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Typeset in LATEX 2ε.

mailto:chausler@gmail.com


iii

The research presented in this dissertation was carried out from Decem-

ber 2010 until February 2014 at the Theoretical Neuroscience & Neuroin-

formatics group, Institute of Biology, Freie Universität Berlin, under the

supervision of Prof. Dr. Martin P. Nawrot

1st Reviewer: Prof. Dr. Martin P. Nawrot - Freie Universität Berlin

2nd Reviewer: Prof. Dr. Manfred Opper - Technische Universität Berlin

Date of defense: 04/04/2014



iv



Acknowledgments

First and foremost, I would like to thank my supervisor Prof. Martin Nawrot for his

guidance, support, sense of humour and willingness to share a beer. I would like to

THANK THANK THANK the members of the great ’neuro-inf’ lab for creating a

friendly, fun and stimulating work environment and for generally being great people,

you’ve all grown very close to my heart. Particular thanks to Jan Soelter and Thomas

Rost for being kaggle buddies and explaining all the concepts I didn’t get. Thanks

to Michael Schmuker for bringing me into the lab many years ago as a lowly masters

student and for keeping our beloved compute servers up and running. Thanks to Farzad

Farkhooi for sharing his office with me and understanding all things mathematical.

Thank you to Prof. Manfred Opper for providing invaluable feedback at our committee

meetings and letting me occupy space in your lab from time to time.

A big thank you to my experimental collaborators over the last 4 years, Björn
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Author Contributions: Research Idea and Manuscript by CH, JH, MPN, AK. Analysis

by CH, JH and MPN. Experiments by JH and AK

vii



viii List of Publications

Manuscript Status: A revised version of this manuscript will be submitted for publi-

cation in an international peer reviewed journal.

Author Affiliations

1. Bernstein Centre for Computational Neuroscience, Berlin

2. Neuroinformatics & Theoretical Neuroscience, Institute of Biology, Freie Univer-

sität Berlin

3. Methods of Artificial Intelligence Group, Berlin Institute of Technology, Germany
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Abstract

Data Science is a fast growing buzzword in both industry and academia. Despite the

hype, the term well reflects how a growing number of technically orientated scientists

moving into traditionally less technical disciplines such as biology approach their day to

day research. This body of work is an example of this approach, taking core disciplines

from data science such as modelling, machine learning, statistics and data analysis

and applying them to the field of neuroscience. The thesis is broken into three self-

contained manuscripts, each addressing a key neuroscientfic problem in a data driven

way. In the first manuscript we take inspiration from information processing in the

brain and using temporal artificial neural networks and unsupervised learning, devise

an approach to improve neuron based generative models. In the second manuscript

we use the brain as a model and apply the approach developed in the first manuscript

to the problem of dynamic representation learning in the mammalian visual cortex.

In the third manuscript we use the brain as a data source and apply statistical and

machine learning techniques to help understand neural representation of movement in

the human basal ganglia.
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Zusammenfassung

Data Science ist ein schnell wachsendes Modewort in Industrie und Forschung. Trotz

des anfänglichen Hypes ist eine Vielzahl von technisch orientierten Wissenschaftlern

zu vermerken, die ihren Schwerpunkt auf weniger technische Forschungsdisziplinen,

wie z.B. die Biologie, verlagern.

Die vorliegende Arbeit ist ein Beispiel dieser Entwicklung, Fachdisziplinen wie

Modellierung, maschinelles Lernen, Statistik und Datenanalyse im Bereich der Neu-

rowisseschaften anzuwenden. Diese Doktorarbeit setzt sich aus drei eigenständigen

Manuskripten zusammen, die neurowissenschaftliche Problematiken datengesteuert lösen.

Das erste Manuskript geht von der Informationsverarbeitung im Gehirn aus und

bedient sich temporaler künstlicher neuraler Netze und unüberwachtem Lernen, um

Neuron-basierte generative Modelle zu verbessern. Im zweiten Manuskript fungiert

das Gehirn als Modell. Der Ansatz der ersten Arbeit wird auf die Problematik des

Lernens dynamischer Darstellungen im visuellen Kortex von Säugetieren angewendet.

Das dritte Manuskript sieht das Gehirn als Datenquelle und versucht mittels statistis-

cher und maschineller Lernverfahren die neurale Darstellung der Bewegung von men-

schlichen Basalganglien zu veranschaulichen.
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1
Introduction

1.1 Data Science

Data Science is a buzzword that is growing fast in both industry and academia. Def-

initions for the term abound but the technical work of a Data Scientist can generally

be distilled to a few core disciplines. Data acquisition and Processing : the ability to

acquire data relevant to the question at hand and reshape it into a useable format

for further analysis, Statistical Analysis : the application of statistical methods to gain

insight into trends and relationships within the data, Modelling and Machine Learning :

the ability to build models that mimic key principles of the system being studied. The

ability to utelise state-of-the-art learning algorithms to pry out non-obvious depen-

dencies within the data and use them to fill in missing data points, group data into

logical clusters or predict future evolutions of the data at hand (to name but a few
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2 Introduction

applications), Data Visualisation and Story Telling : the ability to condense the results

of ones work into a visual, verbal and/or written form that clearly communicates it’s

key findings.

These foci coupled with traditional attributes of science such as expert domain

knowledge, creativity, curiosity and experimental design, allow the Data Scientist to

make compelling discoveries from large and often imperfect data. In shorter form, Data

Science is an empirical science, a set of methods and systems for extracting knowledge

from data [1].

Post graduate training courses in Data Science are springing up around the world as

a deluge of new data sources requires ever more people with advanced analytical train-

ing. Top educators such as New York University’s Centre for Data Science, Columbia

University’s Institute for Data Sciences and Engineering and the University of Califor-

nia, Berkley now offer Masters Degrees in the field whilst the University of Edinburgh’s

Centre for Doctoral Training in Data Science offers PhD level training.

1.2 Data Science for Neuroscience

Despite the hype, the term well reflects how a growing number of technically orientated

scientists moving into traditionally less technical disciplines such as biology approach

their day to day research. This transition toward data driven research is being defined

by a changing research landscape where the experimental data being produced is of-

ten so complex and voluminous that it is difficult to develop the specific competencies

required to succeed as both experimentalist and analyst. The resulting demand for

scientists apt at data manipulation and analysis is drawing researchers from tradition-

ally more technical fields such as computer science into these areas as the technical

problems to be solved become more and more challenging.

Neuroscience is a prime example of this migration, where interdisciplinary collabo-

rations between biologists and technical scientists are the norm. It is in fact so common

that this area of crossover, most often named Computational Neuroscience, has it’s own

research networks [2, 3], journals [4, 5] and annual conferences [6–8] across the globe.



1.3 Machine Learning 3

As experimental technology advances and the cost of computation decreases, the

amount of data being produced in the natural sciences is growing. In the field of

Neuroscience, the area upon which this thesis is focused, it is not uncommon for indi-

vidual experiments to produce many gigabytes (if not terabytes) of data. Using this

often noisy data efficiently to extract relevant information and confirm or disprove

hypotheses is an ongoing challenge.

1.3 Machine Learning

The challenge of dealing with huge datasets has been partly met by leveraging the

methods being developed in a field called Machine Learning. Machine Learning (ML) is

a branch of Artificial Intelligence that is interested in the construction of computational

systems that can learn from data (a spam filter for emails is a classic application). The

increase in available computing power over the last decades has led to a resurgence in

the study of a particular area of ML known as artificial neural networks (ANNs), a

type of model heavily inspired by the information processing structures of the brain.

ANNs are often trained using the backpropogation method [9], a supervised learning

approach which requires the model to be shown both the data and the expected answer

for each sample within the training set. A drawback to supervised learning is that each

training example must be labeled with the the correct answer before being provided to

the model. Labeling the data is often a task that must be completed manually.

Artificial Neural Networks were a hot topic in the 80’s and early 90’s [10–13] but

were eclipsed by other machine learning methods, namely the support vector machine

[14], shortly thereafter. This was in part due to the practical difficulties in training

large networks with millions of parameters, the requirement of vast amounts of labeled

data to perform supervised learning and the extensive computational cost of getting

such networks to converge. Twenty years later, two things have changed. Computation

is cheap, and an efficient unsupervised approach to initialising the many parameters

in ANNs has been found in the Restricted Boltzmann Machine [15]. Unsupervised

training is an approach where the model learns about the structure of the data itself,
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reducing the need for labeled training sets. The Restricted Boltzmann Machine (RBM)

is a specialised 2 layer ANN adept at learning useful feature representations [16] from

data in an unsupervised manor. The application of RBMs along with it’s kindred

spirit, the Autoencoder (AE) [17], for parameter intialisation in ANNs has allowed for

efficient training of multi-layer neural networks with billions of parameters [18], an area

of study referred to as Deep Learning. These techniques have become so successful that

they are now a thriving field of research in academia [16, 19–25] and industry alike,

with active working groups at Google, Facebook, Baidu and Microsoft being headed

up by founders of the field such as Geoff Hinton and Yann Lecun.

1.4 Thesis Overview

This thesis pursues research in areas intersecting machine learning (particularly Deep

Learning) and Neuroscience, whilst drawing on the core disciplines of a data scientist.

The work is broken into three self-contained manuscripts, each addressing a key neu-

roscientfic problem in a data driven manner, using the brain as inspiration, model and

data source.

In the first manuscript Temporal Autoencoding Improves Generative Models of Time

Series (chapter 2), we work with the brain inspired Artificial Neural Network and

specifically the generative and feature learning properties of Restricted Boltzmann

Machines. Much research has been done assessing and improving the generative per-

formance of RBMs, but little of this work has focused on temporal versions of the

model. Here we advance the state-of-the-art by developing a novel training method

called Temporal Autoencoding and show that it can be used to increase the generative

performance of two RBM based temporal models, the Conditional RBM (CRBM) and

the Temporal RBM (TRBM).

In the second manuscript Natural image sequences constrain dynamic receptive fields

and imply a sparse code (chapter 3), we use the brain as a model of computation and

investigate applications of Temporal Autoencoding to the problem of dynamic represen-

tation learning in the mammalian visual cortex. Many studies address coding strategies
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employed in V1 and hypothesise how these neural representations may be learnt di-

rectly from the statistics of natural images. Only a small subset of this work however

addresses the problem of developing such coding strategies in a dynamic environment,

where visual input is constantly changing. In this manuscript we apply the Tempo-

ral Autoencoding training introduced in chapter 2 to learn dynamic representations of

natural image sequences. We show that the representations learned not only capture

important statistics of natural images but that they also result in a temporally sparse

encoding of natural image sequences, a desirable property in systems such as the brain

that have limited metabolic resources.

The third manuscript Decoding of voluntary hand movements in local field potential

and extracellular spiking activity from patients with Parkinson disease and Dystonia

(chapter 4), utelises the brain as a data source and we apply statistical and machine

learning techniques to help better understand neural representation of movement in

the human basal ganglia. We show that strong correlations exist between neural ac-

tivity in both the subthalamic nucleus and the globus pallidus interna and movement

parameters, further strengthening a body of literature that links the basal ganglia to

processing of motor control. Additionally, we show that it is possible to use Extracel-

lular and Local Field Potential recordings from this region to reconstruct the patients

hand position using a linear regressor.
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Abstract

Restricted Boltzmann Machines (RBMs) are generative models which

can learn useful representations from samples of a dataset in an unsuper-

vised fashion. They have been widely employed as an unsupervised pre-

training method in machine learning. RBMs have been modified to model

time series in two main ways: The Temporal RBM stacks a number of

RBMs laterally and introduces temporal dependencies between the hidden

layer units; The Conditional RBM, on the other hand, considers past sam-

ples of the dataset as a conditional bias and learns a representation which

takes these into account. Here we propose a new training method for both

the TRBM and the CRBM, which enforces the dynamic structure of tem-

poral datasets. We do so by treating the temporal models as denoising

autoencoders, considering past frames of the dataset as corrupted versions

of the present frame and minimising the reconstruction error of the present

data by the model. We call this approach Temporal Autoencoding. This

leads to a significant improvement in the performance of both models in

a filling-in-frames task across a number of datasets. The error reduction

for motion capture data is 56% for the CRBM and 80% for the TRBM.

Taking the posterior mean prediction instead of single samples further im-

proves the model’s estimates, decreasing the error by as much as 91% for

the CRBM on motion capture data. We also trained the model to perform

9
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forecasting on a large number of datasets and have found TA pretraining

to consistently improve the performance of the forecasts. Furthermore, by

looking at the prediction error across time, we can see that this improve-

ment reflects a better representation of the dynamics of the data as opposed

to a bias towards reconstructing the observed data on a short time scale.

We believe this novel approach of mixing contrastive divergence and au-

toencoder training yields better models of temporal data, bridging the way

towards more robust generative models of time series.
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2.1 Introduction

Good statistical models of data are generally thought to yield good representations for

discriminative or predictive tasks. One class of statistical model which has received a

great deal of attention in recent literature is the Restricted Boltzmann Machine [15].

The Restricted Boltzmann Machine (RBM) is a simple graphical model which is easily

trainable using contrastive divergence (CD) learning [26]. A marked advantage of this

class of model in addition to its strong feature learning capabilities [16, 18] is that

it allows for sample generation from the learned data distribution. The Restricted

Boltzmann Machine has been extended in two canonical ways to model temporal data:

The Temporal RBM [27]; and the Conditional RBM [28], both of which have had

notable success. Statistical modelling of temporal data is a problem of great interest

in machine learning. Not only because many data sources are intrinsically temporal,

but also because of the growing number of applications that interact with users in real

time, requiring efficient and scalable handling of large streams of temporal data.

The TRBM learns temporal correlations between latent representations of each

temporal sample, whilst the CRBM learns a latent representation for the whole data

sequence (see section 2.2 below). For TRBMs and CRBMs, contrastive divergence

learning seeks to approximately maximize the likelihood of sequences of observed data

(in the case of the TRBM) or the conditional likelihood of present data given the

past (in the case of the CRBM), without any regard to it’s underlying dynamics.

They learn a dynamical model of the data, but without explicitly training on the

data’s temporal characteristics they fail to exploit much of the information available

to them. We propose a simple method to enforce the dynamics of the data in the

model’s learnt representations. We achieve this by training the models as a neural

network for prediction, similar to the approach of denoising autoencoders [17]. We

refer to this method as Temporal Autoencoding (TA), which by itself it does not yield

good generative models. However, by initializing TRBM and CRBM models with

Temporal Autoencoding and then applying contrastive divergence training, one can

bias their structure toward the temporal dynamics of the data, resulting in better
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generative performance.Here we extend on our previous work [29] and assess Temporal

Autoencoding as a general pre-training algorithm for both the TRBM and CRBM

models on a number of datasets. Additionally, we investigate the effect of different

weight initialisation strategies along with an adaptive learning rate.

We show that Temporal Autoencoding pre-training improves the performance of

both generative models across the considered datasets by as much as 80% in approx-

imately the same time as those models trained in the conventional manner. These

findings hold across different modalities of data, such as human motion capture data

[28] and for the datasets included in the M3 forecasting competition [30] which en-

compass yearly, quarterly, monthly along with non-specific periodicity temporal data.

The fact that the proposed pre-training betters model performance across datasets for

both the CRBM and TRBM confirms that the method provides a robust improvement

in the generative performance of both RBM models. Furthermore, the performance

increase is not limited to short time-scales, but can be seen to hold even for longer

periods of time, extending further than the memory encoded directly by the method.

Autoencoders have recently been cast into a new light by considering them as

generative models [31]. Though we do not take that approach here, we firmly believe

that autoencoder training can improve the performance of generative models greatly.

This has been shown for the temporal models considered here, and we expect this to

lead to a significant improvement towards training temporal generative models.

2.2 Methods

We propose a new pre-training method for both the TRBM and the CRBM, based

on a denoising autoencoder approach through time. To this end we shortly discuss

the RBM, the denoising autoencoder and the temporal models used. Throughout the

paper we will denote the activation of visible layers by v = (v1, v2, . . . , vN) and the

activation of hidden layers by h = (h1, h2, . . . , hM), where N is the number of visible

units and M the number of hidden units. In the case of temporal models we will

denote the present state of the visible and hidden layers by vT = (vT1 , v
T
2 , . . . , v

T
N) and
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hT = (hT1 , h
T
2 , . . . , h

T
M), where T is the number of delayed units considered, and the

subsequential delayed units by vk = (vk1 , v
k
2 , . . . , v

k
N) and hk = (hk1, h

k
2, . . . , h

k
M), where

k ∈ {0, . . . , T − 1}. The naming convention is shown in figure 2.1 for T = 2 delayed

units.

2.2.1 Restricted Boltzmann Machines

Restricted Boltzmann Machines are generative models which assume all-to-all symmet-

ric connectivity between the visible and hidden variables (see figure 2.1a) and seek to

model the structure of a given dataset. They are energy-based models, parametrized by

anN -by-M -dimensional weight matrix W, a bias for the visible layer bv = (bv1, b
v
2, . . . , b

v
N)

and a bias for the hidden layer bh = (bh1 , b
h
2 , . . . , b

h
M). The energy of a given configura-

tion of activations v and h is given by

ERBM(v,h|W,bv,bh) = −
∑
i,j

Wij vi hj −
∑
i

bvi vi −
∑
j

bhj hj,

and the probability of a given configuration is given by

P (v,h) = exp
(
−ERBM(v,h|W,bv,bh)

)
/Z(W,bv,b

h),

where Z(W,bv,b
h) is the partition function. One noted advantage of the RBM is that

the visible units are independent of each other when conditioned on the hidden units

and vice-versa. This allows for efficient sampling, and for the exact calculation of a

number of averages. Namely, we can evaluate exactly the conditional distributions

P (vi = 1|h) = σ

(∑
j

Wijhj + bvi

)
,

and

P (hj = 1|v) = σ

(∑
i

Wijvi + bhj

)
,

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function.

One can extend the RBM to continuous-valued visible variables by modifying the

energy function, to obtain the Gaussian-binary RBM

ERBM(v,h|W,bv,bh, {σ2
i }) = −

∑
i,j

1

σ2
i

Wij vi hj +
∑
i

(bvi − vi)2

2σ2
i

−
∑
j

bhj hj.
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This then leads to the conditional distributions

P (vi|h) = N

(∑
j

Wijhj + bvi , σ
2
i

)
,

where N (µ, σ2) is the normal distribution with mean µ and variance σ2 and

P (hj = 1|v) = σ

(∑
i

Wijvi
σ2
i

+ bhj

)
.

Often the variances are constrained to have the same value across dimensions, or simply

taken to be constant value of 1. It is possible to learn them directly from the data,

however, one must take extra care to deal extremely small variance values. Like most

statistical models, RBMs can be trained by maximizing the log likelihood of the data.

This, however proves to be intractable even for the case of the RBM, and we are

left with maximizing surrogate functions. The derivative of the log likelihood of an

observed visible state D can be written as

∂ logP (D)

∂θ
= −

〈
∂E

∂θ

∣∣∣∣D〉
h

+

〈
∂E

∂θ

〉
v,h

,

where θ is any of the parameters of the model. Note that the first term is easy to

compute, but the second one involves averages over the full distribution P (v,h), which

is intractable. RBMs are therefore usually trained through contrastive divergence,

which approximately follows the gradient of the cost function

CDn(W,bv,bh) = KL(P0(v|W,bv,bh)||P (v|W,bv,bh))

−KL(Pn(v|W,bv,bh)||P (v|W,bv,bh)),

where P0 is the data distribution, Pn is the distribution of the visible layer after n

Markov chain Monte Carlo (MCMC) steps and KL() is the Kullback-Leibler divergence

[26]. The samples from the data distribution are simply taken from the data, whereas

the samples from Pn are taken by running a MCMC for n steps. The function CDn

gives an approximation to maximum-likelihood (ML) estimation of the weight matrix

W. Further approximation is still needed, as the CDn cost still involves intractable

averages, but it is generally found that the approximate parameter update given by

∆θ ∝ −
〈
∂ERBM

∂θ

∣∣∣∣D〉
h

+

〈
∂ERBM

∂θ

〉
n

,
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already gives very good results. The weight updates then become

∆Wij ∝
1

σ2
i

〈vihj〉0 −
1

σ2
i

〈vihj〉n .

In general, n = 1 is already sufficient for practical purposes [15].

2.2.2 Autoencoders

Autoencoders are deterministic models with two weight matrices W1 and W2 repre-

senting the flow of data from the visible-to-hidden and hidden-to-visible layers respec-

tively (see Figure 2.1b).1 AEs are trained to perform optimal reconstruction of the

visible layer, often by minimizing the mean-squared error (MSE) in a reconstruction

task. This is usually evaluated as follows: Given an activation pattern in the visible

layer v, we evaluate the activation of the hidden layer by hj = σ(
∑

iW
1
ijvi + bhj ).

These activations are then propagated back to the visible layer through v̂i(vi) =

σ(
∑

j W
2
ijhj + bvi ) and the weights W1 and W2 are trained to minimize the distance

measure between the original and reconstructed visible layers. Therefore, given a set

of Q image samples {Dk} we can define the cost function. Using the squared eu-

clidean distance between the original data and the reconstructed data for example,

v̂k = (v̂1(Dk), v̂2(Dk), . . . , v̂N(Dk)), we have the loss function

L(W1,W2,bv,bh|{Dk}) =
1

Q

∑
d

‖Dk − v̂(Dk)‖2.

The weights can then be learned through stochastic gradient descent on L. Autoen-

coders often yield better representations when trained on corrupted versions of the

original data, performing gradient descent on the distance to the uncorrupted data.

This approach is called a denoising autoencoder [17]. Note that in the AE, the acti-

vations of all units are continuous and not binary, and usually take values between 0

and 1.

1Often one only uses one matrix and propagates up throught W1 and down through its transpose

(W1)>
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Figure 2.1: Described model architectures: a) RBM; b) Autoencoder; c) Temporal RBM
and d) Conditional RBM.

2.2.3 Temporal Restricted Boltzmann Machine

Temporal Restricted Boltzmann Machines (TRBM) are a temporal extension of the

standard RBM whereby connections are included from previous time steps between

hidden layers, from visible-to-hidden layers and from visible-to-visible layers. Learning

is conducted in the same manner as a normal RBM using contrastive divergence and

it has been shown that such a model can be used to learn non-linear system evolutions

such as the dynamics of a ball bouncing in a box [27]. A more constrained version

of this model, discussed in [32] can be seen in figure 2.1c and only contains temporal

connections between the hidden layers. We restrict ourselves to this model architecture

throughout the paper.

The energy of the model for a given configuration of the visible layers V = {v0, . . . ,vT}

and hidden layers H = {h0, . . . ,hT} is given by

E(H,V|W ,B) =
T∑
t=0

ERBM(ht,vt|W,bv,bh)−
T−1∑
t=0

(∑
jk

W
(T−t)
jk hTj h

t
k

)
, (2.1)

where we have used B = {bv,bh} andW = {W,W1, . . . ,WT}, where W are the static

weights and W1,W2, . . .WT are the delayed weights for the temporally delayed hidden

layers hT−1,hT−2, . . . ,h0 (see figure 2.1c). Because the hidden layers are coupled, the

expectations in the CD cost can not be simply evaluated as in the RBM, and must

be estimated by MCMC sampling, making training and sampling in this model more

difficult. More specifically note that the conditional distribution P (H|V) is already

intractable. A simple way to deal with this is the so-called filtering approximation
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where past hidden layers are sampled from whilst ignoring the present hidden layer

and then the the present hidden layer is sampled from conditioned on the past.

2.2.4 Conditional Restricted Boltzmann Machines

One way to overcome the problems of the TRBM has been proposed in the Conditional

Restricted Boltzmann Machines [28]. The CRBM has only one hidden layer which

receives input from all visible layers, past and present and the present visible layer

additionally receives input from past visible layers. Unlike the TRBM, only the present

hidden and visible layers are considered to be free, whereas the past visible states are

conditioned on. The energy of the model can be written as

ECRBM(hT ,vT |v0, . . . ,vT−1,W ,B,P) = ERBM(hT ,vT |W,bh,b
v)

−
∑T−1

t=0

(∑
ij W

(T−t)
ij vti h

T
j +

∑
il P

(T−t)
il vti v

T
l

)
,

where P = {P0, . . . PT−1} are the visible-to-visible weights. The model architecture can

be seen in Figure figure 2.1d. Using this formulation, the hidden layer can still be easily

marginalized over, allowing for more efficient training using contrastive divergence. The

CRBM is possibly the most successful of the temporal RBM models to date and has

been shown to both model and generate data from complex dynamical systems such

as human motion capture data and video textures [33].

2.2.5 Temporal Autoencoding Training

Standard CD training for the TRBM and CRBM seeks to maximize the likelihood

of the data observed. This usually works quite well and has been shown to allow the

trained models to reproduce complex temporal data such as video of a bouncing ball or

human motion capture. This training method however ignores the current time frames

causal dependence on the past. In time series data it is a natural assumption that the

future states are given by some function of the past states, latent variables and possibly

noise. We seek to explore this property, by explicitly learning a representation which

captures these dynamics.
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We do so by treating the hidden layers of the model as an information bottleneck,

similar to what is done in the training of the denoising autoencoder [17]. We treat

the past states of the time series up to a number of delays as a noisy representation

of the present state, and propagate their values through the model, considering it as a

neural network with sigmoidal activation functions and perform gradient descent on the

quadratic error of the reconstructed present state. In this way, we explicitly constrain

the model to represent the dynamic structure of the data.

This amounts to supervised learning for reconstruction using the architectures

shown in figure 2.2. Though the idea behind the training procedure is the same for

both models, the specifics are slightly different and as such we consider them separately

below.

Temporal Autoencoding for the TRBM

Let us first consider the TRBM. The energy of the model is given by equation (2.1) and

is essentially an T -th order autoregressive RBM which is usually trained by standard

contrastive divergence. Here we propose training it with a novel approach, highlighting

the temporal structure of the stimulus. First, the individual RBM visible-to-hidden

weights W are initialized through contrastive divergence learning with a sparsity con-

straint on static samples of the dataset. After that, to ensure that the weights repre-

senting the hidden-to-hidden connections (Wt) encode the dynamic structure of the

ensemble, we initialize them by pre-training in the fashion of a denoising Autoencoder.

For this, we consider the model to be a deterministic Multi-Layer Perceptron with

continuous activation in the hidden layers. We then consider the T delayed visible

layers as features and try to predict the current visible layer by projecting through the

hidden layers. In essence, we are considering the model to be a feed-forward network,

where the delayed visible layers would form the input layer, the delayed hidden layers

would constitute the first hidden layer, the current hidden layer would be the second

hidden layer and the current visible layer would be the output as is pictured in fig-

ure 2.2. Given sample activations of the visible layers Vd = {v0
d,v

1
d, . . . ,v

T−1
d ,vT

d }, we

can then write the prediction of the network as v̂T (v0
d,v

1
d, . . . ,v

T−1
d ;W ,B), where the
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d index runs over the Q data points. The exact format of this function is described in

algorithm 1. We minimize the reconstruction error given by

L(W ,B) =
1

Q

∑
d

∥∥vT
d − v̂T (v0

d,v
1
d, . . . ,v

T−1
d ;W ,B)

∥∥2 ,
where the sum over d goes over the entire dataset. After the Temporal Autoencoding

is completed, the whole model (both visible-to-hidden and hidden-to-hidden weights)

is trained together using contrastive divergence (CD) training. A summary of the

training method is described in table 2.1.

Table 2.1: Autoencoded TRBM Training Steps

Step Action

1. Static RBM Training Constrain the static weights W using CD on single frame samples of the training data

2. Temporal Autoencoding Constrain the temporal weights W1 to WT using a denoising autoencoder on
multi-frame samples of the data

3. Model Finalisation Train all model weights together using CD on multi-frame samples of the data

Temporal Autoencoding for the CRBM

The procedure is very similar for the CRBM. First the static weights W are initialized

with contrastive divergence training. After that, we reconstruct the present frame from

its past observations by passing it through the hidden layer. The obtained reconstruc-

tion is then a function of the past observations and the matrices W and the biases B,

we can write v̂T (v0
d,v

1
d, . . . ,v

T−1
d ;W ,B). We then perform stochastic gradient descent

on the reconstruction error

L(W ,B) =
1

Q

∑
d

∥∥vT
d − v̂T (v0

d,v
1
d, . . . ,v

T−1
d ;W ,B)

∥∥2 .
After this step is finished we proceed to train the CRBM with normal contrastive

divergence to fine tune the weights for better generation. A summary for the training

procedure is given in table 2.1 and a complete description of the temporal autoencoding

step is given in algorithm 2.
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Figure 2.2: TRBM (a) and CRBM (b) temporal autoencoding architectures.

Implementation

Gradient descent on the cost functions explained above involves backpropagation through

the hidden layers. This has been made relatively simple by automatic differentiation

packages such as Theano [34]. We have implemented the temporal autoencoding train-

ing as a MLP and then proceeded to perform stochastic gradient descent on the loss

using mini-batches.

Adaptive Learning Rate

Restricted Boltzmann Machines are notoriously sensitive to model parameters [35]

including the choice of the learning rate η. A bad choice of η can cause the model to

diverge during learning, though one can attempt to circumvent this issue by adapting

η as training advances [36, 37]. Here we take a simplistic but successful approach that

incrementally increases the learning rate by 10% when the error is less than the mean

error of the last 5 iterations and shrinks the learning rate by 20% when the error is

greater.

2.3 Results

The quality of a generative model can be measured by sampling from it and comparing

the samples to the true dataset. This approach is generally called filling-in and is par-

ticularly well-suited to temporal applications as we can condition on the observations
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Algorithm 1 Pre-Training Temporal weights through Autoencoding for the TRBM

Given a learning rate η

for each sequence of data frames I(t− T ), I(t− (T − 1)) . . . , I(t) do

take vT = I(t), . . . ,v0 = I(t− T ) and

for j = 1 to T do

for i = 1 to j do

hT−il = σ(
∑

kWkl v
T−i
k + bhl )

end for

hTl = σ(
∑T

j=1

∑
mW

j
lmh

T−j
m + bhl )

v̂Tn = σ(
∑

lWnl h
T
l + bvn)

ε(vT , v̂T ) = |vT − v̂T |2

∆Wd = η ∂ε/∂Wd

end for

end for

up to a certain time and fill in the missing frames by sampling from the model. The

performance can then be quantified using the Mean squared error (MSE) or the Mean

Absolute Percentage Error (MAPE) between the true and sampled data.

We have applied our pre-training method to the CRBM and TRBM using two

datasets. The motion-capture data described in [28] and the M3 competition dataset

[30]. For both datasets we separated the data into a training and a test set, then trained

our models on the training set and evaluated them in a filling-in-frames task on the

test set. For all experiments we used a Gaussian-binary RBM model with variance

fixed to 1.

2.3.1 Motion-Capture Data

We assessed the impact of our pre-training method by applying it to the 49 dimensional

human motion capture data described in [28] and using this as a benchmark, comparing
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Algorithm 2 Pre-Training Temporal weights through Autoencoding for the CRBM

Given a learning rate η

for each sequence of data frames I(t− T ), I(t− (T − 1)) . . . , I(t) do

take vT = I(t), . . . ,v0 = I(t− T ) and

for j = 1 to T do

hl = σ(
∑T−1

t=T−j
∑

kW
(T−t)
kl vtk + bhl )

v̂Ti = σ(
∑

lWil hl + bvi )

ε(vT , v̂T ) = |vT − v̂T |2

∆Wd = η ∂ε/∂Wd

end for

end for

the performance to the models without pre-training 2. We also investigate the impact

that different initialisation strategies have on model performance along with the bene-

fits of using an adaptive learning rate. All the models were implemented using Theano

[34], have a temporal dependence of 6 frames and were trained using minibatches of 100

samples for 500 epochs3. The training time for the models was approximately equal

and the weight matrices were initialised randomly from the distribution N (0, 0.1) un-

less otherwise stated. Training was performed on the first 2000 samples of the dataset

after which the models were presented with 1000 snippets of the data not included in

training set and required to generate the next frame in the sequence. Generation from

the TRBM is done using the filtering approximation, that is, by taking a sample from

the hidden layers at t − 6 through t − 1 and then Gibbs sampling from the RBM at

time t while keeping the others fixed as biases. Generation from the CRBM is more

straightforward, activations from the visible layers at t − 6 through t − 1 are fed to

2In this section we refer to the reduced TRBM model referenced in [32] with only hidden-to-hidden

temporal connections
3For the TRBM and CRBM, training epochs were broken up into 100 static pre-training and 400

epochs for all the temporal weights together. For the TA pretrained models, aTRBM and aCRBM,

training epochs were broken up into 100 static pre-training, 50 Autoencoding epochs per delay and

100 epochs for all the temporal weights together, totalling to the same number of training epochs

(500)
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the hidden layer then Gibbs sampling is performed for the visible units at time t. For

both models, the visible layer at time t is initialized with noise and we sample for

100 Gibbs steps from the model. The results of a single trial prediction for 4 random

dimensions of the dataset can be seen in Figure 2.3 and the mean squared error and

standard deviations of the model predictions over 100 repetitions of the task can be

seen in Table 2.2.

The models trained with Temporal Autoencoding significantly outperform their

CD-only trained counterparts. The CRBM shows an improvement of approximately

56%, while the TRBM shows an improvement of almost 80% on this dataset. Sur-

prisingly, initialising the network with weights of 0 instead of the random distribution

described above had no impact on performance for either the standard CD trained

models or the TA trained ones. The results can be further improved by taking the

mean of the estimate by sampling from the hidden layer multiple times and taking the

average prediction. This is akin to taking the Bayesian posterior mean estimator and

leads to a further decrease in the MSE of 78% for the CRBM and 91% for the TRBM

relative to straight CD training.

One could argue that the improved performance of the TA pre-trained model simply

shows that a deterministic neural network is more well suited to the task at hand. To

make sure that the gain is due to the interplay of both training approaches, we also

trained a deterministic multi-layer perceptron (MLP) with the architecture shown in

figure 2.2. This results are shown in the rightmost column in figure 2.3 and one can

see that the simple deterministic approach outperforms the CD-trained model, but not

the model trained with Temporal Autoencoding.

These improvements also hold for longer time scales if we keep feeding the models

predictions back into it and let it generate autonomously. The TA pre-training sig-

nificantly lowers the prediction error. Even after 6 frames, when all the visible layer

frames were generated by the model, the MSE is still approximately as low or lower

than when filling in one frame from the data without pre-training. The prediction

errors for our models are shown in figure 2.4.
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The use of an adaptive learning rate plays an important role in these results enabel-

ing the models to perform much better than with any the many fixed learning rates

we experimented with. A good example is in the results of CD-trained CRBM where

the introduction of an adaptive learning rate lowered the error by approximately 50%

over our previously published results in [29].

Time

CRBM

Predicted

True

CRBM (TA) TRBM TRBM (TA) CRBM (TA) TRBM (TA) AE/MLP

MSE 0.40 0.17 1.66 0.32 0.08 0.14 0.32 0.17 0.31

Single Sample 50 Sample Average Deterministic

Figure 2.3: The CRBM and TRBM are used to fill in data points from motion capture
data [28] with and without TA pre-training. 4 dimensions of the motion data are shown along
with the their model reconstructions from a single trial (left group), mean prediction over 50
samples (middle group) and deterministically (right group).

2.3.2 M3 Forecasting Competition Data

The motion capture experiments have shown great results for our proposed training

method, but it reflects a lot of structure specific to the origin of the data. To assess how

the method works on a more generalised dataset, we applied it to the datasets of the

M3 forecasting competition. The M3 forecasting competition [30] pitted forecasting al-

gorithms against one another on 3003 different datasets, ranging from microeconomical
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Table 2.2: Prediction results on the motion capture dataset

Model Architecture and Training MSE (± SD)

TRBM 100 hidden units, 6 frame delay 1.59 (± 0.12)

TRBM (TA) 100 hidden units, 6 frame delay 0.32 (± 0.03)

TRBM (TA), 50 sample mean 100 hidden units, 6 frame delay 0.14 (± 0.03)

CRBM 100 hidden units, 6 frame delay 0.40 (± 0.05)

CRBM (TA) 100 hidden units, 6 frame delay 0.17 (± 0.02)

CRBM (TA), 50 sample mean 100 hidden units, 6 frame delay 0.08 (± 0.02)

to financial and industrial data. The data are univariate, but through state augmen-

tation we can use our method to generate predictions for future data points. We have

done so by taking chunks of 4 consecutive observations and used successive chunks as

our multivariate data. With these we have trained the model to generate forecasts.

Figure 2.5 shows the average performance of our algorithm on the four different

kinds of data. They are separated into yearly, quarterly, monthly and other, the main

categories of the competition. Here we measure the model performance using MAPE

as was used in the competition. Although the datasets are generally small if compared

to the usual unsupervised learning case, our training method still fares relatively well.

Furthermore, TA pre-training continues to show a strong improvement over straight

CD learning across the board. The robust performance of the TA pre-training on these

datasets strongly suggests our method will generally yield improvements.

2.4 Discussion and Future Work

We have introduced a new training method for temporal RBMs that we call Temporal

Autoencoding and have shown that it can achieve a significant performance increase

in a filling-in-frames task across a number of datasets. The gain in performance from
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Figure 2.4: CRBM, TRBM are used to fill in data points from motion capture data [28]
with and without TA pre-training. The plot shows the evolution of the MSE after the input
is killed and the model is left to generate samples on its own.

our pre-training approach is robust and holds for both the CRBM and the TRBM,

allowing for more effective training of temporal generative models.

Our approach combines the supervised approach of backpropagating prediction er-

rors through the network with the unsupervised approach of Contrastive Divergence

learning. We have also shown that neither method by itself can achieve the performance

we achieve by combining both.

In the M3 contest dataset, specifically, the approach is shown to consistently im-

prove the MAPE in a forecasting task, across a number of different types of data. On

motion capture data, on the other hand, we were able to improve the MSE of the

generative model by as much as 90% in some cases.

It is our opinion that the approach of autoencoding temporal dependencies gives

the model a more meaningful temporal representation than is achievable through con-

trastive divergence training alone. The TA training seeks to constrain the model to

reproduce the dynamics observed in the data and as such it is not surprising that the

improvement in generation also leads to an improvement in the prediction performance
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Figure 2.5: CRBM, TRBM are used to fill in data points from the M3 forecasting com-
petition with and without TA pre-training. The plot shows the evolution of the MAPE after
the input is killed and the model is left to generate samples on its own. In all four data
categories, the Temporal Autoencoded models out perform those without TA training

of the models considered. We believe the inclusion of Autoencoder training in tempo-

ral learning tasks will be beneficial in a number of contexts, as it enforces the causal

structure of the data on the learned model. In future work, it would be interesting

to try to replace Gibbs sampling of the posterior mean by an approximate inference

approach in order to speed up the prediction.
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Abstract

In their natural environment, animals experience a complex and dy-

namic visual scenery. Under such natural stimulus conditions, neurons in

the visual cortex employ a spatially and temporally sparse code. For the

input scenario of natural still images, previous work demonstrated that

unsupervised feature learning combined with the constraint of sparse cod-

ing can predict physiologically measured receptive fields of simple cells in

the primary visual cortex. This convincingly indicated that the mammalian

visual system is adapted to the natural spatial input statistics. Here, we ex-

tend this approach to the time domain in order to predict dynamic receptive

fields that can account for both spatial and temporal sparse activation in bi-

ological neurons. We rely on temporal restricted Boltzmann machines and

suggest a novel temporal autoencoding training procedure. When tested

on a dynamic multivariate benchmark dataset this method outperformed

existing models of this class. Learning features on a large dataset of nat-

ural movies allowed us to model spatio-temporal receptive fields for single

neurons. They resemble temporally smooth transformations of previously

obtained static receptive fields and are thus consistent with existing the-

ories. A neuronal spike response model demonstrates how the dynamic

receptive field facilitates temporal and population sparseness. We discuss

the potential mechanisms and benefits of a spatially and temporally sparse

31
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representation of natural visual input.
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3.1 Introduction

Physiological and theoretical studies have argued that the sensory nervous systems of

animals are evolutionarily adapted to their natural stimulus environment [for review see

38]. The question of how rich and dynamic natural stimulus conditions determine single

neuron response properties and the functional network connectivity in mammalian

sensory pathways has thus become an important focus of interest for theories of sensory

coding [for review see 39, 40].

For a variety of animal species and for different modalities it has been demonstrated

that single neurons respond in a temporally sparse manner [38, 40–42] when stimulated

with natural time-varying input. In the mammal this is intensely studied in the visual

[43–49] and the auditory [42, 50, 51] pathway as well as in the rodent whisker system

[41, 52]. Sparseness increases across sensory processing levels and is particularly high in

the neocortex. Individual neurons emit only a few spikes positioned at specific instances

during the presentation of a time-varying input. Repeated identical stimulations yield

a high reliability and temporal precision of responses [48, 53]. Thus, single neurons

focus only on a highly specific spatio-temporal feature from a complex input scenario.

Theoretical studies addressing the efficient coding of natural images in the mam-

malian visual system have been very successful. In a ground breaking study, [54] learned

a dictionary of features for reconstructing a large set of natural still images under the

constraint of a sparse code to obtain receptive fields (RF), which closely resembled the

physiologically measured RFs of simple cells in the mammalian visual cortex. This ap-

proach was later extended to the temporal domain by [55], learning rich spatio-temporal

receptive fields directly from movie patches. In recent years, it has been shown that

a number of unsupervised learning algorithms, including the denoising Autoencoder

(dAE) [17] and the Restricted Boltzmann Machine (RBM) [15, 16, 56], are able to

learn structure from natural stimuli and that the types of structure learnt can again

be related to cortical RFs as measured in the mammalian brain [57–59].

Considering that sensory experience is per se dynamic and under the constraint of a

temporally sparse stimulus representation at the level of single neurons, how could the
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Figure 3.1: Described model architectures: a) Autoencoder; b) RBM; c) Conditional
RBM and d) Temporal RBM. In the CRBM (figure 3.1C; see also section 3.4), there is a
hidden layer only at the current sample time whose activation is defined by weights connecting
the current as well as previous activations of the visible layer. The TRBM (figure 3.1D) has a
hidden layer instantiation for each sample time within the models delay dependency and the
temporal evolution of the model is defined by lateral connections between the hidden units
of consecutive time steps.

static RF model, i.e. the learned spatial feature, extend into the time domain? Here we

address this question with an unsupervised learning approach using RBMs as a model

class. Building on an existing model, the Temporal Restricted Boltzmann Machine

(TRBM) introduced by [27], we introduce a novel learning algorithm with a temporal

autoencoding approach to train RBMs on natural multi-dimensional input sequences.

For validation of the method, we test the performance of our training approach on

a reference dataset of kinematic variables of human walking motion and compare it

against the existing TRBM model and the Conditional RBM (CRBM) as a benchmark

[28]. As an application of our model, we train the TRBM using temporal autoencoding

on natural movie sequences and find that the neural elements develop dynamic RFs

that express smooth transitions, i.e. translations and rotations, of the static receptive

field model. Our model neurons account for spatially and temporally sparse activities

during stimulation with natural image sequences and we demonstrate this by simulation

of neuronal spike train responses driven by the dynamic model responses. Our results

propose how neural dynamic RFs may emerge naturally from smooth image sequences.
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3.2 Results

We outline a novel method to learn temporal and spatial structure from dynamic

stimuli - in our case smooth image sequences - with artificial neural networks. The

hidden units (neurons) of these generative models develop dynamic RFs that represent

smooth temporal evolutions of static RF models that have been described previously

for natural still images. When stimulated with natural movie sequences the model

units are activated sparsely, both in space and time. A point process model translates

the model’s unit activation into sparse neuronal spiking activity with few neurons being

active at any given point in time and sparse single neuron firing patterns.

3.2.1 The Model

We rely on the general model class of RBMs (see section 3.4.1). The classic RBM is

a two layer artificial neural network with a visible and a hidden layer used to learn

representations of a dataset in an unsupervised fashion (figure 3.1 A). The units (neu-

rons) in the visible and those in the hidden layers are all-to-all connected via symmetric

weights and there is no connectivity between neurons within the same layer. The input

data, in our case natural images, activate the units of the visible layer. This activity

is then propagated to the hidden layer where each neuron’s activity is determined by

the input data and by the weights W connecting the two layers. The weights define

each hidden neuron’s filter properties or its RF, determining its preferred input.

Whilst the RBM has been successfully used to model static data, it lacks in the

ability to explicitly represent the temporal evolution of a continuous dataset. The

CRBM (figure 3.1 C) and TRBM (figure 3.1 D) are both temporal extensions of the

RBM model, allowing the hidden unit activations to be dependent on multiple samples

of a sequential dataset. The models have a delay parameter which is used to determine

how long the integration period on a continuous dataset is.

The CRBM has an instantiation of the visible layer for each sample time within

the model’s delay range, each of which is connected directly to the single hidden layer

at the current sample point. In the TRBM (figure 3.1 D; see also section 3.4.1) the
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temporal dependence is modelled by a set of weights connecting the hidden layer ac-

tivations at previous steps in the sequence to the current hidden layer representation.

The TRBM and CRBM have proven to be useful in the modelling of temporal data,

but each again has its drawbacks. The CRBM does not separate the representations of

form and motion. Here we refer to form as the RF of a hidden unit in one sample of the

dataset and motion as the evolution of this feature over multiple sequential samples.

This drawback makes it difficult to interpret the features learnt by the CRBM over

time as the two modalities are mixed. The TRBM explicitly separates representations

of form and motion by having dedicated weights for the visible to hidden layer connec-

tions (form) and for the temporal evolution of these features (motion). Despite these

benefits, the TRBM has proven quite difficult to train due to the intractability of its

probability distribution (see section 3.4).

In this work we develop a new approach to training Temporal Restricted Boltzmann

Machines that we call Temporal Autoencoding (we refer to the resulting TRBM as an

autoencoded TRBM or aTRBM) and investigate how it can be applied to modelling

natural image sequences. The aTRBM adds an additional step to the standard TRBM

training, leveraging a denoising Autoencoder to help constrain the temporal weights in

the model. Table 3.1 provides an outline of the training procedure whilst more details

can be found in the section 3.4.1.

In the following sections we compare the filters learnt by the aTRBM and CRBM

models on natural image sequences and show that the aTRBM is able to learn spatially

and temporally sparse filters having response properties in line with those found in

neurophysiological experiments

3.2.2 Learning Temporal Filters from Natural Image Sequences

We have trained a CRBM and an aTRBM on natural image sequence data taken from

the Hollywood2 dataset introduced in [60], consisting of a large number of snippets

from various Hollywood films. From the dataset, 20x20 pixel patches are extracted in

sequences 30 frames long. Each patch is contrast normalized (by subtracting the mean
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Figure 3.2: Static filters learned by the aTRBM on 20x20 image patches. Note the mostly
gabor like filters of varying orientation and frequency selectivity.

and dividing by the standard deviation) and ZCA whitened [61] to provide a training

set of approximately 350,000 samples. The aTRBM and CRBM models, each with

400 hidden units and a temporal dependency of 3 frames, are trained initially for 100

epochs on static frames of the data to initialize the static weights W and then until

convergence on the full temporal sequences. Full details of the models’ architecture

and training approaches are given in the Methods section.

Static RFs

The static filters learned by the aTRBM through the initial contrastive divergence

training can be seen in Figure 3.2 (note that the static filters are pre-trained in the

same way for the CRBM and aTRBM, therefore the filters are equivalent). We obtain

Gabor-like patch filters resembling simple cell RFs in V1, reproducing the typical

result for a variety of methods (see Introduction), statistics of which can be seen in

figure 3.3. The RFs of the hidden units are spatially located across the entire image

patch with some distinct clustering along the borders (Figure 3.3A). In 2D Fourier
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space (Figure 3.3B) one can see a good coverage of the space, representing frequency

and direction selectivity, both of these results being in agreeance with those found in

similar studies ( see [62] and [61], for example). The filters also display a preference for

cardinal (horizontal and vertical) orientations (Figure 3.3C), a phenomenon that has

often been reported in electrophysiological experiments of primary visual cortex [eg.

63, 64].

Dynamic RFs

We then analysed how the static filters are connected through the temporal weights

learned during autoencoder training by visualizing their evolution over time. The filters

discussed were learned by the aTRBM (see equation (3.1)) with our training algorithm

described in section 3.4.1. To visualize the dynamic RF of a hidden unit we clamped

the activation of that unit to 1 and set all other units to be inactive in the most delayed

layer of the aTRBM. We then proceeded to sample from the distribution of all other

hidden layers and chose the most active units in every delay. This is shown in figure 3.4.

We have shown the most active units when a hidden unit is active for the 80 units with

highest temporal variation among the subsequent filters. This however, only gives us a

superficial look into the dynamics of the RF’s. One way to look further is to consider

the n most active units at the second-furthest delay and then sequentially clamp each

of these to an active state and look at the resulting activations in the remaining layers.

If one does this sequentially, we are left with a tree of active units, 1 at time t−T , n at

time t− (T − 1), and nT at time t. We can then look at what these units code for. We

have performed this procedure with two hidden units, and to visualize what they code

for we have plotted the center of mass of the filters in frequency and position space.

This is shown in figure 3.5.

Visualizing the temporal RFs learnt by the CRBM is simpler than for the aTRBM.

We display the weight matrix W and the temporal weights W1 to Wd for each hidden

unit directly as a projection into the visible layer (a 20x20 patch). This shows the

temporal dependence of each hidden unit on the past visible layer activations and is

plotted with time running from top to bottom in figure 3.4B. The aTRBM learns richer
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filter dynamics with a longer temporal dependency, whereas the CRBM only seems to

care about the visible layers at times t and t−1, possibly because most of the variation

is captured by the visible-to-visible weights.

The temporal profile of excitation versus inhibition for the aTRBM can also be seen

from the profile of the connectivity matrix between it’s hidden units. This is shown

in figure 3.3(E) and one can note a transition from self-excitation at delay = 1 to

self-inhibition at delay = 3.

In figure 3.5 we analyse the filter histories of the aTRBM for n = 3 and visualize for

two of the hidden layer units, their preference in image space, frequency and direction.

For the unit in figure 3.5A there is a clear selectivity for spatial location over its

temporal evolution and activations remain spatially localised. In contrast there is no

apparent preference for orientation. The unit depicted in figure 3.5B on the other hand,

displays strong orientation selectivity, but the spatial selectivity is not accentuated.

These results are representative of the population and provide evidence for preferential

connectivity between cells with similar RFs, a finding that is supported by a number

of experimental results in V1 [65, 66].

3.2.3 The dynamic RF model facilitates sparse coding

The temporal evolution of the spatial filter structure expressed by single units in the

dynamic RF model (figure 3.4 and figure 3.5) renders individual units to be selective

to a specific spatio-temporal structure of the input within their classical RF. This

increased stimulus specificity in comparison to a static RF model implies an increased

sparseness of the units’ activation. To test this hypothesis we quantified temporal and

spatial sparseness for both model approaches.



40
Natural image sequences constrain dynamic receptive fields and imply

a sparse code

0 5 10 15

Pixels

0

5

10

15

P
ix

e
ls

−8 −4 0 4 8

Cycles/Patch

−8

−4

0

4

8

C
y
c
le

s
/P

a
tc

h
0°

45°

90°

135°

180°

225°

270°

315°

30
60

0 2 4 6 8 10

Cycles/Patch

0
10
20
30
40
50
60
70
80
90

#
 o

f 
F
il
te

rs

A B

C D

50 150250350

Target Hidden Unit

50

150

250

350

H
id

d
e
n

 U
n

it

Delay = 3 Delay = 2 Delay = 1

-19.8 0 20.8

E

Figure 3.3: Static filter statistics - aTRBM: a) Histogram of the filters spatial location;
b) Histogram of the filters spatial frequency; c) Histogram of the filters preferred direction
(showing a clear preference for cardinal directions) and d) frequency. e) Visualization of the
temporal transition weights for 3 time delays for the aTRBM. Note the strong self excitation
at delay = 1 and self inhibition at delay = 3

Temporal sparseness

We measured temporal sparseness of the single unit activation h using the well es-

tablished sparseness index S (equation (3.2)) introduced by [67] and described in sec-

tion 3.4.2. The higher the value of S for one particular unit, the more peaked is the

temporal activation profile h(t) of this unit. The lower the value of S, the more evenly

distributed are the activation values h(t). The quantitative results across the popu-

lation of 400 hidden units in our aTRBM model are summarized in figure 3.6 A. As

expected, units are temporally sparser when the dynamic RF is applied with a mean
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Figure 3.4: Dynamic RFs. 80 out of 400 hidden units with the highest temporal variation
from an aTRBM (A) and a CRBM (B). For the pre-trained TRBM, we plot the most active
units as described in the text. Each group of 4 images represents the temporal filter of one
hidden unit with the lowest patch representing time t and the 3 patches above representing
each of the delay steps in the model. The units are displayed in two rows of 40 columns with
4 filters, with the temporal axis going from top to bottom.

sparseness index of 0.92 (median: 0.93) compared to the mean of 0.69 (median: 0.82)

for the static RF. This is also reflected in the activation curves for one example unit

shown in figure 3.6 D1 for the static RF (blue) and the dynamic RF (green) recorded

during the first 8 s of video input.

In the nervous system temporally sparse stimulus encoding finds expression in stim-

ulus selective and temporally structured single neuron firing patterns where few spikes

are emitted at specific instances in time during the presentation of a time varying

stimulus (see section 3.1). In repeated stimulus presentations the temporal pattern

of action potentials is typically repeated with high reliability (e.g. [53]). In order to

translate the continuous activation variable of the hidden units in our aTRBM model

into spiking activity we used the cascade model depicted in figure 3.6 C and described

in section 3.4.2. The time-varying activation curve (figure 3.6 D1) is used as determin-

istic intensity function of a stochastic point process model. This allows us to generate

repeated stochastic point process realizations, i.e. single trial spike trains, as shown

for the example unit in figure 3.6 D2. Clearly, the repeated simulation trials based
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Figure 3.5: Spatial and angular evolution of two hidden units in the aTRBM (sub figures
A & B). The upper row shows the center of each units receptive field in pixel space for the
most active units in in the temporal evolution of one unit. The lower row shows the strongest
frequency component of the filters for this same evolution. The unit in subfigure A shows
a clear spatial preference but is orientation agnostic whilst the unit in subfigure B is less
spatially selective but shows a clear preference for vertically oriented filters.

on the dynamic RF activation (green) exhibit a spiking pattern, which is temporally

sparser than the spiking pattern that stems from the static RF activation (blue). This

also finds expression in the time histogram of the trial-averaged firing rate shown in

figure 3.6 D3. The firing rate is more peaked in the case of the dynamic RF, resembling

the deterministic activation curve in figure 3.6 D1.

Spatial sparseness

Spatial sparseness (also termed population sparseness) refers to the situation where

only a small number of units are significantly activated by a given stimulus. In the
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Figure 3.6: Temporal and spatial sparseness of neuronal activity for static and dynamic
RF responses. (A) Temporal sparseness measured in 400 hidden layer units during 30 s of
video stimulation is significantly larger for the dynamic (right) than the static (left) RF
model (P < 10−5; Wilcoxon signed rank test). (B) Spatial sparseness measured across all
400 neurons is significantly increased (P < 10−5; Wilcoxon signed rank test) in the dynamic
(right) RF model as compared to the static RF model (left). (C) Sketch of cascade model for
spike train generation. During video stimulation the activation curve of a hidden layer neuron
(left) expresses the deterministic probability of being active in each frame. A stochastic
point process model (center) generates action potentials (rigth) according to a time-varying
intensity proportional to the activation curve. (D1-D3) Temporal sparseness during 8 s of
video stimulation. (D1) Activation curve of one hidden neuron for the static RF (blue)
and the dynamic RF (green) model with a temporal sparseness of S = 0.82 and S = 0.94,
respectively. (D2) Repeated point process realizations (n=20) using the activation curves in
(D1). (D3) Firing rate estimated as time histogram from 100 repetitions for static (blue)
and dynamic (green) RF model. (E1-E3) Spatial sparseness in the population of hidden layer
neurons during video stimulation. (E1) Average activation curves of hidden layer units for
the static (blue) and dynamic (green) RF model. (E2) Spike trains of N = 50 hidden layer
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neurons per video frame in the total population of 400 hidden units is considerably smaller
for the dynamic RF model.
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natural case of time-varying stimuli this implies a small number of active neurons

in any small time window while the rest of the neuron population expresses a low

baseline activity. Again, we use S (equation (3.2)) to quantify spatial sparseness from

the population activation h of hidden neurons and for each time step separately. The

results depicted in Fig. 3.6 B show a significantly higher spatial sparseness when the

dynamic RF was applied with a mean (median) of 0.92 (0.93) as compared to the static

RF with a mean (median) of 0.74 (0.74).

We demonstrate how the spatial sparseness for the static and the dynamic RF

model in the population of hidden units affects spiking activity using our cascade point

process model. Fig. 3.6 E2 shows the simulated spiking activity of all 400 neurons based

on the activation h(t) of the hidden neurons during 8 s of recording. Overall the static

RF (blue) results in higher firing rates. The stimulus representation in the ensemble

spike train appears more dense for the static RF (blue) than in the case of a dynamic

RF (green). As shown in Fig. 3.6 E3, fewer neurons were active at any given point in

time when they were driven by the dynamic RF model.

3.3 Discussion

We suggested a novel approach to unsupervised learning of spatio-temporal structure

in multidimensional time-varying data. We first define the general topology of an

artificial neural network (ANN) as our model class. Through a number of structural

constraints and a machine learning approach to train the model parameters from the

data, we arrive at a specific ANN which is biologically relevant and is able to produce

activations for any given temporal input (section 3.2.1). We then extend this ANN

with a Computational Neuroscience based cascade model and use this to generate trial

variable spike trains (section 3.2.3).

The proposed aTRBM model integrates the recent input history over a small num-

ber of discrete time steps. This model showed superior performance to other models

on a recognized benchmark dataset. When trained on natural videos that represent
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smooth sequences of natural images the units in the hidden layer developed dynamic re-

ceptive fields that retain the properties of the static receptive field and represent smooth

temporal transitions of their static receptive field structure. This time-extension of the

previously obtained static receptive fields increase the input selectivity of each hidden

unit. Consequently, each hidden unit is activated in a highly sparse manner by only

specific spatio-temporal input scenarios.

3.3.1 Temporal Autoencoding model

We have introduced a new training method for TRBMs called Temporal Autoencod-

ing and validated it by showing a significant performance increase in modelling and

generation from a sequential human motion capture dataset (Figure 3.7). The gain

in performance from the standard TRBM to the pre-trained aTRBM model, which

are both structurally identical, suggests that our approach of autoencoding the tem-

poral dependencies gives the model a more meaningful temporal representation than

is achievable through contrastive divergence training alone. We believe the inclusion

of autoencoder training in temporal learning tasks will be beneficial in a number of

problems, as it enforces the causal structure of the data on the learned model.

We have shown that the aTRBM is able to learn high level structure from natural

movies and account for the transformation of these features over time. The statistics of

the static filters resemble those learned by other algorithms, namely gabor like patches

showing preferential orientation of the filters along cardinal directions (Fig. 3.2). The

distribution of preferred position, orientation and frequency (Fig. 3.3) is in accordance

with results previously found by other methods [e.g. 61, 68], and the simple cell like

receptive fields and cardinal selectivity is supported by neurophysiological findings in

primary visual cortex [63, 64]. Importantly the temporal connectivity expressed in the

weights WM learned by the model is also qualitatively similar to the pattern of lateral

connections in this brain area. Preferential connection between orientation-selective

cells in V1 with similar orientation has been reported in higher mammals [65, 66, 69].

These lateral connections are usually thought to underlie contour integration in the

visual system. Here they arise directly from training the aTRBM model to reproduce
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the natural dynamics of smoothly changing image sequences. One could say that, in an

unsupervised fashion, the model learns to integrate contours directly from the dataset.

The aTRBM presented here can be easily embedded into a deep architecture, using

the same training procedure in a greedy layer-wise fashion. This might allow us to

study the dynamics of higher-order features (i.e. higher order receptive fields) in the

same fashion as was done here for simple visual features. In this way one could envisage

applications of our approach to pattern recognition and temporal tasks, such as object

tracking or image stabilization.

3.3.2 The dynamic RF is a potential mechanism of sparse

stimulus encoding

There is strong evidence that encoding of natural stimuli in sensory cortices - specifi-

cally in the visual and auditory system - is sparse in space and time (see Section 3.1).

Sparse coding seems to be a universal principle widely employed both in vertebrate

and invertebrate nervous systems and it is thought to reflect the sparsity of natural

stimulus input [40, 44, 70]. Deciphering the neuronal mechanisms that underlie sparse

coding at the level of cortical neurons is a topic of ongoing research.

Population sparseness critically depends on the network topology. An initially

dense code in a smaller population of neurons in the sensory periphery is transformed

into a spatially sparse code by diverging connections onto a much larger number of

neurons in combinations with highly selective and possibly plastic synaptic contacts.

This is particularly well studied in the olfactory system of insects where feed-forward

projections from the antennal lobe diverge onto a much larger number of Kenyon cells

in the mushroom body with random and weak connectivity [71] and thereby translate a

dense combinatorial code in the projection neuron population into a sparse code in the

Kenyon cell population [72, 73]. Also in the mammalian visual system the number of

retinal cells at the periphery, which employ a relatively dense code, is small compared

to the cortical neuron population in the primary visual cortex [40]. Another important

mechanism responsible for spatial sparseness is global and structured lateral inhibition



3.3 Discussion 47

that has been shown to increase population sparseness in the piriform cortex [74] and

to underlie non-classical receptive fields in the visual cortex [48].

A network architecture of diverging connections and mostly weak synapses is re-

flected in the RBM models introduced here (see section 3.4 and figure 3.1). Initially

an all-to-all connection between the units in the input and in the hidden layer is given,

but due to the sparsity constraint most synaptic weights become effectively zero dur-

ing training. By this, hidden layer units sparsely mix input signals in many different

combinations to form heterogeneous spatial receptive fields (figure 3.2) as observed in

the visual cortex [46, 49, 75]. A novelty of the aTRBM is that the learning of sparse

connections between hidden units also applies to the temporal domain resulting in het-

erogeneous spatio-temporal receptive fields (figure 3.4 A). Our spike train simulations

(figure 3.6) match the experimental observations in the visual cortex: sparse firing in

time and across the neuron population [e.g. 46, 49].

Experimental evidence in the visual cortex suggests that temporally sparse re-

sponses of single neurons to naturalistic dynamic stimuli show less variability across

trials than responses to artificial noise stimuli [48, 53]. Equally, in the insect olfac-

tory system the temporally sparse stimulus responses in the Kenyon cells have been

shown to be highly reliable across stimulus repetitions [76]. In our model approach,

response variability is not affected by the choice of a static or dynamic RF model. The

trained aTRBM provides a deterministic activation h across the hidden units. In the

cascade model (Fig. 3.6 C) we generated spike trains according to a stochastic point

process model. Thus the trial-to-trial spike count variability in our model is solely

determined by the point process stochasticity and is thereby independent of the RF

type. Spike frequency adaptation [SFA, 77] is an important cellular mechanism that

increases temporal sparseness [78, 79] and at the same time reduces the response vari-

ability of single neuron [80–83] and population activity [78, 84, 85]. Other mechanisms

that can facilitate temporal sparseness are feed-forward [86] and feed-back inhibition

[87].
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3.3.3 Why sparse coding?

Encoding of a large stimulus space can be realized with a dense code or with a sparse

code. In a dense coding scheme few neurons encode stimulus features in a combinato-

rial fashion where each neuron is active for a wide range of stimuli and with varying

response rates (stimulus tuning). Dense codes have been described in different systems,

prominent examples of which are the peripheral olfactory system of invertebrates and

vertebrates [e.g. 88–91], and the cortical motor control system of primates [e.g. 92, 93].

In sensory cortices a sparse stimulus representation is evident (see section 3.1).

Individual neurons have highly selective receptive fields and a large number of neurons

is required to span the relevant stimulus space. What are the benefits of a sparse

code that affords vast neuronal resources to operate at low spiking rates? We briefly

discuss theoretical arguments that outline potential computational advantages of a

sparse stimulus encoding.

The first and most comprehensive argument concerns the energy efficiency of in-

formation transmission. Balancing the cost of action potential generation relative to

the cost for maintaining the resting state with the sub-linear increase of information

rate with firing rate in a single neuron leads to an optimal coding scheme where only

a small percentage of neurons is active with low firing rates [94–96].

The argument outlined above is limited to the transmission of information and

conditioned on the assumption of independent channels. Nervous systems, however,

have evolved as information processing systems and information transmission plays

only a minor role. Then the more important question is how does sparse coding benefit

brain computation? We consider three related arguments. In a spatially sparse code,

single elements represent highly specific stimulus features. A complex object can be

formed only through the combination of specific features at the next level, a concept

that is often referred to as the binding hypothesis [97]. In this scheme, attentional

mechanisms could mediate a perceptual focus of objects with highly specific features

by enhancing co-active units and suppressing background activity. In a dense coding

scheme, enhanced silencing of individual neurons would have an unspecific effect.

A spatially sparse stimulus representation can facilitate the formation of associative
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memories [98]. A particular object in stimulus space activates a highly selective set

of neurons. Using an activity-dependent mechanism of synaptic plasticity allows the

formation of stimulus-specific associations in this set of neurons. This concept is theo-

retically and experimentally well studied in the insect mushroom body where the sparse

representation of olfactory stimuli at the level of the Kenyon cells [99, 100] is thought to

underlie associative memory formation during classical conditioning [73, 101–103]. This

system has been interpreted in analogy to machine learning techniques that employ a

strategy of transforming a lower dimensional input space into a higher dimensional

feature space to improve stimulus classification [73, 104, 105].

Theories of temporal coding acknowledge the importance of the individual spike

and they receive support from accumulating experimental evidence [e.g. 41, 47, 106].

Coding schemes that rely on dynamic formation of cell assemblies and exact spike

timing work best under conditions of spatially and a temporally sparse stimulus rep-

resentations and low background activity.

3.4 Methods

3.4.1 Machine Learning Methods

To develop the Temporal Autoencoding training method for Temporal Restricted Boltz-

mann Machines used in this work, we have extended upon existing work in the field of

unsupervised feature learning.

Existing Static Models of Unsupervised Learning

Two unsupervised learning methods well known within the Machine Learning commu-

nity, Restricted Bolzman Machines (RBMs) and Autoencoders (AEs) [107, 108] form

the basis of our temporal autoencoding approach. Both are two-layer neural networks,

all to all connected between the layers but with no intra-layer connectivity. The mod-

els consist of a visible and a hidden layer, where the visible layer represents the input

to the model whilst the hidden layer’s job is to learn a meaningful representation of
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the data in some other dimensionality. We will represent the visible layer activation

variables by vi, the hidden activations by hj and the vector variables by v = {vi} and

h = {hj} where i = [1..N ] and j = [1..S] index the individual neurons in the visible

and hidden layers respectively.

Restricted Boltzmann Machines are stochastic models that assume symmetric

connectivity between the visible and hidden layers (see Figure 3.1a) and seek to model

the structure of a given dataset. They are energy-based models, where the energy of a

given configuration of activations {vi} and {hj} is given by

ERBM(v,h|W,bv,bh) = −v>Wh− b>v v − b>h h,

and the probability of a given configuration is given by

P (v,h) = exp (−ERBM(v,h|W,bv,bh)) /Z(W,bv,bh),

where Z(W,bv,bh) is the partition function. One can extend the RBM to continuous-

valued visible variables by modifying the energy function, to obtain the Gaussian-binary

RBM

ERBM(v,h|W,bv,bh) = −v>

σ2
Wh +

‖bv − v‖2

2σ2
− b>h h.

RBMs are usually trained through contrastive divergence, which approximately follows

the gradient of the cost function

CDn(W,bv,bh)) = KL(P0(v|W,bv,bh)||P (v|W,bv,bh))

−KL(Pn(v|W,bv,bh)||P (v|W,bv,bh)),

where P0 is the data distribution and Pn is the distribution of the visible layer af-

ter n MCMC steps [26]. The function CDn gives an approximation to maximum-

likelihood (ML) estimation of the weight matrix w. Maximizing the marginal prob-

ability P ({v}D |W,bv,bh) of the data {v}D in the model leads to a ML-estimate

which is hard to compute, as it involves averages over the equilibrium distribution

P (v|W,bv,bh). The parameter update for an RBM using CD learning is then given

by

∆θ ∝
〈
∂ERBM

∂θ

〉
0

−
〈
∂ERBM

∂θ

〉
n

,
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where the 〈〉n denotes an average over the distribution Pn of the hidden and visible

variables after n MCMC steps. The weight updates then become

∆Wi,j ∝
1

σ2
〈vihj〉0 −

1

σ2
〈vihj〉n .

In general, n = 1 already gives good results [15].

Autoencoders are deterministic models with two weight matrices W1 and W2

representing the flow of data from the visible-to-hidden and hidden-to-visible layers

respectively (see Figure 3.1b). AEs are trained to perform optimal reconstruction of

the visible layer, often by minimizing the mean-squared error (MSE) in a reconstruction

task. This is usually evaluated as follows: Given an activation pattern in the visible

layer v, we evaluate the activation of the hidden layer by h = sigm(v>W1 + bh),

where we will denote the bias in the hidden layer by bh. These activations are then

propagated back to the visible layer through v̂ = sigm(h>W2 + bv) and the weights

W1 and W2 are trained to minimize the distance measure between the original and

reconstructed visible layers. Therefore, given a set of image samples {vd} we can define

the cost function. For example, using the squared euclidean distance we have a cost

function of

L(W1,W2,bv,bh|{vd}) =
∑
d

‖vd − v̂d‖2.

The weights can then be learned through stochastic gradient descent on the cost func-

tion. Autoencoders often yield better representations when trained on corrupted ver-

sions of the original data, performing gradient descent on the distance to the uncor-

rupted data. This approach is called a denoising autoencoder (dAE) [17]. Note that in

the AE, the activations of all units are continuous and not binary, and in general take

values between 0 and 1.

Existing Dynamic Models of Unsupervised Learning

To date, a number of RBM-based models have been proposed to capture the sequential

structure in time series data. Two of these models, the Temporal Restricted Boltzmann

Machine and the Conditional Restricted Boltzmann machine, are introduced below.
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Temporal Restricted Boltzmann Machines (TRBM) [27] are a temporal

extension of the standard RBM whereby feed-forward connections are included from

previous time steps between hidden layers, from visible to hidden layers and from

visible to visible layers (see Figure 3.1d). Learning is conducted in the same manner

as a normal RBM using contrastive divergence and it has been shown that such a

model can be used to learn non-linear system evolutions such as the dynamics of a

ball bouncing in a box [27]. A more restricted version of this model, discussed in [32]

can be seen in figure 3.1d and only contains temporal connections between the hidden

layers. We will restrict ourselves to this model architecture in this paper.

Similarly to our notation for the RBM, we will write the visible layer variables as

v0, . . . ,vT and the hidden layer variables as h0, . . . ,hT . More precisely, vT is the visible

activation at the current time t and vi is the visible activation at time t− (T − i). The

energy of the model for a given configuration of V = {v0, . . . ,vT} andH = {h0, . . . ,hT}

is given by

E(H,V|W) =
T∑
t=0

ERBM(ht,vt|W,b)−
M∑
t=1

(hT )>WT−th
t, (3.1)

where we have used W = {W,W1, . . . ,WM}, where W are the static weights and

W1,W2, . . .WM are the delayed weights for the temporally delayed hidden layers

hT−1,hT−2, . . . ,h0 (see figure 3.1d). Note that, unlike the simple RBM, in the TRBM,

the posterior distribution of any unit in the hidden layer conditioned on the visible layer

is not independent of other hidden units, due to the connection between the delayed

RBM’s. This makes it harder to train the TRBM, as sampling from the hidden layer

requires Gibbs sampling until the system has relaxed to its equilibrium distribution.

This has led researcher to consider other types of probabilistic models for dynamic

data.

Conditional Restricted Boltzmann Machines (CRBM) as described in [28]

contain no temporal connections from the hidden layer but include connections from

the visible layer at previous time steps to the current hidden and visible layers. The

model architecture can be seen in Figure 3.1c. In the CRBM, the past nodes are

conditioned on, serving as a trial-specific bias. These units are shown in orange in
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Figure 3.1c. Again, learning with this architecture requires only a small change to the

energy function of the RBM and can be achieved through contrastive divergence. The

CRBM is possibly the most successful of the temporal RBM models to date and has

been shown to both model and generate data from complex dynamical systems such

as human motion capture data and video textures [33].

Temporal Autoencoding Training for TRBMs

Much of the motivation for this work is to gain insight into the typical evolution of

learned hidden layer features or RFs present in natural movie stimuli. With the existing

CRBM this is not possible as it is unable to explicitly model the evolution of hidden

features without resorting to a deep network architecture. Sparse coding models, as

proposed by [68] overcome this restriction by learning complex filters, allowing for phase

dynamics by multiplying the filters by complex weights whose dynamics are governed

by phase variables. However, the evolution of the filters is indirectly modelled by the

phase variables, not allowing for a direct biological interpretation.

The TRBM, in comparison, provides an explicit representation of the evolution of

hidden features but, as we show, can be difficult to train using the standard algo-

rithm. While this model does not have a direct biological influence, it’s artificial neu-

ral network structure allows for a biological interpretation of its function and indeed,

producing a spiking neural network implementation of this approach would make for

interesting future research. Here, we present a new pre-training method for the TRBM

called Temporal Autoencoding (aTRBM) that dramatically improves its performance

in modelling temporal data.

Training Procedure The energy of the model is given by equation (3.1) and is

essentially an M -th order autoregressive RBM which is usually trained by standard

contrastive divergence [27]. Here we propose to train it with a novel approach, high-

lighting the temporal structure of the stimulus. A summary of the training method

is described in table 3.1. First, the individual RBM visible-to-hidden weights W are

initialized through contrastive divergence learning with a sparsity constraint on static
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samples of the dataset. After that, to ensure that the weights representing the hidden-

to-hidden connections (Wt) encode the dynamic structure of the ensemble, we initialize

them by pre-training in the fashion of a denoising Autoencoder as will be described

in the next section. After the Temporal Autoencoding is completed, the whole model

(both visible-to-hidden and hidden-to-hidden weights) is trained together using con-

trastive divergence (CD) training.

One can regard the weights W as a representation of the static patterns contained in

the data and the Wt as representing the transformation undergone by these patterns

over time in the data sequences. This allows us to separate the representation of

form and motion in the case of natural image sequences, a desirable property that is

frequently studied in natural movies (see [62]). Furthermore, it allows us to learn how

these features should evolve along time to encode the structure of the movies well. In

the same way as static filters learned in this way often resemble RFs in visual cortex,

the temporal projections learned here could be compared to lateral connections and

correlations between neurons in visual cortex.

Table 3.1: Autoencoded TRBM Training Steps

Step Action

1. Static RBM Training Constrain the static weights w using CD on single frame samples of the training data

2. Temporal Autoencoding Constrain the temporal weights w1 to wd using a denoising autoencoder on
multi-frame samples of the data

3. Model Finalisation Train all model weights together using CD on multi-frame samples of the data

Temporal Autoencoding The idea behind many feature extraction methods such

as the autoencoder [17] and reconstruction ICA [109] is to find an alternative encoding

for a set of data that allows for a good reconstruction of the dataset. This is frequently

combined with sparse priors on the encoder. We propose to use a similar framework

for TRBM’s based on filtering (see [110]) instead of reconstructing through the use of

a denoising autoencoder (dAE). The key difference between an AE and a dAE is that

random noise is added to each training sample before it is presented to the network,

but the training procedure still requires the dAE to reproduce the original training
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data, before the noise was added, thereby denoising the training data. The addition

of noise forces the model to learn reliable and larger scale structure from the training

data as local perturbations from the added noise will change each time a sample is

presented and are therefore unreliable.

In the aTRBM, we leverage the concept of denoising by treating previous samples

of a sequential dataset as noisy versions of the current time point that we are trying

to reproduce. The use of the term noise here is somewhat of a misnomer, but is used

to keep in line with terminology from dAE literature. In the aTRBM case, no noise is

added to the training data, but the small changes that exist between consecutive frames

of the dataset are conceptually considered to be noise in the terms that we want to re-

move these changes from previous samples to be able to correctly reproduce or predict

the data at the current time point. We can therefore use a dAE approach to constrain

the temporal weights. In this sense, we consider the activity of the time-lagged visible

units as noisy observations of the systems state, and want to infer the current state of

the system. To this end, we propose pre-training the hidden-to-hidden weights of the

TRBM by minimizing the error in predicting the present data frame from the previous

observations of the data. This is similar to the approximation suggested by [32], where

the distribution over the hidden states conditioned on the visible history is approxi-

mated by the filtering distribution. The training is done as follows. After training the

weights W we consider the model to be a deterministic Multi-Layer Perceptron with

continuous activation in the hidden layers. We then consider the M delayed visible

layers as features and try to predict the current visible layer by projecting through the

hidden layers. In essence, we are considering the model to be a feed-forward network,

where the delayed visible layers would form the input layer, the delayed hidden layers

would constitute the first hidden layer, the current hidden layer would be the second

hidden layer and the current visible layer would be the output. We can then write the

prediction of the network as v̂T
d (v0

d,v
1
d, . . . ,v

T−1
d ), where the d index runs over the data

points. The exact format of this function is described in algorithm 3. We therefore
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minimize the reconstruction error given by

L(W) =
∑
d

∥∥vT
d − v̂T (v0

d,v
1
d, . . . ,v

T−1
d )

∥∥2 ,
where the sum over d goes over the entire dataset. The pretraining is described fully

in algorithm 3.

We train the temporal weights Wi one delay at a time, minimizing the reconstruc-

tion error with respect to that temporal weight stochastically. Then the next delayed

temporal weight is trained keeping all the previous ones constant. The learning rate η

is set adaptively during training following the advice given in [35].

Algorithm 3 Pre-Training Temporal weights through Autoencoding

for each sequence of data frames I(t − T ), I(t − (T − 1)) . . . , I(t), we take vT =

I(t), . . . ,v0 = I(t− T ) and do

for d = 1 to M do

for i = 1 to d do

hT−i = sigm(W vT−i + bh)

end for

hT = sigm(
∑d

j=1 Wjh
T−j + bh), v̂T = sigm(W>hT + bv)

ε(vT , v̂T ) = |vT − v̂T |2

∆Wd = η ∂ε/∂Wd

end for

end for

3.4.2 Model Analysis

Sparseness index

To measure spatial and temporal sparsenes we employ the sparseness index introduced

by [67] as

S = 1− (Σ |a|/n)2

Σ (a2/n)
. (3.2)
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where a is the neural activation and n is the total number of samples used in the cal-

culation. To quantify sparseness of the hidden unit activation we stimulate the aTRBM

model that was previously trained on the Holywood2 dataset (cf. Section 3.2.2) with a

single video sequences of approx. 30 s length at a frame rate of 30 /s (total 897 frames)

and measure the activation h of all hidden units during each video frame. Spatial

sparseness refers to the distribution of activation values across the neuron population

and is identical to the notion of population sparseness [111]. To quantify spatial sparse-

ness we employ S to the activation values h across all 400 units for each of the time

frames separately, resulting in 897 values. We use the notion of temporal sparseness

to capture the distribution of activation values across time during a dynamic stimulus

scenario [48]. High temporal sparseness of a particular unit indicates that this unit

shows strong activation only during a small number of stimulus frames. Low temporal

sparseness indicates a flat activation curve across time. Our definition of temporal

sparseness can easily be related to the definition of lifetime sparseness [48] if we con-

sider each video frame as an independent stimulus. However, natural videos do exhibit

correlations over time and successive video frames are thus generally not independent.

Moreover, the dynamic RF model learns additional time dependencies. We employ S

to quantify the temporal sparseness across the 897 single frame activation values for

each neuron separately, resulting in 400 single unit measures.

Temporal and spatial sparseness are compared for the cases of a static RF and a

dynamic RF. The static RF is defined by looking at the response of the aTRBM when

all temporal weights are set to 0. This is equivalent to training a standard RBM.

Cascade spike generation model

From the activation variable h of the hidden units in our aTRBM model we gener-

ated spike train realizations using a cascade point process model [112] as described in

(figure 3.6 C). For each hidden unit we recorded its activation h during presentation

of a video input. This time-varying activation expresses a probability between 0 and

1 of being active in each video frame. We linearly interpolated the activation curve
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to achieve a time resolution of 20 times the video frame rate. We then used the ac-

tivation curve as intensity function to simulate single neuron spike train realizations

according to the non-homogeneous Poisson process [113]. This can be generalized to

other rate-modulated renewal and non-renewal point process models [85, 114]. The

expectation value for the trial-to-trial variability of the spike count is determined by

the point process stochaisticity [114] and thus independent of the activating model.

We estimated neural firing rate from a single hidden neuron across repeated simulation

trials or from the population of all 400 hidden neurons in a single simulation trial using

the Peri Stimulus Time Histogram [115–117] with a bin width corresponding to a single

frame of the video input sequence.

3.4.3 Benchmark Evaluation - Human Motion Dynamics

We assessed the aTRBM’s ability to learn a good representation of multi-dimensional

temporal sequences by applying it to the 49 dimensional human motion capture data

described by [28] and, using this as a benchmark, compared the performance to a

TRBM without our pretraining method and Graham Taylor’s example CRBM imple-

mentation1. All three models were implemented using Theano [34], have a temporal

dependence of 6 frames [as in 28] and were trained using minibatches of 100 samples for

500 epochs2. The training time for all three models was approximately equal. Training

was performed on the first 2000 samples of the dataset after which the models were

presented with 1000 snippets of the data not included in the training set and required

to generate the next frame in the sequence. For all three models, the visible-to-hidden

connections were initialized with contrastive divergence on static snapshots of the data.

For the TRBM we then proceeded to train all the weights of the model through con-

trastive divergence, whereas in the aTRBM case we initialized the weights through

1CRBM implementation available at https://gist.github.com/2505670
2For the standard TRBM, training epochs were broken up into 100 static pretraining and 400

epochs for all the temporal weights together. For the aTRBM, training epochs were broken up into

100 static pretraining, 50 Autoencoding epochs per delay and 100 epochs for all the temporal weights

together
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temporal autoencoding as described in algorithm 3, before training the whole model

with CD. The CRBM was also trained using contrastive divergence. In addition, we

created a deterministic model which has the same structure as the aTRBM but was

trained using only the first two training steps listed in table 3.1 which we will refer to

as an Autoencoded Multi Layer Perceptron (AE/MLP).

Data generation in the aTRBM is done by taking a sample from the hidden layers at

t−6 through t−1 and then Gibbs sampling from the RBM at time t while keeping the

others fixed as biases. This is the filtering approximation from [32]. The visible layer at

time t is initialized with noise and we sample for 30 Gibbs steps from the model. Data

generation from the AE/MLP is done deterministically whereby the visible layers at

t− 6 through t− 1 are set by the data and the activation is the propagated through to

the visible layer at t for the sample prediction. We are interested in the performance of

the AE/MLP to determine whether or not their is an advantage to the stochatiscity of

the RBM models in this prediction task. To this end, we also tested the deterministic

performance of the three RBM models discussed here but the results were much poorer

than those where the model generated data stochastically.

The results of a single trial prediction for four random dimensions of the dataset and

the mean squared error (MSE) of the RBM model predictions over 100 repetitions for all

49 dimensions of the task can be seen in can be seen in Figure 3.7. While the aTRBM is

able to significantly outperform both the standard TRBM and CRBM models in this

task during single trial prediction (3 leftmost columns), the deterministic AE/MLP

model (middle column) predicts with an even lower error rate. In the 3 rightmost

columns, we produce 50 single trial predictions per model type and take their mean

as the prediction for the next frame in order to see if averaging over trials reduces the

inherent variance of a single trial prediction. The performance of the CRBM and the

aTRBM improve markedly and the aTRBM outperforms all other models. It should

be noted that this process is not the same as taking the mean activation of the model

(ie. a deterministic pass through the model with no sampling) which severely under

performs the results shown here. Instead, averaging over multiple stochastic samples

of the model proves to be advantageous in creating a low error estimate of the next
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frame. These results show not only the advantage of the aTRBM over the CRBM

in this task, but also that of the stochastic models over the deterministic AE/MLP.

Although single trial predictions from the aTRBM are not quite as accurate as those of

the AE/MLP, the aTRBM is able to generate unique predictions stochastically at each

trial, something the deterministic AE/MLP is not able to achieve. If one is interested

purely in minimising the MSE of the prediction, one can still use the aTRBM to

generate and average over multiple trials which reduces the MSE and out performs the

AE/MLP.
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Time

CRBM
Predicted

True

TRBM aTRBM AE/MLP CRBM TRBM aTRBM

MSE 0.639 2.033 0.380 0.328 0.315 1.043 0.200

Single Sample Deterministic 50 Sample Average

Figure 3.7: CRBM, TRBM, aTRBM and AE/MLP are used to fill in data points from
motion capture data [28]. Four random dimensions of the motion data are shown along with
the their model reconstructions from a single trial (three leftmost columns), deterministically
(middle column, grey), and as an average of 50 generated trials (three rightmost columns). At
the bottom of each column, one can see the Mean Squared Error (MSE) of the reconstruction
over all 49 dimensions of the entire 1000 sample test data. The aTRBM is the best performer
of the single trial predictors, producing a lower MSE than the CRBM and TRBM. The
deterministic AE/MLP has marginally better MSE performance than the aTRBM, although
at the cost of no longer being a generative model. We find however, that if one generates
50 single trial predictions from the aTRBM model and then takes the average of these, the
MSE is reduced ever further, allowing the aTRBM to far outperform the AE/MLP. From
this point of view, the aTRBM is the more advantageous model in the respect that it can
generate non-deterministic single trial predictions, and if one is interested in reducing the
MSE as far as possible, can be averaged over a number of trials, thereby reducing the single
trial variation and increasing the predictor performance.
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64 Investigating Movement Parameters in the Human Basal Ganglia



Abstract

The primate basal ganglia (BG) play an important role in the control and

feedback of voluntary movements. Here we studied the neural representa-

tion of voluntary movements in the human BG. We utilized micro-electrode

recordings during electrode implantation for deep brain stimulation (DBS)

in patients with Parkinson disease and Dystonia and analyzed neural ac-

tivity in the subthalamic nucleus (STN) or the globus palidus (GPi), re-

spectively. In an experimental paradigm of self-paced wrist movements we

found significant representations of different kinematic movement parame-

ters such as position, velocity, or acceleration, both in multi-unit spiking

activity (MUA) and in the band-limited power of the local field potential

(LFP). The quantitative correlation with specific movement parameters

varied considerably across patients. In a decoding approach we predicted

the movement trajectory from the neural signals during single trials. High

decoding performance with up to 86% correlation of predicted and actual

movement trajectory was achieved when using multiple signal types simul-

taneously. Our results indicate that kinematic movement parameters are

encoded at the level of neuronal populations in the human STN and GPi

and that movements can be successfully decoded in the single trial.

65
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4.1 Introduction

Deep brain stimulation (DBS) of the basal ganglia (BG) is a very efficacious and rela-

tively safe treatment option for patients with severe movement disorders. It has been

established and refined over the past 25 years and has now become widely available

in most developed countries. Patients with Parkinsons disease (PD) whose symptoms

such as tremor, bradykinesia and rigidity cannot be adequately controlled with medica-

tion or in whom side effects to the medication (mainly fluctuations) occur are typical

candidates for DBS therapy [118]. Patients with dystonia make another group that

can largely benefit from DBS treatment [119, 120]. Dystonia may result in involuntary

muscle activity leading to abnormal postures, muscle twitching or repetitive movements

[121]. In most cases no satisfactory treatment using only medication is available. Deep

Brain Stimulation involves the surgical implantation of a brain pacemaker which emits

high frequency electrical stimulation via deep brain electrodes to the local brain re-

gion, usually targeted to the subthalamic nucleus (STN for PD) or the internal part

of the globus pallidus (GPi for dystonia), causing changes in the brains activity and a

reduction in symptoms. Whilst this technique is a clinically approved method that can

greatly improve quality of life for the patients treated, the precise mechanism of action

of DBS is still not completely understood. DBS also provides a rare opportunity to

record signals from deep within the human brain and to gain a better understanding

of neural processing within the affected regions [122].

The STN and the GPi are located within the BG, which is a group of subcortical

nuclei that are connected with the cerebral cortex through different functional loops

[123]. The intrinsic BG circuitry can broadly be divided into a so-called direct and

indirect pathway. The direct pathway is associated with facilitation of motor plans

that are generated in the cortex while the indirect pathway simultaneously inhibits

competing motor plans. Within this circuitry both the STN and GPi occupy strate-

gic positions: the GPi is the main output nucleus of the BG, exerting a substantial

inhibitory control on the thalamus which in turn has excitatory projections to the cor-

tex. The STN is part of the indirect pathway and in turn has excitatory projections
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on the GPi, thus controlling the output of the BG. Amongst others, the STN and GPi

are an area associated with voluntary movement control, action selection and feedback

[124, 125]. Neural disfunction within this region is strongly related to a number of

movement disorders including Parkinson’s disease and dystonia, making it a primary

target for DBS. It is an ongoing area of research to determine how movements are

represented in this brain region which in turn could allow us to better understand how

this process breaks down in disease [126–128].

Here, we investigate movement related neuronal signals in the Basal Ganglia. We

recorded both, the LFP and extracellular spiking signals intraoperatively from four

patients receiving a DBS implant. The patients were asked to perform self paced

movements of their wrists during the experiment and we use measurements of wrist

position along with the neural recordings to investigate the neural representations of

movement. We are specifically interested in the relationship between distinct kinematic

parameters such as position, velocity and acceleration and the neural activity.

4.2 Methods

4.2.1 Experimental Paradigm

Four patients (2 PD, 2 dystonia patients) participated in this experiment and informed

consent was given (see table 4.1 for details). PD patients were withdrawn from their

dopaminergic medication overnight to allow for a better assessment of their predomi-

nant symptoms in surgery. The experiment was performed intraoperatively during the

surgical implantation of a DBS electrodes and before chronic stimulation began. As a

standard procedure during surgery the patients are woken up from propofol anesthe-

sia to allow for tuning of the DBS electrode, providing a short time period in which

to conduct the experiments. The paradigm was started only when the patients were

awake and aware of the situation and showed full responsiveness. Patients were pre-

coached on the experimental paradigm prior to surgery. The paradigm required them

to perform self paced movements of one of their hands (contralateral to the electrode



68 Investigating Movement Parameters in the Human Basal Ganglia

placement) extending their wrist and then returning it to a resting position.

Table 4.1: Patient Details

Patient # 1 2 3 4

Sex M M M M

Diagnosis MDS PD PD CD

Disease duration 44 7 23 1

Age at Surgery 47 60 55 45

Target GPi STN STN GPi

Coordinates (mm)

x=20.9 x=11.7 x=14.4 x=20.4

y=-4.4 y=2.8 y=2.5 y=-3.5

z=-3.6 z=-4.87 z=-5.0 z=-4.87

Pre-OP UPDRS-III OFF/ON

TH: 15.6 TH: 18.5 TH: 17.8 TH: 17.8

AC-PC: 22.5 AC-PC: 22.5 AC-PC: 23.0 AC-PC: 24.7

Pre-OP TWSTRS N.A. 26/19 44/12 N.A.

Pre-OP Medication

None 800 mg Levodopa 48 mg Apomorphine 10.5 mg Tetrabenazine

100 mg Levodopa 200 mg Katadolon

200 mg Amantadine 300 mg Allopurinol

m = male; MDS = myoclonus dystonia syndrome; PD = Parkinson’s disease; CD = cervical dystonia;

target coordinates are given in millimeters with respect to the midcommisural point (x-axis), to the

midline of the third ventricle (y-axis) and to the AC-PC line (z-axis); UPDRS-III = Unified Parkin-

son’s disease Rating Scale Part III - Motor Examination; OFF/ON = without/with dopamingergic

medication; TWSTRS = Toronto Western Spasmodic Torticollis Rating Scale.

4.2.2 Data Acquisition

Three signal types were recorded during the experiment. The patients movements were

recorded using an electronic goniometer (SG65, Biometrics Ltd, Newport, UK) which

converted the angle of their wrists into a voltage trace. The goniometer was not pre-

calibrated to provide an exact angular reading but is appropriate for capturing general

movement parameters. Two types of neural signals were recorded in the form of Local

Field Potential (LFP) and high-frequency spiking activity along the trajectory that
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5 sec

Figure 4.1: Raw recording of the goniometer. Individual wrist movements result in
deflections of the goniometer signal that represent the movement extent at any given point
in time. Green and red markers indicate onset and offset respectively of individual self-paced
wrist movements

-1 0 1 2 3 4 5 6 7
Time (sec)

Patient 1

-1 0 1 2 3

Single Trial
Average Move

Patient 3

Figure 4.2: Movement variability. This figure shows both single trial and averaged
movements (aligned to movement onset) as recorded by the goniometer.

aimed through the STN and GPi respectively. The neural activity was recorded via

a tetrode (Thomas Recording, Giessen, Germany) which encompassed four platinum-

tungsten fibers in a glass coat with one contact each at the end. Three of the tetrode

contacts were circularly arranged around a central contact at the tip of the electrode.

The distance between the outer contacts was 29 µm and the distance between the

central contact and the outer contacts was 5 µm. Impedance of the contacts during

recording ranged between 500 and 1500 kΩ and amplification was in the order of 4000

- 20000 times. Recordings were performed in an exploratory manner for 60 seconds

every millimeter starting from approximately 15 millimeters above the calculated target

point, i.e. the antero-ventral border of the STN or the medio-ventral border of the
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GPi right above the optic tract, respectively. High-frequency spiking activity was

visualized online on screen and was captured on hard disk. The MUA signal was

bandpassed using a hardware filter from 500 Hz to 10 kHz. Local Field Potentials

were recorded from one of the four tetrode contacts referenced through a common

ground and lowpassed using a hardware filter at 141 Hz while extracellular signals were

simultaneously recorded from all 4 tetrode contacts. The recordings for the goniometer

paradigm were started in proximity of the calculated target point when one or more

units were clearly distinguishable from background activity (i.e. excellent signal-to-

noise ratio) based on online visual inspection and when the peak to peak amplitude of

spiking activity was stable over approximately 30 seconds. For patients 1 and 4, the

intended target point was the GPi and for patients 2 and 3 the STN. All signals were

sampled at 25 kHz and stored on hard disk for offline analysis.

4.2.3 Data Processing and Feature Extraction

In this section we describe the steps taken to process the recorded signals for further

analysis. Custom software developed in Python and Matlab was used to perform the

analysis. For this experiment we are particularly interested in movement related neural

signals and accordingly cutouts were taken around the movement times and the rest of

the recordings were discarded. After the initial processing described below, all signals

were down-sampled to 1000Hz for ease of analysis.

Movement (Goniometer)

The voltage trace from the goniometer is used as a proxy for the patients hand position

and movement start and end times were defined by visually inspecting the trace of each

patient (see figure 4.1). Due to the self paced nature of the experiments along with the

partially ongoing effect of anesthetics used during surgery, movements varied widely in

length, extension and speed both between single trials of a given patient and between

the patients themselves (see figure 4.2). Velocity and acceleration of the movements

were calculated from the raw signal using a first and second order Savitzky Golay filter
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(total width of 501 data points) respectively from the FIND matlab toolkit [129, 130].

After identifying the start and end times of each movement, cutouts of the three signal

types (movement, velocity and acceleration) were made with a buffer of 1 second on

each side and baselined by subtracting the mean of the 1 second interval leading up to

movement onset. For each of the signals we then calculated their average over trials

when aligned by movement onset, minima (the turnaround point of the movement)

and offset. As each of the trials were different lengths, the average signal was only

computed for time points where at least 60% of the trials were ongoing. Additional

features were also calculated including the length in seconds of each movement, the

maximum velocity and acceleration reached during each movement and the maximum

extent of the wrist in each movement.

Electrophysiology

Extracellular Signals For each patient, all 4 extracellular signals were processed.

Cutouts were made around movement onset and offset as described in section 4.2.3.

From the extracellular recording we derive two further measures of neural activity,

Multi Unit Activity (MUA) and Background Unit Activity (BUA). The MUA is gen-

erated by the action potentials of nearby neurons within the range of up to 300 µm.

Beyond this range the MUA is not distinguishable from the background activity. MUA

was calculated by taking the absolute of the Hilbert transform [131] of the extracellular

signal and then smoothing it using a causal exponential filter with a sigma of 50 ms

[130]. This type of extracellular signal captures the bulk spiking activity of many neu-

rons within the recording volume and has a long tradition [132, 133]. The MUA has

previously been shown to carry movement-specific information in the monkey motor

cortex [134].

The BUA is derived from the MUA signal and reflects sub-noise level spiking activity

from the same local radius as the MUA. The BUA was calculated as described in

[135]. The spike times used in the BUA calculation were found by thresholding the

extracellular trace at its mean plus two times the standard deviation. Each upward

threshold crossing was considered a spike. The MUA and BUA were baselined and
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onset, minima and offset aligned averages were calculated as described in section 4.2.3.

For an example of the resulting signals, see figure 4.3.

Local Field Potential The Local Field Potential (LFP) is mainly generated through

the summation of dendritic currents of excitatory and inhibitory synapses of local neu-

ronal populations within the range of up to 2-3 millimeters. A spectrogram of the raw

LFP was calculated using the specgram function in matplotlib [136] with a window of

400 ms that was shifted by 1ms for each calculation. Again, cutouts were made around

movement onset and offset as described in section 4.2.3. The spectrogram was then di-

vided into seven bands (delta 1-4Hz, theta 4-8Hz, alpha 8-14Hz, beta 14-30Hz, gamma

30-70Hz, high gamma 70-130Hz and very high gamma 130-200Hz , other frequencies

were discarded), normalised to zero mean and unit variance, and the average signal

power of each band was computed over time. The LFP bands were then baselined and

onset, minima and offset aligned averages were calculated as descried in section 4.2.3.

For an example of the resulting LFP signals, see figure 4.3. It should be noted that the

band range of the very high gamma signal overlaps with the hardware based lowpass

filter of 141Hz. However we still find meaningful signal in this range during analysis

(likely due to the slow attenuation of such filters) and as such do not discard the fre-

quencies between 141Hz and 200Hz.

Additionally, for each of the MUA, BUA and LFP band signals, the average re-

sponse in a 100 ms window around movement onset, minima and offset was calculated.

4.2.4 Feature Correlation Analysis

Correlation between features of the movement and neural based signals were calculated

over trials using Pearson’s Correlation. Correlations were also calculated between the

averages of each of the neural signals and the movement signals over time. Correla-

tions with a p-value > 0.05 were considered insignificant and set to 0. Results of the

correlation analysis can be seen in figures 4.4 and 4.5 and interpretation of the results
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is found in section 4.3.1.

4.2.5 Decoding Movement

Decoding of the neural signals to reconstruct each patient’s movements on a trial by

trial basis was achieved using the scikit-learn implementation of Linear Regression

[137]. Both movement and neural signals were downsampled to 100Hz using the dec-

imate function from the scipy package for python [138]. For each movement sample

to be predicted, the Linear Regression model received the last 100 samples (1 second)

of neural response directly preceding the prediction point. The window size of 100

samples was chosen as the best performer after testing of a number of possible values.

Movement responses were predicted using a leave one trial out methodology where

the classifier is trained on all trials except the one to be predicted. Prediction perfor-

mance was then quantified by measuring the Pearson’s correlation coefficient between

the real and predict movement data on a trial by trial basis. The correlation over trials

were averaged after using Fisher’s z transform as described in [139] to reach a single

correlation value representing decoding performance.

4.3 Results

In each patient we first perform a correlation analysis to quantify the relation of dif-

ferent movement parameters and the neural activity. In a second approach we use

different frequency bands of the LFP and the MUA and BUA signals to predict the

wrist position in single movement trials.

4.3.1 Neural representation of kinematic parameters

Patients were instructed to perform wrist movements (flexion) in a self-paced manner.

This could result in highly variable movements as for patient 1 or in highly stereotypical

trajectories as for patient 2 (see figure 4.2). Average movement durations were in the
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range of 2-4s. Figure 4.3 shows a single trial movement trajectory as recorded with the

goniometer (bottom) together with the corresponding neural activity traces for patients

1 and 3. The power evolution of the LFP was measured in seven separate frequency

bands (green traces in figure 4.3; see Methods) and population spiking activity was

estimated in the MUA and BUA signals (blue traces). Relations between neural signals

and movement are difficult to assess on a single trial basis. We therefore performed

correlation analysis between kinematic movement parameters and neural activity in

two ways.

First, we performed correlations of the trial-averaged time-resolved movement pa-

rameters (position, velocity, acceleration) with the trial-averaged time-resolved neural

activity traces. Figure 4.4, A and B show examples for the dynamic changes in am-

plitude and velocity compared to the time-resolved MUA amplitude. We computed

the linear correlation coefficient between all seven LFP bands, MUA and BUA and

the three movement parameters and repeated this for different temporal alignments

of trials (figure 4.4). It shows that high correlations exist between one neural signal

type and different movement parameters, indicating a mixed representation of differ-

ent parameters in the neuronal population signals. At the same time, one movement

parameter could show high correlation with different signal types.

Whilst each patient shows a strong correlation to at least one of the signal pairs,

they do not share a common pattern as to which signals are correlated and which are

not. Subplots D-F have movement parameters plotted against neural response across

trials. Again we see that each patient correlates strongly with at least one signal pair

but that there is no commonality across patients. Figure 4.5 shows a heat map of all

assessed movement/neural combinations for each patient. A large number of signal

pairs show a non-zero correlation, however it also becomes clear that each patient is

unique as to which pairs have a relationship. We can however conclude that properties

of the movement trajectory including position, velocity and acceleration along with
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4.3.2 Movement prediction from neural signals

In order to predict the patients movement on the basis of the neural activity we used

a linear regression algorithm. We use all but one trial for training the linear regressor

and tested the prediction on the unused trial. Performance was computed as the

Pearson’s correlation coefficient of the true versus the decoded signal. The procedure

was repeated for each trial once (see chapter 4.2.5). This allowed us to find the best

collection of neural signals to use as features by assessing the performance of all possible

signal combinations separately. The results are provided in Table 4.2. For one patient

we reached a correlation between actual and predicted trajectory as high as 0.86, while

in case of patient 2 the best prediction yielded an average correlation of only 0.27.

Actual and predicted time course of wrist extension amplitude are shown in figure 4.6

for the two patients that yielded the best decoding performance. The predictions closely

follow the actual movements suggesting that the signals recorded with the electrode

are sucient for accurately reconstructing this type of hand movement.

Figure 4.7 shows the percentage of the maximum decoding performance achieved

as the number of features available to the regressor grows. All patients except #4

reach peak performance at 3 features. Again we find little consistency across patients

as to which features perform best (see table 4.2). We do however see that the bulk

of the decoding performance for each patient is won from the best single feature with

only marginal gain achieved by adding more. The predictions closely follow the ac-

tual movements suggesting that the signals recorded with the electrode are sucient for

accurately reconstructing this type of hand movement.

4.4 Discussion and Future Work

In this work we have shown a strong representation of movement in the basal ganglia,

in line with many previously published studies [128, 140–142]. We find significant

correlations between all of the neural signals assessed and parameters of movement

such as position, velocity and acceleration. However, we do not find any unifying
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Table 4.2: Best Features for Decoding. This table shows the best single and multi-
feature combinations for decoding movement in each patient. The performance metric used
is trial-by-trial correlation. For all patients, the bulk of the decoding performance is won
with the first feature and only marginal increases are achieved by adding more.

Patient Single Feature Performance Multiple Features Performance

1 Bua 0.48 Bua, Beta, Gamma 0.61

2 Theta 0.21 Theta, Beta, Alpha 0.27

3 Mua 0.84 Mua, Very High Gamma, Gamma 0.86

4 Mua 0.64 Mua 0.64

trends in this relationship across patients, that is, what correlates well for one patient

does not necessarily do so for another. This could be due to a number of factors. First,

the sample size of our cohort was only four and only two for each target point. Second,

one has to assume that at a microscopic level recordings were made in different locations

for all patients. Furthermore the variability of neuronal discharge in the pallidum or

in the subthalamic nucleus in response to active or passive limb movements was also

observed in previous studies [eg. 142, 143]. This is a by-product of the clinical nature

of the experiments, where the primary goal is not controlled scientific research but to

help get the patient well. Additionally, the free movement nature of the experiment has

resulted in some patients having very rhythmic and homogeneous movements whilst

others are sporadic and heterogeneous. This makes it again more difficult to compare

across patients as across-trial averages can be more or less reliable, depending on the

regularity of the movements, while other parameters such as movement length become

redundant if each movement takes the same amount of time. A compounding factor

is the strong relationship between the movement parameters themselves. Velocity,

Acceleration, movement length and maximum extension are all results of the hand

position itself tracked over time, making it near impossible to investigate these factors

independently of each other.

Nonetheless, we have shown that it is possible to accurately decode a patients hand

position using neural recordings from the basal ganglia and a linear regressor. This

would suggest that not only is some movement represented in the basal ganglia, but
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that it is represented at a fidelity high enough for full movement reconstruction. We also

find that no single neural signal best represents this type of movement, but that the best

signal is different across patients or brain region. Though in the three patients with

reasonable decoding performance, the electrophysiological signals (MUA and BUA)

explained more of the movement parameter than those from the LFP. Decoding the

neural activity of voluntary movements can serve a lot of clinical applications, e.g. in

the area of brain-computer interfaces [144] where brain signals have to be translated

reliably into commands that operate a prosthetic arm. We hope that this work can

serve as a guide for the design of future experiments.
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Figure 4.3: Neural signals and movement trajectory. This figure shows the 1
movement (red) and 9 neural (7 LFP band-limited power in green and 2 extracellular signals
in blue) signals for a single trial in two patients. Movement onset is marked by the dashed
line



4.4 Discussion and Future Work 79

A
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Figure 4.4: Relationship between neural signals and kinematic movement pa-
rameters. For 3 Patients, (A-C) Plot Movement Features against Neural Signal (Trial
Averaged) with Time on the x-axis and signal on the y-axis, (D-F) Plot Movement parame-
ters against Neural Signal over Trials. A) Movement plotted against MUA (onset aligned).
B) Absolute Velocity plotted against MUA (Onset Aligned). C) Absolute Acceleration plot-
ted against Alpha (aligned to movement minima) D) Velocity at Trial Offset (x-axis) plot-
ted against MUA rate at offset (y-axis). E) Extent at Movement Minima (x-axis) plotted
against Very High Gamma rate at Minima (y-axis) F) Offset Velocity (x-axis) plotted against
Gamma (y-axis) at movement minima. Where a significant correlation above 0.5 exists, plots
are shown in colour.
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Figure 4.5: Correlation comparison between neural signals and kinematic
movement parameters. This figure compares the significant correlation (p ¡ 0.05) of dif-
ferent signal and movement features across patients. The correlation value for each pair is
represented by the heat map and non-significant correlations are set to zero value. Whilst
many signal combinations result in a non-zero correlation, there is very little consistency
across patients as to which combinations correlate most.

1
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3

Figure 4.6: Decoding Accuracy. Actual and decoded trajectory for 2 patients. The
correlation between the actual and decoded trajectories are 0.61 and 0.86 for patients 1 and
3 respectively.
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Figure 4.7: Movement Decoding for multiple features. Change in prediction power
as a percentage of the best overall prediction. The number of neural signals used increases
from left to right. The maximum for all but one patient is reached at n = 3
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5
General Discussion

In the manuscripts above we have worked in areas intersecting Data Science and Neu-

roscience.

The work in chapter 2 is focused on machine learning research and specifically, the

brain inspired framework of Artificial Neural Networks. We introduced a new train-

ing method for temporal RBMs called Temporal Autoencoding and showed that our

pre-training method achieves a significant performance increase in both generative and

predictive tasks across multiple datasets. The approach is robust and proves fruitful

for both Temporal and Conditional RBMs, advancing the state-of.the-art in tempo-

ral RBM training. In our opinion, TA training allows the networks to learn a more

meaningful temporal representation of the data than is possible through contrastive

divergence alone. We believe the inclusion of Autoencoder training in temporal learn-

ing tasks will be beneficial in a number of contexts, as it enforces the causal structure

83
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of the data on the learned model

In chapter 3 we extend our work with Temporal Autoencoding and apply it to

modelling the process of dynamic representation learning in the mammalian visual

cortex. Using Temporal Autoencoding we show that TRBMs are able to learn dynamic

representations of natural image sequences that capture both important statistics of

the dataset and echo the receptive field properties found experimentally in V1 neurons.

In addition, we show that the learned features provide for a temporally sparse code,

an attribute desirable in systems with finite metabolic resources such as the brain.

Chapter 4 moves away for from the modelling approach and uses the brain as a

data source to investigate the relationship of wrist movement and neural activity in

the basal ganglia. We are able to show not only that strong correlations exist between

movement parameters and activity in the subthalamic nucleus and the globus pallidus

interna, but that the neural signals from these regions can be used to reconstruct the

patients wrist trajectory via the use of a linear regressor.

5.1 Neuroscience and Machine Learning

These manuscripts together allude to the importance of machine learning techniques in

neuroscience and paint a picture of the two part relationship between these fields. On

the one hand, machine learning is heavily utelised by neuroscientists as a tool in the

analysis of experimental data [145–147], for decoding of neural signals in brain machine

interfaces [148–152] and even to peer into our thoughts [153, 154], to name but a few

applications.

It is perhaps the second meeting point between these fields that is most interesting.

The use of machine learning models as a starting point for understanding brain func-

tionality, and the application of our understanding of neural function as a source for

new and improved machine learning algorithms. This back and forth of information

and ideas has been seen in areas such as ANNs, their neuromorphic counterparts and

slow feature analysis (SFA) amongst others. Of the many forms of ANNs studied, their

uniting factor is that they all draw the concept for their basic computational unit, the
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artificial neuron, from the brain [9, 155, 156]. This approach to learning, an idea of

massively parallel networks of computational units, has spawned a huge focus of re-

search with many applications. An extension of this field has been the investigation

of hardware based ANN implementations known as neuromorphic hardware [105, 157]

. Neuromorphic hardware has the advantage of a truly parallel implementation in

hardware (where as software based ANNs are still bound to the pipeline bottlenecks of

the Von Neumann architecture) allowing computations to run at speeds similar to, if

not faster than biology [158]. Additionally, neuromorphic chips are able to implement

more biologically realistic spiking neuron models such as integrate-and-fire [159] and

Hodgkin-Huxley [160], the computational burden of which usually limits the size and/or

speed of such networks implemented in software. This has opened up new opportuni-

ties to investigate computational networks inspired by biologically, taking inspiration

from the honeybee olfactory system [161–163] or the human retina [164–166].

In return, ideas such as the Hopfield network [167], a form of recurrent ANN de-

signed to learn collections of patterns, have provided a possible framework for associa-

tive memory in the brain. SFA [168], a form of unsupervised machine learning that

extracts slowly varying features from a more quickly varying signal, has been shown

to account for the self organisation of complex-cell receptive fields in visual cortex

([169]; closely related to our work in chapter 3) and the formation of place cells in the

hippocampus [170]. RBMs have even been suggested as a generalised framework for

cortical representation learning across multiple sensory systems [171]. The combined

work presented in this thesis also addresses this two part relationship, with chapter 4

relying on machine learning techniques to decode patients hand movements whilst

chapters 2 and 3 take inspiration from the brain and utelise state-of-the-art machine

learning techniques to suggest how natural image sequences could be encoded using a

neural structure.
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5.2 A Data Scientific Approach to Neuroscience

The unifying theme across this work is Neuroscience, but it is also a data scientific

approach to research, be it the through development of new machine learning tech-

niques (chapter 2), modelling representation learning from our natural environment

(chapter 3) or the analysis of neural and behavioural data in tandem (chapter 4). The

individual challenges that arose in each of these projects required the application of

cutting edge computational techniques, drawn from the toolkit of the Data Scientist.

These techniques allowed us to arrange and interrogate gigabytes of noisy and multi-

variate temporal data and to create automated analysis work flows, allowing for fast

assessment of multiple dataset and parameter combinations. It allowed us to investigate

the data in an interactive manner, and learn directly from it with Machine Learning

techniques.

5.2.1 Python for Data Science

In particular, this thesis is a testament to the versatility and maturity of the Python

programming language and it’s framework for scientific data analysis. The results

presented above would not have been possible if not for the fantastic array of open

source tools that cover every aspect of the Data Science pipeline. For Data acquisition

and Processing : numpy [172], pandas [173], for Statistical Analysis : scipy [138], for

Modelling and Machine Learning : theano [34], scikits-learn [137], ipython parallel [174],

scikitCVcluster [175], and for Data Visualisation and Story Telling : matplotlib [136]

and prettyplotlib [176]. Python’s strength as a go-to language for scientific computing

is becoming more widely acknowledged [177] which will hopefully in turn grow the

community that contributes to it’s great tools.

5.3 Outlook

As the complexity of experiments and the volume of data they produce increases, the

field of neuroscience, along with other biological sciences, will become more and more
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reliant on those trained in Data Scientific techniques to help make sense of their results.

It has been said that Data Science will be the ’sexiest job of the 21st century’ [178].

Such statements are of course pure hype, but the core disciplines of data science are

already reflected in what many scientists in any number of fields do on a day to day

basis, and as the data grows, so will the demand for their skill set.
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[101] R. Huerta, T. Nowotny, M. Garćıa-Sanchez, H. Abarbanel, and M. Rabinovich.

Learning classification in the olfactory system of insects. Neural computation

16(8), 1601 (2004). 49

[102] S. Cassenaer and G. Laurent. Conditional modulation of spike-timing-dependent

plasticity for olfactory learning. Nature 482(7383), 47 (2012).

[103] M. F. Strube-Bloss, M. P. Nawrot, and R. Menzel. Mushroom body output neurons

encode odor–reward associations. The Journal of neuroscience 31(8), 3129 (2011).

49

[104] R. Huerta. Learning pattern recognition and decision making in the insect brain.

In American Institute of Physics Conference Series, vol. 1510, pp. 101–119

(2013). 49
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[175] C. Häusler. scikitCVcluster: A wrapper of ipcluster around scikits learn clas-

sifiers to perform parallel cross validation (2013). URL https://github.com/

chausler/scikitCVcluster. 86

[176] O. Botvinnik. prettyplotlib: Painlessly create beautiful matplotlib plots (2013).

URL https://github.com/olgabot/prettyplotlib. 86
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