for the emergence of heterogeneous groups, organizational 

niches should not be assessed according to current markets conditions, but have 

to be protected from market forces. For example, Kemp, et al. (2001) showed, for 

path dependent technological regimes, that an strategic niche management, 

covering “the creation, development, and breakdown of protected spaces for 

promising technologies” (Kemp, et al., 2001:270) stimulates co-evolutionary 

processes necessary to unlock technological paths. To achieve such protection of 

niches in organizations, subsidies or groups could be semi-isolated (Fang, et al., 

2010) or isolated (Galbraith, 1982) from the rest of the organization. Means for 

organizational isolation of groups are for example the creation of skunk work units 

(Fosfuri & Ronde, 2009) or internal corporate venture programs (Burgelman, 1983). 

It seems that isolating organizational units contradicts management literature, 

which claims that organizations need to support communication and knowledge 

flow between subsidies in order to facilitate innovations (Tidd & Bessant, 2009). 

But, the finding that isolation facilitates unlocking is only true if the selection 

mechanism allow for the reintegration of diverse beliefs after the shock occurred. If 

a reintegration of beliefs through communication between members of different 

groups would not take place, meaning that the organizational structure remains 

unchanged, paths could not be unlocked. Therefore, the findings are not 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
38 See D. A. Harrison and Klein (2007) for a literature review diversity in organizations.  
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contradicting, but complementing current research by highlighting that a phase of 

isolation, emerging through segregated organizational groups, is followed by a 
phase of communication and integration of beliefs.  

Furthermore, the findings of the simulation experiments also dispenses with the 

view that outsiders are needed to unlock paths. For example, in the model of 

March (1991), only personnel turnover is considered to counteract the detrimental 

effects of environmental change when an organization is locked-in. Instead, the 

findings of the first set of experiments confirm and follow the argument of Sydow et 

al. (2005: 25), indicating that the emergent structure does not only restrain, but 

also enable interactions between agents in the organization. While Sydow et al. 

(2005) argued that the structure enables an organization to break paths, they also 

emphasized that they did not dealt explicitly with their concept of a three-phase 

model of organizational path dependence. The results of the virtual experiments 

show that the three-phase framework of path dependence can be extended to a 

four-phase framework, which includes the logic of unlocking. As stated, during the 

additional fourth phase, unlocking might occur by a belief reallocation process, 

making use of the heterogeneity present in the organization. In order to show how 

the path formation and unlocking process evolves over time, the diversity of beliefs 

for the five different similarity values is shown in Figure 29 over the time period. 

Until the exogenous shock occurs in period 150 the process mirrors the path 

formation process discussed in the baseline model. After the shock occurred the 

belief diversity decreases for all similarity values. The change in belief diversity is 

evident especially for similarity values of 0.15 and 0.2. Higher similarity values 

prevent the necessary integration, because the dissimilarity between agents is 

hampering effective learning. For lower similarity values, the organization does not 

possess enough diverse beliefs to adapt towards the changed environment. This 

again emphasizes that too much heterogeneity may hamper unlocking, and 

therefore organization should actively balance heterogeneity and performance. 

After the shock occurred, the organization adapts towards the new environment 

and a new stable equilibrium is achieved again, indefinitely reproduced in the 

absence of an exogenous shock. Like in the punctuated equilibrium, the process of 
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path formation and unlocking repeats itself until the diversity of beliefs in the 
organization equals zero.   

 

 

Figure 29: Progression of belief diversity for different similarity values in a four-phase path 

dependence framework 

 

The findings of the first experiment allow for answering the question on how the 

logic of unlocking can be included into a stage model of organizational path 

dependence. Through the similarity based selection and learning process groups 

emerge that retain heterogeneity through structural separation during the path 

formation process. Thereafter, the exogenous shock may cause an adaptation 

process, where the probability that unlocking occurs is depending on the similarity 

value of the organization. In conclusion, the model captures the logic of unlocking 

and confirms a four-phase framework of path dependence. While these 

experiments emphasize the importance of heterogeneity for unlocking, questions 

on how intentional means influence the probability of unlocking remain 

unanswered. Deliberate means to unlock paths are also described by the term 
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path breaking (Sydow, et al., 2009: 702). Therefore, the next experiments focus on 

how organizations and the associated management can intentionally make use of 

or induce heterogeneity into an organization. First, the second set of experiments 

deals with the question of how rotation and turnover of agents influences the 

chance of unlocking organizational paths. Second, the third set of experiments 

examines the influence of a top management team on the path formation and 

unlocking process.  

	  

6.3 Second Set of Experiments: Reconfiguration & Turnover  
In March’s organizational learning model the drop in average individual knowledge, 

as a consequence of environmental change, could only be counteracted through 

the exchange of agents (March, 1991). While the first set of experiments already 

showed that unlocking might also be endogenously triggered through a shock in 

the environment, it missed to include intentional means for unlocking. For this 

reason, the second set of experiments includes turnover as a mechanism for 

deliberately unlocking paths by replacing agents within the organization through 

new agents from outside of the organization. While turnover induces new beliefs 

from outside of the organization, there is also the possibility that the organization 

makes use of the internal belief variety. Therefore, the case of rotating agents 

within the organization, depicting a reconfiguration39 process of the organizational 

structure, is also examined. Reconfiguration, also referred to as restructuring in 

management literature, is used as a mechanism to adapt to changing 

environments and to break path dependencies (Zajac & Kraatz, 1993). By 

reconfiguration, through rotating agents between different groups, knowledge may 

be transferred between groups, potentially initiating a belief recombination process 

and adaptation to the environment after the shock. Furthermore, reconfigurations 

are commonly known as a way to foster innovation (Dougherty, 1992), increase 

efficiency within an organization (Bowman & Singh, 2007), and for initiating 

organizational change processes through the recombination of resources (Karim, 

2006). The second set of experiments hence attempts to answer the first two sub 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
39 Reconfiguration is referred by Karim (2006: 801) as “management of resources and structure”. 
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questions of the second research question, namely (a) how turnover, and (b) how 

reconfiguration affects the probability of unlocking organizational paths. To answer 

the questions, the simulation model of the first set of experiments has to be 

extended with parameters for turnover and rotation. The value range of the two 

parameters has been chosen based on prior literature and simulation studies. Both 

parameters exhibit a high and a low value. The high turnover value has been 

selected in accordance with the organizational learning model of March (1991). 

March has used a value of 10% for turnover of agents in the organization. Using 

this value, March found that turnover counteracts the negative impact of 

incremental environmental change. The low turnover parameter is defined with 1% 

to represent natural fluctuation within the organization. Similar, turnover values 

have been confirmed by empirical studies in management literature. For example, 

Terborg and Lee (1984) found mean turnover rates, for sales staff and the 

management for a large retailer, to be between 2% and 7%. Therefore, assuming 

turnover rates of 1% (low) and 10% (high) sounds reasonable and are not far off 

from empirical findings. With regard to the rotation rate of agents within the 

organization, it can be assumed that internal reconfiguration actions are more 

profound and so higher rotation probabilities may be achieved compared to 

turnover (Bowman & Singh, 2007). Empirical evidence that rotation rates are 

higher than turnover is provided by Campion, et al. (1994). They found a job 

rotation rate of 44% for the financial unit of a large pharmaceutical company. As 

poor performance, induced through a shock in the environment, is a trigger for far-

reaching reconfiguration activities (Levinthal, 1991), a higher value (rotation rate = 

0.9) compared to Campion, et al. (1994) is selected for the high rotation parameter.  

For a low rotation value 0.1 was chosen, meaning that 10% of the agents switch 

their location within the organization after the shock in the environment. Although 

reconfiguration could be a mean to unlock paths, the literature points out that there 

is also high risk involved, due to unintended consequences (see for example Lavie 

(2006) or Bowman and Singh (2007)). Therefore, it is not obvious if and how 

reconfiguration of the organization can unlock paths. Table 13 summarizes and 
explains the parameters for the second set of experiments. 
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Table 13: Characteristic of turnover and rotation values 

Parameter Value Range Remarks 

turnoverRate Low: 0.01 

High: 0.1 

Probability of an agent being replaced after an exogenous 

shock occurred 

rotateRate Low: 0.1 

High: 0.9 

Percentage of agents changing position within the grid 

 

After turnover and rotation parameters were defined, experiments are carried out 

through altering the parameters and measuring the effect on belief diversity, 

average individual knowledge, and in particular on the probability of unlocking 

organizational paths. The next section examines the turnover of agents, while 
chapter 6.3.2 focuses on the effects of agent rotation.  

 

6.3.1 Influence of Turnover on Unlocking 

To examine the influence of turnover on the probability of unlocking, agents are 

replaced only once after the exogenous shock occurred. In the case of low 

turnover in total 1 out of 100 agents, and for high turnover 10 out of 100 agents are 

replaced on average. This approach is different to March (1991), where agents are 

replaced continuously. But, in the original organizational learning model the 

environment changes incrementally each period, while in the model at hand the 

environment is replaced only once in period 150. Therefore, turnover also happens 

once throughout a simulation run. The impact of turnover on average individual 

knowledge is then compared to the results of the first set of experiments, which 

serves as baseline. In the first set of experiments, no intended actions to change 

the organizational structure were taken, while with turnover new beliefs from 

outside of the organization are induced. Figure 30 shows the impact of low and 

high turnover levels on the average individual knowledge. In both cases, for low 

and high turnover, exchanging agents in the organization has a positive effect on 

average individual knowledge and unlocking of organizational paths. When 

compared to the baseline scenario, an organization with turnover also achieves 
higher average individual knowledge values. 
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(a) 

 

(b) 

 
Figure 30: Average individual knowledge and probability of unlocking for (a) low turnover 

and (b) high turnover values 

 

But, while the low turnover rate only has a small impact on the outcome, the 

effects of a high turnover rate are more obvious. Like in the original learning model 

of March (1991), high turnover proves to be an effective mean to counteract the 

devaluation of knowledge. However, with increasing similarity value, the 

replacement of agents becomes less effective. A possible explanation is that the 

new knowledge, coming from outside of the organization through new agents, is 

not incorporated and newcomers are rather assimilated towards the existing 

beliefs in the organization. This explanation confirms findings of prior research on 

organizational socialization. For example, Jones (1983) has shown that 

socialization of newcomers is not only affected by organizational methods of 

assimilation, like on-boarding, but also by individual differences. For high turnover 

values and similarity values greater than 0.1, these individual differences can 

hamper the assimilation of new beliefs brought by newcomers. While turnover still 

is effective to unlock paths, the efficiency is dropping with increasing similarity 

value. This is, because with high similarity values the problem is not necessarily 

the belief diversity, but rather that new beliefs are not absorbed as high similarity 

values restrict the learning process to less distant belief sets. Therefore, inducing 
new beliefs may not facilitate adaptation towards the new environment.  

That turnover counteracts the negative consequences of path dependence, and 

helps to unlock paths, is also in line with prior research in the path literature. For 

example, Seidel (2012: 128) showed that turnover “preserves variety indefinitely” 
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and therefore is helpful to overcome lock-in. But, different to that, the results of the 

simulation showed that individual traits prevent the adoption of new beliefs. 

Besides that, as groups emerge through the selection and learning process, the 

question arises, if agents within groups or agents at the border of groups should 

be replaced. Agents within groups are only linked to agents of the same group, 

while agents at the border of groups are linked to at least one agent of another 

group. Agents at the border of groups may also be comprehended as boundary 

spanners. Boundary spanners are important for exchanging beliefs between 

different groups by negotiating between conflicting interests (R. A. Friedman & 

Podolny, 1992). In this context, boundary spanners are the connective link 

between two or more groups. Furthermore, boundary spanning is considered to be 

an explorative activity (Rosenkopf & Nerkar, 2001). Figure 31 compares the results 
for turnover of agents within and at the border of groups for the low turnover value.  

 

(a) 

 

(b) 

 
Figure 31: Average individual knowledge and probability of unlocking paths for low 

turnover (a) within groups or (b) of agents at the border of a group 

 

At first glance, comparing both possibilities suggests that average individual 

knowledge is higher if organizations replace agents within groups for similarity 

values smaller than 0.15. But, this impression is deceptive. If the organization 

consists of one group, for example with a similarity value of zero, obviously no 

turnover at the border of a group is possible. Thus, the average individual 

knowledge cannot recover and remains stable at zero. If the organization consists 
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of multiple groups, the difference between the two types of turnover diminishes. 

For similarity values greater than 0.15, the number of agents being replaced is, on 

average, the same for both turnover types. Therefore, it can be concluded that the 

type of turnover has no impact if the same amount of agents get replaced. After 

examining the impact of turnover on the probability to unlock paths, attention is 
turned towards a reconfiguration process within the organization. 

6.3.2 Influence of Reconfiguration on Unlocking 

In case of an organizational crisis, managers may decide to reconfigure the 

organizational structure in order to improve the ability of the organization to absorb 

new knowledge (Karim, 2006; Van Den Bosch, et al., 1999). As previously 

mentioned, the organizational structure is represented through the different groups 

and the position of agents within the grid. The rotation of agents alters the position 

of agents in the organization and therefore changes the group composition. 

Because of this, the rotation of agents is used to depict an organizational 

reconfiguration process. By interchanging agents between different groups, belief 

sets that are new to the group are induced. Instead of introducing belief sets new 

to the whole organization through personnel turnover, rotation only uses the 

variety already present within the organization. Figure 32 constitutes the impact of 

low and high rotation rates in dependence of the similarity value on the average 
individual knowledge and the probability of unlocking. 

                                            

(a)	  

 

(b)	  

 
Figure 32: Average individual knowledge and probability of unlocking for (a) low rotation 

and (b) high rotation values 
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For similarity values smaller than or equaling 0.10, the rotation probability has only 

little impact on the average individual knowledge and the probability of unlocking. 

This can be explained through the absence of belief diversity, best pictured by 

Figure 22, showing the organizational structure. Again, different belief sets are 

needed in order to adapt towards a changing environment. But, the rotation of 

agents does not induce new beliefs in the organization as it makes use of beliefs 

already existing within the organization. Because belief diversity is low for 

similarity values smaller than 0.10, adaptation is difficult. The situation is different 

for similarity values larger than 0.10. Getting back to Figure 32 shows that, for 

similarity values greater than 0.10, multiple groups emerge and therefore diversity 

of beliefs, which is positively correlated to the number of groups, exists. 

Furthermore, in comparison with the results of the first experiment, where an 

exogenous shock in the environment has occurred, the rotation of agents within 

the organization leads to a higher average individual knowledge. Also, when 

compared to turnover, the rotation of agents within the organization seems to be a 

good instrument to unlock paths for high similarity values. This is in particularly 

apparent for the similarity value of 0.25 and a high rotation rate, where the 

probability of unlocking rises from approximately 30% for turnover to over 80% for 
rotation.  

 

6.3.3 Discussion 

Depending on the similarity parameter, turnover and the rotation of agents may 

prove to be good means for intentionally unlocking paths. While for low similarity 

values turnover has a great effect on the ability of organizations to unlock, rotation 

is especially useful for high similarity values. With regard to the four-phase 

framework of path dependence, Figure 33 and 34 below show the connection 

between learning over time and diversity of beliefs. For turnover (Figure 33), the 

diversity of beliefs increases after the shock to nearly one for all similarity values. 

As time passes, the organization adapts, in particular for low similarity values, and 

diversity decreases again. Hence, the process almost resembles the prior path 

formation process, as the organization exhibit high diversity of beliefs through the 
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new beliefs coming from the new agents. This punctuates the findings of March 

(1991) and Seidel (2012) that turnover can obtain, and therefore prevent a stable 

equilibrium phase like lock-in, or restore the variety of beliefs within the 

organization. Hence, turnover facilitates an organization to forget its history and 
the negative effects associated with the development of knowledge over time.   

 

 

Figure 33: Progression of diversity for high turnover according to the four phase path 

model 

	  

For rotation of agents between organizational groups (Figure 34), changes in belief 

diversity are greatest for the three highest similarity values. The maximal change 

is achieved for a similarity value of 0.20. For this similarity value the belief diversity 

is great enough to allow unlocking, and restriction on learning from others is little 

enough for the absorption of new beliefs. But, different to turnover, belief diversity 

is not restored and decreases for rotation over time, hence infinitely unlocking of 

organizational paths is not possible. Rather, switching the position of agents 

makes use of existing diversity, instead of inducing new beliefs. The variety of 
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beliefs could also be comprehended as an organizations resource configuration, 

and resources which are not contributing to adapt towards the environment can be 

attributed to slack resources (Voss, et al., 2008). After the exogenous shock 

occurs, these slack resources are reassigned and dissolved due to the rotation of 

agents. In conclusion, the second set of experiments showed that organizational 

paths can be unlocked more effectively, compared to the results of the baseline 

experiments, if an organization actively induces new beliefs into the organization, 
through turnover or by recombination of existing beliefs through reconfiguration. 

 

  

Figure 34: Progression of diversity for high rotation according to the four phase path model 

 

Furthermore, the results hint to the ability of an organization to endogenously 

unlock paths for high belief diversity values. Endogenously unlocking paths by 

means that make use of existing beliefs should even be favored over turnover for 

higher similarity values. But, on the other side, it has also been demonstrated that 

in the absence of belief heterogeneity, turnover is an important instrument for 
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unlocking paths. Therefore, an organization has to evaluate its internal situation in 
order to make use of the appropriate mean to unlock paths.  

Unlike the baseline experiments, this chapter did consider intentional means for 

escaping paths, but still missed to view an organization as a hierarchical system. 

As the findings of Petermann, et al. (2012) showed the importance of a hierarchy 
on the path formation process, it may also be relevant for the unlocking process. 

Hence, in the third set of experiments, the simulation model is extended through a 

hierarchy, represented by a top management team, that is shaping the beliefs of 
individuals in the organization.  

	  

6.4 Third Set of Experiments: Influence of a Management Team 
In the strategic management literature the top management team is regarded as 

the strategic apex of an organization, responsible for coordinating the behavior of 

individuals in the organization by aligning it towards the corporate strategy 

(Mintzberg, 1979; Wiersema & Bantel, 1992). Coordination is defined, according to 

H. Arrow, et al. (2000), as a mean to achieve agreement between organizational 

members through generating an interpersonal shared understanding of information 

and events. Unlike the simulation model of Petermann, et al. (2012), in which the 

effect of span of control and leading power on the path formation process are 

emphasized, the inclusion of a top management team is a simple representation of 
a hierarchy.   

 

6.4.1 Top Management Team Influence on Path Formation 

In the model, the top management team agrees on a strategy from which 

individuals within the organization update their beliefs, regardless if the beliefs of 

the strategy are wrong or right. Average individual knowledge measurements are 

then made for the case of low (p=0.01) and high (p=0.1) influence of the strategy, 

and therefore the top management, on individuals (Figure 35). To visualize the 

impact of the top management team, the average individual knowledge is shown 
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over the number of steps in the simulation in the absence of any environmental 

change. In the case of low influence, the average individual knowledge for 

similarity values over 0.1 does not achieve a stable equilibrium throughout a 

simulation run of 300 steps. Despite that, the average individual knowledge 

improved compared to the situation without a top management team for similarity 

values of 0.15, 0.2, and 0.25. The effect is especially evident if top management 

team influence is high, as the average individual knowledge for similarity values 
greater than 0.1 increases drastically.      

 

(a) 

 

(b) 

 
Figure 35: Convergence of average individual knowledge for (a) low and (b) high top 

management team influence 

	  

An explanation for the improvement in average individual knowledge can be found 

in the coordination effect of the top management on the learning and socialization 

process of individuals in the organization. As the top management consists of the 

agents with the highest performance at the beginning of each simulation run, and 

agents within the organization update their beliefs from their strategy vector, a 

positive first order effect on the average individual knowledge exists, as agents are 

assimilated towards the strategy vector over time. Furthermore, a second order 

effect arises, because agents develop a shared meaning through updating their 
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beliefs from the strategy vector and thus, interpersonal learning is facilitated, in 

particular for high similarity values. However, for similarity values less or equal 0.1, 

a slight decrease in average individual knowledge, compared to the standard 

interpersonal learning model is observed. An explanation of this is provided by the 

constituting property of the strategy vector. Even if agents within the organization 

achieve superior knowledge by means of belief recombination, these agents still 

update their beliefs from the top management team. So, even if an agent has 

superior knowledge, it will still conform to the top management team and adopt 

inferior beliefs detrimental to the average equilibrium knowledge. The existence of 

a top management team also influences the belief diversity within an organization. 

Figure 36 displays the consequences of a top management team with high 
influence on the diversity of beliefs within the organization.  

 

 

Figure 36: Belief diversity for similarityWeight = 0.2 with and without top management team 

influence 

 

Updating from the top management team implicates that diversity decreases and, 

correlated with that, the average number of groups. As previously shown in the 
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first set of experiments, an organization consisting of agents with homogenous 

beliefs hampers unlocking, because of the lack in belief diversity. Hence, 

coordination through a top management team will negatively affect the probability 

of unlocking. In the next step, the effects of a top management team on unlocking 
in the presence of an exogenous shock will be examined.  

 

6.4.2 Top Management Team Influence on Unlocking 

In this section, the top management is replaced to support unlocking by 

introducing heterogeneity. In general, a heterogeneous top management team 

enhances an organization to take action and react to a changing environment 

(Hambrick, et al., 1996). As mentioned before, the poor firm performance after an 

exogenous shock puts pressure on the top management members, challenging 

the current composition of the team. A crisis, triggered by the shock in the 

environment, can lead to the replacement of top executives (Tushman & Romanelli, 

1985; Wiersema & Bantel, 1993). If the forces of change succeed, the level of 

replacement may vary (Barker III, et al., 2001), and the top management will be 

exchanged partially or completely. Both possibilities are included in the model 

through either replacing one of the five top management agents (low turnover) or 

all agents at once (high turnover). Unlike before, however, agents in the 

organization start learning from the top management team after the environmental 

shock occurred. Still, the top management team is established at the beginning of 

the simulation and remains fixed until the shock occurs. The effect of the two 

different turnover rates, for the six similarity values, on unlocking of paths and 

average individual knowledge is depicted in Figure 37. High turnover of the top 

management team has a great impact on average individual knowledge and the 
probability of unlocking.   
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(a) 

 

(b) 

 
Figure 37: (a) Average individual knowledge and (b) probability of unlocking for low and 

high top management team turnover and slow updating from the strategy vector 

	  

An explanation can be found in the number of new beliefs the new top 

management agents bring into the organization, and the diffusion of these beliefs 

to organizational members. But, in contrast to turnover of individuals, top 

management team turnover is also a good mean for unlocking, when high 

similarity values are present. This becomes particularly apparent when the 
influence of the management on agents is high. 

 

(a) 

 

(b) 

 
Figure 38: (a) Average individual knowledge and (b) probability of unlocking for low and 

high top management team turnover and fast updating from the strategy vector 
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The graphs in Figure 38 show that the difference between high and low turnover 

diminishes for increasing similarity values. Here, in particular the second order 

coordination effect has a major influence on unlocking. For example, for 

similarityWeight=0.25, the variety induced through the new top management team 

members seems to have no great effect on the ability to unlock paths, or the 

average individual knowledge. Instead, updating from the strategy vector creates a 

common ground for interactions between agents and enables new interaction 

structures. Knowledge can be updated between dissimilar agents in the 

organization with greater ease, and may even help to adapt to the new 
environment.  

6.4.3 Discussion 

Top management team influence has a strong impact on the process of unlocking. 

During the path formation process fast updating from a strategy vector decreases 

variety, but increases average individual knowledge. On the other hand, when the 

top management team is formed at the beginning, but agents neglect to update 
their beliefs from the strategy vector, diversity is preserved (Figure 39).  

 

Figure 39: Influence of the top management team on belief diversity for high turnover and 

fast updating from the strategy vector
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Still, the organization will lock into a stable equilibrium until the environment 

collapses. Here, replacing the top management team can help organizations to 

unlock paths, because firstly, new management agents induce variety for low 

similarity values and secondly, learning between heterogeneous agents is 

facilitated for high similarity values through coordination. In contrast to turnover 

and rotation, the replacement of top management team members proves to be 

effective over all similarity values. 

 

6.5 Comparison of the Simulation Outcomes 
	  

The series of simulation experiments examined the phenomenon of unlocking 

organizational paths by integrating the logic into a four-phase model and testing 

means to unlock paths. The findings show that unlocking according to the four-

phase model of Sydow, et al. (2005) is possible, even if no intentional means are 

applied. Although only one set of options is practiced during the lock-in, leaving the 

organization trapped into a stable equilibrium, unlocking can be triggered through 

an exogenous shock. The heterogeneity present within the organization is then 

used to unlock paths in phase four, as depicted in Figure 6. This also confirms that 

means that are characterized by heterogeneous agents with diverse beliefs about 

the state of the environment40 can enable the unlocking of organizational paths. 

For intentionally unlocking paths, turnover and rotation of agents were proposed 

and examined, as they depict the means of invasion and reallocation of resources 

(Table 4). At last, the influence of a top management team on the unlocking of 

paths was examined. Thus far, the proposed means were not compared with each 

other but viewed separately. To answer the second research question of how 

turnover, reconfiguration, and top management team influence affect the unlocking 

of organizational paths more thoroughly, this section compares in Table 14 the 

impact of the different means, contingent on the similarity value. Through that, this 

discussion extends the findings and shows how a specific mean affects unlocking 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
40  These means are listed in Table 4 and comprise cognitive dissonance between agents in the 
organization, diverging behavior, by-product of path formation or imperfect adaptation. 
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in relation to other means. Although all proposed means are not mutually exclusive 

and could be combined, they are here compared independently with regard to the 

probability of unlocking paths. Further simulation experiments may combine these 

means and examine interaction effects between them. In Table 14, the most 

effective mean to unlock paths is highlighted with a dark grey background, and the 

second most effective is marked in light grey. Noticeable, turnover of the top 

management team proves to be effective over all similarity values, regardless if the 

influence of the hierarchy is high or low. According to this result, it is advisable for 

organizations to exchange the management team in order to escape paths. New 

beliefs induced into the organization through the replaced management and the 

communication of a new strategy produces heterogeneity and facilitates the 

coordination between agents. While for a low similarity value the organizations 

benefits from the imported beliefs through the new management team members, 

the coordination effect is the driver of unlocking for a high similarity value. For a 

low (similarity = 0.00) and high (similarity = 0.25) similarity value, the second most 

effective means are turnover and rotation of agents. As organizations with a low 

similarity value also exhibit low heterogeneity, turnover induces the beliefs 

necessary to unlock paths. High turnover even ensures the unlocking of 

organizational paths in the simulation model (unlocking = 1.0) for a low similarity 

value. When heterogeneity is high (similarity = 0.25), rotation is the second most 

effective mean after the replacement of the top management team. As the 

organization already shows great heterogeneity, importing new beliefs is less 

effective than making use of uncommitted beliefs. Making existing beliefs 

accessible to other groups, through the reconfiguration of the organization, proves 

to be more effective. For a medium similarity value (similarity = 0.20), the 

replacement of the top management team with low influence of the strategy vector 

is the second most effective mean. Still, at this point, turnover and rotation achieve 

high values in the unlocking of paths and a combination of different means could 

obtain a higher unlocking probability. With regard to the second research question, 

it can be stated that top management team influence has the highest impact on 

unlocking of paths over all similarity values and that the impact of turnover and 
rotation on unlocking depends on the similarity value.  
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Table 14: Comparison of means to unlock paths for low, medium and high similarity values  

 

Similarity = 0.00:  

Parameter Shock 
Turnover Rotation TMT (0.01) TMT (0.1) 

Low High Low High Low High Low High 

Unlocking  0.17 0.47 1.00 0.18 0.22 0.52 1.00 0.51 0.95 

Diversity 0.50 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 

Knowledge 0.00 0.11 0.49 0.00 0.01 0.11 0.36 0.11 0.29 

 

 

Similarity = 0.20: 

 Parameter Shock 
Turnover Rotation TMT (0.01) TMT (0.1) 

Low High Low High Low High Low High 

Unlocking  0.53 0.57 0.79 0.67 0.72 0.62 0.8 0.81 0.93 

Diversity 0.69 0.75 0.79 0.73 0.65 0.68 0.65 0.50 0.50 

Knowledge 0.18 0.16 0.22 0.18 0.22 0.18 0.22 0.45 0.50 

 

Similarity = 0.25 

Parameter Shock 
Turnover Rotation TMT (0.01) TMT (0.1) 

Low High Low High Low High Low High 

Unlocking  0.33 0.27 0.45 0.59 0.80 0.58 0.65 0.99 0.99 

Diversity 0.94 0.96 0.95 0.92 0.90 0.92 0.90 0.53 0.51 

Knowledge 0.08 0.08 0.14 0.15 0.19 0.17 0.19 0.70 0.73 

	  

 

Finally, the findings also have practical implications for organizations and their 

management. First, the management needs to observe the diversity in the 

organization during the path formation process in order to decide which mean is 

appropriate to unlock paths (e.g. turnover or rotation). Measuring heterogeneity is 

a difficult endeavor, but adequate methods are already available. For example, 

measuring the degree of heterogeneity through a real options analysis is still a little 

used, but powerful, method to evaluate the scope of strategic choice (McGrath, et 

al., 2004). If managers notice a decline in the number of real options, they might 
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take action by creating organizational niches with diverse individuals (Hannan, et 

al., 2003). The results of the simulation experiments show that organizational 

niches with distinct groups are a ‘breeding ground’ for diverse beliefs and can help 

to unlock paths. Second, in the case of perceived or real strategic inflexibility, the 

suggested means may give guidance to managers or the board of directors. If an 

internal analysis shows that the organization does not possess heterogeneity, 

such as in the form of slack resources and real options, integrating external 

knowledge through turnover is advisable. On the other hand, if the organizations 

can draw on a diverse set of beliefs, it should aim for reconfigurations and 

coordinate through the implementation of a new strategy. However, resistance to 

change can be a barrier to intentional actions through the management or board 

and must be taken into account (see for example Ford, et al. (2008)). Third, to 

prevent a detrimental lock-in situation, managers should take preventive measures 

through supporting heterogeneity within an organization. In the R&D and 

innovation management literature several practices to enhance heterogeneity are 

known. Without any claim for completeness, activities like corporate venturing 

(Block & MacMillan, 1995), open innovation (Chesbrough, 2003), crowdsourcing 

(Affuah & Tucci, 2012), skunk works (Fosfuri & Ronde, 2009), business 

accelerators (Wolcott & Lippitz, 2007), and flexible R&D management (Niosi, 
1999) may potentially increase heterogeneity. 

The next chapter concludes the dissertation by giving a brief summary and hinting 
to limitations of the work and future research. 
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7. Summary, Limitations & Further Research 
	  

7.1 Summary 
The present work is an early attempt to integrate unlocking into the concept of 

organizational path dependence. Building upon prior management literature on 

path dependence, necessary conditions and means to unlock paths were derived 

in order to come up with a simulation model. The simulation model took into 

account that individuals in organizations are subject to restrictions when learning 

from other agents. Following a simulation research protocol, the model was 

translated into computer code to perform virtual experiments. The baseline model 

proved that under the constituting properties of a path dependent process, self-

reinforcing mechanisms will lead to organizational lock-in. Furthermore, it has 

been shown that isolated groups can emerge through the similarity based 

selection and learning process, even under the properties of a path-dependent 

process. The more groups emerge, the higher the diversity of beliefs in the 

organization. In the case of a static environment, belief diversity impedes proper 

adaptation, and therefore results in poor firm performance, represented through 

the average individual knowledge within an organization. These findings highlight 

the importance of the similarity based individual selection and learning mechanism 

in organizations, and extend prior research on organizational learning and path 

dependence. In accordance with the definition of path dependence, diversity alone 

does not allow for unlocking in a static environment. The diversity captures the 

variation present in social behavior, and therefore reflects the notion of the 

“shadow” in the lock-in phase of the three-phase model of path dependence. Even 

when diversity is present within an organization, path dependence can emerge on 

organizational level and prevent adaptation towards an environment in the lock-in 

phase. This finding is important, because without diversity, unlocking of paths is 

not possible. With the base model reflecting a path dependent process, a trigger 

for unlocking needs to be induced. Hence, the first set of experiments integrated 

an exogenous shock into the simulation model, and demonstrated that through 

changes in the environment, organizational transformation processes may be 
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triggered. The results show that if an exogenous shock occurs, unlocking is only 

possible for environments that share similarities with the prior environment, or for 

organizations consisting of different groups holding diverse set of beliefs. But the 

results also emphasize that too much diversity, emerging from high similarity 

values, hampers effective adaptation to a changed environment. Under the 

assumption of the selection and learning mechanism, these findings suggest that 

organizations should not strive for too much diversity in order to unlock paths, but 

instead find a balance between diversity and adaptation towards the environment. 

With these results at hand, it can be stated that the presence of an exogenous 

shock and heterogeneity is important for endogenously unlocking paths. As the 

environment changes, and therefore also the selection criteria, agents may switch 

their learning partner and the recombination of beliefs leads through a chain 

reaction to adaptation to the new environment. Hence, different to prior simulations 

in path research, the study removes limitations by taking into account the 

organizational structure, and shows that structural changes, initiated by the same 

learning mechanism that lead to path dependence, can also lead to the unlocking 

of paths. With regard to the first research question, it can hence be said that the 

results of the simulation confirm that paths can be endogenously unlocked in the 

presence of an exogenous shock and heterogeneity, according to the four-phase 
path model proposed by Sydow, et al. (2005).  

After it has been proven that the dissolution of paths is indeed possible, even 

without inducing new beliefs from outside of the organization, the second set of 

experiments tested how paths can be unlocked through intentional actions. With 

turnover and rotation, two distinct approaches, proposed by the literature as 

means to break paths, have been tested. Turnover induces new beliefs from 

outside into the organization, while rotation makes use of already existing beliefs. 

The results show that for low similarity values, high turnover proves to be very 

effective to counteract the detrimental effects of an environmental shock, while for 

high similarity values reconfiguring the organization through rotation increases the 

probability of path unlocking. Furthermore, through intentional means the 
probability of unlocking increases, compared to endogenous path dissolution. 
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Because prior research has shown that a hierarchy influences the path formation 

process, it may be assumed that it also affects the unlocking of paths. Therefore, 

in the third set of experiments, a hierarchical level, represented by a dominant top 

management team, was added to the simulation model to investigate the influence 

of a hierarchy on the ability to unlock paths. The findings imply that, while 

authorities impose their beliefs on individuals, the resulting coordination effects 

lead to a higher average individual knowledge in the path formation process for 

similarity values greater than 0.1, but at the same time hamper the probability of 

unlocking. Exchanging members of the top management team after a shock 

occurred is, like turnover, inducing belief variety in the organization and proves to 

be a powerful mean to unlock paths. With respect to the second research question, 

it can therefore be stated that rotation, turnover, and top management team 

influence have a positive impact on the probability of unlocking. Without taking 

similarity into account, labor and top management team turnover prove to be most 

effective, while for medium and high similarity values rotation and coordination 
through a top management team are more effective.  

While the findings extent the theory of path dependence, by showing how 

unlocking can occur, special caution must be exercised, because of the limitations 
of the study.  

 

7.2 Limitations 
While taking great care to ensure accuracy, the conclusions drawn from the 

findings of the simulation study also exhibit limitations. Like every other method, 

computer simulations in general have a number of disadvantages. First, as 

computer simulations are based on virtually constructed worlds, no statements can 

be made if the findings hold in the real world. Therefore, it is proposed to examine 

the findings empirically. As pointed out in Chapter 3, laboratory experiments are a 

good mean to prove path formation empirically, and could also help in identifying 

the unlocking of paths. With the help of experiments, the findings should be 

reproduced and independently verified in a social context. Again, a precautionary 
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approach has to be taken in order to model path dependence accurately. As a 

simulation model is always an abstraction from reality, and is not able to capture 

all possible interdependencies, omitted moderating variables could influence the 

results. For example, dissimilarity in organizations is here treated as a mean to 

induce heterogeneity. But, in reality, heterogeneity also negatively influences 

turnover rates (Jackson, et al., 1991). These interdependencies are not considered 

in the current model. But, by replicating and building upon a proven organizational 

learning model, it is expected that findings will correspond with the reality. Also, 

while the code was debugged, the probability of errors cannot be completely ruled 

out. However, using the proposed four-phase approach to detect inconsistencies, 

major errors should be avoided. Further limitations of computer simulations in the 

field of path research can be found in Petermann (2010) and Seidel (2013). 

Furthermore the similarity-based selection and learning algorithm must be 

investigated to make sure that the behavior occurs in organizations and has the 

proposed outcomes on unlocking. The segregation effect of the learning 

mechanism needs therefore to be elaborated empirically. For example, a study 

about learning in different organizational units after restructuring could generate 

new insights on how learning takes place in organizations between dissimilar 

individuals.  

 

7.3 Further Research  
While this work provides a first initial step on the topic of unlocking, more research 

must be conducted to fully understand the concept. But, besides conducting 

empirical research, the simulation model itself opens up several possibilities for 

further extensions. Unlocking in the present model is possible because of the 

heterogeneity, arising of the similarity-based selection and learning algorithm. 

Beyond that, further approaches to unlock paths, such as errors appearing during 

social interactions (K. D. Miller, et al., 2006), variation mechanisms in the learning 

and communication process (Pentland, et al., 2012), or imperfect social adaptation 

(Walsh & Ungson, 1991), could be used to show how unlocking can occur. The 
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micro-foundations of organizations may hence help to better understand the 

concept of unlocking. Also, while it is argued that the simple selection and learning 

rule captures the social behavior of individuals in the organization, a more complex 

rule might depict organizational behavior more accurately and reveal new insights. 

For example, agents could base their decision on who to interact with more 

advanced criteria, like differently-weighted similarity categories or other barriers of 

tapping into new knowledge. A good starting point is the innovation management 

literature and research on innovation barriers. One can also think of different rule 

guided individual behavior besides the applied similarity rule such as conformity, 

opportunism, or creativity, and examine how these micro behaviors alter the 

outcome of the simulation. Furthermore, the model assumes that each agent is 

linked to four of its neighbors. The results may change if the number of links or the 

distance between agents is increased, making it possible for agents to tap into 

knowledge of distant agents. Furthermore, more complex organizational structures 

could be depicted using the existing model. One could drill deeper into the group 

structure, and have a look on how group size, shape of groups, or distance of 

individual belief sets amount to the probability of unlocking paths. Expected 

findings could hint to organizational structures that are more resilient for unlocking 

organizational paths, and may guide organizational designers. As individuals in 

organizations are seldom the ones determining the structure through their 

emergent behavior, the results might change if the structure is kept fixed or initially 

specified by the management. This work shows that heterogeneity plays a major 

role in unlocking of organizational paths. But while the model at hand is a first 

avenue to highlight heterogeneity, it does not go into the concept in depth. Future 

work should hence dig deeper by breaking down heterogeneity into different items. 

For example, the distance of belief sets between different groups in the 

organization, the number of different belief sets, or how disperse the set of beliefs 

are distributed within the organization could be measured. Some of the 

measurement parameters are already included in the computer code, and 

mechanisms for the evaluation have been defined. The model can be extended to 

accommodate some of the aforementioned concepts. While there could possibly 

be more limitations, at last some concluding remarks will be mentioned.   
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7.4 Concluding Remarks 
The results of the simulation model confirm that unlocking in organizations can 

occur and show means for intentionally unlocking paths. Although simulation 

studies simplify social processes, the generated findings provide a guideline for 

empirical research. Research on technological path dependence started with a 

formal model and was then successively tested empirically. Therefore, starting off 

with a simulation model could stimulate the discussion on unlocking, and give an 

impulse to further empirical research. The call for more research on unlocking of 

organizational paths, in order to give a more complete understanding of path 

dependence, is shared by researchers. Now that unlocking according to the four-

phase path model is confirmed, and potential drivers for unlocking are identified, 

the construct can be explored deeper to extend the theory of path independence.  

The rich knowledge about how organizations could unlock paths may also inform 

practitioners on how to design organizations and react to lock-in. A better 

understanding about the connection between heterogeneity, lock-in and unlocking 

can be a guideline for designing organizations and initiating change process. 

Remarkable, heterogeneity does not automatically imply flexibility, but is 

moderated by the organizational structure and learning processes. Therefore, only 

inducing heterogeneity is not sufficient to unlock paths. In summary, the 

dissertation shows the importance of similarity, heterogeneity, learning, structure, 

and intentional means to unlock paths and serves as a first reference and stimulus 

for further research in this direction. Picking up the example of IBM from the 

introduction of the dissertation, and taking these results as a basis, one could 

assume that IBM was able to change because of heterogeneous resources within 

the organization. Through structural integration of heterogeneous beliefs, and 

coordination through a new top management as an intentional mean to unlock 

paths, IBM could have been able to adapt to a changed environment. Effectively, 

following the story of Louis Gerstner, it was not only him as a former CEO driving 

the change of IBM into a modern service-oriented company, but also the slack 

resources available within the organization. Yet, if a similarity based learning 

mechanism lead to the evolution of such slack resources, remains unexplored.  
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A. Appendices 
	  

In the following the code for the simulations is provided. The original files can be 

downloaded from http://pastebin.com/u/FelixOb. For the sake of clarity all the code 
needed to replicate the simulation experiments is included. 

 

A.1 Replication of the March Model 
	  

/* 
 * MarchModel.java 
 *  
 * (c) 2013, Felix Obschonka    
 */ 
import java.io.FileWriter; 
import java.io.PrintWriter; 
import java.util.Random; 
import java.util.Vector; 
 
public class MarchModel { 
 private Vector<Integer> code; 
 private Vector<Integer> reality; 
 private Vector<Vector<Integer>> levelOrgOriginal; 
 private Vector<Vector<Integer>> levelOrgGuess; 
 public static void main(String[] args) { 
  MarchModel sim = new MarchModel(); 
  /* 
   * Defines Output-Type for FileWriter:  
   *  1: Average individual knowledge of organization  
   *  2: Knowledge of organizational code 
   */ 
  int outputtype = 2; 
  // Parameters for the simulation 
  double P1 = 0.1; // Learning agents from code 
  double P2 = 0.9; // Learning code from dominant agents 
  double P3 = 0.0; // Turnover rate 
  double P5 = 0.0; // Turbulence rate 
 
  // Starts simulation 
  double result = sim.run(P1, P2, P3, P5, outputtype); 
  result = Math.round(result * 1000.0) / 1000.0; 
  // Writes the results in file 
  String outname = "output.txt"; 
  switch (outputtype) { 
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  case 1: 
   outname = "avgIndOrg.txt"; 
   break; 
  case 2: 
   outname = "codeKnowl.txt"; 
   break; 
  default: 
  } 
  try { 
   FileWriter outfile = new FileWriter(outname, true); 
   PrintWriter out = new PrintWriter(outfile); 
   out.println("" + result); 
   out.close(); 
   outfile.close(); 
  } catch (Exception x) { 
   System.out.println("FileWriter error"); 
  } 
 } 
 public double run(double P1, double P2, double P3,  
       double P5, int outputtype) { 
 int timeslots = 100;      // Simulation run time in ticks 
 int numberOfAgents = 50;   // Number of agents 
 int numIt = 50;            // Number of iterations 
 int sizeAgents = 30;      // Size of agents 
 // Data structures containing knowledge of entities 

Vector<Double> averageIndKnowledge = new 
Vector<Double>(timeslots); 
Vector<Double> codeKnowledge = new Vector<Double>(timeslots); 
Vector<Double> sumIndKnowledge = new Vector<Double>(timeslots); 

 Vector<Double> sumCodeKnowledge = new Vector<Double>(timeslots); 
  for (int i = 0; i < timeslots; i++) { 
   sumIndKnowledge.add(0.0); 
   sumCodeKnowledge.add(0.0); 
  } 
  // Loop over iterations 
  for (int it = 0; it < numIt; it++) { 
   // Initialize data structures 
   code = new Vector<Integer>(sizeAgents); 
   for (int i = 0; i < sizeAgents; i++) { 
    code.add(0); 
   } 
   reality = generateReality(sizeAgents); 
   levelOrgOriginal =  
   generate(sizeAgents, numberOfAgents); 
   Random rnd = new Random(); 
   for (int t = 0; t < timeslots; t++) { 
   // Create duplicate of organization  
   levelOrgGuess =  
   new Vector<Vector<Integer>>(numberOfAgents); 
   for (int m = 0; m < numberOfAgents; m++) { 
    Vector<Integer> originalAgent =  
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    levelOrgOriginal.get(m); 
    Vector<Integer> guessAgent =  
    new Vector<Integer>(originalAgent); 
      
   for (int n = 0; n < sizeAgents; n++) { 
    int agentValue =       
   originalAgent.get(n); 
     if (agentValue == 0) { 
      if (rnd.nextDouble() < 0.5) { 
       agentValue = -1; 
      } else {     
       agentValue = 1; 
       } 
      guessAgent.set(n, agentValue); 
      } 
     } 
     levelOrgGuess.add(guessAgent); 
    } 
  // Performance measurements 
  double currentIndKnowledgeOrg =  
  averageIndKnowledge(levelOrgGuess, reality);   
  sumIndKnowledge.set(t, sumIndKnowledge.get(t) 
  + currentIndKnowledgeOrg); 
  double currentCodeKnowledgeOrg = codeKnowledge(code, reality
  sumCodeKnowledge.set(t, sumCodeKnowledge.get(t)   
  + currentCodeKnowledgeOrg); 
  // Procedure of simulation 
  learnOrgfromCode(P1);     // 1. Agents learn from code 
  learnCodefromOrg(P2);     // 2. Code learns from agents 
  turbulenceReality(P5);    // 3. Environmental change 
  turnover(P3, sizeAgents); // 4. Turnover of agents 
   } 
  } 
  // Average knowledge for each timeslot over iterations 
  for (int t = 0; t < timeslots; t++) { 
   averageIndKnowledge.add 
   (sumIndKnowledge.get(t) / numIt); 
   codeKnowledge.add(sumCodeKnowledge.get(t) / numIt); 
   System.out.println("t=" + t + " Average Individual  
   Knowledge: "+ averageIndKnowledge.get(t) + " Code  
   Knowledge: "+ codeKnowledge.get(t)); 
  } 
  if (outputtype == 2) 
   return averageIndKnowledge.get(timeslots - 1); 
  else 
   return codeKnowledge.get(timeslots - 1); 
 } 
 // Method for agents learning from code 
 private void learnOrgfromCode(double P1) { 
  for (int i = 0; i < levelOrgOriginal.size(); i++) { 
   Vector<Integer> currentAgent =      
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   levelOrgOriginal.get(i); 
   learnnotzero(currentAgent, code, P1); 
  } 
 } 
 // Method for code learning from agents 
 private void learnCodefromOrg(double P2) { 
  Vector<Integer> majority = new Vector<Integer>(code.size()); 
  for (int j = 0; j < code.size(); j++) { 
   majority.add(0); 
  } 
  for (int i = 0; i < levelOrgGuess.size(); i++) { 
   Vector<Integer> currentAgent = levelOrgGuess.get(i); 
   if (isDominant(currentAgent, code, reality)) { 
    for (int j = 0; j < code.size(); j++) { 
     majority.set(j, majority.get(j) +   
     currentAgent.get(j)); 
    } 
   } 
  } 
 Random rnd = new Random(); 
 for (int i = 0; i < code.size(); i++) { 
  if (code.get(i) * majority.get(i) <= 0 &&    
  majority.get(i) != 0) { 
   int k = Math.abs(majority.get(i)); 
   double probChange = 1 - Math.pow((1 - P2), k); 
   double currentProb = rnd.nextDouble(); 
    if (currentProb <= probChange) { 
     if (majority.get(i) > 0) { 
      code.set(i, 1); 
     } else { 
      code.set(i, -1); 
     } 
    } 
   } 
  } 
 } 
 // Method for turnover of agents 
 private void turnover(double P5, int sizeAgents) { 
  Random rnd = new Random(); 
  for (int i = 0; i < levelOrgOriginal.size(); i++) { 
   double currentProb = rnd.nextDouble(); 
   if (currentProb <= P5) { 
   Vector<Integer> newAgent = generateAgent(sizeAgents); 
   levelOrgOriginal.set(i, newAgent); 
   } 
  } 
 } 
 // Method for turbulence in reality 
 private void turbulenceReality(double PR1) { 
  Random rnd = new Random(); 
  for (int i = 0; i < reality.size(); i++) { 
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   double currentProb = rnd.nextDouble(); 
   if (currentProb <= PR1) { 
    if (reality.get(i) == 1) { 
     reality.set(i, -1); 
    } else { 
     reality.set(i, 1); 
    } 
   } 
  } 
 } 
 // Method to check for dominant agents 
 private boolean isDominant(Vector<Integer> testAgent, 
 Vector<Integer> code, Vector<Integer> reality) { 
  boolean result = false; 
   if (compareAgentSum(testAgent, reality) >   
    compareAgentSum(code, reality)) { 
    result = true; 
  } 
  return result; 
 } 
 // Learning method 
 private void learnnotzero(Vector<Integer> vector1, 

 Vector<Integer> vector2, double p) { 
  Random rnd = new Random(); 
  for (int i = 0; i < vector1.size(); i++) { 
   if (vector2.get(i) == 0) { 
    continue; 
   } 
   double currentProb = rnd.nextDouble(); 
   if (currentProb < p) { 
    if (vector1.get(i) * vector2.get(i) == -1) { 
     vector1.set(i, 0); 
    } else if (vector1.get(i) == 0) { 
     vector1.set(i, vector2.get(i)); 
    } 
   } 
  } 
 } 
 // Method for generating organization 

private Vector<Vector<Integer>> generate(int sizeAgents, int 
 num) 

{ 
 Vector<Vector<Integer>> result = new Vector<Vector<Integer>>(num); 
  for (int i = 0; i < num; i++) { 
   Vector<Integer> agent = generateAgent(sizeAgents); 
   result.add(agent); 
 } 
  return result; 
 } 
 // Method for generating random agent 
 private Vector<Integer> generateAgent(int sizeAgents) { 
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  Vector<Integer> agent = new Vector<Integer>(sizeAgents); 
  Random rnd = new Random(); 
  for (int j = 0; j < sizeAgents; j++) { 
   double p = rnd.nextDouble(); 
   int value = (int) Math.floor(p * 3) - 1; 
   agent.add(value); 
  } 
  return agent; 
 } 
 // Generate and initialize reality vector 
 private Vector<Integer> generateReality(int sizeReality) { 
  Vector<Integer> result = new Vector<Integer>(sizeReality); 
  Random rnd = new Random(); 
  for (int i = 0; i < sizeReality; i++) { 
   double p = rnd.nextDouble(); 
   int value = ((int) Math.round(p)) * 2 - 1; 
   result.add(value); 
  } 
  return result; 
 } 
 // Method for comparing agent with organizational code 
 private int compareAgentSum(Vector<Integer> agent, 

 Vector<Integer> code) { 
  int equalsAgentsSum = 0; 
  for (int i = 0; i < code.size(); i++) { 
   equalsAgentsSum += agent.get(i) * code.get(i); 
  } 
  return equalsAgentsSum; 
 } 
 // Measure average individual knowledge 
 private double averageIndKnowledge(Vector<Vector<Integer>> 
 agentLevel, Vector<Integer> reality) { 
  int totalKnowledge = 0; 
  for (int i = 0; i < agentLevel.size(); i++) { 
   Vector<Integer> currentAgent = agentLevel.get(i); 
   totalKnowledge = totalKnowledge 
   + compareAgentSum(currentAgent, reality); 
  } 
  double average = (double) totalKnowledge 
  / ((double) agentLevel.size() * (double) reality.size()); 
  return average; 
 } 
 // Measure code knowledge 

private double codeKnowledge(Vector<Integer> code, 
 Vector<Integer> reality) { 
return (double) compareAgentSum(reality, code) / (double) 
reality.size(); 

 } 
}//END	  	  	  
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A.2 Interpersonal Organizational Learning Model 
	  

The intra-organizational learning model consists of the runnable simulation model 

in which the parameters for conducting the experiments are altered and methods 
are called. The model uses the classes described in Table 15. 

 

Table 15: Java classes used for the simulation 

Java Class Remarks Chapter 

Grid Contains methods to construct the organizational grid, 

turnover, rotation and environmental change 

A.2.1 

Agent Describes the characteristics of agents A.2.2 

Environment Describes the characteristics of the environment A.2.3 

SimilarityAgent Contains the logic for learning in accordance with similarity A.2.4 

GridAgent Contains the logic for selection and organizational learning A.2.5 
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A.2.1 Simulation model ("OrgLearningModel.java") 
	  

/* 
 *  OrgLearningModell.java 
 *   
 *  (c) 2013, Felix Obschonka 
 *  
 */ 
 
package learningAgents.gridNetworking; 
 
import java.text.DecimalFormat; 
import java.util.ArrayList; 
import java.util.Collections; 
import java.util.Comparator; 
import java.util.HashMap; 
import java.util.List; 
import java.util.Map; 
import java.util.Random; 
import java.util.Vector; 
import learningAgents.Agent; 
 
public class OrgLearningModell { 
  
public static void main(String[] args) { 
   
/* ---------------------------------------------------- 
 * - Settings for intra-organizational learning model - 
 * ----------------------------------------------------  
 */ 
 
int steps      = 300;  // Number of steps per run 
int iterations   = 300;  // Number of iterations 
int gridSize      = 10;   // Length & width of grid 
int size   = 75; // Number of dimensions for agent  
   
/* ------------------------------- 
 * - Settings for the base model -  
 * ------------------------------- 
 */ 
   
double similarityWeight = 0.0; // States similarity parameter 
double paramY = 1 - similarityWeight;  
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/* ----------------------------------------------------- 
 * - Settings for the first extension: Exogenous shock - 
 * -----------------------------------------------------  
 */ 
   
double turbulenceRate = 1.0;       // Chance of turbulence 
int pointOfSignificantChange = 150; // Time step of change 
   
/*  
 * ---------------------------------------------------------- 
 * - Settings for the second extension: Turnover & Rotation - 
 * ---------------------------------------------------------- 
 */ 
   
double turnoverRate = 0.0; // Chance for turnover of agent 
double rotateRate = 0.00;  // Chance for rotation of agent 
   
/* Turnover: 
 *   true:  Agents are randomly replaced  
 *  false: Agents are replaced according to turnoverType 
 */ 
boolean turnover = false;  
   
/* Type of Turnover: 
 *  true:  Only agents at group borders are turned over 
 *  false: Only agents within groups are turned over  
 */  
boolean turnoverType = false;  
   
/* 
 * ---------------------------------------------------------       
 * - Settings for the third extension: Top Management Team - 
 * --------------------------------------------------------- 
 */ 
  
// Percentage of agents in the organization assigned to the TMT  
double bestPercentage = 0.05;  
// Probability for learning from TMT before change 
double learningTMTbefore = 0.01; 
// Probability for learning from TMT after change  
double learningTMTafter  = 0.01;  
// Probability of replacing agent(s) in the TMT  
double turnoverTMT = 1.0;  
// Number of agents replaced in the TMT 
int turnoverTMTnum = 1;  
// At this step the TMT is formed 
int pointOfTMTForming = 0; 
// From this step onwards agents learn from TMT  
int startLearningFromTMT = 151;  
   
/* TMT Agents get replaced by: 
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 *   true:  By the best agents within the organization 
 *   false: By random agents from outside the organization 
 */   
boolean takeBestforTMT = false; 
   
/*  
 * Turnover timing of TMT 
 *    true:  Turnover only once at point of environmental change 
 *    false: Turnover every time step 
 */  
boolean turnoverTMTOnce = true;  
   
/* ---------------- 
 * - Measurements - 
 * ---------------- 
 */ 
   
/* Performance Output: 
 *   true:  Output of last performance values for each run 
 *   false: Output of the mean performance over iterations 
 */  
boolean showLastPerformanceValues = false;   
   
// Stores changes in interactions after environmental change 
ArrayList<Integer> learningInteractionChanged = new 
ArrayList<Integer>(); 
   
// Defines the performance threshold for delocking  
double threshhold = 0.1;  
   
/* This is the point where measurements will take place that are    
 * important for knowing how the grid looks BEFORE the shock 
 */ 
int beforePointOfSignificantChange = 20; 
   
/* This is the point where measurements will take place that are    
 * important for knowing how the grid looks AFTER the shock 
 */ 
int afterPointOfSignificantChange = 130; 
   
/* Initialization of agents in the organization: 
 *  true:  Every iteration has the same agents at set-up   
 *  false: Random agents for every run 
 */ 
boolean sameAgentsForEveryIteration = false;  
// Number of runs exceeding the threshold for unlocking 
int recoveredCounter = 0;  
   
final Vector<Double> lastPerformanceValues = new 
Vector<Double>(iterations); 
final Vector<Double> sumAvgIndKnowledge = new Vector<Double>(steps); 
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 for (int i = 0; i < steps; i++) { 
 sumAvgIndKnowledge.add(0.0); 
 } 
 
// Initialize data structure for groups  
List<Integer> groupsBeforeShock =  
new ArrayList<Integer>(iterations); 
List<Integer> groupsAfterShock =  
new ArrayList<Integer>(iterations); 
List<Integer> groupsEndOfTicks =  
new ArrayList<Integer>(iterations); 
Map<Integer, Integer> actualSwaps =  
new HashMap<Integer,  Integer>(); 
   
GridAgent tmtAgent = new  
GridAgent(size, 0, 0, null, 0, false); 
  
Random rnd = new Random(); 
boolean singleRun = iterations == 1; 
   
// Initialize grid 
grid = new Grid(gridSize, size, turbulenceRate, turnoverRate, rotateRate, 
0.0); 
   
/* 
 * Make an exact copy of all initial agents. This is needed if 
 * every iteration should start with the same agents. 
 */ 
Vector<Vector<ArrayList<Integer>>> initialKnowledge = new 
Vector<Vector<ArrayList<Integer>>>(); 
 if(sameAgentsForEveryIteration){ 
 Vector<Vector<GridAgent>> agents = grid.getAgents(); 
  for(int i = 0; i < agents.size(); i++){ 

Vector<ArrayList<Integer>> knowRow = new          
Vector<ArrayList<Integer>>(); 

   for(int j = 0; j < agents.get(i).size(); j++){ 
       GridAgent a = agents.get(i).get(j); 
      ArrayList<Integer> know = new     
   ArrayList<Integer>(); 
    for(int k : a.getKnowledge()){ 
    know.add(k); 
    } 
    knowRow.add(know); 
   } 
   initialKnowledge.add(knowRow); 
  } 
 } 
   
// Start of iterations 
for (int it = 0; it < iterations; it++) { 
 boolean recovered = false; 
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 ArrayList<Integer> tmtKnowledge = new     
 ArrayList<Integer>(); 
 for (int i = 0; i < size; i++) { 
  tmtKnowledge.add(0); 
  } 
  
  // Checks for same agent assumption 
  if (sameAgentsForEveryIteration) { 
   Vector<Vector<GridAgent>> agents =  
   grid.getAgents(); 
   for(int i = 0; i < agents.size(); i++){   
   for(int j = 0; j < agents.get(i).size();   
   j++){ 
     ArrayList<Integer> know =    
     initialKnowledge.get(i).get(j); 
     GridAgent a = grid.getAgent(i, j); 
     ArrayList<Integer> newKnow = new  
     ArrayList<Integer>(); 
      for(int e : know){ 
       newKnow.add(e); 
      } 
      a.setKnowledge(newKnow); 
     } 
    } 
   } else { 
    grid = new Grid(gridSize, size, turbulenceRate, 
      turnoverRate, rotateRate, 0.0);  
   } 
 
// Initialize TMT 
List<Agent> tmt = null; 
for (int t = 0; t < steps; t++) { 
  
 // Turnover TMT at point of significant change 
 if(t==pointOfSignificantChange && turnoverTMTOnce) { 
  if(turnoverTMTOnce){ 
   
   
  // Replace Agents of TMT with agents of the organization 
  List<Agent> gAgents = new  
  ArrayList<Agent>(grid.getAgentsList()); 
   if (takeBestforTMT) { 
    
   // Sort agents descending by accordance to reality 
   Collections.sort(gAgents, new Comparator<Agent>() { 
   @Override 
   public int compare(Agent agent0, Agent agent1) { 
   int know0=agent0.getAccordanceValue 
   (grid.getReality()); 
   int know1 =      
   agent1.getAccordanceValue(grid.getReality()); 
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    if (know0 > know1) { 
     return 1; 
     } 
     if (know0 < know1) { 
      return -1; 
     } 
      return 0; 
     } 
   }); 
  int index = 0; 
  List<Agent> swapList = new ArrayList<Agent>(); 
  for(int j = 0; j < turnoverTMTnum; j++){ 
   while(tmt.contains(gAgents.get(index))){ 
    index++; 
    } 
            
   swapList.add(tmt.get(index)); 
   } 
    
   // Only swap agents that haven't been swapped  
   List<Integer> alreadySwapped = new  
   ArrayList<Integer>(); 
    for(int i = 0; i < turnoverTMTnum; i++){ 
    int randomNumber = 0; 
     do{ 
     randomNumber = rnd.nextInt(tmt.size()); 
     }     
   while(alreadySwapped.contains(randomNumber)); 
          
   alreadySwapped.add(randomNumber); 
   tmt.set(randomNumber, swapList.remove(0)); 
     } 
    } else { 
     
 
    // Replace TMT agents with new agents 
    Collections.shuffle(gAgents); 
    List<Integer> alreadySwapped =  
    new ArrayList<Integer>(); 
     for(int i = 0; i < turnoverTMTnum; i++){ 
     int randomNumber = 0; 
      do{ 
     randomNumber = rnd.nextInt(tmt.size()); 
        }     
    while(alreadySwapped.contains(randomNumber)); 
    Agent oldAgent = tmt.get(randomNumber); 
       
 oldAgent.setKnowledge(generateKnowledge(size)); 
       
 alreadySwapped.add(randomNumber); 
       } 
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      } 
     } 
    } 
 if(t == pointOfTMTForming){ 
  
 // TMT is formed at this point of time 
 tmt = formTMT(bestPercentage); 
  } 
  if (t >= pointOfTMTForming) { 
   if(rnd.nextDouble() < turnoverTMT){  
    
    // TMT turnover 
    if(!turnoverTMTOnce){ 
      
     // Replace agents of TMT  
     List<Agent> gAgents = new    
     ArrayList<Agent>( 
     grid.getAgentsList()); 
     if (takeBestforTMT) { 
      
     // Sort agents descending by accordance  
     Collections.sort(gAgents, new   
     Comparator<Agent>() { 
 
@Override 
public int compare(Agent agent0, Agent agent1) { 
 int know0 = agent0.getAccordanceValue(grid.getReality()); 
 int know1 = agent1.getAccordanceValue(grid.getReality()); 
  if (know0 > know1) { 
   return 1; 
   } 
   if (know0 < know1) { 
    return -1; 
     } 
   return 0; 
    } 
          
   }); 
int index = 0; 
List<Agent> swapList = new ArrayList<Agent>(); 
for(int j = 0; j < turnoverTMTnum; j++){ 
 while(tmt.contains(gAgents.get(index))){ 
  index++; 
  } 
 swapList.add(tmt.get(index)); 
 } 
  
 // Only swap agents that haven't been swapped before 
 List<Integer> alreadySwapped = new ArrayList<Integer>(); 
  for(int i = 0; i < turnoverTMTnum; i++){ 
   int randomNumber = 0; 
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   do{ 
   randomNumber = rnd.nextInt(tmt.size()); 
     }     
    while(alreadySwapped.contains(randomNumber)); 
    alreadySwapped.add(randomNumber); 
    tmt.set(randomNumber, swapList.remove(0)); 
    } 
   } else { 
    
   // Replace TMT agents with completely new agents 
   Collections.shuffle(gAgents); 
   List<Integer> alreadySwapped =  
   new ArrayList<Integer>(); 
   for(int i = 0; i < turnoverTMTnum; i++){ 
    int randomNumber = 0; 
    do{ 
    randomNumber = rnd.nextInt(tmt.size()); 
      }       
    while(alreadySwapped.contains(randomNumber)); 
    Agent oldAgent = tmt.get(randomNumber); 
    oldAgent.setKnowledge(generateKnowledge(size)); 
    alreadySwapped.add(randomNumber); 
        } 
       } 
      } 
     } 
      
 
 
// Calculate current opinion of TMT 
for (int i = 0; i < tmtKnowledge.size(); i++) { 
 tmtKnowledge.set(i, 0); 
 } 
 for (Agent tmtMember : tmt) { 
     for (int i = 0; i < tmtMember.getKnowledge().size(); i++){ 
 tmtKnowledge.set(i, tmtKnowledge.get(i)+ 
 tmtMember.getKnowledge().get(i)); 
      } 
     } 
  for (int i = 0; i < tmtKnowledge.size(); i++) { 
   if (tmtKnowledge.get(i) > 0) { 
    tmtKnowledge.set(i, 1); 
    } else if (tmtKnowledge.get(i) < 0) { 
    tmtKnowledge.set(i, -1); 
     } else { 
     tmtKnowledge.set(i, 0); 
      } 
     } 
    tmtAgent.setKnowledge(tmtKnowledge); 
    } 
     



 

	   206 

if (t >= startLearningFromTMT) { 
 
// Agents learn from TMT 
 for (Agent agent : grid.getAgentsList()) { 
  if(t<= pointOfSignificantChange) 
  agent.learn(tmtAgent, learningTMTbefore); 
  else 
  agent.learn(tmtAgent, learningTMTafter); 
     } 
    } 
 
// Agents learn from each other in a random order 
for (GridAgent agent : rumbleList(grid.getAgentsList())) { 
 SimilarityAgent currentAgent = (SimilarityAgent) agent; 
 currentAgent.learnFromBestNeighbour(similarityWeight, paramY); 
    } 
 
// Knowledge measurement 
double currentKnowledge = grid.getCurrentAvgIndKnowledge(); 
sumAvgIndKnowledge.set(t, sumAvgIndKnowledge.get(t) 
      + currentKnowledge); 
if(singleRun){ 
 
if (t == pointOfSignificantChange-beforePointOfSignificantChange) { 
  
 
 // Count groups 
 List<Agent> sortedAgents =  
 new ArrayList<Agent>(grid.getAgentsList()); 
 Collections.sort(sortedAgents); 
 int groups = 1; 
 int[][] groupGrid = new int[gridSize][gridSize]; 
  for (int i = 0; i < sortedAgents.size() - 1; i++) { 
  GridAgent cAgent = (GridAgent) sortedAgents.get(i); 
           
  groupGrid[cAgent.getX()][cAgent.getY()] = groups; 
  if (sortedAgents.get(i).compareTo      
  (sortedAgents.get(i+1)) != 0) { 
   groups++; 
      } 
     } 
   groupsBeforeShock.add(groups); 
   GridAgent cAgent =      
   (GridAgent)sortedAgents.get(sortedAgents.size() -1); 
  groupGrid[cAgent.getX()][cAgent.getY()] = groups; 
       
 // Print visualization of grid and group membership 
 for(int i = 0; i < groupGrid.length; i++){ 
  for (int j = 0; j < groupGrid[i].length; j++) { 
   System.out.print(groupGrid[i][j] + " "); 
    } 
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   System.out.println(); 
   } 
   System.out.println(); 
   System.out.println(); 
   if(sameAgentsForEveryIteration){ 
    for(int x = 0; x < grid.getX(); x++){ 
      String r1 = ""; 
      String r3 = ""; 
      String r2 = ""; 
    for(int y = 0; y < grid.getY(); y++){ 
    SimilarityAgent sAgent = (SimilarityAgent)  
    grid.getAgent(x, y); 
   sAgent.calculateSimilarityToNeighbours(); 
   GridAgent downNeighbour =  
   grid.getAgent((x >= grid.getX()-1)?0:x+1, y); 
   GridAgent rightNeighbour =  
   grid.getAgent(x, (y >= grid.getY()-1)?0:y+1); 
   
  // right neighbour 
  double rv =     
  sAgent.getSimilarityToNeighbours().get(rightNeighbour);  
   
 
  // bottom neighbour 
  double dv =     
  sAgent.getSimilarityToNeighbours().get(downNeighbour);  
  DecimalFormat df = new DecimalFormat("#.##"); 
  df.setMinimumFractionDigits(2); 
  r1 += "\u265F \u2014 " + df.format(rv) + " \u2014 "; 
  r2 += "|          "; 
  r3 += ""  + df.format(dv) + "       "; 
   } 
   System.out.println(r1); 
   System.out.println(r2); 
   System.out.println(r3); 
   System.out.println(r2); 
   } 
System.out.println("Performance: " +grid.getCurrentAvgIndKnowledge()); 
System.out.println("-----------------------------------------------------
-----------------------------------------------"); 
System.out.println(); 
   } 
  } 
if (t == pointOfSignificantChange + afterPointOfSignificantChange) { 
  
 // Counting groups 
 List<Agent> sortedAgents = new ArrayList<Agent>( 
 grid.getAgentsList()); 
 Collections.sort(sortedAgents); 
 int groups = 1; 
 int[][] groupGrid = new int[gridSize][gridSize]; 
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 for (int i = 0; i < sortedAgents.size() - 1; i++) { 
  GridAgent cAgent = (GridAgent) sortedAgents.get(i); 
  groupGrid[cAgent.getX()][cAgent.getY()] = groups; 
  if (sortedAgents.get(i).compareTo( 
   sortedAgents.get(i + 1)) != 0) { 
    groups++; 
     } 
    }     
 groupsAfterShock.add(groups); 
 GridAgent cAgent = (GridAgent) 
 sortedAgents.get(sortedAgents.size() -1); 
     
 groupGrid[cAgent.getX()][cAgent.getY()] = groups; 
 
// Print visualization of grid and group membership 
for(int i = 0; i < groupGrid.length; i++){ 
 for (int j = 0; j < groupGrid[i].length; j++) { 
  System.out.print(groupGrid[i][j] + " "); 
   } 
  System.out.println(); 
  } 
  System.out.println(); 
  System.out.println(); 
   if(sameAgentsForEveryIteration){ 
    for(int x = 0; x < grid.getX(); x++){ 
     String r1 = ""; 
     String r3 = ""; 
     String r2 = ""; 
     for(int y = 0; y < grid.getY(); y++){ 
     SimilarityAgent sAgent =    
     (SimilarityAgent) grid.getAgent(x, y); 
sAgent.calculateSimilarityToNeighbours(); 
GridAgent downNeighbour =  
grid.getAgent((x >= grid.getX()-1)?0:x+1, y); 
 
GridAgent rightNeighbour =  
grid.getAgent(x, (y >= grid.getY()-1)?0:y+1); 
 
// right neighbour 
double rv = 
sAgent.getAccordanceValue(rightNeighbour.getKnowledge())/75.0;  
 
// bottom neighbour 
double dv = sAgent.getSimilarityToNeighbours().get(downNeighbour);  
df.setMinimumFractionDigits(2); 
 r1 += "\u265F \u2014 " + df.format(rv) + " \u2014 "; 
 r2 += "|          "; 
 r3 += ""  + df.format(dv) + "       "; 
  } 
  System.out.println(r1); 
  System.out.println(r2); 
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  System.out.println(r3); 
  System.out.println(r2); 
  } 
      
 System.out.println("Performance: " + 
 grid.getCurrentAvgIndKnowledge()); 
     } 
    } 
      
if (t == pointOfSignificantChange) { 
 grid.turbulenceReality(2, 30, 1); 
     } 
 if (t == pointOfSignificantChange) { 
  if(turnover) 
  grid.turnoverAgents(); 
  else{ 
  int agentsToSwap =  
  (int) (turnoverRate * grid.getX() * grid.getY()); 
  int agentsSwapped = grid.turnOverInGroups(turnoverType,  
 agentsToSwap, singleRun); 
   if (agentsToSwap != agentsSwapped) { 
   System.out.println("Only "+ agentsSwapped + "instead  
  of " + agentsToSwap + " agents were changed."); 
     } 
    } 
  grid.rotateAgents(); 
   } 
  } else { 
 
// More than one iteration 
if (t == pointOfSignificantChange-beforePointOfSignificantChange){ 
 
// counting groups 
List<Agent> sortedAgents = new ArrayList<Agent>( 
grid.getAgentsList()); 
Collections.sort(sortedAgents); 
int groups = 1; 
int[][] groupGrid = new int[gridSize][gridSize]; 
 for (int i = 0; i < sortedAgents.size() - 1; i++) { 
  GridAgent cAgent = (GridAgent) sortedAgents.get(i); 
  groupGrid[cAgent.getX()][cAgent.getY()] = groups; 
  if (sortedAgents.get(i).compareTo(sortedAgents.get(i +  
 1)) != 0) { 
   groups++; 
    } 
   } 
  groupsBeforeShock.add(groups); 
  } 
   if (t == pointOfSignificantChange) { 
   grid.turbulenceReality(2, 30, 1); 
    if (turnover) 
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    grid.turnoverAgents(); 
    else { 
    int agentsToSwap = (int) (turnoverRate 
    * grid.getX() * grid.getY()); 
    int agentsSwapped =  
    grid.turnOverInGroups(turnoverType,   
    agentsToSwap, singleRun); 
     if (actualSwaps.get(agentsSwapped) ==  
    null) { 
     actualSwaps.put(agentsSwapped, 1); 
     } else { 
     actualSwaps.put(agentsSwapped, 
     actualSwaps.get(agentsSwapped) + 1); 
      } 
     } 
    grid.rotateAgents(); 
     } 
     if (t == pointOfSignificantChange +  
     afterPointOfSignificantChange){ 
     // Count groups 
     List<Agent> sortedAgents =  
     new ArrayList<Agent>( 
     grid.getAgentsList()); 
     Collections.sort(sortedAgents); 
     int groups = 1; 
     int[][] groupGrid =  
     new int[gridSize][gridSize]; 
     for (int i = 0; i < sortedAgents.size() - 
     1; i++) { 
      GridAgent cAgent = (GridAgent) 
      sortedAgents.get(i); 
      groupGrid[cAgent.getX()]   
      [cAgent.getY()] = groups; 
     if (sortedAgents.get(i).compareTo( 
      sortedAgents.get(i + 1)) != 0) { 
       groups++; 
       } 
      } 
      groupsAfterShock.add(groups); 
     } 
if (t > pointOfSignificantChange && (currentKnowledge >= threshhold)) { 
  
 // Organization runlocked organizational path 
 recovered = true; 
   } 
  } 
 }// end of ticks 
 
// Performance measurement 
if(showLastPerformanceValues){ 
 lastPerformanceValues.add(grid.getCurrentAvgIndKnowledge()); 
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 } 
 if(recovered){ 
  recoveredCounter++; 
   } 
   
  // Counting groups 
  List<Agent> sortedAgents = new ArrayList<Agent>( 
   grid.getAgentsList()); 
   Collections.sort(sortedAgents); 
   int groups = 1; 
   for (int i = 0; i < sortedAgents.size() - 1; i++) { 
    if (sortedAgents.get(i).compareTo    
   (sortedAgents.get(i + 1)) != 0) { 
     groups++; 
    } 
   } 
   groupsEndOfTicks.add(groups); 
}// end of iterations 
 
if(!sameAgentsForEveryIteration) { 
 for (int t = 0; t < steps; t++) { 
  System.out.println("t= " + t + ": " +     
  sumAvgIndKnowledge.get(t) / iterations); 
   } 
  } 
  int summe = 0; 
  int groupsDiffer = 0; 
  for(int i = 0; i < iterations; i++){ 
  
 if(groupsBeforeShock.get(i) !=(groupsAfterShock.get(i))){ 
    groupsDiffer++; 
   } 
  } 
  System.out.println(groupsDiffer + "/" + iterations 
  + "Number of changes in group + (" +      
  df.format(groupsDiffer * 1.0 / iterations) + ")"); 
   
  for (int gruppen : groupsEndOfTicks) { 
   summe += gruppen; 
  } 
  System.out.println("Average number of groups at the end  
 of iteration: " + ((double) summe) / iterations); 
   
  System.out.println("Of " + recoveredCounter + " from " +  
 iterations + " runs unlocking occurs."); 
   
  if (showLastPerformanceValues) { 
   Collections.sort(lastPerformanceValues); 
   for(int i = 0; i < lastPerformanceValues.size();  
  i++){ 
    System.out.println(i + ": " +    



 

	   212 

    lastPerformanceValues.get(i)); 
   } 
  } 
   
  double average = 0; 
  for (int i = 0; i < iterations; i++) { 
   average += learningInteractionChanged.get(i); 
  } 
  average /= iterations * grid.getAgentsList().size(); 
  System.out.println("Percentage of agents, that changed  
 the learning buddy after shock: " + average); 
 } 
 
private static List<Agent> formTMT(double bestPercentage) { 
 
List<Agent> tmt = new ArrayList<Agent>(grid.getAgentsList()); 
final Map<Agent, Integer> tmtMap = new HashMap<Agent, Integer>(); 
 for (Agent a : tmt) { 
  
 // calculate accordance values for comparing/sorting 
 tmtMap.put(a, a.getAccordanceValue(grid.getReality())); 
  } 
 
 //Sort according to similarity to reality (descending order!) 
 Collections.sort(tmt, new Comparator<Agent>() { 
  @Override 
  public int compare(Agent o1, Agent o2) { 
   if (tmtMap.get(o1) < tmtMap.get(o2)) { 
     return 1; 
    } 
    if (tmtMap.get(o1) > tmtMap.get(o2)) { 
     return -1; 
    } 
     return 0; 
   } 
  }); 
  int n = (int) Math.round(tmt.size() * bestPercentage); 
   
  //Take n best agents for TMT 
  return tmt.subList(0, n); 
 } 
 
private static ArrayList<GridAgent> rumbleList(List<Agent> agents) { 
 Random rnd = new Random(); 
 List<Agent> l = new ArrayList<Agent>(agents); 
 ArrayList<GridAgent> result = new 
 ArrayList<GridAgent>(agents.size()); 
 int size = l.size(); 
  for (int i = 0; i < size; i++) { 
   int index = rnd.nextInt(l.size()); 
   result.add((GridAgent) l.remove(index)); 
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  } 
  return result; 
 } 
  
private static ArrayList<Integer> generateKnowledge(int dimensions){ 
 ArrayList<Integer> result = new  ArrayList<Integer>(dimensions); 
  Random rnd = new Random(); 
  for (int j = 0; j < dimensions; j++) { 
   double p = rnd.nextDouble(); 
   int value; 
   if (p < 1.0 / 3.0) { 
    value = -1; 
   } else if (p < 2.0 / 3.0) { 
    value = 1; 
   } else { 
    value = 0; 
   } 
 
   result.add(value);  
  } 
  return result; 
 } 
  
 private static Grid grid; 
 private static DecimalFormat df = new DecimalFormat("#.##"); 
} 
//END	  
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A.2.2 Agent Logic ("SimilarityAgent.java") 
	  

/* 
 *  SimilarityAgent.java 
 *   
 *  (c) 2013, Felix Obschonka 
 *  
 */ 
 
package learningAgents.gridNetworking; 
 
import java.util.ArrayList; 
import java.util.HashMap; 
import java.util.List; 
import java.util.Random; 
import learningAgents.Agent; 
 
//Defines learning of agent according to similarity algorithm 
public class SimilarityAgent extends GridAgent { 
  
 private boolean isPartOfTMT; 
 private HashMap<SimilarityAgent, Double> similarityMap =  
 new HashMap<SimilarityAgent, Double>(); 
 private SimilarityAgent currentLearningBuddy = null; 
 public SimilarityAgent(int dimensions, int posX, int posY,Grid g) 
{ 
  super(dimensions, posX, posY, g, 0, false); 
 } 
  
 //Learning from best neighbour  
 public void learnFromBestNeighbour(double x, double y) { 
  assert (x + y == 1); 
  ArrayList<Integer> reality = this.getGrid().getReality(); 
  List<GridAgent> neighbors =   
  rumbleList(getDirectNeighbours()); 
  SimilarityAgent buddy = null; 
  double value = this.getAccordanceValue(reality); 
  for (GridAgent neighbour : neighbors) { 
   double v = x *   
   this.getAccordanceValue(neighbour.getKnowledge()) 
   + y * neighbour.getAccordanceValue(reality); 
    if (v > value) { 
     value = v; 
     buddy = (SimilarityAgent) neighbour; 
     break; 
   } 
  } 
  if (buddy != null) 
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   super.learn(buddy, similarity(buddy) 
     / (double) getKnowledge().size()); 
  this.currentLearningBuddy = buddy; 
 } 
 private int similarity(Agent that) { 
  int result = 0; 
  for (int i = 0; i < this.getKnowledge().size(); i++) { 
   result += (this.getKnowledge().get(i) ==   
   that.getKnowledge().get(i)) ? 1 : 0; 
  } 
  return result; 
 } 
 public void promoteToTMT(){ 
  isPartOfTMT = true; 
 } 
 public boolean isTMTMember(){ 
  return isPartOfTMT; 
 } 
 public HashMap<SimilarityAgent, Double> 
 getSimilarityToNeighbours(){ 
  return this.similarityMap; 
 } 
 public void calculateSimilarityToNeighbours(){ 
  List<GridAgent> neighbors = getDirectNeighbours(); 
  for(GridAgent neighbour : neighbors){ 

similarityMap.put((SimilarityAgent) neighbour, 
(double)similarity(neighbour) / 
this.getKnowledge().size()); 

  } 
 } 
 private static ArrayList<GridAgent>  
 rumbleList(List<GridAgent> agents) { 
  Random rnd = new Random(); 
  List<GridAgent> l = new ArrayList<GridAgent>(agents); 
  ArrayList<GridAgent> result = new  
  ArrayList<GridAgent>(agents.size()); 
  int size = l.size(); 
  for (int i = 0; i < size; i++) { 
   int index = rnd.nextInt(l.size()); 
   result.add(l.remove(index)); 
  } 
  return result; 
 } 
 public SimilarityAgent getCurrentLearningBuddy() { 
  return currentLearningBuddy; 
 } 
} 
//END
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A.2.3 Grid ("Grid.java") 
	  

/* 
 * Grid.java 
 *  
 * (c) 2013, Felix Obschonka 
 *  
 */ 
package learningAgents.gridNetworking; 
import java.util.ArrayList; 
import java.util.List; 
import java.util.Random; 
import java.util.Vector; 
import learningAgents.Agent; 
import learningAgents.Environment; 
 
public class Grid extends Environment { 
  
//Initialization & Constructor 
private int x, y; 
private Vector<Vector<GridAgent>> agents; 
private double turbulenceProbability; 
private double turnoverProbability; 
private double rotateProbability; 
private List<Agent> agentList = null; 
protected boolean generateNewAgentsList = true; 
private ArrayList<Integer> usedDimensiones = new ArrayList<Integer>(); 
 
 public Vector<Vector<GridAgent>> getAgents() { 
  return agents; 
 } 
 
 public Grid(int x, int y, int sizeOfAgents, 
   double turbulenceProbability, double    
  turnoverProbability, double rotateProbability,  
   double alpha) { 
  super(sizeOfAgents); 
  this.x = x; 
  this.y = y; 
  this.turbulenceProbability = turbulenceProbability; 
  this.rotateProbability = rotateProbability; 
  this.turnoverProbability = turnoverProbability; 
  generateAgents(); 
 } 
 
 public Grid(int x, int sizeOfAgents,  
   double turbulenceProbability, double    
  turnoverProbability, double rotateProbability, 
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   double alpha) { 
  this(x, x, sizeOfAgents, turbulenceProbability, 
    turnoverProbability, rotateProbability, 
     alpha); 
 } 
 
 //Generates agents in the grid 
 private void generateAgents() { 
  this.agents = new Vector<Vector<GridAgent>>(); 
  for (int i = 0; i < x; i++) { 
   Vector<GridAgent> row = new Vector<GridAgent>(y); 
   for (int j = 0; j < y; j++) { 
   row.add(new SimilarityAgent(sizeOfAgents,i, j, this)); 
   } 
   this.agents.add(row); 
  } 
 } 
 @Override 
 public double getCurrentAvgIndKnowledge() { 
  double result = 0.0; 
  for (Vector<GridAgent> row : this.agents) { 
   for (GridAgent agent : row) { 
   int v = agent.getAccordanceValue(reality); 
   result += (double) v / ((double) sizeOfAgents); 
   } 
  } 
  return result / (x * y); 
 } 
 

public GridAgent getAgent(int x, int y) { 
return agents.get(x).get(y); 
} 

 
 public int getX() { 
  return x; 
 } 
 
 public int getY() { 
  return y; 
 } 
 /* 
  * Defines the environmental change: 
  *  1. Incremental change 
  *  2. Environmental shock 
  *  3. Change in opposite direction 
  *  4. Change on defined number of dimensions 
  */ 
 public void turbulenceReality(int method, int dimensions,  
 int turbulenceRange) { 
  Random rnd = new Random(); 
  switch (method) { 
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  case 1: // incremental 
   for (int i = 0; i < sizeOfAgents; i++) { 
    if (rnd.nextDouble() < turbulenceProbability)  
   { 
    int value = ((int) rnd.nextInt(2)) * 2 - 1;  
     reality.set(i, value); 
    } 
   } 
   return; 
  case 2: { // shock 
   double currentProb = rnd.nextDouble(); 
    if (currentProb <= turbulenceProbability) { 
    reality = generateReality(); 
   } 
   return; 
  } 
  case 3: // change reality to the opposite 
   double currentProb = rnd.nextDouble(); 
    if (currentProb <= turbulenceProbability) { 
    for (int i = 0; i < reality.size(); i++) { 
     if (reality.get(i) == 1) { 
      reality.set(i, -1); 
     } else { 
      reality.set(i, 1); 
     } 
    } 
   } 
   return; 
  case 4:{ // change on a number of dimensions 
   double c = (double)dimensions /     
   ((double)turbulenceRange); 
   int count = 0; 
   if (c == Math.floor(c)){ 
    count = (int) c; 
   } else { 
    if(rnd.nextDouble() < (c-Math.floor(c))){ 
     count = (int) Math.ceil(c); 
    } else { 
     count = (int) Math.floor(c); 
    } 
   } 
   ArrayList<Integer> dimensionsToChange = new   
   ArrayList<Integer>(count); 
   for(int i = 0; i < count; i++){ 
    int a; 
    do { 
     a = rnd.nextInt(this.sizeOfAgents); 
    } while (dimensionsToChange.contains(a) ||  
    usedDimensiones.contains(a)); 
    dimensionsToChange.add(a); 
   } 
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   for(int dimension : dimensionsToChange){ 
    usedDimensiones.add(dimension); 
    if(reality.get(dimension) > 0){ 
     reality.set(dimension, -1); 
    } else { 
     reality.set(dimension, 1); 
    } 
   } 
   return; 
   } 
  default: 
   throw new RuntimeException("Change: Select 1-4!"); 
  } 
 } 
 // Turnover of agents in the grid 
 @Override 
 public void turnoverAgents() { 
  Random rnd = new Random(); 
  for (int i = 0; i < agents.size(); i++) { 
  for (int j = 0; j < agents.get(i).size(); j++) { 
   if (rnd.nextDouble() < turnoverProbability) { 
    GridAgent oldAgent = agents.get(i).get(j); 
    for (GridAgent a : oldAgent.getTeacherTo()) 
     a.getLearningBuddies().remove(oldAgent); 
     SimilarityAgent a = (SimilarityAgent)  
     agents.get(i).get(j); 
     ArrayList<Integer> newKnowledge = new  
     ArrayList<Integer>(); 
     if (!a.isTMTMember()) { 
      for (int d = 0; d < sizeOfAgents;  
      d++) { 
      newKnowledge.add(rnd.nextInt(3)- 1); 
      } 
      a.setKnowledge(newKnowledge); 
     } 
    } 
   } 
  } 
 } 
 /* For SimilarityAgents only: 
  * Look up groups and change agents  
  * on edges (if onEdge true) or in  
  * the center of a group (otherwise) 
  */ 
 public int turnOverInGroups(boolean onEdge, int   
 agentsToSwitch, boolean printSwap) { 
  int c = 0; 
  for(Agent a1 : this.getAgentsList()){ 
   SimilarityAgent sAgent = (SimilarityAgent) a1; 
   sAgent.calculateSimilarityToNeighbours(); 
   boolean fits; 
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   if(onEdge){  
    fits = false; 
    for(double v :     
    sAgent.getSimilarityToNeighbours().values()){ 
     fits |= v != 1; 
    } 
   } else {  
    fits = true; 
    for(double v :      
    sAgent.getSimilarityToNeighbours().values()){ 
     fits &= v == 1; 
    } 
   } 
   if(fits){ 
    c++; 
   } 
   if(c >= agentsToSwitch) 
    break; 
  } 
  if(c < agentsToSwitch){ 
   agentsToSwitch = c; 
  } 
  ArrayList<String> taken = new ArrayList<String>(); 
  List<Agent> agents = this.getAgentsList(); 
  List<SimilarityAgent> toSwap = new     
   ArrayList<SimilarityAgent>(agentsToSwitch); 
  Random rnd = new Random(); 
  for(int i = 0; i < agentsToSwitch; i++){ 
   int r = -1; 
   boolean fits; 
   SimilarityAgent sAgent = null; 
   do{ 
    r = rnd.nextInt(agents.size()); 
    sAgent = (SimilarityAgent) agents.get(r); 
    if(onEdge){  
     fits = false; 
     for(double v :  
    sAgent.getSimilarityToNeighbours().values()){ 
      fits |= v != 1; 
     } 
    } else {  
     fits = true; 
     for(double v :      
   sAgent.getSimilarityToNeighbours().values()){ 
      fits &= v == 1; 
     } 
    } 
   }while(!fits || taken.contains(sAgent.getX() + "" +  
  getY())); 
   taken.add(sAgent.getX() + "" + sAgent.getY()); 
   toSwap.add(sAgent); 
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  } 
  for(SimilarityAgent agent : toSwap){ 
   ArrayList<Integer> knowledge = new  
   ArrayList<Integer>(this.sizeOfAgents); 
   for (int j = 0; j < this.sizeOfAgents; j++) { 
    double p = rnd.nextDouble(); 
    int value = (int) Math.floor(p * 3) - 1;  
    knowledge.add(value); 
   } 
   agent.setKnowledge(knowledge); 
    if(printSwap){ 
    System.out.println("agent swapped at x: " +  
    agent.getX() + " y: " + agent.getY()); 
   } 
  } 
  return toSwap.size(); 
 } 
 //Method to rotate agents in the grid 
 public void rotateAgents(){ 
  if (rotateProbability <= 0.0) 
   return; 
  Random rnd = new Random(); 
  for (int i = 0; i < agents.size(); i++) { 
   for (int j = 0; j < agents.get(i).size(); j++) { 
    if (rnd.nextDouble() < rotateProbability) { 
     int x, y; 
     do { 
     x = rnd.nextInt(agents.size()); 
     y = rnd.nextInt(agents.get(i).size()); 
     } while (x == i && y == j); 
     GridAgent swapAgent =  
     agents.get(x).get(y); 
     GridAgent currentAgent =    
     agents.get(i).get(j); 
     ArrayList<Integer> helpKnow =   
     swapAgent.getKnowledge(); 
   swapAgent.setKnowledge(currentAgent.getKnowledge()); 
     currentAgent.setKnowledge(helpKnow); 
    } 
   } 
  } 
 } 
 @Override 
 public List<Agent> getAgentsList() { 
  if (this.agentList == null || generateNewAgentsList) { 
   agentList = new ArrayList<Agent>(this.x * this.y); 
   for (Vector<GridAgent> row : this.agents) { 
    for (GridAgent agent : row) { 
     agentList.add(agent); 
    } 
   } 
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   generateNewAgentsList = false; 
  } 
  return agentList; 
 } 
 //Reset dimensions for next iteration 
 public void resetUsedDimensions(){ 
  this.usedDimensiones = new ArrayList<Integer>(); 
 } 
 public void setAgents(Vector<Vector<GridAgent>> agents){ 
  this.agents = agents; 
 } 
}//END
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A.2.4 Agent ("Agent.java") 
	  

/* 
 *  Agent.java 
 *   
 *  (c) 2013, Felix Obschonka 
 *  
 */ 
package learningAgents; 
import java.util.Random; 
import java.util.ArrayList; 
 
public abstract class Agent implements Comparable<Agent>{ 
 
 protected ArrayList<Integer> knowledge; 
 
 public Agent(int dimensions) { 
  knowledge = new ArrayList<Integer>(dimensions); 
  Random rnd = new Random(); 
  for (int j = 0; j < dimensions; j++) { 
   double p = rnd.nextDouble(); 
   int value;  
    if (p < 1.0 / 3.0) { 
     value = -1; 
    } else if (p < 2.0 / 3.0) { 
     value = 1; 
    } else { 
     value = 0; 
   } 
   knowledge.add(value);  
  } 
 } 
  
 public void init(){ 
  int dimensions = knowledge.size(); 
  knowledge = new ArrayList<Integer>(dimensions); 
  Random rnd = new Random(); 
  for (int j = 0; j < dimensions; j++) { 
   double p = rnd.nextDouble(); 
   int value;  
   if (p < 1.0 / 3.0) { 
    value = -1; 
   } else if (p < 2.0 / 3.0) { 
    value = 1; 
   } else { 
    value = 0; 
   } 
   knowledge.add(value); 
  } 
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 } 
 
 public int getAccordanceValue(ArrayList<Integer> reality) { 
  assert (reality.size() == knowledge.size()); 
  int result = 0; 
  for (int i = 0; i < reality.size(); i++) { 
   result += reality.get(i) * this.knowledge.get(i); 
  } 
  return result; 
 } 
 
 public ArrayList<Integer> getKnowledge() { 
  return knowledge; 
 } 
 
 public void setKnowledge(ArrayList<Integer> knowledge) { 
  this.knowledge = knowledge; 
 } 
 
 public void setKnowledge(int i, int v) { 
  this.knowledge.set(i, v); 
 } 
 
 public abstract void learn(Agent agent, double  
 learningProbability); 
  
 public abstract void addLearningBuddy(Agent agent); 
  
 @Override 
 public int compareTo(Agent that) { 
  int dimensions = this.getKnowledge().size(); 
  for(int i = 0; i < dimensions; i++){ 
   if(this.getKnowledge().get(i) >     
   that.getKnowledge().get(i)){ 
    return 1; 
   } 
   if(this.getKnowledge().get(i) <  
   that.getKnowledge().get(i)){ 
    return -1; 
   } 
  } 
  return 0; 
 } 
}//END
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A.2.5 Agent Behavior ("GridAgent.java") 
	  

/* 
 *  GridAgent.java 
 *   
 *  (c) 2013, Felix Obschonka 
 *  
 */ 
package learningAgents.gridNetworking; 
import java.util.ArrayList; 
import java.util.Collections; 
import java.util.Comparator; 
import java.util.List; 
import java.util.Random; 
import java.util.Vector; 
import learningAgents.Agent; 
 
public class GridAgent extends Agent { 
 
 // Initialization 
 private int x, y; 
 private Grid grid; 
 private Vector<GridAgent> learningFrom = new Vector<GridAgent>(); 
 private Vector<GridAgent> teacherTo = new Vector<GridAgent>(); 
 private boolean learningBuddiesFix; 
 private int learningBuddies; 
 protected ArrayList<GridAgent> allNeighbours; 
 protected boolean generateNewNeighboursList; 
 public GridAgent(int dimensions, int x, int y, Grid g, int 
 learningBuddies, boolean learningBuddiesFix) { 
  super(dimensions); 
  this.x = x; 
  this.y = y; 
  this.grid = g; 
  this.teacherTo = new Vector<GridAgent>(); 
  this.learningFrom = new     
  Vector<GridAgent>(learningBuddies); 
  this.learningBuddiesFix = learningBuddiesFix; 
  this.learningBuddies = learningBuddies; 
 } 
 public Vector<GridAgent> getLearningBuddies() { 
  return learningFrom; 
 } 
 @Override 
 public void addLearningBuddy(Agent agent) { 
  GridAgent a = (GridAgent) agent; 
  this.learningFrom.add(a); 
  a.teacherTo.add(this); 
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 } 
  

public void addTeacherTo(GridAgent teacherTo) { 
  this.teacherTo.add(teacherTo); 
 } 
 public int getX() { 
  return x; 
 } 
 public int getY() { 
  return y; 
 } 
  
 //Creates list of all neighbors 
 public List<GridAgent> getAllNeighbours() { 
  if (this.allNeighbours == null ||  
  this.generateNewNeighboursList) { 
  ArrayList<GridAgent> result = new  ArrayList<GridAgent>(8); 

int a, b; 
 

   a = (x > 0) ? x - 1 : grid.getX() - 1; 
   b = y; 
   result.add(grid.getAgent(a, b)); 
 
   a = (x < grid.getX() - 1) ? x + 1 : 0; 
   b = y; 
   result.add(grid.getAgent(a, b)); 
 
   a = x; 
   b = (y < grid.getY() - 1) ? y + 1 : 0; 
   result.add(grid.getAgent(a, b)); 
 
   a = x; 
   b = (y > 0) ? y - 1 : grid.getY() - 1; 
   result.add(grid.getAgent(a, b)); 
 
   a = (x > 0) ? x - 1 : grid.getX() - 1; 
   b = (y < grid.getY() - 1) ? y + 1 : 0; 
   result.add(grid.getAgent(a, b)); 
 
   a = (x > 0) ? x - 1 : grid.getX() - 1; 
   b = (y > 0) ? y - 1 : grid.getY() - 1; 
   result.add(grid.getAgent(a, b)); 
 
   a = (x < grid.getX() - 1) ? x + 1 : 0; 
   b = (y < grid.getY() - 1) ? y + 1 : 0; 
   result.add(grid.getAgent(a, b)); 
 
   a = (x < grid.getX() - 1) ? x + 1 : 0; 
   b = (y > 0) ? y - 1 : grid.getY() - 1; 
   result.add(grid.getAgent(a, b)); 
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   this.allNeighbours = result; 
  } 
  return this.allNeighbours; 
 } 
  
 //Randomly selects a neighbour 
 public List<GridAgent> getSomeRandomNeighbours(int number) { 
  List<GridAgent> result = getAllNeighbours(); 
  Random rnd = new Random(); 
  int size = result.size(); 
  for (int i = number; i < size; i++) { 
   result.remove(rnd.nextInt(result.size())); 
  } 
  return result; 
 } 
  
 //Initiates learning process 
 @Override 
 public void learn(Agent agent, double learningProbability) { 
  Random rnd = new Random(); 
  for (int i = 0; i < this.knowledge.size(); i++) { 
   if (rnd.nextDouble() < learningProbability) { 
    if (this.knowledge.get(i) *     
    agent.getKnowledge().get(i) == -1) { 
     this.knowledge.set(i, 0); 
    } else if (this.knowledge.get(i) == 0) { 
     this.knowledge.set(i,     
    agent.getKnowledge().get(i)); 
    } 
   } 
  } 
 } 
 
 public Vector<GridAgent> getTeacherTo() { 
  return teacherTo; 
 } 
 
 public void resetTeaching() { 
  this.teacherTo = new Vector<GridAgent>(); 
 } 
 
 public Grid getGrid() { 
  return grid; 
 } 
 
 public void resetLearningBuddies() { 
  if(learningFrom != null) 
  for (GridAgent agent : learningFrom) { 
   agent.teacherTo.remove(agent); 
  } 
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  if(teacherTo != null) 
  for (GridAgent agent : teacherTo) { 
   agent.learningFrom.remove(agent); 
  } 
  this.learningFrom = null; 
  this.teacherTo = null; 
 } 
 
 public void setX(int x) { 
  this.x = x; 
 } 
 
 public void setY(int y) { 
  this.y = y; 
 } 
 
 public void defineLearningBuddies() { 
 
 } 
  
 public List<GridAgent> getDirectNeighbours(){ 
  List<GridAgent> a = getAllNeighbours(); 
  return a.subList(0,4); 
 } 
} 
//END	  
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A.2.6 Environment ("Environment.java") 
	  

/* 
 *  Environment.java 
 *   
 *  (c) 2013, Felix Obschonka 
 *  
 */ 
package learningAgents; 
import java.util.List; 
import java.util.Random; 
import java.util.ArrayList; 
 
public abstract class Environment { 
 protected ArrayList<Integer> reality; 
 protected int sizeOfAgents; 
 public Environment(int sizeOfAgents) { 
  this.sizeOfAgents = sizeOfAgents; 
  this.reality = generateReality(); 
 } 
  
 //Randomly generates an environment 
 protected ArrayList<Integer> generateReality() { 
  ArrayList<Integer> result = new    
  ArrayList<Integer>(sizeOfAgents); 
  Random rnd = new Random(); 
  for (int i = 0; i < sizeOfAgents; i++) { 
   double p = rnd.nextDouble(); 
   int value = ((int) Math.round(p)) * 2 - 1; 
   result.add(value); 
  } 
  return result; 
 } 
 public ArrayList<Integer> getReality() { 
  return reality; 
 } 
 public abstract double getCurrentAvgIndKnowledge(); 
  
 //Exchange agents according to reality 
 public abstract void turnoverAgents(); 
 public abstract void rotateAgents(); 
 public abstract List<Agent> getAgentsList(); 
  
 //Changes reality according to the parameters set in main  
 public abstract void turbulenceReality(int method, int  
 dimensions, int turbulenceRange);   
}	  //END
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