2.4 Strukturanalyse des GNE-Proteins

Zur Analyse der Sekundär bzw. Tertiärstruktur der GNE wurden die CD- und Fluoreszenz-Spektroskopie (2.4.1 bzw. 2.4.3) eingesetzt. Des Weiteren wurden zur Klärung der rGNE-Proteinstruktur bioinformatische (2.4.2), elektronenmikroskopische (2.4.4) und kristallographische Methoden (2.4.5) angewandt.

2.4.1 CD-Spektroskopie des His₆-rGNE-Wildtyps und der HIBM-Mutanten

Die erbliche Einschlusskörperchen-Myopathie HIBM wird durch eine Reihe verschiedener Punktmutationen ausgelöst. Da die HIBM-Punktmutationen die Enzymaktivität beeinflussen, sollen diese mit Hilfe der CD-Spektroskopie untersucht werden. Durch diese Methode können die Sekundärstrukturanteile eines Proteins in Lösung berechnet werden. Gravierende Änderungen in den Anteilen zwischen dem His₆-rGNE-Wildtyp und einzelnen Punktmutanten geben Aufschluss, ob es sich bei den mutierten Aminosäuren um Struktur gebende Bereiche des Proteins handelt. Es wurden 7 verschiedene HIBM-Mutanten mit dem Wildtyp verglichen. Des Weiteren wurde die funktionelle Punktmutante D143N mittels der CD-Spektroskopie untersucht, die als einzige funktionelle Mutante trotz des einheitlich tetrameren Zustands einen Totalverlust der Epimerase-Aktivität aufweist. Die Sekundärstrukturanteile wurden mit der Software CDPro berechnet, welche auf 43 Referenzspektren löslicher Proteine basiert, deren Sekundärstrukturen bekannt sind. Für den rGNE-Wildtyp wurde ein α-Helix-Anteil von 33% und ein β-Faltblatt-Anteil von 17% ermittelt, die damit ungefähr den Sekundärstrukturanteilen der bioinformatischen Vorhersage entsprechen (37% α-Helix und 15% β-Faltblatt; siehe 2.4.2). Änderungen der einzelnen Sekundärstrukturen von 5 bis 10% sind als niedrig signifikant definiert, eine hohe Signifikanz gilt bei Änderungen von über 10%. In Tabelle 2.9 sind die mittels CD-Spektroskopie berechneten Sekundärstrukturanteile vom Wildtyp und von den Mutanten aufgelistet. Die HIBM-Mutanten I200F, C303V, D378Y und F528C zeigten leichte, jedoch keine signifikanten Änderungen der α -Helix-Anteile im Vergleich zum Wildtyp. Über 10% Differenz zu einem Wildtyp-Sekundärstrukturanteil besaß lediglich die HIBM-Mutante N519S, die einen α -Helix-Anteil von nur 15% und einen β -Faltblatt-Anteil von 31% aufwies.

Tabelle 2.9: Sekundärstrukturanteile des His₆-hGNE-Wildtyps, der funktionellen Mutante D143N, und 7 weiterer HIBM-Mutanten. Die Ermittlung erfolgte über CD-Spektroskopie. Die Berechnung der Sekundärstrukturanteile basiert auf 43 Referenzspektren löslicher Proteine und wurde mit der CDPro-Software durchgeführt.

	α-Helix	β-Faltblatt	β-Turn	Random Coil
WT	33%	17%	21%	29%
D143N	29%	21%	21%	29%
I200F	37%	16%	19%	28%
C303V	29%	19%	23%	29%
D378Y	27%	23%	21%	29%
N519S	15%	31%	22%	32%
F528C	40%	13%	20%	27%
A631Y	28%	20%	24%	28%
M712T	32%	19%	22%	27%

2.4.2 Sekundärstrukturvorhersage des rGNE-Proteins mittels bioinformatischer Methoden

Zur weiteren Strukturanalyse des rGNE-Wildtyps wurde die Jnet-Software angewandt, die aus der Proteinprimärstruktur Vorhersagen über die Sekundärstruktur berechnen kann. Die mittels CD-Spektroskopie gewonnenen prozentualen Sekundärstrukturanteile des His₆-rGNE-Wildtyps entsprechen annähernd den theoretisch berechneten Anteilen, nämlich 37% α -Helix und 15% β -Faltblatt. Grundlage der Berechnung ist die Eigenschaft der Sekundärstrukturelemente charakteristische Aminosäurefolgen aufzuweisen. Zur Überprüfung der Vorhersagequalität wurde parallel dazu auch die UDP-GlcNAc-2-Epimerase von *E. coli* analysiert, deren Struktur bereits aufgeklärt ist (Campbell *et al.*, 2000). In Abbildung 2.21 sind die vorhergesagte Sekundärstruktur des rGNE-Proteins sowie die tatsächliche und vorhergesagte Sekundärstruktur der bakteriellen UDP-GlcNAc-2-Epimerase (bGNE) dargestellt.

Vorhersage Kristallstruktur Vorhersage Oberflächenvorher	rGNE bGNE bGNE rsage	1 MEKNGNN B-BBB1	b1 RKL <mark>RVCVAT</mark> MKVLTVF MK <mark>VLTVF</mark> B-B- BBBB BB	al CNR <mark>ADYSK</mark> LA G <mark>TRPEAIKMAI</mark> GTR <mark>PEAIK</mark> MAI BBB B BBBBBBB	PIMFGIK <mark>TEP</mark> PLVHALAKDP PLVHALAKDP BBB- B B	b2 AFF <mark>ELDVVV</mark> F.F <mark>EAKVCV</mark> F.FE <mark>AKVCV</mark> BBBB B BB	50 <mark>L</mark> GSH <mark>L</mark> TAQHR TAQH <mark>R</mark> BB B BB
Vorhersage Kristallstruktur Vorhersage Oberflächenvorher	rGNE bGNE bGNE sage	51 a2 IDDYGNT EMLDQVLI EMLDQVLI BBB]	b: YRMIEQDDFI KLFSIVPD <mark>Y</mark>] KLF <mark>SIVPDY]</mark> 3-BBB-B BB F	3 DINTRLHTIVF DLNI D <mark>LNI</mark> BBBBBBBBBBBB	RGEDEA <mark>AMVES</mark> .MQPGQ <mark>GLTE</mark> . <mark>M</mark> QPGQG <mark>LTE</mark> 3B-BB B B-F	a4 SVGLALVKL ITCRILEGL ITCRILEGL BB <mark>B</mark> - B BB- B]	100 PDVLN KPILA KPILA BB BB B
Vorhersage Kristallstruktur Vorhersage Oberflächenvorhen	rGNE bGNE bGNE rsage	101 I RLKPD <mark>IM</mark> EFKPDVV -BB BB	04 IVHGDRFDA LVHGDTTTTI LVHGDTTTTI B BB -BBB-BB	a4 LALATSAALM LATSLAAFYQ LATSLAAFYQ BBBBBBBBBB	b5 NIR <mark>ILHI</mark> EGGI RIP <mark>VGHVE</mark> AGI RIP <mark>VGHVE</mark> AGI -BB BB<mark>-</mark>BB<mark>B</mark>BB	EVSG LRTGDLYSP LRTGDLYSP 3BBB	145 T <mark>IDDS</mark> WPEEA WP <mark>EEA</mark> B- BBB

Ergebnisse

		146 a5	b6	a6	b7		a7	195
Vorhersage	rGNE	IRHAITKL	а <mark>нүн<mark>vсс</mark>ті</mark>	RSAEQHLISI	MCEDHDR <mark>ILL</mark>	<mark>a</mark> gcps <mark>ydk</mark>	LLS	AKNK
Kristallstruktur	bGNE	NRTLTGHL	AMYHE'S PTH	ST'SRQNLLRI	NVADSRIFI ENVADORITET	I'GN'I'V I DA	LLW	VRDQ
Oberflächenvorhei	DGNE	BBRBBB1	R-R RRRRR	RBRBR-	BB-B-B-BBB	BRBBBBBB	B-BI	R
	Louge						- D1	
		196 a8		b8		a	.9	240
Vorhersage	rGNE	DYMSIIRM	WLGDDV	KCKD <mark>YI</mark>	<mark>VALQ</mark> HPVTTD	IKHS <mark>IKMF</mark>	ELT	LDAL
Kristallstruktur	bGNE	VMSSDKLR:	SELAAN <mark>ype</mark>	FIDPDK <mark>kmi</mark>	LVTGHRRESF	GRGFEEIC	HAL	ADIA
Oberflächenvorhei	DGNE	-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B	-B <mark>B</mark> BBB	BRBBBB	B-BBB-B-B-	BB-B	BBBI	BBBB
0.0011100000000000000000000000000000000	Lougo	5 5 <mark>-</mark> -55						
		241	b9	a10	0	b10 a	.11	290
Vorhersage	rGNE	ISFNKRTL	VLFPNIDAC	GSKE <mark>MVRVM</mark> I	RKKGIEHHPN.	FRAV KHVP	FDQ	FIQL
Vorbersage	DGNE		LVYPVHLNE	2NVREP	VNRILGHVKN	VILIDPOE	YLP	FVWL FVWL
Oberflächenvorhei	rsage	BBBB-I	BBBB B BB-E	BBBBH	BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	B-BB-BB-	BBBI	BBBB
···)	0.17	291 b11	al2	2 bi	12	al3 b1	3	337
Vorhersage Krigtalletruktur	rGNE		GNSSCG <mark>VRE</mark> D <mark>SCCTOFE</mark>	OGAFGTPV.	INLGTRQ	IGRETG <mark>EN</mark>		
Vorhersage	DGNE	MNHAWLIL	TDSGGIQEI	CAPSLGKPV	LVMRDIIER <mark>f</mark> LVMRDTTERP	EAVIAGIV EAVTAGTV	RLV	GTDK GTDK
Oberflächenvorhei	rsage	BBBB-B-BI	BB BB<mark>BB</mark>BBBBBBBBBBBBBBBBBBBBBBBBBBBBB	BBBBB-BB	BB BBB	-BB-B B-B	BBB	B-B-
	-							
	CNE	338 a14	al NTU TOT	15 Ickovdar:	TVCDCNA	al6	DIO	384
Voineisage Kristallstruktur	L GNE bGNE	ORTVEEVTI	RTTR <mark>D</mark> ENEA	CAMSRAHNI		TTEATKNN	RIS	Е <mark>РЦ</mark> У Т.
Vorhersage	bGNE	QRIVEEVTI	RLLKDENEY	QAMSRAHN	PYGDG <mark>QACSR</mark>	ILEALKNN	RIS	L
Oberflächenvorhei	rsage	-BBBBB BB -1	BB BB E	3вв-в	BBBB <mark>BB</mark>BB	3B-B B -BB	BB-	-BBB
		205						121
Vorhersage	rGNE	202	KENTS <mark>ODT</mark> I			RVATVSMK	GET	434 <mark>Vk</mark> ky
Oberflächenvorhei	rsage	-BB-	BB-BBB-	-BBBB- B	BBBBBBBB	-BBBBBBB-]	B
	2							
···)	0.17	435						484
Oberflächenvorhei	rgne	-BB	-BBB-B B B-	-BBBBBB	AVKLNCRIL <mark>G</mark> BBBBBBBBBBB	VGISTGGR	NNP	QEG <mark>V</mark> -BB-
oberrrachenvorner	Loaye	0 0						
		485					_	534
Vorhersage	rGNE	VLHSTKLI	QEWNSV <mark>DL</mark> F	RTPLSDTLHI	lp <mark>vwv</mark> dnd <mark>gn</mark>	CAAMAERK	FGQ	GKGQ
Oberflachenvorhei	rsage	BBBB-BB-	-BB-BB-B E	38- B 8BBF	з- в вв-ввв <mark>в</mark> і	3BBB <mark>B</mark> BBB	BBB1	B
		535						584
Vorhersage	rGNE	E <mark>NFVTLIT</mark>	GTGIG <mark>GGI</mark>	<mark>HQ</mark> HE <mark>L</mark> IHG	SSFCAAE <mark>L</mark> GH	<mark>lvv</mark> sldgp	DCS	CGSH
Oberflächenvorhei	rsage	BB BBBBB B	BBBB B BBB	B B -BB <mark>B</mark> -BI	B-BBBBBBBBB	3B <mark>BBB</mark> BB	<mark>b</mark> bbi	BBB-
		585						631
Vorhersage	rGNE	GCIEAYAS	GMALOREAF	KLHDEDLLI	LVEGMSVPKD	EAV <mark>GALHL</mark>	IOA	AKLG
Oberflächenvorhei	rsage	BB <mark>B</mark> B BBBB	BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	BBB-BBBB-	-BBBBBBB	-BBBBBBB	B- <mark>B</mark>	BB
			—					
Vorhersago	rCNF	635 N <mark>VKAOSTI</mark>			MNDSTATTSC			684
Oberflächenvorhei	rsage	BBBBBBB	BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	-BB <mark>B</mark> B-	B B B	-B B -
	2							
To the state and	- CNT	685				22		
oberflächenvorhei	rGNE	-BBBB-I	BB- <mark>BBB</mark> BBB	B -BBBBBB	BBBB-BBBB	кін ЗBB		

Abbildung 2.21: Vorhersage der Sekundärstruktur und der im Proteinkern lokalisierten Aminosäuren von rGNE-Proteins. Zur qualitativen Analyse der rGNE-Sekundärstrukturvorhersage wurde zusätzlich die Sekundärstruktur der homologen bakteriellen UDP-GlcNAc-2-Epimerase (bGNE) vorhergesagt, die aus der Kristallstruktur bereits bekannt ist. Die Sekundärstrukuren wurden mit der Jnet-Vorhersage-Software berechnet. Vorhergesagte bzw. aus der Kristallstruktur ermittelte α -Helices sind rot gekennzeichnet, β -Faltblätter sind türkis markiert. Hervorgehoben sind Aminosäuren, die mit einer Wahrscheinlichkeit von 75% (B = buried) bzw. über 95% (B) nicht an der Proteinoberfläche lokalisiert sind. Grün gekennzeichnet sind die bisher bekannten HIBM-Mutanten. Die von Campbell *et al.* (2000) eingeführte Nummerierung der Sekundärstrukturen der bakteriellen UDP-GlcNAc-2-Epimerase ist oberhalb des jeweiligen Sequenzbereichs aufgeführt.

2.4.3 Fluoreszenzspektroskopie des His₆-rGNE-Wildtyps und zweier HIBM-Mutanten

Informationen über die Veränderung der Tertiärstruktur eines Proteins können mit Hilfe der Fluoreszenz-Spektroskopie gewonnen werden. Dabei wird die Fluoreszenz der Aminosäure Tryptophan genutzt, die nach Anregung mit 280 nm langwelligem Licht maximal bei einer Wellenlänge von 355 nm fluoresziert. Da die Polarität der Umgebung eines Tryptophanrestes die Wellenlänge seines Fluoreszenz-Maximums beeinflusst, lassen sich Rückschlüsse über die räumliche Umgebung der analysierten Tryptophanreste machen. Untersucht wurden der Wildtyp und die zwei HIBM-Mutanten I587T und M712T. Ein Ausschnitt der drei Fluoreszenz-Spektren ist in Abbildung 2.20 dargestellt. Der Wildtyp und die Mutante M712T hatten beide ihr Fluoreszenz-Maximum bei 335,3 nm, während die Mutante I587T ihr Maximum bei einer Wellenlänge von 333,7 nm erreichte. Die detektierte Blauverschiebung des Maximums um 1,6 nm ist jedoch nicht signifikant.

Abbildung 2.20: Ausschnitt der Trp-Fluoreszenz-Spektren des His₆-hGNE-Proteins sowie der HIBM-Mutanten I587T und M712T. Angeregt wurde die Fluoreszenz mit einer Wellenlänge von 295 nm. Die jeweiligen Fluoreszenz-Maxima wurden gleich 100% gesetzt.

2.4.4 Kryo-Transmissionselektronenmikroskopie des His₆-rGNE-Fusionsproteins

Mit Hilfe der Technik der Kryo-Transmissionselektronenmikroskopie kann von einer gereinigten Proteinlösung die Proteinpartikelgröße bestimmt oder durch Einzelpartikelanalyse die dreidimensionale Struktur eines Proteins im einstelligen nm-Bereich geklärt werden. Voraussetzung für die Strukturaufklärung ist eine monomodale Proteinlösung. Hierfür wurde gereinigtes His₆-rGNE-Protein über eine Gelfiltrationssäule gegeben und lediglich der Tetramerpeak innerhalb von 15 min für die TEM-Experimente eingesetzt. Für die Messungen wurde die Probe mit 2% Phosphowolframat (PTA) negativ gefärbt. In Abbildung 2.22 ist eine elektronenmikroskopische Aufnahme mit einer 270000-fachen Vergrößerung dargestellt.

Abbildung 2.22: Ausschnitt einer cryo-elektronenmikroskopischen Aufnahme des gereinigten His₆-rGNE-Proteins. A: 270000-fache Vergrößerung. Einzelne Proteine sind wegen der Negativfärbung mit 2% PTA als helle Flecken in der Elektronendichteverteilung zu erkennen. B-F: 540000-fache Vergrößerung. Auswahl verschieden großer Partikel. B und C: Partikel mit einem Durchmesser von unter 10 nm. D und E: Partikel mit einem Durchmesser von etwa 15 nm, F: Partkel mit einem Durchmesser von über 20 nm. Die weißen Balken unten rechts entsprechen 10 nm.

Trotz des Einsatzes von offensichtlich tetramerem His₆-rGNE-Protein besaß die visualisierte Proteinpopulation einen polymorphen Charakter. Es wurden verschieden große Partikel detektiert, die nicht allein auf die Orientierung der Partikel im Raum zurückzuführen sind. Die Einzelpartikeldurchmesser schwanken dabei von unter 10 bis 30 nm, wobei drei Einzelpartikelsubpopulationen wiederholt beobachtet werden konnten. Subpopulation Nr. 1 (Abb. 2.22, B und C) weist einen Durchmesser von etwa 7 nm auf, Subpopulation Nr. 2 (Abb. 2.22, D und E) hat einen Einzelpartikeldurchmesser von etwa 15 nm und Subpopulation Nr. 3 (Abb. 2.22, F) von über 20 nm. Nimmt man für die Kryo-TEM eine globuläre Struktur des His₆-rGNE-Proteins an, müsste der Durchmesser eines Tetramers mit einem ermittelten Stokes-Radius von 7,1 nm (siehe 2.2.1) bei etwa 14 nm liegen. Tatsächlich weisen die 15 nm-Partikel eine globuläre Struktur auf. Die 7 nm-Partikel wären demnach kleinere oligomere Zustände des rGNE-Proteins, die über 20 nm großen Partikel Aggregate. Aufgrund der Oligomodalität der Proteingrößen war die Einzelpartikelanalyse zur Strukturaufklärung nicht möglich.

2.4.5 Kristallisations-Screening des gereinigten His₆-rGNE-Fusionsproteins

Trotz der Oligomodalität des rGNE-Proteins, die durch analytische Ultrazentrifugation, DLS und TEM nachweisbar war, wurden Kristallisations-Screenings angesetzt. Gereinigtes His₆-rGNE-Protein mit einer Konzentration von 4 mg/ml in 20 mM HEPES, 1 mM DTT, pH 7,5, diente als Proteinlösung für die Kristallisations-Screenings. Das Screening wurde im Hanging-Drop-Verfahren mit vier verschiedenen Kristallisations-Screening-Kits (Hampton, USA), welche aus jeweils 48 unterschiedlichen Kristallisations-Puffern bestehen, bei 25°C durchgeführt. Damit wurden insgesamt 192 Pufferbedingungen getestet. Bei allen Kristallisationsansätzen bildeten sich innerhalb weniger Minuten Präzipitate, die keinerlei kristalline Strukturen aufwiesen. Kristalle oder Kristall-ähnliche Partikel konnten nicht identifiziert werden.