
Testing Framework for Real-time And

Embedded Systems
A Dissertation

Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Natural Sciences

to the Department of DEPARTMENT OF MATHEMATICS AND COMPUTER

SCIENCE - INSTITUTE OF COMPUTER SCIENCE

of the Freie Universität Berlin

.

by

-Ing.

Diana Alina Serbanescu

Berlin, April 2013

Supervisor: Prof. Dr.-Ing. Ina Schieferdecker

Second examiner:

Date of the viva voce/defense:

Diana
Typewritten Text
Prof. Dr. -Ing. Valentin Cristea

Diana
Typewritten Text

Diana
Typewritten Text

Diana
Typewritten Text

Diana
Typewritten Text

Diana
Typewritten Text

Diana
Typewritten Text

Diana
Typewritten Text

Diana
Typewritten Text

Diana
Typewritten Text

Diana
Typewritten Text

Diana
Typewritten Text
09.09.2013

Diana
Typewritten Text

Diana
Typewritten Text

Diana
Typewritten Text

Diana
Typewritten Text

Diana
Typewritten Text

Diana
Typewritten Text

Diana
Typewritten Text

“Q: There’s no point in arguing that the machine is wholly successful, but it has its

qualities. I don’t like to use anthropomorphic language in talking about these machines,

but there is one quality...

A: What is it?

Q: It’s brave.

A: Machines are braver than art.”

City Life, Donald Barthleme

FREIE UNIVERSITÄT BERLIN

Abstract

Freie Universität Berlin

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE - INSTITUTE

OF COMPUTER SCIENCE

Doctor of Natural Sciences

by -Ing.

Diana Alina Serbanescu

Real-time reactive and embedded systems are usually used in circumstances where safety

is important and the margin for error is narrow. These kinds of systems have applicabil-

ity in a broad band of domains such as: automotive, avionics, air tra�c control, nuclear

power stations, industrial control, etc. As the name denotes, the main feature of “real-

time” systems is the criticality of their timeliness. Guaranteeing a certain timeliness

requires appropriate testing. As manual testing is burdensome and error prone, auto-

mated testing techniques should be developed. Although the importance of having a

standard environment for automatic testing is high, the technologies in this area are not

su�ciently developed. This thesis reviews the standardized test description language

“Testing and Test Control Notation version 3 (TTCN-3)” as a means for real-time test-

ing and it proposes extensions to enable real-time testing with TTCN-3. The aim is to

provide a complete testing solution for automatic functional and real-time testing, built

around this already standardized testing language. The solution includes an environ-

ment for designing and running the tests written in the extended language. As a proof of

concept, test examples, designed using the enhanced TTCN-3, are mapped to real-time

platform implementations and the timeliness of each implementation is analyzed.

FREIE UNIVERSITÄT BERLIN

Zusammenfassung

Freie Universität Berlin

FACHBEREICH MATHEMATIK UND INFORMATIK - INSTITUT FÜR

INFORMATIK

Doktor der Naturwissenschaften

von -Ing.

Diana Alina Serbanescu

Echtzeit-reaktive und eingebettete Systeme werden gewöhnlich in Bereichen genutzt,

in denen Sicherheit sehr wichtig und die Fehlertoleranz begrenzt ist. Diese Systeme

finden ihre Anwendung in vielen Bereichen: in der Automobilindustrie, in der Luft-

fahrtindustrie, in der Luftfahrtberwachung, in nuklearen Anlagen, in der Regelungs-

und Steuerungstechnik, etc.

Wie der Name bereits andeutet, liegt das charakteristische Merkmal von Echtzeitsys-

temen in der Sicherstellung der Rechtzeitigkeit von Ereignissen. Das Garantieren einer

bestimmten Rechtzeitigkeit erfordert geeignete Testmethoden. Da manuelles Testen

beschwerlich und sehr fehleranfällig ist, sollten automatisierte Testmethoden zur An-

wendung kommen. Obwohl es sehr wichtig ist, für das automatisierte Testen eine stan-

dardisierte Testumgebung zu besitzen, sind die Technologien in diesem Bereich nicht

ausreichend entwickelt. Diese Dissertation betrachtet die standardisierte Testbeschrei-

bungssprache ”Testing and Test Control Notation Version 3 (TTCN-3)” als ein Mittel

für das Testen von Echtzeitsystemen und unterbreitet Vorschläge für Erweiterungen der

Testsprache, um das Testen von Echtzeitsystemen mit TTCN-3 zu ermglichen. Ziel ist es,

ein komplette Testlösung für das automatisierte funktionale Testen und das Testen von

Echtzeitsystemen bereitzustellen, welche auf diese bereits standardisierte Testsprache

aufbaut. Die Lösung bietet Erweiterungen der Sprache sowie eine Umgebung für das

Erstellen und das Ausführen der Tests an. Im Rahmen einer Machbarkeitsstudie wer-

den Testbeispiele erstellt, die auf Implementierungen von Echtzeitsystemen angewendet

werden.

Acknowledgements

First of all I would like to express my entire gratitude to my Professor Ina Schieferdecker.

This thesis would not have been possible without the continuous support, tutoring and

encouragements that my Professor, Ina Schieferdecker, o↵ered to me. She provided me

not only the opportunity, but also the example in pursuing an academic career: her

good technical advices, elegant arguments while discussing technical problems, her pro-

fessional attitude towards research, attention to detail, but also friendly and relaxed, yet

engaging attitude, guided me along the way, and were most valuable for the development

of this work.

Secondly, I would like to express my gratitude to Professor Valentin Cristea, who tu-

tored and encouraged me during my university years, and more recently for taking the

responsibility of being my second supervisor. I would like to thank him for the prompt

support and the valuable and detailed corrections he gave me. These proved very helpful

in increasing the quality of my thesis.

I am grateful for having the opportunity of accomplishing this PhD in a very professional

and productive environment. The work presented here was realized in collaboration with

the MOTION team from Fraunhofer FOKUS, with the support of Technical University of

Berlin and with the collaboration of testing team at the Daimler Center for Automotive

Information Technology Innovations (DCAITI). Thank you Ina, for giving me the chance

to work with and learn from those wonderful people!

I would like to extend thanks to FOKUS Fraunhofer Institute for Open Communi-

cation Systems for involving me in interesting research from the automotive domain

and for giving me the chance to attend conferences all over the world. During those

years I developed a lot, not only as a researcher, but also as a person. Many thanks

to the “Alfried Krupp von Bohlen und Halbach-Stiftung” for o↵ering me a two years

scholarship, which helped me focus on my study. I express my deepest gratitude to

Fraunhofer FOKUS for giving me the chance to start and grow as a researcher. I would

also like to address a big “Thank You!” to my wonderful former and current colleagues

from the MOTION team, especially to Dr.George Din, Dr.Diana Vega, Andreas Ho↵-

mann, Dr.Alain-Georges Vou↵o Feudjio, Marc-Florian Wendland, Dr.Jürgen Gromann

,Dr.Justyna Zander, Dr.Zhen Ru Dai, Petre Razvan, Arun Prakas, Nikolay Vassilev

Tcholtchev, Dr.Ranganai Chaparadza and Victoria Molovata for the interesting discus-

sions and new perspectives, for excellent guidance and tips, for making the work fun and

making me feel at home within the team. Also I would like to thank to my colleagues

from DCAITI for the friendliness and professionalism. Among them I would especially

vi

like to acknowledge Ilja Radusch, Horst Rechner, Björn Schünemann, Mihai Rigani and

Martin Goralczyk.

As many of the ideas from this thesis were firstly presented and originated in the intense

discussions that took place within the context of TEMEA project, I dearly want to

thank all the members of the project for o↵ering me a place at the discussion table.

My warmest appreciations go to my dearest friends. I am grateful to Petre Razvan,

Bogdan Pintea, Diana Vega, George Din, Madalina and Dirk Tempelmann for being on

my side when I needed them, both personally and professionally. Thank you, guys, I

wouldn’t have made it without you!

I would also like to mention the great support and unconditioned appreciation and

encouragement that I got from my dear friend Steve Cosgrove, Lecturer at Whitireia

New Zealand. Steve helped me a lot with the proofreading of this thesis. Thank you,

Steve for all your help and thank you for never ceasing to believe in me! Despite the

distance you were very near all along. Furthermore, I wish to express my enthusiasm

and appreciation to all young researchers out there, some of which I had the luck to meet

during conferences. It is very encouraging to meet and befriend like-minded people from

all over the world.

Last but not least I would like to thank and express my love to my wonderful family. I

want to thank to my amazing parents for unconditioned love and understanding. Thank

you for handling so well the distance and my decision to come to Germany for study.

My dear parents, I am so proud of you and I would like you to be proud of me too. I

would also like to thank my uncles and aunts and my grandparents who raised me to be

what I am. This work is dedicated to you all!

Last but not least, I would like to thank Neal Cahoon for helping and encouraging me

and bearing with me during this period of my life.

Contents

Declaration of Authorship ii

Abstract iv

Zusammenfassung v

Acknowledgements vi

List Of Figures xiii

List Of Tables xv

Abbreviations xvi

1 Introduction 1

1.1 Scope Of The Thesis . 2

1.2 Structure Of The Thesis . 8

1.3 Dependencies Of Chapters . 11

2 Fundamentals Of Real-time Testing 12

2.1 Real-time Fundamentals . 12

2.1.1 Real-time Systems Requirements . 13

2.1.2 Real-time Programming Languages 15

2.1.3 Real-time Operating Systems . 20

2.1.3.1 Real-time Operating Systems Concepts 21

2.1.3.2 Basic RTOS Kernel Services 22

2.1.3.3 Scheduling Algorithms For Real-time 23

2.1.4 Real-time Semantics And Tools . 26

2.2 Testing For Real-time . 29

2.3 Summary . 33

3 State Of The Art 35

3.1 State Of The Art In Real-time Testing . 35

3.2 Motivation For Choosing The TTCN-3 Language 39

viii

Contents ix

3.2.1 Concepts Of TTCN-3 . 41

3.3 State Of The Art Of Real-time Concepts For TTCN-3 45

3.4 Summary . 51

4 Our Approach Towards Real-time Testing 57

4.1 Real-time With TTCN-3 At Conceptual Level 57

4.2 Why Is TTCN-3 Not Real-time . 59

4.3 Requirements For Building A Reliable Real-time Test System 62

4.4 Real-time Extensions For TTCN-3 . 63

4.4.1 Data Types Suitable For Expressing Time Values 63

4.4.2 Special Operations Relaying On Time:
now, wait, testcasestart, testcomponentstart,
testcomponentstop . 66

4.4.3 Measurement Of Time With timestamp 68

4.4.4 Time Restrictions For Message Receival Using Time Predicates:
at, within, before, after . 68

4.4.5 Inducing Events At Established Time Points Using Time Predicate
at . 70

4.5 Semantical Definitions Of The Real-time Extensions For TTCN-3 Using
Timed Automata . 70

4.5.1 Semantics Of Special Operations Relaying On Time:
now, wait, testcasestart, testcomponentstart, testcomponentstop 73

4.5.2 Semantics For receive With timestamp 74

4.5.3 Semantics Of send With timestamp 77

4.5.4 Semantics For The receive Instructions Which Verify Incoming
Communication . 78

4.5.5 Semantics For send Instructions Which Control Outgoing Com-
munication . 81

4.5.6 Semantics for alt Instructions which Control Incoming Commu-
nication . 82

4.5.7 Semantics For Instructions Controlling The Starting And Stoping
Of Test Components . 85

4.6 Comparison Between Real-time Extended TTCN-3 And TTCN-3 86

4.7 Summary . 90

5 Real-time Testing Framework Architecture 92

5.1 Design Patterns For The Real-time Concepts 92

5.1.1 General Architecture . 94

5.1.2 Dealing With Time . 97

5.1.3 Control Instructions . 97

5.1.4 Dealing With Events . 98

5.1.5 Time Events . 99

5.1.6 External Events . 99

5.1.7 Verification And Time Read Instructions 99

5.1.8 Component Task With Timed Send 101

5.1.9 Component Task With Send And Timestamp 101

5.1.10 Alt Operation With Receive Branches And Break Condition . . . 102

5.2 Real-time Operating System Selection . 108

Contents x

5.2.1 RTOS Candidates . 108

5.2.2 RTOS Selection Criteria . 109

5.2.3 Evaluation Results . 114

5.3 FreeRTOS. Important Features. 115

5.4 RTAI. Important Features. 116

5.5 Summary . 117

6 Mappings For The Real-time Test Concepts 118

6.1 Linux With RTAI Based Real-time Testing Framework 118

6.1.1 TS As A Real-time Kernel Module 119

6.1.2 Real-time Test Case With Special Operations 119

6.1.3 Real-time Test Component . 122

6.1.4 Starting And Stopping A Test Component At A Given Time . . . 126

6.1.5 Starting And Stopping A Test Component At A Given Time Using
Timer Tasklets . 131

6.1.6 Receive Operation With Expiration Time 137

6.1.7 Send Operation . 140

6.1.8 Real-time Sockets. Receive Server. 144

6.1.9 Real-time Sockets. Send Client. 146

6.2 FreeRTOS Based Real-time Testing Framework. Auto Car Door Case
Study. 148

6.2.1 Auto Car Door Case Study . 150

6.3 Summary . 158

7 Results And Discussion 159

7.1 Benchmark Of A Test System Implemented On Linux With RTAI Real-
time Operating System . 159

7.1.1 Special Operation Wait . 161

7.1.2 Starting And Stopping Of Test Components At Precise Times . . 162

7.1.3 Sending Messages At Precise Times 166

7.1.4 Receive Operation Limited By The Break Instruction 169

7.2 Results For The Auto Car Door Case Study With A Test System Imple-
mented On FreeRTOS . 173

7.3 Summary . 175

8 Conclusion 176

8.1 Summary Of The Thesis . 176

8.2 Main Contributions . 178

8.3 Future Work . 179

8.4 Closing Words . 180

A Syntax For The Real-time Extensions Of TTCN-3 181

A.1 Data Types Suitable For Expressing Time Values: datetime, timespan,
float, tick . 181

A.2 Syntax Of Special Operations Relaying On Time:
now, wait, testcasestart, testomponentstart, testcomponentstop . . 184

A.3 Syntax For receive With timestamp . 185

Contents xi

A.4 Syntax Of send With timestamp . 185

A.5 Syntax Of The Temporal Predicates . 185

A.6 Syntax For The receive Instructions Which Verify Incoming Communi-
cation . 187

A.7 Syntax For send Instructions Which Control Outgoing Communication . 188

A.8 Syntax For alt Instructions Which Control Incoming Communication . . 188

A.9 Syntax For Instructions Controlling The Starting And Stoping Of Test
Components . 189

B Predefined Conversion Functions 190

B.1 Converting timespan Values To float . 190

B.1.1 Syntactic structure: . 190

B.1.2 Signature: . 190

B.1.3 Semantic description: . 190

B.2 Converting Seconds To A timespan Value 191

B.2.1 Syntactic structure: . 191

B.2.2 Signature: . 191

B.2.3 Semantic description: . 191

B.3 Converting tick Values To Seconds . 191

B.3.1 Syntactic structure: . 191

B.3.2 Signature: . 191

B.3.3 Semantic description: . 192

B.4 Converting Seconds To A tick Value . 192

B.4.1 Syntactic structure: . 192

B.4.2 Signature: . 192

B.4.3 Semantic description: . 192

C Time Expressions With Numerical And Logical Operators 194

D Semantics Completions Of The Real-time Extensions Of TTCN-3 Us-
ing Logic Rules 197

D.1 Semantics Of Special Operations Relaying On Time:
now, wait, testcasestart, testcomponentstart, testcomponentstop . 197

D.2 Semantics For receive With timestamp . 198

D.3 Semantics Of send With timestamp . 199

D.4 Semantics Of The Temporal Predicates . 200

D.5 Semantics For The receive Instructions Which Verify Incoming Com-
munication . 201

D.6 Semantics For send Instructions Which Control Outgoing Communication 203

D.7 Semantics for alt Instructions which Control Incoming Communication . 203

D.8 Semantics For Instructions Controlling The Starting And Stoping Of Test
Components . 206

E Code Examples Using Real-time Extensions Of TTCN-3 207

E.1 Data Types Suitable For Expressing Time Values 207

E.2 Special Operations Relaying On Time:
now, wait, testcasestart, testcomponentstart, testcomponentstop . 208

E.3 receive With timestamp . 209

Contents xii

E.4 send With timestamp . 209

E.5 receive Instructions Which Verify Incoming Communication 211

E.6 send Instructions Which Control Outgoing Communication 211

E.7 alt Instructions which Control Incoming Communication 212

E.8 Instructions Controlling The Starting And Stopping Of Test Components 212

Bibliography 214

List of Figures

1.1 Dependencies Between Chapters . 8

2.1 Taxonomy Of Real-time Scheduling [1] . 23

2.2 Black-box Testing For A Real-time System 31

3.1 Conceptual View Of A TTCN-3 TS [2] . 42

3.2 Illustration Of Alternative Behavior In TTCN-3 [2] 43

3.3 TTCN-3 Overview Of Proposed Extensions [3] 48

4.1 Simple Functional Black-box Test [4] . 57

4.2 Black-box Test With Time Restrictions [4] 59

4.3 Logical Clock. 73

4.4 Now State. 73

4.5 Wait State. 73

4.6 Testcasestart. 75

4.7 Testcomponentstart. 75

4.8 Testcomponentstop. 75

4.9 Receive Automaton. 76

4.10 Match Automaton. 76

4.11 Send with timestamp automaton. 78

4.12 Receive automaton. 79

4.13 Match automaton. 80

4.14 Timer For send State With Time Constraint. 81

4.15 alt Automaton. 83

4.16 Timer For The alt State. 83

4.17 Extended Match Automaton. 84

4.18 Timer For start Component State With Time Constraint. 85

4.19 Timer For stop Component State With Time Constraint. 85

4.20 Flow Graph Segment For <alt-stmt> Statement [5], [4] 87

4.21 Flow Graph Segment For A Receiving Branch Of An <alt-stmt> State-
ment [5], [4] . 87

4.22 Flow Graph Segment For A Timeout Branch Of An <alt-stmt> State-
ment [5], [4] . 88

4.23 Events And Operations Over Time [4] . 88

5.1 Real-time Design Patterns . 93

5.2 Architectural Layers Of A Real-time TTCN-3 Testing Framework 94

5.3 Implementation Design For A Conventional TTCN-3 Platform 95

5.4 Implementation Design For A Real-time TTCN-3 Platform 96

xiii

List of Figures xiv

5.5 Generating Timer Event [6] . 98

5.6 Time Event Handler Associated With Send [6] 99

5.7 Time Event Handler Associated With Break [6] 100

5.8 Event Handler For An External Event [6] 100

5.9 Execution Timeline For Sending At A Given Time [6] 102

5.10 Sender Task Transitions With Ready Queue [6] 102

5.11 Execution Timeline For A Send With Timestamp [6] 103

5.12 Filter Function After Receiving The Event [6] 105

5.13 Behavior Of Alt Task When Running [6] . 105

5.14 Alt Task Transition States [6] . 106

5.15 Task Interactions For An Alt Statement [6] 106

5.16 (a) Possible Flow Of Events [6] . 107

5.17 (b) Possible Flow Of Events [6] . 107

6.1 Auto Car Door Demo Setup And Configuration [3] 151

7.1 Info CPU . 160

7.2 RTAI Properties And Features . 161

7.3 Test System Design For Evaluating A wait Operation 162

7.4 Latency Margins For The wait Operation 163

7.5 Test System Design For Evaluating The Precision start at and stop at

Operations . 164

7.6 Latency Margins For The Lifespan Of A Test Component 164

7.7 Latency Margins For The Lifespan Of A Test Component For The Imple-
mentation Using Timers . 165

7.8 Latency Margins For The Lifespan Of PTC’s, With An Increased Num-
bers Of PTC’s And Variable Delays . 166

7.9 Test System For Evaluating The send Operations With Strict Timings . 167

7.10 Latency Margins For The send Operation With Strict Timing 168

7.11 Latency Margins For The send Operation For The Implementation Using
Timers . 169

7.12 Latency Margins For The send Operation With Increasing Number Of
PTCs In The Background. Same Priority. 170

7.13 Latency Margins For The send Operation With Increasing Number Of
PTCs In The Background. Greater Priority For send Operation. 170

7.14 Test System Structure For receive...break Evaluation 171

7.15 Latency Margins For The break Instruction 172

7.16 Latency Margins For The break Instruction Implemented With Timers . 172

7.17 One Possible Flash Light Signal Flow . 173

7.18 A Sample Of Case Study Results . 174

7.19 Another Possible Flash Light Signal Flow 174

List of Tables

1.1 Key Characteristics Of The Real-time Systems That Should Be Taken
Into Account By Testing . 2

2.1 Important Characteristics Of Real-time Systems 14

2.2 Characteristics Of The Real-time Programming Languages. Clocks. . . . 18

2.3 Characteristics Of The Real-time Programming Languages. Delays And
Timeouts. 19

2.4 Dynamic Scheduling Algorithms. Rate Monotonic Algorithm(RMA). . . 24

2.5 Dynamic Scheduling Algorithms. Earliest Deadline-First(EDF). 25

2.6 Dynamic Scheduling Algorithms. Priority Ceiling Protocol (PCP). 25

2.7 Testing vs. Formal Verification. 29

3.1 Real-time Testing Frameworks. Part I. 36

3.2 Real-time Testing Frameworks. Part II. 38

3.3 Extensions For TTCN. 47

3.4 Extensions For TTCN-3. Part I. 49

3.5 Extensions For TTCN-3. Part II. 52

3.6 Extensions For TTCN-3. Part III. 53

3.7 Real-time Extensions For TTCN-3. Our Approach. Part I. 54

3.8 Real-time Extensions For TTCN-3. Our Approach. Part II. 55

4.1 Features Of A Reliable Real-time Test System 63

5.1 Eliminated RTOS Candidates . 109

5.2 Remaining RTOS Candidates For Complex Evaluation 110

5.3 A General RTOS Selection . 111

5.4 A More Specific RTOS Selection . 112

6.1 RT-TTCN-3 To RTAI Mappings. Part I. 123

6.2 RT-TTCN-3 To RTAI Mappings. Part II. 127

6.3 RT-TTCN-3 To RTAI Mappings. Part IIIa. 132

6.4 RT-TTCN-3 To RTAI Mappings. Part IIIb. 135

6.5 RT-TTCN-3 To RTAI Mappings. Part IIIc. 136

6.6 RT-TTCN-3 To RTAI Mappings. Part IV. 141

6.7 RT-TTCN-3 To RTAI Mappings. Part V. 144

7.1 The Results For The Presented Example . 175

A.1 The Syntactic Meta-notation . 181

A.2 List Of RT-TTCN-3 Terminals Which Are Reserved Words 181

xv

Abbreviations

AEM Advanced Energy Management

A/D Analog-to-Digital convertor

ACC Adaptive Cruise Control

ADA Advanced Driver Assistance

API Application Programming Interface

ASN.1 Abstract Syntax Notation .1

BNF Backus-Naur Form

BSD Blind Spot Detection

CDS Collision Detection System

CP Crash Prevention

CPU Central Processing Unit

CS Crash Safety

CSP Communicating Sequential Processes

CTE Classification-Tree Editor

CTM Classification-Tree Method

D/A Digital-to-Analog convertor

DAS Driver Assistance System

EBNF Extended Backus-Naur Form

ECU Electronic Control Unit

ETSI European Telecommunications Standard Institute

EDF Earliest Deadline First

IDL Interface Description Language

IUT Implementation Under Test

HIL Hardware-in-the-Loop

MIL Model-in-the-Loop

xvi

Abbreviations xvii

MMI Man Machine Interface

MSC Message Sequence Charts

MTC Main Test Component

OEM Orriginal Equipment Manufacturer

PA Parking Assistance

PAT Process Analysis Toolkit

PP Pedestrian Protection

PTC Parallel Test Component

RMA Rate Monolitic Algorithm

RT Real-time

RTOS Real-time Operating System

RTSJ Real-time Specification for Java

RTSUT Real-time System under Test

RTTS Real-time Test System

SGC Stop and Go Control

SIL Software-in-the-Loop

SUT System Under Test

TA Timed Automata

TCI TTCN-3 Control Interface

TIOTS Timed Input-Output Transition System

TRI TTCN-3 Runtime Interface

TS Test System

TTCN-3 Testing and Test Control Notation version 3

XML Extensible Markup Language

UTC Coordinated Universal Time

V&V Verification & Validation

WCET Worst-case Execution Time

Dedicated to my wonderful parents.

xviii

Chapter 1

Introduction

”If knowledge can create problems, it is not through ignorance that we can solve them.”

Isaac Asimov

Real-time systems are those systems in which the correctness of the system depends

not only on the logical results of computation but also on the time at which the re-

sults are produced [28]. They span a broad spectrum of complexity from very simple

micro-controllers in embedded systems to highly sophisticated, complex, and distributed

systems. Real-time and embedded systems play an important role in the contemporary

world and many industrial processes rely on their good functioning. Their area of appli-

cability is very wide, ranging from industrial process controllers, to technical equipment

used in the health, automotive, avionics and space control sectors.

As each sector develops technologically, more and more equipment and functionality is

added. For example, in the automotive industry, innovations are realized particulary

by electronic systems and software driven functions. In a modern vehicle there may be

between 30 and 80 controllers, which communicate with one another over di↵erent bus

systems [4]. The quality assurance of such systems is very important, since most of the

real-time systems perform safety or other critical procedures, which may lead to fatality

if not performed correctly.

Testing plays an important role in asserting the quality of an application and should

usually accompany the most part of the development process - at di↵erent stages - and

also early in the life of a product. The challenge that has to be assumed is to be able to

manage the increasing complexity of interacting real-time and embedded systems, and

to perform an accurate and precise testing of their functionalities, before their release

for use.

There are several types of testing that should be performed on a large software system:

unit, integration, functional, system, acceptance, beta and regression. Each type of test

has a specification that defines the correct behavior that the test is examining, so that

incorrect behavior, an observed failure, can be identified. Based on opacity of the tester’s

view of the code, these types can be divided into two basic classes of software testing,

black-box testing and white-box testing. Black-box testing, also called functional testing,

is testing that ignores the internal mechanism of a system or component and focuses

1

Chapter 1. Introduction 2

solely on the outputs generated in response to selected inputs and execution conditions.

White-box testing, also called structural testing and glass box testing, is testing that

takes into account the internal mechanism of a system or component.

In the language of V&V, black-box testing is often used for validation - “are we building

the right software?” - and white-box testing is often used for verification - “are we

building the software right?”. Because the goal is to verify and validate already developed

real-time applications, which come from di↵erent manufacturers, the solution presented

here focuses on black-box testing [25]. Therefore, whenever testing is mentioned in

the following, it should be understood as a substitute for black-box testing. A more

comprehensive description of the di↵erent types of testing and of the relevance of black-

box testing in the context of V&V can be found in [11].

1.1 Scope Of The Thesis

Testing of real-time and embedded applications represents a challenge due to the special

nature of such systems, requiring not only to test the functional aspects, but also timing

aspects of the computation. In addition to these, other characteristics of the real-time

and embedded applications - the most relevant being summarized in Table 1.1 - have to

be taken in consideration in order to be properly addressed by the testing process.

timeliness requirements
complexity, diversity, heterogenous
rapid development process
various manufacturers
interoperability requirements
functional in di↵erent environments

Table 1.1: Key Characteristics Of The Real-time Systems That Should Be Taken Into
Account By Testing

The challenge is even greater when we face the complexity and diversity already men-

tioned. Furthermore, an automatized testing process will increase the e�ciency of testing

and will be more suitable for the covering and testing requirements of such heterogenous

systems. Compared with traditional testing methods, which are usually involving a lot

of manual testing, an automatized testing is less prone to errors.

Test cases should be written in an easy-to-read manner to minimize duplicate specifi-

cations. The tests should be used to provide a base-line for regression testing. Hence,

repeatability is a key property. The tests should be able to execute in several en-

vironments and therefore, for increased portability, they should carry a minimum of

environment-specific details [38].

Chapter 1. Introduction 3

Unfortunately, testing for real-time and embedded systems is still lacking complete au-

tomation technique. It is usually performed by a multiplicity of proprietary test systems

and test platforms, lacking a standardized approached which can unite the di↵erent vi-

sions. A comprehensive state of the art of these testing solutions is made in Chapter 3.

Nevertheless, none of the existing frameworks have been based on a standardized test

language that can provide a common platform for test collaboration and test case ex-

change. Their evolution was heterogenous and the demand for a common and standard-

ized approach was the next requirement that still needed to be addressed.

With respect to these aspects, the aim of this thesis is: To build a manufacturer-

independent testing framework that combines functional test automation with real-time

test automation by means of a standardized testing specification language.

In order to realize the proposed testing framework for real-time, this thesis focuses on

the following aspects:

Using the Testing and Test Control Notation, version 3 (TTCN-3). The stan-

dardized testing language that remains at the basis of this testing framework is TTCN-3.

As many of the test tool providers from the industry (e.g. [23], [24]) are pitching in its

favour, there are plenty reasons for choosing TTCN-3 (a more detailed argumentation

is given in Chapter 3). But the most significant one is that TTCN-3 is actually the

only standardized test technology enabling test automation. Since its creation, TTCN-3

has been successfully applied into industrial projects, ranging from areas as telecom-

munication, automotive domain, to healthcare and much more. Being an international,

open and maintained standard with standardized interfaces, extensibility is built in.

Permanent updates ensure its usability according to the latest testing requirements.

Besides typical programming constructs, TTCN-3 contains all the important features

to specify test procedures and test campaigns for all kinds of testing, such as func-

tional, conformance, interoperability, or load tests. These test-specific features are

unique compared to traditional scripting or programming languages, and above all

remain technology-independent. TTCN-3 defines test cases on an abstract level and

supports full test execution control [24].

Taking the standard and making it appropriate for testing real-time applications seems,

in this context, a natural step forward. Unfortunately, TTCN-3 was not developed with

real-time focus in mind and it lacks the mechanism for dealing with real-time specific

test situation. Therefore, the challenge assumed in the context of this thesis is also to

enhance TTCN-3 with language extensions, reflecting all the needed real-time testing

concepts that have been missing from the language.

Chapter 1. Introduction 4

Real-time testing concepts. In addition to the specific functional requirements de-

fined by their specification, real-time systems also have to respect special requirements

for timing [111]. In order to ensure the timeliness of the SUT, the TS ought to be time-

predictable as well. Assuring this timeliness for the TS starts from the test design. After

investigating the requirements specific to real-time applications and the problems that

arose due to the particularities of those requirements, a number of concepts specific to

real-time test design were identified. Examples of such concepts are shortly summarized

in the following.

Each TS for real-time should have a clock capable of a desired precision, a function to

read the clock, a set of data types for representing absolute and relative time values for

saving values read from the clock, mechanisms associating timestamps with important

events (e.g. incoming of messages) during the test execution. As reading and saving time

values of a clock would be not enough for assuring the timeliness of the TS, mechanisms

for associating durations with test behavior should also be at hand. These should enable

the test designer to delay the execution of certain parts of test behavior for a specified

period of time or resume blocking instructions (e.g. awaiting incoming messages on

ports) after a maximum time frame.

Real-time testing extensions for TTCN-3. Syntactic and semantic defini-

tions.As previously mentioned, in order to achieve the goal of this thesis, TTCN-3 was

extended with a minimal and yet complete set of constructs for real-time testing, re-

flecting the concepts discussed in the previous paragraph. The research made for the

development of these constructs includes an extensive study of real-time programming

languages - with focus on their particular features for real-time - and the revision of

previous extensions proposed for TTCN-3.

In the context of this thesis, the enhancements to TTCN-3, needed for real-time test-

ing, are the following: data types suitable for expressing time values (datetime, times-

pan, float, tick), special operations relying on time (now, wait, testcasestart, testcompo-

nentstart, testcomponentstop), timestamp for incoming or outgoing communication, time

restrictions for message receival using time predicates (at, within, before, after), induc-

ing events (e.g. sending of a message, starting a test component, etc.) at established

time points using the time predicate at.

The new proposed concepts are integrated into the syntactical structure of the TTCN-3

language, by means of clear syntactic rules, based on extended Backus−Naur Form

(BNF) notation. The semantics of the real-time TS realized on the basis of enhanced

TTCN-3 is further defined by means of timed automata [92]. For each TTCN-3 instruc-

tion that relies on a real-time concept, the associated semantic is represented as timed

automata. This approach is new and di↵erent from the way semantics of TTCN-3 was

Chapter 1. Introduction 5

previously defined into the standard. The motivation for choosing timed automata is

that they are mathematical instruments for modeling timed behavior in a formal way.

This approach also opens new and interesting possibilities, as, for example, semantical

validation of the timed TTCN-3 code, based on model-checking methods developed for

timed automata.

Real-time testing framework architecture. The next step was to define the archi-

tecture of the real-time testing framework and explain the algorithms for implementing

the proposed concepts on real platforms. Based on those, a set of design patterns were

defined in order to draw the connection between the newly introduced test concepts and

real-time operating systems services. In this way, any real-time operating system pre-

senting the required services, could realize the behavior implied by a certain real-time

test concept.

Benchmark of the real-time testing framework. Real-time case study. The

TTCN-3 extensions for real-time were implemented on a real-time operating system

(Linux with RTAI) for a proof of concept. Delays and latencies were measured for this

implementation in benchmark scenarios. Evaluation of the results led to the conclusion

that the goal was reached. The test framework for real-time realized has worse case

execution times (WCETs) bounded in the range of microseconds, with the condition that

the testing behavior is consisting of a real-time schedule-able set of tasks (schedulability

tests for a set of tasks are discussed in [22]).

In the second case study, the real-time testing concepts were used in combination for

building a TS for an application from the automotive domain. The application consists

of an Electronic Control Unit (ECU) controlling the functionality of a car door. Dif-

ferently triggered sequences of functionality are required to be performed with respect

to strict time constraints. The real-time test framework was e�cient in asserting con-

formance to both functional and timing requirements, with a required precision, for the

timing requirements, in the range of microseconds. Some failures in the behavior of the

SUT were discovered for specific sets of inputs.

The work presented here stems from the author’s participation in the TEMEA [79]

project, on the basis of which, the additional standardized extension for TTCN-3 [80],

regarding real-time and performance, was published. Nevertheless, the concepts intro-

duced in this thesis are a wider, more comprehensive and more complete set compared

to the concepts developed by TEMEA, or the concepts adopted into the standard.

Before a deeper insight is found in the proposed design for a testing framework for

real-time and embedded systems, one should examine the following questions carefully:

Chapter 1. Introduction 6

Q1: What does black-box testing for real-time mean in comparison to traditional black-

box testing of systems? Black-box testing is a method of software testing that

tests the functionality of an application based on inputs and outputs provided

or acknowledged to or from the respective application. Specific knowledge of the

application’s code in general is not required. Test cases are built around specifica-

tions and requirements which are describing what the application is supposed to

do. Therefore, the above question can be translated into the following one:

Q2: Which specifications and requirements are particular to real-time and embedded

systems and how are those requirements influencing the testing process? A system

is said to be real-time if the total correctness of an operation depends not only

upon its logical correctness, but also upon the time in which it is performed.

This means that beside the usual functional requirements, there are also some

timeliness requirements that should be respected by the analyzed system. Special

test cases should be designed for verifying whether those timeliness requirements

are respected or not.

Q3: What testing frameworks for real-time are out there? What is the advantage of

the presented approach over the existing solutions? A state of the art ought to be

made for presenting the existing tools for testing real-time and embedded systems.

Di↵erent features of those languages ought to be analyzed and their advantages

and disadvantages ought to be presented. The need for a new approach should

result from the insu�ciency of the existing tools to cover important aspects of

testing real-time systems.

Q4: What test specification languages are out there and which one is most suitable as

a basis for a testing framework for real-time? Is there any standardized testing

specification language that can be used? A state of the art ought to be made

for presenting the existing test specification languages. Di↵erent features of these

languages ought to be analyzed and then, based on several criteria - e.g. usability,

standardization, etc. - a selection ought to be made. TTCN-3 was found to be

the best match for the envisioned goal. The main reason to select this language

lies in the fact that TTCN-3 is at present the only standardised test language and

technology-enabling test automation. Since its creation, it has become popular

in the industry and has been successfully used for various application domains

like telecommunications, automotive, health care and more. Additionally, various

features o↵ered by this language make it a suitable technology to build upon a

testing framework for real-time. All these are going to be presented in more detail

in Chapter 3.

Chapter 1. Introduction 7

Q5: How suitable is TTCN-3 for designing test cases for verifying timeliness require-

ments? Although TTCN-3 is a well structured and modular language, specially

conceived for black-box testing industrial application, with powerful tools, such as

sending and receive operations on ports and matching mechanism against prede-

fined templates, it was not thought-out with real-time target systems in mind.

Q6: What does TTCN-3 lack for being appropriate for real-time testing? How can the

shortcomings be overcome? In order to move the accent from a purely functional

form of developing tests towards an approach where time aspects are equally im-

portant, the testing language should possess good mechanisms and concepts for

dealing with time.

Q7: What makes a programming language real-time? What characteristics and con-

cepts are specific to a real-time programming language? Are those characteristics

applicable for a testing language as well? Several real-time languages need to be

studied in order to draw some answers to those questions and to find a set of

concepts that are necessary both for designing and testing real-time applications

and that have no equivalent in the current TTCN-3 standard.

Q8: How can the new concepts be integrated into TTCN-3 from a syntactical and se-

mantical perspective? For each proposed concept, syntactical and semantical defi-

nitions ought to be designed for integrating them into the language and establishing

the relationships with the other elements of TTCN-3.

Q9: How can these new concepts be implemented? TTCN-3 is a specification language.

This means that test specification should be translated in a code that can be

executed. Therefore, design patterns for implementing the new concepts need to

be introduced.

Q10: What real-time platform(s) is targeted for the proof of concept? What are the main

criteria for selecting the real-time operating system? There are a wide variety of

real-time operating systems. In order to implement some abstract test concepts,

a real-time operating system should be chosen. The real-time operating system

should be selected on the basis of a list of criteria.

Q11: How would a mapping between the new introduced concepts and the API, provided

by the selected real-time operating system, look like? A future aim would be that

the real-time test cases are to be automatically translated into code that can be

executed on the selected platform. Therefore, it is necessary that mapping rules

are established for the automatic translation of test cases.

Chapter 1. Introduction 8

Q12: How should the TS, provided by this solution, be evaluated as suitable for testing

real-time applications? After the implementation of the new concepts, a bench-

mark of the resulting TS should be performed. The benchmark will be based on

worst case execution times (WCETs) for a variety of test cases, defined using the

newly introduced test concepts. The aim is to cover and evaluate most of the

possible usage situations for the new concepts within TTCN-3.

All the afore mentioned questions are going be answered, one by one, during the forth-

coming chapters of this thesis. The roadmap and the dependencies among the chapters

are presented in the following Sections.

1.2 Structure Of The Thesis

.

Part 1: Introduction

Chapter 2: Fundamentals Of Real-time Testing

x Real-t im e Fundam ent als
x Test ing Overview
x Test ing f or Real-t im e

Chapter 3: State Of The Art

x Real-t im e Test ing Fram ew orks
x Test ing Specif icat ion Languages
x TTCN-3 & Ext ensions f or TTCN-3

Part 2: Real-time Testing Solution

Chapter 4: Real-time TS with TTCN-3

Why is TTCN-3 not Real-t im e?

Requirem ent s f or Real-t im e TS

New Concept s f or TTCN-3

Chapter 5: Real-time Testing Framework Architecture

x Design Pat t erns f or Real-t im e Concept s

Part 3: Evaluation Of The Solution

Chapter 6 & 7: Case Studies: RTAI & FreeRTOS – based

Real-time Testing Frameworks

x Mappings def ined f or RTAI & FreeRTOS
x Benchm ark of RTAI-based Test ing Fram ew ork
x Aut oDOOR Test ing w it h FreeRTOS-based Test ing

Fram ew ork

Chapter 7: Conclusions and Outlook

Figure 1.1: Dependencies Between Chapters

Chapter 1. Introduction 9

In Figure 1.1 can be visualized the structure of this thesis, together with the connections

between chapters. There will be a logical partitioning of this material into three main

parts:

Part 1 – containing Chapters 1-3 – presents the fundamental knowledge that is nec-

essary for understanding the proposed solution, of testing real-time systems in a

standardized testing environment.

Chapter 1: presents the scope and structure of this work together with a short presenta-

tion of each of the following chapters.

Chapter 2: holds theoretical mechanisms necessary for understanding the rest of the the-

sis. The main topics in discussion are: fundamentals of software V&V and

presentation of black-box testing in this context, testing concepts for real-

time with regard to the characteristics and specific requirements of real-time

systems, real-time programming language concepts and specific features, real-

time operating system concepts, semantic models for real-time and testing

with respect to real-time applications. The information contained in this

chapter provides answers to the questions Q1,Q2 and Q7, formulated in the

previous section, 1.1.

Chapter 3 : begins with presenting the state of the art for real-time testing frameworks,

listing already existing theories and solutions. Advantages and disadvantages

of these frameworks are thoroughly discussed. The flaws of the existing so-

lutions, with regards to the current need for testing in the real-time systems

world (e.g. lack of automation, proprietary technology lacking a standardized

approach), are emphasized here. The solution adopted by this thesis, pre-

sented in this context, as an answer to these needs, overcomes the weaknesses

of the other approaches. In the second part of this chapter, a state of the art

of the existing test specification languages is realized. Those specifications are

compared, based on a list of criteria (e.g. modularity, portability), and the

most suitable one is chosen as a basis for the test framework presented here.

TTCN-3 is selected as the appropriate choice. Suitability of TTCN-3 with re-

gard to testing real-time system is discussed. Some previous endeavors using

TTCN-3 specification language for designing tests in the real-time context

are considered further. Positives and negatives of the preceding approaches

are shortly analyzed and discussed. This chapter adds more information and

provides answers to the questions Q3 to Q6 from Section 1.1.

Part 2 – containing Chapters 4-6 – encompasses the solution of this thesis and provides

the answers to the questions Q6 to Q10. In order to properly understand the

Chapter 1. Introduction 10

solution presented here, the reader needs to be familiar with the theoretical aspects

presented in Part 1.

Chapter 4: starts with presenting the problem in a formal manner. The deficits of

TTCN-3 regarding real-time are summarized. A formal definition of a TS

for real-time is given here by means of an extended timed automata (TA)

model. New concepts are added to TTCN-3 specification language for solv-

ing the presented shortages of the language (lack of appropriate data types for

storing time values, inaccurate timers based on snapshot semantics, lack of

means for controlling incoming and outgoing communication or for inducing

events at specific times, lack of means to constrain test behaviour). These

concepts are integrated syntactically into the language by describing each

particular syntactic rule that should be added to the grammar of TTCN-3.

The semantics of each concept is presented using the extended TA model that

was introduced in the beginning. For a good understanding of this chapter,

one has to be familiar with the notions introduced in Chapters 2 and 3.

Chapter 5: will show some design patterns for implementing the new concepts introduced

in Chapter 4.

Part 3 – contains Chapters 6, 7 and 8 – presents two case studies with two concrete

realizations of the concepts based on two real-time operating system platforms.

It also draws together the evaluation of the presented solution, explaining the

conclusion and proposed prospects for the future.

Chapter 6: relies on the knowledge cumulated from Chapter 4 and 5. Here is shown

how the new concepts for real-time introduced in Chapter 4 are mapped to

real-time platforms. A real-time operating system selection is realized on the

basis of several criteria (e.g. design, supported languages, etc.). A wide range

of real-time operating systems are investigated and two of them are chosen

as proof of concept: Linux with RTAI and FreeRTOS.

Chapter 7: In benchmark scenarios, worst case execution cases are calculated for each

new concept introduced in Chapter 4. The benchmarking was realized for

the RTAI implementation. The FreeRTOS implementation was used in a case

study, presenting an SUT consisting of a simple automotive application: a

controller for an automatic car door. The FreeRTOS-based TS was successful

in testing the SUT and some failures of the SUT were identified.

Chapter 8: presents the conclusions and outlook for further work. This thesis represents

only a step forward, not the end of the journey.

Appendixes – Containing: Appendix A, Appendix B, Appendix C, Appendix D, Ap-

pendix E – comprehends completion of the theoretical and solution chapters.

Chapter 1. Introduction 11

Appendix A contains the syntax for the real-time extensions of TTCN-3.

Appendix B contains the functions designed to realize the conversions between the di↵erent

formats proposed for representing time.

Appendix C contains the semantics for time expressions with numerical and logical oper-

ators.

Appendix D contains the complementary logic rules to the semantics of the new real-time

extensions for TTCN-3.

Appendix E contains the real-time extensions for TTCN-3, introduced in Chapter 4, by

means of examples.

1.3 Dependencies Of Chapters

Chapters 4, 5 and 6 use concepts presented in Chapters 2 and are relying on the states of

the art presented in 3. Nevertheless, a reader who is familiar with the concepts related

to real-time systems and real-time testing may proceed directly to Chapter 4.

Chapter 4 describes the adopted real-time extensions for TTCN-3, on the basis of which

the real-time testing architecture from Chapter 5 is built upon. These concepts and

this architecture are used for implementing the case studies presented in Chapters 6

and 7. A reader who desires a quick overview on the topics of this thesis should read

the summaries provided at the end of each chapter, as well as the overall summary and

conclusion given in Chapter 8.

Chapter 2

Fundamentals Of Real-time Testing

”I know nothing except the fact of my ignorance.”

Socrates

The testing of real-time systems is a complex conceptual and technical activity that

starts with a good understanding of the real-time systems and their specific require-

ments. The purpose of this chapter is to provide the theoretical foundation required for

a good understanding of the testing solution adopted in this thesis. Therefore, the most

important concepts of real-time that are also relevant for testing are displayed here.

This chapter is split into two sections. The first section contains an overview of the

real-time systems, including a taxonomy of real-time and a discussion about specific

requirements for real-time. Knowing to identify di↵erent categories of real-time systems

and understanding their particular requirements is important for designing suitable tests.

Adjacent aspects as programming languages for real-time, real-time operating systems

(RTOSes), semantic models and tools for describing and verifying real-time applications

are further addressed here. Concepts from real-time programming languages are reused

to define real-time test specifications (e.g. clocks, delays, timeouts, deadlines, etc.),

semantic models for real-time are used to define and validate real-time test specification,

and RTOSes are part of the platforms on which the tests are run. The second part

focuses on black-box testing in the context of real-time and defines real-time test specific

concepts as what is a real-time test system (RTTS) or what is a real-time system under

test (RTSUT).

The concepts presented in this chapter are being used in Chapters 4, 5 and 7.

2.1 Real-time Fundamentals

Real-time systems are those systems in which the correctness of their execution depends

not only on the logical results of computation but also on the time at which the results

are produced [40]. They span a broad spectrum of complexity from very simple micro

controllers in embedded systems – e.g. a microprocessor controlling an automobile engine

– to highly sophisticated, complex, and distributed systems – e.g. air tra�c control.

It can be argued that any practical system can be regarded as real-time. Even a web-

browser should be able to respond to commands within a reasonable amount of time (e.g.

12

Chapter 2. Fundamentals 13

1 second), or it would become torturous to use [41]. But there is still a big di↵erence

between real-time influencing usability and user-friendly features of an application, and

real-time deadlines that are critical and very important with respect to a high and

sometimes fine-grained precision.

Thus, the range of real-time application can be classified into four main categories, which

determine how critical the real-time constraint is:

1. Soft real-time systems are systems in which the performance is degraded but not

destroyed by failure to meet response time constraints (e.g the web-browser given

as a previous example will belong to this group).

2. Hard real-time systems on the other hand are systems in which failure to meet a

single deadline may lead to complete and catastrophic system failure (e.g. a power

plant controller or an electronic control unit (ECU) controlling the functionality

of the engine in a car, etc.).

3. Firm real-time systems are placed somewhere in between the two above mentioned

categories. A firm real-time system is one in which a few missed deadlines will

not lead to total failure, but missing more than a few may lead to complete and

catastrophic system failure (e.g. a navigator system inside a car can be such a firm

real-time system, as the driver can, for example, miss the exit from the highway if

the route is not calculated in time).

4. Real real-time systems are systems which are hard real-time and for which the

response times are very short (e.g. Missile Guidance System, etc.).

2.1.1 Real-time Systems Requirements

Real-time systems have end-to-end time requirements that add to the general constraints

for the execution. That means that precise portions of execution have to be accomplished

in predefined time frames.

Real-time systems need to have fast, predictable, and bounded responses to all types of

events such as interrupts and messages, and also the ability to manage system resources

to meet processing deadlines. A deadline represents a time within which a task or a

computation should be completed.

Two ways in which this works concerns event-driven systems and time-driven systems:

1. Event-driven systems will respond to external stimuli that could occur at any point

in time. This is usually the case because the system is sensing something in the

Chapter 2. Fundamentals 14

real world that is inherently unpredictable. The performance requirement for this

type of system says: If event x happens, you must respond appropriately within n

milliseconds.

2. Time-driven systems, on the other hand – their actions driven by the passage

of time or the arrival of absolute points in time – have certain tasks that must

be accomplished on a periodic basis that is typically known ahead of time. The

performance requirement of this type of system sounds like: Every n milliseconds,

you must perform such and such operation.

In practice, nevertheless, real-time systems often have both event-driven tasks and

periodic/time-driven tasks [15].

Timeliness - Deadlines should be met or an appropriate action should be
taken. The environment requires a response from the system within a fixed amount
of time.

Schedulability - To schedule the computations on the available resources in
such a way that deadlines are guaranteed to be met.

Reliability - In many real-time applications, it is important that the system
is robust and fault-tolerant.

Table 2.1: Important Characteristics Of Real-time Systems

On a system with shared resources, the responsibility of managing the running tasks on

the resources so that the deadlines are guaranteed belongs to the scheduler. A system is

said to be schedulable if it can guarantee that it will meet its performance requirements.

The timing requirements of the system must be preserved even at high degrees of resource

usage [21].

A real-time system should be robust in handling the unpredictable events and no matter

what happens, it should always keep one of its properties in predictable terms: time-

liness. When the system is overloaded by events and it is impossible to meet all the

deadlines, the deadlines of critical tasks must still be guaranteed [21].

A property can be predictable to the degree that it is known in advance. Hence, at

one endpoint of the predictability scale is determinism, in the sense that the property

is known exactly in advance. At the other endpoint is maximum entropy, in the sense

that nothing at all is known in advance about the property.

Chapter 2. Fundamentals 15

Predictability of timeliness is the most fundamental property of a real-time system [42].

The basic features that a real-time system must demonstrate are summarized in Ta-

ble 2.1:

2.1.2 Real-time Programming Languages

In [43] it is discussed how important characteristics (see Table 2.1) of real-time have

influenced the design of real-time programming languages and real-time operating sys-

tems. Ada, Real-time Euclid, Real-time Java, Flex and Real-time C/POSIX are the

real-time programming languages whose features adapted for real-time programming

are chosen as a basis for discussion in this section.

To ensure that a program meets its specifications, a real-time programming language

must allow:

programmers to express di↵erent types of timing constraints

compilers to check the feasibility of meeting the timing requirements

systems to enforce timing constraints either before or at runtime

In order to control these timing aspects of the computation, the main mechanisms needed

by a real-time programming language are:

access to a clock

the ability to delay execution of a task

the ability to recognise timeouts

As stated in the previous enumeration, in addition to clock access, processes must also

be able to delay their execution either for a relative period of time or until some time in

the future. To eliminate the need for busy-waits, most languages and operating systems

provide some form of delay primitive. Both relative and absolute delay mechanisms are

needed. Absolute delays allow cumulated drifts to be avoided.

Ada is a modern programming language that puts unique emphasis on, and provides

strong support for, good software engineering practices that scale well to very large

software systems. Among its most relevant language features, counts: modularity, a

strong, static and safe type system, readability and portability.

Ada also has powerful specialised features supporting low-level programming for re-

altime, safety-critical and embedded systems. Such features include, among others,

Chapter 2. Fundamentals 16

machine code insertions, address arithmetic, low-level access to memory, control over

bitwise representation of data, bit manipulations, and a well-defined, statically provable

concurrent computing model called the Ravenscar Profile. The Ravenscar profile is a

subset of the Ada tasking features, designed for safety-critical, hard real-time comput-

ing [20] and defining the invocation, synchronization, and timing of parallel tasks [44].

Several vendors provide Ada compilers accompanied by minimal run-time kernels suit-

able for use in certified, life-critical applications. It should come as no surprise that

Ada is heavily used in the aerospace, defense, medical, railroad, and nuclear industries

(e.g. “on one new large airplane, approximately one-third of the applications are in

Ada” [18].). Ada 95, including its Real-Time System Annex D, has probably been the

most successful real-time language, in terms of both adoption and real-time technology.

Real-Time Euclid is a language designed specifically to address reliability and schedu-

lability issues in environments with real-time constraints. The language definition forces

every construct in the language to be time- and space-bounded. These restrictions make

it easier to estimate the execution time of the program, and facilitate scheduling to

meet all deadlines. Therefore, Real-Time Euclid programs can always be analyzed for

schedulability [45].

Real-Time Euclid is modular, procedural, and strongly typed. It is structured and small

enough to be remembered in its entirety, thus facilitating programming-in-the-small.

Modularity and separate compilation make Real-Time Euclid a suitable language for

programming-in-the-large [19]. In contrast to Ada, which has been widely applied in

the industry, Real-Time Euclid is an experimental programming language, invented as

a tool to be used to predict whether or not real-time software will adhere to its critical

timing constraints. It has been demonstrated that this task may be made considerably

easier with Real-Time Euclid [17].

Real-Time Specification for Java (RTSJ) specifies how Java systems should be-

have in a real-time context and has been developed over several years by experts from

both the Java and real-time domains. The RTSJ introduces several new features to sup-

port real-time operations. These features include new thread types with new scheduling

techniques, new memory-management models, new time-related classes (e.g. high reso-

lution timers) and operations, asynchronous events and even handlers and other newly

introduced frameworks [46].

Java platform’s promise of Write Once, Run Anywhere, together with the Java lan-

guage’s appeal as a programming language, o↵er a great cost-saving potential in the

real-time. Real-time Java has been successfully deployed in various commercial and de-

fense applications: e.g. the mission planning software for the Boeing J-UCAS X-45C

Chapter 2. Fundamentals 17

unmanned aircraft was written in Java language and deployed on a real-time virtual ma-

chine. French Military FELIN Project by Sagem also uses real-time execution of Java,

Aegis Warship Software Upgrade [16], etc.. In successful projects, the choice to use Java

has reduced certain risks and demonstrated concrete benefits. In comparison to C, Java

o↵ers improved developer productivity, more flexible and general architectures, better

portability and scalability, and lower cost maintenance.

Real-time C/POSIX defines a standard way for an application to interface with the

operating system. The original POSIX standard has defined interfaces to core functions

such as file operations, process management, signals, and devices.

Of the more than thirty POSIX standards, there are seven standards relevant to the

development of real-time and embedded systems. The first three standards-1003.1a,

1003.1b, and 1003.1c-are the most widely supported. POSIX 1003.1a defines the in-

terface to basic operating system functions, and was the first to be adopted in 1990.1.

Real-time extensions are defined in the standards 1003.1b, 1003.1d, 1003.1j, and 1003.21.

However, the original real-time extensions, defined by 1003.1b, are the only ones com-

monly implemented [47].

The following features constitute the bulk of the features defined in POSIX 1003.1b:

timers (periodic timers, delivery is accomplished using POSIX signals), priority schedul-

ing (fixed priority preemptive scheduling with a minimum of 32 priority levels, real-time

signals (additional signals with multiple levels of priority), semaphores, memory queues,

shared memory, memory locking [14].

Commercial support for POSIX varies widely. Because POSIX 1003.1a is based on

UNIX, any UNIX-based operating system will be very close to the standard. Some ex-

ample of operating systems providing 1003.1b are Lynx/OS (used for developing soft

real-time systems), VxWorks (with a large spectrum of use, e.g. Mars Pathfinder Mis-

sion [13], etc.), Solaris, Linux, QNX, etc..

Tables 2.2 and 2.3 provide an overview of the mechanisms that each of the above sum-

marized programming languages are exhibiting, with regards to basic real-time require-

ments. Those mechanisms presented here are going to be the focus of enhancement for

real-time of TTCN-3 specification.

The three concepts of clocks, delays and timeouts are exemplified in each language.

From Table 2.2 it is notable that each of the analyzed languages, with the exception of

Real-Time Euclid (who was developed for hard real-time only) are providing a general

purpose clock library and a real-time clock library of high-resolution.

Chapter 2. Fundamentals 18

Table 2.2: Characteristics Of The Real-time Programming Languages. Clocks.

Language Feature Clocks

Programming
Language

Language Construct Description

Ada
Calendar time

- wall-based clock, has no requirement to

be synchronized with UTC.

Real-time
- based on a monotonically non-decreasing

clock whose epoch is system start-up.

Real-Time Euclid
realTimeUnit

- this global variable must be initialized,

e.g. realTimeUnit := 1.0 % time unit

= 1 seconds.

Time

- built-in function that returns the time

elapsed from the startup of the system to

the present in real time units.

Real-Time Java

java.lang.System.

currentTimeMillis

- wall clock, defined to count millisecond

since a defined epoch (1/1/1970 UTC).

HighResolutionTime,
AbsoluteTime,
RelativeTime,
Clock

- those classes add real-time clocks with

high resolution time types. The real-time

clock is monotonic, and counts milliseconds

and nanoseconds since 1/1/1970 UTC.

Real-time
C/POSIX

calendar, time t

- ANSI C has a standard library for

interfacing to calendar time. This defines

a basic time type time t and several

routines for manipulating objects of type

time.

Real-time POSIX

timespec

- High resolution clock (requires at least

one clock of minimum resolution 50 Hz

(20ms)), counting the seconds since 1970.

Chapter 2. Fundamentals 19

Table 2.3: Characteristics Of The Real-time Programming Languages. Delays And
Timeouts.

Language Feature Language Construct

Programming
Language

Delays Timeouts on Actions

Ada
delay

delay until

select

delay 0.1;

then abort

-- action

end select;

Real-Time Euclid atTime atTime

Real-Time Java sleep
Timed extends

AsynchronouslyInterruptedException

Real-time
C/POSIX

timer & signals

nanosleep
timer & signals

As with delay, the construct of delay until in Ada, is accurate only in its lower bound.

Real-time Java’s sleep can be relative or absolute. POSIX requires use of an absolute

timer and signals. The C/POSIX nanosleep is similar to the delay in Ada, with the

di↵erence that it may return early due to signal.

Timeouts can be added to any condition, synchronisation primitive, or on message pass-

ing. It is also possible, within Ada, to program timeouts or execute timed entry call on

protected objects or on passing of messages, by using delay statements together with

select. The exemplified timeouts on actions mean that if the action takes too long,

the triggering event will occur and the action will be aborted. This is an e↵ective way

of catching run-away code. Real-time Java also has overrun handlers. With Real-Time

Java, timeouts on actions are provided by a subclass of

AsynchronouslyInterruptedException called Timed. It is also possible, within Ada,

to do timed entry calls as shown in the following example:

Chapter 2. Fundamentals 20

select

acceptCall(T : temperature) do

New_temp:=T;

endCall;

or

delay10.0;

--action for timeout

end select

While Ada, Real-Time Euclid and Real-Time Java are examples of higher level real-

time programming languages, C/POSIX is a lower level language, and its mechanisms

are closer to the services of the underlying real-time operating system. In the following

Section 2.1.3, the concepts for real-time operating systems are discussed, together with

the main scheduling algorithms for real-time.

2.1.3 Real-time Operating Systems

Development of real-time software di↵ers from the development of non-real-time software

because execution time must be considered. Predictability is extremely important in

real-time programming, and to get it, one needs to keep track of time. The following

are the issues that real-time programmers handle:

How long will each task take to complete?

How soon can another task be scheduled and start to run?

Which task is most important?

What happens if one task takes too long?

Do the tasks have to communicate, and if so, how?

In order to keep track of time, means and mechanisms for interrogating the internal clock

and for generating time interrupts, are both necessary [48]. Many real-time systems

must do simultaneous tasks, and making these tasks coordinate available resources is

one aspect of real-time programming. Available resources might be physical such as

hard storage, a printer, an input/output (I/O) port, or they might be logical such as

non shareable code segment.

This brings the operating system and the underlying hardware processor architecture

(e.g. memory, processor speed, bandwidth, etc.) into play. Operating systems are

complex programs that interface hardware with user programs [48]. The advantages of

Chapter 2. Fundamentals 21

the real-time operating system (RTOS) approach are that it provides operations with

uniform access to the underlying hardware and can control the scheduling of multiple

tasks which includes their access to the shared resources [91].

To be considered real-time, an operating system must have a known maximum time for

each of the operations that it performs, or at least be able to guarantee that maximum

most of the time. Operating systems that can absolutely guarantee a maximum time

for these operations are referred to as hard real-time, while operating systems that can

only guarantee a maximum most of the time are referred to as soft real-time.

2.1.3.1 Real-time Operating Systems Concepts

A RTOS is valued moreso for how quickly and/or predictably it can respond to a par-

ticular event rather than for the given amount of work it can perform over time.

An important concept in real-time operating systems is the notion of an event.

Event represents any occurrence that results in a change in the sequential flow of

program execution.

Events can be divided into two categories: synchronous and asynchronous.

Synchronous events are those which occur at predictable times such as execution of

a conditional branch instruction or hardware trap.

Asynchronous events occur at unpredictable points in the flow-of-control and are

usually caused by external sources such as a clock signal. Both types of events can

be signaled to the CPU by hardware signals.

A key property of any real-time system is its response time, i.e. the time it takes for

the system to react to some external event under worst case conditions. Two important

terms, used to describe the response time, shall be defined here:

Interrupt Latency represents the time it takes from a device asserting an interrupt

line until the system dispatching the corresponding interrupt handler (ISR). Inter-

rupt latency is due to both hardware and software factors. Interrupts may occur

periodically (at fixed rates), aperiodically, or both.

Context Switch Delay defines the time it takes to schedule a task. It involves the

scheduler determining which task to run, saving the current task context and

restoring the new one [50].

Chapter 2. Fundamentals 22

Jitter is the amount of error in the timing of a task over subsequent iterations of a

program or loop.

Real-time operating systems are optimized to provide a low amount of jitter when pro-

grammed correctly. That means that a task will take very close to the same amount of

time to execute each time it is run.

2.1.3.2 Basic RTOS Kernel Services

The kernel of a RTOS provides the abstraction layer that hides the hardware details

of the processor from application software – or a set of processors – and upon which

the application software will run. In providing this abstraction layer the RTOS kernel

supplies five main categories of basic services to application layer. These services are

described below:

Task Management: These are the most basic category of kernel services, and they

contain the ability to launch tasks and assign priorities to them. The main RTOS

service in this category is the task scheduler. The task scheduler controls the exe-

cution of application software tasks, based on certain scheduling algorithms (pre-

sented in Section 2.1.3.3), and can make them run in a very timely and responsive

fashion.

Inter-task Communication and Synchronization: These services make it possi-

ble for tasks to pass information from one another, without danger of that infor-

mation ever being damaged. They also make it possible for tasks to coordinate, so

that they can productively cooperate with one another. Without the help of these

RTOS services, tasks might well communicate corrupted information or otherwise

interfere with each other.

Timers: Since many embedded systems have stringent timing requirements, most real-

time operating system kernels also provide some basic timer services, able to exe-

cute task delays and time-outs.

Dynamic Memory Allocation: This category of services allows tasks to share chunks

of RAM memory for temporary use in application software, as a means of quickly

communicating large amounts of data between tasks.

Device I/O Supervisor : These services, if available, provide a uniform framework for

organizing and accessing the many hardware device drivers that are typical of a

real-time system [51].

Chapter 2. Fundamentals 23

2.1.3.3 Scheduling Algorithms For Real-time

Multitasking is a technique to allocate CPU processing time among several tasks. Sys-

tems are classified as preemptive or non-preemptive depending on whether they can

preempt an existing task or not. In a preemptive system, each task is given a time slice.

Preemptive means that a task can be stopped, or another task can be preempted. In a

non-preemptive system a task must run to completion or until it suspends itself.

The scheduler, sometimes called the dispatcher, is the part of the operating system that

decides who gets to do what and when. It is used to select a process from among those

ready to run, schedule time for it on the CPU, and maintain a list of ready processes.

The dispatcher dispatches jobs to the CPU, using the list created by the scheduler.

Most real-time operating systems use a priority-based preemptive scheduler to keep the

system in order. Priority-based means that some type of priority scheme will be used to

determine how the schedule is made.

In a static priority system, the priorities do not change during run-time. Changing the

priority of a task during run-time is supported by some systems, and the algorithms for

assigning dynamic priorities are di↵erent from the ones used for static priorities.

Real-Time Scheduling

Hard Real-TimeSoft Real-Time

Dynamic Static (pre-runtime)

Preemptive Non-preemptive Preemptive Non-preemptive

Figure 2.1: Taxonomy Of Real-time Scheduling [1]

As shown in Figure 2.1, real-time scheduling can also be categorized into hard vs soft.

Hard real-time scheduling can be broadly classifies into two types, static and dynamic.

Static scheduling means that the scheduling decisions are made at compile time. A

run-time schedule is generated o↵-line, and is based on the prior knowledge of task-

set parameters (e.g., maximum execution times, precedence constraints, mutual

exclusion constraints, and deadlines). Therefore, the runtime overhead is small.

More details on this topic can be found at [52]

Chapter 2. Fundamentals 24

Dynamic scheduling implies that the scheduling decisions are made at runtime, by

selecting one out of the current set of ready tasks. Dynamic schedulers are flex-

ible and adaptive, but they can incur significant overheads because of run-time

processing.

Preemptive or non-preemptive scheduling of tasks is possible with static and dynamic

scheduling.

The Problem Of Schedulability. In order to certify that a given set of tasks are

schedulable according to one scheduling algorithm, di↵erent criteria are defined. The

following table present some representative scheduling algorithms, together with their

criteria.

Dynamic Algorithms: In Tables 2.4, 2.5 and 2.6 is given an overview of three repre-

sentative dynamic algorithms, together with their main characteristics and their schedu-

lability criteria for a set of tasks.

Table 2.4: Dynamic Scheduling Algorithms. Rate Monotonic Algorithm(RMA).

Algorithm Rate Monotonic Algorithm(RMA)

Scheduling Type Dynamic Preemptive

Priorities Type Static Priorities

Description

The RMA assigns static priorities based on task periods. Here
task period is the time after which the tasks repeat. The
inverse period is task arrival rate. For example, a task with a
period of 10 ms repeats itself after every 10 ms. The task
with the shortest period gets the highest priority, and the task
with the longest period gets the lowest static priority. At
run-time, the dispatcher selects the task with the highest
priority for execution.

Schedulability
Criteria

According to RMA a set of periodic, independent tasks can be
scheduled to meet their deadlines, if the sum of their
utilization factors of the n tasks is given as follows:

U = ∑n

i=1 C

i

T

i

≤ n(2 1
n − 1),

where C
i

is the computation time, T
i

is the release period, and
n is the number of processes to be scheduled. For example
U ≤ 0.8284 for n = 2 [53].

Static Algorithms: In static scheduling, scheduling decisions are made during compile

time. This assumes parameters of all the tasks are prior known and a schedule based

Chapter 2. Fundamentals 25

Table 2.5: Dynamic Scheduling Algorithms. Earliest Deadline-First(EDF).

Algorithm Earliest Deadline-First(EDF)

Scheduling Type Optimal Dynamic Preemptive

Priorities Type Dynamic Priorities

Description

After any significant event, the task with the earliest deadline
is assigned the highest dynamic priority. A significant event in
a system can be blocking of a task, invocation of a task,
completion of a task, etc..

Schedulability
Criteria

The schedulability test for EDF is:
U = ∑n

i=1 C

i

T

i

≤ 1,
where the C

i

are the worst case computation times of the n
processes and the T

i

are their respective inter-arrival periods.
EDF can guarantee that all deadlines are met provided that
the total CPU utilization is not more than 100%. So, compared
to fixed priority scheduling techniques like RMA, EDF can
guarantee all the deadlines in the system at higher loading.

Table 2.6: Dynamic Scheduling Algorithms. Priority Ceiling Protocol (PCP).

Algorithm Priority Ceiling Protocol (PCP)

Scheduling Type Dynamic Preemptive

Priorities Type Dynamic Priorities

Description

PCP is used to schedule a set of dependant periodic tasks
that share resources, protected by semaphores. The shared
resources, e.g. common data structures, are used for
interprocess communication. The sharing of resources can lead
to unbounded priority inversion. The priority ceiling protocols
were developed to minimize the priority inversion and
blocking time.

Schedulability
Criteria

The schedulability test for PCP is:

U = ∑i

j=1 C

j

T

j

+ B

i

T

i

≤ i(2 1
i − 1),

where blocking figure B
i

is the worst case computation time of
the longest critical section of a task of lower priority than task
i [54].

Chapter 2. Fundamentals 26

on this is then built. Once a schedule is made, it cannot be modified online. Static

scheduling is generally not recommended for dynamic systems. Applications like process

control can benefit from this scheduling, where sensor data rates of all tasks are known

before hand. There are no explicit static scheduling techniques except that a schedule is

made to meet the deadline of the given application under known system configuration.

Most often there is no notion of priority in static scheduling. Based on task arrival

pattern, a time line is built and embedded into the program and no change in schedules

are possible during execution [1].

2.1.4 Real-time Semantics And Tools

LIFE is the process ↵LIFE = {beat} which can stop (die) at any time.

traces(LIFE) = beat∗. 1

Semantics is a powerful instrument for expressing behavior in a formal manner, so as

to be universally understood and verified for correctness. Regarding the semantics of

time and real-time systems, several models have developed. The most important ones

are presented in this section, in a short overview.

Temporal Logic: In the narrowest sense, temporal logic comprises the design and study

of specific systems for representing and reasoning about time. These enterprises may

have both an applied and a theoretical side, the former consisting of designing a system

(that is, making choices in the fields of ontology, syntax and semantics), formalizing

temporal phenomena in it, and then putting it to work (perhaps through implementing

it). On the theoretical side, one aims to prove formal properties of the system, such as

completeness or decidability.

Temporal Logic is introduced as an extension to the classical propositional logic. The

first basic idea underlying temporal logic is to address this issue by making pure logical

valuations to be time-dependent. More precisely, one associates a separate valuation

with each point of a given flow of time.

Def 1. Let T = (T,<) be a flow of time. A valuation on T is a map ⇡ ∶ (T → (� →
0,1)). Here � denotes the set of propositional variables. A model is a pair M = (T ,⇡)
consisting of a flow of time and a valuation [55].

Communicating Sequential Processes (CSP)/Timed-CSP: Hoares CSP [56] is

an event based notation primarily aimed at describing the sequencing of behavior within

a process and the synchronization of behavior (or communication) between processes.

Timed-CSP extends CSP by introducing a capability to quantify temporal aspects of

sequencing and synchronization [57], [58].

1http://www.comp.nus.edu.sg/ pat/csp-slide.pdf

Chapter 2. Fundamentals 27

A process is determined (specified) by what it can do (i.e. a process is defined by its

behavior). The perceived behavior of a process will depend upon the observer. We

shall be mainly concerned with specifying the interaction between a system and its

environment (i.e. external, or visible, behavior). A process engages in events. Each

event, in this context, is an atomic action. The set of events that a process can possibly

engage in is the alphabet of the process. A trace is a finite sequence of events and

therefore, any execution of the process will be one of these sequences.

Timed Automata (TA): A semantic foundation for real-time systems based on TA

is being introduced in this subsection. This foundation is then further used to model

systems and to define the formal semantics of TA.

A timed input/output transition system (TIOTS) is a labeled transition system where

actions have been classified as inputs or outputs, and where dedicated delay labels model

the progress of time. In this case, the set of positive real-numbers is used to model time.

Below, the commonly used notation for labeled transition systems is extended to TIOTS.

Def 2. TIOTS: It is assumed that a given set of actions A is partitioned into two

disjointed sets of output actions A
out

and input actions A
in

. In addition, it is also

assumed that there is a distinguished unobservable action ⌧ �∈ A. The set A ∪ {⌧} is

denoted by A
⌧

. A TIOTS S is a tuple (S, so, A
in

, A
out

, →), where:
S is a set of states, s0 ∈ S,
and →⊆ S × (A

⌧

∪R≥0) × S is a transition relation satisfying the usual constraints

of time determinism (if s
d�→ s′ and s

d�→ s′′ then s’=s”), time additivity (if s
d1�→ s′

and s′ d2�→ s′′ then s
d1+d2���→ s′′), and zero-delay (for all states s

0�→ s). d, d1, d2 ∈ R≥0
and R≥0 denotes non negative real numbers.

s
a⇒ s′ i↵ s

⌧�→∗ a�→ ⌧�→∗ s′, where a ∈ A,

s
d⇒ s′ i↵ s

⌧�→∗ d1�→ ⌧�→∗ d2�→ � ⌧�→∗ d

n�→ ⌧�→∗ s′, where d = d1 + d2 +� + dn.
Def 3. Timed Trace: An observable timed trace � ∈ (A ∪ R≥0)∗ is of the form � =
d1a1d2�a

k

d
k

. Observable timed traces TTr(s) of state s are defined as:

TTr(s) = {� ∈ (A ∪R≥0)∗�s �⇒}. For a state s (and subset S′ ⊆ S) and a timed trace �,

s After � is the set of states that can be reached after �:

s After � = {s′�s �⇒ s′}, S′ After � = �
s∈S′ s After �

TA [92] is an expressive and popular formalism for modeling real-time systems. Es-

sentially, a TA is an extended finite state machine equipped with a set of real-valued

clock-variables that track the progress of time and that can guard when transitions are

allowed.

Chapter 2. Fundamentals 28

Def 4. Let consider X to be a set of R≥0-valued variables called clocks and let G(X)
denote the set of guards on clocks, being conjunctions of constraints of the form x � c,
where � ∈ {≤,<,=,>,≥}.
Def 5. Let U(X) denote the set of updates of clocks corresponding to sequences of

statements of the form x:=c, where x ∈X, and c ∈ N.
Def 6. A TA over (A, X) is a tuple (L, l0, I,E), where:

L is a set of locations, l0 ∈ L is an initial location,

I ∶ L→ G(X) assigns invariants to locations, and

E is a set of edges such that E ⊆ L × G(X) ×A
⌧

× U(X) ×L.
It can be written l

g,↵,u���→ l′ if (l, g,↵, u, l′) ∈ E. The semantics of TA is defined in terms

of a TIOTS over states of the form s = (l, v̄), where l is a location and v̄ ∈ RX≥0 is a clock

valuation satisfying the invariant of l. Intuitively, a TA can either progress by executing

an edge or by remaining in a location and letting time pass:

∀d′ ≤ d.I
l

(d′)
(l, v̄) d�→ (l, v̄ + d)

l
g,↵,u���→ l′ ∧ g(v̄) ∧ I

l

′(v̄′), v̄′ = u(v̄)
(l, v̄) ↵�→ (l′, v̄′) (2.1)

In delaying transitions, (l, v̄) d�→ (l, v̄ + d), the values of all clocks of the automation are

incremented by the amount of the delay d, denoted v̄+d. The automaton may delay in a

location l as long as the invariant I
l

for that location remains true. Discrete transitions

(l, v̄) ↵�→ (l′, v̄′) correspond to execution of edges (l, g,↵, u, l′) for which the guard g is

satisfied by v̄, and for which the invariant of the target location I
l

′ , is satisfied by the

updated closk valuation v̄′. The target state’s clock valuation v̄′ is obtained by applying

clock updates u on v̄ [93].

A variety of tools for formal verification of real-time systems (e.g. Process Analysis

Toolkit(PAT) [113], Uppaal [59], etc.) have been developed on top of the previously

introduced semantic models. [12] provides a comprehensive state of the art of such

frameworks, together with the presentation of additional semantic models.

Formal verification is the act of proving or disproving the correctness of a system with

respect to a certain formal specification or property. Testing is the process of analyzing

a software to detect the di↵erences between existing and required conditions (identify

bugs) and to evaluate the features of the software. It can be stated that while formal

verification reasons whether or not the analyzed software is suitable during the veri-

fication phase, testing experiments with the program. This makes testing a suitable

technique for verification but also for validating a system as a final product.

Chapter 2. Fundamentals 29

Formal verification and testing are two di↵erent practices of software V&V. They are not

mutually exclusive, but rather complementary. Formal verification is e↵ective in proving

the correctness of an application, from the early stages of specification design, but it has

a medium e�ciency in finding bugs at execution time. On the other side, testing is apt

in finding bugs, although it cannot prove correctness. Also, when comparing expenses, it

can be observed that testing is less costly than formal verification, specially with regards

to the verification of complex systems. Those aspects can be compared at a glance in

Table 2.7.

Testing
Formal
Verification

Finding Bugs good medium

Providing
Correctness

– good

Cost small high

Table 2.7: Testing vs. Formal Verification.

The focus of this thesis is on testing as a method of V&V for real-time and embedded

systems. Nevertheless, some of the formalism presented in this section is used, in the

context of the presented solution, as a means of specifying the semantics of the real-time

test specification design.

In the following Section (2.2), the discussion about real-time systems verification is

refined further, by identifying black-box testing as the main adopted technique and by

presenting the black-box testing concepts in relation to real-time.

2.2 Testing For Real-time

Testing is the execution of the SUT in a controlled environment. It follows a prescribed

procedure with the goal of measuring one or more quality characteristics of a product,

such as functionality or performance. According to [100], testing is the primary software

validation technique used by industry today and represents a fundamental step in any

development process. It consists of applying a set of experiments to a SUT. There

exist many types of testing with multiple aims, from checking correct functionality to

measuring performance.

In this thesis, the aim is the validation of a real-time SUT with regard to a given

specification. The targeted SUT is a final product of real-time industry, regarded as a

Chapter 2. Fundamentals 30

black-box in the sense that we do not have knowledge about its internals (e.g., its state is

not known). Thus, one can only rely on its observable input and output behaviour [101].

There are two basic classes of software testing, black-box testing and white-box testing,

denoted by colors to depict the opacity of the testers of the code. With black-box

testing, the software tester does not (or should not) have access to the source code itself.

Alternatively, white-box testing focuses on the internal structure of the software code. In

the language of V&V, black-box testing is often used for validation and white-box testing

is often used for verification [11]. In the context of this thesis the focus is on black-box

testing.

Timing of inputs & outputs. Designing a testing solution for real-time systems is

not a trivial task. These are systems that operate in an environment with strict timing

constraints. When testing a real-time system, it is not su�cient to check whether the

SUT produces the correct outputs. It must also be checked that the timing of the outputs

is correct. Moreover, the timing of these outputs depends on the timing of the inputs.

In turn, the timing of applicable future inputs is determined by the outputs [101].

Validation of the SUT in its operating environment. A real-time embedded

system interacts closely with its environment, which typically consists of the controlled

physical equipment accessible via sensors and actuators, other computer based systems

or digital devices accessible via communication networks using dedicated protocols, and

human users. A major development task is to ensure that an embedded system works

correctly in its real operating environment.

The goal of conformance testing is to check whether or not the behavior of the SUT is

correct according to its specification, and under the assumptions about the behavior of

the actual environment in which it is supposed to work. In general, only the correctness

in this environment needs to be established, or it may be too costly or ine↵ective to

achieve for the most general environment [99].

The Timeliness of the SUT implies the timeliness of the TS. Considering the

strong interconnection between the TS and the subject of its testing, any TS should

be designed with the SUT in mind. The properties of the SUT and the features that

are to be tested are of the highest importance when building the TS. Knowing that the

timeliness of the SUT, as a real-time application, is one of its most important properties,

the TS should possess a correspondent timeliness as well.

Robustness of the TS is important. Black-box testing procedures consist of sending

stimuli to the SUT and waiting for responses. Those responses should match to some

templates that had been defined in the specification of the SUT. Based on wether there

was a match or not, a test verdict is established. Invalid responses from the SUT should

Chapter 2. Fundamentals 31

be also taken in consideration when designing a TS and thus, assuring the robustness

property of the TS. Theoretically, the TS should be ready to manage any possible

response of the SUT. TS should recognize failures from the SUT and handle them

appropriately.

Designing the TS with regards to di↵erent time and content variations in the

responses of the SUT. When talking about functional tests, failure means that the

response from the SUT is not conforming to certain patterns defined in the specification

of the SUT, or they don’t respect their sequencing, or they fail to arrive. All these

situations should be taken into consideration when designing the TS.

Adding time dimension to the testing process makes the problem more complicated.

The messages and exchange of messages between the TS and the SUT should not only

respect certain patterns and sequencing, but they also should be delivered and received

at certain points in time. We are going to denote further incoming timed messages from

the SUT to the TS as events and the outgoing messages (from TS to the SUT) as

stimuli.

The communication between TS and the SUT must be real-time. Because

the SUT is real-time, the communication between the SUT and the TS should also

be a real-time communication. Therefore, by induction, the TS should be a real-time

application as well. The application should be robust enough to handle a wide range of

events, and responsive enough to handle them in time.

Responses from the SUT are regarded at the TS as events with strict time

constrains.

Real-time Framework
For Testing

TS
SUT

Stimulus sent at required time

Expected event within timeframe

Expected events with bad timings

Unexpected events within time frame

Unexpected events outside time frame

Missing event

Figure 2.2: Black-box Testing For A Real-time System

The main classes of events, presented also in Figure 2.2, are:

Chapter 2. Fundamentals 32

Expected events that come in the expected time frame: they indicate a good func-

tionality of the SUT.

Expected events with bad timings: the messages correspond to the patterns, they

come in the right sequence, but they are either delayed, or prematurely received.

Unexpected events: This category can be split into two subclasses:

– Unexpected events within time frame: the messages are either originally cor-

rectly transmitted messages, which get corrupted through the medium, or

are completely wrong messages, indicating a malfunction of the SUT. Al-

though received in the correct time frame, these messages will not match the

conformance templates and should indicate failure.

– Unexpected events outside time frame: messages which are both incorrect

and with bad timings. Those messages will match neither the conformance

templates nor the timed requirements patterns and should indicate failure.

These kind of faults might be dangerous when they arrive in high volumes; they

might flood the TS, causing a slowing down of its processes, and therefore might

cause missing deadlines. A robust and reliable TS should have protection mecha-

nisms to avoid these situations.

Missing events: this class indicates that no message was received from the SUT

before the upper limit of the expectancy time had been reached. In order to avoid

a situation when the TS hangs in a blocking state forever, this state should be

exited after the time expires, and the failure should be then acknowledged.

Real-time Test System (RTTS). As previously stated, the TS used for testing a real-

time SUT (RTSUT) must satisfy the timeliness property, and must provide real-time

communication with the SUT. Therefore, TS can be regarded as a real-time application

itself (RTTS), ready to handle the incoming events from the SUT.

The RTTS should posses a dynamic behavior, able to handle these events. Because some

of the aforementioned events are time-constrained, a precise time cognizance, intrinsic

to the RTTS, should be present. This timing awareness is given by an RTTS -internal

clock, together with a correspondent mechanism for managing events.

Two main categories of events that influence the behavior of the RTTS can be distin-

guished:

Time events (or internal events) triggered by the inner clock. Represents an intrinsic

mechanism of control.

Chapter 2. Fundamentals 33

Incoming events (or external events) triggered by incoming messages from SUT.

Test Components with real-time. Multitasking might be required for the handling

of various events. This means that the RTTS might consist of multiple entities running

in parallel. In the context of black-box testing those entities are the test components.

In the context of testing for real-time, the timing aspects of test components become

relevant. Mechanisms for saving time properties (e.g. the start or the end of execution of

a test component), as well as an appropriate scheduler are both necessary for managing

their execution. An appropriate scheduling algorithm must be the next step employed

for this purpose. Due to the aim of this thesis, for designing a testing framework able to

address a wide variety of real-time applications, a generic real-time scheduling technique

should be adopted. Therefore, in this context, the EDF algorithm for scheduling would

be a suitable choice [137], [138].

Aspects regarding the execution of the RTTS. As we have to consider unpre-

dictable incoming events at unpredictable times, we should also provide a means for

handling such events. The handling procedure implies the existence of asynchronous

tasks. The messages should not wait too long in the queue of the receiving port. They

should be treated immediately. Therefore, the tasks that handle these events should be-

come run-able as soon as possible. It should therefore be possible for them to preempt

the current task. An operating system that provides preemption is chosen as the basis

for our RTTS implementation. In this context, a dynamic priority based schema can

also enhance the flexibility of the real-time scheduler, allowing the RTTS to carry out

more robust behavior in reaction to the SUT.

As the discussion, in the following, will always involve testing of a RTSUT using a

RTTS, for simpleness of notation, they will be referred from now on, throughout the

thesis, by their short acronyms: SUT and TS, respectively.

2.3 Summary

This chapter has introduced concepts and characteristics of real-time, with regards to

applications, programming languages, operating systems, formal semantics and test-

ing. Firstly, the characteristics and requirements of real-time applications were studied,

and based on those, the main features of real-time programming were identified. This

discussion evolved around four real-time programming languages: Ada, Real-Time Eu-

clid, Real-Time Java and Real-time C/POSIX. The extensions to TTCN-3 for real-time,

adopted in Chapter 4, are based on the language mechanisms presented here. The

chapter continued with the review of real-time concepts and mechanism applicable to

real-time operating systems. This presentation o↵ers a lower level perspective of the

real-time domain and would be useful at the design and implementation step for the

Chapter 2. Fundamentals 34

testing framework (Chapters 5 and 7). A description of the main semantic models for

the real-time followed, in order to provide the theoretical foundation needed to specify

the semantics of the real-time concepts for TTCN-3 in Chapter 4. At the end of this

chapter, various aspects of black-box testing with regard to real-time were discussed.

Black-box testing was the V&V technique chosen to prove the quality of real-time and

embedded applications.

Chapter 3

State Of The Art

Those who do not want to imitate anything, produce nothing.

Salvador Dali

This chapter will discuss by means of tools and approaches the current state of the art in

real-time testing domain in general, and in particular, real-time testing with TTCN-3.

3.1 State Of The Art In Real-time Testing

The development of embedded systems is an essential industrial activity whose im-

portance is increasing. Commonly, embedded software systems have to fulfil real-time

requirements. The most important analytical method to assure the quality of real-time

systems is testing. Testing is the only method which examines the actual run-time

behavior of embedded software systems, based on an execution in the real application

environment. Dynamic aspects like the duration of computations, the memory actually

needed, or the synchronization of parallel processes are of major importance for the

correct function of real-time systems, and therefore must be tested [66].

As previously stated, in Chapter 1, the goal of this thesis is: To build a manufacturer-

independent testing framework that combines functional test automation with real-time

test automation by means of a standardized testing specification language.

There are di↵erent approaches for automatizing of real-time systems testing processes

and many frameworks were designed with this purpose in mind. Some of the most

interesting current solutions are presented in this chapter, in order to provide a wider

picture and the context in which the solution proposed in this thesis was developed. It

will also provide the reader with points of comparison.

The comparison will evolve around the following main criteria:

1. Real-time testing capabilities - how adequate is the testing framework for testing

of real-time systems (See Chapter 2)?

2. Automation techniques - the testing framework should enable test automation.

3. Standardization - the framework should be based on a standardized testing lan-

guage.

35

Chapter 3. State Of The Art 36

4. Testing technique or other type of V&V practice - due to the fact that the tar-

get of testing here is represented by systems for which the software tester does

not have access to the source code, a black-box testing approach is implied here.

Nevertheless the testing frameworks under discussion employ a variety of V&V

practices.

Secondary criteria, such as test portability, test modularity, easiness-to-read of tests, and

industrial usage or popularity of the frameworks, are also going to be added as arguments

into the discussion.

Table 3.1: Real-time Testing Frameworks. Part I.

Tool

Test
Specification’s
Language

Dedicated Test
Language? Standardized?

TTG
IF modeling
language

no no

dSPACE Python no yes

TestFarm
Core

PERL no no

TALENT TM

Test Automation
Language
(TAL)

yes no

ADvantage
Visual Basic
C++

no no

UPAAL-
TRON

Upaal timed
automata

no no

TTG framework for black-box testing, based on timed automata. In [101]

TTG framework for black-box conformance testing of real-time systems is introduced.

The specifications for the SUT are modeled as nondeterministic and partially-observable

TA. TAmodel was chosen due to reasons of ease of modeling and expressiveness of specifi-

cations. The conformance relation is a timed extension of the input/output conformance

relation of [67].

Chapter 3. State Of The Art 37

The solution is based on building a prototype test-generation tool, called TTG, on

top of the IF environment [68]. The IF modeling language allows the user to specify

systems consisting of many processes, which communicate through message passing or

shared variables and includes features such as hierarchy, priorities, dynamic creation

and complex data types. The IF tool-suite includes a simulator, a model checker and

a connection to the un-timed test generator TGV [69]. TTG is implemented indepen-

dently from TGV. It is written in C++ and uses the basic libraries of IF for parsing

and symbolic reachability of timed automata with deadlines. TTG takes the specifica-

tion automaton as the main input, written in IF language, and can generate two types

of tests: analog-clock tests which measure dense time precisely and digital-clock tests

which measure time with a periodic clock. The tests are output in IF language.

dSPACE Framework. The framework developed by dSPACE is based on the idea

that automated testing is performed by executing tests on a standard PC, which is

interconnected to a HIL system. HIL simulation is a common practice as a black-box

testing methodology for ECUs. There is a need for a concept to execute tests in real-time

on the processor board of the HIL simulator synchronously with the execution of the

simulated model. In [70] a concept is presented that meets such demands as running test

cases with precise sample-time and high degree of reproducibility and deterministic time

and functional behavior. Such tests can be written using Phyton as a standard object-

oriented scripting language, and executed in real-time without the need to modify and

recompile the real-time model.

TestFarm Core from BasilDev. TestFarm [71] is a software environment targeted at

performing black-box testing of real-time embedded software that uses various standard

peripherals, in a heavily asynchronous environment. Such systems, are, for example

payment terminals, where software has to interact with human actions (keypad, LCD,

buttons etc.) while communicating to other system components (supervision servers,

smart-cards,) etc. The test scripts are gathered into a structured test tree, following the

organization of the SUT ’s features. After the TS is executed, this structure is respected

in the generated test report. Test suites are constructed with test scripts written in the

PERL language. The TestFarm Core automated testing system runs on Fedora Core

Linux Distribution [71].

TALENT TM from ReACT Technologies. TALENT TM [72] is a highly modular,

integrated and scalable automation platform specifically designed for test facility au-

tomation. It can be deployed on one computer, or spread across several computers.

The integrated environment encompasses all aspects of the testing process, from test

planning (non-real-time), through test execution (real-time), to data upload to corpo-

rate data bases. TALENT TM supports automated testing with the Test Automation

Chapter 3. State Of The Art 38

Table 3.2: Real-time Testing Frameworks. Part II.

Tool

Real-time
Testing
Capabilities

Automation?
Testing
Technique

TTG yes yes
black-box testing
simulation
model checking

dSPACE yes yes HIL simulation

TestFarm
Core

yes yes black-box testing

TALENT TM partially yes black-box testing

ADvantage yes yes HIL simulation

UPAAL-
TRON

yes yes
black-box testing
simultion
monitoring

Language (TAL) which is an extension of the Microsoft Visual Basic for Applications

(VBA). TAL VBA extensions are for run-time data access, rule based exception handling

classes, timers, facility control objects, and access to TALENT ActiveX components [72].

ADvantage simulation framework. In [73] a solution is provided for enterprise test

automation, used to minimize the human e↵ort required to complete all aspects of a

test. Ideally, each test is encapsulated within a single entry point or file. ADvantage

was developed for the purpose of performing enterprise test automation. Alternatively,

many organizations develop their own Visual Basic C++ applications to provide enter-

prise test automation functionality that plugs into the ADvantage simulation framework.

Advanced real-time simulation systems, such as the ADvantage simulation framework,

emply a “simulation host/real-time target” architecture to provide a complete simula-

tion system that is both fully deterministic and allows for asynchronous user interaction

and display.

UPAAL-TRON. UPPAAL-TRON is a new tool for model based online black-box

Chapter 3. State Of The Art 39

conformance testing of real-time embedded systems specified as timed automata. It

represents a recent addition to the UPPAAL environment and is performing model-

based black-box conformance testing of the real-time constraints of embedded systems.

TRON is an online testing tool which means that it generates and executes, at the same

time, tests event-by-event in real-time. TRON replaces the environment of the SUT. It

performs two logical functions, stimulation and monitoring. Based on the timed sequence

of input and output actions performed so far, it stimulates the SUT with input that is

deemed relevant by the model. At the same time it monitors the outputs and checks

the conformance of these against the behavior specified in the model. Thus, TRON

implements a closed-loop testing system. It is important to note that we currently

assume that inputs and outputs are discrete actions, and not continuously evolving [99].

Comparison of the real-time testing frameworks. Tables 3.1 and 3.2 give an

overview of the features provided by the tools with regard to the comparison criteria

discussed previously. It can be noticed that all of the enumerated tools boast automa-

tion and real-time (at least partially, e.g. TALENT TM) black-box testing capabili-

ties. dSPACE, ADvantage and UPPAAL-TRON support HIL simulation techniques

and TTG and UPPAAL-TRON provide simulation and model checking additional to

black-box testing methods.

All the listed frameworks, except TALENT TM , use programming languages, which are

not-testing-dedicated, to define their test specifications. Only two frameworks from the

selection, dSPACE and TestFarm Core, rely on standardized programming languages

for defining their test specifications – Phyton and PERL respectively. Nevertheless, both

Phyton and PERL specifications are high-level, general purpose programming languages,

and their usage for testing is somewhat strained.

Four tools from the selection – dSPACE, TestFarm Core, TALENT TM , and ADvantage

– represent commercial solution, used in the industry, while the remaining two – TTG

and UPPAAL-TRON – are prototypes, resulting from research projects. The tool range

presented here, was intended to be a sample that reflects accurately the current situation

of real-time test development both in industry and research.

During the investigation of exiting solutions, none was found to cover all the criteria we

established for our research. No testing framework for real-time was found, with focus

on automation and basing its test development on a standardized testing specification

language. In this thesis, the aim is to build such a framework.

3.2 Motivation For Choosing The TTCN-3 Language

Among the various languages and tools to design real-time tests, the Testing and Test

Control Notation TTCN-3 technology has been selected to stay at the basis of the testing

Chapter 3. State Of The Art 40

framework developed here. There are many benefits of using TTCN-3 – many of them

are being presented in the following – but the main reasons to select this language are

down to the fact that TTCN-3 is actually the only standardized test technology enabling

test automation.

TTCN-3 was created at European Telecommunication Standards Institute (ETSI) more

than 15 years ago and has successfully been adopted by the industry ever since. Covering

aspects as protocol and service, component, integration and system testing, as well as

testing of embedded and distributed system, TTCN-3 gained great popularity in applica-

tion domains such as telecommunication, automotive (e.g. TTCN-3 as been choosen by

AUTOSAR as their o�cial test language for conformance tests [86]), technical medical

equipment, etc.. TTCN-3 has also been adopted by the ITU-T [10].

TTCN-3 is a modern, powerful test language that supports all kinds of black-box testing.

The TTCN-3 language was created due to the imperative necessity to have universally

understood language syntax able to describe test behavior specifications. Its develop-

ment was demanded by industry and science to obtain a single test notation for all

black-box testing needs. In contrast to earlier test technologies, TTCN-3 encourages the

use of a common methodology and style, which leads to a simpler maintenance of test

suites and products.

Among several other good reasons for using TTCN-3, there are some mentioned in [24]

and discussed in the following:

Standardization: Being an international, open and maintained standard with stan-

dardized interfaces, extensibility is built in. For designing real-time tests a lan-

guage is required that is standardized and easily extendable with real-time specific

concepts. TTCN-3 fits perfectly into this profile.

Technology Independent: Besides typical programming constructs, TTCN-3 con-

tains all the important features to specify test procedures and test campaigns

for all kinds of testing such as functional, conformance, inter-operability, or load

tests. These test-specific features are unique compared to traditional scripting or

programming languages, and above all, technology-independent. Test portability

is ensured this way, and this is one of the features that is desired for the real-time

testing framework developed here.

Abstract Test Implementation: TTCN-3 defines test cases on an abstract level.

Thus, test developers can focus on developing tests instead of worrying about

the implementation on a platform or operating system. This is very important in

the case of real-time test design, which can gain in complexity at operating system

Chapter 3. State Of The Art 41

level (e.g. threads scheduling). A TTCN-3 compiler translates the abstract tests

into executable code. Errors can already be spotted and fixed at compilation level,

avoiding them at runtime. The generated code can be reused by adapting it to

any platform or technology, also enabling testing during any design stages. This

increases the reusability factor of the test code and its suitability for regression

testing.

Less Costs, More E�ciency Through Test Automation: TTCN-3 enables test au-

tomation which reduces manual interaction related to all test phases. It ensures

e�cient and systematic testing, saving both time and money. Test automation

increases reliability and reduces the risk of human error. Tests can be run faster

within a regression test, and they can be run over and over again with fewer over-

heads. Together with the property of being standardized, automation was one of

the key-features looked after at the selection of the testing language.

A standardized language provides a lot of advantages to both test suite providers and

users. Moreover, the use of a standard language reduces the cost of education and

training, as a great amount of documentation and examples are available. It is obviously

preferred to use the same languages for testing rather than learning di↵erent technologies

for distinct test classes. Constant use and collaboration between TTCN-3 consumers

ensures a uniform maintenance and development of the language.

3.2.1 Concepts Of TTCN-3

A brief presentation of the TTCN-3 testing language and of its basic concepts is provided

in this section. The concepts presented here are also relevant for real-time testing.

TTCN-3 is a modular language and has a similar look and feel to a typical program-

ming language. In addition to the typical programming constructs, it contains all the

important features necessary to specify test procedures and campaigns for functional,

conformance, interoperability, load and scalability tests like:

- test verdicts,

- matching mechanisms (to compare the reactions of the SUT with the expected

range of values),

- timer handling,

- distributed test components,

- the ability to specify encoding information,

Chapter 3. State Of The Art 42

- synchronous and asynchronous communication,

- monitoring.

A TTCN-3 test specification consists of the following main parts:

1. Test data and templates definition.

2. Function and test case definitions for test behavior.

3. Control definitions for the execution of test cases.

Modules. The top-level building-block of TTCN-3 is a module. A TTCN-3 module has

two parts the module definition part, and the module control part. The definition part

contains the data defined by that module – functions, test cases, components, types,

templates – which can be used everywhere in the module and can be imported from

other modules. The control part is the main program of the module, which describes

the execution sequence of the test cases or functions. It can access the verdicts delivered

by test cases and, according to them, can decide the next steps of execution. The test

behaviors in TTCN-3 are defined within functions, altsteps and test cases. The control

part of a module may call any test case or function defined in the module to which it

belongs.

Test System. A test case is executed by a test system (TS). A TS consists of a set of

interconnected test components with well-defined communication ports and an explicit

test system interface, which defines the boundaries of the TS.

SUT

Real Test System Interface

Test System

Abstract Test System Interface

TC2TC1

IN
OUT

OUT IN

Connected Ports

INOUT
Mapped Ports

INOUT

Figure 3.1: Conceptual View Of A TTCN-3 TS [2]

Within every TS, there is one main test component (MTC). All other test components

are called parallel test components (PTCs), as shown in Figure 3.1. The MTC is created

Chapter 3. State Of The Art 43

and started automatically at the beginning of each test case execution. A test case

terminates when the MTC terminates. The behavior of the MTC is specified in the

body of the test case definition. During the execution of a test case, PTCs can be

created, started and stopped dynamically. A test component may stop itself or can be

stopped by another test component.

Connected ports are used for the communication with other test components. If two ports

are connected, the in-direction of one port is linked to the out-direction of the other, and

vice versa. A mapped port is used for the communication with the SUT. The mapping

of a port owned by a test component to a port in the abstract TS interface can be seen

as pure name translation defining how communication streams should be referenced.

TTCN-3 distinguishes between the abstract and the real TS interface. The abstract

TS interface is modeled as a collection of ports that defines the abstract interface to

the SUT. The real TS interface is the application specific part of a TTCN-3-based test

environment. It implements the real interface of the SUT.

Test cases and test verdicts. Test cases define test behaviors, which have to be

executed to check whether the system under test (SUT) passes the test or not. Like

a module, a test case is considered to be a self-contained and complete specification

that checks a test purpose. The result of a test case execution is a test verdict. A

test verdict indicates the outcome of the test case execution, and can have one of the

following values: pass, in the case of a successful execution, fail if the SUT proves to be

non-conforming to the specification, error if the test case could not be completed due

to technical problems at the TS and inconc, if the outcome of the test case execution

was irrelevant.

Alternatives and snapshots. A special feature of the TTCN-3 semantics is the

snapshot. Snapshots are needed for the branching of behavior due to the occurrence of

timeouts, the termination of test components and the reception of messages, procedure

calls, procedure replies or exceptions. In TTCN-3, the branching of behavior is defined

by means of alt statements.

S1;
alt {[] S3; S6;

[] S2;
alt { [] S4; S7;

[] S5; S8;
alt { [] S9;

[] S10;
}

}
}

S1

S3

S6

S2

S4

S7

S5

S8

S9 S10

Figure 3.2: Illustration Of Alternative Behavior In TTCN-3 [2]

Chapter 3. State Of The Art 44

An alt statement describes an ordered set of alternatives, i.e., an ordered set of alterna-

tive branches of behavior (Figure 3.2). Each alternative has a guard. A guard consists

of several preconditions, which may refer to the values of variables, the status of timers,

the contents of port queues and the identifiers of components, ports and timers. The

same precondition can be used in di↵erent guards. An alternative becomes executable, if

the corresponding guard is fulfilled. If several alternatives are executable, the first exe-

cutable alternative in the list of alternatives will be executed. If no alternative becomes

executable, the alt statement will be executed again.

The evaluation of several guards needs some time. During that time, preconditions may

change dynamically. This will lead to inconsistent guard evaluations, if a precondition

is verified several times in di↵erent guards. TTCN-3 avoids this problem by using

snapshots. Snapshots are partial module states, which include all information necessary

for the evaluation of alt statements.

A snapshot is a partial view of the current component that includes all information

necessary to evaluate boolean conditions and alternatives: timeout events, stopped and

killed components, pending messages, calls, replies and exceptions. A snapshot is taken,

i.e., recorded, when entering an alternative. Each alternative is evaluated in the order

of their appearance. For the verification of preconditions, only the information in the

current snapshot is used. Thus, dynamic changes of preconditions do not influence the

evaluation of guards.

Communication operations. Communication operations are important for the spec-

ification of test behaviors. TTCN-3 supports message-based and procedure-based com-

munication. The communication operations can be grouped in two parts: stimuli, which

send information to SUT and responses, which are used to describe the reaction of the

SUT. The ports of TTCN-3 are used for handling the communication. As communica-

tion on ports is a very powerful construct, tailored to the needs of black-box testing,

a sample of code is provided here, for a better understanding. Listing 3.1 shows an

example on the usage of communication operations.

Timers. The central feature used in TTCN-3 for dealing with timing aspect of a given

SUT is the timer. TTCN-3 has operations to start, stop, read or check if a timer is

running, as shown in Listing 3.2.

Timers are declared, started and either stopped or ended with a timeout. When a timer

times out, e.g. aTimer.timeout, the expired timer is placed in a timeout list. This list is

checked when the next snapshot is taken. Timers may only exist in functions, test cases

or in control part of a test suite, this is because there are no global timers (nor global

data in TTCN-3). Timer is also a very important construct, especially with regard to

Chapter 3. State Of The Art 45

⌥
1MyPort1.send(myValue);
2
3MyPort2.send(myValue) to MyComponent1;
4
5MyPort3.call(MyProc:{MyVar1}) to MyComponent2 {
6
7// in response the SUT may reply the value MyVar2
8[] MyPort3.getreply(MyProc:{MyVar2}) ()
9
10// or may generate an exception
11[] MyPort3.catch(MyProc, ExceptionOne) ()
12}⌦⌃ ⇧

Listing 3.1: An Example of Communication Operations in TTCN-3

⌥
1aTimer1.start; aTimer2.start(2E−3);
2//timer values of type float
3aTimer1.stop; all timer.stop;
4//stopping inactive timer has no effect
5var float aVar; aVar := aTimer.read;
6//assign to aVar time elapsed since aTimer started
7if (aTimer.running) { }
8//returns true/false if timer is running or not⌦⌃ ⇧

Listing 3.2: Timers in TTCN-3

real-time testing. Therefore, for a better understanding of the concept, examples of

timer usage in TTCN-3 are shown in Listing 3.3 [64].

More details and explanations about TTCN-3 can be found in the book [65].

3.3 State Of The Art Of Real-time Concepts For TTCN-3

Although TTCN-3 presents many benefits, that propose it as a good option for real-time

testing as well, one should keep in mind that TTCN-3 was not originally conceived with

real-time focus in mind. Therefore, there might be aspects of real-time testing (e.g.

ensuring timeliness of the TS) for which TTCN-3 lacks the means to address.

In paper [78] some of the limitations of the existing treatment of time within TTCN-3

are illustrated as follows: the speed of the tester and the associated problems of the

snapshot semantics and its impacts on accuracy of timing information; dealing with

time critical testing information; the problems of time synchronisation of distributed test

configurations. The paper proposes, as a work-around to the afore mentioned problems,

some general guidelines for a more accurate measurement for real-time, using the actual

capabilities of the language, within its boundaries.

Nevertheless, there already exist several approaches that have been proposed in order to

extend TTCN-3 (and its earlier versions) for real-time and performance testing. Those

enterprises are shortly summarized in the following, while a full picture of the relations

Chapter 3. State Of The Art 46

⌥
1timer T1 := 10;
2execute testCase1();
3T1.start;
4T1.timeout; // pause before executing next test case
5execute testCase2();
6
7execute (testCase3(), 5E−3) −> returnVal;
8// returnVal type verdictType = error if
9// result not returned in 5ms
10
11P.call(X,5E−3); // can also put timeout value on procedure call
12{ [] P.getreply(X);
13[] P.catch(timeout);
14{
15verdict.set(fail);
16
17}
18}
19
20while (T.running or x<10) {
21execute testCase4();
22x:= x + 1;
23}⌦⌃ ⇧

Listing 3.3: Timer Usage in TTCN-3

between them is presented in Figure 3.3. PerfTTCN and RT-TTCN are indicated

as deprecated, because they rely on earlier versions of TTCN-3, and are, therefore,

outdated.

PerfTTCN [74] extends TTCN (an earlier version of TTCN-3) with concepts for per-

formance testing, such as: performance test scenarios for the description of test config-

urations, tra�c models for the description of discrete and continuous streams of data,

measurement points as special observation points, measurement declarations for the def-

inition of metrics to be observed at measurement points, performance constraints to

describe the performance conditions that should be met, performance verdicts for the

judgement of test results. The PerfTTCN concepts are introduced mainly on a syntac-

tical level by means of new TTCN tables. Their semantics are described in an informal

manner and realized by a prototype.

RT-TTCN [75] is an extension of TTCN in order to test hard real-time requirements.

On the syntactical level, RT-TTCN supports the annotation of TTCN statements with

two timestamps for earliest and latest execution times. On the semantical level, the

TTCN snapshot semantics has been refined and, in addition, RT-TTCN has been

mapped onto timed transition systems.

In Table 3.3 can be visualized at a glance the extensions for TTCN.

Chapter 3. State Of The Art 47

Table 3.3: Extensions For TTCN.

Extension Target Concepts Syntax Semantics

PerfTTCN
Performance
Testing

- performance test
scenarios
-tra�c models
-measurement points
-measurement
declarations
-performance
constraints
-performance
verdicts

TTCN
tables

informal

RT-TTCN
Hard Real-time
Testing

- timestamps for
earliest and latest
execution times

TTCN
tables

timed
transition
systems

TimedTTCN-3 [76] is a real-time extension for TTCN-3, which covers most PerfTTCN

and RT-TTCN features, while being more intuitive in its usage. Moreover, the TimedTTCN-3

extensions are more unified than the other extensions by making full use of the expres-

siveness of TTCN-3. TimedTTCN-3 introduces the following features:

- a new test verdict to judge real-time behavior.

- absolute time, as a means to measure time and to calculate durations. This is the

reason for using the operation now at the current local time retrieval.

- delay provides the ability to postpone the execution of statements and the new

statement resume provides the ability to delay the execution of a test component.

- timed synchronization for test components.

- the timezones concept, by which test components can be identified and can be

synchronized in time.

- online and o✏ine evaluation of real-time properties.

The real-time concepts introduced here represent a good basis for starting the design of

a real-time test specification. However, they are only means of verifying the timeliness

of the SUT and they do not guarantee the timeliness of the TS (e.g. that TS is able

to stimulate and respond timely to the SUT). In order to impose a real-time execution

upon the TS, further control mechanisms need to be added to the language.

Chapter 3. State Of The Art 48

ContinuousTTCN-3 [77] introduces basic concepts and means for handling continu-

ous real world data in digital environments. Thus, TTCN-3 is enhanced, in this context,

with concepts of stream-based ports, sampling, equation systems, and additional control

flow structures to be able to express continuous behavior. In ContinuousTTCN-3 time

is also very important, and the problem of imprecise timers is mentioned. The concept

of global time is taken from TimedTTCN-3 and it is enhanced by the notion of sampling

and sampling time.

Figure 3.3: TTCN-3 Overview Of Proposed Extensions [3]

In Table 3.4 two older attempts of extending the TTCN-3 language with concepts for

real-time and for continuous behaviour are displayed. More actual approaches towards

real-time are provided in Tables 3.5 and 3.6. The solution presented in this thesis

originates from these two latter extensions.

Real-time TTCN-3. The work presented in this thesis originates from the involvement

of the author in the TEMEA project [79]. In the context of this project, a new paradigm

and a new extension for real-time testing, based on the TTCN-3 notation was developed.

The ambitious goal of this project was to use the experience of the past and to develop

the language with new meaningful concepts, more powerful and more oriented towards

the real-time world needs, than the attempts made in the past. The aims of the TEMEA

project can be summarized in the following:

- Support for integrated testing of discrete and continuous behavior.

- Exchange of test definitions between di↵erent test- and simulation platforms (e.g.

Model in the Loop (MIL) platforms, Software in the Loop (SIL) platforms, and

Hardware in the Loop (HIL) platforms).

Chapter 3. State Of The Art 49

Table 3.4: Extensions For TTCN-3. Part I.

Extension Target Concepts Syntax Semantics

TimedTTCN-3
Real-time
Testing

-absolute time: now,
delay, resume
-time
synchronization for
test components:
timezone

-a new test verdict
for online
evaluation: conf
-o✏ine evaluation:
log, logfile
-logfile
operations:first,
next, previous,
retrieve

BNF informal

ContinuousTTCN-3

Handling
Continuous
Data In Digital
Environments

-absolute time: now
-stream-based ports:
stream

-sampling: @t
-time partitions
-additional control
flow structures:
carry, until

BNF
TPT state
machines

- Support over the entire process of software integration and hardware integration.

- Analysis of real-time and reliability requirements.

- Testing distributed components according to AUTOSAR architecture.

- Analysis of the quality of tests.

The basic concepts introduced by TEMEA can be organized in the following categories:

1. Representation of time: In order to ease the manipulation of time values,

two new abstract data types are introduced: datetime for designating global time

values and timespan for designating time distances or intervals between di↵erent

points in time. timespan is used to represent the amount of time that has passed

between events.

Chapter 3. State Of The Art 50

2. Measurement of time: The observation of time is directly connected to the

reception and provisioning of messages, on the communication ports. A new con-

struct is introduced for automatically registering the time value at which a receive

or send event occurred. The saving is indicated by the redirect symbol → and the

timestamp keyword. Additional keywords are introduced to save the time values

of events, that are relevant for the TS : testcasestart returns the time value for

when the test case execution started and testcomponentstart returns the time

value for when the test component execution started. If needed, now operator can

be used to interrogate the current value of the clock.

3. Control of application: The @ operator is introduced to send certain messages at

fixed points in time. It is associated with a datetime value, representing the point

in time when the sending of a message must be performed. suspend operation

might be used to postpone the current execution until a future time value.

4. Time verification: In order to verify whether or not certain messages were

received in time, the within operator is introduced. The operator is associated

with an interval of datetime values that represent the range for the allowed times

of reception.

Because the work presented in this thesis began as a collaboration with the TEMEA

project, the basic real-time concepts that are introduced in this document are based

on the ones developed in the context of TEMEA, but are not limited to those (see

Tables 3.7 and 3.8). Furthermore, the original concepts were further developed here by

means of an accurate semantics (defined using TA) – one can see from Tables 3.5 and 3.6

that the original concepts display informal semantics – and by means of benchmarking

their implementation on a concrete platform for a proof demonstration. There were

also concepts developed in addition to those (e.g. break...at for alt instructions

controlling the incoming communication, etc.). The concepts defined in this thesis were

also successfully used in a real-time case study, for testing the functionality of an ECU,

controlling an auto-door.

Some of the concepts listed above have gained concrete ground and become part of a new

standard from ETSI in [80]. This standard is intended to be an extension for performance

and real-time testing, and is regarded as an additional package to TTCN-3. TTCN-3

packages are intended to define additional TTCN-3 concepts, which are not mandatory

as concepts in the TTCN-3 core language, but which are optional, as part of a package

which is suited for dedicated applications and usages of TTCN-3.

To fulfil the requirements for testing real-time system, the following TTCN-3 core lan-

guage extensions are being standardized in [80]:

Chapter 3. State Of The Art 51

1. A TS wide available clock, that allows the measurement of time during test case

execution.

2. The current value of the TS clock can be accessed by means of the symbol now.

3. The requirements on the overall precision of the TS clock can be specified by

means of the stepsize annotation.

4. The wait statement suspends the execution of a component until a given point in

time. The time point is specified as a float value and relates to the internal clock.

5. Means to directly and precisely access the time points of the relevant interaction

events between the TS and the SUT. Redirections for receive, trigger, getcall,

getreply, and catch are extended by an optional clause consisting of the symbol

→ and the timestamp keyword.

(As previously mentioned, this thesis was developed in collaboration with TEMEA

project.) The outcome of TEMEA remains at the basis of [80]. Therefore, it is natural

that there are overlaps between those two extensions and the set of concepts considered

here. One should observe Tables 3.7 and 3.8 for an overview of the concepts adopted

here. From these tables one can see at a glance which of these concepts can be found in

TEMEA and/or [80] and which concepts are new. If one extension is contained in either

TEMEA or [80], this will be indicated by a ´3ı́n the corresponding column.

The concepts that are the focus of this thesis are presented and discussed in detail in

the following chapter 4.

3.4 Summary

This chapter provided the state of the art of the existing frameworks for real-time black-

box testing, which also enable automation. A selection of tools, taken from both industry

and academic environment, have been compared, based on criteria as: the programming

language that they use to define test specification, suitability of the specification language

towards testing, standardization, etc... The study revealed that there is no framework

that relies on a standardized test specification language, and the goal of this thesis has

been to build such a framework. The solution presented here was developed around

the TTCN-3 standardized test specification language. There are plenty of reasons for

choosing TTCN-3 and they have been presented in this chapter. Nevertheless, TTCN-3

was not defined with real-time focus in mind and therefore, it lacks some basic mechanism

for handling real-time specific aspects of testing. In response to this need, di↵erent

approaches have already been taken in order to extend the language with concepts for

real-time. A state of the art of those extensions has been provided in this chapter. Some

Chapter 3. State Of The Art 52

Table 3.5: Extensions For TTCN-3. Part II.

Extension Concepts Syntax Semantics

TEMEA

Representation
of time:

-abstract data types:
datetime, timespan
-time units: nanosec,
microsec, millisec,
sec, min, hour, day
-conversion functions for
absolute points in time

BNF informal

Measurement of
time:

-timing for dedicated
incoming communication
events: → timestamp

-timing for special
events: testcasestart,
testcomponentstart

-current time: now

Control of
application:

-control outgoing
communication events:
send@t
-suspend execution:
suspend

Time
verification:

-verify incoming
communication events:
within time interval

ETSI Standard:
TTCN-3
Performance and
Real Time Testing

Representation
of time:

-TS wide available clock
-time representation as
float values
-clock precision:
stepsize annotation

BNF informal

Measurement of
time:

-timing for dedicated
incoming communication
events: → timestamp

-current time: now

Control of
application:

-suspend execution:
wait

Chapter 3. State Of The Art 53

Table 3.6: Extensions For TTCN-3. Part III.

Extension Concepts Syntax Semantics

TEMEA

Representation
of time:

-abstract data types:
datetime, timespan
-time units: nanosec,
microsec, millisec,
sec, min, hour, day
-conversion functions for
absolute points in time

BNF informal

Measurement of
time:

-timing for dedicated
incoming communication
events: → timestamp

-timing for special
events: testcasestart,
testcomponentstart

-current time: now

Control of
application:

-control outgoing
communication events:
send@t
-suspend execution:
suspend

Time
verification:

-verify incoming
communication events:
within time interval

ETSI Standard:
TTCN-3
Performance and
Real Time Testing

Representation
of time:

-TS wide available clock
-time representation as
float values
-clock precision:
stepsize annotation

BNF informal

Measurement of
time:

-timing for dedicated
incoming communication
events: → timestamp

-current time: now

Control of
application:

-suspend execution:
wait

Chapter 3. State Of The Art 54

Table 3.7: Real-time Extensions For TTCN-3. Our Approach. Part I.

Concepts TEMEA
ETSI
Stan-
dard

Syntax Semantics

Representation
of time:

-abstract data types:
datetime, timespan 3 –

BNF TA

-time representation as
float values

– 3

-time representation as
tick values

– –

-time units: nanosec,
microsec, millisec,
sec, min, hour, day

3 –

-conversion functions for
absolute points in time 3 –

Measurement of
time:

-current time: now 3 3

-timing for special
events: testcasestart,
testcomponentstart

3 –

-timing for special
events:
testcomponentstop

– –

-timing for dedicated
incoming communication
events: → timestamp

3 3

-timing for dedicated
outgoing communication
events: → timestamp

– –

Chapter 3. State Of The Art 55

Table 3.8: Real-time Extensions For TTCN-3. Our Approach. Part II.

Concepts TEMEA
ETSI
Stan-
dard

Syntax Semantics

Control of
application:

-suspend execution:
wait

3 3
BNF TA

-control on outgoing
communication events:
e.g. send at

3 –

-control on incoming
communication events:
e.g. alt..break at

– –

-control the starting and
stoping of test
components: e.g. start
at, stop at

– –

Time
verification:

-verify incoming
communication events:
receive within time
interval

3 –

-verify incoming
communication events:
receive

at/after/before time
point

– –

-temporal predicates:
receive temporal
predicate

– –

Chapter 3. State Of The Art 56

of the most recent extensions have resulted in a new standard, containing additions to

the language. The solution presented here originated from the author’s collaboration in

TEMEA project, a research project for ensuring quality of electronic components in the

automotive industry. The concepts developed during this project remain at the basis of

the new standard [80] standardized by ETSI and they also remain at the basis of the

solution provided here.

Chapter 4

Our Approach Towards Real-time Testing

”Time must be the most paradoxical concept our minds have to deal with.”

Confessions of St. Augustine

Testing involves any activity aimed at evaluating attributes or capabilities of programs or

systems, and finally, determining if they meet all of the requirements. Black-box testing

is purely based on the requirements of the SUT and it is mainly used for integration-,

system- and acceptance-level testing. There exist several types of black-box testing which

focus on di↵erent kinds of requirements or on di↵erent test goals, such as functional

testing, conformance testing, interoperability testing, performance testing, scalability

testing, and so forth. In the following sections, conformance testing for embedded real-

time systems is considered and it is shown as an approach for systematically integrating

timing properties into the testing process [4].

4.1 Real-time With TTCN-3 At Conceptual Level

Figure 4.1: Simple Functional Black-box Test [4]

Figure 4.1 shows the setup for a simple functional black-box test that does not consider

timing requirements. A test component is used to stimulate the SUT. The outputs of

the SUT are captured by the test component and matched against predefined message

templates. In this regard we distinguish between three di↵erent situations:

1. Message and template coincide, the tested requirement is considered to be fulfilled,

and the test is continued.

2. Message and template do not coincide and the test fails.

3. No message arrives and the test fails.

Listing 4.1 shows a TTCN-3 implementation with respect for all cases.

57

Chapter 4. Our Approach Towards Real-time Testing 58

⌥
1timer t;

2p out.send(OUT MSG);

3t.start(TIMEOUT);

4alt {
5/* The case when message and template coincide; */

6[] p in.receive(IN MSG) {p out.send(OUT MSG);}
7

8/* Message and template do not coincide and test fails; */

9[] p in.receive {setverdict(fail);}
10

11/* No message arrives and after a while the test fails; */

12[] t.timeout {setverdict(fail);}}
13setverdict(pass);⌦⌃ ⇧

Listing 4.1: Simple black-box test with TTCN

In addition to the specific functional requirements defined by the specification, real-time

systems also have to respect special requirements for timing [111]. Checking procedures

based on the verification of the input/output values for the SUT are not su�cient in

this situation. Since there are situations when the functional requirements are directly

connected to the timing aspects, the degree of complexity increases. This means that

certain functionalities must be accomplished within certain time intervals, with their

starting or ending denoted by precisely defined time points or time spans, which also

withstand a given tolerance. The tolerance is denoted in the following as �".

In terms of testing, the above mentioned aspects might be verified with the use of

components that are enhanced with the capability of checking whether or not the com-

munication with the SUT respects the timings from the specification. If we consider

that the communication with the SUT is message-based, then we have to ensure that a

messages will be send, or received, at well defined points in time; those points in time

are to be calculated with respect to preceding events (e.g. receiving of a message, start

of the test case etc.); last but not least, we should be able to calculate and to compare

time values with the required precision (e.g. micro- or even nano-seconds granularity).

This level of granularity should be supported both at the test platform level and should

be eased by the conceptual instruments as well.

An example test scenario with timing requirements is given in Figure 4.2. Regarding

time, there are two critical sections in this test example: first, there is t
max

, a time

constraint for the SUT that indicates the interval in which the response to the first

stimulus should be received by the test component ; the second is t
wait

, which indicates

the time that should elapse at the test component side, between the receiving of the first

response from the SUT and the sending of the second stimulus to the SUT.

Chapter 4. Our Approach Towards Real-time Testing 59

Figure 4.2: Black-box Test With Time Restrictions [4]⌥
1timer t;
2p out.send(OUT MSG 1);
3
4/* The timer is set initially to t max*/
5t.start(t max);
6alt{
7[]p in.receive(IN MSG 1){
8/* After the test step is accomplished, the test component
9* should wait before sending another stimulus to the SUT;
10* the waiting period is set to t wait;
11*/
12t.start(t wait);
13t.timeout;
14p out.send(OUT MSG 2);};
15[]p in.receive {t.stop;setverdict(fail)};
16
17/* This timer indicates that the interval for receiving
18* the first reaction from the SUT is t max; after this
19* time expires, the test fails.
20*/
21[]t.timeout(){setverdict(fail)}
22}⌦⌃ ⇧

Listing 4.2: Timing test with TTCN-3

A test logic for this example is comprised of traditional TTCN-3 in Listing 4.2 [4].

4.2 Why Is TTCN-3 Not Real-time

Before starting to introduce the approach that this thesis has adopted, we are going

to discuss the limits of real-time testing with TTCN-3, as the language was initially

conceived. TTCN-3 was originally designed for testing functional aspects of distributed

solutions and not embedded real-time systems. By highlighting TTCN-3’s limitations

for real-time, the necessity for improvement and enhancement with new concepts was

determined.

Obviously, traditional TTCN-3 already provides means to describe test cases that respect

timing. Nevertheless, the solution denoted in Figure 4.2 has several disadvantages:

- The concept of a timer was not intended for suiting real-time properties, but con-

ceived only for catching, typically mid- or long-term, timeouts. The specification

Chapter 4. Our Approach Towards Real-time Testing 60

of real-time properties using the concept of a timer is often clumsy and because

of the non-real-time semantics of TTCN-3, not exact.

- Timers are not explicitly related with events; their semantics are implicitly defined

by the place where the timeout catcher is positioned into the specification; there is

no explicit correlation between the sending/receiving of a message and a timeout.

- Although the delaying of components for a certain period of time can be realized

- as indicated in Listing 4.2, lines 12-13 - the semantics of this waiting action

are not precise. What would happen, for example, if one or more instructions are

inserted between lines 12-13 of the code sample? In this situation, the timer might

generate a timeout long before the timeout instruction is reached. The timing

when the timeout instruction is within reach of execution is unreliable. Another

counterexample might be a situation, when the task realising the execution of

the component is preempted in between the execution of the instructions from

lines 12-13 for an undetermined amount of time. Again, by the time the timeout

instruction gets to be processed, the real state of the timer could be long outdated.

- The use of a timer is a↵ected by the TTCN-3 snapshot semantics (see Chapter 3,

Section 3.2.1) and by the order in which receive and timeout statements are

aligned in the alt statement. TTCN-3 in general makes no assumptions about

the duration for taking and evaluating a snapshot which may vary, depending on

di↵erent implementation solutions. Here it should be mentioned that TTCN-3 is

defined as a testing specification, independent from its implementation. Theoreti-

cally, the time for taking the snapshot is considered to be null. This is obviously

not achievable in practice, so the necessity emerges to define a specification that

can be implemented in a manner that conduces to limited and predictable execution

times.

- The measured time point that can be calculated based on the timer’s value is in

fact not the time point of message reception (i.e. the time a certain message has

entered the input queue of the TS), but the time point of the evaluation of the

queues by the test program (the time when the snapshot was taken). This kind of

measurement approach is not exact.

- Additional time is consumed for the encoding and decoding of messages, as well

as for the process of message matching. This time consumption is not taken into

consideration by the TS. Furthermore, it is neither controllable nor assessable by

the tester and introduces unpredictable inaccuracies for time measurements when

using TTCN-3 timers.

Chapter 4. Our Approach Towards Real-time Testing 61

⌥
1var timespan stamp;
2
3/*
4* Explicit mechanism for saving the exact time when the message
5* leaves the system.
6*/
7p out.send(OUT MSG 1) −> timestamp stamp;
8alt{
9[]p in.receive(IN MSG TMPL)
10
11/* Explicit time restriction imposed at the message arrival.
12* Also the accurate time of message arrival is saved in a
13* variable for further usage.
14*/
15not after (stamp+t max) −> timestamp stamp{
16
17/*
18* Time constraint for imposing the sending of the message
19* at precise time point.
20*/
21p out.send(OUT MSG 2) at (stamp+t wait);}
22[]p in.receive(IN MSG TMPL){setverdict(fail);}
23}
24/*
25* Time constraint for the whole alternative; to prevent
26* blocking of the TS, in case when no message arrives.
27*/
28break at (stamp+2*t max){setverdict(fail);}⌦⌃ ⇧

Listing 4.3: Timed black-box test

- Last but not least, because the TTCN-3 is itself not real-time, the tester has no

control over what happens between two instructions. If the test component that

is currently running is preempted by another task, this will be transparent to

the tester, leading to inaccuracies in test results. Furthermore, although these

inaccuracies are due to the TS, the tester will not even be aware of them.

The concepts for RT-TTCN-3, that are introduced, are meant to overcome the limi-

tations of traditional TTCN-3 mentioned above. Listing 4.3 informally introduces a

TTCN-3 embedded implementation for the test task depicted in Figure 4.2. The times-

tamp operator (→ timestamp) writes the accurate point of transmission time of the

message OUT MSG into the variable stamp. This value can then be reused for the al-

location of the not after operator, which is parameterized by a time stamp stamp +

t max that specifies the permitted arrival time of the message. The at operator in the

following line specifies the exact point of message delivery. The break at restriction of

the alt statement is used to set the test verdict to fail and thus prevent a deadlock in

the case that no messages arrive in the indicated time. A more detailed specification of

the concepts depicted above will be given in the following sections.

Chapter 4. Our Approach Towards Real-time Testing 62

4.3 Requirements For Building A Reliable Real-time Test System

Real-time systems verification is required to prove not only the accuracy of computation,

but also the fulfilment of the timing aspects of the system. In other words, we should

ensure that the verified system (or the SUT) is time-predictable. This can be achieved

only by using a TS that is time-predictable as well.

Timing properties of the system should be expressed from the early stages of system’s

specification and they should basically describe the SUT ’s speed of reaction towards

certain stimuli coming from the SUT ’s environment. Timing requirements on the SUT

could be specified at a di↵erent level of granularity, with a variation from hours, minutes,

seconds down to nanoseconds. For precise testing of the timed reactions of the SUT,

the TS itself should be equipped with an accurate clock, able to measure time at the

desired degree of granularity. Together with the clock, an appropriate function for

reading the value of the clock should be present, and some data type for representation

should be used to save the values for further usage. When we deal with a distributed

TS, the problem of measuring time can become more complex, since there is a need of

synchronizing the clocks of each part of the system with the other parts, in order to keep

consistency. The synchronization happens at certain time points that are common for

the whole system and are referred to as absolute.When we deal with a non-distributed

TS that rely on a single clock, we can measure time as being relative to certain events

(e.g. the beginning of the test case) and we can only use relative time values. Thus,

to reliably manipulate time in a RTTS we need to have: a clock that is capable of the

desired precision, a function to read the clock, data types for representing absolute and

relative data values capable of representing the value read from the clock.

Nevertheless, reading and saving time values of a clock would be not enough for making

a system time-predictable. There should exist the possibility of associating durations

with behavior. We should be able to delay the execution of certain parts of behavior for

a specified period of time. Or we should be able to resume some blocking instructions

(e.g. waiting incoming messages on ports) after a maximum time frame.

Black-box testing mainly involves an input/output based verification which is guided by

a given specification of the SUT. Therefore, the timing aspects implied by a real-time

SUT would consist of observing time at the communication ports and associating time

with incoming/outgoing events. A means should be provided for associating such events

with time data values, which could then be saved for further reference or calculation.

Also, the communication on ports should be controllable at the tester’s side. If a behavior

associated with incoming communication takes too long, the RTTS should be able to

interrupt that behavior and move forward. If an outgoing communication needs to be

Chapter 4. Our Approach Towards Real-time Testing 63

performed at a certain time point, the RTTS should be able to program that behavior

in an appropriate way.

A test behavior might also be composed from several threads of execution, each respon-

sible with verifying parts of the SUT ’s timed or non-timed functionality. Conforming to

the TTCN-3 specification, these threads are regarded as components. It is important to

enhance the RTTS with the possibility of controlling the timed-behavior of the threads

as well. This means that mechanisms for starting or ending the execution of the com-

ponents at required time points should be provided. Also the possibility of saving the

time point values when the components were started or ended should be provided.

The main aspects discussed here are summarized in Table 4.1.

–clock of high resolution
–function for reading the clock
–data types for representing absolute and relative time values
–delay the execution
–time-stamping incoming/outgoing communication events
–resume blocking instructions o incoming communication ports
–impose outgoing communication at specific times
–time-stamping start/stop of test components
–impose starting/stopping of test components at specific times

Table 4.1: Features Of A Reliable Real-time Test System

4.4 Real-time Extensions For TTCN-3

In the following, we shall discuss and introduce new instruments for dealing with real-

time requirements in order to solve the previous presented problems (see Section 4.2).

Carefully selected new additions to the language were developed as a consolidation

of previous approaches [3, 76, 81]. The additions cover aspects like measuring timed

reactions of the SUT, as well as controlling the timing of the RTTS itself. Our approach

is based on the assumption that our RTTS should possess a time deterministic behavior

with respect to the given testing tasks.

4.4.1 Data Types Suitable For Expressing Time Values

In order to ease the manipulation of time values, special data types are proposed for

usage within a timed test specification described using TTCN-3. The discussion about

the recommended data types, provides general guidelines on how time values should

look like, how they should be interpreted, and how they can be converted from one data

type to another. Nevertheless, the actual implementation of these time values depends

on the coding techniques beneath the abstract level of TTCN-3. There are the options

to integrate these data types as user-defined types and add them to the language in a

Chapter 4. Our Approach Towards Real-time Testing 64

separate module, or add them directly to the core grammar. Nevertheless, for the case

in which the data types are to be incorporated into the grammar of TTCN-3, we are

going to design the rules for integrating them among the other TTCN-3 types in Section

A.1.

The introduced data types for handling time are:

1. datetime - with its mathematical domain DT - designates an ordered set of time

points. These time points will uniquely specify the points in time when certain

events occur or should occur. The datatime values presented in this thesis are ISO

8601:2004 [112] - compliant. They could be obtained through direct measurement,

by reading some internal clock of the system. datetime values are intended to

be used in distributed environments, where the synchronization between di↵erent

components, which are running on di↵erent processors, is very important. As the

aspects covered by this thesis focus mainly on a non-distributed test environment,

the usages of datetime will not be emphasized here. It is, nevertheless, defined

and presented, as it is considered useful for future studies in the area of distributed

TS for distributed real-time applications.

2. timespan - with its mathematical domain TS - designates an ordered set of durations

which express time distances or intervals between di↵erent points in time. It is used

to represent the amount of time that has passed between certain events. timspan

values are denoted using expressions that are constructed by positive float values

multiplied by time units. Time units are represented by predefined constants (e.g.

min for indicating minutes, or sec for indicating seconds, etc.). Because the du-

rations expressed as timestamps are measured as time that passed from a given

event, they are considered to be relative to that event, and are named relative du-

rations. The timespan values can be expressed in minutes, seconds, milliseconds,

etc. and they can be tuned towards the desired level of time granularity, down to

the nanosecond. Because they are formed from a float value multiplied by a con-

stant with the given semantics, they can be easily converted into float values and

vice versa. Therefore, for the operators and functions that we are presenting in

the following sections, the parameters and the returned values could be expressed

either as timespan values or as float values. Conversion functions between the

two types are also provided (see Appendix B). Nevertheless, the main purpose of

timespan date type is to ease the usage of time duration, at di↵erent levels of

granularity, in a human readable format.

3. float - with its mathematical representation F - indicates the domain of floating

point numbers and is the basic type predefined in the standard [80]. The time

Chapter 4. Our Approach Towards Real-time Testing 65

⌥
1/* Declaration of datetime variables */
2var float starttime, actualtime;
3var datetime date;
4var timespan ts starttime, ts actualtime;
5var tick tck starttime, tck actualtime;
6
7/* datetime value */
8date:= 1982−02−22@22:10:50 0:0:0;
9
10/* Usage of special operator which returns the point of time
11* when a certain event occurred, in this case the event is
12* the beginning of the test case execution. The value is in seconds.
13*/
14starttime:= testcasestart;
15
16/* Read the value of the internal clock of the system, using
17* the special operator, now. The value is in seconds.
18*/
19actualtime:= now;
20
21/* Conversion functions from float values to timespan values. */
22ts starttime:=seconds2timespan(starttime);
23ts actualtime:=seconds2timespan(actualtime);
24
25/* Conversion functions from float values to tick values. */
26tck starttime:=seconds2ticks(starttime);
27tck actualtime:=seconds2ticks(actualtime);⌦⌃ ⇧

Listing 4.4: Data types for saving time values

durations could be expressed not only as timespan values, but also as float

values, depending on the preference of the test developer. When expressed by

float values, the time durations will be indicated by default in seconds. Functions

for conversion and format interchange between those two types are provided (see

Appendix B). All the instructions for real-time that are going to be introduced,

are recognizing float values as durations.

4. tick - with its mathematical representation Ticks - is equivalent with the set of

positive integers and it indicates the value of the internal count unit of the CPU.

The internal unit counts of the CPU are directly proportional with the frequency

of the used CPU. This data type is introduced to enable a more precise evaluation

of time events with a high degree of granularity, beginning already at the test

specification level. The intended degree of time granularity for the test systems

targeted in this thesis, is generally situated at the nanosecond level. Nevertheless,

it is important to establish a direct correlation between the timing requirements of

the TS with the time capabilities of the CPU. The capabilities of the CPU should

be visible from the test specification.

Chapter 4. Our Approach Towards Real-time Testing 66

⌥
1var float distance, starttime;
2var timespan maximum;
3
4/* Calculating with time values */
5starttime:= testcasestart;
6
7distance:= now − starttime;
8
9/* Initializing a timespan value */
10maximum:= 200.0*millisec;
11
12/* Comparison of timspan values */
13if(seconds2timespan(distance) > maximum) {
14
15log("limit hurt")
16
17}⌦⌃ ⇧

Listing 4.5: Time related expressions

4.4.2 Special Operations Relaying On Time:

now, wait, testcasestart, testcomponentstart,

testcomponentstop

In order to give the tester access to TS -related events, some predefined operations are

introduced. Together with the now instruction for reading the current time value from

the contained clock, and the wait instruction for delaying the activity of the container

component for a specified amount of time, we propose adding supplementary operators

which are associated with important events in the life of the TS. Such events are the

beginning of the test case, the starting and ending of test components.

Thus, the following operations are introduced in order to give the tester access to the

time values associated with the aforementioned events. Unlike the testcasestart

instruction, which refers to the current test case only, the testcomponentstart and

testcomponentstop instructions could refer either to the current test component from

within which this method is invoked, or to other test components which are declared

in the TS. These instructions return the time values when the corresponding event has

happened. The time values are expressed as floats which represent seconds and which

can be easily transformed into timespan values, using the conversion functions from

Appendix B.

The instructions defined in this section are shortly summarized, as follows:

1. now indicates the current time value.

2. wait forces the current component to wait for a given period of time.

3. testcasestart returns the time point when the test case execution started.

Chapter 4. Our Approach Towards Real-time Testing 67

4. testcomponentstart returns the point in time when the test component execution

started.

5. testcomponentstop returns the point in time when the test component execution

stopped.

Time values can be used in arithmetic and boolean expressions (see Listing 4.5) re-

specting a few simple rules: the time values expressed as float indicate the number of

seconds, and they can be easily converted to timespan values using conversion functions.

The timespan domain, TS, is an ordered set, and the expressions built using comparison

operators, evaluates them to boolean values. timespans can be multiplied or divided

by floats or integers and the result should be evaluated to timespan. The di↵erence

between two datetime values results in a timespan value. The syntax of numerical op-

erators will be presented in Section A.1 from Appendix A. The overloading of numerical

operators and the semantics for the timed expressions will be extensively presented in

Appendix C, while Listing E.4 will present a few usage examples.

It can be observed that, unlike for the test components, we introduced a testcasestart

operation for the test cases, but not a symmetrical testcasestop operation. In the

context of a non-distributed TS, it was considered that there will be only one test case

running at a time. Therefore, all the timed events happening during the running time of

a test case can be tagged with times that are relative to the beginning of that specific test

case. The testcasestart operation is particularly emphasizing this special type of event

- the beginning of a test case - that would be very frequently used as a reference point by

further events in the evolution of that test case’s behaviour. A testcasestop operation

could serve either for the purpose of recording the time when a test case stopped, for

logging purposes, or it can also serve for providing a point in time that could be used

as reference by further behaviour. In the first case, for logging, the now operation can

serve this purpose as well. Secondly, since the TS is non-distributed and all test cases

are being executed sequentially, a testcasestop can serve as a reference point in time

only for events that are contained in following test cases. Those events can, nevertheless,

use the beginning of their own test case, as a better reference point, indicated by the

testcasestart operation. The testcasestop operation would have been meaningful

for a distributed system scenario, when di↵erent test cases could have been run in parallel

and they could have used starting and ending times for synchronization among them.

As the intention is to remain specific to the defined problem, and not to overload the

TTCN-3 language with unnecessary constructs, the testcasestop operation has been

left outside the scope of this thesis.

Chapter 4. Our Approach Towards Real-time Testing 68

⌥
1var float sendtime, receivetime;
2
3/* Saving time value when the message left the test system */
4p out.send(MSG OUT) −> timestamp sendtime;
5
6/* Saving time value when the message entered the test system */
7p in.receive(MSG IN) −> timestamp receivetime;⌦⌃ ⇧

Listing 4.6: Measurement of time

4.4.3 Measurement Of Time With timestamp

In RT-TTCN-3, the observation of time is directly connected to the reception and provi-

sioning of messages at communication ports. We introduce a construct for automatically

registering the time value at which a receive or send event has occurred. The saving is

indicated by redirect symbol -> and the timestamp keyword. The value is automatically

stored as a float value in the indicated variable.

The timestamp-operator is available for message-based communications (i.e. for send,

receive, and trigger statements) as well as for procedure-based communication1(i.e.

for call, getcall, reply, getreply, raise, and catch statements).

The observation of time with timestamp can be explicitly performed when a component

is started or when a component is stopped. This way, it can substitute the usage of

special operators testcomponentstart and testcomponentstop which implicitly return

the same value.

Measurement of time with timestamp is discussed in detail in Sections 4.5.2, 4.5.3

and furthermore in Sections A.3, A.4, D.2, D.3, where a syntactical and semantical

descriptions of concepts are provided, together with a few usage examples in E.3 and E.4.

4.4.4 Time Restrictions For Message Receival Using Time Predicates: at,

within, before, after

In a RTTS, mechanisms should be provided not only for recording the times when

messages were received, but also for imposing restrictions on the arrival times of the

messages. For example, if one expected message is received outside the time frame

specified in the requirements, it shouldn’t be validated. Or even further, if a time frame

for a message expires, we shouldn’t spend additional time letting the component hang

at a useless waiting operation on that port. Therefore, there is a need for stopping the

e↵ect of blocking operations such as receive when the allocated time frame for the

messages expected on the receive port expires. In this manner, we avoid the blocking

1For more information about the di↵erences between message-based communication and procedure-
based communication and the corresponding TTCN-3 statements please refer to [2].

Chapter 4. Our Approach Towards Real-time Testing 69

of the TS in the case in which the message expected from the SUT never arrives, and

we can resume the execution with an appropriate behavior, designated to handle that

situation.

In order to express the time frames for validating timing of messages, the following time

predicates are defined:

1. at - indicating precise time points at which the messages should be received or at

which a certain action should be performed. To that concern, the receival of a

message on a port is regarded as an external event. The action to be performed

by the TS is, for example, the canceling of a waiting operation on a port.

2. within - indicating a time frame delimited by two time points. The validated mes-

sages should be received in between the two time points associated with this pred-

icate.

3. after - indicates that the validated messages are the ones received after a given time

point.

4. before - indicates that the validated messages are the ones received before a given

time point.

5 not - keyword placed before any of the above mentioned predicates, makes the ex-

pected time interval to be complementary to the time interval indicated by the

predicate. The complement is calculated relative to the entire set of valid time

points.

The time points that are used in conjunction with the aforementioned predicates are

designated through float values expressing the passage of time in seconds. The receive

instruction in addition with one or more of the aforementioned predicates, provides a

means for validating the incoming messages with respect to time requirements. The

semantics of this construct will be presented further in Section 4.5.4 and D.5, while its

syntax will be explained in detail in Section A.6, and a usage example will be provided

in Listing E.7.

For interrupting the waiting for messages on ports after a certain time frame expires,

the alt together with break at construct should be used, as guards for the receiving

branches. The functionality of this construct can be shortly explained in the following: if

none of the alt branches are satisfied in a given time frame - and if the moment indicated

by the parameter of the at predicate, associated with the break command, is reached

- the waiting at the specified ports is interrupted and the behavior of the containing

component is resumed by executing the block of instructions that follows the break

Chapter 4. Our Approach Towards Real-time Testing 70

command. The semantics of this construct will be presented further in Section 4.5.6

and D.7, while its syntax will be explained in detail in Section A.8, and a usage example

will be provided in Listing E.9.

4.4.5 Inducing Events At Established Time Points Using Time Predicate

at

Time predicate at can be additionally used to force the TS to perform an outgoing

communication operation when some time point is reached. For example, it might be

necessary, for real-time testing purposes, to stimulate the SUT at precise moments of

time. This means that the send operation on the TS side should be performed at the

indicated time. This can be achieved by extending the testing specification with the

possibility of explicitly attaching time points to the send operation, time points that

could be interpreted as a requirement addressed to the scheduler at the test execution.

Further indications about semantics will provided in Section 4.5.5 and D.6 A.7. The

syntactical structure will be given in Section A.7, while example of usage is provided in

Listing E.8

In the same way that the action of sending a message should be allowed to be executed

at a precise moment, the actions of starting and stoping of the components should

also be allowed to be executed at precise times; or, rephrasing, it can be said that

test components should be allowed to be time triggered. This is due to the fact that

di↵erent test components are responsible for certifying di↵erent parts of the SUT ’s timed

functionality. Therefore, there is the need for the components to be able to be started

at a precise moment in time, exactly when their intervention is desired. Otherwise, they

might lose the grip on the timing aspects in relation with the SUT, and their estimations

would not be valid.

We can achieve the launching of the start and stop of components at precise time

points in combination with the at predicate. The approach is similar to the one used for

imposing the sending of messages at specified times. Sections 4.5.7, D.8 and A.9 should

be consulted for further explanation. Some usage examples are also presented in E.10.

4.5 Semantical Definitions Of The Real-time Extensions For TTCN-3

Using Timed Automata

The semantics for the new concepts will be presented in the following context. We

consider our TS to be one type of timed automata (see Section 2.1.4) described by the

set: T S = {L,X ,A,G,I,U ,E}, where:
L is a set of location or states from which we use a subset to define the semantics of

the newly introduced concepts. This subset is

Chapter 4. Our Approach Towards Real-time Testing 71

S ={S
now

, S
clock

, S
wait

, S
next

, S
error

, S
alt

, S
break

, S
wait alt

, S
alt stop

}�
{Si

tc start

�i = 1..n
testcases

}�{Si

comp start

, Si

comp stop

, Si

wait compstart

, Si

wait compstartstop

,

Si

wait compstop

, Si

wait compstop stop

�i = 1..n
comp

}�{Si

receive

, Si

rcv timestamp

, Si

start match

,

Si

match wait

, Sij

match

, Sij

match time

, Si

match stop

, Si

send

, Si

send timestamp

, Si

wait send

,

Si

wait stop

�i = 1..n
ports

, j = 1..n
tmpl

i

}�{Sk

brunch

�k = 1..n
brunches

alt

}
X = Clocks ∪ VarList

Clocks is considered to be a set of R>0-valued variables called clocks, where

C0 is the general clock of the system, visible from every state and which

increments its value at fixed intervals; the general clock of the system cannot

be reset or its value changed; all the other clocks are available to be used

and initialized from any state; they are useful for calculating relative timings,

such as measuring the time spent in a S
wait

state, for example.

VarList is the list of all variables from the T S.
VarList ⊃ VarList′ =Messages × T imestamps, where:

– Messages represents the set of all messages that enter or leave the system

at runtime.

– T imestamps = {timestamp�timestamp ∈ R>0} represents the set of times-

tamps for the messages that enter or leave the system at runtime. The

timestamp variable represents time values in seconds.

– VarList′ is organized into queues in the following way:

VarList′ = n�
i=1queuei =

n�
i=1

m

i�
j=1{(msg

ij

, timestamp
ij

)�msg
ij

∈Messages,

timestamp
ij

∈ T imestamps}
VarList ⊃ Components, where Components = {comp

i

�i ∈ N+, i = 1..n
comp

} is the
set of all components that were created in the T S.

A = Chans(A
in

) ∪ Chans(A
out

) ∪A′;A
⌧

= A ∪ {⌧} We assume a given set of actions A,
mainly partitioned into three disjoint sets of output actions:

Chans(A
in

) = n�
i=1Ch

i

(A
in

i) = n�
i=1{chi(a?)�a ∈ Ain

i}, where ch
i

are channels

attached with communication ports of the T S, n is a natural number repre-

senting the number of ports, and Ch
i

(A
in

i) is the set of input events that

can enter on that port into the T S.
Chans(A

out

) = n�
i=1Ch

i

(A
out

i) = n�
i=1{chi(a!)�a ∈ Aout

i}, where ch
i

are channels

attached with communication ports of the T S, n is a natural number repre-

senting the number of ports, and Ch
i

(A
out

i) is the set of output events that

can leave the T S through the ith port.

Chapter 4. Our Approach Towards Real-time Testing 72

A′ = is the set of special internal events used for synchronizing di↵erent parts

of the T S which are running in parallel. The used set of internal events is:

A′ ={tick!, tick?, now!, now?, break!, break?}�{received
i

!, received
i

?, queue
i

!, queue
i

?,

received
ij

!, received
ij

?, send
i

!, send
i

?, stop send
i

!, stop send
i

?�i = 1..n
ports

,

j = 1..n
tmpl

i

}�{start
i

!, start
i

?, stop
i

!, stop
i

?, stop comp start
i

!, stop comp start
i

?,

stop comp stop
i

!, stop comp stop
i

?�i = 1..n
comp

}
In addition it is assumed that there is a distinguishable unobservable action

⌧ ∉ A
G = Guards(Clocks) ∪ T emplates(Messages), where:

Guards(Clocks) denote the set of guards on clocks, being conjunctions of con-

straints of the form c � t, where � ∈ {≤,<,==,>,≥}, c ∈ Clocks and t ∈ R>0
T emplates(Messages) is a set of constraints on messages which splits the

message set into equivalence classes of the form EqMsgs = {msg�msg ≈
Tmpl,msg ∈Messages} and Tmpl ∈ T emplates(Messages).
T emplates(Messages) is the set of all template applicable in the T S.

I ∶ L→ Guards(Clocks) assigns invariants to locations.

U(X) = U(Clocks ∪ VarList) = U(Clocks) ∪ U(VarList) is the set of updates of clocks

corresponding to sequences of statements of the form c ∶= t, where c ∈ Clocks and
t ∈ R>0 represents the time in seconds.

E is a set of edges such that E ⊆ L × G ×A
⌧

× U(X) ×L
Q ∶ Chans → Queues is a bijective function which assigns queues to channels. For each

channel ch
i

there is a queue queue
i

associated with it so that Q(ch
i

) = queue
i

,

where i ∈ N, i = 1..n with n designating the number of channels used by the T S.
We consider Part to be the set of all partitions over the set Guards × T emplates.

The function R ∶ Queues → �P∈PartP assigns a set of time restrictions and mes-

sage templates to each incoming queue. R(Queue
i

) = n

tmpl

i�
j=1 g

i

× Tmpl
i

, with

g
i

∈ Guards, Tmpl ∈ T emplates, i, j ∈ N and l
i

is the number of templates asso-

ciated with the queue.

We consider BrunchesAlt to be a subset of branches associated with an alternative. Then

the function B ∶ Queues × Guards × T emplates → BrunchesAlt represents a bijective

relation which associate a queue with time guards and a template to a branch

of the alternative. B(queue
i

, TP
ij

, Tmpl
ij

) = branch
k

, where i = 1..n
ports

, j =
1..n

tmpl

i

, k = 1..�BrunchesAlt�.

Chapter 4. Our Approach Towards Real-time Testing 73

In the following we consider that the test system T S is a timed automata with the above

presented structure. The semantics of the newly introduced instructions are represented

accordingly, as timed automata that constitute subsections of the test system whose

behavior they are forming. In this context, the T S would be a composition of those

smaller time automata which may run in parallel.

4.5.1 Semantics Of Special Operations Relaying On Time:

now, wait, testcasestart, testcomponentstart, testcomponentstop

At the core of a timed T S there is the clock which keeps track of time from the

beginning of T S execution. Figure 4.3 presents the time automata associated with the

global clock. The clock is considered to be periodic, with the period �t, this being a

characteristic of the used processor, �t = 1
f

, where f is the frequency of the processor;

t, f ∈ R+.

S
clock

start, c
clock

∶= 0

c
clock

== �t, tick!, c
clock

∶= 0
Figure 4.3: Logical Clock.

S
now

start, c0 ∶= 0
c0

tick?, c0 ∶= c0 + �t

now?, v
now

∶= c0
Figure 4.4: Now State.

Complementary to the timed automata for the logical clock, there is also the timed

automata now which gives the total time from the beginning of T S execution, until the

current moment when the time is requested (Figure 4.4).

When the period of time characteristic to the clock functionality expires, the clock

automata emits a tick! signal. This signal is used for synchronization between the two

automata. When received by the now automata, the local clock variable from the S
now

state increases its value with the value of the period �t.

S
wait

start, c
wait

∶= 0
c
wait

< u − �✏

S
next

S
error

tick?, c
wait

∶= c
wait

+ �t
u − �✏ ≤ c

wait

≤ u + �✏ c
wait

> u + �✏

Figure 4.5: Wait State.

The clock and now automata are going to be active for the whole life of the T S. The

now automata uses the now? signal for synchronization with other automata existing in

Chapter 4. Our Approach Towards Real-time Testing 74

the system. When some other automata needs to access the current time value, it will

emit a complementary now! signal. This is intercepted by the now automata. Every

time this signal is generated and intercepted, the value of the local clock c0 is copied in

the global variable v
now

. This can be then accessed in the automata that has requested

the current time.

A trace for the clock automata would look like: (�t tick!)∗, while a trace for the now

automata might look like: (tick?nnow?m)∗, where n,m ∈ N are naturals.

Figure 4.5 presents the timed automata associated with the wait instruction. It can

be observed that the timed automata is approximately similar to the now automata,

with the di↵erence evident when the local clock, c
wait

, reaches a first threshold but does

not overpass a second threshold, there will be a transition to state S
next

. If the second

threshold is stepped over, then the transition will lead to an error state. The state

S
wait

has also the invariant c
wait

< u− �✏ associated with it. The states S
next

and S
error

represent generic states, used to designate the transition to other parts from the T S,
possibly represented by other timed automata.

S
error

represents a final state indicating time inaccuracy of the wait instruction. This

type of error should be signalized because otherwise the system would lose its propriety

of being time deterministic.

A trace for the wait automata would look like (tick?)nt
wait

, where t
wait

might be t
wait

∈
[(u − �✏), (u + �✏)], or t

wait

> (u + �✏).
The following automata represented in Figures 4.6, 4.7 and 4.8 illustrate the process of

time stamping at the beginning of a test case, at the beginning of the execution of a test

component, and at the end of the execution of a test component, respectively. The next

state is not reached before interrogating the now automata for the current time. The

current time is then stored in a variable, which is associated either with the beginning

of the test case, or with the beginning or end of the test component. If we assume that

there are n
comp

test components in the current test case, then there will be 2 ∗ n
comp

variables for registering starting and ending time of each component.

As we assume that our T S runs on a single machine, we consider a sequential execution

of the test cases and we keep a global variable for recording the starting point of the

current test case.

4.5.2 Semantics For receive With timestamp

The timed automata from Figure 4.9 in composition with the timed automata from

Figure 4.10 illustrate the receive mechanism with automate time stamping at the

message arrival. The two automata should not be regarded separately, but rather in

Chapter 4. Our Approach Towards Real-time Testing 75

S
tc start

start

S
next

now!, v
testcasestart

∶= v
now

Figure 4.6: Testcasestart.

Si

comp start

start

S
next

now!, vi
testcomponentstart

∶= v
now

Figure 4.7: Testcomponentstart.

Si

comp stop

start

S
next

now!, vi
testcomponentstop

∶= v
now

Figure 4.8: Testcomponentstop.

relationship to each other. The functionality is split between these two automata so

as to increase precision of the time stamp value. The receive automata presented in

Figure 4.9 has a functionality that should be simpler and therefore faster than the

match automata presented in Figure 4.10.

The receive automata is triggered by the receival of a message on the input channel.

When this happens, some basic actions are performed such as extracting the message

and saving the current time. Then the signal queue
i

! is emitted for waking up the match

automata which furthers the task of verifying whether or not the freshly arrived message

is conforming to the template associated with that port. The operations performed

by receive automata should be fast enough (and executed within predictable time

bounds), and after they are accomplished, the receive automata is back to the S
receive

state, where it is free to receive other incoming messages, while the match automata may

continue performing checking operations, which are usually much more time consuming

and also very hard to predict, due to di↵erent lengths of messages and templates.

In the presented context, ch
i

(e?) means that one input event is expected on channel

ch
i

. The channels are associated to ports and are indexed according to the order in

which the ports are used inside a test case. If there are n
ports

ports, then i = 1..n
ports

.

msg
ij

= input(ch
i

) means that when a message arrives on the channel ch
i

it is extracted

and saved in the variable msg
ij

, where j indicates that this is the j-th message received

Chapter 4. Our Approach Towards Real-time Testing 76

S
receive

start

Si

rcv timestamp

Si

start match

S
next

ch
i

(e?), msg
ij

∶= input(ch
i

)

received?

now!, timestamp
ij

∶= v
now

, queue
i

.enqueue(msg
ij

, timestamp
ij

)

queue
i

!

Figure 4.9: Receive Automaton.

Si

match wait

start

Si1
match

Si

match stop

queue
i

?,

(msg
ij

, timestamp
ij

) ∶= queue
i

.dequeue()

msg
ij

∈ Tmpl
i1, received!,

VarList ∶= VarList ∪ {msg
ij

, timestamp
ij

}

msg
ij

∉ Tmpl
i1

Figure 4.10: Match Automaton.

Chapter 4. Our Approach Towards Real-time Testing 77

on this channel, for this receive instruction. The time stamp associated with the

arrival of msg
ij

is saved in variable timestamp
ij

, which takes its value from the variable

v
now

after sending a time refresh request to the now automata which is active in the

background. Signal queue
i

! is being sent to the match automata for indicating that a

new message is available for the check. The relationship between receive and match

can also be described in terms of the classical producer - consumer situation, where the

receive represents the producer and match represents the consumer.

We consider that each channel (ch
i

) has a queue (queue
i

) associated with it, where the

incoming messages for that channel will be stored. When match automata is woken up

by the queue
i

! signal it extracts the newest message from the queue
i

queue and starts

the comparison against the given template. We are going to further see in this chapter

that there can be more than one template for messages associated with each queue.

But in this case, for the purpose of this instruction, there is only one template to be

matched. If the matching succeeds, both the value of the message and the time stamp

for the message are saved into the VarList, and the receive! signal is then sent from

the match automata to the receive automata to indicate that the right message was

received and that it can move forward to the next state (see Figure 4.9). As we know,

the receive statement is a blocking operation which returns only when the expected

message is received.

If the message could not be matched, the match automata goes back to the waiting state

until the next awakening signal (see Figure 4.10).

In the presented timed automata, S
receive

and S
next

are symbolic states designating

any generic receive statement, and all the possible states that come next to it. Also

Si

rcv timestamp

, Si

start match

, Si

match wait

and S
match stop

are generic states which are in-

dexed after the number of the port they are associated with. Si1
match

state is indexed

after the number of the port and the number of the template for incoming communica-

tion on the port that the state is associated with.

One possible trace for receive state automata might look like

(ch
i

(e?)now!queue
i

!)kreceived?,
while one possible trace for match should be a complementary trace of the form

(queue
i

?)kreceived!;
where k ∈ N represents the number of messages received until the last one is matched.

4.5.3 Semantics Of send With timestamp

The semantics of send with timestamp is simpler than that of the receive with

timestamp. It can be represented by a single timed automaton, as in Figure 4.11.

The logic starts from the initial state S
send

. After the message is sent out through the

Chapter 4. Our Approach Towards Real-time Testing 78

indicated port, the global time is requested using the signal now!, and the returned value

is saved in the list of global variables. S
send

is a generic state, indicating the initial state

of any send operations. Si

snd timestamp

is a generic state indicating an intermediary step

for the timestamping procedure associated with a specific port; the association between

the port and the state is realized through the index i. S
next

represents a generic state,

indicating the next flow of instructions.

S
send

start

Si

snd timestamp

S
next

ch
i

(e!)

now!, s timestamp
ij

∶= v
now

,

VarList ∶= VarList ∪ {s timestamp
ij

}

Figure 4.11: Send with timestamp automaton.

A trace for the send automata would simple look like: ch
i

(e!)now!.
4.5.4 Semantics For The receive Instructions Which Verify Incoming Com-

munication

The semantics of the receive instructions which verify incoming communication using

time predicates is going to be expressed by enhancing the receive and match timed

automata that were introduced in Section 4.5.2.

The intention behind using time predicates in combination with the receive statement is

to impose time restrictions for the arrival of messages. For verifying a real-time system

it is not su�cient to verify the functionality aspects, reflected in a black-box test system

by the accuracy of the responses of the SUT to certain stimuli, but also the timing

of the responses from the SUT. This implies that there are two matchings performed

when a new message is received: message matching against a structural template and a

temporal matching. The temporal matching verifies whether or not the time predicate

associated with the receive instruction is satisfied by the time the message is received.

Chapter 4. Our Approach Towards Real-time Testing 79

The receive timed automaton presented in Figure 4.12 is similar to the receive timed

automaton presented in Figure 4.9, excepting the S
error

which is newly introduced.

This is added in order to avoid the situation when a receive operation blocks for an

indefinite period of time. If the expected message never arrives, this blocking behavior

might compromise the correct functioning of the whole test system. Introducing time

restrictions for the incoming messages helps avoid this situation. If the time interval

when a valid message is expected is overstepped, then it becomes clear that the time

predicate can not be further satisfied. In this case, the receive returns from the waiting

state and enters an error state, where the failure of the SUT can be acknowledged.

S
receive

start

Si

rcv timestamp

Si

start match

S
next

S
error

ch
i

(e?), msg
ij

∶= input(ch
i

)

received?

stop receive?

now!, timestamp
ij

∶= v
now

, queue
i

.enqueue(msg
ij

, timestamp
ij

)

queue
i

!

Figure 4.12: Receive automaton.

The two new receive and match timed automata are also complementary to each other,

in the same way that it was shown for their predecessors 4.9, 4.10.

The match timed automata from Figure 4.10 is also enhanced with an additional state,

S
match time

, which performs the second matching, the time matching. As illustrated

here, time matching is performed before the structural matching. If the time does

not correspond to the time predicate then there is no reason for continuing with the

structural matching. If the time predicate is still valid (respects the validity criterions

– see D.18, D.20, D.22, D.24, D.26, D.27) then the match automata returns to the

waiting state, Si

match wait

. Otherwise, the match automata goes to an error state, S
error

,

Chapter 4. Our Approach Towards Real-time Testing 80

Si

match wait

start

Si1
match time

Si1
match

Si

match stop

S
error

queue
i

?,

(msg
ij

, timestamp
ij

) ∶= queue
i

.dequeue()

t1 − �✏ ≤ timestamp
ij

≤ t2 + �✏

t1 − �✏ > timestamp
ij

timestamp
ij

< t1 − �✏ ∨ timestamp
ij

> t2 + �✏,
stop receive!

msg
ij

∈ Tmpl
i1, received!,

VarList = VarList ∪ {msg
ij

, timestamp
ij

}

msg
ij

∉ Tmpl
i1

Figure 4.13: Match automaton.

not before sending a signal to the associated receive automata to indicate that it

should cease waiting for messages and go to an error state as well. S
error

is a generic

state indicating error. It is used both with the receive and match automata and is a

terminal state. This means that the execution of the automata ends here.

The time predicate used for the simplicity of illustration is an within predicate of the

form:t1 − �✏ ≤ timestamp
ij

≤ t2 + �✏, where t1 and t2 are the given parameters of the

constraint and �✏ defines the allowed inaccuracy.

One possible trace for the receive automata presented in Figure 4.12 is:

(ch
i

(e?)now!queue
i

!)k1received?
and the complementary trace based on the match automata would be:

(queue
i

?)k1received!,
where k1 ∈ N>0 represents the number of messages received on the port and handled by

this receive instruction until one of them is matched. This trace indicates a situation

Chapter 4. Our Approach Towards Real-time Testing 81

when the SUT passed the verification that regarded both time and structure of the

message.

Another possible couple of traces, this time corresponding to a failure of the SUT, might

look, on the receive automata side, like:

(ch
i

(e?)now!queue
i

!)k2stop receive?

and on the match automata side:

(queue
i

?)k2stop receive!,

where k2 ∈ N≥0 represents the number of messages received on the port, and is handled

by the receive instruction until the valid time frame for time constraints on the message

receive finally expires.

4.5.5 Semantics For send Instructions Which Control Outgoing Communi-

cation

For the semantics of send with time constraints operation, the timed automaton

illustrated in Figures 4.14 is used. The send timed automata waits in the starting state

for the time point given as parameter for the at statement to be reached. This send

automata has a behavior which is similar to the wait automata presented in Figure 4.5.

The time point would be expanded to a time interval in the vicinity of the given time

point, [t
max

− �✏, t
max

+ �✏], in order to introduce some toleration for error, which is

inherent to the real world. If there are scheduling problems, due to overloading of the

system, or other causes, and the time interval for sending the message is missed, the

send automata enters a terminal error state. This state indicates that the T S itself has

had a malfunction.

S
send

start

S
next

S
error

tick?, now!,v
now

< t
max

− �✏
tick?, now!,

t
max

− �✏ ≤ v
now

≤ t
max

+ �✏,
ch

i

(e!) tick?, now!,
v
now

< t
max

− �✏ ∨ v
now

> t
max

+ �✏

Figure 4.14: Timer For send State With Time Constraint.

One possible trace for the send with time constraints timed automata would look

like:

(tick?now!)kch
i

(e)!, where k ∈ N is a natural number indicating the number of clock

ticks that passed before sending the message.

Another possible trace, this time indicating an error would be: tick?now! which indicates

that the indicated moment of time has already past.

Chapter 4. Our Approach Towards Real-time Testing 82

4.5.6 Semantics for alt Instructions which Control Incoming Communica-

tion

The semantics of an alt statement is more complex than the semantics of the other

instructions extended in this thesis. It involves the collaboration of the three timed

automata presented in this section in Figures 4.15, 4.16 and 4.17.

Due to its complexity, Figure 4.15 shows only an excerpt from the alt automata. The

excerpt contains the semantics associated with one representative branch of a generic alt

statement. We assume that the generic alt statement considered here has a
n

number

of receiving branches. Each receive branch is waiting for input on one specific port of

the TS.

We consider, as defined in Section 4.5.1, to have a function B ∶ Queues × Guards ×
T emplates→ BranchesAlt that represents a bijective relation, associating one queue with

time guards and templates to each branch of the alternative. B(queue
i

, TP
il

, Tmpl
il

) =
branch

j

, where i = 1..n
ports

, l = 1..n
tmpl

i

, j = 1..�BranchesAlt� = an.
In Figure 4.15, representing the main functionality of an alternative, we can see that

the automata might receive input messages on di↵erent channels or ports. The flow

corresponding to a receive on a port is similar for the receive automata, already pre-

sented in Section 4.5.4, Figure 4.12. If one message arrives while inside an alternative,

the transition associated with the channel on which the message is received is going

to be taken. This will lead to a state that will take the time stamp for the message

arrival, and the associated match automata for that channel will be woken up with the

corresponding signal, queue
i

. The automata then enters back the listening state. S
alt

state might be regarded as the state where the automata is listening to all the ports on

which it expects to receive messages inside the alternative.

One possible trace for the alt automata will be:

((ch1?now!queue1!)∗(ch2?now!queue2!)∗...(chi?now!queuei!)∗...(cha
n

?now!queue
a

n

!)∗)∗received
il

?

with the complementary trace for the extended match automata:

(queue1?∗queue2?∗...queuei?∗...queuea
n

?∗)∗received
il

!

and the complementary trace for the wait alt automata:

(tick?now!)∗.

Chapter 4. Our Approach Towards Real-time Testing 83

S
alt

start

Si

rcv timestamp

Sj

brunch

S
next

Si

start match

S
break

ch
i

(e?),
msg

ij

∶= input(ch
i

)
ch1(e?)

ch2(e?)
ch

a

n

(e?)

received
il

?

received11? received
a

n

b

a

n

?

now!, timestamp
ij

∶= v
now

,

queue
i

.enqueue(msg
ij

, timestamp
ij

)

queue
i

!

break?

Figure 4.15: alt Automaton.

S
wait alt

start

S
alt stop

tick?, now!, v
now

< t
max

+ �✏

tick?, now!

v
now

≥ t
max

+ �✏, break!

Figure 4.16: Timer For The alt State.

Chapter 4. Our Approach Towards Real-time Testing 84

Si

match wait

start

Si1
match

Si2
match

Sib

i

match

Si

match stop

queue
i

?,

(msg
ij

, timestamp
ij

) ∶= queue
i

.dequeue()

msg
ij

∈ Tmpl
i1 ∧ timestamp

ij

∈ TP
i1,

received
i1!,VarList ∶=VarList ∪ {msg

ij

, timestamp
ij

}
msg

ij

∉ Tmpl
i1∨

timestamp
ij

∉ TP
i1

msg
ij

∈ Tmpl
i2 ∧ timestamp

ij

∈ TP
i2,

received
i2!

,

VarList ∶=VarList ∪ {msg
ij

, timestamp
ij

}

msg
ij

∈ Tmpl
in

∧ timestamp
ij

∈ TP
in

, received
in

!,

VarList ∶= VarList ∪ {msg
ij

, timestamp
ij

}

msg
ij

∉ Tmpl
ib

i

∨
timestamp

ij

∉ TP
ib

i

Figure 4.17: Extended Match Automaton.

Chapter 4. Our Approach Towards Real-time Testing 85

One other possible trace for the alt automata – this time indicating failure – will be:

((ch1?now!queue1!)∗(ch2?now!queue2!)∗...(chi?now!queuei!)∗...(cha
n

?now!queue
a

n

!)∗)∗break?

with the complementary trace for the extended match automata:

(queue1?∗queue2?∗...queuei?∗...queuea
n

?∗)∗

and the complementary trace for the wait alt automata:

(tick?now!)∗break!.

4.5.7 Semantics For Instructions Controlling The Starting And Stoping Of

Test Components

Si

start comp

start

S
next

S
error

tick?, now!,v
now

< t
max

i

− �✏

tick?, now!,
t
max

i

− �✏ ≤ v
now

≤ t
max

i

+ �✏ tick?, now!,
v
now

< t
max

i

− �✏ ∨ v
now

> t
max

i

+ �✏

Figure 4.18: Timer For start Component State With Time Constraint.

Si

stop comp

start

S
next

S
error

tick?, now!,v
now

< t
max

i

− �✏

tick?, now!,
t
max

i

− �✏ ≤ v
now

≤ t
max

i

+ �✏ tick?, now!,
v
now

< t
max

i

− �✏ ∨ v
now

> t
max

i

+ �✏

Figure 4.19: Timer For stop Component State With Time Constraint.

Chapter 4. Our Approach Towards Real-time Testing 86

4.6 Comparison Between Real-time Extended TTCN-3 And TTCN-3

In this section, we are going to demonstrate how the previously discussed real-time

extensions increase the semantic power of TTCN-3 with respect to real-time situations,

and why are they necessary. Therefore, we will first try to describe several real-time

situations, using TTCN-3 language as it is right now. We are going to prove that

the TTCN-3 specification will produce inaccurate time calculation and therefore, is an

insu�cient means of describing real-time requirements. We are then specifying the same

examples using the extended version of TTCN-3 and thus, through comparison, reveal

the benefits.

The main issues presented in this section rely on the alt statement with timing restric-

tions for the receiving of messages. The main behavior structure we are refereing to is

presented by means of a flow graph representation in Figures 4.20, 4.21 and 4.22. This

representation is similar to the one used to describe the operational semantics of TTCN-3

[5], and the elements of the graph are used as described within the standard. Figure

4.20 shows the overall behavior of the alt statement. For the purpose of keeping the

conciseness, we chose to simplify the semantic of the alt statement and to concentrate

only on the receive and timeout branches which are detailed further.

The segment from Figure 4.21 presents the main operations that are performed on the

lower levels when evaluating a receive branch. These operations are performed over

a data model consisting of the list of ports for communication, each port possessing

a queue of incoming messages, and a list of timers. The usage of timers for indicating

time expiration conforms to the TTCN-3 standard language. Considering this structure,

there may be more than one receive branch and more than one timer to be evaluated

for timeout. On each occasion when evaluating the branches of the alt statement, a

previously taken snapshot of the data configuration of the system is being used. This

means that the values from lists and queues, as well as the absolute time of the system are

frozen, and remain unchanged and available for manipulation until the next snapshot.

The snapshots are being taken at regular intervals of time. When entering the receive

branch, the queue of the associated receiving port is being verified, whether it contains

a message or not. If there is a new message, this is dequeued and sequentially decoded.

Then, the decoded message is matched against the specified templates. If it matches,

usually a statement block of instructions is expected to be executed; otherwise, if neither

template matches the message, the TS continues its behaviour, either by waiting for a

new message to come or by indicating a failure.

Alternatively, the timeout branch is considered a verification mechanism, supposed to

certify that a message is received in adequate time. When entering the timeout branch,

Figure 4.22, the list of timers is checked and the time structures are searched for values.

Chapter 4. Our Approach Towards Real-time Testing 87

All the values of timers are the ones saved at the moment of taking the snapshot. If the

timeout occurred, then a fail behavior is entered. If there was no event, neither receival

of a message, nor a timeout, during a snapshot frame, the sequence is repeated from the

beginning: a new snapshot is taken; the data configuration is updated and frozen; the

receive and timeout branches are verified once again.

Figure 4.20: Flow Graph Segment For <alt-stmt> Statement [5], [4]

Figure 4.21: Flow Graph Segment For A Receiving Branch Of An <alt-stmt> State-
ment [5], [4]

As we will demonstrate in the following, there are some flows in the way that TTCN-3

semantics with timer have been conceived. Figure 4.23 presents sequences of events

and intervals consumed by operation over the real-time axis. From a) to d), there are

di↵erent possible situations presented, which are associated with verification of di↵erent

time requirements. The first real-time requirement that we want fulfilled is that of

Chapter 4. Our Approach Towards Real-time Testing 88

Figure 4.22: Flow Graph Segment For A Timeout Branch Of An <alt-stmt> State-
ment [5], [4]

Figure 4.23: Events And Operations Over Time [4]

Chapter 4. Our Approach Towards Real-time Testing 89

receiving a message M1 on the port P1 within strict time boundaries, for example

between t1 and t2 absolute points in time.

Figure 4.23 a) and b) present two possible situations: in the a) situation, the message

is received in time and in the b) situation the message is received after t2. The moment

when the message is received is the moment when the message enters the queue of the

system and it is automatically saved together with a timestamp. On the two charts we

have also represented the moments when the snapshots are being taken, before evaluating

the branch of the alt used to catch the message M1 on the port P1. The test solution

defined with classic TTCN-3 is presented first, in Listing 4.7, and afterwards the test

solution using the extended version of TTCN-3 is presented afterwards.

In the first solution we rely on the usage of a classic timer to guarantee the accom-

plishment of timed requirement. This timer’s value is updated every time a snapshot

is taken. Figure 4.23 a) shows that, in the situation in which the moment of receiving

the message M1 and the upper limit of the timed requirement(t2) are both between two

consecutive snapshots, we may have both a timeout and a receive event at the time of

the evaluation of the second snapshot. Therefore, it depends only on the priority of the

first evaluated branch that the message it is considered whether or not was received in

time. If the timeout branch is the first one to be evaluated, it is wrongly considered

that the message was not received in the proper time. In the b) situation, the message

M1 is not received in time. At the same snapshot we may have again both a receive

event and a timeout. Depending again on which branch is evaluated, a di↵erent verdict

is established.

The second part of Listing 4.7 provides a solution which does not rely on the concept

of timer but on the usage within predicate. In this situation, when evaluating the

receive branch, together with the matching mechanism against the structural template,

an additional matching is performed in order to verify if the message was received in

time. The time-stamp saved at the entrance of the message into the system is compared

to the bounding time values that parameterize the within construct. This time, the

exact time value is being compared, the same one saved when the message entered the

system and not the one saved when the snapshot was taken. Therefore, the evaluation

is accurate.

In the situation presented in Figure 4.23 c) the message M1 is received before the lower

time boundary. This situation cannot be detected using the standard TTCN-3, as there

are no means for describing that. In the extended TTCN-3, this situation is covered by

using the before construct, as illustrated in the second part of the Listing 4.7.

Chapter 4. Our Approach Towards Real-time Testing 90

⌥
1// TTCN−3 solution
2timer T;
3T.start(t max);
4alt{
5[]P1.receive(M1){
6t crt:=T.read();
7};
8[]T.timeout(){setverdict(fail)};
9}
10
11// Extended TTCN−3 solution using within statement
12// and before or after alternatives
13// The difference between t1 and t2 is t max
14var datetime t1, t2;
15alt{
16[]P1.receive(M1) within(t1..t2){...};
17[]P1.receive(M1) before t1 or after t2{
18setverdict(fail)
19};
20}⌦⌃ ⇧

Listing 4.7: Timer Timeout vs. within statement

The third requirement is to calculate as precisely as possible the execution time that

will elapse between two di↵erent points in the execution of the TS. The first point is

the one just before entering the alt statement, and the other one is just after receiving

a conforming message. The usage of classical timers is very imprecise, when trying to

achieve this. As illustrated in the Figure 4.23 d), the current value of the timer is the

same one taken at the last snapshot. Nevertheless, in the actual execution, additional

delays are introduced by the dequeue, decode and match operations. These delays will

not be acknowledged if we use the classic TTCN-3 and timers as in Listing 4.8, in the

first part. In order to be accurate, these delays have to be considered as well. Using the

enhanced real-time semantics we can introduce two observation points just before alt,

and after receive, through the usage of now() operators. Values returned by these

will be accurate (see Listing 4.8, second part). In addition, if we want to know the

exact time of receiving a message, TTCN-3 o↵ers no proper means for that. This can

be achieved in our new semantic through the usage of the time-stamp as it can be seen

in Listing 4.8, the third part.

4.7 Summary

This chapter has presented the real-time extensions for TTCN-3 that remain at the basis

of the testing framework developed in this thesis. The chapter began with discussing

the faults of TTCN-3 with regard to real-time testing, and discussed the concepts that

are needed to overcome them. According to these concepts, appropriate extensions

for real-time TTCN-3 have been defined. The introduced extensions were: new data

types suitable for expressing time values, special operators relying on time (now, wait,

Chapter 4. Our Approach Towards Real-time Testing 91

⌥
1
2// TTCN−3 solution
3timer T;
4T.start(t max);
5alt{
6[]P1.receive(M1){
7t elapsed:=t max−T.read();
8if(t elapsed > t limit){...};
9};
10[]T.timeout(){setverdict(fail)};
11}
12
13// Extended TTCN−3 solution with now() operation
14var datetime t1, t2;
15t1:=now();
16alt{
17[]P1.receive(M1) {
18t2:=now();
19if((t2−t1) > t limit){...};
20...
21};
22...
23}
24
25//Extended TTCN−3 solution with timestamp operation
26var datetime t1, t2;
27t1:=now();
28alt{
29[]P1.receive(M1)−>timestamp t2 {
30if((t2−t1) > t limit){...};
31...
32};
33...
34}⌦⌃ ⇧

Listing 4.8: Timer read vs. now() operation and vs. timestamp statement

testcasestart, testcomponentstart and testcomponentstop), measurements of time

with timestamp, time restrictions for message receival using time predicates (at, within,

before, after), induction of events at established time points using the time predicate

at. A clear semantics has been described for each of the proposed extensions, by means

of TA. The semantics presented here was completed by definitions based on logic rules,

that have been provided in Appendix D. The semantics for time expressions with nu-

merical and logical operators were additionally provided in Appendix C and predefined

conversion functions for the di↵erent time data types representations were attached in

Appendix B. All extensions were also provided with syntactic rules, expressed in EBNF

notation, the same notation used to define the syntax of TTCN-3. The syntax of the

extensions has been attached in Appendix A. The chapter concluded with an informal

demonstration of the capabilities of the extended TTCN-3 compared with the classic

TTCN-3, by means of examples. In Appendix E code samples are provided of enhanced

real-time TTCN-3 specifications.

Chapter 5

Real-time Testing Framework Architecture

”Ah, to build, to build! That is the noblest art of all the arts.”

Henry Wadsworth Longfellow

A framework can be seen as embodying a complete design of an application, while a

pattern can be regarded as an outline of a solution for a class of problems. In our

case, the class of problems is represented by real-time test systems, which are in fact

communication-oriented real-time applications, meaning an application with strict tim-

ing constraints, especially concerning the input/output operations on ports.

Figure 5.1 represents the categories of patterns associated with the concepts and the

implemented frameworks. The frameworks implemented as a proof of concept are based

on two concrete real-time operating systems, FreeRTOS (see [115]) and RTAI Linux

(see [116]) respectively.

5.1 Design Patterns For The Real-time Concepts

Before going into the details of the frameworks’ realization, this chapter is going to

study the main design paradigms as well as the constituting issues for the building of a

real-time TS, based on the concepts presented in Chapter 4.

A design pattern is a formal way of documenting successful solutions to problems. Fig-

ure 5.1 presents a set of design patterns for a RTTS realization. These patterns have

been derived from our research work and are combine what we consider to be good

real-time system design practices based on our experience of realizing successful (see

Chapter 7) implementations of a RTTS with the real-time extensions for TTCN-3 on

two real-time operating system platforms (FreeRTOS and RTAI Linux).

As shown in Figure 5.1, the package containing the design patterns, represents a gener-

alization of the package containing two frameworks implementations. Thus, the model

is extensible, so that other implementations based on the patterns contained in RTTS

Design Patterns package can be added to the RT Testing Framework package.

The patterns presented here are grouped in four packages, mirroring the categorizations

of the real-time concepts shown in Tables 3.4- 3.8 from Section 3.3, Chapter 3:

92

Chapter 5. Real-time Testing Framework Architecture 93

Figure 5.1: Real-time Design Patterns

Chapter 5. Real-time Testing Framework Architecture 94

1. Timers package – for the representation of time – contains the patterns modeling the

clock of the systems and the associated timers.

In this thesis we are going to consider a solution for a non-distributed TS, but the

problem of distribution is not going to be treated here. Therefore, the assumption

of one single clock of the system is su�cient for time measuring.

As shown in Figure 5.1, the clock of the system is a private attribute. Therefore,

the access to the time information counted by the clock is made public only through

the use of timers.

2. Time Read Instructions package – for the measurement of time – contains the patterns

modeling the realization of the now, testcasestart, testcomponentstart and

testcomponentstop operations with the use of real-time operating system services.

3. Control Instructions package – for control of application – contains the patterns

modeling the realization of the start test component at, stop test component at,

send at, wait and alt..break at operations with the use of real-time operating

system services.

4. Verification Instructions package – for time verification – contains the patterns mod-

eling the timing mechanisms for time-stamping the incoming communication.

All these patterns will be discussed in detail in the following.

5.1.1 General Architecture

Figure 5.2: Architectural Layers Of A Real-time TTCN-3 Testing Framework

Figure 5.2 depicts the overall architecture of a RTTS designed for TTCN-3. The archi-

tecture is shown in a pyramidal form, from the highest level of abstraction (Layer 1) –

Chapter 5. Real-time Testing Framework Architecture 95

in our context, this is the RTTS designed with Real-time TTCN-3 – to the lowest level

(Layer 4), the level of hardware and physical medium.

As presented in Section 3.2.1, Chapter 3, TTCN-3 is an abstract specification for testing

and it is portable on di↵erent platforms. Using TTCN-3, the tester can focus on test

cases definition, without worrying about the platform underneath. In order to make

these test cases executable, they need to be converted into code that can be run as part

of the execution environment.

The execution environment is depicted as Layer 2 in Figure 5.2. The code generated

for the Real-time TTCN-3 test cases together with its execution environment can be

regarded as a real-time application that represents the RTTS. This RTTS runs on top

of a real-time operating system (Layer 3) and it makes use of the services that the

real-time operating system provides, allowing the management of available hardware

resources (Layer 4).

The design patterns presented in Figure 5.1 draw the connection between Layer 1 and

Layer 3 in Figure 5.2. Therefore, the realization of these patterns would basically be an

implementation of a RTTS situated at Layer 2 in Figure 5.2.

Figure 5.3: Implementation Design For A Conventional TTCN-3 Platform

Chapter 5. Real-time Testing Framework Architecture 96

Figure 5.3 presents the simplified runtime architecture of a classical TTCN-3 Test

System (TTCN-3 TS). A TTCN-3 TS is composed at runtime from several components

running in parallel, communicating with each other, as well as the environment through

ports. The MTC is the first component created when the test case is started.

Figure 5.4: Implementation Design For A Real-time TTCN-3 Platform

To enhance this TS with real-time capabilities, we have to assure that the interactions

with the SUT are handled e�ciently and on time. Therefore, those interactions are

enhanced by a higher priority than other parts of the TS ’s behavior and thus, we talk

about an event-triggered TS. In order to provide these events with timing quantifications,

we need an internal clock which is able not only to measure the time passing, but also to

generate some time events when thresholds are reached. The enhanced TS is illustrated

in Figure 5.4.

This shows how events coming from exterior generate interrupts on ports on which they

are received, and so ask for immediate handling. The inner clock of the TS must be

precise and should impose a deterministic time behavior to the system. Timer interrupts

are generated for assuring bounded execution times.

The RTTS can be regarded as a real-time application, running on a real-time operating

system. Components can be seen as tasks between which we can have interdependence

Chapter 5. Real-time Testing Framework Architecture 97

relations (e.g. any PTC Task is created after MTC Task). Therefore, operating system

mechanisms such as tasks, event interrupts, event handlers, clock, system queues, real-

time scheduler are going to be used for implementing the real-time TTCN-3 concepts.

5.1.2 Dealing With Time

Time points are regarded as positive real numbers, timespan values, datetime values

or virtual tick values. Nevertheless, on a real machine they will be translated as the

number of ticks of the inner clock of the system. The final values of the temporal

predicates are calculated using the internal representation of time.

From a time perspective, the send, receive and break operations together with the

time predicates and the time measurement mechanisms, presented in Chapter 4, can be

divided into three categories:

Control instructions:

e.g. p.send(msg) at tx;

alt{...}break at ty{...}

Time read instructions:

e.g. p.send(msg) -> timestamp tx;

now;

comp.start-> timestamp tcx;

Verification instructions:

e.g. p.receive(msg) at tx/before tx/after tx/within(tx,ty);

Their mechanisms are presented in detail in the following sections.

5.1.3 Control Instructions

The control instructions are the instructions that have to be performed at precise points

in time. When these points in time are encountered, the clock system generates a timer

interrupt. The timer interrupt is treated by an interrupt handler, which interrupts any

running activity and performs the code associated with that instruction.

Such instructions are, for example, the send and break instructions with at time pred-

icate. At the initialization of the test system, all the time values which are given as

Chapter 5. Real-time Testing Framework Architecture 98

parameters to the at predicate are saved into a list maintained by the kernel (see Figure

5.5). This list is ordered by the increasing order of time values. Another step performed

in the initialization phase is that of the creation of time handlers for each value in the

list. The handlers have a behavior associated with the type of instruction to which the

temporal predicate is applied to: send or break. When the clock tick value equals one

value from the list, a time interrupt is generated and the associated event handler is

invoked. Because the interrupts are not generated periodically it is said that the timer

runs in one shot mode.

Component start and component stop at fixed times are also belonging to this group.

These operation will be associated with corresponding handling routines.

Figure 5.5: Generating Timer Event [6]

5.1.4 Dealing With Events

In a real-time TS, we are dealing with two types of event: internal generated events,

for time determinism, also known as time events, and external generated events, which

are triggered by the I/O ports whenever a new message has arrived. The way in which

these events are to be handled will be discussed in the following section. Concerning the

discussion about event handlers, it is important to mention that they have the highest

priority in the system. They can interrupt any running process. Interrupt handlers will

be non-preempt-able. Nevertheless, when a test is designed, the latency introduced by

the system should be taken into consideration. The latency represents the amount of

time that passes between an event arrival and the starting of its handling routine. For

real-time operating systems this delay should be upper bounded and very small (e.g. for

RTAI it is of the order of microseconds [116]).

Chapter 5. Real-time Testing Framework Architecture 99

5.1.5 Time Events

Figure 5.6: Time Event Handler Associated With Send [6]

For the time events that are generated as described in 5.1.3, we have four types of event

handlers: the handler associated with a send operation, which performs the sending of a

message when it is invoked, presented in Figure 5.6, the handlers associated with forced

start and stop operations of a test component – which are similar to the one for the

send operation –, and the handler associated with the break instruction, which has a

more complex behavior.

As described in Chapter 4, the break instruction is used to impose an upper time limit

to the alt statement. If the alt statement isn’t processed in time, the break instruction

is used to bound its execution time. Therefore, the invoked handler is used also to kill

the task associated with the alt statement. The detailed flow of events will be presented

in more detail in the following sections, but the main idea is captured in Figure 5.7.

5.1.6 External Events

When a message is received from the SUT, an I/O interrupt is generated on the receiving

port. A virtual queue is associated with each receiving port, for the purpose of storing

incoming messages. When the interrupt activates the handler, the handler takes the

message, reads the system’s time from the system’s clock, and saves the message together

with the time stamp into the queue associated with the port. The procedure is presented

in Figure 5.8.

5.1.7 Verification And Time Read Instructions

Verification and time read instruction do not have an intrusive action in the behavior

of the application. They do not influence the scheduling mechanism, they do not cause

Chapter 5. Real-time Testing Framework Architecture 100

Figure 5.7: Time Event Handler Associated With Break [6]

Figure 5.8: Event Handler For An External Event [6]

the preemption of the current running thread. Their e↵ect is to keep a time stamp

of the time when the associated operation was performed. In the case of the receive

operation, the time stamp is taken directly from the value saved by the interrupt handler

associated with the incoming event (see Figure 5.8). In the case of time read operations,

the time stamp is recoded for logging and ensuring the timed trace of the test run is

kept. In the case of verification operations, the time stamp is compared for conformance

with a time predicate, and it will influence the verdict about the validity of the received

message.

In the case of send operation, the behavior is a bit more complex. Only send with

temporal predicates are implemented using interrupt handlers. send without temporal

predicate executes just as a normal send operation in the context of the thread that

calls it. For saving the time at which the message is send, a time primitive reads the

time immediately after the message leaves the output queue of the system. The thread

Chapter 5. Real-time Testing Framework Architecture 101

must not be preempted between these operations. Therefore, the interrupts have to be

disabled, and maximum priority level for the task should be assured during this code

section.

5.1.8 Component Task With Timed Send

Test components might be regarded as tasks, executing di↵erent pieces of system’s func-

tionality. It is interesting to analyze how a test component task is influenced by certain

operations contained within the component, representing the component’s behavior. The

description of one test component’s behavior in TTCN-3 is described in Listing 5.1.⌥
1testcase SendAtTime() runs on SenderComponent

2{
3float tx;

4...

5// other computations

6senderPort.send(msg) at tx;;

7// other computations

8...

9}⌦⌃ ⇧
Listing 5.1: Component task with timed send. TTCN-3 code.

Figure 5.9 presents one possible execution flow, achievable if the Send Task is the only

task running in the system at that period. The send instruction is a control instruction

and therefore, it has an impact on the state of the Send Task that is running in the

system at the moment at which the send operation should be executed. When the time

interrupt is generated, it triggers the handling routine, which preempts the Send Task

and puts it in the ready queue. Ready queue is a queue maintained by the system, which

contains the tasks that are ready for being scheduled next. After the routine finishes the

sending operation, the scheduler gets the first available task from the ready queue and

dispatches it. Usually, the ready queue is an ordered queue, sorted on di↵erent criteria

such as: task priority or task deadline. Figure 5.10 shows the transition states of the

Send Task.

5.1.9 Component Task With Send And Timestamp

From the execution time line presented in Figure 5.11 it can be observed that the send

with timestamp operation has not an intrusive e↵ect on the execution of the component

itself. Nevertheless, after sending, the task should not be preempted by another task

before keeping the time stamp. In simpler terms, it locks the processor for a short

period. The associated code for the execution is listed in Listing 5.2.

TTCN-3 code associated with this behavior is listed in 5.2.

Chapter 5. Real-time Testing Framework Architecture 102

Figure 5.9: Execution Timeline For Sending At A Given Time [6]

Figure 5.10: Sender Task Transitions With Ready Queue [6]

⌥
1testcase SendTimestamp() runs on SenderComponent

2{
3float tx;

4...

5// other computations

6senderPort.send(msg) −> timestamp tx;

7// other computations

8...

9}⌦⌃ ⇧
Listing 5.2: Component task with send and timestamp. TTCN-3 code.

5.1.10 Alt Operation With Receive Branches And Break Condition

A more complex interaction is encapsulated into the alt statement. One example of one

alt waiting on two ports is described in Listing 5.3. All the elements described previ-

ously are used in this scenario. The proposed solution, with interrupts for events, with

handlers, and tasks, represent a real-time alternative to the snapshot semantic proposed

in the TTCN-3 standard. [124] demonstrates why snapshot semantic is ine�cient and

not suitable for real-time applications.

Referring to the example presented in Listing 5.3, in our approach, the alt is associated

with a task that manages two queues. This is due to the fact that there are two ports

Chapter 5. Real-time Testing Framework Architecture 103

Figure 5.11: Execution Timeline For A Send With Timestamp [6]

on which the alternative will wait for incoming messages. The queues should be created

by the parent component, along with the creation of the Alt task. When a message is

received on one of the ports, an interrupt is generated, and a handler for an external

event is called. The handler for an external event takes the time stamp and saves it

together with the message in one of the abstract queues; the same one that is associated

with the port on which the message was received. As manager of the queues, the Alt task

takes the last incoming message and compares it against both the time and structural

patterns.

Chapter 5. Real-time Testing Framework Architecture 104

⌥
1testcase InTimeReceive() runs on ReceiverComponent

2{
3float tx;

4float ty;

5timespan tz;

6float tt;

7...

8alt {
9[] pa.receive(tmpla1) within(tx, ty) {
10setverdict (pass);

11}
12[] pb.receive(tmplb1) before tz {
13setverdict (pass);

14}
15[] pa.receive {
16// any other message,

17// any other time

18setverdict(fail);

19}
20[] pb.receive {
21// any other message,

22// any other time

23setverdict(fail);

24}
25} break at (tz + 10*millisec){
26setverdict(error);

27log(...);

28...

29}
30...

31}⌦⌃ ⇧
Listing 5.3: TTCN-3 code sample for an alt with two ports.

The function Filter presented in Figure 5.12 displays the algorithm for matching. If the

message matches, then the behavior associated with that branch is executed next in the

context of the current task. If it doesn’t match, then the Alt task blocks the waiting

of the arrival of another message. The Alt task can be interrupted while executing by

using a timer handler or by an I/O interrupt handler, preempted and moved to ready

queue. It can also be preempted by tasks with a higher priority.

When the processor becomes available and there is no other task with a higher priority

running in the system, this then gets the processor and continues its computation (see

Figure 5.13).

State transitions for the Alt task are presented in Figure 5.14.

Chapter 5. Real-time Testing Framework Architecture 105

Figure 5.12: Filter Function After Receiving The Event [6]

Figure 5.13: Behavior Of Alt Task When Running [6]

Chapter 5. Real-time Testing Framework Architecture 106

Figure 5.14: Alt Task Transition States [6]

In Figure 5.15 is presented how the alt task interacts with other parts of the system. It

is a picture of the participants involved in the alt behavior.

Figure 5.15: Task Interactions For An Alt Statement [6]

Figures 5.16 and 5.17 present two possible execution flows. In the first, two messages

Chapter 5. Real-time Testing Framework Architecture 107

arrive, generating interrupts. The Alt task is preempted twice and one of the mes-

sages corresponds with one pattern and is received in time. Therefore the execution is

continued with the behavior of the associated branch.

Figure 5.16: (a) Possible Flow Of Events [6]

In Figure 5.17 no message is received in time. A timer interrupt is generated after the

time interval for the alternative expires and the Alt task is killed. An error behavior

will be executed in this situation.

Figure 5.17: (b) Possible Flow Of Events [6]

It would be interesting to imagine how the system would look like if we had more

than one component. For this, an algorithm for assigning priorities to di↵erent tasks

associated with di↵erent components would be a good choice. The priority should be

set in relation to the deadline of each thread. The closer the deadline, the higher the

priority. For example, if we have two components, each containing one alt statement,

we set the priority for the Alt threads as follows: each alt is associated with a break

clause. The time indicated by the temporal predicate of the break clause gives the

deadline for the Alt task itself. The Alt task with the closest deadline will have the

higher priority.

Nevertheless, this heuristic function does not provide the guarantee that the system

will respect its deadline. A thorough study of the SUT should be performed and other

heuristics should be developed.

Chapter 5. Real-time Testing Framework Architecture 108

There are also situations – depending on the malbehavior of the SUT – that can induce

a malfunctioning of the test system itself. Such a situation would be a flooding of the

TS with input events. Handling endless incoming events at the highest priority, may

lead to deadline overrun on the test system side. These situations should be predicted

and taken into consideration during the design phase.

5.2 Real-time Operating System Selection

The market of Operating Systems (OS) is continuously and increasingly developing, as

a result of more and more sophisticated requirements. One of the key necessities is to

support embedded real-time applications in which the OS must guarantee the timeliness

as well as the correctness of the processing. Many OS claim to be Real-time Operating

Systems (RTOS), but often only by reviewing the OS specifications, or more detailed

information, one can truly identify the OS that enables real-time applications.

The process of selecting the right RTOS is an important and, at the same time, a critical

one. It involves knowing all the specifications of di↵erent RTOS’s in an abundant market

of available RTOS’s, including from micro kernels to commercial RTOS’s.

The design space available to any RTOS is very broad and there are countless sets

of characteristics that form the criteria on which the RTOS selection is performed.

Selecting the RTOS based on these features is a multidimensional search problem where

each dimension corresponds to a RTOS characteristic requiring an exhaustive search,

tremendous computing resources and time.

5.2.1 RTOS Candidates

The initial search was performed using the Internet, where a wide variety of RTOSes

are available to suit most projects and pocketbooks [122, 123]. Our search revealed 16

RTOSes that required further investigation. The actual number of RTOSes is in fact

larger. These were merely the ones that could be applied to our real-time test system.

The first reason for eliminating RTOSes was the license term conditions. As with

any system software, RTOSes come with various license terms (commercial software,

free software, open source software, etc). Our decision was to select only open source

RTOSes, even though the more powerful known RTOSes are commercially distributed.

The interest in alternatives which are free of charge compared to the conventional, partly

expensive RTOS, is increasingly growing. The reasons to apply open source software

(OSS) are diverse. Often OSS is selected to compensate for disadvantages of commer-

cial solutions and to use the advantages of OS. These disadvantages can be found in the

following areas:

Chapter 5. Real-time Testing Framework Architecture 109

Costs For commercial RTOSes licence costs are to be paid, which compared largely

to the implementation costs, are only slightly below or the same. Furthermore,

mostly annual maintenance fees incur.

Safety Commercial systems are mostly ”closed source”, which means they cannot be

seen in the source code. Thus, possible safety gaps or safety-relevant defective

functions cannot be seen in the source code in advance and cannot be corrected.

Stability and Performance Open source systems mostly have a much broader instal-

lation basis than commercial systems. They are therefore tested more extensively

and optimised through these experiences.

Support In case of commercial RTOSes the support is liable to costs. Mostly because

forums or mailing lists for the exchange among each other do not exist.

Table 5.1 presents the eliminated candidates and the main reason for elimination.

Table 5.1: Eliminated RTOS Candidates

RTOS Name Vendor Reason for elimination

QNX QNX Software Systems Commercial product
uKOS uKOS Team Lack of determinism and/or

limited real-time capabilities
VxWorks Wind River Systems Commercial product
CapROS Strawberry Development

Group
Limited development infor-
mation and support

WinCE Microsoft Commercial product
Coyotos Johns Hopkins University’s

Systems Research Laboratory
Developed in BitC language

OSE ENEA Commercial product
Fiasco TU Dresden Limited development infor-

mation and support
RTLinux Wind River Systems Commercial product
C Executive AMD Limited portability
scmRTOS scmRTOS Team Limited portability

This elimination process left four RTOS candidates (Table 5.2) to be evaluated in detail

and ranked on our specific requirements in Section 5.2.2.

5.2.2 RTOS Selection Criteria

Based on the specific requirements of the automotive industry, as well as on the obvi-

ous needs for performance, reliability, and cost-e↵ectiveness common to every real-time

project, we have divided the selection criteria in two parts: the first part one envelopes

Chapter 5. Real-time Testing Framework Architecture 110

Table 5.2: Remaining RTOS Candidates For Complex Evaluation

RTOS Name Vendor Project site

eCos
Red Hat www.ecos.sourceware.org

FreeRTOS
Richard Barry &
FreeRTOS Team

www.freertos.org

RTAI

RTAI Team www.rtai.org

RTEMS
Oar Corp. www.rtems.com

general points of view, such as: supported languages, portability, latest update, com-

mercial status, available API and information about development and support. The

second part of the selection process includes more specific features of RTOSes, such as:

scheduling algorithms, type of RT (soft of hard), priority levels, kernel ROM size, kernel

RAM size, multi-process support, interrupt latency, task switching time, type of IPC

mechanism, memory management, task management etc. These two parts of selection

criteria are shown in Table 5.3 and Table 5.4 and a detailed argument concerning the

elimination criteria for selection is given below, along with a mention that the basic

and the first criteria of selecting process is contained in the Section 5.2.1, where the

commercial RTOSes and those that don’t meet the basic requirements were eliminated.

In order to defend the selection decision we should see a summarized description of each

of these RTOSes based on the previous tables:

eCos:

eCos (embedded Configurable operating system) is an open source, royalty-free,

real-time operating system intended for embedded systems and applications, which

need only one process with multiple threads. The OS is configurable, and can be

customized to precise application requirements, with hundreds of options, deliver-

ing the best possible run-time performance and minimized hardware need. eCos

Chapter 5. Real-time Testing Framework Architecture 111

Table 5.3: A General RTOS Selection

eCos FreeRTOS RTAI RTEMS

Languages
Support

Assembly, C,

C++, Ada95
C, Assembly C

C, C++,

Ada95

Target
CPUs

Support

x86,

PowerPC,

ARM, MIPS,

Altera NIOS

II, Calm-

risc16/32,

Freescale 68k

ColdFire,

Fujitsu FR-V,

Hitachi H8,

Hitachi

SuperH,

Matsushita

AM3x, NEC

V850, SPARC

ARM

architecture

(ARM7,

Cortex-M3) ,

AVR, AVR32,

HCS12,

MicroBlaze,

MSP430, PIC

microcon-

troller (PIC18,

PIC24,

dsPIC),

Renesas H8/S,

x86, 8052

X86 (with and

without FPU

and TSC),

PowerPC,

ARM

(StrongARM;

ARM7:

clps711x-

family, Cirrus

Logic EP7xxx,

CS89712,

PXA25x),

MIPS

ARM,

Blackfin,

ColdFire,

Texas

Instruments

C3x/C4x

DSPs,

H8/300, x86,

68K, MIPS,

Nios II,

PowerPC,

SuperH,

SPARC

Development
Status

eCos 2.0, May

2003

FreeRTOS

4.4.0, July

2007

RTAI 3.5,

February 2007

RTEMS 4.6.6,

April 2006

Source
Model/
License

Open source/

eCos License

(GPL with

exceptions)

Open source/

Modified GPL
Open source

Open source/

Modified GPL

API

POSIX

(1003.1b),

ITRON, ”clas-

sic/native”

API in C and

Ada

Well written

custom API,

based on

”classic” API

in C

Custom API

derived from

RTLinux V1

API

uITRON 3.0

API, POSIX

1003.1b, BSD

standards

Development
Informa-
tion/

Support

Books,

papers/

Mailing list

Web

tutorials/

Forum

Incomplete

documenta-

tion/ Web

support,

mailing list

Wiki/

Contractual

support

Chapter 5. Real-time Testing Framework Architecture 112

Table 5.4: A More Specific RTOS Selection

eCos FreeRTOS RTAI RTEMS

Kernel
Architecture

Configurable

(monolithic

probably)
Microkernel

Module

oriented,

loadable to

Linux kernel

Monolithic

Multi-process
Support

Yes Yes Yes No

Scheduling
Algorithm

Preemptive:

bitmap/

multi-level

queue. Unique

priorities/

timeslice.

Preemptive/

cooperative.

Highest priority

first.

Fully

preemptive,

Round Robin,

timeslice, fixed

priority,

dynamic

priorities,

coopertative

multitasking

Rate-monotonic

scheduling.

Configurable:

non/preemp-

tive,

no/timeslice.

Priorities
interval

0 .. 31 Configurable 0x3↵fF↵f .. 0 1 .. 255

Task States

Ready,Running,

Suspended,

Sleep,Exited

Running,Ready,

Blocked,

Suspended

Ready,Running,

Suspended,

Delayed,

Semaphore,

Send,Receive,

Rpc,Return,

Deleted

Executing,

Ready,Blocked,

Dormant,

Non-existent

Max. Number
of Tasks

Configurable Unlimited Unlimited Configurable

Co-routine
Impl.

No Yes No No

Virt. Mem.
Support

No No Yes No

Pre-emptable
ISR

No Yes Yes Configurable

Chapter 5. Real-time Testing Framework Architecture 113

has been designed to support applications with real-time requirements, providing

features such as full preemptability, minimal interrupt latencies, and all the neces-

sary synchronization primitives, scheduling policies, and interrupt handling mech-

anisms needed for this type of application. eCos also provides all the functionality

required for general embedded application support including device drivers, mem-

ory management, exception handling, C, math libraries, etc. It is programmed in

the C programming language, and has compatibility layers and APIs for POSIX

and ITRON. eCos was designed for devices with memory size in the tens, up to

hundreds of kilobytes, or with real-time requirements. It can be used on hard-

ware with too little RAM to support embedded Linux, which currently needs a

minimum of about 2 MB of RAM, not including application and service needs.

eCos runs on a wide variety of hardware platforms, including ARM, CalmRISC,

FR-V, Hitachi H8, IA-32, Motorola 68000, Matsushita AM3x, MIPS, NEC V8xx,

Nios II, PowerPC, SPARC, and SuperH [117].

FreeRTOS:

FreeRTOs is a real-time operating system for embedded devices, being ported to

several microcontrollers. The FreeRTOS scheduler is designed to be small and

simple. It can be configured for both preemptive or cooperative operation. To

make the code readable, easy to port, and maintainable, it is written mostly in C,

but there are a few assembler functions included where needed. FreeRTOS allows

an application to use coroutines (a lightweight task that uses very little memory.),

as well as tasks. The FreeRTOS kernel itself is comprised of only three or four C

files, depending on whether coroutines are used or not. The FreeRTOS.org site

contains RTOS tutorials, details of the RTOS design and performance comparison

results for various microcontrollers, and the distribution comes with prepared con-

figurations and demonstrations for every port, allowing rapid application design.

Supported architectures: ARM architecture ARM7 (ARM Cortex-M3), AVR,

AVR32, HCS12, MicroBlaze, MSP430, PIC microcontroller PIC18, PIC24, dsPIC,

Renesas H8/S, x86, 8052 [115].

RTAI:

RTAI stands for Real-time Application Interface. It is a real-time extension for the

Linux kernel, which allows for the possibility to develop applications with strict

timing constraints for Linux. RTAI provides a deterministic response to interrupts,

POSIX compliant and native RTAI realtime tasks. Realtime Application Interface

consists mainly of two parts: a patch to the Linux kernel which introduces a

hardware abstraction layer and a broad variety of services required for general

real-time applications.

Chapter 5. Real-time Testing Framework Architecture 114

RTAI supports several architectures:x86 (with and without FPU and TSC), Pow-

erPC, ARM (StrongARM; ARM7: clps711x-family, Cirrus Logic EP7xxx, CS89712,

PXA25x), MIPS [116].

RTEMS:

RTEMS (Real-time Executive for Multiprocessor Systems) is a free open source

real-time operating system designed for embedded systems. RTEMS is designed

to support various open API standards including POSIX and uITRON. The API

now known as the Classic RTEMS API was originally based upon the Real-time

Interface Executive Definition (RTEID) specification. RTEMS does not provide

any form of memory management or processes. In POSIX terminology, it imple-

ments a single process, multithreaded environment. This is reflected by the fact

that RTEMS provides nearly all POSIX services apart from those which are re-

lated to memory mapping, process forking, or shared memory. RTEMS includes

a port of the FreeBSD TCP/IP stack as well as support for various filesystems

including NFS and the FAT filesystem.

RTEMS is designed for real-time, embedded systems and has been ported to var-

ious target processor architectures: ARM, Blackfin, ColdFire, Texas Instruments

C3x/C4x DSPs, H8/300, i386, Pentium, and above members of the X86 architec-

ture, 68K, MIPS, Nios II, PowerPC, SuperH, SPARC [118].

5.2.3 Evaluation Results

Based on specific requirements and principles, we decided that the most suitable of our

real-time application were the FreeRTOS and RTAI operating systems.

A reason to renounce eCos was that the latest stable verion was in May, 2003 and has

remained frozen since then. An option to get most up-to-date version is by using the

CVS, however, a less tested version of eCos.

The argument for choosing RTAI was that its documentation is well written, and it

provides a complete API with very flexible features, appropriate for designing a great

range of real-time application. On the other hand, FreeRTOS is a very small, simple and

concise operating system, making it suitable for small applications on small platforms. It

was decided to try to implement our concepts on these two platforms, one more general

purpose real-time and the other more small and specific.

Since in both cases the majority of the code is written in C language, it is highly

portable and able to be ported to many physical platforms. A strong advantage of

FreeRTOS and RTAI is that for each supported platform, the code includes a demo

project demonstrating how to use the code on that specific platform. Unfortunately,

Chapter 5. Real-time Testing Framework Architecture 115

this feature was not found on the other systems, where installation, configuration and

development required more e↵ort. FreeRTOS’s strength is its small size, making it

possible to run where most other operating systems would not fit. RTAI’s strength is

its flexibility. Both FreeRTOS and RTAI will be presented in the following two sections.

5.3 FreeRTOS. Important Features.

Simple, Portable, Concise! This is the design philosophy of FreeRTOS. Therefore,

the kernel of FreeRTOS is small, comprised of only three or four files. To make the code

readable, easy to port, and maintainable, it is written mostly in C, but there are a few

assembler functions included where needed to have an increase in performance.

Preemptive/Cooperative Scheduling. FreeRTOS relies on a scheduler that can be

configured to both preemptive and cooperative scheduling policies and allows the usage

of coroutines (lightweight tasks that use very little memory), as well as the usage of

tasks.

Time Measured By Tick Count. The FreeRTOS real-time kernel measures time

using a tick count variable. A timer interrupt (the RTOS tick interrupt) increments

the tick count with strict temporal accuracy - allowing the real-time kernel to measure

time to a resolution of the chosen timer interrupt frequency. The tick count is used

by the scheduler, so that each time the tick count is incremented, the real-time kernel

must check to see if it is now time to unblock or wake a task. An useful function to get

the count of ticks since the scheduler was started is the xTaskGetTickCount() function.

This function represents the correspondent, at the RTOS level, of the now instruction

from Real-time TTCN-3.

Tick Hook Function. A tick hook function is a function that executes during each

RTOS tick interrupt. It can be used to optionally execute application code during each

tick ISR.

Priority-based Scheduling. The scheduling decision is made based on priorities of

the tasks: task given processing time will always be the highest priority task that is able

to run. Task priorities are denoted by numbers, where low numbers denote low priority

tasks.

Task Delay. Among other utilities that FreeRTOS provides to control tasks, there are

also vTaskDelay() and vTaskDelayUntil() which are used when there is a necessity to

block a task for a given number of ticks. vTaskDelay() represents the correspondent, at

the RTOS level, of the wait instruction from Real-time TTCN-3.

Chapter 5. Real-time Testing Framework Architecture 116

5.4 RTAI. Important Features.

Between Linux And Hardware. The design idea of RTAI is that it adds a layer

between the Linux kernel and the hardware. The RTAI kernel manages real-time tasks

according to their priorities. In the RTAI context, the Linux kernel is also regarded as a

real-time task, holding the lowest priority. Thus, all non real-time interrupts are handed

out to the Linux kernel.

Schedulers And Hard Real-time In Kernel And In User Space. The scheduler

is the heart of RTAI and it provides its real-time capabilities. RTAI provides symmetric

hard real-time services within kernel or user space. The two schedulers that can operate

in both user and kernel mode are responsible with that support. They di↵er only in

relation to the objects they can schedule. One is simply a GNU/Linux co-scheduler

which supports hard real-time for all Linux scheduleable objects like processes, threads,

or kthreads. The other supports real-time as well as for RTAI own kernel tasks. Scheduler

has di↵erent modes, as: FIFO in Native mode or EDF.

Periodic And One-Shot Timers. RTAI manages the timer in two distinct ways:

periodic and absolute or “one-shot” modes. In periodic mode the timer is set to interrupt

at a fixed, non varying, period. There are no updates to the timer from the scheduler.

Periodic mode is available to reduce the significant overhead required to program the

timer registers. In one-shot mode the timer is reprogrammed every time the scheduler

is called. There is an overhead involved, but it has better time resolution and more

adaptable scheduling. The timer generates an external interrupt like any other interrupt

source in the system. It is handled in a specific way, because it plays a central role in

the computer system, in the same way the RTOS uses the timer interrupts as scheduling

triggers.

Interrupt Handling. In a hard real-time system, internal and external interrupts must

be served in a well bounded time. Since interrupts are usually served with interrupts

disabled, the ISR length must be as short as possible.

RTAI Modules. RTAI is a more complex RTOS than FreeRTOS and it consists of

several modules. The modules with the needed RTAI capabilities must be loaded, before

usage. The most important modules are:

The core module of RTAI, through which Linux works toward the hardware is filtered,

making RTAI the only master of the hardware.

The real-time scheduler module distributes the CPU to di↵erent tasks; there are three

di↵erent schedulers:

Chapter 5. Real-time Testing Framework Architecture 117

UP : only for uniprocessors; the process with the highest priority gets the CPU.

SMP : for multiprocessors; it can schedule tasks to more than one CPU and it’s

a priority driven scheduler.

MUP : only for multiprocessors; MUP scheduler views a multiprocessor machine

as a collection of many uniprocessors and each CPU can have its timer pro-

grammed di↵erently.

5.5 Summary

This chapter has presented the general architecture for the real-time testing framework

developed in this thesis. It has also shown the di↵erences between an implementation

design for a classical TTCN-3 platform and an implementation design for a real-time

TTCN-3 platform. Design patterns for realizing the real-time concepts presented in

Chapter 4 have been derived from our experiences with implementing these concepts

on two concrete real-time operating systems: FreeRTOS and RTAI. These operating

systems were selected from among others, based on several criteria, such as: supported

languages, portability, latest update, commercial status, supported features. FreeRTOS

is small and minimal, specialized on small embedded systems, while RTAI is complex

and more suitable for general purpose, but nevertheless both of them feature hard real-

time capabilities and flexible APIs. Being di↵erent both in purpose and in the size of

their API, we considered it a challenge to realize our concepts on both these platforms.

Firstly, to prove that the set of real-time extensions proposed here can be realized with

minimal basic services (the case of FreeRTOS), and secondly, to prove that even on

a more complex featured RTOS, a time-bounded realization for these concepts is still

possible.

Chapter 6

Mappings For The Real-time Test Concepts

”Have no fear of perfection, you’ll never reach it.”

Salvador Dali

In this chapter we are going to present the mappings of the real-time concepts for

TTCN-3 on the two real-time platforms selected at the end of Chapter 4: FreeRTOS and

RTAI. These operating systems were selected among others, based on several criteria,

such as: supported languages, portability, latest update, commercial status, supported

features. FreeRTOS is small and minimal, specialized for small embedded systems,

while RTAI is complex and used more for general purpose, although both feature hard

real-time capabilities and flexible APIs. Being di↵erent in purpose and size of their

API, we considered it a challenge to realize our concepts on both of these platforms.

Firstly to prove that the set of real-time extensions proposed here can be realized with

minimal basic services (the case of FreeRTOS), and secondly to prove that even on

a more complex featured RTOS a time-bounded realization for those concepts is still

possible.

6.1 Linux With RTAI Based Real-time Testing Framework

This is the section where we present the mapping of the real-time concepts, described

from a theoretical perspective in Chapter 4, on a real-time operating system plat-

form, namely RTAI. All the implementation examples featured in this chapter, show

these mappings, and follow logically the architectural paradigms from Chapter 5; these

paradigms are realized using a means that is specific to a real-time Linux-based platform.

In our case, the chosen platform is a RTAI patched version of Linux, RTAI application

interface for real-time having already been introduced in Section 5.4 of the previous

chapter.

All the examples shown and discussed in the following sections, are implemented on an

Ubuntu 8.04 - Hardy Heron distribution, released in April 2008. On this distribution,

a vanilla kernel version 2.6.24 had been patched with RTAI patch version 3.6-cv, and

compiled and installed according to the predefined installation procedure. For imple-

menting network communication on sockets, as presented in code snippets 6.26 and 6.30,

RTnet version 0.9.12 [119] had to be installed, and the used kernel had to be recompiled

without network drivers.

118

Chapter 6. Mappings For The Real-time Test Concepts 119

6.1.1 TS As A Real-time Kernel Module

The module structure of the real-time kernel can be seen as the main frame into which

each individual real-time concept will be implemented. Thus, the TS itself is going to

be mapped to a kernel module. We chose this approach, realizing our concepts in kernel

space - despite it being more di�cult by means of debugging and development - because

of its increased performance regarding timing aspects (a few microseconds) as opposed

to a user space implementation [116].

Kernel modules must have at least two functions: a ’start’ function, used for initializa-

tions, known as init module() which is requested when the module is inserted into the

kernel (insmod), and an ’end’ function, used for cleaning up used handlers and references,

known as cleanup module() which is requested just before it is removed (rmmod).

Typically, init module() either registers a handler for some used resource with the ker-

nel, or it replaces one of the kernel functions with its own code. The cleanup module()

function is supposed to undo whatever init module() has done, so the module can be

unloaded safely [139]. In our case, init module() starts the real-time scheduler by call-

ing rt set oneshot mode() and start rt timer() functions, while the cleanup module()

deactivates the real-time scheduler, by invoking stop rt timer() method.

rt set oneshot mode() function sets the oneshot mode for the timer. This allows fur-

ther defined tasks to be timed arbitrarily, based on the cpu clock frequency. This method

marks the starting point of the real-time execution and it must be requested before using

any time related function, including time conversions. With a call to start rt timer()

the real-time clock is actually activated and stop rt timer sets the timer back into its

default mode.

6.1.2 Real-time Test Case With Special Operations

The next example – referencing the Listings 6.1, 6.2 and 6.3 – shows how a test case can

be implemented using our real-time approach for RTAI. More precisely, the excerpts of

code presented in Listings 6.2 and 6.3 are realizing the abstract RT-TTCN-3 specification

from Listings 6.1. A mapping pattern can be deduced by comparing the two perspectives.

As a visual convention, used for making up the di↵erence between the two perspectives –

RT-TTCN-3 perspective and RTAI perspective – we chose di↵erent background coloring

and di↵erent fonts for the code samples: light-grey background for the RT-TTCN-3

specification and larger fonts versus white background for the RTAI module.

Listing 6.1 shows the definition of a test case named DemoTestCase(). This is set to

run on the component of type MTCComponentType, previously defined to contain, among

others, an integer constant representing the component’s id. The body of the test case

Chapter 6. Mappings For The Real-time Test Concepts 120

⌥
1type component MTCComponentType{
2const integer mtcID := 1 ;
3. . .
4// other d e f i n i t i o n s
5}
6// This i s the func t i on that conta in s the t e s t behavior
7testcase DemoTestCase () runs on MTCComponentType{
8var timespan ts := 10 mil l isec ;
9var f loat x ;
10var f loat y ;
11. . .
12// Ask f o r the cur rent time
13x := now ;
14. . .
15// Delay the execut ion f o r 10 m i l l i s e c o nd s
16wait (ts) ;
17. . .
18y := testcasestart ;
19. . .
20}
21. . .
22// Here i s s t a r t ed the execut ion o f the t e s t case
23control{
24execute (DemoTestCase ()) ;
25. . .
26// more t e s t ca s e s might f o l l ow
27}⌦⌃ ⇧

Listing 6.1: A Testcase Example with RT-TTCN-3

– extended in Listing 6.1, Lines 8-19 – contains also some of the newly introduced

real-time concepts, as now, wait and testcasestart. In Listing 6.1, Line 24 the test

case function is launched to execution by using the execute construct from TTCN-3.

When a test component becomes active, a component of type MTCComponentType will

be automatically created, this being the main test component (MTC) on which the

behavior of the test case is going to be executed.

Creating a real-time test case means starting a real-time task associated with the MTC.

Listing 6.2 presents the excerpt of code where the task routine implementing the behavior

of the test case is defined as testcase function. Together with the routine definition,

there are two more structures associated with the test case: tc task structure, being

handler of the test case task routine, and tc struct keeping additional information

related to the test case, e.g. test case’s start time, etc..

We can observe in the body of testcase function, that the first thing that happens af-

ter entering the function is recording the start time by invoking method rt get time ns()

and saving the value into the tc struct associated with this test case (Line 18). A map-

ping for the now operation from RT-TTCN-3 occurs in Line 20; the current time value is

obtained by using again the library function rt get time ns(). This function returns

the time in nanoseconds since the start rt timer() was called. A mapping for the wait

Chapter 6. Mappings For The Real-time Test Concepts 121

operation from RT-TTCN-3 is done in Line 23-26, by invoking the method rt sleep().

A call to this function suspends execution of the caller task for a time of ’delay’ internal

count units, where ’delay’ is being given as an input parameter of this function. During

this time, the CPU is used by other tasks. For the transforming of nanoseconds into

internal count units, conversion function nano2count is being used. The count units

are related to the time base that was set when real-time clock was started (e.g. using

rt set oneshot mode() or rt set periodic mode() time scalings).⌥
1
2/
3Real−time Test Case or Real−time Main Test Component .
4/
5. . .
6/ we ’ l l f i l l t h i s in with our main t e s t component task /
7stat ic RT_TASK tc_task ;
8/ we ’ l l keep here a l l the in fo rmat ion r e l a t e d to the t e s t case /
9stat ic TC_STRUCT tc_struct [0] ;
10
11/ This method i s implementing the behavior f o r the
12t e s t case /
13stat ic void testcase_function (long tc_id) {
14RTIME now , delay ;
15/ Here I wr i t e the behavior o f the r ea l −time t e s t case /
16/ Recording the time when the t e s t case s t a r t ed i t ’ s
17execut ion /
18tc_struct [0] . tc_start_timestamp = rt_get_time_ns () ;
19/ Reading the r ea l −time c l o ck /
20now = rt_get_time_ns () ;
21/ Transforming a de lay o f 10 m i l l i s e c ond s in i n t e r n a l
22counts va lue s . /
23delay = nano2count (10000000) ;
24/ The task w i l l be blocked wai t ing f o r the ’ de lay ’
25time to exp i r e . /
26rt_sleep (delay) ;
27. . .
28/ Recording the time when the t e s t case stopped /
29tc_struct [0] . tc_stop_timestamp = rt_get_time_ns () ;
30return ;
31}⌦⌃ ⇧

Listing 6.2: Simple Real-time TestCase: Task Function

Listing 6.3 shows how the real-time task associated with the test case is initialized in the

init module() section, as well as how is it launched for execution. Task’s initialization

is realized in Lines 7-20 with method rt task init(). This creates a new real-time

task. Each parameter of the function is explained in the comments which accompany

the code. The newly created real-time task is initially in a suspend state. It can be

made active by calling: rt task make periodic, rt task make periodic relative ns,

or rt task resume which is actually invoked in Line 23. In the cleanup module()

Chapter 6. Mappings For The Real-time Test Concepts 122

section the task structure associated with the real-time task is deleted and the real-time

scheduler is stopped.⌥
1
2int init_module (void) {
3rt_set_oneshot_mode () ;
4(void) start_rt_timer (1) ;
5/ i n i t i a l i z e the task /
6
7rt_task_init (/ Pointer to the task s t r u c tu r e /
8&tc_task ,
9/ The ac tua l task func t i on /
10testcase_function ,
11/ I n i t i a l task parameter /
12tc_struct [0] . tc_id ,
13/ 1K stack /
141024 ,
15/ P r i o r i t y o f the task /
16RT_SCHED_LOWEST_PRIORITY + 2 ,
17/ Don ’ t use f l o a t i n g po int /
180 ,
19/ Don ’ t use s i g n a l handler /
200) ;
21
22/ make the task ready to run /
23rt_task_resume(&tc_task) ;
24return 0 ;
25}
26
27void cleanup_module (void){
28rt_task_delete(&tc_task) ;
29stop_rt_timer () ;
30return ;
31}⌦⌃ ⇧

Listing 6.3: Simple Real-time TestCase: Init/Cleanup Module Functions

The information presented in this section is summarized in Table 6.1, where the synthe-

sized code mappings between RT-TTCN-3 abstract concepts and the key implementa-

tion aspects in C, using RTAI API, are displayed. The illustrated RT-TTCN-3 abstract

concepts are: now, wait, testcasestart and testcase.

6.1.3 Real-time Test Component

This section discusses the way parallel test components (PTCs) are being handled in

real-time. In addition to the mechanisms of creating and starting test components, an

accurate recording of starting and stopping execution time is also implicitly performed.

Listing 6.4 presents a classical TTCN-3 specification excerpt where, inside a test case

function, a parallel test component(PTC) is created and then started. Lines 46-48

Chapter 6. Mappings For The Real-time Test Concepts 123

Table 6.1: RT-TTCN-3 To RTAI Mappings. Part I.

RT-TTCN-3 Concepts RTAI C Code

now rt get time ns()

var timespan ts := 10*millisec;

wait(ts);

RTIME delay;

delay = nano2count(10000000);

rt_sleep(delay);

var float y;

y := testcasestart;

static TC_STRUCT tc_struct [0];

static void testcase_function(long tc_id){

tc_struct[0].tc_start_timestamp =

rt_get_time_ns();

...

return;

}

type component MTCComponentTypef{

const integer mtcID := 1;

}

testcase DemoTestCase()runs on

MTCComponentTypef{

...

}

control{

execute(DemoTestCase());

...

}

static RT_TASK tc_task;

static TC_STRUCT tc_struct[0];

static void testcase_function(long tc_id){

...

}

int init_module(void){

...

rt_task_init(&tc_task,

testcase_function,

tc_struct[0].tc_id,

1024,

RT_SCHED_LOWEST_PRIORITY+2,

0,

0);

rt_task_resume(&tc_task);

...

return 0;

}

void cleanup_module(void){

rt_task_delete(&tc_task);

...

return;

}

Chapter 6. Mappings For The Real-time Test Concepts 124

⌥
28type component MTCComponentType{
29const integer mtcID := 1 ;
30. . .
31// other d e f i n i t i o n s
32}
33type component PTCComponentType{
34const integer ptcID := 2 ;
35. . .
36// other d e f i n i t i o n s
37}
38// Function that conta in s the behavior o f the t e s t component
39function BehaviorTestComponent () runs on PTCComponentType{
40// PTC’ s Behavior
41. . .
42}
43// This i s the func t i on that conta in s the t e s t behavior
44testcase DemoTestCase () runs on MTCComponentType{
45var PTCComponentType NewPTC ;
46NewPTC := PTCComponentType . create ;
47. . .
48NewPTC . start (BehaviorTestComponent ()) ;
49. . .
50}
51. . .
52// Here i s s t a r t ed the execut ion o f the t e s t case
53control{
54execute (DemoTestCase ()) ;
55. . .
56// more t e s t ca s e s might f o l l ow
57}⌦⌃ ⇧

Listing 6.4: An Example with a RT-TTCN-3 Test Component

present these two operations. The behavior executed by the newly created PTC is the

same one specified by the function defined on Line 39, and the structural information

associated with the component is also given by the component type defined on Line 39.

There are similarities in the way a test case and a test component are implemented.

They are both transformed into real-time kernel tasks which are created and then started

using the kernel routines: in Listing 6.7, Lines 3-12 it can be observed how both test

case task and test component task are created using the rt task init() function in the

module init section. When a task is initialized, a certain priority is assign to it. The

priority scale in RTAI ranges between predefined constants RT SCHED HIGHEST PRIORITY

and RT SCHED LOWEST PRIORITY, with RT SCHED HIGHEST PRIORITY <
RT SCHED LOWEST PRIORITY. In our example, the test component gets a lower priority

than the test case task. In the cleanup module section, both task handlers, the one

associated with test case task and the one associated with the test component task, are

deleted (Lines 27-28).

The test component function, comp function, that is referred to at the initialization

of the component task, Listing 6.5, Lines 12, is illustrated in Listing 6.5, together with

Chapter 6. Mappings For The Real-time Test Concepts 125

⌥
1/ Creat ing and Sta r t i ng a Test Component /
2. . .
3RT_TASK tc_task ;
4RT_TASK comp_task ;
5RTIME testcomponentstart , testcomponentstop ;
6int tc_id = 1 ;
7int comp_id = 2 ;
8bool alive = true ;
9
10/ This i s the func t i on that r e a l i z e s the behavior
11o f the t e s t component /
12void comp_function (long comp_id) {
13/ Record the s t a r t i n g time o f the t e s t component
14at the beg inn ing o f the component ’ s r ou t in e /
15testcomponentstart = rt_get_time_ns () ;
16while (alive){
17/ Here i s the behavior o f the t e s t component /
18. . .
19}
20/ Record the stopping time o f the t e s t component
21at the end o f the component ’ s r ou t in e /
22testcomponentstop = rt_get_time_ns () ;
23return ;
24}⌦⌃ ⇧

Listing 6.5: Creating and starting a test component: Test Component Task Function

the task structures for test case, for test component, and other variables containing

information related to them. Also, in Listing 6.5, inside the body of the function that

describes the behavior of the test component, time stamp variables are used to store

the time of the beginning and the ending of the execution of the test component. These

times are obtained by invoking the rt get time ns() library function, provided by

RTAI’s API (Lines 15-22).⌥
1void testcase_function (long tc_id) {
2/ Here s t a r t s the behavior o f the t e s t case /
3. . .
4/ S ta r t i ng t e s t component task /
5rt_task_resume(&comp_task) ;
6. . .
7return ;
8}⌦⌃ ⇧

Listing 6.6: Creating and starting a test component: Testcase Task Function

The main di↵erence between a test case task and a test component task is that the

former is activated directly from the init module section (see Listing 6.7, Line 27),

while the latter is activated from the test case context in Listing 6.6, Line 5. Depending

on the context where it is started in the TTCN-3 specification, the test component task

can be also activated from another test component’s function definition.

Chapter 6. Mappings For The Real-time Test Concepts 126

⌥
1int init_module (void) {
2/ I n i t i a l i z e the t e s t case task , aka main t e s t component /
3rt_task_init (&tc_task ,
4testcase_function ,
5tc_id ,
61024 ,
7RT_SCHED_LOWEST_PRIORITY − 3 ,
80 ,
90) ;
10/ I n i t i a l i z e the t e s t component that i s going to be s t a r t ed
11from with in the t e s t case /
12rt_task_init (&comp_task ,
13comp_function ,
14comp_id ,
151024 ,
16RT_SCHED_LOWEST_PRIORITY − 2 ,
170 ,
180) ;
19
20/ Make the ta sk s ready to run
21t e s t case aka . main component task /
22rt_task_resume(&tc_task) ;
23return 0 ;
24}
25
26void cleanup_module (void){
27rt_task_delete(&tc_task) ;
28rt_task_delete(&comp_task) ;
29. . .
30return ;
31}⌦⌃ ⇧

Listing 6.7: Creating and starting a test component: Init/Cleanup Module Functions

Table 6.2 presents the schematic mappings between abstract RT-TTCN-3 concepts and

their implementations in RTAI. The important concepts presented in this section are:

testcomponentstart, testcomponentstop, component create and component start

operations.

6.1.4 Starting And Stopping A Test Component At A Given Time

Even more real-time semantic flavor can be added to the test components, by allowing the

tester to specify the time at which one test component should be starting its execution

and the time at which this execution should be stopped. In Listing 6.8 the precise timings

for starting and stoping a component are associated to the start, and respective stop

operations in Lines 65-68. The illustrated start operation of the PTC is scheduled

to take place after 100*microseconds relative to the current time point of test case’s

execution. The line that follows, specifies that the execution of the PTC, who’s starting

point was previously planned, should be stopped after 200*microseconds, calculated

relative to the current time point of the test case’s execution.

Chapter 6. Mappings For The Real-time Test Concepts 127

Table 6.2: RT-TTCN-3 To RTAI Mappings. Part II.

RT-TTCN-3 Concepts RTAI C Code

testcomponentstart rt get time ns()

testcomponentstop rt get time ns()

type component PTCComponentType{

const integer ptcID := 2;

...

}

function BehaviorTestComponent()

runs on PTCComponentTypef{

// PTC’s Behavior

...

}

...

NewPTC := PTCComponentType.create;

...

RT_TASK comp_task;

int comp_id = 2;

void comp_function(long comp_id){

...

return;

}

int init_module(void){

...

rt_task_init(&comp_task,

comp_function,

comp_id,

1024,

RT_SCHED_LOWEST_PRIORITY-2,

0,

0);

...

return 0;

}

void cleanup_module(void){

rt_task_delete(&comp_task);

...

return;

}

NewPTC.start(BehaviorTestComponent()) rt task resume(&comp task)

Chapter 6. Mappings For The Real-time Test Concepts 128

⌥
58. . .
59// This i s the func t i on that conta in s the t e s t behavior
60testcase DemoTestCase () runs on MTCComponentType{
61var PTCComponentType NewPTC ;
62NewPTC := PTCComponentType . create ;
63. . .
64// The PTC should be s t a r t ed a f t e r 100 microseconds
65NewPTC . start (BehaviorTestComponent ())
66at (now + 100 microsec) ;
67// The PTC should be stopped a f t e r 200 microseconds
68NewPTC . stop at (now + 200 microsec) ;
69. . .
70}⌦⌃ ⇧

Listing 6.8: RT-TTCN-3 Test Component Start/Stop At

The RT-TTCN-3 specification from Listing 6.8 has the associated implementation pre-

sented in its key points in the code snippet from Listings 6.9-6.11.⌥
1
2/ This func t i on comes in ac t i on at a f i x ed time po int and
3k i l l s the a s s o c i a t ed PTC task /
4void comp_stop_function (long comp_stop_id) {
5/ Records the time when the t e s t component i s suspended
6and k i l l e d /
7timestamp_compstop = rt_get_time_ns_cpuid (cpuid_comp) ;
8comp_struct [0] . comp_stop_timestamp = timestamp_compstop ;
9/ The a s s o c i a t ed PTC task i s suspended here /
10rt_task_suspend(&comp_task) ;
11/ The a s s o c i a t ed PTC task i s d e l e t ed here /
12rt_task_delete(&comp_task) ;
13return ;
14}⌦⌃ ⇧

Listing 6.9: Starting and Stopping a Test Component at a Given Time: Component
Stop Task Function.

The PTC is initialized in the module init section – Listing 6.10, Line 13 – in the

same way as in the previous section. Together with the real-time task for the PTC,

a task associated with the test case is also initialized in Line 4. The third initializa-

tion is for a task whose purpose is to stop the execution of the PTC when the time

comes. Because this task should be able to interrupt and preempt the PTC when-

ever it’s required, it is created with a priority higher than that of the associated PTC:

RT SCHED LOWEST PRIORITY-2 < RT SCHED LOWEST PRIORITY-3. The component struc-

ture associated with the stop task is: comp stop task and its behavior is defined in the

comp stop function which is presented in Listing 6.9. In the cleanup module, Line 36,

the task associated with the comp stop task is deleted.

We may now generalize the problem and take into account a test system with more than

one PTC. Some of the PTC are going to be scheduled to stop at certain time points.

Chapter 6. Mappings For The Real-time Test Concepts 129

⌥
1. . .
2// ˜ 100 micro sec
3#define DELAYSTART 100000
4// ˜ 200 micro sec
5#define DELAYSTOP 200000
6. . .
7void testcase_function (long tc_id) {
8. . .
9/ The PTC task i s a c t i va t ed here . /
10rt_task_make_periodic_relative_ns (
11/ Task s t r u c tu r e a s s o c i a t ed with the PTC task /
12&comp_task ,
13/ Act ivat ion time f o r the stop task /
14DELAYSTART ,
15/ Period /
160) ;
17/ The task f o r s topping the PTC i s a c t i va t ed here . /
18rt_task_make_periodic_relative_ns (
19&comp_stop_task ,
20DELAYSTOP ,
210) ;
22. . .
23return ;
24}⌦⌃ ⇧

Listing 6.10: Starting and Stopping a Test Component at a Given Time: Testcase
Task Function.

Therefore, there should be one stop task routine for each PTC, taking care to stop the

correspondent PTC when the time comes.

Listing 6.10 presents the body of the test case task function, with the emphasis on the

part where the component task and the stop task are being activated. The task activa-

tions are realized by the library function rt task make periodic relative ns(). This

method marks the tasks that were previously created with rt task init, as suitable for

a periodic execution, using the period indicated by the last parameter of the method,

when rt task wait period is called. In our case this input parameter is set to 0, as

we don’t target a periodical execution (see Lines 16, 21). The time for starting the

test component is given by the DELAYSTART parameter at the activation of comp task

(see Line 14); and the time for stopping the test component is given by the DELAYSTOP

parameter at the activation function of comp stop task (see Line 14). DELAYSTART and

DELAYSTOP values are relative to the current time and they represent nanoseconds.

Listing 6.9 presents the body of the stop task function. In Lines 7-8 the current time is

asked and then saved for the purpose of being associated with the time when the test

component had been stopped. The library method rt task suspend() is invoked in

Line 10 to mark the component task as suspended. The component task is then deleted

by calling the rt task delete() function, in Line 12.

Chapter 6. Mappings For The Real-time Test Concepts 130

⌥
1int init_module (void) {
2. . .
3/ I n i t i a l i z a t i o n o f MTC task /
4rt_task_init (&tc_task ,
5testcase_function ,
6tc_id ,
71024 ,
8RT_SCHED_LOWEST_PRIORITY − 3 ,
90 ,
100) ;
11
12/ I n i t i a l i z a t i o n o f PTC task /
13rt_task_init (&comp_task ,
14comp_function ,
15comp_id ,
161024 ,
17RT_SCHED_LOWEST_PRIORITY − 2 ,
180 ,
190) ;
20/ I n i t i a l i z a t i o n o f task that s tops the PTC at a given time . /
21rt_task_init (&comp_stop_task ,
22comp_stop_function ,
23comp_stop_id ,
241024 ,
25RT_SCHED_LOWEST_PRIORITY − 3 ,
260 ,
270) ;
28
29/ MTC i s a c t i va t ed here . Testcase i s s t a r t ed . . . /
30rt_task_resume(&tc_task) ;
31return 0 ;
32}
33
34void cleanup_module (void){
35rt_task_delete(&tc_task) ;
36rt_task_delete(&comp_stop_task) ;
37. . .
38return ;
39}⌦⌃ ⇧

Listing 6.11: Starting and Stopping a Test Component at a Given Time:Init/Cleanup
Module

Chapter 6. Mappings For The Real-time Test Concepts 131

The concepts presented in this section and their implementations are shortly summarized

as mappings in Table 6.3.

6.1.5 Starting And Stopping A Test Component At A Given Time Using
Timer Tasklets

This section is discusses an alternative implementation for the RT-TTCN-3 code spec-

ification from Listing 6.8, Section 6.1.4, that presents the starting and stoping of test

component at specified time points. Instead of creating a special stop task for stoping

the targeted test component when its lifetime expires, we use timer tasklets. Each time

a new timer is activated, there will be a tasklet, or timer handling routine associated

with it, which is executed at every timer tick. Using this routine, we can trigger certain

behaviors at precise points in time; such behaviors are, for example, the starting or

stopping of a test component when the timer tick reaches a certain time value.

Listing 6.12 presents the body of the component task function. We can see that the

component has a periodic behavior. All the activity for this component takes place in a

loop, and at every iteration from that loop, the component gives up the processor for a

fixed time period, using the library function rt task wait period(), in Line 11.⌥
1/ Component task s t r u c tu r e /
2RT_TASK comp_task ;
3
4void comp_function (long comp_id) {
5. . .
6while (active){
7/ Test Component ’ s behavior goes here /
8. . .
9/ Give up the p ro c e s s o r f o r the per iod
10o f time that i s i nd i c a t ed at a c t i v a t i o n /
11rt_task_wait_period () ;
12}
13return ;
14}⌦⌃ ⇧

Listing 6.12: Starting and Stopping a Test Component Using Timer Tasklets: Com-
ponent Task Function

The definition of the timer handler routine is presented in Listing 6.13. This routine is

executed every timer tick. Timer tick value is set by the TICK PERIOD constant in Line 2

represents 50 microseconds. This means that every 50 microseconds, the routine ph() is

executed. In this routine the current time is read, is then checked as to whether or not

this value overpasses some thresholds. There are two such thresholds in our example.

Line 13 checks the first threshold, verifying whether or not the time point for starting

the test component has been reached. If so, the parallel test component is activated

with no delay, using the library method rt task make periodic relative ns(). The

Chapter 6. Mappings For The Real-time Test Concepts 132

Table 6.3: RT-TTCN-3 To RTAI Mappings. Part IIIa.

RT-TTCN-3 Concepts RTAI C Code

NewPTC.start(BehaviorTestComponent())

at(now+100*microsec);

#define DELAYSTART 100000

rt_task_make_periodic_relative_ns(

&comp_task,

DELAYSTART,

0) ;

NewPTC.stop at(now+200*microsec);

#define DELAYSTOP 200000

void comp_stop_function(long comp_stop_id){

...

rt_task_suspend(&comp_task);

rt_task_delete(&comp_task);

return;

}

...

rt_task_make_periodic_relative_ns(

&comp_stop_task,

DELAYSTOP,

0);

...

int init_module(void){

...

rt_task_init(&comp_stop_task,

comp_stop_function,

comp_stop_id,

1024,

RT_SCHED_LOWEST_PRIORITY-3,

0,

0);

...

}

void cleanup_module(void){

...

rt_task_delete(&comp_stop_task);

...

}

Chapter 6. Mappings For The Real-time Test Concepts 133

period given as parameter of this function, TICK PERIOD, represents the time period for

which the newly activated test component can give up the processor. From now on, the

test component is periodically executed in parallel with the timer handling routine.

The second threshold is checked in Line 24 and verifies whether or not there is the time

for stoping the test component. If this is the case, then the parallel test component’s

execution is first, indefinitely suspended, then the parallel test component is deleted in

Lines 28-29. Both rt task suspend() and rt task delete() operations are using the

correspondent task structure as parameter in order to handle the right component task.⌥
1/ 50 microseconds /
2#define TICK PERIOD 10000
3. . .
4/ This r ou t in e i s a t imer handler r ou t in e and
5i s automat i ca l l y executed every t imer per iod /
6void ph (unsigned long data){
7. . .
8/ Here I get the cur rent time in nanoseconds /
9crt_time = rt_get_time_ns () ;
10i f (first_time){
11/ When the f i r s t time th r e sho ld i s reached , the
12corre spond ing PTC i s a c t i va t ed /
13i f (crt_time >= start_time){
14. . .
15timestamp_compstart = rt_get_time_ns () ;
16rt_task_make_periodic_relative_ns(&comp_task ,
170 ,
18TICK_PERIOD) ;
19}
20}
21i f (second_time){
22/ When the second time th r e sho ld i s reached , the
23corre spond ing PTC i s k i l l e d /
24i f (crt_time >= stop_time){
25. . .
26timestamp_compstop = rt_get_time_ns () ;
27comp_timespan = timestamp_compstop−timestamp_compstart ;
28rt_task_suspend(&comp_task) ;
29rt_task_delete(&comp_task) ;
30}
31}
32return ;
33}⌦⌃ ⇧

Listing 6.13: Starting and Stopping a Test Component Using Timer Tasklets: Timer
Handling Routine

Listing 6.14 presents the initializations that are needed for using timer tasklets. All

the initializations are performed in the context of init module. Times for starting and

stopping the component are calculated in Lines 10-11. These timers are going to be

used further in the context of the timer handler function for defining timer thresholds.

Chapter 6. Mappings For The Real-time Test Concepts 134

Depending on these thresholds, di↵erent actions might be taken. The timer and its

associated tasklet are initialized in Lines 14-15, using the library functions defined in

RTAI library rtai tasklets.h, Line 1. rt insert timer()insert a timer in the list of

timers to be processed.

Timers can be either periodic or oneshot. A periodic timer is reloaded at each expiration

so that it executes with the assigned periodicity. A oneshot timer is fired just once and

then removed from the timers list. Timers can be re-inserted or modified within their

handler functions. The parameters of function rt insert timer(), as they can be

observed in Lines 15-21, will be simply explained in the following section:

First argument, &pt, is the pointer of the timer structure to be used to manage

the timer at hand.

Second argument, 0, is the priority used to execute timer handlers when more than

one timer has to be fired at the same time. It can be assigned any value such that:

0 < priority < RT LOWEST PRIORITY.

Third argument, rt get time(), or firing time, is the time of the first timer expi-

ration.

Forth argument, nano2count(TICK PERIOD), is the period of a periodic timer. A

periodic timer keeps calling its handler at

firing_time + k*period k = 0, 1

Fifth argument, ph, or the handler, is the timer function to be executed at each

timer expiration.

Sixth argument, 0, or the data, is an unsigned long to be passed to the handler.

Clearly, by an appropriate type casting, one can pass a pointer to whatever data

structure and type is needed.

Seventh argument, 0, or pid, is an integer that marks a timer either as being a

kernel or user space one. Despite its name you do not need to know the pid of the

timer parent process in user space. Simple use 0 for kernel space and 1 for user

space.

The component task is initialized in the usual manner, in Line 24. For deactivating the

timer, library method rt remove tasklet() is used in Line 36.

The mappings from Tables 6.4 and 6.5 are alternative mappings, based on timers, to the

ones from Table 6.3.

Chapter 6. Mappings For The Real-time Test Concepts 135

Table 6.4: RT-TTCN-3 To RTAI Mappings. Part IIIb.

RT-TTCN-3 Concepts RTAI C Code

NewPTC.start(BehaviorTestComponent())

at(now+100*microsec);

#include <rtaitasklets.h>

#define TICK PERIOD 10000

...

static struct rt_tasklet_struct pt;

...

void ph(unsigned long data){

...

crt_time = rt_get_time_ns();

if(crt_time >= start_time){

...

rt_task_make_periodic_relative_ns(

&comp_task,

0,

TICK_PERIOD);

}

...

return;

}

int init_module(void){

...

init_time = rt_get_time_ns();

start_time = init_time+2* TICK_PERIOD;

...

rt_tasklet_use_fpu(&pt, 1);

rt_insert_timer(&pt,

0,

rt_get_time(),

nano2count(TICK_PERIOD),

ph,

0,

0) ;

...

return 0;

}

void cleanup_module(void){

...

rt_remove_tasklet(&pt);

}

Chapter 6. Mappings For The Real-time Test Concepts 136

Table 6.5: RT-TTCN-3 To RTAI Mappings. Part IIIc.

RT-TTCN-3 Concepts RTAI C Code

NewPTC.stop at(now+200*microsec);

#include <rtaitasklets.h>

#define TICK PERIOD 10000

...

static struct rt_tasklet_struct pt;

...

void ph(unsigned long data){

...

crt_time = rt_get_time_ns();

...

if(crt_time >= stop_time){

...

rt_task_suspend(&comp_task);

rt_task_delete(&comp_task);

}

...

return;

}

int init_module(void){

...

init_time = rt_get_time_ns();

...

stop_time = init_time+4* TICK_PERIOD;

...

rt_tasklet_use_fpu(&pt, 1);

rt_insert_timer(&pt,

0,

rt_get_time(),

nano2count(TICK_PERIOD),

ph,

0,

0) ;

...

return 0;

}

void cleanup_module(void){

...

rt_remove_tasklet(&pt);

}

Chapter 6. Mappings For The Real-time Test Concepts 137

⌥
1#include < r t a i t a s k l e t s . h>
2. . .
3stat ic struct rt_tasklet_struct pt ;
4. . .
5int init_module (void){
6. . .
7/ Ca l cu l a t ing the r e l a t i v e t imes f o r s t a r t i n g
8and stopping the component /
9init_time = rt_get_time_ns () ;
10start_time = init_time + 2 TICK_PERIOD ;
11stop_time = init_time + 4 TICK_PERIOD ;
12
13/ Act ivat ing the t imer t a s k l e t s /
14rt_tasklet_use_fpu(&pt , 1) ;
15rt_insert_timer(&pt ,
160 ,
17rt_get_time () ,
18nano2count (TICK_PERIOD) ,
19ph ,
200 ,
210) ;
22
23/ I n i t i a l i z i n g a t e s t component task /
24rt_task_init (&comp_task ,
25comp_function ,
26comp_id ,
271024 ,
28RT_SCHED_LOWEST_PRIORITY − 3 ,
290 ,
300) ;
31return 0 ;
32}
33
34void cleanup_module (void){
35. . .
36rt_remove_tasklet(&pt) ;
37return ;
38}⌦⌃ ⇧

Listing 6.14: Starting and Stopping a Test Component Using Timer Tasklets: Init/-
Cleanup Module

6.1.6 Receive Operation With Expiration Time

Listing 6.32 presents a RT-TTCN-3 code sample where a receive operation on a port is

performed. It is interesting to notice how the waiting on the port is encapsulated in an

alt...break construct in order to limit the expectation time – Listing 6.32, Lines 89-95.

This means that expected event on the given port is waited for as long as the break

condition is not violated. This means that the current time of the test system should

not overpass the time limit indicated by the break operation. In the RT-TTCN-3 code

snippet provided as an example, this time limit is one second after the start of the test

case – see Line 95.

Chapter 6. Mappings For The Real-time Test Concepts 138

⌥
71cont integer DEMO_MSG := 256 ;
72
73type port DemoPortType message{
74inout integer DemoMsg ;
75}
76
77type component MTCComponentType{
78const integer mtcID := 1 ;
79port DemoPortType receivePort ;
80. . .
81// other d e f i n i t i o n s
82}
83
84// t h i s i s the func t i on conta in ing the t e s t behavior
85testcase DemoTestCase () runs on MTCComponentType{
86var timespan ts := 1 sec ;
87var f loat tf_receive := 0 . 0 ;
88. . .
89alt {
90[] receivePort . receive (DEMO_MSG) −> timestamp

91tf_receive {
92log (”The expected message was r e c e i v ed
93at time ” , seconds2timespan (tf_receive)) ;
94}
95} break at (testcasestart + 1 sec){
96setverdict (f a i l) ;
97log (”The message was not r e c e i v ed in time”) ;
98}
99}
100. . .
101// the execut ion o f the t e s t case s t a r t s here
102control{
103execute (DemoTestCase ()) ;
104. . .
105// more t e s t ca s e s might f o l l ow
106}⌦⌃ ⇧

Listing 6.15: Time Restricted Receive Example with RT-TTCN-3

If the expected message has not been received yet and the time limit is violated, then the

alternative behavior associated with the break operation is to be performed next. This

consists, in most of the cases, of logging a message that indicates the failure, followed

by setting a fail verdict.

The real-time implementation associated with the presented RT-TTCN-3 specification

is listed in 6.17-6.19 code snippets.

For implementing the functionality of a timed receive operation we need four interacting

real-time tasks: one for realizing the behavior of the test case, another for waiting on

the port for the right message to be received, one for matching the received messages

against the given pattern, and one for stopping the tasks for receiving and for matching

if the time provided for receive operation has expired. Listing 6.16 presents these tasks

by their task handler structure.

Chapter 6. Mappings For The Real-time Test Concepts 139

In order to simplify the explanations we are going to consider that the match operation

is a trivial one and it is instantly performed on receiving the message. Therefore, we

will exclude from discussion the match task and its interaction with the other treads,

and concentrate mostly on showing the individual behavior and interactions between

the three other threads.⌥
1/ Task s t r u c t u r e s that are used f o r implementing a
2t e s t case with a s imple r e c e i v e behavior with exp i r a t i on
3time /
4RT_TASK tc_task ;
5RT_TASK receive_task ;
6RT_TASK match_task ;
7RT_TASK stop_task ;⌦⌃ ⇧

Listing 6.16: Receive Operation With Expiration Time:Used Task Structures

Listing 6.17 presents the task function associated with the receive task. This function

contains a receive operation which is performed over the indicated port. In our case the

port is implemented as a first in first out (FIFO) structure in Line 7. The type of FIFO

that is used here is a real-time FIFO, provided by the RTAI. All the FIFO operations

can be found within the rtai fifo.h library. rtf get operation tries to read a block

of data from a real-time fifo previously created with a call to rtf create().⌥
1/ Receive Operation With Expi rat ion Time /
2/ This i s the task that corre sponds with the r e c e i v e
3opera t i on /
4void receive_function (long receive_id) {
5. . .
6/ Here I wait f o r the message to a r r i v e /
7while (! (retval = rtf_get (FIFO , &msg , s izeof (int)))) ;
8rt_task_suspend(&stop_task) ;
9rt_task_delete(&stop_task) ;
10. . .
11return ;
12}⌦⌃ ⇧

Listing 6.17: Receive Operation With Expiration Time:Receive Task Function

Listing 6.18 presents the function associated with the stop task. This task is responsible

for stoping the receive task from listening on the port after the given time for that

operation expires. The stopping of the receive task implies suspending and then, deleting

it. On the other hand, if the expected message was received in time, it can also be

noted from Listing 6.17, that the receive task suspends and deletes the stop task that is

associated with it.

Chapter 6. Mappings For The Real-time Test Concepts 140

⌥
1/ This task i s a c t i va t ed when the g iven time f o r the r e c e i v e
2opera t i on exp i r e s /
3void stop_function (long stop_id) {
4/ Suspend the r e c e i v e task /
5rt_task_suspend(&receive_task) ;
6/ De lete the r e c e i v e task /
7rt_task_delete(&receive_task) ;
8return ;
9}⌦⌃ ⇧

Listing 6.18: Receive Operation With Expiration Time:Stop Task Function

Listing 6.19 makes the actual connection between the receive and the stop tasks. In

the body of the test case task function that is presented here, the receive task is acti-

vated without delay, while the stop task is set to become active one second after from

the beginning of the test case expiration. The initializations/deinitialization for these

tasks are performed in init module/cleanup module and they are similar to the ones

presented in previous sections. Therefore, they will not be emphasized here.⌥
1/ Task func t i on that implements the behavior o f the t e s t case /
2void testcase_function (long tc_id) {
3RTIME delay = 1000000000; / 1 second /
4
5/ The r e c e i v e task i s a c t i va t ed /
6rt_task_resume(&receive_task) ;
7
8/ I f the maximum r e c e i v e per iod exp i r e s , the r e c e i v e
9task w i l l be k i l l e d by the stop task ; 1 second
10i s the r e c e i v e i n t e r v a l here . /
11rt_task_make_periodic_relative_ns(&stop_task ,
12now + delay ,
130) ;
14return ;
15}⌦⌃ ⇧

Listing 6.19: Receive Operation With Expiration Time:Testcase Task Function

The specification to code mappings presented in this section, are summarized in Ta-

ble 6.6. There is only one analyzed operation, namely a receive that is time-bounded

by an alt..break statement.

6.1.7 Send Operation

This section exemplifies the implementation for a send operation that should be per-

formed at a predefined moment in time. The section is structured in the same manner as

the previous section. Listing 6.20 presents the RT-TTCN-3 specification which contains

a send operation on a port. The operation should be e↵ectuated at one second after

Chapter 6. Mappings For The Real-time Test Concepts 141

Table 6.6: RT-TTCN-3 To RTAI Mappings. Part IV.

RT-TTCN-3 Concepts RTAI C Code

alt{

[] receivePort.receive(DEMO_MSG)

{

...

}

}break at(testcasestart + 1*sec)

{

setverdict(fail);

log("The message was not

received in time");

}

void receive_function(long receive_id){

...

// receive operation here

while(!(rtf_get(FIFO,

&msg,

sizeof(int))));

rt_task_suspend(&stop_task);

rt_task_delete(&stop_task);

...

return;

}

void stop_function(long stop_id){

rt_printk("The message was not

received in time");

rt_task_suspend(&receive_task);

rt_task_delete(&receive_task);

}

void testcase_function(long tc_id){

RTIME delay = 1000000000;

rt_task_resume(&receive_task);

rt_task_make_periodic_relative_ns(

&stop_task,

now + delay,

0);

return;

}

the start of the test case, as indicated in Line 123. Representative excerpts from the

implementation of this specification are provided in Listings 6.21-6.25.

Listing 6.21 presents the task structures that are needed for implementing the behavior

of a time triggered send operation: there is a task associated with the testcase and

another task that is associated with the send operation. The task function of the send

operation is described further, in Listing 6.22. The operation of sending a message is

realized, in our example, over a FIFO channel in Line 12. The rtf put if() method

that is used here, tries to write a block of data to a real-time fifo previously created with

rtf create().

Chapter 6. Mappings For The Real-time Test Concepts 142

⌥
107cont integer DEMO_MSG := 256 ;
108
109type port DemoPortType message{
110inout integer DemoMsg ;
111}
112
113type component MTCComponentType{
114const integer mtcID := 1 ;
115port DemoPortType sendPort ;
116. . .
117// other d e f i n i t i o n s
118}
119
120// t h i s i s the func t i on conta in ing the t e s t behavior
121testcase DemoTestCase () runs on MTCComponentType{
122. . .
123sendPort . send (DEMO_MSG) at (testcasestart + 1 sec) ;
124. . .
125}⌦⌃ ⇧

Listing 6.20: Send At Example with RT-TTCN-3

⌥
1/ Task s t r u c tu r e that are used f o r implementing a
2t e s t case with a s imple send behavior at a g iven
3time /
4RT_TASK tc_task ;
5RT_TASK send_at_task ;⌦⌃ ⇧

Listing 6.21: Send Operation: Task Structures

⌥
1/ Send at a Given Time Point . (FIFO Communication Channel) /
2. . .
3#include < r t a i f i f o s . h>
4. . .
5#define FIFO 10
6bool active = true ;
7. . .
8/ Task func t i on that implements the send operat i on /
9void send_at_function (long send_at_id) {
10while (active){
11/ Send opera t i on goes here /
12rtf_put_if (FIFO , &i , s izeof (int)) ;
13rt_task_wait_period () ;
14}
15return ;
16}⌦⌃ ⇧

Listing 6.22: Send at Operation: Send At Task Function

Chapter 6. Mappings For The Real-time Test Concepts 143

For recording the timestamp of a send operation, the time of the system is interrogated

and saved, just before the actual sending is performed. This is done in a simple manner,

using the rt get time ns() function, as presented in Listing 6.23.⌥
1. . .
2/ Recording the time goes here /
3RTIME send_timestamp = rt_get_time_ns () ;
4/ Send opera t i on goes here /
5rtf_put_if (FIFO , &i , s izeof (int)) ;
6. . .⌦⌃ ⇧

Listing 6.23: Send Operation with Timestamp

Listing 6.24 presents the task function implementing the behavior of the test case. In

Line 6 the send task is activated and set to start one second after the beginning of the

testcase.⌥
1void testcase_function (long tc_id) {
2RTIME start_delay = 1000000000; / 1 second /
3/ Act ivate s send at opera t i on and the f i r s t
4a c t i v a t i o n time has a r e l a t i v e de lay o f 1
5second /
6rt_task_make_periodic_relative_ns(&send_at_task ,
7start_delay ,
8start_delay) ;
9. . .
10return ;
11}⌦⌃ ⇧

Listing 6.24: Send at Operation: Testcase Task Function

The send operation was implemented in our example using a FIFO communication

channel as a commiunication port. Listing 6.25 presents the operations for initiaiz-

ing/uninitializing such a channel. rtf create() creates a real-time fifo (RT-FIFO) of

initial size MAX SIZE and assigns it the identifier fifo. It must be used only in kernel

space. The RT-FIFO is a character based mechanism used to communicate among real-

time tasks and ordinary Linux processes. The rtf * functions are used by the real-time

tasks.⌥
1/ I n i t i a l i z e / des t roy the communication channel (port) ;
2In t h i s case , i t i s a FIFO . /
3rtf_create (FIFO , MAX_SIZE) ;
4rtf_destroy (FIFO) ;⌦⌃ ⇧

Listing 6.25: Send at Operation: FIFO Operations

Chapter 6. Mappings For The Real-time Test Concepts 144

The section ends with the table summarizing the mapping between abstract specification

and its implementation. Table 6.7 is a follow up of the tables presented in previous

sections.

Table 6.7: RT-TTCN-3 To RTAI Mappings. Part V.

RT-TTCN-3 Concepts RTAI C Code

sendPort.send(DEMO_MSG)

at (testcasestart + 1*sec);

void send_at_function(long send_at_id){

while(active){

rtf_put_if(FIFO,

&i,

sizeof(int));

rt_task_wait_period();

}

return;

}

void testcase_function(long tc_id){

RTIME start_delay = 1000000000;

...

rt_task_make_periodic_relative_ns(

&send_at_task,

start_delay,

start_delay);

...

return;

}

int init_module(void) {

...

rt_task_init(&send_at_task,

send_at_function,

send_at_id,

1024,

RT_SCHED_LOWEST_PRIORITY-3,

0,

0);

...

return 0;

}

6.1.8 Real-time Sockets. Receive Server.

This section shows how real-time communication on sockets can be implemented. Some

relevant examples using real-time sockets, listed in 6.26-6.29, illustrate the functionality

Chapter 6. Mappings For The Real-time Test Concepts 145

of a receive server. The listings from the next section, Listings 6.30-6.31 are completing

the image, by illustrating a complementary functionality to the receive server, that of

a send client. These two applications are exchanging messages between eachother in

real-time. In this manner, both being real-time applications, one can be regarded as

SUT, and the other one as TS, interchangeable.

All the presented examples that use real-time sockets to communicate, are based on

the RTnet [119] extension for RTAI. RTnet is an open source, hard real-time network

protocol stack for Xenomai and RTAI. It makes use of standard Ethernet hardware and

supports several popular NIC chip sets, including Gigabit Ethernet. RTnet implements

UDP/IP’s, TCP/IP’s basic features, and provides a POSIX socket API to real-time

user space processes and kernel modules [119]. For the presented examples, the version

of RTnet that was used is version 0.9.12, the last one available at the date of this

implementation.

In the following section we are going to discuss the code for the server side. The cor-

respondent RT-TTCN-3 test specification implemented by this code can be the one

presented previously in Listing 6.32. If we change the implementation of the port, the

test specification remains the same. The port in this case, is a real-time socket instead

of a FIFO. All the excerpts of code that are shown in here and refer to the socket

implementation, should belong, in TTCN-3 terminology, to the test adaptor.

Listing 6.26 presents the libraries and declarations of constants and variables that are

necessary to implement the server. The library that contains methods for handling

real-time sockets is called rtnet.h. In Line 9 we defined the port on which the server

listens for new incoming messages. The socket structure is defined in Line 12. The task

handlers that are needed for constituting the server are declared in Lines 16-19. There is

one receive task, which waits for the message to come, one match task which compares

the arrived messages against a predefined pattern, the stop task that kills the receive

and match tasks when the time expires and a test case task, containing the behavior of

the test case. They are fundamentally the same tasks presented in Section 6.1.6, and as

in the aforementioned section, the same pattern for task interactions is used.

Listing 6.27 presents the task function definitions for the stop task and for the match

task. Stop task is responsible with killing the receive and associated match tasks when

predefined time expires. The functionality of the stop task, line 4, is the same one as

presented in previous sections. The match task communicates with the receive task

through a real-time FIFO, lines 16-17. Every time a new message is received, the match

task is awoken and starts the matching. Matching means comparing the newly received

message against a predefined template or set of templates. If the match succeeds, then

it means that the right message has been received by the TS, and that the TS can go

Chapter 6. Mappings For The Real-time Test Concepts 146

⌥
1. . .
2#include <l i nux /net . h>
3#include <l i nux / socke t . h>
4#include <l i nux / in . h>
5#include <rtai mbx . h>
6#include </usr / l o c a l / r tn e t / include/ r tn e t . h>
7. . .
8/ This i s the port on which the s e r v e r i s l i s t e n i n g to /
9#define PORT 8888
10. . .
11/ Local socke t /
12stat ic struct sockaddr_in local_addr ;
13stat ic int sockfd = 0 ;
14stat ic char msg [4 0 0 0] ;
15/ The task s t r u c t u r e s that are used here . /
16RT_TASK receive_task ;
17RT_TASK stop_task ;
18RT_TASK match_task ;
19RT_TASK tc_task ;
20SEM FIFO_sem ;
21. . .⌦⌃ ⇧

Listing 6.26: Real-time Sockets. Receive Server. Declaration Part.

forward with other testings. Once the match is validated, the match task is the one that

kills the stop task this time, lines 20-21. In this context, the stop task is the one which

becomes useless, since the right message has been received in time. Also, the receive

task should also be killed after the match is validated, as it does not make sense to keep

on waiting for a message that has already arrived, 22-23.

Further on, in Listing 6.28, the actual receive task function is presented, this represents

the kern functionality of the receive server. It is important to observe here, how the

RTnet library methods are used for binding the real-time socket with the given local

address and port, line 6, and for receiving the incoming messages on that port, line 11.

rt dev bind() is the method for binding. It receives, as parameters, the handler of the

socket, sockfd, and the socket structure which should have been previously initialized

and created in the module init section, as shown in Listing 6.29, Lines 4-12.

The code snippet 6.29 presents how the socket is initialized, Lines 4-11, created, Line 12,

and in the end, closed, Line 19. The routines for dealing with the real-time sockets are

similar to the Berkeley sockets. The di↵erence is that real-time sockets are implemented

with real-time system calls and priorities.

6.1.9 Real-time Sockets. Send Client.

This section discusses the implementation of a real-time client that sends messages to a

real-time receive server. The focus of the client operation is to realize the send operation

at fixed, predefined times. The communication channel is implemented as a real-time

Chapter 6. Mappings For The Real-time Test Concepts 147

⌥
1/ func t i on a s s o c i a t ed with the stop task ,
2r e s p on s i b l e to upper bound the r e c e i v e
3opera t i on /
4void stop_function (long stop_id) {
5rt_task_suspend(&receive_task) ;
6rt_task_delete(&receive_task) ;
7return ;
8}
9
10void match_function (long match_id){
11bool match = false ;
12/ Here the matching o f the r e c e i v ed message i s r e a l i z e d /
13/ i f the message matches , the a s s o c i a t ed r e c e i v e task
14i s suspended ; e l s e , no ac t i on i s taken /
15while (true) {
16rt_sem_wait(&FIFO_sem) ;
17rtf_get (FIFO , &msg , s izeof (msg)) ;
18/ Rea l i z e s the match aga in s t the template here /
19i f (match){
20rt_task_suspend(&stop_task) ;
21rt_task_delete(&stop_task) ;
22rt_task_suspend(&receive_task) ;
23rt_task_delete(&receive_task) ;
24break ;
25}
26}
27return ;
28}⌦⌃ ⇧

Listing 6.27: Real-time Sockets. Stop And Match Task Functions.

⌥
1/ This i s the task that corre sponds with the r e c e i v e
2opera t i on /
3void receive_function (long receive_id) {
4. . .
5/ Bind socke t to l o c a l address /
6rt_dev_bind (sockfd ,
7(struct sockaddr) &local_addr ,
8s izeof (struct sockaddr_in)) ;
9. . .
10/ Block un t i l packet i s r e c e i v ed /
11rt_dev_recv (sockfd , msg , s izeof (msg) , 0) ;
12
13/ Message was r e c e i v ed /
14rt_printk (”The message=%s was rece ived , at time = %l l d \n” ,
15msg , rt_get_time_ns ()) ;
16/ Put the message on the FIFO and s i g n a l the task which
17execute s the matching o f the message /
18rtf_put_if (FIFO , &msg , s izeof (msg)) ;
19rt_sem_signal(&FIFO_sem) ;
20. . .
21return ;
22}⌦⌃ ⇧

Listing 6.28: Real-time Sockets. Receive Task Function.

Chapter 6. Mappings For The Real-time Test Concepts 148

⌥
1int init_module (void) {
2. . .
3/ I n i t i a l i z e the socke t /
4memset(&local_addr ,
50 ,
6s izeof (struct sockaddr_in)) ;
7local_addr . sin_family = AF_INET ;
8local_addr . sin_addr . s_addr = INADDR_ANY ;
9local_addr . sin_port = htons (PORT) ;
10
11/ Create a new socke t /
12sockfd = rt_dev_socket (AF_INET , SOCK_DGRAM , 0) ;
13. . .
14return 0 ;
15}
16void cleanup_module (void) {
17. . .
18/ Close the socke t /
19rt_dev_close (sockfd) ;
20. . .
21return ;
22}⌦⌃ ⇧

Listing 6.29: Real-time Sockets. Initialize the sockets.

socket. The code examples in 6.30-6.31 illustrate how to create a client connection on a

real-time socket and emphasize the methods that are used for that.

Listing 6.30 shows the implementation of the send task function, which is responsible for

sending the message after it starts. Before the actual send operation is performed, the

binding to the local socket should be first realized, followed by establishing a connection

with the socket from the server side. As it results, this time there are two sockets being

handled: the local socket, used when the message leaves the system, and the remote

socket of the server, which represents the destination address to which the message is

sent. The two corresponding socket structures are declared in Lines 3-4. The binding to

the local socket is realized in Line 9 and the connection to the remote server is realized

in Line 15. Afterwards, the message can be sent, as shown in Line 20.

Listing 6.31 performs the initializations that regard sockets in Lines 4-13. This time two

socket structures are used instead of one. The local socket is created in Line 15, and

closed in Line 21.

6.2 FreeRTOS Based Real-time Testing Framework. Auto Car Door
Case Study.

While the first part of this chapter has discussed di↵erent mappings between newly intro-

duced real-time concepts for TTCN-3 and RTAI, here we will challenge the capabilities

Chapter 6. Mappings For The Real-time Test Concepts 149

⌥
1. . .
2/ Socket s t r u c t u r e s f o r l o c a l and remote address /
3stat ic struct sockaddr_in local_addr ;
4stat ic struct sockaddr_in server_addr ;
5
6void send_function (long send_id) {
7/ Bind socke t to l o c a l address s p e c i f i e d as
8parameter /
9rt_dev_bind (sockfd ,
10(struct sockaddr)&local_addr ,
11s izeof (struct sockaddr_in)) ;
12. . .
13/ Spec i f y d e s t i n a t i on address f o r socke t ;
14needed f o r r t s o c k e t s e nd /
15rt_dev_connect (sockfd ,
16(struct sockaddr)&server_addr ,
17s izeof (struct sockaddr_in)) ;
18. . .
19/ Send a message /
20rt_dev_send (sockfd , msg , s izeof (msg) , 0) ;
21. . .
22return ;
23}⌦⌃ ⇧

Listing 6.30: Real-time Sockets. Send Client.

⌥
1int init_module (void) {
2. . .
3/ I n i t i a l i z e the s o cke t s /
4memset(&local_addr , 0 , s izeof (struct sockaddr_in)) ;
5memset(&server_addr , 0 , s izeof (struct sockaddr_in)) ;
6/ Local socke t /
7local_addr . sin_family = AF_INET ;
8local_addr . sin_addr . s_addr = INADDR_ANY ;
9local_addr . sin_port = htons (PORT) ;
10/ Remote socke t /
11server_addr . sin_family = AF_INET ;
12server_addr . sin_addr . s_addr = rt_inet_aton (SRV_IP_ADDR) ;
13server_addr . sin_port = htons (SRV_PORT) ;
14/ Create new socke t /
15rt_dev_socket (AF_INET , SOCK_DGRAM , 0) ;
16. . .
17return 0 ;
18}
19void cleanup_module (void) {
20/ Close the socke t /
21rt_dev_close (sockfd) ;
22. . .
23return ;
24}⌦⌃ ⇧

Listing 6.31: Real-time Sockets. Init/Cleanup Module.

Chapter 6. Mappings For The Real-time Test Concepts 150

of the second chosen real-time operating system, the FreeRTOS platform. In the previ-

ous section we used small examples of possible test system implementation segments to

prove the usage of the RT-TTCN-3 concepts and the RTAI mechanism that are used at

their realization.

In this section we are going to build a real-time test case example, implemented within

FreeRTOS. This is going to be used for testing a concrete real-time automotive ap-

plication, consisting of a control system embedded into a car’s door. The embedded

system controls simple movements of the car door’s parts: e.g. lifting up or down the

door’s window, or turning on and o↵ the flash light installed on the car’s door. The

simple movements might be combined in order to constitute more complex automatic

behaviors, e.g. the crash state: the window goes automatically down, while the flash

light starts blinking on-o↵, on-o↵... The communication between the test system and

the SUT represented by the car door controller is going to be realized through a serial

cable, requiring a COMM implementation for the port on which the message is sent or

received, respectively.

6.2.1 Auto Car Door Case Study

The actual mapping of the basic and newly introduced concepts of the TTCN-3 language

to a RTOS platform is explained by a simple test case for an example taken from

the automotive domain. The chosen example consist of an embedded system on a

MC9S12NE64 demo board [120] attached to a car door. The system controls various

basic units of the door, for example, the window lifter, flashing light indicator, electrical

central locking system. The system changes its internal state when receiving signals

via RS232 serial interface. These signals are in fact, certain control strings with the

role of triggering a special basic functionality of the door, for example, driving up the

window, turning on the flash indicator and so forth. When receiving such a string,

the system enters a di↵erent state, executes the function associated with that state, and

sends back a response string to the serial interface. The basic functions of the door could

be combined in order to form safety applications such as when an accident occurs, the

window should be driven down, the flash indicator should blink and the door should be

automatically unlocked. Therefore, it is important to assure that the basic functionality

is happening in real-time. One can put several real-time constraints on this, such as:

“The window should be driven down within one millisecond; the flash signal should

be turned on within one millisecond; it should remain on for 5 × milliseconds with a

tolerance of ± 1 millisecond, then it should turn o↵.”

Figure 6.1 presents the test setup. On the left side we have the embedded system con-

nected to the door, and on the right there is the TS consisting of a PC with FreeRTOS

Chapter 6. Mappings For The Real-time Test Concepts 151

installed. The PC port of FreeRTOS that we are utilizing runs on an integrated environ-

ment from the WATCOM open source project [121] (the distribution is for Windows).

The PC is connected to the board through a serial cable. The real-time requirement

that one wishes to test can be formulated in this manner: “The flash signal should be

turned on within one millisecond”. For testing this requirement only, the signal is sent

several times with the instruction of repeated flashing. After sending one signal, when

the flash is on, it is assumed that it automatically turns o↵ after a fixed period of time.

After expiring this period of time, one can send another signal for turning it on again.

This example epitomizes the newly introduced concepts.

Figure 6.1: Auto Car Door Demo Setup And Configuration [3]

The test specification written in RT-TTCN-3 is listed in 6.32. The presented test case

tests the following real-time behavior of the SUT : after the SUT is initialized, by sending

the INIT signal towards it, it waits for a MIN INTERVAL period in order for the initial-

ization to take place, then the Time Blinker ON stimulus is sent; this stimulus should

trigger the blinking of the flash light on the SUT, with a fixed time period between

the “o↵” and “on” modes of the SUT ; the fixed time period is required to be of ap-

proximate 5 milliseconds, with a maximum error of ± 1 millisecond, indicated by the

MIN INTERVAL. The maximum time interval on which the port will listen for message

receival is 0.2 seconds, the value set for MAX INTERVAL.

The input/output signals for communicating with the SUT are the ones defined in

Lines 127-132. Further on, the timings are defined in the following lines, 133-135. The

test case starts with sending the INIT signal for initializing the SUT, then it waits

for MIN INTERVAL for the initialization to take place. In Line 143 the current time

is read, in order to be kept as an anchor point for further time measurements. The

Time Blinker ON signal is sent to the SUT to trigger the blinking behavior on its side.

Chapter 6. Mappings For The Real-time Test Concepts 152

⌥
126. . .
127template charstring INIT := ” ” ;
128template charstring Time_Blinker_ON := ”4” ;
129template charstring Time_Blinker_OFF := ”5” ;
130template charstring RESET := ” r e s e t ” ;
131template charstring ON := ”4Bl ink LED On” ;
132template charstring OFF := ”5Bl ink LED Off ” ;
133const timespan OFF_ON_INTERVAL := 5 mil l isec ;
134const timespan MAX_INTERVAL := 0 .2 sec ;
135const timespan MIN_INTERVAL := 1 mil l isec ;
136
137// t h i s i s the func t i on conta in ing the t e s t behavior
138testcase CarDoorDemoTestCase () runs on MTCComponentType{
139var f loat starttime , ON_timestamp , OFF_timestamp ,
140DIFF_timestamp ;
141commSerialPort . send (INIT) ;
142wait (MIN_INTERVAL) ;
143starttime := now ;
144commSerialPort . send (Time_Blinker_ON) ;
145
146while (true){
147alt {
148[] commSerialPort . receive (ON) −> timestamp

149ON_timestamp{
150log (”The ON message was r e c e i v ed
151at time ” , seconds2timespan (ON_timestamp)) ;
152continue ;
153}
154[] commSerialPort . receive (OFF) −> timestamp

155OFF_timestamp{
156log (”The OFF message was r e c e i v ed
157at time ” , seconds2timespan (ON_timestamp)) ;
158DIFF_timestamp := OFF_timestamp−ON_timestamp ;
159i f (OFF_ON_INTERVAL−MIN_INTERVAL <=
160DIFF_timestamp <=
161ON_OFF_INTERVAL+MIN_INTERVAL)
162continue ;
163else {
164setverdict (f a i l) ;
165log (”wrong t iming ”) ;
166break ;
167}
168}
169} break at (starttime + MAX_INTERVAL){
170commSerialPort . send (Time_Blinker_OFF) ;
171wait (MIN_INTERVAL) ;
172commport . send (RESET) ;
173setverdict (f a i l) ;
174break ;
175}
176}
177}
178. . .⌦⌃ ⇧

Listing 6.32: Auto Car Door Demo Example with RT-TTCN-3

Chapter 6. Mappings For The Real-time Test Concepts 153

Line 148 presents a receive operation with timestamp that is expecting messages of

“on”-type, while in Line 154 the timestamped receive is waiting for messages of “o↵”-

type. Every time “on”-“o↵” messages alternate, the interval between “o↵” and “on”

is calculated and compared with the time expectation; see Line 158. If time interval

conforms to the one from the specification, the testing may continue, otherwise an error

message is displayed, together with a fail verdict.⌥
1. . .
2#include ”FreeRTOS . h”
3#include ” task . h”
4#include ” s e r i a l . h”
5. . .
6/ P r i o r i t y d e f i n i t i o n s f o r the ta sk s in the demo
7app l i c a t i o n . /
8#define mainMTC TASK PRIORITY (tskIDLE PRIORITY + 1)
9/ Stack s i z e /
10#define STACK SIZE ((unsigned portSHORT)1024)
11/ Constant d e f i n i t i o n used to turn on/ o f f the preemptive
12s chedu l e r . /
13stat ic const portSHORT sUsingPreemption = configUSE_PREEMPTION ;
14/ Handle to the com port used by both ta sk s . /
15
16stat ic xComPortHandle xPort ;
17stat ic const portLONG xBlockTime = 10000000000;
18stat ic const eCOMPort ePort = serCOM1 ;
19stat ic const eBaud eBaudRate = ser115200 ;
20/ Prede f ined message codes f o r communicating with the SUT /
21portCHAR codes [] [2] = {” ” , ”4” } ;
22portCHAR responses [] [3 0] = {” I n i t i a l i s i e r u n g durch lau fen ” ,
23”4Bl ink LED On” } ;
24. . .
25/ Prototypes f o r the Main Component Task and tSend and tExp
26ta sk s /
27stat ic void vMTC (void pvParameters) ;
28void v_tSend (void pvParameters) ;
29void v_pReceive (void pvParameters) ;
30void v_tExp (void pvParameters) ;
31/ Method that r e a l i z e s the matching between the r e c e i v ed message
32and the expected template /
33portBASE_TYPE match (portCHAR set1 , portCHAR set2) ;
34⌦⌃ ⇧

Listing 6.33: Declaration and Definition Section.

In the following Listings, from 6.33 to 6.39, the code examples that illustrates how the

above specification is implemented in C for the FreeRTOS environment are presented.

The interesting aspects unveiled by those examples are the look and feel of the FreeRTOS

specification and the handling of COMM serial port as a communication port between

the real-time TS and the real-time SUT.

Chapter 6. Mappings For The Real-time Test Concepts 154

Listing 6.33 presents the declaration section of the real-time TS implementation. It

shows the important libraries that are used: FreeRTOS.h is the library providing kern

methods of FreeRTOS, as for example, the method that starts the real-time sched-

uler; task.h library provides the methods related to task creation and manipulation;

serial.h library contains methods for working with the serial communication channel.

Line 13 shows how the scheduler is set to allow preemption, by setting the sUsingPreemption

constant. Between Lines 16-19 the variables used at configuring the serial port are com-

prised. The strings and templates for communicating with the SUT are defined in 21-23.

It can be seen from Lines 27-34, which are the interacting tasks that are realizing the

behavior of the previously presented RT-TTCN-3 specification.⌥
1/ main func t i on i s where the MTC i s c r ea ted /
2portSHORT main (void) {
3xTaskHandle mtcHandle ;
4/ Create the co− r ou t i n e s that communicate with the
5t i c k hook . /
6vStartHookCoRoutines () ;
7/ Create the ”MTC” task /
8xTaskCreate (vMTC ,
9”TMTC” ,
10STACK_SIZE ,
11&mtcHandle ,
12mainMTC_TASK_PRIORITY ,
13&mtcHandle) ;
14/ Set the s chedu l e r running . This func t i on w i l l not
15return , un l e s s a task c a l l s ’ vTaskEndScheduler ’ . /
16vTaskStartScheduler () ;
17return 1 ;
18}⌦⌃ ⇧

Listing 6.34: Create Main Test Component

Further on, Listing 6.34 presents the main function, which contains the main initializa-

tion of the real-time TS application. In Line 8 the task corresponding to the MTC is

created using the xTaskCreate() routine. This creates a new task and adds it to the list

of tasks that are ready to run. The opposite to this operation is xTaskDelete(), which

removes a task from the RTOS real-time kernel’s management. It is interesting to observe

that, in Line 16, the real-time scheduler is started using the vTaskStartScheduler().

This starts the real-time kernel tick processing. After this calling, the kernel has control

over which tasks are executed and when. The idle task is created automatically when

vTaskStartScheduler() is called. If vTaskStartScheduler() is successful the func-

tion will not return until an executing task calls vTaskEndScheduler(). The function

might fail and return immediately if there is insu�cient RAM available for the idle task

to be created.

Chapter 6. Mappings For The Real-time Test Concepts 155

⌥
1/ The behavior o f the MTC i s de s c r ib ed here /
2stat ic void vMTC (void pvParameters)
3{
4/ I n i t i a l i z a t i o n s /
5xTaskHandle selfHandle = (xTaskHandle) pvParameters ;
6xTaskHandle tSend_Handle ;
7xTaskHandle tRcv_Handle ;
8. . .
9/ I n i t i a l i z e the COM port . /
10xPort = xSerialPortInit (ePort ,
11eBaudRate ,
12serNO_PARITY ,
13serBITS_8 ,
14serSTOP_1 ,
15uxBufferLength) ;
16/ Create the tSend and tRcv ta sk s /
17xTaskCreate (v_tSend ,
18”TSEND” ,
19STACK_SIZE ,
20¶ms ,
21mainMTC_TASK_PRIORITY ,
22&tSend_Handle) ;
23xTaskCreate (v_pReceive ,
24”PRCV” ,
25STACK_SIZE ,
26¶ms ,
27mainMTC_TASK_PRIORITY ,
28&tRcv_Handle) ;
29. . .
30/ Suspend s e l f /
31vTaskSuspend (NULL) ;
32return ;
33}⌦⌃ ⇧

Listing 6.35: Main Test Component’s Task Function.

Listing 6.35 implements the task function associated with MTC. The main actions that

the MTC performs is that of initializing the serial port, in Line 10, and creating the tasks

for send and receive, in Lines 17-23. After the MTC task executes these operations, it

suspends itself, in Line 31, using the vTaskSuspend() function. This function suspends

any task. When suspended, a task will never get any microcontroller processing time,

no matter what its priority.

Listing 6.36 presents the task function that sends the messages on the serial port. The

sending of messages is realized with the vSerialPutString() function. After the mes-

sage activating the blinking is sent to the SUT, a timer task is created, on Line 25. This

timer task is responsible for finishing the receive task if the maximum amount of time,

for which a message is expected, overpasses. The implementation for the timer task is

presented further in Listing 6.37.

Chapter 6. Mappings For The Real-time Test Concepts 156

⌥
1void v_tSend (void pvParameters){
2/ I n i t i a l i z a t i o n s /
3t_params params = (t_params) pvParameters ;
4. . .
5for (; ;){
6/ Suspend the cur rent task f o r a g iven time /
7vTaskDelay (tSendConst) ;
8i f (codeId == 0){
9/ Send message on the s e r i a l port /
10vSerialPutString (xPort , codes [codeId] ,
11strlen (codes [codeId])) ;
12codeId++;
13} else i f (codeId == 1 && i < NR_OF_TIMES) {
14. . .
15/ Send the s t r i n g to the s e r i a l port and a c t i v a t e
16t imer /
17time1 [i] = xTaskGetTickCount () ;
18vSerialPutString (xPort , codes [codeId] ,
19strlen (codes [codeId])) ;
20printf (”Code ’%s ’ sent at %ld \n” , codes [codeId] ,
21time1 [i]) ;
22/ Create the tExp task in order to wait f o r the
23re sponse f o r t h i s data s e t /
24memset (tExpName , 0 , s izeof (tExpName)) ;
25xTaskCreate (v_tExp ,
26tExpName ,
27STACK_SIZE ,
28&i ,
29mainMTC_TASK_PRIORITY ,
30&tExpHandle [i]) ;
31i++;
32}
33}
34}⌦⌃ ⇧

Listing 6.36: Send Task. COM Serial Port.

⌥
1void v_tExp (void pvParameters){
2/ I n i t i a l i z a t i o n s /
3. . .
4setId = (portSHORT) pvParameters ;
5. . .
6sprintf (verdict , ”SET VERDICT FAIL\ r \n”) ;
7for (; ;) {
8/ Here i s i nd i c a t ed the time a f t e r which
9the t imer func t i on becomes a c t i v e /
10vTaskDelay (tExpConst) ;
11vDisplayMessage (timeout) ;
12vDisplayMessage (verdict) ;
13/ Al l t e s t system i s stopped /
14vTaskEndScheduler () ;
15}
16}⌦⌃ ⇧

Listing 6.37: Timer Expiration Task

Chapter 6. Mappings For The Real-time Test Concepts 157

The main behavior of timer task function is that of waiting for the maximum expiration

time to pass, which is associated with the receive operation. If the time expires and

the timer task is still alive, then it will end the execution of the test case, by invoking

the vTaskEndScheduler() function, and it will generate a fail verdict. If the message

will be received in time, then the receive task is going to kill the timer task before this

would have the chance to become active, see Listing 6.38, Line 27.⌥
1void v_pReceive (void pvParameters){
2/ I n i t i a l i z a t i o n s /
3t_params params = (t_params) pvParameters ;
4for (; ;){
5/ Receive a message from the i n t e r r up t rou t in e a s s o c i a t ed
6with the COM port . I f a message i s not yet a v a i l a b l e the
7c a l l w i l l b lock the task . /
8while (1) {
9xGotChar = xSerialGetChar (xPort ,
10&cRxedChar ,
11xBlockTime) ;
12i f (xGotChar == pdTRUE) {
13i f (resLen < strlen (responses [resId])) {
14sprintf (responseStr+strlen (responseStr) ,
15”%c” , cRxedChar) ;
16resLen++;
17i f (resLen == strlen (responses [resId])) {
18/ Val idate the re sponse /
19i f (match (responseStr , responses [resId])) {
20/ Recording the timestamp o f the message
21r e c e i v a l /
22time2 [i] = xTaskGetTickCount () ;
23printf (”Response |%s | r e c e i e v ed at %ld \n” ,
24responseStr , time2 [i]) ;
25/ Delete the t imer a s s o c i a t ed with the
26re sponse /
27vTaskDelete (tExpHandle [i]) ;
28/ Set v e rd i c t to PASS /
29sprintf (verdict , ”SET VERDICT PASS\ r \n”) ;
30. . .
31i f (finished == NR_OF_TIMES){
32vTaskEndScheduler () ;
33break ;
34}
35}
36}
37}
38} else {
39vDisplayMessage (pcTaskTimeoutMsg) ;
40}
41}
42}
43}⌦⌃ ⇧

Listing 6.38: Receive Task. COM Serial Port.

Chapter 6. Mappings For The Real-time Test Concepts 158

Listing 6.38 presents the task function responsible for intercepting the messages from

the serial port. The interception is realized in Line 9.⌥
1portBASE_TYPE match (portCHAR code1 , portCHAR code2){
2portBASE_TYPE matched = pdTRUE ;
3i f (strcmp (code1 , code2) != 0)
4matched = pdFALSE ;
5return matched ;
6}⌦⌃ ⇧

Listing 6.39: Match Operation.

The match operation for comparing incoming messages with the expected templates is

illustrated in Listing 6.39.

As proven by the code excerpts presented in this chapter, the mappings between real-

time TTCN-3 concepts and real-time operating system instructions result in modular,

compact blocks of instructions for both chosen platforms. The mappings are relatively

straight forward and easy to grasp. Di↵erent combinations of those blocks can be used

to cover the entire space of possibilities for the behaviour of the real-time test system.

The next chapter presents the benchmark of these implementations, by a means of

WCET for Linux with RTAI and by means of test results of a real test case study, for

the FreeRTOS.

6.3 Summary

This chapter was split in two main sections. Each section presented the realization of

the real-time TTCN-3 TS on a di↵erent real-time operating system platform. The first

section presented the mappings of the individual language extensions on RTAI Linux

specific mechanisms, realized in C. The Real-time TTCN-3 TS is, in this context, a

kernel module with hard real-time abilities. RTAI Linux is a complex real-time oper-

ating system, that is general purpose, in the sense that it o↵ers scheduling mechanisms

appropriate for an extensive set of tasks, with complex inter-task communication mech-

anisms, allowing the build of a wide range of real-time application. In contrast to this,

FreeRTOS kernel is small and minimal and o↵ers only a basic set of services. The

second part of this chapter was dedicated to a case study taken from the automotive

domain. It presents the testing of an ECU, controlling the functionality of an automatic

car door. This time, the TS required for testing this special purpose controller, was

built on top of FreeRTOS operating system. FreeRTOS’es simplicity and conciseness

means it is recommended as a better option for building upon the testing of such a small

embedded application. We found it particularly challenging to define the mappings of

the real-time concepts of extended TTCN-3 to the minimal set of services provided by

FreeRTOS platform.

Chapter 7

Results And Discussion

”However beautiful the strategy, you should occasionally look at the results.”

Sir Winston Churchill

The first part of this chapter provides a benchmark of the RTTS implemented using the

mappings presented in Chapter 6. The results and the evaluations of the implemented

RTTS will be presented and discussed, with the highlights set upon the newly introduced

concepts and operations. The benchmark approach adopted here is inspired from the

Individual Language Feature Benchmarks strategy developed for Ada [9], [8].

Each of the di↵erent subsections of this chapter is dedicated to one real-time construct

such as: wait, start at, stop at, send at, or receive...break at. Each construct has

some precise time requirements associated with it. Through specific TS configuration

and implementation, each of the individual aforementioned operations is isolated and

evaluated at runtime. Maximum latencies and worst case execution times are calcu-

lated accordingly, based upon the experimental results for each of the presented test

configurations.

The second part of this chapter evaluates the results for the AutoDoo Case Study.

7.1 Benchmark Of A Test System Implemented On Linux With RTAI
Real-time Operating System

“The worst-case execution time (WCET) of a computational task is the maximum length

of time the task could take to execute on a specific hardware platform. Knowing worst-

case execution times is of prime importance for the calculability analysis of hard real-time

systems.” 1

All the runs were performed on a machine with processor capabilities listed in 7.1.

As it is shown, the used processor is of type Intel(R) Core(TM)2 Duo CPU T7800,

which runs at 2.60GHz. The installed operating system is an Ubuntu 8.04 - Hardy

Heron distribution, released in April 2008. On this distribution, a vanilla kernel version

2.6.24 was patched with RTAI patch version 3.6-cv, and then compiled and installed.

Additional parameters of the RTAI runtime are presented in the properties excerpt in

7.2. It can be observed the RTAI version is the one afore mentioned, namely <3.6-cv>.

The version of the gcc compiler for compiling the RTAI sources and the additionally

implemented kernel modules is 4.1.0. The global heap size is of 2097152 bytes.
1http://en.wikipedia.org/wiki/Worst-case execution time

159

Chapter 7. Results and Discussion 160

processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 15
model name : Intel(R) Core(TM)2 Duo CPU T7800 @ 2.60GHz
stepping : 11
cpu MHz : 2593.618
cache size : 4096 KB
physical id : 0
siblings : 2
core id : 0
cpu cores : 2
fdiv_bug : no
hlt_bug : no
f00f_bug : no
coma_bug : no
fpu : yes
fpu_exception : yes
cpuid level : 10
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov
pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe nx lm constant_tsc
arch_perfmon pebs bts pni monitor ds_cpl vmx est tm2 ssse3 cx16 xtpr lahf_lm ida
bogomips : 5190.66
clflush size : 64

processor : 1
vendor_id : GenuineIntel
cpu family : 6
model : 15
model name : Intel(R) Core(TM)2 Duo CPU T7800 @ 2.60GHz
stepping : 11
cpu MHz : 2593.618
cache size : 4096 KB
physical id : 0
siblings : 2
core id : 1
cpu cores : 2
fdiv_bug : no
hlt_bug : no
f00f_bug : no
coma_bug : no
fpu : yes
fpu_exception : yes
cpuid level : 10
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov
pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe nx lm constant_tsc
arch_perfmon pebs bts pni monitor ds_cpl vmx est tm2 ssse3 cx16 xtpr lahf_lm ida
bogomips : 5187.37
clflush size : 64

Figure 7.1: Info CPU

Chapter 7. Results and Discussion 161

[327.918739] I-pipe: Domain RTAI registered.
[327.918746] RTAI[hal]: <3.6-cv> mounted over IPIPE-NOTHREADS 2.0-07.
[327.918748] RTAI[hal]: compiled with gcc version 4.1.0.
[327.918778] RTAI[hal]: mounted (IPIPE-NOTHREADS, IMMEDIATE (INTERNAL IRQs
VECTORED), ISOL_CPUS_MASK: 0).
[327.918779] PIPELINE layers:
[327.918781] f8e53a80 9ac15d93 RTAI 200
[327.918782] c0696680 0 Linux 100
[327.947142] RTAI[malloc]: global heap size = 2097152 bytes, <BSD>.
[327.947526] RTAI[sched]: IMMEDIATE, MP, USER/KERNEL SPACE: <with RTAI OWN
KTASKs>, kstacks pool size = 524288 bytes.
[327.947657] RTAI[sched]: hard timer type/freq = APIC/12411750(Hz); default
timing: oneshot; linear timed lists.
[327.947774] RTAI[sched]: Linux timer freq = 250 (Hz), CPU freq = 2593618000
hz.
[327.947857] RTAI[sched]: timer setup = 999 ns, resched latency = 2944 ns.

Figure 7.2: RTAI Properties And Features

The real-time scheduler is of type MultiProcessor (MP). RTAI has a UniProcessor (UP)

specific scheduler, and two for MultiProcessors (MP). In the latter case you can chose

between a SymmetricMultiProcessor (SMP) and a MultiUniProcessor (MUP) scheduler.

In our case, the SMP processor was used. The SMP scheduler can be timed either by

the 8254 or by a local APIC timer. In SMP/8254 tasks are defaulted to work on any

CPU but you can assign them to any subset, or to a single CPU. For the SMP/APIC

based scheduler, one can statically optimize the load distribution by binding tasks to

specific CPUs. In fact, whichever local APIC is shot, will depend on the task scheduling,

as that will determine the next shooting.

From 7.2 we can see that the hard timer type/freq for APIC is 12411750(Hz) and that

the rescheduling latency with RTAI is estimated to be 2944 ns.

The strategy adopted here is to isolate each implementation of a real-time TTCN-3 spe-

cific feature and to measure its WCET latencies in benchmark scenarios. This approach

has been inspired by the benchmarks developed to evaluate the timeliness of real-time

features of Ada, described in [9], [8].

7.1.1 Special Operation Wait

In order to evaluate the time precision of the wait operation, the TS presented in Fig-

ure 7.3 is considered. This TS contains one test component whose behavior includes

a part where the wait operation is executed in a loop. Time stamps are taken be-

fore and after the wait operation. The latencies are calculated comparing the time

interval between those time stamps with the value of �t, the parameter of the wait

operation. The formula used for calculating the latency is:�✏ = �t2 − t1 − �t�, where

�t ∈ {100ms,1ms,100µs,10µs}, and t1, t2 represents the time stamps taken instanta-

neously and immediately after the wait operation in one single iteration. There are 100

iterations for one value of the �t parameter, meaning 100 latency samples for each.

Chapter 7. Results and Discussion 162

Real-time Test System

Real-time Test Component

i = 0

wait(¨W)

i<100

i ++

t1= now

t2= now

true

false

¨�İ = t2-t1 - ¨W

Real-time SUT

stimulus

reaction

stimulus

reaction

verdict

Figure 7.3: Test System Design For Evaluating A wait Operation

The Chart 7.4 presents the series with the latency variations for each value of the �t

parameter of the wait operation, �t ∈ {100ms,1ms,100µs,10µs}. The latencies, �✏ are

measured in µs. The latency domain is represented on the vertical axis.

The horizontal axis represents the domain which indicates the number of the iteration

at which a certain latency value is obtained. The latency variations represented in

Chart 7.4 are small and do not overpass the limit of 3µs. The conclusion that can be

drawn from analyzing the chart is that we can easily state that the safe margin for

the worst case execution time for the wait operation is of 3µs. WCET (wait100ms) =
WCET (wait10µs) = 3µs, and WCET (wait1ms) = WCET (wait100µs) = 2µs. These

are very good latency levels for most real-time applications [7]. The experiments have

been conducted for a TS where the test component containing the indicated behavior

is the only running task in the system, or the most prioritized one.

7.1.2 Starting And Stopping Of Test Components At Precise Times

This section presents and analyzes the variation of latencies for the lifespan of a test

component with preestablished start and stop execution times. The behavior of the

utilized TS is sketched in Figure 7.5. The behavior of one test case comprised by the

TS contains a segment which loops for an indicated number of iteration, 100 in this

case, and in that loop, a test component is being started and then stopped at relative

Chapter 7. Results and Discussion 163

0

1

2

3

4

5

6

7

8

9

10

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

µs (ȴםͿ

No. Trials

Wait 100 ms

Wait 1 ms

Wait 100 µs

Wait 10 µs

Figure 7.4: Latency Margins For The wait Operation

times, indicated by t
i1 and t

i2. Those are being given as parameters to the start at,

respectively stop at instructions.

On the other hand, �t is calculated based on the time stamps taken when the component

starts executing and immediately after the test component has been killed. The latency

is then calculated using the formula: �✏ = ��t − t
i2 + ti1�. It is preestablished that the

value of t
i2 = t

i1 + period, where period ∈ {100ms,1ms,100µs,10µs,1µs} as indicated

in Chart 7.6, or period ∈ {100ms,1ms,100µs} as indicated in Chart 7.7. In each of

the aforementioned charts, each value assigned to the period variable is distinguishingly

defining one of the series contained in that chart.

In the previous Chapter, Section 6.1, we presented two ways for implementing the start

at, stop at operations, respectively. One implementation was based on concurrent real-

time tasks and the other implementation used timers. We present here two charts with

latency variations, one for each choice of implementation. This way, both methods can

be evaluated individually, but also through comparison to each other.

In both Charts 7.6 and 7.7 the vertical axis represents the latency scale and it is measured

in µs, while the horizontal axis represents the indexes of the iterations to which the

latency values are associated with. From both charts it is observable that latencies are

very small, and the majority vary between 0 and 2 µs. There are only a few spikes that

overpass the limit of 2µs in both charts. In the chart associated with the implementation

Chapter 7. Results and Discussion 164

.

Real-time Test System

Real-time Test
Component

Real-time SUT

stimulus

reaction

stimulus

reaction

verdict

i = 0

i<100

start at t1

stop at t2

false

true

¨W

¨�İ = t2-t1 - ¨W

Figure 7.5: Test System Design For Evaluating The Precision start at and stop at
Operations

.

0

1

2

3

4

5

6

7

8

9

10

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

µs (ȴםͿ

No. Trials

Lifespan 100 ms

Lifespan 1 ms

Lifespan 100 µs

Lifespan 10 µs

Lifespan 1 µs

Figure 7.6: Latency Margins For The Lifespan Of A Test Component

Chapter 7. Results and Discussion 165

involving timers, the performances are slightly better, with the majority of latencies

comprised between 0 and 1 µs. The problem with the implementation using timers, was

that trying to impose a test component life span of 10µs or 1µs leads to a freezing of

the system. This might be due to hardware insu�ciencies. The implementation with

another real-time task for stopping the component also works adequately for such small

life spans.

.

0

1

2

3

4

5

6

7

8

9

10

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

µs (ȴםͿ

No. of Trials

Lifespan 100 ms

Lifespan 1 ms

Lifespan 100 µs

Figure 7.7: Latency Margins For The Lifespan Of A Test Component For The Im-
plementation Using Timers

The results obtained in both Chart 7.6 and 7.7 were obtained from executions in which

there was only one test component currently running; the same one whose lifespan is

being analyzed. In this case, the WCET (lifespan,100ms) =WCET (lifespan,1ms) =
WCET (lifespan,100µs) =WCET (lifespan,10µs) =WCET (lifespan,1µs) = 3µs.
Chart 7.8 presents the situation when the number of test components that are required

to start and stop at precise time points are gradually being increased. There were

runs performed for a TS with 2,10,20,30,40,50 and 100 test components. For each

set the latency value was mediated and the average value was put into the chart. The

standard lifespan for one test component is set to 1s. The four distinct series indicate

four situations, when the components are required to start and stop at the same time

points, or at time points that are distanced between one another using 10µs, 100µs and

1ms intervals, in the following manner: t
start

i

= t
start

i−1 + period, where i = 1..CompNo,

CompNo = 1..100 and period ∈ {0,10µs,100µs,1ms}.

Chapter 7. Results and Discussion 166

.

0

10

20

30

40

50

60

70

80

90

100

2 10 20 30 40 50 100

µs (ȴםͿ

No. of PTC's

Lifespan - PTC's with Delay 0

Lifespan - PTC's with Delay 10 µs

Lifespan - PTC's with Delay 100 µs

Lifespan - PTC's with Delay 1 ms

Figure 7.8: Latency Margins For The Lifespan Of PTC’s, With An Increased Numbers
Of PTC’s And Variable Delays

The average values for each number of test components is calculated in each of the series,

according with the formula:

�✏
CompNo,period

= ∑0≤i≤CompNo

�period − t
stop

i

+ t
start

i

�
CompNo

(7.1)

From Chart 7.8, it is noteworthy that it is an increasing trend of the series, that seems

to be a linear function with an increase that is direct proportional with the number of

test components. Therefore, we can define a WCET formula, as: WCET (CompNo) =
M ∗CompNo, where M > 1 is a constant, and CompNo = 1...100. We did not perform

tests with a number of components greater than 100, and we can not guarantee for the

behavior of the TS for these values. It is assumed nevertheless, that tests performed for

testing embedded systems should be kept simple and highly specialized on some specific

parts of behavior. Therefore, a high number of test component running concurrently

would not be required.

7.1.3 Sending Messages At Precise Times

In this section, the latencies for the send at operation are going to be analyzed and

discussed. The test setup is the one presented in Figure 7.9. The behavior of one test

component is going to be enhanced by a loop comprising a send operation. The test

Chapter 7. Results and Discussion 167

component is implemented as a periodic real-time task, which becomes active only when

the time comes for the send operation to be executed. After the send is performed,

the task yields processor, until the next activation time. The values of the time points

when the send operation is to be performed are respecting the succession: t
i

= t
i−1 +�t.

If we record the time stamps when the send operation is actually being performed,

the calculation of the latency is done according to the formula: �✏
i

= �t
timestamp

i

−
t
timestamp

i−1 −�t�.
.

Real-time Test System
Real-time SUT

stimulus

reaction

stimulus

reaction

verdict

Real-time Test Component

i = 0

i<100

send at ti

wait period (¨W)

false

true

¨�İ = ti-ti-1 - ¨W

Figure 7.9: Test System For Evaluating The send Operations With Strict Timings

As discussed in Section 6.1 of the previous chapter, there are two proposed implementa-

tions for a send at operation; one realized only with concurrent real-time tasks, and the

other one using real-time timers. Charts 7.10 and 7.11 show the experimental results for

both tasks and timer implementations respectively. In both charts, the send operation

was performed through 100 iterations. For each chart we have five distinct series. Each

series represents the variations of send at latencies for a predefined delay period, �t, of

{100ms,1ms,100µs,10µs,1µs}.
It can be noted that by comparing the two charts, the performances for the implemen-

tation with timers are slightly better than the results for the implementation using only

a real-time task. This can be explained due to the fact that the timers are implemented

as tasklets, so the changing of context is performed more quickly. Nevertheless, for very

Chapter 7. Results and Discussion 168

.

0

1

2

3

4

5

6

7

8

9

10

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

µs (ȴםͿ

No. Trials

Send at 100 ms

Send at 1 ms

Send at 100 µs

Send at 10 µs

Send at 1 µs

Figure 7.10: Latency Margins For The send Operation With Strict Timing

small periods, as for example 1µs, the implementation with timers starts to perform

worse than the implementation with tasks.

From the two charts we can draw the conclusion that the WCET
tasks

(sendat100ms),
WCET

tasks

(sendat1ms), WCET
tasks

(sendat100µs), WCET
tasks

(sendat100µs) ≤ 4µs

andWCET
timers

(sendat100ms),WCET
timers

(sendat1ms),WCET
timers

(sendat100µs),
WCET

timers

(sendat100µs) ≤ 3µs.
In the following Charts, 7.12 and 7.13, there is an analysis of the situations when the

periodic component holding the send at operation is not the only one available to run

in the TS, but an increased load of other components is added as well. In Chart 7.12

the added test components are translated to real-time tasks having the same priority

with the task holding the send at operation. In Chart 7.13 the added test components

are translated to real-time tasks having a lower priority than the task holding the send

at operation.

In the case that all the running components have been set with equal priority, an as-

cendent trend can be noted. The latencies become increasing linear with the number

of test components being added. The latency values on the Charts 7.12 and 7.13 rep-

resents average values that are calculated based on individual latencies for 100 send at

operations executed in di↵erent load conditions - 2,10,20, ..100 added test components

- and di↵erent predefined periods between them - �t ∈ {100ms,1ms,100µs,10µs}. The

Chapter 7. Results and Discussion 169

.

0

1

2

3

4

5

6

7

8

9

10

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

Send At 100 ms

Send At 1 ms

Send At 100 µs

Send At 10 µs

Send At 1 µs

Figure 7.11: Latency Margins For The send Operation For The Implementation
Using Timers

formula used for calculating the average value is:

�✏
CompNo,period

= ∑0≤i<100�✏
i

100
(7.2)

It can be noticed that in the situation when the priorities for the additional test com-

ponents are less than the priority of the component holding the send at operation, the

ascendent trend disappears, and the latency variations dwell between 4µs and 5µs. This

means that the latency variations for this case are hardly influenced by the load, and

the 4µs ≤WCETs
load

(sendat) ≤ 5µs.
For the situation where the priorities for the additional test components equal the pri-

ority of the component holding the send at operation, the trend being linear ascendent,

we can approximate WCETs
load

(sendat,CompNo) ≤M ∗CompNoµs.

7.1.4 Receive Operation Limited By The Break Instruction

In this section we are going to discuss the time precision of a receive operation which is

limited by a break at condition. The structure is as presented in Figure 7.14. There is

a test component that activates a real-time task to wait on a port for a specific message.

Together with the activation of the receive task, the component is responsible for also

initializing another task which simply waits for a predefined period of time, �t. If the

message is received before the �t interval expires, then the receive task kills the break

Chapter 7. Results and Discussion 170

.

0

2

4

6

8

10

12

14

16

18

20

2 10 20 30 40 50

µs (ȴם)

No. of PTCs

Send At 100 ms

Send At 1 ms

Send At 100 µs

Send At 10 µs

Figure 7.12: Latency Margins For The send Operation With Increasing Number Of
PTCs In The Background. Same Priority.

.

0

2

4

6

8

10

12

14

16

18

20

2 10 20 30 40 50

Send At 100 ms

Send At 1 ms

Send At 100 µs

Send At 10 µs

Figure 7.13: Latency Margins For The send Operation With Increasing Number Of
PTCs In The Background. Greater Priority For send Operation.

Chapter 7. Results and Discussion 171

task. Otherwise, it happens the other way round. When the �t interval expires, the

break tasks kills the receive task. In order to be sure that the break task will function

properly we measure the time points immediately when receive starts, and immediately

after an unsuccessful receive task is finished. Based on these recorded time stamps, the

time interval is measured and compared to the predefined one, according to the formula:

�✏ = �t
killed receive

− t
started receive

−�t�.
.

Real-time Test System

Real-time SUT

stimulus

reaction

stimulus

reaction

verdict

Real-time Test Component

Break At
Receive with time

constraints

receive
msg?

stop break

true

stop!

wait period (¨W)

stop
receivestop!

Figure 7.14: Test System Structure For receive...break Evaluation

The Charts 7.15 and 7.16 present the experimental results for the latency variations.

The implementation with real-time tasks is evaluated in the case of Chart 7.15 and the

implementation is based on timers evaluated in the case of Chart 7.16. The latency

variations are calculated for �t ∈ {1sec,100ms,1ms} predefined break at periods. For

each �t period, the receive with break at operation is performed 100 times. Com-

paring the two charts, we can notice that the implementation with timers have better

latencies that the one using tasks. This might be due to the fact that the timers are

implementing with tasklets, and the changing of context for these takes place more

rapidly. From the two charts we may conclude that WCET
tasks

(receive..breakat1sec)
= WCET

tasks

(receive..breakat100ms)=WCET
tasks

(receive..breakat1ms) ≤ 4µs and

WCET
timers

(receive..breakat1sec) = WCET
timers

(receive..breakat100ms) =
WCET

timers

(receive..breakat1ms) ≤ 2µs

Chapter 7. Results and Discussion 172

.

0

1

2

3

4

5

6

7

8

9

10

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

µs (ȴםͿ

No. Trials

Receive..Break 1 sec

Receive..Break 100 ms

Receive..Break 1 ms

Figure 7.15: Latency Margins For The break Instruction

.

0

1

2

3

4

5

6

7

8

9

10

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

µs (ȴםͿ

No. of Trials

Receive…Break 1 ms

Receive…Break 100 ms

Receive…Break 1 s

Figure 7.16: Latency Margins For The break Instruction Implemented With Timers

Chapter 7. Results and Discussion 173

7.2 Results For The Auto Car Door Case Study With A Test System
Implemented On FreeRTOS

This section presents the results for the test case study whose implementation, based on

FreeRTOS, has been presented in Section 6.2 of Chapter 6. This example is interesting

because it shows all the concepts in combination and the RTTS can be evaluated as a

whole, in a real life scenario, against a real-time SUT.

Figure 7.17 illustrates how the flash signal should look like in order to respect the tested

time requirement that is tested with the test specification listed in Listing 6.32 from

Section 6.2. This time requirement is stated in the following:

“The flash light remains “ON” for no more than 500 clock ticks; or the

interval between a consecutive ON and OFF response is no longer than 500

clock ticks.”

Figure 7.17: One Possible Flash Light Signal Flow

Considering that the tick rate is of 105 Hz then 1000×ticks would be the equivalent

of 10×ms. Figure 7.18 presents an excerpt from a list of results, indicating time in-

tervals between consecutive “on-o↵” messages received from the SUT between one

“Time Blinker ON‘” command and one “Time Blinker OFF” command from the TS.

If the time requirement is changed to a time frame of 200 clock ticks, in order to re-

flect the increased frequency between “on”-“o↵” messages when a “Panic Blinker ON”

command has been issued, the signal will look as illustrated in Figure 7.19. In order

to see if the TS assigns correct verdicts, the behavior of the SUT will be influenced

after a while, to stop the panic blinking, through the issue of a “Panic Blinker OFF”

command, and will start a slower paced blinking in between “Time Blinker ON” and

“Time Blinker OFF” commands. The requirement of 200 clock ticks, equivalent to

Chapter 7. Results and Discussion 174

Figure 7.18: A Sample Of Case Study Results

2×milliseconds, will not be changed and therefore, the new “on”-“o↵” time distance

measurements will be interpreted as failures by the TS.

Figure 7.19: Another Possible Flash Light Signal Flow

By combining di↵erent time restrictions with di↵erent sets of commands sent to the

controller, di↵erent timed behaviors of the SUT were analyzed. Based on the results

we could estimate the precision of the SUT down to the range of a hundreds of a

microsecond. At finer granularity, delays were found, caused by bu↵ered reading on local

ports of the controller. By concatenating and sending long combined control messages,

we received failure, in addition to some of the commands being lost before being read,

as was the case if they exceeded the capacity of the port bu↵er.

The time between sending a command and receiving the response message from the SUT

was also measured. The total time included, beside the reaction time of the SUT, also

the time that both the command-message and the response-message had spend traveling

Chapter 7. Results and Discussion 175

Table 7.1: The Results For The Presented Example

Sent at

(ticks)

Received at

(ticks)

Interval

(ticks)

Constraint

(ticks)

Verdict

2000 2002 2 3000 pass

3000 3001 1 3000 pass

4000 4001 1 3000 pass

5000 5118 118 3000 pass

6000 6002 2 3000 pass

7000 7001 1 3000 pass

8000 8031 31 3000 pass

9000 9001 1 3000 pass

10000 10001 1 3000 pass

11000 11541 541 3000 pass

on the medium. In this case, the medium is the serial cable. For a tick rate of 105 Hz, we

obtained the numbers listed in Table 7.1. All the tests were passed. The table contains

the relative times, measured in the number of clock ticks for sending and for receiving

the message. The real-time constraint was 3000 ticks which means 30×milliseconds.

7.3 Summary

The benchmark of the implementations based on Linux with RTAI showed that their de-

lays and latencies are situated in bounded intervals in the range of microseconds. These

are very good latency levels for most real-time applications [7]. In practice, FreeRTOS

also proved to work very well as a small and purpose-oriented real-time operating system

for testing simple real-time applications. The FreeRTOS implementation was precise and

good at discovering faults of the SUT. The latencies and delays were upper bounded

in the range of microseconds, which was good, but not surprising for a small real-time

operating system. This proves that the realization of concepts, using both FreeRTOS

and Linux with RTAI, serves the goal of this work. The realization of frameworks for

real-time testing that are reliable on a microsecond level has been achived.

Chapter 8

Conclusion

”Reasoning draws a conclusion, but does not make the conclusion certain, unless the

mind discovers it by the path of experience.”

Roger Bacon

As this is the final chapter of this thesis, a short summary of the entire work will be

made and the new perspectives, opened through this research, will be emphasized.

8.1 Summary Of The Thesis

The solution provided in this thesis was concerned with the design and implementation

of a testing framework for real-time embedded applications. The aim is to provide

a standard-based test technology that could be successfully used for automating the

test procedures, especially with regard to the real-time aspects, in domains with rapid

development process and high quality demands like those of the automotive industry.

As stated already in Chapter 1 of this thesis, the applicability and usage of embed-

ded systems in industry has encountered a considerable growth during the past years.

This growth was recorded in many areas such as: automotive, avionics, power plant

control, robotics, etc., where functionality based on embedded controllers represents a

high percentage of the overall functionality. For all these domains, the functionality

of real-time and embedded applications is usually coupled with time requirements that

must be strictly respected.

The boost in application diversity, together with the increased complexity of require-

ments, has triggered a need for a reliable testing procedure, with a new focus: instead of

testing only the functional aspects, the need for testing time-related features emerged.

Di↵erent proprietary testing technologies emerged as a response to that need. Distinct

individual solutions, with their main focus on the time and performance aspects, were

created in order to test real-time applications. Some of these solutions where completely

hardware-based, some were only partial automatized, some were targeting only partic-

ular types of systems. Their evolution was heterogenous and the demand for a common

and standardized approach has emerged.

The real-time testing methodology and framework presented here are based on a stan-

dardized test language that was proven to be popular and successful in the industry, in

176

Chapter 8. Conclusion 177

areas such as mobile and broadband telecommunications, medical system, IT systems

and, more recently, in the automotive industry. The referred language is Testing and

Test Control Notation version 3 (TTCN-3), developed and maintained by European

Telecommunications Standards Institute (ETSI). Having the advantage of being a well

modularized, test-oriented, user friendly and popular, TTCN-3 has also the downside of

not being developed with real-time focus in mind. Thus, it lacks a particular mechanism

for dealing with real-time specific test situation. The insu�ciencies of TTCN-3 language

towards real-time were discussed in detail in Section 4.2.

After investigating the requirements specific to real-time applications and the problems

that arose due to the particularities of those requirements, a short introspection into the

world of real-time programming languages was made. The features that are introduced

by real-time programming languages to produce real-time behaviors were analyzed in

Section 2.1.2. Also, several past attempts of improving TTCN-3 language with new

semantics were referenced and analyzed in Section 3.3. Based on this knowledge, new

concepts for real-time were introduced in TTCN-3 in Chapter 4. These concepts repre-

sent the fundament of the present solution. Some of them were developed in collabora-

tion with the TEMEA [79], a project on the basis of which, the additional standardized

extension for TTCN-3, regarding real-time and performance, was published [80].

The semantics of the real-time test system realized on the basis of enhanced TTCN-3

was defined in Chapter 4, Section 4.5.1, by means of timed automata. For each TTCN-3

instruction that relies on a real-time concept, the associated semantic is represented

as TA. This approach is new and di↵erent from the way semantics of TTCN-3 was

previously defined into the standard. The motivation for choosing TA is that they are

mathematical instruments specialized in modeling timed behavior in a formal way. A

short introduction of TA is provided in Chapter 2, Section 2.1.4. This approach also

opens new and interesting possibilities, as, for example, semantical validation of the

timed TTCN-3 code, based on model-checking methods developed for timed automata.

A more detailed discussion about model-checking with TA is provided in more detail

in Section 2.1.4. In Appendix A the newly proposed concepts are integrated into the

syntactical structure of the TTCN-3 language, by means of clear syntactic rules, based

on extended Backus−Naur Form (ESBNF) notation.

After the syntactical and semantical definition, the algorithmic aspects involved for

implementing the real-time test platform based on these concepts were presented in

Chapter 5. The design of a real-time architecture has also been provided in this chap-

ter. The purpose of this architecture is to logically draw a connection between abstract

test concepts and real-time operating system mechanisms, in a generic way. This means,

by having this perspective, theoretically any real-time operating system presenting the

Chapter 8. Conclusion 178

required mechanisms could realize the behavior implied by a certain real-time test con-

cept. For realizing a concept proof of this approach, a number of the most representative

real-time operating systems were investigated in Section 5.2. As a result of the selection

process, two of those operating systems were chosen for the empirical implementation of

the concepts. Those two operating systems have been presented in Sections 5.3 and 5.4.

In Chapter 6, the mappings between the real-time concepts and actual implementations

on the two chosen platform have been provided. The implementation of the concepts

is structured in such a manner that it can be easily integrated, by means of utility

functions, into the TCI [63] and TRI [62] of TTCN-3.

The mapping implementations of concepts on the two chosen platforms were evaluated

in Chapter 7. Worst case execution times (WCETs) were computed for the introduced

concepts. The concepts were tested in di↵erent contexts of usage. The time determinism

of the TS was measured by pinning time evaluation points at the beginning and ending

of instructions. The obtained results also reflect the time characteristics of the chosen

real-time operating systems such as the delays and the latencies. The results also proved

that the approach works and the implementation of various real-time tests can be ac-

complished with a guarantee of them respecting deadlines in the order of microseconds.

This guarantee is provided for a TS that is having a behavior composed by a set of tasks

that respects the schedulability test for the used scheduling algorithm.

8.2 Main Contributions

The main contribution of this thesis is that it has provided a complete kit for building

a standardized and automatic testing framework for real-time systems. The kit, or

solution, has been revealed as the chapters of this thesis have progressed, from the

introduction of abstract real-time concepts that are integrated into a chosen standardized

testing language, to specific implementations of these concepts on concrete real-time

platforms.

A standardized testing language was needed to provide the possibility of describing tests

in an easy way, a way that can be used and understood without di�culty among di↵erent

stakeholder in the industry. We chose TTCN-3 as a well-designed testing language

with a high degree of popularity and usage in the real world. One challenge of this

work was to identify the aspects regarding the real-time testing where TTCN-3 was not

expressive enough, and to then cover these situations by introducing a minimal set of

concepts that will not burden, but rather enhance the language. The set of concepts

presented here originates from the set of extensions developed in the context of TEMEA

project, in which the author of this thesis was involved [79]. Part of these concepts were

incorporated into the new standard extension [80].

Chapter 8. Conclusion 179

Another highlight of the thesis was that each new TTCN-3 extension has been endowed

with a clear semantic, defined by a well-constructed mathematical formalism. Timed

automata were used to model the introduced concepts and the test system itself. The

semantic developed here established mappings between TTCN-3 abstract test specifica-

tions and timed automata, the conversion being made possible in both directions.

Based on the description of behavior in the previously defined formalism, mappings

between real-time TTCN-3 concepts, and two real-time operating system were realized.

Based on the experience of these two implementations, design patterns were derived.

Delays and latencies were measured for each implemented extended TTCN-3 language

feature in benchmark scenarios. Evaluation of the results led to the conclusion that

the goal was reached. We managed to develop a test framework for real-time, based

on TTCN-3, that has WCETs bounded in the range of microseconds for basic testing

behavior, comprising of a real-time schedule-able set of tasks. These results are very

good, as most of real-time applications have timed requirements in the range of tens of

microseconds. The maximum latencies measured through benckmarking, show that the

RTTS is satisfying the general required timeliness and is appropriate for testing a wide

range of real-time applications.

A case study was conducted as well, to show the applicability of the approach in a small

real-world example. In this case study, the SUT consisted of an ECU controlling the

functionality of a car door. Di↵erently triggered sequences of functionality were required

to be performed with respect to strict time constraints. The real-time test framework

implemented on the basis of a FreeRTOS operating system was proved to be e�cient in

asserting conformance to both functional and timing requirements, with a precision, for

the timing requirements, in the range of microseconds. Some failures in the behavior of

the SUT were also discovered for specific sets of inputs. Thus, a proof of concept was

successfully accomplished.

8.3 Future Work

Building a testing framework for real-time systems is, nevertheless, a very complex topic

to cover completely at one time. The solution is meant to represent a fundament on

which further research should be made. Some ideas for further directions of research

will be presented in the following section.

The mappings from concepts to code, together with the associated syntax and semantics

of these concepts, could be used as a fundament for implementing a compiler, able to

generate platform-specific code from the real-time abstract test specification. In addition

to this, within the scope of this thesis, only two real-time operating systems were chosen

for the proof of concept. There are a wide range of real-time operating systems out

Chapter 8. Conclusion 180

there for selection. Each RTOS provides targeted features for specific classes of real-

time applications. One compiler that could also generate some platform-independent

code, and the possibility of using the generated code with specific libraries that are

implementing functionalities specific to individual platforms would provide a solution

to homogenize the diversity. This could be of great use to a community of real-time

developers interested in extending the solution.

The step of implementing such a compiler was considered outside the scope of the thesis.

The purpose of this thesis was to provide the set of concepts for real-time testing,

together with a clear semantics and to prove that these concepts can be implemented

on concrete real-time platforms.

Because the semantics of the new real-time features which were added to the TTCN-3

language is expressed using TA, an interesting idea would be to implement a translator

from a real-time test specification to a network of timed automata. This would open the

possibility of applying model-checking verification techniques to semantically validate

the real-time test specification. If an automatic translation from TTCN-3 to timed

automata can be performed, the generated timed automata model can be used as an

input for an already existing verification tool, such as Uppaal [134], for example, that

can be used to perform this type of check.

Another future aim of this thesis would be that the set of extensions introduced here

will be fully incorporated into a new standardized extension for TTCN-3.

8.4 Closing Words

Real-time testing is a hot topic now days and has a huge potential of applicability in a

wide range of domains. This work brings its contribution in the field of standardized and

automatized testing for real-time by defining a thorough methodology and a specialized

set of instruments and examples for building a framework for this type of testing. Thus,

considering that the goal presented in the starting chapter of this thesis was achieved, the

greatest aim of this work is to be continued, extended and, most importantly, applied,

in all types of industrial situations.

Appendix A

Syntax For The Real-time Extensions Of TTCN-3

This Appendix contains the syntax for the real-time extensions of TTCN-3 that were

introduced in Chaper 4.

For defining the grammatical structure for the proposed concepts, we use the extended

Backus−Naur Form (BNF) notation, the same one being used by the TTCN-3 specifi-

cation [2]. The symbols of the meta-notation are summarized in Table A.1. Table

A.2 lists the newly introduced concepts into four columns: the first column introduces

the special operations, the second column introduces the temporal predicates, the third

column introduces the predefined constants used to build timespan values, and the last

column lists the newly introduced data types.

Table A.1: The Syntactic Meta-notation

::= is defined to be
abc xyz abc followed by xyz
| alternative
[abc] 0 or 1 instances of abc
{abc} 0 or more instances of abc
{abc}+ 1 or more instances of abc
(...) textual grouping
Abc the non-terminal symbol abc
"abc" a terminal symbol abc

Table A.2: List Of RT-TTCN-3 Terminals Which Are Reserved Words

now at hour datetime

wait within min timespan

break before sec tick

timestamp after millisec

testcasestart not microsec

testcomponentstart nanosec

testcomponentstop

In the following sections, the syntactical rules used for integrating the new concepts into

the grammar of TTCN-3 are presented.

A.1 Data Types Suitable For Expressing Time Values: datetime, timespan,
float, tick

The syntax presented in this section comprehends the rules for integration of the pro-

posed data types, and their values into the grammar of TTCN-3. The syntactic defi-

nitions should be regarded as a formal guidance of how the new data types and values

181

Appendix A. Syntax For The Real-time Extensions Of TTCN-3 182

should be incorporated into the already existing structure of the language, but they also

provide a view of how they relate towards already existing data types and values.

All the formal definitions are accompanied by an example of usage for a better under-

standing of the theory.

PredefinedType::= BitStringKeyword � BooleanKeyword � CharStringKeyword �
IntegerKeyword � VerdictTypeKeyword � FloatKeyword �
DateTimeKeyword � TimeSpanKeyword � TickKeyword ;

DateTimeKeyword::=”datetime”;
TimeSpanKeyword::=”timespan”;
TickKeyword::=”tick”;

PredefinedValue ::=BitStringValue � BooleanValue � CharStringValue �
IntegerValue � VerdictTypeValue � FloatValue �
DateTimeValue � TimeSpanValue � TickValue;

The format of datetime values is ISO 8601:2004 [112] - compliant, and the grammar

rules for building the values are presented in the following section.

Nevertheless, the focus of the thesis has been on the real-time embedded systems, that

don’t imply any distribution and where the timed functionality for investigation evolves

at a micro time scale. Therefore, the emphasis will be on the other time data types.

DateTimeValue::=[FullDate]”T”PartialTime;

FullDate::=(Year”-”Month[”-”Day]) � (Year[”-”Month”-”Day]);
PartialTime::=[PartialBig]” ”PartialSmall;

PartialBig::=([Hour”:”]Minute”:”Second) � ([Hour”:”Minute”:”]Second);
PartialSmall::=Millisecond”:”Microsecond”:”Nanosecond;

Day::=Number; Month::=Number; Year::=Number; Hour::=Number;
Minute::=Number; Second::=Number; Millisecond::=Number;
Microsecond::=Number; Nanosecond::=Number;

Number::=(NonZeroNum{Num}) � ”0”;
Num::=”0” � NonZeroNum;
NonZeroNum::=”1” � ”2” � ”3” � ”4” � ”5” � ”6” � ”7” � ”8” � ”9”;

timespan data value is expressed as a composite expression in which the terms are

represented by float values multiplying predefined units. The domain of timespan values

can be considered an ordered set of durations, denoted as TS. The durations represent

intervals of time that spans between events.

Appendix A. Syntax For The Real-time Extensions Of TTCN-3 183

The indicated "nanosec", "microsec", "millisec", "sec", "min", "hour" are prede-

fined time units which are going to be defined as tool’s constants. We are targeting tests

with the time granularity refined to the nanoseconds level, therefore we are providing

means to explicitly express time intervals up to that micro level.

TimeSpanValue::=TimeSpanValue”+”TimeSpanTerm � TimeSpanTerm;

TimeSpanTerm::=FloatValue”*” NanosecKeyword � FloatValue”*” MicrosecKeyword �
FloatValue”*” MillisecKeyword � FloatValue”*” SecKeyword �
FloatValue”*” MinKeyword � FloatValue”*” HourKeyword;

In this context, the syntax of FloatValue is a simplification of the one in the standard.

FloatValue::=Number[”.”DecimalNumber]
DecimalNumber::={Num}+
NanosecKeyword::=”nanosec”; MicrosecKeyword::=”microsec”;

MillisecKeyword::=”millisec”; SecKeyword::=”sec”;

MinKeyword::=”min”; HourKeyword::=”hour”;

TickValue::=Number;

tick data type represents, at the test specification level, the internal count tick number

of the CPU and it is actually a positive integer initialized at the starting of the system.

The internal count tick number is directly proportional to the frequency of the CPU.

This data type is introduced to provide insight of the timing features of the physical

machine (e.g. ticks per second). Since we are dealing with real-time constraints for

the SUT which are reflected also on the test system side, and since the test system

depends on the physical machine as well, we introduce this concept for accessing low

level information at the level of the test specification.

The tick values might be used, for example, to acknowledge how many internal counts

passed in between two given instructions, or how many internal counts passed from the

initiation of sending a message until the message has actually left the test system.

The time that passes between two clock ticks represent the period of the clock, and it

is inversely proportional with the frequency of the CPU. The period and the frequency

are properties of the CPU. All the durations between events measured using the clock

of the system are divisible by the period of the clock.

The domain associated with this data type will be simply denoted as Ticks.

Appendix A. Syntax For The Real-time Extensions Of TTCN-3 184

A.2 Syntax Of Special Operations Relaying On Time:
now, wait, testcasestart, testomponentstart, testcomponentstop

The proposed operations are introduced in the grammar of TTCN-3 as ControlStatements,

where the non-terminal leaf RTimeStatements has been introduced. This is further re-

fined into non-terminals corresponding to each one of the newly introduced statements.

The newly introduced statements were already generally described in Section 4.4.2.

From the syntactical construction it can be observed that statement now doesn’t require

parameters; it relies on the internal clock of the system, whose current value is returned

every time it is invoked. The value of the clock is returned as a float value, representing

the number of seconds.

The function of the wait statement is to delay the execution of the container thread for

a given period of time. It needs, as parameter, the number of seconds for delay as a

float value and it returns no value.

testcasestart operation should return the value of the internal clock when the current

test case started. The returned value will be a float representing the number of seconds

passed since the internal clock was initialized.

testcomponentstart and testcomponentstop operators should return the value of the

internal clock when the associated test component was started, or stopped respectively.

The associated test component will be given as a reference in the case of a normal test

component, or through the keywords like mtc, or self for designating the main test

component or the current component.

ControlStatement::= TimerStatements � BasicStatements � BehaviourStatements �
SUTStatements � StopKeyword � RTimeStatements;

RTStatements::= NowStatement � WaitStatement � TestCaseStartStatement �
TestComponentStartStatement � TestComponentStopStatement;

NowStatement::= ”now”;

WaitStatement::= ”wait” ”(” FloatValue ”)”;

TestCaseStartStatement::= ”testcasestart”;

TestComponentStartStatement::=[VariableRef � ”mtc” � ”self”] ”.” ”testcomponentstart”;

TestComponentStopStatement::=[VariableRef � ”mtc” � ”self”] ”.” ”testcomponentstop”;

Appendix A. Syntax For The Real-time Extensions Of TTCN-3 185

A.3 Syntax For receive With timestamp

The syntactic rules for this extension of a receive statement in TTCN-3 are presented

below. We introduce the new keyword timestamp which is enhancing the PortRedirect

non-terminal. The timestamp token should be followed by a variable identifier associated

with a variable that is either of float or timespan type. This means that the time value

that is automatically saved when a new message is received can be saved either as float

or as timespan. This value is saved and added to the global list of variables only if the

matching constraints on the port are successfully passed.

ReceiveStatement::=PortOrAny ”.” PortReceiveOp;

PortReceiveOp::=”receive” [”(” ReceiveParameter ”)”][FromClause] [PortRedirect];
PortRedirect::=”→”((ValueSpec[SenderSpec] � SenderSpec)[TimeStampSpec]) �

TimeStampSpec;

TimeStampSpec::=”timestamp”(TimeSpanVarIdentifier � FloatVarIdentifier);
TimeStampVarIdentifier::=Identifier;

FloatVarIdentifier::=Identifier;

Identifier::=Alpha(AlphaNum � Underscore);
Apart from this enhancement of the PortRedirect rule, the syntax of the receive

statement remains unchanged.

A.4 Syntax Of send With timestamp

The previous section (Section A.3) introduced a mechanism for precisely recording the

time value when a message enters into the system. The same necessity, of accurately

saving the time value, turns up also for the moment when the message leaves the system.

Therefore, we extend the syntax and semantics of send instruction accordingly. The

syntactic rules for this extension of a send statement in TTCN-3 are:

SendStatement::= Port”.”PortSendOp;

PortSendOp::=”send””(”SendParameter”)”[ToClause][TimeStampClause];
TimeStampClause::=”→”TimeStampSpec;

The non-terminal TimeStampClause is added to the PortSendOp. The notation for

the timestamp mechanism with send is similar with the one used for receive with

timestamp. Therefore TimeStampSpec non-terminal is reused (see A.3).

A.5 Syntax Of The Temporal Predicates

Temporal predicates are introduced to control the timing of incoming and outgoing

messages. A temporal predicate tp ∈ TP is an expression that specifies a set of time

Appendix A. Syntax For The Real-time Extensions Of TTCN-3 186

points. Such a predicate will match a time point t ∈ TS ∪ F when the time point is

included in the set determined by the predicate tp ∈ TP .

In general we distinguish between simple temporal predicates and complex temporal

predicates. A simple predicate consists of one of the temporal operators at, after, before,

and within and their respective negation (e.g. not before). A complex predicate is a

combination of predicates that are connected by the logical operators or and and.

However, using the temporal operators we are able to specify ranges of date time values

and restrict the availability of TTCN-3 statements with respect to time.

The at operator takes a time value t, t ∈ TS ∪ F and specifies a time constraint

according to that value. The negation of the predicate, not at, specifies the domain

of time values that are either greater or less than the indicated value.

The before and after operators are each parameterized with a time value t, t ∈
TS ∪ F. They specify a range of time points consisting of the values [0, t] in the

case of before and [t,∞) in the case of after. The respective inversions are defined

by (t,∞) and [0, t).
The within operator is parameterized with two time parameters t1 and t2, (t1, t2) ∈
(TS × TS) ∪ (F × F), that directly denote the boundary of the time interval, thus

[t1, t2]. The negation of the within operator is defined by [0, t1) and (t2,∞).

For the time predicates we introduce completely new rules to the syntax of TTCN-3. For

example, TemporalPredicate is a new non-terminal used for defining complex temporal

predicates. Complex temporal predicates are composed from simple temporal predicates,

or from other complex temporal predicates using set conjunctions and, or as well as the

Appendix A. Syntax For The Real-time Extensions Of TTCN-3 187

negation not.

TemporalPredicate::= TemporalAndPredicate �
TemporalAndPredicate”or”TemporalPredicate;

TemporalAndPredicate::= TemporalSinglePredicate �
TemporalSinglePredicate”and”TemporalAndPredicate;

TemporalSinglePredicate::= [”not”](WithinStatement � BeforeAfterAtStatement);
WithinStatement::=”within””(”TimeIntervalFloat � TimeStampInterval”)”;

TimeIntervalFloat::=(FloatVarIdentifier � FloatValue)
”..”(FloatVarIdentifier � FloatValue);

TimeStampInterval::=(TimeStampVarIdentifier � TimeStampValue)
”..”(TimeStampVarIdentifier � TimeStampValue);

BeforeAfterAtStatement::=BeforeStatement � AfterStatement � AtStatement;

Simple temporal predicates are of the types WithinStatement or BeforeAfterAtStatement.

As presented in the following, WithinStatement predicate requires two time param-

eters which could be expressed either as float values or as timespan values. The

BeforeAfterAtStatement predicates require only one time parameter, expressed also

as float or timespan.

BeforeStatement::=”before”(FloatVarIdentifier � FloatValue � TimeStampVarIdentifier � TimeStampValue);
AfterStatement::=”after”(FloatVarIdentifier � FloatValue � TimeStampVarIdentifier � TimeStampValue);
AtStatement::=”at”(FloatVarIdentifier � FloatValue � TimeStampVarIdentifier � TimeStampValue);

A.6 Syntax For The receive Instructions Which Verify Incoming Com-
munication

Applied to receiving TTCN-3 statements (e.g. receive, getcall, getreply, trigger,

catch etc.) the temporal predicates yield as a verification instrument. They are inte-

grated in the TTCN-3 matching mechanism and influence the evaluation of the input

queues. That is, a receiving statement with a temporal predicate attached, is only pro-

cessed successfully when - like in ordinary TTCN-3 - the message value conforms to the

value template and - introduced for RT-TTCN-3 - the reception time associated with

the message conforms to the temporal predicate. A message conforms to a temporal

predicate if, and only if, its time of reception t
timestamp

is included in the time interval

defined by the temporal predicate t
template

, t
template

∈ TP , where TP represents the set

of all time predicates.

Appendix A. Syntax For The Real-time Extensions Of TTCN-3 188

The syntactic extension for the receive statement is given below. The temporal operators

can also be applied to trigger, getcall, getreply, and catch statements.

ReceiveStatement::=PortOrAny”.”PortReceiveOp

PortReceiveOp::=”receive” [”(” ReceiveParameter ”)”][FromClause][TemporalPredicate] [PortRedirect];
The non-terminal to be enhanced is in this situation PortReceiveOp, to which the non-

terminal TemporalPredicate, that has been defined in the previous section (A.5) is

added. The syntax is extended in a consistent manner with previous enhancements.

Therefore, the syntax of receive operation now incorporates both extensions for time

stamping mechanism and for the usage of time predicates.

A.7 Syntax For send Instructions Which Control Outgoing Communi-
cation

Applied to sending TTCN-3 statements (e.g. send, call, reply etc.) the usage of time

predicates for expressing time constraints on the outgoing communication causes the

test system to ensure that the statement will be executed in time. Thus, the test system

suspends the execution of the component until the first possible temporal match occurs

and then continues by dispatching the message or procedure call. Please note, if the

system is delayed beyond the accepted time bounds – i.e. no temporal match is possible

any more – the test system continues the execution by setting an error verdict. The

syntactical extension introduced for adding temporal predicates for all TTCN-3 sending

statements are exemplified by the send statement. The extensions for call, reply, and

raise are defined similar.

The following grammar rules make visible how the PortSendOp is enhanced with the

AtStatement node which is incrementally added to the previously enhanced structure

(see Section A.4).

SendStatement::= Port”.”PortSendOp;

PortSendOp::=”send””(”SendParameter”)”[ToClause][TimeStampClause][AtStatement];
From all the time predicates that were introduced in Section A.5 only at statement was

considered to be appropriate for expressing constraints on the sending of messages. The

other statements would have introduced a time non-determinist on the test system side.

A.8 Syntax For alt Instructions Which Control Incoming Communi-
cation

As we showed in the previous sections – Sections A.6, A.7 – using temporal predicates

we are able to define timing constraints for outgoing communication and also to ver-

ify the timings of the incoming messages. The paradigm of imposing time limits for

Appendix A. Syntax For The Real-time Extensions Of TTCN-3 189

communication on ports can be also applied for statements such as alt or interleave

which might handel incoming communication on more than one port.

The syntactical structure is exemplified by the definition of the alt statement, in the

following grammar rule:

AltStatement::=”alt”AltGuardList[”break”AtStatement][StmtBlock]
The structure of AltStatement non-terminal has been enhanced with a continuation

sequence introduced by the break keyword. This would interrupt the behavior of the

alt at a certain point in time, if no valid message has been received meanwhile. It

provides a meaningful alternative to the blocking behavior of an alt, keeping the T S
from being blocked for an unlimited amount of time. The interruption will trigger a

handling routine which will acknowledge the time overflow and might also do some

additional configurations.

A.9 Syntax For Instructions Controlling The Starting And Stoping Of
Test Components

StartTCStatement::=ComponentOrDefaultReference”.””start”
”(”FunctionInstance”)”[TimeStampSpec]� ComponentOrDefaultReference”.””start”

”(”FunctionInstance”)”[AtStatement]
StopTCStatement::=”stop”[TimeStampSpec][AtStatement]� (ComponentReferenceOrLiteral”.””stop”)[TimeStampSpec][AtStatement]� ”all””component””.””stop”[TimeStampSpec][AtStatement];

Appendix B

Predefined Conversion Functions

This Appendix contains the functions designed to realize the conversions between the

di↵erent formats proposed for representing time. These formats were introduced as new

Real-time TTCN-3 data types in Section 4.4.1 of Chapter 4.

B.1 Converting timespan Values To float

The conversion function presented in this section is responsible with transforming a value

of a time interval, that is represented in timespan format, to a float value representing

the equivalent number of seconds for that time interval.

B.1.1 Syntactic structure:

This syntax is provided for integrating the function into the grammar of TTCN-3.

timespan2seconds(TimeSpanValue)
B.1.2 Signature:

float timespan2seconds(timespan p_timespan);

The signature of the function is presented here. As displayed, the function takes a

timespan value as an input parameter and on its basis, it returns a float value. The

float value represents the equivalent number of seconds that were computed on the

basis of the input parameter.

B.1.3 Semantic description:

The function returns a float value, which represents the equivalent in seconds of the

timespan value given as parameter. It is a conversion function whose computing logic

is synthesized in Rule B.1.

ts = a ∗ hour + b ∗min + c ∗ sec + d ∗milisec + e ∗microsec + f ∗ nanosec,
ts ∈ TS,{a, b, c, d, e, f} ∈ F
timespan2seconds(ts)→

(a ∗ 60 ∗ 60 + b ∗ 60 + c + d ∗ 10−3 + e ∗ 10−6 + f ∗ 10−9) ∈ F
(B.1)

190

Appendix B. Predefined conversion functions 191

B.2 Converting Seconds To A timespan Value

The conversion function presented in this section is responsible with transforming a value

of a time interval, that is represented in number of seconds as float, to an equivalent

representation as timespan value. This function is complementary to the one from the

previous section (Section B.1).

B.2.1 Syntactic structure:

This syntax is provided for integrating the function into the grammar of TTCN-3.

seconds2timespan(FloatValue)
B.2.2 Signature:

timespan seconds2timespan(float p_number_of_seconds);

The signature of the function is presented here. As it shows, the function takes a float

value as an input parameter and on its basis, it returns a timespan value. The timespan

is computed on the basis of the input parameter as indicated in Rule B.2.

B.2.3 Semantic description:

This function should return a timespan value which has been created on the basis of

the number of seconds provided as a float parameter. This function is introduced for

compatibility purposes and for the easy manipulation of time values. It is a conversion

function whose computing logic is synthesized in Rule B.2.

s ∈ F
seconds2timespan(s)→ (s ∗ sec) ∈ TS (B.2)

B.3 Converting tick Values To Seconds

The conversion function presented in this section is responsible for transforming a value

of a time interval, that is represented in clock tick format, to a float value representing

the equivalent number of seconds for that time interval.

B.3.1 Syntactic structure:

This syntax is provided for integrating the function into the grammar of TTCN-3.

ticks2seconds(TickValue)
B.3.2 Signature:

float ticks2seconds(tick p_number_of_ticks);

Appendix B. Predefined conversion functions 192

The signature of the function is presented here. As displayed, the function takes a clock

tick value as an input parameter and on its basis, it returns a float value. The float

value represents the equivalent number of seconds that were computed on the basis of

the input parameter.

B.3.3 Semantic description:

The returned value will be a float number indicating how many seconds are associated

with the given number of clock ticks. If the frequency f of the internal clock of the

system is given as ticks per second, the calculation is performed as following in Rule

B.3:

�t = 1
f

∈ F, ticks ∈ Tick
ticks2seconds(ticks)→ �t ∗ ticks (B.3)

B.4 Converting Seconds To A tick Value

The conversion function presented in this section is responsible for transforming a value

of a time interval, that is represented in number of seconds as float, to an equivalent

representation as clock tick value. This function is complementary to the one from the

previous section (Section B.3).

B.4.1 Syntactic structure:

This syntax is provided for integrating the function into the grammar of TTCN-3.

seconds2ticks(FloatValue)
B.4.2 Signature:

tick seconds2ticks(float p_number_of_seconds);

The signature of the function is presented here. As displayed, the function takes a float

value as an input parameter and on its basis, it returns a clock tick value. The clock

tick is computed on the basis of the input parameter as indicated in Rule B.4.

B.4.3 Semantic description:

The function returns a natural number value which represents the number of processor

ticks that passed in the time interval given as parameter. The parameter is a float

value representing the interval of time in seconds. Based on the frequency of the clock,

the function evaluation rule is expressed in Rule B.4.

�t = 1
f

, s ∈ F
seconds2ticks(s)→ � s

�t

� (B.4)

Appendix B. Predefined conversion functions 193

In order to complete semantic specification from Subsection C, the sematic for the eval-

uation of the comparison expressions with timespan values is presented in the following:

timespan2seconds(ts1)BOPtimespan2seconds(ts2)→ true,

BOP ∈ CompOP

ts1BOPts2 → true

(B.5)

timespan2seconds(ts1)BOPtimespan2seconds(ts2)→ false,

BOP ∈ CompOP

ts1BOPts2 → false

(B.6)

Appendix C

Time Expressions With Numerical And Logical

Operators

This Appendix contains the semantics for time expressions with numerical and logical

operators. The time expressions are evaluated to values of di↵erent time data types.

These time data types were introduced as new Real-time TTCN-3 data types in Sec-

tion 4.4.1 of Chapter 4.

Let us consider the following domains for the data types previously introduced: TS for

the timespan values, F for floats, and Ticks for tick values. Additionally, we consider

N>0 for natural strict positive numbers, and Bool for boolean set {true, false}.
In the following we present the semantics for typing expressions that are built with

operands from these domains. The operators for building the expressions are the binary

mathematical and comparison operators: NumOP = {+,−,∗, �}, CompOP = {<,>,≥,≤
,==}, where the domains on which the numerical and comparison operators are applied

are as follows:

+ ∶ TS ×TS→ TS, or in infix notation : TS +TS→ TS
− ∶ TS ×TS→ TS, or in infix notation : TS +TS→ TS
∗ ∶ (F�N) ×TS→ TS, or in infix notation : (F�N) ∗TS→ TS
� ∶ TS × (F∗�N∗)→ TS, or in infix notation : TS�(F∗�N∗)→ TS
<∶ TS ×TS→ Bool, or in infix notation : TS < TS→ Bool
>∶ TS ×TS→ Bool, or in infix notation : TS > TS→ Bool
≤∶ TS ×TS→ Bool, or in infix notation : TS ≤ TS→ Bool
≥∶ TS ×TS→ Bool, or in infix notation : TS ≥ TS→ Bool
==∶ TS ×TS→ Bool, or in infix notation : TS == TS→ Bool

The semantics for typing the expressions is going to be build in the following manner:

The assertion that if S1, S2, S3...Sn

, all of which evaluates to true, implies statements S

evaluates to true, is represented by S1,S2,S3...Sn

S

.

If e is an expression and v is a value, then e → v means that expression e evaluates

to value v; if e and e′ are two given expressions, then e → e′ means that expression e

evaluates to e′. If f(t) has a one variable function and e(t) is one expression in which

variable t is not bound to a fixed value, then f(t) → e(t) means that f(t) evaluates to
194

Appendix C. Time Expressions With Numerical And Logical Operators 195

e(t). We consider as an implicit assumption that v → v, that means that v evaluates

always to v, where v is a value.

Based on these conventions, we define the type semantics of expressions trough the

following rules:

In Rule C.1 there are two timespan values in the canonical format, and the result of

the addition is also a timespan value, presented also in the canonical format.

ts1, ts2 ∈ TS
ts1 = h1 ∗ hour +m1 ∗min + s1 ∗ sec +ms1 ∗milisec + µs1 ∗microsec + ns1 ∗ nanosec,
ts2 = h2 ∗ hour +m2 ∗min + s2 ∗ sec +ms2 ∗milisec + µs2 ∗microsec + ns2 ∗ nanosec

ts1 ± ts2 ∈ TS ∧ ts1 ± ts2 = (h1 ± h2) ∗ hour + (m1 ±m2) ∗min+(s1 ± s2) ∗ sec + (ms1 ±ms2) ∗milisec+(µs1 ± µs2) ∗microsec + (ns1 ± ns2) ∗ nanosec
(C.1)

Rules C.2, C.3 show how an expression which evaluates to a timespan value should be

also typed as timespan, and the additive composition of two such expressions evaluate

to a timespan value as well. Rules C.4, and C.5 show how multiplication with a float

or natural value a↵ect the type of the formed expression. Furthermore, Rules C.6, C.7

state that the expression formed by comparing two timespan values should be typed

as boolean, and the same will happen with the comparison of two expressions of type

timestamp.

e→ ts, ts ∈ TS
e ∈ TS (C.2)

e1 → ts1, e2 → ts2, ts1, ts2 ∈ TS
e1 ± e2 → ts1 ± ts2 (C.3)

x ∈ F ∪N>0, ts ∈ TS
x ∗ ts ∈ TS (C.4)

e→ ts, x ∈ F, ts ∈ TS
x ∗ e→ x ∗ ts (C.5)

ts1, ts2 ∈ TS,BOP ∈ CompOP

ts1BOPts2 ∈ Bool (C.6)
e1 → ts1, e2 → ts2

e1BOPe2 → ts1BOPts2
(C.7)

In the following, the same rules(C.8 – C.14) apply also to the tick values, which are

basically natural numbers, which makes the typing semantic to be trivial.

tick1, tick2 ∈ Ticks
tick1 ± tick2 = tick′ ∈ Ticks (C.8)

e→ tick, tick ∈ Ticks
e ∈ Ticks (C.9)

e1 → tick1, e2 → tick2, tick1, tick2 ∈ Ticks
e1 ± e2 → tick2 ± tick2 (C.10)

Appendix C. Time Expressions With Numerical And Logical Operators 196

x ∈ F ∪N>0, tick ∈ Tick
x ∗ tick ∈ Ticks (C.11)

e→ tick, tick ∈ Ticks, x ∈ F ∪N>0
x ∗ e→ x ∗ tick (C.12)

tick1, tick2 ∈ Ticks,BOP ∈ CompOP

tick1BOPtick2 ∈ Bool (C.13)

e1 → tick1, e2 → tick2
e1BOPe2 → tick1BOPtick2

(C.14)

Some predefined conversion functions for translating the data from one format to another

are provided in Appendix B.

Appendix D

Semantics Completions Of The Real-time Exten-

sions Of TTCN-3 Using Logic Rules

This Appendix contains the complementary logic rules to the semantics of the new

real-time extensions for TTCN-3, which has been presented in section 4.5, Chapter 4.

The conventions used for expressing the semantics of the automata through logic rules

takes the following form: instruction ∶ antecedent(s)
conclusion

[side condition]
D.1 Semantics Of Special Operations Relaying On Time:

now, wait, testcasestart, testcomponentstart, testcomponentstop

The semantic rules expressing the functionality of the clock and now automata are

presented below. Rule D.1 states that the edge from state S
clock

to itself is transited

when the guard c
clock

== �t is satisfied. During the transition, the value of c
clock

is also

updated. Rules D.2, D.3 state that the edges from state S
now

to itself are transited

when the signals tick!, and respectively now! are received. During the transitions, the

values of c0 and v
now

are updated accordingly.

clock ∶ S
clock

c

clock

==�t,tick!,c
clock

∶=0�������������→ S
clock

if (c
clock

== �t) then S
clock

→ tick!S
clock

∧ c
clock

∶= 0[cclock ∈ Clocks] (D.1)

now ∶ S
now

tick?,c0∶=c0+�t��������→ S
now

tick!S
now

→ S
now

∧ c0 ∶= c0 + �t[c0 ∈ Clocks] (D.2)

now ∶ S
now

now?,v
now

∶=c0��������→ S
now

now!S
now

→ S
now

∧ v
now

∶= c0 [vnow ∈ VarList] (D.3)

The result of the composition of the two automata might be expressed through rule D.4.

The transition of the composed automata is triggered by the satisfaction of guard

c
clock

== �t. During the transition, the values of the two clocks - c
o

and c
clock

- are

updated.

now, clock ∶ (S
clock

∧ S
now

) ∧ c
clock

== �t
(S

clock

∧ S
now

)→ (S
clock

∧ S
now

) ∧ c0 ∶= c0 + �t ∧ c
clock

∶= 0[c0, cclock ∈ Clocks]
(D.4)

197

Appendix D. Semantics Completions Using Logic Rules 198

Rules D.5, D.6 D.7 express the semantics of transitions on the three edges of the wait

automata. It should be emphasized that the wait automata synchronizes with the clock

automata through the tick signal.

wait ∶ S
wait

tick?,c
wait

∶=c
wait

+�t�����������→ S
wait

tick!S
wait

→ S
wait

∧ c
wait

∶= c
wait

+ �t[cwait

∈ Clocks] (D.5)

wait ∶ S
wait

(u−�✏)≤c
wait

≤(u+�✏)�����������→ S
next

if ((u − �✏) ≤ c
wait

≤ (u + �✏)) then S
wait

→ S
next

[c
wait

∈ Clocks, u ∈ R+] (D.6)

wait ∶ S
wait

c

wait

>(u+�✏)�������→ S
error

if (c
wait

> (u + �✏)) then S
wait

→ S
error

[c
wait

∈ Clocks, u ∈ R+] (D.7)

testcasestart ∶ S
tc start

now!,v
testcasestart

∶=v
now�������������→ S

next

S
tc start

→ now!S
next

∧ v
testcasestart

∶= v
now

[v
testcasestart

, v
now

∈ VarList]
(D.8)

In Rule notation the semantics of the testcasestart, testcomponentstart and

testcomponentstop is presented in(D.8, D.9 and D.10).

testcomponentstart ∶
Si

comp start

now!,vi
testcomponentstart

∶=v
now�����������������→ S

next

S
comp start

→ now!S
next

∧ vi
testcomponentstart

∶= v
now

[vi
testcomponentstart

, v
now

∈ VarList]
(D.9)

testcomponentstop ∶
Si

comp stop

now!,vi
testcomponentstop

∶=v
now����������������→ S

next

S
comp stop

→ now!S
next

∧ vi
testcomponentstop

∶= v
now

[vi
testcomponentstop

, v
now

∈ VarList]
(D.10)

D.2 Semantics For receive With timestamp

The transition branches of the state automata from Figure 4.9 and from Figure 4.10 are

expanded into the set of Rules D.11, D.12 and D.13, D.14, D.15 accordingly.

Rule D.11 states that if a new message is received the timed automata transits from the

waiting state into a service state when the current time is asked through the use of the

now! signal and the value is saved in a time stamp associated with the received message.

Appendix D. Semantics Completions Using Logic Rules 199

Both the message and the time stamp are enqueued in a queue associated with the port

on which the message arrived. The Rule D.12 continues the input handling routine by

sending a wake up message to the timed automata responsible with the checking of the

message and after that it returns to the waiting state.

receive ∶
S
receive

ch

i

(e?),msg

ij

∶=input(ch
i

)��������������→ Si

rcv timestamp

∧
Si

rcv timestamp

now!,timestamp

ij

∶=v
now

,queue

i

.enqueue(msg

ij

,timestamp

ij

)���������������������������������→ Si

start match

ch
i

(e!)S
receive

→ now!Si

start match

∧
msg

ij

= input(ch
i

) ∧ timestamp
ij

= v
now

∧
queue

i

.enqueue(msg
ij

, timestamp
ij

)

(D.11)

receive ∶
Si

start match

queue

i

!����→ S
receive

Si

start match

→ queue
i

!S
receive

[queue
i

! ∈ A′] (D.12)

Rules D.13-D.15 describe the logic of the match automata: when the wake up signal

is received it takes the message from the associated queue and tries to match it against

the given template; if the match fails, it returns to the waiting state, and if the match

succeeds it saves both message and timestamp into variables which are then added to

the VarList, not before sending the received! signal to inform the T S that the received

operation succeeded and it should move forward.

match ∶
Si

match wait

queue

i

?����→ Si1
match

queue
i

!Si

match wait

→ Si1
match

∧ (msg
ij

, timestamp
ij

) ∶= queue
i

.dequeue() (D.13)

match ∶
Si1
match

∧ msg
ij

∈ Tmpl
i1

Si1
match

→ received!Si

match stop

∧ VarList ∶= VarList�{msg
ij

, timestamp
ij

} (D.14)

match ∶
Si1
match

∧ msg
ij

∉ Tmpl
i1

Si1
match

→ Si

match wait

(D.15)

D.3 Semantics Of send With timestamp

Rules D.16, D.17 expand the logic of the transitions in the send state automata. From

state S
send

to state Si

snd timestamp

the output event is triggered. On the transition

between Si

snd timestamp

current time is requested and saved to a global variable. Time

request is addressed to the now automata (see A.2) which is running in the background.

Appendix D. Semantics Completions Using Logic Rules 200

send ∶
S
send

ch

i

(e!)���→ Si

snd timestamp

S
send

→ ch
i

(e!)Si

snd timestamp

[ch
i

(e!) ∈ Ch
i

(A
out

)] (D.16)

send ∶
Si

snd timestamp

now!,s tmestamp∶=v
now�������������→ S

next

S
send

→ S
next

∧ s timestamp ∶= v
now

∧ VarList ∶= VarList ∪ {s timestamp
ij

} (D.17)

D.4 Semantics Of The Temporal Predicates

The semantics for evaluating temporal predicates is going to be build in the following

manner:

The assertion that if S1, S2, S3...Sn

, all of which evaluates to true, implies statements S

evaluates to true, is represented by S1,S2,S3...Sn

S

. If e is an expression and v is a value,

then e→ v means that expression e evaluates to value v.

Rules D.18, D.20, D.22, D.24, D.26, D.27 are validity rules, stating that there are values

of the requested types that could fulfill the predicates, or that the predicates are valid.

Rules D.19, D.21, D.23, D.25 describe how it is established whether or not a given value

fulfills the indicated predicate.

within(tp1, tp2) ∶ tp1, tp2 ∈ TP∃t ∈ TP ∧ tp2 ≤ t ≤ tp2 (D.18)

within
t0(tp1, tp2) ∶ t0, tp1, tp2 ∈ TP

if (tp1 ≤ t0 ≤ tp2)
then within

t0(tp1, tp2)→ true

else within
t0(tp1, tp2)→ false

(D.19)

before tp ∶ tp ∈ TP
∃t ∈ TP ∧ tp ≤ t (D.20)

before
t0 tp ∶ t0, tp ∈ TP

if (t0 ≤ tp)
then before

t0 tp→ true

else before
t0 tp→ false

(D.21)

after tp ∶ tp ∈ TP
∃t ∈ TP ∧ tp ≥ t (D.22)

Appendix D. Semantics Completions Using Logic Rules 201

after
t0 tp ∶ t0, tp ∈ TP

if (t0 ≥ tp)
then after

t0 tp→ true

else after
t0 tp→ false

(D.23)

at tp ∶ tp ∈ TP
∃t ∈ TP ∧ tp == t (D.24)

at
t0 tp ∶ t0, tp ∈ TP

if (t0 == tp)
then at

t0 tp→ true

else at
t0 tp→ false

(D.25)

TP1 or TP2 ∶ TP1, TP2 ⊂ TP∃t ∈ TP ∧ (t ∈ TP1 ∨ t ∈ TP2) (D.26)

TP1 and TP2 ∶ TP1, TP2 ⊂ TP∃t ∈ TP ∧ (t ∈ TP1 ∧ t ∈ TP2) (D.27)

D.5 Semantics For The receive Instructions Which Verify Incoming
Communication

Rules D.28, D.29 which describes the transitions for the receive with time predicate

automata are identical with the ones for the receive with timestamp automata. Newly

introduced in this context, is Rule D.30, indicating a transition to an error state.

receive with time predicate ∶
S
receive

ch

i

(e?),msg

ij

∶=input(ch
i

)��������������→ Si

rcv timestamp

∧
Si

rcv timestamp

now!,timestamp

ij

∶=v
now

,queue

i

.enqueue(msg

ij

,timestamp

ij

)���������������������������������→ Si

start match

ch
i

(e!)S
receive

→ now!Si

start match

∧
msg

ij

= input(ch
i

) ∧ timestamp
ij

= v
now

∧
queue

i

.enqueue(msg
ij

, timestamp
ij

)

(D.28)

receive with time predicate ∶
Si

start match

queue

i

!����→ S
receive

Si

start match

→ queue
i

!S
receive

[queue
i

! ∈ A′] (D.29)

Appendix D. Semantics Completions Using Logic Rules 202

receive with time predicate ∶
S
receive

stop receive?�������→ S
error

stop receive!S
receive

→ S
error

(D.30)

The rules for describing the transitions of the match automata are presented below.

After the automata is woken up by the queue
i

signal in Rule D.31, the automata enters

a state where the time constraints are to be matched. These are verified based on the

time stamp that was taken and saved when the message arrived, timestamp
ij

. If this

verification is passed, the transition for the next match, the structural match state, is

taken (Rule D.32). If the time predicate has not yet been satisfied, but is still a valid

predicate - there are chances left for a future incoming message to satisfy it - then the

automata transits back to the waiting state in Rule D.33. If the time predicate was not

yet satisfied and the predicate becomes invalid - the time frame expired - then the match

automata signalizes error to the receive and enters a terminal error state in Rule D.34.

If the time predicate was satisfied after state Si1
match time

then the transition is taken to

the structural matching state. If the structural matching is passed, then the received!

signal is emitted to the receive automata and the receive with time constraints

operation will be successfully accomplished in Rule D.35. Si

match stop

represents a ter-

minal state as well. This state indicates a successful termination of the process. If the

structural match is not passed, the match automata transits back to the initial waiting

state in Rule D.36.

match ∶
Si

match wait

queue

i

?����→ Si1
match time

queue
i

!Si

match wait

→ Si1
match time

∧ (msg
ij

, timestamp
ij

) ∶= queue
i

.dequeue() (D.31)

match ∶
Si1
match time

timestamp

ij

∈TP���������→ Si1
match

∧ timestamp
ij

∈ TP
i1

Si1
match time

→ Si1
match

(D.32)

match ∶
Si1
match time

timestamp

ij

∉TP

i1����������→ S
error

∧
timestamp

ij

∉ TP
i1 ∧ (∃t ∈ R+, t > timestamp

ij

∧ t ∈ TP
i1)

Si1
match time

→ Si

match wait

(D.33)

match ∶
Si1
match time

timestamp

ij

∉TP

i1����������→ S
error

∧
timestamp

ij

∉ TP
i1 ∧ (�t ∈ R+, t > timestamp

ij

∧ t ∈ TP
i1)

Si1
match time

→ Si

match wait

(D.34)

Appendix D. Semantics Completions Using Logic Rules 203

match ∶
Si1
match

∧ msg
ij

∈ Tmpl
i1

Si1
match

→ received!Si

match stop

∧ VarList ∶= VarList�{msg
ij

, timestamp
ij

} (D.35)

match ∶
Si1
match

∧ msg
ij

∉ Tmpl
i1

Si1
match

→ Si

match wait

(D.36)

D.6 Semantics For send Instructions Which Control Outgoing Com-
munication

The Rules D.37, D.38 express the semantics of the transitions for the above presented

timed automata. At every clock tick the current time value is interrogated. If the current

time value is greater than the upper tolerated time limit, then the send operation could

not be executed as scheduled, and an error routine is triggered.

send at ∶
S
send

tick?,now!,t
max

−�✏≤v
now

≤t
max

+�✏,ch
i

(e!)�����������������������→ S
next

∧ t
max

− �✏ ≤ (now!v
now

) ≤ t
max

+ �✏
tick!S

send

→ ch
i

(e!)S
next

(D.37)

send at ∶
S
send

tick?,now!,v
now

>t
max

+�✏�������������→ S
error

∧ (now!v
now

) > t
max

+ �✏
tick!S

send

→ S
error

(D.38)

D.7 Semantics for alt Instructions which Control Incoming Commu-
nication

The functionality of the alt automata is captured also by Rules D.39-D.43.

Once received and time-stamped, the message is passed to the extended match automata,

to be verified whether or not it respects the temporal and structural constraints associ-

ated with that port. The match automata defined here represents a generalization for the

automata presented in Figure 4.13. In an alt statement one port might be used in more

than one receive branches. On each of the receive branches there might be temporal

and structural constraints expressed as time predicates and message templates. We con-

sider one match automata to be responsible for verifying all the constraints associated

with the port correspondent to that automata. The matching will be performed in order

in which the receive branch has been encountered inside the alt statement, from top

to the bottom. The first (lth) matching state of the couples – time constraint (TP
ij

),

structural constraint (Tmpl
ij

) – this is satisfied by the received message triggering the

receive
il

! signal which indicates to the alt automata that one of the branches has been

satisfied. This becomes a success scenario when the alt is satisfied, the extended match

Appendix D. Semantics Completions Using Logic Rules 204

automata reaches a successful terminal state and the execution of the test system moves

to the next state. This functionality is expressed by the Rules D.44-D.51.

If the match is not successful, despite trying all the constraints associated with the port,

the extended match automata associated with that port moves into a waiting state.

If none of the branches of the alt statement were satisfied in the required amount of

time indicated by the parameter of the alt statement, then the execution of the alt

automata is interrupted by a signal given by the wait alt automata. This signalize that

an alternative error behavior should be run in this situation. This alternative behavior is

the one associated with the break instruction. Rules D.44, D.45 are used for describing

this behavior.

alt ∶
S
alt

ch

i

(e?),msg

ij

∶=input(ch
i

)��������������→ Si

rcv timestamp

ch
i

(e!)S
alt

→ Si

rcv timestamp

∧ msg
ij

∶= input(ch
i

) (D.39)

alt ∶
Si

rcv timestamp

now!,timestamp

ij

∶=v
now

,queue

i

.enqueue(msg

ij

,timestamp

ij

)���������������������������������→ Si

start match

Si

rcv timestamp

→ Si

start match

∧ timestamp
ij

∶= v
now

∧
queue

i

.enqueue(msg
ij

, timestamp
ij

)
(D.40)

alt ∶
Si

start match

queue

i

!����→ S
alt

Si

start match

→ queue
i

!S
alt

(D.41)

alt ∶
S
alt

received

il

?������→ Sj

brunch

∧ Sj

brunch

→ S
next

received
il

!S
alt

→ S
next

[B(queue
i

, TP
il

, Tmpl
il

) = branch
j

] (D.42)

alt ∶
S
alt

break?���→ S
break

break!S
alt

→ S
break

(D.43)

wait alt ∶
S
wait alt

tick?,now!,v
now

<t
max

+�✏�������������→ S
wait alt

∧ now!v
now

< t
max

+ �✏
tick!S

wait alt

→ S
wait alt

(D.44)

wait alt ∶
S
wait alt

tick?,now!,v
now

≥t
max

+�✏,break!�����������������→ S
alt stop

∧ now!v
now

≥ t
max

+ �✏
tick!S

wait alt

→ break!S
alt stop

(D.45)

Appendix D. Semantics Completions Using Logic Rules 205

match alt ∶
Si

match wait

queue

i

?,(msg

ij

,timestamp

ij

)∶=queue
i

.dequeue()��������������������������→ Si

match

queue
i

!Si

match wait

→ Sij

match

∧ (msg
ij

, timestamp
ij

) ∶= queue
i

.dequeue() (D.46)

match alt ∶
Si1
match

msg

ij

∈Tmpl

i1 ∧ timestamp

ij

∈TP

i1,receivedi1!,VarList∶=VarList�{msg

ij

,timestamp

ij

}���→ Si

match stop

∧
msg

ij

∈ Tmpl
i1 ∧ timestamp

ij

∈ TP
i1

Si1
match

→ received
i1S

i

match stop

∧
VarList ∶= VarList�{msg

ij

, timestamp
ij

}
(D.47)

match alt ∶
Si1
match

msg

ij

∉Tmpl

i1 ∨ timestamp

ij

∉TP

i1�������������������→ Si2
match

∧
msg

ij

∉ Tmpl
i1 ∨ timestamp

ij

∉ TP
i1

Si1
match

→ Si2
match

(D.48)

match alt ∶
Si2
match

msg

ij

∈Tmpl

i2 ∧ timestamp

ij

∈TP

i2,receivedi2!,VarList∶=VarList�{msg

ij

,timestamp

ij

}���→ Si

match stop

∧
msg

ij

∈ Tmpl
i2 ∧ timestamp

ij

∈ TP
i2

Si2
match

→ received
i2S

i

match stop

∧
VarList ∶= VarList�{msg

ij

, timestamp
ij

}
(D.49)

...

match alt ∶
Sib

i

match

msg

ij

∈Tmpl

ib

i

∧ timestamp

ij

∈TP

ib

i

,received

ib

i

!,VarList∶=VarList�{msg

ij

,timestamp

ij

}��→ Si

match stop

∧
msg

ij

∈ Tmpl
ib

i

∧ timestamp
ij

∈ TP
ib

i

Sib

i

match

→ received
ib

i

Si

match stop

∧
VarList ∶= VarList�{msg

ij

, timestamp
ij

}
(D.50)

match alt ∶
Sib

i

match

msg

ij

∉Tmpl

ib

i

∨ timestamp

ij

∉TP

ib

i��������������������→ Si

match wait

∧
msg

ij

∉ Tmpl
ib

i

∨ timestamp
ij

∉ TP
ib

i

Sib

i

match

→ Si

match wait

(D.51)

Appendix D. Semantics Completions Using Logic Rules 206

D.8 Semantics For Instructions Controlling The Starting And Stoping
Of Test Components

start component at ∶
S
start comp

tick?,now!,t
max

−�✏≤v
now

≤t
max

+�✏,ch
i

(e!)�����������������������→ S
next

∧ t
max

− �✏ ≤ (now!v
now

) ≤ t
max

+ �✏
tick!S

send

→ ch
i

(e!)S
next

(D.52)

start component at ∶
S
start comp

tick?,now!,v
now

>t
max

+�✏�������������→ S
error

∧ (now!v
now

) > t
max

+ �✏
tick!S

send

→ S
error

(D.53)

stop component at ∶
S
stop comp

tick?,now!,t
max

−�✏≤v
now

≤t
max

+�✏,ch
i

(e!)�����������������������→ S
next

∧ t
max

− �✏ ≤ (now!v
now

) ≤ t
max

+ �✏
tick!S

send

→ ch
i

(e!)S
next

(D.54)

stop component at ∶
S
stop comp

tick?,now!,v
now

>t
max

+�✏�������������→ S
error

∧ (now!v
now

) > t
max

+ �✏
tick!S

send

→ S
error

(D.55)

Appendix E

Code Examples Using Real-time Extensions Of

TTCN-3

This Appendix presents the real-time extensions for TTCN-3, introduced in Chapter 4,

by means of examples.

E.1 Data Types Suitable For Expressing Time Values

Listing E.1 presents some usage examples. If the date is incomplete, as in E.1 (Lines

5, 8, 11 - 20), then, the missing value corresponding to year, month, day, etc. will

be automatically replaced with the value of year, month day of the current date. The

datetime type is mainly proposed for distributed test systems, where the synchroniza-

tion between di↵erent component might play an important role. Test components could

use datetime values as universal synchronization points. datetime is also useful for

the situation when the tests are run for a long period of time (e.g. more than one day)

and the programming of future events depends on previous time values. The domain of

datetime values will be mathematically represented by the set DT.

Listing E.3 gives examples of timespan values. If one timespan value contains two terms

multiplying the same time unit constant, the expression can be normalized by unifying

the respective terms into one, through addition of the corresponding float multipliers.

⌥
1var datetime dt1:=1982−02−22T22:10:50_0:0:0 ;
2
3// this year
4var datetime dt2:=02−22T22:10:50_0:0:0=2010−02−220T22:10:50_0:0:0 ;
5
6//this month, this year
7var datetime dt3:=22T22:10:50_0:0:0=2010−05−22T22:10:50_0:0:0 ;
8
9//this day, this month, this year
10var datetime dt4:=T22:10:50_0:0:0=2010−05−6T22:10:50_0:0:0 ;
11
12//this hour
13var datetime dt5:=T10:50_0:0:0 = 2010−05−6T17:10:50_0:0:0 ;
14
15//this hour, this minute
16var datetime dt6:=T50_0:0:0 = 2010−05−6T17:31:50_0:0:0 ;
17
18//this hour, this minute, this second
19var datetime dt7:=T_0:0:0 = 2010−05−6T17:31:53_0:0:0 ;⌦⌃ ⇧

Listing E.1: Datetime type values, examples

207

Appendix E. Code Examples Using Real-time Extensions Of TTCN-3 208

⌥
1var timespan ts_1 := 20.0*min + 10.0*sec ;
2
3var timespan ts_2 := 20.0*nanosec ;
4
5var timespan ts_3 := 1.0*hour + 2.0*nanosec ;
6
7var timespan ts_4 := 10.0*nanosec + 10.0*nanosec;
8
9/* The values of ts 2, ts 4 and ts 5 are all equal, but
10* only ts 2 is in the normalized format.
11*/
12var timespn ts_5 := 15.0*nanosec + 5.0*nanosec;⌦⌃ ⇧

Listing E.2: Timespan type values, examples

1var timespan ts_val_1, ts_val_2, ts_val_3;
2
3var tick tck_val_1, tck_val_2;
4
5tck_val_1 := 10;
6
7ts_val_1 := 2.0 milisec + 1.0 nanosec;
8
9ts_val_2 := seconds2timespan(ticks2seconds(tck_val_1));
10
11ts_val_3 := ts_val_1 + ts_val_2 + ts_val_3;
12
13tck_val_2 := seconds2ticks(timespan2seconds(ts_val_1));

Listing E.3: Operations with the new data types example

We can observe in Listing E.3, Lines 3, 7, 12 that the values ts 2, ts 4 and ts 5 are

all equal, but only ts 2 is in the normalized format.

There can be defined conversion functions, such as the ones for seconds, at any level of

granularity if required. Example of usage for these functions are presented in Listing

E.3.

E.2 Special Operations Relaying On Time:
now, wait, testcasestart, testcomponentstart, testcomponentstop

The excerpt of code from Listing E.4 shows some usage scenarios for the presented

instructions. The code constitutes a part of a component’s behavior and the component

may or may not be a main test component (mtc) (Lines 18-19). The time values returned

by the introduced instructions are floats and are saved into float variables. The time

when the current test case started is saved in variable tf 1 (Line 12), the time when the

current test component started is saved in tf 2 (Line 14) and the time when the mtc

started is saved in tf 3 (Line 16).

Appendix E. Code Examples Using Real-time Extensions Of TTCN-3 209

⌥
1float tf_1, tf_2, tf_3;
2
3timespan ts;
4
5/*
6* times when the test case, main test component,
7* the current test component started
8* are given as floats, indicating the seconds
9*/
10
11tf_1 = testcasestart;
12
13tf_2 = self.testcomponentstart;
14
15tf_3 = mtc.testcomponentstart;
16
17if(tf_2 == tf_3)
18log("mtc is self");
19
20tf_4 = now;
21
22/*
23* suspend the execution of the current
24* test component for 2 seconds
25*/
26
27wait(2.0);
28
29tf_5 = now;
30
31ts=seconds2timespan(tf_5 − tf_4);
32
33log("Elapsed time is ", ts);⌦⌃ ⇧

Listing E.4: Now, wait, testcasestart, testcomponent usage examples

After a waiting time of 2 seconds (Line 28), the execution of the component resumes and

the current time is read through the now instruction (Line 30). For a proper displaying

of the time, it is converted to timespan and logged (Lines 32-34).

E.3 receive With timestamp

In the following, Listing(E.5) exemplifies the usages of this mechanism. The code is

showing an alternative statement with three branches. The time stamping instruction is

used in addition to the receive statement for the first two branches (Lines 13,22). In the

fist case, Line 13, the current time value is saved as float and in the second situation,

Line 22, the current time value is saved as a timespan value.

E.4 send With timestamp

Usage examples of the send with timestamp statement are presented in Listing E.6,

Lines 12,20. In the first case, the current time value is saved as float and in the second

case it is saved as timespan.

Appendix E. Code Examples Using Real-time Extensions Of TTCN-3 210

⌥
1float tf_receive;
2
3timespan ts_receive;
4
5alt{
6/*
7* The time value of the message receival is saved as a float
8* indicating the number of seconds passed from the beginning
9* of the testing process, until the moment when the message
10* is entering the system.
11*/
12[]p_in.receive(MSG_IN_FIRST)−>timestamp tf_receive

13{
14log("The message MSG IN FIRST was received at second ",
15tf_receive);
16};
17/*
18* The time value of message receival is saved as a timespan
19* datatype.
20*/
21[]p_in.receive(MSG_IN_SECOND)−>timestamp ts_receive

22{
23log("The message MSG IN SECOND was received at ",
24ts_receive);
25};
26
27[]p_in.receive(*){};
28}⌦⌃ ⇧

Listing E.5: Receive with timestamp usage example

⌥
1float tf_send;
2
3timespan ts_send;
4
5/*
6* The time value when the message is sent is saved as a float
7* indicating the number of seconds passed from the beginning
8* of the testing process, until the moment when the message
9* is leaving the system.
10*/
11p_out.send(MSG_OUT_FIRST)−>timestamp tf_send;
12
13log("The message MSG OUT FIRST was send at second ", tf_send);
14
15/*
16* The time value when the message is sent is saved as a
17* timespan datatype.
18*/
19p_out.receive(MSG_OUT_SECOND)−>timestamp ts_send;
20
21log("The message MSG OUT SECOND was send at ", ts_send);⌦⌃ ⇧

Listing E.6: Send with timestamp usage example

Appendix E. Code Examples Using Real-time Extensions Of TTCN-3 211

⌥
1/* The message is valid when its value conforms to
2* MSG IN 1 and is received in 300 milliseconds
3* after the start of the test case
4*/
5p_in.receive(MSG_IN_1)
6within (testcasestart..testcasestart+300*millisec);
7
8/* The message is valid when its value conforms to
9* MSG IN 2 and is received anytime before 300 milliseconds
10* after the start of the test case
11*/
12p_in.receive(MSG_IN_2)
13before (testcasestart + 300*millisec);
14
15/* The message is valid when its value conforms to
16* MSG IN 3 and is received anytime after 300 milliseconds
17* after the start of the test case
18*/
19p_in.receive(MSG_IN_3)
20after (testcasestart + 300*millisec);
21
22/* The message is valid when its value conforms to
23* MSG IN 4 and is received approximative 300 milliseconds
24* after the start of the test case
25*/
26p_in.receive(MSG_IN_4)
27at (testcasestart + 300*millisec);⌦⌃ ⇧

Listing E.7: Receive with temporal predicate usage example

⌥
1/* If the time for sending the message is not reached yet,
2* this instruction will be similar with a wait until the
3* moment is reached; afterwards the sending is triggered
4* immediately.
5*/
6
7p_out.send(MSG_OUT) at (testcasestart + 300*milisec);⌦⌃ ⇧

Listing E.8: Sending a message at a precise moment, usage example

E.5 receive Instructions Which Verify Incoming Communication

The usage of the receive with time constraints operation is exemplified in List-

ing E.7. There four time constraints attached to the four receive operations - one

for each - which use the four types of basic time predicates (Lines 7, 13-14, 21-22,

27-28). The time parameters are calculated on the basis of the value returned by the

testcasestart operation.

E.6 send Instructions Which Control Outgoing Communication

Listing E.8 presents an example of usage for the send with time constraints oper-

ation. The time point given as a parameter to the at statement should be calculated

Appendix E. Code Examples Using Real-time Extensions Of TTCN-3 212

⌥
1/* Message MSG IN is expected in a specified time interval;
2* after the expectation time expires without a result,
3* the test is ended with a failure;
4*/
5
6alt{
7
8[]p_in.receive(MSG_IN) within

9(testcasestart..testcasestart+300*milisec){};
10}
11break at(testcasestart+300*milisec){
12
13setverdict(fail);
14
15log("The message was not received in time");
16}⌦⌃ ⇧

Listing E.9: Alt statement with break condition usage example

relative to the moment when the testcase has began. If the value of the provided pa-

rameter represents a moment in time that has already passed at the moment when the

instruction is executed, then an error routine will be triggered.

E.7 alt Instructions which Control Incoming Communication

A usage example of the alt..break instruction is presented in Listing E.9. In this

case, the alternative has a single branch, meaning that a
n

= 1. If a valid message is not

received within 300 milliseconds from the beginning of the test case execution, then the

alternative behavior represented by the block of statements, which follows break (Lines

12-17), is going to be executed.

E.8 Instructions Controlling The Starting And Stopping Of Test Com-
ponents

Listing E.10 provides examples of the usage of instructions which control the start and

stop of test components. It can be observed (on Line 6) that the test component has

been scheduled to be started 10 milliseconds away from the current time of execution.

The current time of execution designates the execution time of the start instruction.

The same component is scheduled to be stopped (on Line 10), 100 milliseconds away

from the time when the stop instruction has been reached.

Appendix E. Code Examples Using Real-time Extensions Of TTCN-3 213

⌥
1/* A new test component is created */
2var MyComponentType MyComp := MyComponentType.create;
3var float ptc_stop, self_stop, all_stop;
4
5/* The new component is started */
6MyComp.start(CompBehaviour()) at (now + 10*milisec);
7:
8
9/* The component "MyComp" is stopped */
10MyComp.stop at (now + 100*milisec);⌦⌃ ⇧

Listing E.10: Start and stop test component at specific time, usage example

Bibliography

[1] Kanaka Juvva. Real-time systems. Technical report, Carnegie Mellon University,

18-849b Dependable Embedded Systems, 1998. URL http://www.ece.cmu.edu/

~koopman/des_s99/real_time/#Lui90. Last visited on July 2012.

[2] ETSI: ES 201 873-1 V3.2.1. Methods for Testing and Specification (MTS). The

Testing and Test Control Notation Version 3, Part 1: TTCN-3 Core Language. Eu-

ropean Telecommunications Standards Institute, Sophia Antipolis, France, Febr.

2007.

[3] George Din Ina Schieferdecker Diana Alina Serbanescu, Victoria Molovata and

Ilja Radusch. Real-time testing with ttcn-3. In TestCom/FATES, pages 283–301,

2008.

[4] Juergen Grossmann, Diana Serbanescu, and Ina Schieferdecker. Testing embedded

real time systems with ttcn-3. In ICST ’09: Proceedings of the 2009 International

Conference on Software Testing Verification and Validation, pages 81–90, Wash-

ington, DC, USA, 2009. IEEE Computer Society. ISBN 978-0-7695-3601-9.

[5] ETSI: ES 201 873-4 V3.2.1. Methods for Testing and Specification (MTS). The

Testing and Test Control Notation version 3, Part 4: TTCN-3 Operational Se-

mantics. European Telecommunications Standards Institute, Sophia Antipolis,

France, Febr. 2007.

[6] Diana Alina Serbanescu and Ina Schieferdecker. Testing environment for real-time

communications intensive systems. In Proceedings of the 2010 Sixth International

Conference on Networking and Services, ICNS ’10, pages 368–374, Washington,

DC, USA, 2010. IEEE Computer Society. ISBN 978-0-7695-3969-0. URL http:

//dx.doi.org/10.1109/ICNS.2010.58. Last visited on July 2012.

[7] Frederick M. Proctor and William P. Shackleford. Real-time operating system

timing jitter and its impact on motor control, 2001.

[8] Patrick Donohoe. A survey of real-time performance benchmarks for the ada

programming language. Technical report, Carnegie Mellon University, 1987. URL

www.sei.cmu.edu/reports/87tr028.pdf. Last visited on April 2013.

[9] William R. Bush. E↵ects of compiler and runtime system features on embedded

system designs, 1990.

[10] ITU-T. Itu telecommunication standardization sector. URL http://www.itu.

int/en/ITU-T/Pages/default.aspx. Last verified on April 2013.

214

Bibliography 215

[11] Laurie Williams. Testing overview and black-box testing techniques. Technical

report, 2006. URL http://agile.csc.ncsu.edu/SEMaterials/BlackBox.pdf.

Last visited on April 2013.

[12] Paul Pettersson. Modelling and verification of real-time systems using timed au-

tomata: Theory and practice. Technical report, Uppsala University, 1999. URL

http://user.it.uu.se/~paupet/thesis.shtml. Last visited on April 2013.

[13] Wind River. Wind river’s vxworks powers mars science laboratory rover, curiosity,

2013. URL http://www.windriver.com/news/press/pr.html?ID=10901. Last

visited on April 2013.

[14] Kevin M. Obenland. The use of posix in real-time systems, assessing its e↵ective-

ness and performance, 2000. URL www.mitre.org/work/tech_papers/tech...

00/.../obenland_posix.pdf. Last visited on April 2013.

[15] Nels Beckman. A little bit of real-time java, 2005. URL www.cs.cmu.edu/

~nbeckman/presentations/a_little_bit_of_rt_java.ppt. Last visited on

April 2013.

[16] Kelvin Nilsen. Exploiting real-time java hierarchies to improve generality and per-

formance, 2007. URL http://www.sstc-online.org/2007/pdfs/KN1660.pdf.

Last visited on April 2013.

[17] AlexanderD. Stoyenko. Real-time euclid: Concepts useful for the further de-

velopment of pearl. In Wilfried Gerth and Per Baacke, editors, PEARL 90

Workshop ber Realzeitsysteme, volume 262 of Informatik-Fachberichte, pages 1–

11. Springer Berlin Heidelberg, 1990. ISBN 978-3-540-53464-8. doi: 10.1007/

978-3-642-46725-7 1. URL http://dx.doi.org/10.1007/978-3-642-46725-7_

1.

[18] Richard Goering. Ada 2005 speaks to real-time embedded applications. Tech-

nical report, EETimes, 2007. URL http://eetimes.com/electronics-news/

4070784/Ada-2005-speaks-to-real-time-embedded-applications. Last vis-

ited on April 2013.

[19] M. Schiebe and S. Pferrer. Real-Time Systems Engineering and Applications. The

Springer International Series in Engineering and Computer Science. Springer, 1992.

ISBN 9780792391968. URL http://books.google.de/books?id=x6BQAAAAMAAJ.

[20] Wikibooks contributors. Ada programmins. Technical report, Wikibooks, 2004-

2007. URL http://en.wikibooks.org/wiki/Ada_Programming. Last visited on

April 2013.

Bibliography 216

[21] TimeSys Corporation. The concise handbook of real-time systems. Technical

Report Pittsburgh, PA, TimeSys Corporation, 2002.

[22] C. J. Fidge. Real-time schedulability tests for preemptive multitasking. Real-Time

Systems, 14:61–93, 1998.

[23] Verifysoft Technology. Advantages of ttcn-3. URL http://www.verifysoft.com/

en_TTCN-3.html. Last visited on March 2013.

[24] Testing Technologies. Benefits of ttcn-3, . URL http://www.testingtech.com/

ttcn3/benefits.php. Last visited on March 2013.

[25] IEEE. IEEE standard glossary of software engineering terminology. IEEE Std

610.12-1990, December 1990.

[26] Raimund Kirner and Peter Puschner. Time-predictable computing. In Proceedings

of the 8th IFIP WG 10.2 international conference on Software technologies for

embedded and ubiquitous systems, SEUS’10, pages 23–34, Berlin, Heidelberg, 2010.

Springer-Verlag. ISBN 3-642-16255-X, 978-3-642-16255-8. URL http://dl.acm.

org/citation.cfm?id=1927882.1927890.

[27] George Anwar. Real-time application of mini and micro computer. Technical

report, UC Berkeley, Fall 2008.

[28] John A. Stankovic. Real-time and embedded systems. In The Computer Science

and Engineering Handbook, pages 1709–1724. 1997.

[29] S. Voget. Future trends in software architectures for automotive systems. Technical

Report Berlin, Germany, Microsystems for Automotive Applications, 2003.

[30] CAR 2 CAR Communication Consortium. Concerned with the development and

release of an open european standard for cooperative intelligent transport sys-

tems and associated validation process with focus on inter-vehicle communication

systems. URL http://www.car-to-car.org/. Last visited on July 2012.

[31] Manfred Broy. Challenges in automotive software engineering. In ICSE ’06: Pro-

ceedings of the 28th international conference on Software engineering, pages 33–42,

New York, NY, USA, 2006. ACM. ISBN 1-59593-375-1. Last visited on July 2012.

[32] Mirko Conrad. M.: Systematic testing of embedded automotive software - the

classification-tree method for embedded systems. proc. dagstuhl seminar n 04371

’perspectives of model-based testing’, schlo dagstuhl (d). In Software Tests, SAE

World Congress 2005, Detroit (US). Wiley, 2005.

Bibliography 217

[33] Computing Students. Computing students is in constant development with

new content being added regularly, provides definitions of relevant terms in

computer science. URL http://www.computingstudents.com/notes/software_

analysis/classification_tree_method.php. Last visited on July 2012.

[34] Wikipedia. Tessy tool for embedded systems testing., . URL http://en.

wikipedia.org/wiki/Tessy_(Software). Last visited on July 2012.

[35] mTest classic. E�cient model test management for simulink and targetlink models.

URL http://www.mtest-classic.com/. Last visited on July 2012.

[36] MathWorks. Simulink is an environment for multidomain simulation and model-

based design for dynamic and embedded systems. URL http://www.mathworks.

co.uk/products/simulink/. Last visited on July 2012.

[37] Klaus Grimm. Software technology in an automotive company: major challenges.

In ICSE ’03: Proceedings of the 25th International Conference on Software En-

gineering, pages 498–503, Washington, DC, USA, 2003. IEEE Computer Society.

ISBN 0-7695-1877-X.

[38] Johannes Slettengren. Automated testing in model based design-an implementa-

tion for cruise control manager. Technical report, Scania CV AB, Systems and

Software Departament, Sweden.

[39] dSPACE. dspace training and engineering. URL http://dspaceinc.com/en/

inc/home/products/sw/expsoft/automdesk/testautomation.cfm. Last visited

on July 2012.

[40] John A. Stankovic. Misconceptions about real-time computing: A serious problem

for next-generation systems. Computer, 21:10–19, October 1988. ISSN 0018-9162.

URL http://portal.acm.org/citation.cfm?id=50810.50811. Last visited on

July 2012.

[41] Phillip A. Laplante. Real-time systems design and analysis - an engineer’s hand-

book (2. ed.). IEEE, 1997. ISBN 978-0-7803-3400-7.

[42] Srini Vasan Bruce Powel Douglass. Timeliness and Performance in Real-Time Ob-

ject Designs. TimeSys Corp. URL http://www.swd.ru/files/share/Rhapsody/

materials/Whitepapers/Timeliness.pdf. Last visited on July 2012.

[43] Alan Burns and Andy Wellings. Real-Time Systems and Programming Languages:

Ada, Real-Time Java and C/Real-Time POSIX. Addison Wesley, fourth edi-

tion, May 2009. ISBN 0321417453. URL http://www.amazon.com/exec/obidos/

Bibliography 218

redirect?tag=citeulike07-20&path=ASIN/0321417453. Last visited on July

2012.

[44] John Barnes. Introducing Ada95. 1995. URL http://www.adapower.com/launch.

php?URL=http%3A%2F%2Fwww.seas.gwu.edu%2F~adagroup%2Fsigada-website%

2Fbarnes-html%2Fintro.html. Last visited on July 2012.

[45] Eugene Kligerman and Alexander D. Stoyenko. Real-time euclid: A language for

reliable real-time systems. IEEE Trans. Software Eng., pages 941–949, 1986.

[46] James Gosling and Greg Bollella. The Real-Time Specification for Java. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000. ISBN 0201703238.

[47] Kevin M. Obenland. Posix in real-time. Technical report, 3/15/2001. URL http:

//www.eetimes.com/electronics-news/4133374/POSIX-in-Real-Time. Last

visited on July 2012.

[48] Dennis Ludwig. An introduction to real-time programming. Technical report,

Aeronautical Systems Center. URL http://www.docstoc.com/docs/29480263/

An-Introduction-to-Real-Time-Programming#. Last visited on July 2012.

[49] Wikipedia. Worst-case execution time definition. Technical report, . URL http:

//en.wikipedia.org/wiki/Worst-case_execution_time. Last visited on July

2012.

[50] T. Straumann. Open Source Real-Time Operating Systems Overview. 2001. URL

http://www.slac.stanford.edu/econf/C011127/WEBI001.pdf. Last visited on

July 2012.

[51] D. Kalinsky. Basic Concepts of Real-Time Operating Systems. 2003. URL http:

//linuxdevices.com/articles/AT4627965573.html. Last visited on May 2011.

[52] Jia Xu and David Parnas. Scheduling processes with release times, deadlines,

precedence and exclusion relations. IEEE Trans. Softw. Eng., 16:360–369, March

1990. ISSN 0098-5589. URL http://portal.acm.org/citation.cfm?id=78266.

78285. Last visited on July 2012.

[53] R. Lui Sha, Rajkumar and S.S. Sathaye. Generalized rate-monotonic scheduling

theory: a framework for developing real-time systems. Proceedings of the IEEE,

82:68–82, August 2002. ISSN 0018-9219.

[54] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority inheritance pro-

tocols: An approach to real-time synchronization. IEEE Trans. Computers, 39(9):

1175–1185, 1990.

Bibliography 219

[55] Yde Venema, Lou Goble (ed, Blackwell Guide, Philosophical Logic, and Black-

well Publishers. Temporal logic. In The Blackwell Guide to Philosophical Logic.

Blackwell Philosophy Guides (2001. Basil Blackwell Publishers, 1998.

[56] Ali E. Abdallah, Cli↵ B. Jones, and Je↵ W. Sanders, editors. Communicating

Sequential Processes: The First 25 Years, Symposium on the Occasion of 25 Years

of CSP, London, UK, July 7-8, 2004, Revised Invited Papers, volume 3525 of

Lecture Notes in Computer Science, 2005. Springer. ISBN 3-540-25813-2.

[57] Steve Schneider. Concurrent and Real Time Systems: The CSP Approach. John

Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1999. ISBN 0471623733.

[58] J. Davies. Specification and Proof in Real-time CSP. Cambridge University Press,

1993.

[59] Gerd Behrmann, Re David, and Kim G. Larsen. A tutorial on uppaal. Springer,

2004.

[60] ETSI: ES 201 873-2 V3.2.1. Methods for Testing and Specification (MTS). The

Testing and Test Control Notation version 3, Part 2: TTCN-3 Tabular presenta-

tion Format (TFT). European Telecommunications Standards Institute, Sophia

Antipolis, France, Febr. 2007.

[61] ETSI: ES 201 873-3 V3.2.1. Methods for Testing and Specification (MTS). The

Testing and Test Control Notation version 3, Part 3: TTCN-3 Graphical presen-

tation Format (GFT). European Telecommunications Standards Institute, Sophia

Antipolis, France, Febr. 2007.

[62] ETSI: ES 201 873-5 V3.2.1. Methods for Testing and Specification (MTS). The

Testing and Test Control Notation Version 3, Part 5: TTCN-3 Runtime In-

terfaces. European Telecommunications Standards Institute, Sophia Antipolis,

France, Febr. 2007.

[63] ETSI: ES 201 873-6 V3.2.1. Methods for Testing and Specification (MTS). The

Testing and Test Control Notation version 3, Part 6: TTCN-3 Control Inter-

face (TCI). European Telecommunications Standards Institute, Sophia Antipolis,

France, Febr. 2007.

[64] Jens Grabowski, Dieter Hogrefe, György Réthy, Ina Schieferdecker, Anthony

Wiles, and Colin Willcock. An introduction to the testing and test control notation

(ttcn-3). Computer Networks, 42(3):375–403, 2003.

[65] Stephan Tobies Stefan Keil Federico Engler Stephan Schulz Anthony Wiles

Colin Willcock, Thomas Dei. WILEY, February 2011. ISBN 978-0-470-66306-

6.

Bibliography 220

[66] Joachim Wegener, Klaus Grimm, Matthias Grochtmann, and Harmen Sthamer.

Eurostar96 systematic testing of real-time systems. 1996.

[67] Jos C. M. Baeten and Sjouke Mauw, editors. CONCUR ’99: Concurrency Theory,

10th International Conference, Eindhoven, The Netherlands, August 24-27, 1999,

Proceedings, volume 1664 of Lecture Notes in Computer Science, 1999. Springer.

ISBN 3-540-66425-4.

[68] Marius Bozga, Jean-Claude Fernandez, Lucian Chirvu, Susanne Graf, Jean pierre

Krimm, and Laurent Mounier. If: A validation environment for timed asyn-

chronous systems, 2000.

[69] Jean-Claude Fernandez, Claude Jard, Thierry Jron, and Csar Viho. Using on-the-

fly verification techniques for the generation of test suites, 1996.

[70] Holger Krisp, Klaus Lamberg, and Robert Leinfellner. Automated real-time testing

of electronic control units, 2007.

[71] BasilDev. Testfarm core automated testing system platform. URL

http://www.testfarm.org/documents/IP060014-en%20TestFarm%20Core%

20Product%20Brief.2.pdf. Last verified on July 2012.

[72] ReACT Technologies. Talent, technical features, . URL http://www.reacttech.

com/Talent.htm. Last verified on July 2012.

[73] Applied Dynamics International. Test automation with the advantage simulation

framework. URL http://www.adi.com/products_sis.htm. Last verified on July

2012.

[74] Ina Schieferdecker, Bernard Stepien, and Axel Rennoch. Perfttcn, a ttcn lan-

guage extension for performance testing. URL http://www.site.uottawa.ca/

~bernard/PerfTTCN.pdf. Last verified on July 2012.

[75] Thomas Walter and Jens Grabowski. Real-time TTCN for testing real-time and

multimedia systems. September 1997.

[76] Z. Dai, J. Grabowski, and H. Neukirchen. Timed TTCN-3 – A Real-Time Exten-

sion for TTCN. 2002. URL citeseer.ist.psu.edu/article/dai02timedttcn.

html. Last verified on July 2012.

[77] Ina Schieferdecker and Juergen Grossmann. Testing embedded control systems

with ttcn-3: an overview on ttcn-3 continuous. pages 125–136, 2007. URL http:

//portal.acm.org/citation.cfm?id=1778978.1778994. Last verified on July

2012.

Bibliography 221

[78] R.O. Sinnott. Towards more accurate real-time testing. In The 12th International

Conference on Information Systems Analysis and Synthesis (ISAS 2006), Orlando,

Florida, 2006.

[79] TEMEA Project. web site of temea (test specification and test methodology for

embedded systems in automobiles), 2008. URL http://www.temea.org. Last

verified on July 2012.

[80] Methods for Testing and Specification (MTS). The Testing and Test Control No-

tation version 3 .TTCN-3 Language Extensions: TTCN-3 Performance and Real

Time Testing. European Telecommunications Standards Institute, 2010.

[81] Helmut Neukirchen. Languages, Tools and Patterns for the Specification of Dis-

tributed Real-Time Tests. PhD thesis, Georg-August-Universitt Gttingen, 2004.

[82] Mirko Conrad. Modell-basierter Test eingebetteter Software im Automobil. PhD

thesis, TU-Berlin, 2004.

[83] Ina Schieferdecker Jürgen Großmann and Hans-Werner Wiesbrock. Modeling

property-based stream templates with ttcn-3. In Kenji Suzuki and Hasegawa [84],

pages 70–85. ISBN 978-3-540-68514-2.

[84] Andreas Ulrich Kenji Suzuki, Teruo Higashino and Toru Hasegawa, editors. Test-

ing of Software and Communicating Systems, 20th IFIP TC 6/WG 6.1 Inter-

national Conference, TestCom 2008, 8th International Workshop, FATES 2008,

Tokyo, Japan, June 10-13, 2008, Proceedings, volume 5047 of Lecture Notes in

Computer Science, 2008. Springer. ISBN 978-3-540-68514-2.

[85] TheMathWorks. The mathworks helpdesk - Stateflow Notation, 2007. URL

http://www.mathworks.com/access/helpdesk/help/toolbox/stateflow/ug/

f18-32361.html. Last verified on May 2011.

[86] AUTOSAR. Autosar (automotive open system architecture) is a worldwide

development partnership of car manufacturers, suppliers and other companies

from the electronics, semiconductor and software industry., 2008. URL http:

//www.autosar.org. Last verified on July 2012.

[87] Ina Schieferdecker and Jrgen Gromann. Testing of Embedded Control Systems

with Continous Signals. In Dagstuhl-Workshop MBEES: Modellbasierte Entwick-

lung eingebetteter Systeme II, pages 113–122. TU Braunschweig, 2006.

[88] Ina Schieferdecker, Eckard Bringmann, and Juergen Grossmann. Continuous ttcn-

3: Testing of embedded control systems. In SEAS ’06: Proceedings of the 2006

Bibliography 222

international workshop on Software engineering for automotive systems, pages 29–

36, New York, NY, USA, 2006. ACM Press. ISBN 1-59593-402-2.

[89] Leon Osterweil. Strategic directions in software quality. ACM Comput. Surv., 28

(4):738–750, 1996. ISSN 0360-0300.

[90] T. Zurawka J. Schu↵ele, editor. Automotive Software Engineering. Vieweg & Sohn

Verlag, Wiesbaden, 2006. ISBN 978-3528010409.

[91] Holger Giese and Sven Burmester. Real-time statechart semantics. Technical Re-

port tr-ri-03-239, Lehrstuhl fr Softwaretechnik, Universitt Paderborn, Paderborn,

Germany, 6 2003.

[92] Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci.,

126(2):183–235, 1994.

[93] Marius Mikucionis Brian Nielsen Paul Pettersson Anders Hessel, Kim Guld-

strand Larsen and Arne Skou. Testing real-time systems using uppaal. In Formal

Methods and Testing, pages 77–117, 2008.

[94] E. Mikucionis and E. Sasnauskaite. On-the-fly testing using uppaal. Master’s the-

sis, Departament of Computer Science Aalborg Univeristy, Denmark, June 2003.

[95] Marius Mikucionis, Kim G. Larsen, and Brian Nielsen. Online on-the-fly testing

of real-time systems. Technical report, December 2003.

[96] B. Nielsen E. Brinksma, K. Larsen and J. Tretmans. Systematic testing of realtime

embedded software systems (stress). Research proposal submitted and accepted

by the Dutch Research Council, March 2002.

[97] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on uppaal. In

Marco Bernardo and Flavio Corradini, editors, Formal Methods for the Design of

Real-Time Systems: 4th International School on Formal Methods for the Design

ofComputer, Communication, and Software Systems, SFM-RT 2004, number 3185

in LNCS, pages 200–236. Springer–Verlag, September 2004.

[98] Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal design and analysis of a

gear controller. In TACAS ’98: Proceedings of the 4th International Conference on

Tools and Algorithms for Construction and Analysis of Systems, pages 281–297,

London, UK, 1998. Springer-Verlag. ISBN 3-540-64356-7.

[99] Kim G. Larsen, Marius Mikucionis, Brian Nielsen, and Arne Skou. Testing real-

time embedded software using uppaal-tron: an industrial case study. In EMSOFT

’05: Proceedings of the 5th ACM international conference on Embedded software,

Bibliography 223

pages 299–306, New York, NY, USA, 2005. ACM. ISBN 1-59593-091-4. URL

http://doi.acm.org/10.1145/1086228.1086283. Last visited on July 2012.

[100] Anders Hesselz Kim, Kim G. Larseny, Brian Nielseny, Paul Petterssonz, and Arne

Skouy. Time-optimal real-time test case generation using uppaal. In in Proc. of

the 3rd Intl. Workshop on Formal Approaches to Testing of Software (FATES’03),

2003.

[101] Moez Krichen and Stavros Tripakis. Conformance testing for real-time systems.

Formal Methods in System Design, 34(3):238–304, 2009.

[102] Ichiro Satoh and Mario Tokoro. Semantics for a real-time object-oriented pro-

gramming language. In ICCL, pages 159–170, 1994.

[103] Jos C. M. Baeten. A brief history of process algebra. Theor. Comput. Sci., 335

(2-3):131–146, 2005.

[104] Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. Timed transition systems.

In REX Workshop, pages 226–251, 1991.

[105] Holger Giese and Sven Burmester. Real-time statechart semantics. In Self-

optimizing Concepts and Structures in mechanical Engineering, 2003.

[106] Hardi Hungar Werner Damm, Bernhard Josko and Amir Pnueli. A compositional

real-time semantics of statemate designs. In COMPOS, pages 186–238, 1997.

[107] Peter P. Puschner and Christian Koza. Calculating the maximum execution time

of real-time programs. Real-Time Systems, 1(2):159–176, 1989.

[108] Peter P. Puschner and Alan Burns. Guest editorial: A review of worst-case

execution-time analysis. Real-Time Systems, 18(2/3):115–128, 2000.

[109] Bernhard Rieder Ingomar Wenzel, Raimund Kirner and Peter P. Puschner. Cross-

platform verification framework for embedded systems. In SEUS, pages 137–148,

2007.

[110] Moez Krichen and Stavros Tripakis. Real-time testing with timed automata testers

and coverage criteria. Technical Report TR-2004-15, Verimag Technical Report,

2004.

[111] Wolfgang A. Halang and Alexander D. Stoyenko. Constructing Predictable Real

Time Systems. Kluwer Academic Publishers, Norwell, MA, USA, 1991. ISBN

0792392027.

Bibliography 224

[112] ISO. ISO 8601:2004. Data elements and interchange formats – Informa-

tion interchange – Representation of dates and times. 3 edition, 2004.

URL http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_

detail_ics.htm?ics1=01&ics2=140&ics3=30&csnumber=40874. Last visited on

July 2012.

[113] Liu Yang. Pat: Process analysis toolkit. an enhanced simulator, model checker

and refinement checker for concurrent and real-time systems., 2007. URL http:

//www.comp.nus.edu.sg/~pat/. Last visited on July 2012.

[114] Department of Information Technology at Uppsala University (UPP) in Sweden

and the Department of Computer Science at Aalborg University (AAL) in Den-

mark. Uppaal is an integrated tool environment for modeling, validation and ver-

ification of real-time systems modeled as networks of timed automata, extended

with data types (bounded integers, arrays, etc.). URL http://www.uppaal.org/.

Last visited on July 2012.

[115] FreeRTOS Mantainance Team. Web pages of FreeRTOS - The FreeRTOS Project,

. URL http://www.freertos.org/. Last visited on July 2012.

[116] RTAI Project Mantainance Team. Web pages of RTAI - Real Time Application

Interface for Linux, . URL https://www.rtai.org/. Last visited on July 2012.

[117] eCos. ecos is a free open source real-time operating system intended for embedded

applications. URL www.ecos.sourceware.org. Last visited on July 2012.

[118] Ralf Corsepius Chris Johns Eric Norum Joel Sherrill, Jennifer Averett and Thomas

Doerfler. Rtems operating systems. the real-time executive for multiprocessor

systems or rtems is a full featured rtos that supports a variety of open api and

interface standards. URL www.rtems.com. Last visited on July 2012.

[119] Hard Real-Time Networking for Real-Time Linux. Rtnet is an open soure hard

real-time network protocol stack for xenomai and rtai (real-time linux extensions).

URL http://www.rtnet.org/. Last visited on July 2012.

[120] freescale. Mc9s12ne64 demonstration kit. URL http://www.freescale.com/

webapp/sps/site/prod_summary.jsp?code=DEMO9S12NE64. Last visited on July

2012.

[121] Open Source Community. Open source watcom c, c++, and fortran cross compilers

and tools. URL www.openwatcom.org. Last visited on July 2012.

[122] Dedicated Systems Encyclopedia. The embedded systems’ products, services

& research guide. URL www.dedicated-systems.com/encyc/buyersguide/

products/Dir1048.html. Last visited on July 2012.

Bibliography 225

[123] Internet FAQ Archives. Comp.realtime: A list of commercial real-time operating

systems. www.faqs.org/faqs/realtime-computing/list/. Last visited on July 2012.

[124] Juergen Grossmann, Diana Serbanescu, and Ina Schieferdecker. Testing embedded

real time systems with ttcn-3. Software Testing, Verification, and Validation, 2008

International Conference on, 0:81–90, 2009.

[125] Glenford J. Myers. The Art of Testing. John Wiley & Sons, first edition, 1979.

ISBN 0-471-04328-1.

[126] Moez Krichen and Stavros Tripakis. Real-time testing with timed automata testers

and coverage criteria. Technical Report TR-2004-15, Verimag Technical Report,

2004.

[127] Marius Mikucionis, Kim G. Larsen, and Brian Nielsen. T-UPPAAL: online model-

based testing of real-time systems. In ASE ’04: Proceedings of the 19th IEEE in-

ternational conference on Automated software engineering, pages 396–397, Wash-

ington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2131-2.

[128] Rachel Cardell-oliver and Tim Glover. A practical and complete algorithm for test-

ing real-time systems. In In Formal Techniques in Real-Time and Fault-Tolerant

Systems, LNCS 1486, pages 251–261. Springer-Verlag, 1998.

[129] Duncan Clarke and Insup Lee. Testing real-time constraints in a process algebraic

setting. In In International Conference on Software Engineering, pages 51–60,

1995.

[130] Simon Hill and Bala Krishnamurthy. Introduction to linux for real-time control.

Technical report, prepared for NIST by Aeolean Inc., 2002. Introductory Guide-

lines and Reference for Control Engineers and Managers.

[131] Joseph Leung and Hairong Zhao. Real-time scheduling analysis. Technical Report

DOT/FAA/AR-05/27, Departament of Computer Science New Jersey Institute of

Technology, 2005.

[132] Paul Seidel. Realtime linux. URL http://www.dcl.hpi.uni-potsdam.de/

teaching/proccontrol/slides/RTLinux.pdf. Last visited on May 2011.

[133] David Beal. Real-time application interface (rtai) for linux. URL http://

opengroup.org/rtforum/feb2001/slides/beal.pdf. Last visited on July 2012.

[134] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell, 1997.

Bibliography 226

[135] Luis E. Leyva-del Foyo, Pedro Mejia-Alvarez, and Dionisio de Niz. Predictable

interrupt scheduling with low overhead for real-time kernels. In RTCSA ’06: Pro-

ceedings of the 12th IEEE International Conference on Embedded and Real-Time

Computing Systems and Applications, pages 385–394, Washington, DC, USA,

2006. IEEE Computer Society. ISBN 0-7695-2676-4.

[136] Frederick M. Proctor and William P. Shackleford. Real-time operating system

timing jitter and its impact on motor control. In RTCSA ’06: Proceedings of

the 12th IEEE International Conference on Embedded and Real-Time Computing

Systems and Applications. National Institute of standards and Technology, 2001.

[137] Krithi Ramamritham and John A. Stankovic. Scheduling algorithms and operating

systems support for real-time systems. In Proceedings of the IEEE, pages 55–67,

1994.

[138] Arezou Mohammadi and Selim G. Akl. Scheduling algorithms for real-time sys-

tems. Technical report, School of Computing Queen’s University, 2005.

[139] Peter Jay Salzman. The Linux Kernel Module Programming Guide. CreateSpace,

Paramount, CA, 2009. ISBN 1441418865, 9781441418869.

