A Proteintabellen

In der vorliegenden Arbeit wurden unter anderem Mutanten des Autophagocytoseweges und des *cytoplasm to vacuole transport* untersucht. Die folgenden Seiten geben eine Übersicht über die an der Autophjagocytose oder am *cytoplasm to vacuole transport* beteiligten Proteine. Die Tabelle enthält Informationen zur Lokalisation, zu Interaktionspartner und – wenn bekannt – die Funktion des Proteins. Die Daten wurden aus den in der Einleitung im Abschnitt 1.3 ab Seite 7 zitierten Publikationen, der Yeast proteome database [62] und der Saccharomyces Genome Database [22] zusammengestellt.

Abschnitt A.2 auf Seite 147 gibt einen Überblick über Proteine die für die Peroxisomenbiogenese essentiell sind. Diese Proteine werden als Peroxine bezeichnet. Bisher wurden 32 Peroxine identifiziert. Die Tabelle enthält Informationen zu Lokalisation und Funktion der Proteine. Die letze Spalte enthält eine Auflistung der Interaktionspartner und die Zusammensetzung der bekannten peroxisomalen Proteinkomplexe. Die Informationen wurden den in Abschnitt 1.4 ab Seite 15 zitierten Publikationen, der Yeast proteome database [62] und der Saccharomyces Genome Database [22] entnommen.

A.1 Autophagocytose

Protein	Topologie/ Lokalisation	Funktion	Interaktionen
Atg1p	Cytoplasma	Serin-/Threoninkinase	Atg13p, Atg17p, Atg11p,
		Tor-Signalkaskade	Ctk3p
Atg2p	peripheres Membranprotein	erforderlich für Atg9p-Lokaliasation	Lsm8p, Atg8p, Atg18p
	pre-vakuoläres Kompartiment		
	notwendig für Pexophagocy-		
	tose		
Atg3p	Cytoplasma	E2-ähnliches Enzym	Atg12p, Atg7p, Atg8p,
		Ubiquitine ähnliche Konjugation von	Bzz1p, Kap111p, Nsp116p
		Atg8p an Phosphatidylethanolamin	
Atg4p	Cytoplasma	Cystein-Endopeptidase	Atg8p, Tub1, Tub2p,
	Mikrotubuli assoziiert	Spaltet Atg8p nach AS 116	Cdc15p,
		spaltet Atg8p-PE-Konjugat	
Atg5p	autophagosomale Membran	Bildung von Konjugaten mit Atg12p	Atg12p, Atg16p, Fet3p,
Atg7p	Cytoplasma	E1-ähnliches Enzym	Atg12p, Atg3p, Atg8p,
	Membranperipherie	Ubiquitine ähnliche Konjugation von	Atg10p, Atg7p, Ydr412p,
		Atg12p an Atg5p und PE an Atg8p	Vid27p, Sso2p, Ris1p
Atg8p	Membran	ubiquitinähnliche Konjugation an PE	Atg4p, Atg7p, Bet1p,
	cytoplasmatisch	Assemblierung der autophagosomalen	Nyv1p, Vam3p, Atg3p,
	Mikrotubuli assoziiert	Membran	Yol083p
		Erweiterung des Autophagosoms	
Atg9p	integrales Membranprotein	erforderlich für die Lokalisation von	Atg2p, Ylr065p, Tif5p
		Atg2p	
Atg10p	Cytoplasma	E2-ähnliches Enzym für die Konjuga-	Atg7p, Atg12p, Jsn1p
		tion von Atg12p and Atg5p	
Atg11p	peripheres Membranprotein	<i>cvt</i> -spezifisch	Pcf11p, Dam1p, Atg1p,
	prä-vakuoläres Kompartment	für Pexophagocytose notwendig	Atg12p

Protein	Topologie/ Lokalisation	Funktion	Interaktionen
Atg12p	Autophagosom	wird über übiquitinähnlihce Konjuga-	Atg7p, Atg5p, Atg3p,
	Lysosom	tion kovalent an Atg5p gebunden	Atg16p, Atg10p, Atg17p,
			Sec18p, Kap124p, \dots
Atg13p	Membran associiert	Interaktion von Atg13p mit Atg1p ist	Atg1p, Pup2p, Sec35p,
		wichtig für Tor-Signalweg	Ynl086p, Fur1p, Vac8p
Atg14p	peripheres Membranprotein	Autophagocytose-spezifische Kompo-	Vps30p, $Ser3p$, $Cdc70p$,
		nente des PI 3-Kinase-Komplexes	Vma1p
Atg15p	integrales Membranprotein	putative Lipase	Isc1p
	ER, Lysosom		
Atg16p	Membran assoziiert	stabilisiert Atg12p-Atg5p Konjugate	Atg12p, Atg5p, Mec3p,
		durch Bildung großer multimerer Kom-	Atg16p, Smt3p, Ste4p,
		plexe	Yfl040p, Kap95p, Nup1p
Atg17p	Cytoplasma	Aktivierung der Atg1p-Protein-Kinase	Atg1p, Atg17p, Atg24p,
		autophagocytosespezifisch nicht er-	Vam7p, Sec35p, Sec38p,
		forderlich für <i>cvt</i>	$Vps2p, Vps71p, \dots$
Atg18p	vakuoläre Membran	bindet Phosphoinositol	Atg2p, Lys14p, Sbe22p,
		beteiligt an Autophagocytose, Pex-	Ycl063p, Yml059p, Bio3p,
		ophagocytose und cvt	Gis3p, Adh1p,
Atg19p	cytoplasmatisch	spezifischer Rezeptor für <i>cvt</i> -Weg	Kin1p, Laz4p, Tfb1p,
	peripheres Membranprotein	nicht erfordlerich für Autophagocytose	Trs33p, Ume6p, Sog2p,
	Vakuole	oder Pexophagocytose	Ams1p, Bzz1p, Glr1p, \dots
Atg20p	prä-vakuoläre Struktur	enthält PX-Domaine ¹ -Domaine ²	Atg17p, Atg24p, Nip100p,
		für Autophagocytose nicht erforderlich	Rrn10p, Sap155p
Atg21p	Cytoplasma	bindet Phosphoinositol	

 ${}^{1}Phox\ homology$ ${}^{2}Phosphoinositol\ bindende\ Domaine$

Protein	Topologie/ Lokalisation	Funktion	Interaktionen
Atg22p	vakuoläre Membran	Homology zu Permeasen	Ser3p, Stb5p, Ymr009p
		reduzierter Abbau von <i>apg</i> -Vesikeln in	
		atg22-mutanten	
Atg23p	integrales Membranprotein	unbekannt	
Atg24p	Membranprotein	enthält PX-Domaine	Atg17p, Atg20p, Ypt6p,
	prä-vakuoläre Struktur	nicht essentiell für Autophagocytose	Swf1p, Chk1p, Snx41p
Atg26p	Cytoplasma	Sterol-3- β -Glycosyltransferase	Mrpl9p, Mrpl16p
Atg27p	Membranprotein	Proteinkinaseregulation	Sap4p
Cvt3p	unbekannt	nicht erforderlich für Autophagocytose	
Prb1p	Lysosom	Serine Protease	Ypk2p, Cbk1p, Pbn1p,
		Abbau von Proteinen in der Vakuole	Lsm1p, Sec27p, Cdc53p, \dots
Vps30p	periphere vakuoläre Membran	PI 3-Kinase Komplex eforderlich für	Atg14p, Crm1p, Vps38,
	prä-vakuoläres Kompartment	atg^{3} -, cvt^{4} - und vps^{5} -Weg	Vps34, Vps15p, Ypt6p,
			Ric1p, Ste50p
Vps41p	Lysosom, Endosom	erforderlich für das Docking bei homo-	Vps39p, Vam5p, Vam6p,
		typischer Vakuolenfusion	Vam8p, Vam9p, Ypt6p,
		${\it Rab-Guaninnukletidaustauschfaktor^6}$	Ypt7p, Apl5p, Vps16p,
Vps45p	Golgi-Apparat, Cytosol	Sec1p-Homologes	Sec17p, Ykt6p, Vt1p,
		bindet ungefaltete Proteine	Tlg1p, Tlg2p, Pep12p, \dots
Tor1p	Plasmamembran, Vakuole,	Phosphoinositol-3-Kinase	Bik1p, Dal80p, Dal81p,
	Endosom, Golgi-Apparat	Glycogen-Stoffwechsel	Dal82p, Msl5p, Gat1p \dots
		Rho-Signalweg	Tor1p-Komplex mit Lst8p
		Cellcyklusregulation	und Kog1p

³Autophagocytose ⁴cytoplsam to vacuole transport ⁵vacuolar protein sorting ⁶guanyl-nucleotide exchange factor (GEF)

Protein	Topologie/ Lokalisation	Funktion	Interaktionen
Tor2p	Plasmamembran, Vakuole	Phosphoinositol-3.Kinase	Pkc1p, Fpr1p, Plc1p, Bik1p,
	cytosolische Vesikel	Glycogen-Metabolismus	im Tor1-Komplex statt Tor1p mit
		Stessantwort	Lst8p und Kog1p, Tor2-Komplex aus
		Cellcyklusregulation	Avo1p, Avo2p, Tsc11p und Lst8p
Vac8p	Vakuole	erforderlich für cvt-Weg	Atg13p, End7p, Cdc73p, Vab2p,
		und Mikroautophagocytose,	Vab36p, Pbr2p, Rfc2p, Gcd7p, Jsn1p,
		für Makroautophagocytose	Ylr254cp, Ykl061wp
		nicht essentiell	
Tlg2p	Golgi-Apparat, Endosom	Syntaxin-Homologes	Tlg1p, Arl1p, Arl3p, Bzz1p, Ypt6p,
		t- und v-SNARE ⁷	Sec17p, Vti1p, Vma2p, Vps45p,
		cvt-spezifisch	Spc24p, Ric1p, Swf1p, Nup53p,
Ypt7p	Membranprotein, Endosom,	Golgi-Vakuole-Transport,	Vam6p, Vam7p, Ypt6p, Vps41p,
	Vakuole	Vesikeltransport	Gdi1p-assoziierter Komplex
		GTPase	Tpk3p-assoziierter Komplex
Vam3p	integrales Membranprotein,	Transport vom Golgi-	Atg8p, Sec17p, Vti1p, Ytk6p,
	Vakuole	Apparat zur Vakuole,	vakuolärer v-t-SNARE-Komplex ,
		t-SNARE	vakuolärer cis-SNARE-Komplex,
			ternärer t-SNARE-Komplex
Vam6p	Vakuole	Docking bei homotypischer	Vps41p, Ypt6p, Ypt7p, Lsm7p, Pep5p,
		Vakuolenfusion	Vps16p, Arl1p, Arl3p, Ric1p
		Rab-GEF	

Tabelle A.1: In der vorliegenden Tabelle sind alle bekannten an Autophagocytose oder *cytoplasm to vacuole transport* beteiligten Proteine mit ihrer Lokalisation sowie ihren Funktionen und bekannten Interaktionen aufgelistet. Die Tabelle wurde mit Informationen aus der *Yeast proteome database* [62], der *Saccharomyces genome database* [22] und aus den Publikationen die in der Einleitung im Abschnitt 1.3 (S. 7) aufgeführt wurden erstellt.

 $^{^{7}}$ target-, vesicle- soluble NSF attachment protein receptor

A.2 Peroxine

Protein	Topologie/ Lokalisation	Charakterisierung/Funktion	Interaktionen/ Komplex mit
Pex1p	peroxisomale Membran,	ATPase der AAA-Familie	Pex6p, Cne1p
	Cytosol		
Pex2p	mitochondriale und peroxi-	Ring-Zinkfingerprotein	Kap124p, Mec3p, Rpp1bp
	somale Membran		
Pex3p	intergales peroxisomales	an Membranbiogenese beteiligt	Pex19p, Noc3p, Knh1p
	Membranprotein		
Pex4p	peripheres Membranpro-	E2-ähnliches Ubiquitin-Konjugie-	Pex22p, Dml1p, Knh1p, Fks1p, Skn1p
	tein, intraperoxisomal	rendes Enzym, bindet PI3P	
Pex5p	Cytosol, intra-peroxisomal	PTS1-Rezeptor	Cat2p, Mdh3p, Pox1p, Pex7p, Pex8p,
	peripheres Membranprotein		Pex13p, Pex14p, Eci1p, Knh1p, Skn1p
			peroxisomaler Importkomplex aus
			Pex8p, Pex13p, Pex14p, Pex17p,
			Pex2p, Pex10p, Pex12p
Pex6p	itegrales peroxisomales	ATPase der AAA-Familie	Pex1p, Lsm8p, Knh1p, Chs1p, Chs7p,
	Membranprotein, Cytosol		Cts1p, Kre11p
Pex7p	Cytosol, peroxisomale Ma-	enthält 5 WD40-B Motive	Fox3p, Pex5p, Pex13p, Pex14p,
	trix	PTS2-Rezeptor	Pex17p, Pex18p, Pex21p, Sec6p,
			Pex7p-assoziierter Komplex
Pex8p	intraperoxisomales periph-		Pex5p, Lsm2p/
	eres Membran protein		peroxisomaler Importkomplex
Pex9p		kein Orthologes in S. cerevisiae	
Pex10p	intergrales peroxisomales	Ring-Zinkfingerprotein	Pex12p, Vdr332wp
	Membranprotein	autoubiquitiniert	peroxisomaler Importkomplex

Protein	Topologie/ Lokalisation	Charakterisierung/Funktion	Interaktionen/ Komplex mit
Pex11p	integrales peroxisomales	Peroxisomen Teilung	Sua7p
	Membranprotein		
Pex12p	integrales peroxisomales	Ring-Zinkfingerprotein	Pex5p, Pex10p, Pex13p, Pex14p/
	Membranprotein		peroxisomaler Importkomplex
Pex13p	integrales peroxiosomales	Docking-Komplex	Pex5p, Pex14p, Pex17p, Pex7p,
	Membranprotein		Pex12p, Pex21p, Knh1p, Jsn1p,
			peroxisomaler Importkomplex
Pex14p	ER, intra- und extraperox-	Docking-Komplex	Cta1p, Lys1p, Dcl1p, Pex5p, Pex7p,
	isomales peripheres Mem-		Pex13p, Pex14p, Pex17p, Sec38p,
	branprotein		peroxisomaler Importkomplex
Pex15p	ER, integrales peroxisoma-		Ski7p, Rrd1p, Rad2p, Yur1p, Las21p
	les Membranprotein		
HsPex16p	integrales peroxisomales	peroxisomale Membranbiogenese	(kein Orthologes in $S.$ cerevisie)
	Membranprotein		
Pex17p	intra-peroxisomales periph-	erweiterter Docking-Komplex	Pex5p, Pex7p, Pex13p, Pex14p, Jsn1p
	eres Membranprotein		peroxisomaler Importkomplex
Pex18p	peroxisomal, Cytosol	bindet Pex7p-Fox3p-Komplex,	Pex7p, Pex13p, Fox3p
		importabhängige Mono- und	
		Diubiquitinierung und anbgebaut	
Pex19p	Cytosol	peroxisomale Membranbiogeneses	Cat2p, Pex3p, Knh1p, Kap124p,
	peripher an der peroxisoma-		Hrr25p-assoziierter Komplex
	len Membran		Hym1p-assoziierter Komplex
	farnesyliert		Pat1p-assoziierter Komplex
			Yer066cp-assoziierter Komplex
			Yku70p-assoziierter Komplex

Protein	Topologie/ Lokalisation	Charakterisierung/Funktion	Interaktionen/ Komplex mit
Pex20p	Identifiziert in N. cra	8p/Pex21p in S. cerevisiae	
Pex21p	peroxisomal	bindet Pex7p-Pot1p Komplex, redun-	Pex7p, Pex13p, Pex14p, Pot1p,
		dant zu Pex18p	Yag6p, Mga1p, Sif2p,
Pex22p	peroxisomale Membran	Membranbindung von Pex4p	Pex4p, Kre6p, Chs1p, Nup1p
Pex23p		kein Orthologes in S. cerevisiae	
Pex24p	k	ein Orthologes in $S.$ cerevisiae (s. auch P	Pex28p)
Pex25p	peroxisomales Membran-	veränderte Anzahl und Größe von Per-	Нра3р
	protein	oxisomen in Mutanten	
Pex26p		kein Orthologes in S. cerevisiae	
Pex27p	peroxisomale Membran	veränderte Anzahl und Größe von	
		Peroxisomen in Mutanten	
Pex28p	integrales peroxisomales	veränderte Anzahl und Größe von	
	Membranprotein	Peroxisomen in Mutanten	
		Ähnlichkeit zu Pex29p und Yl ⁸ Pex24p	
Pex29p	integrales peroxisomales	veränderte Anzahl und Größe von	Pex30p, Ser3p, Soh1p, Ydr018cp,
	Membranprotein	Peroxisomen in Mutanten	
		Ähnlichkeit zu Pex28p und YlPex24p	
Pex30p	integrales peroxisomales	veränderte Anzahl und Größe von	Pex29p, Pex30p, Pex31p, Srp1p,
	Membranprotein	Peroxisomen in Mutanten	Yop1p, Jsn1p, Yip1p, Kap60p,
		agiert nach Pex28p/Pex29p	Nup53p, Ydl089wp, Ygr026wp
		redundant zu Pex31p	

⁸ Yarrowia lipolytica

Protein	Topologie/ Lokalisation	Charakterisierung/Funktion	Interaktionen/ Komplex mit
Pex31p	integrales peroxisomales	veränderte Anzahl und Größe von	Pex30p, Yop1p, Rna15p
	Membranprotein	Peroxisomen in Mutanten	
		agiert nach Pex28p/Pex29p	
		redundant zu Pex30p und Pex32p	
Pex32p	integrales peroxisomales	veränderte Anzahl und Größe von	Ser3p
	Membranprotein	Peroxisomen in Mutanten	
		agiert nach Pex28p/Pex29p	
		redundant zu Pex31p	

Table A.2: In der Tabelle sind alle bisher bekannten Peroxine aufgelistet. Informationen zu Loklisation, Funktion und Interaktionen wurden der *Yeast Proteome Database* [62], der *Saccharomyces Genome Database* [22] und den in der Einleitung im Abschnitt 1.4 (S. 15) zitierten Publikationen entnommen.

B Ergebnis-Nachtrag

Im folgenden sind die Untersuchungsergebnisse aller in der vorliegenden Arbeit behandelten Autophagocytosemutanten und der Mutanten des *cytoplsam to vacuole transport* dargestellt. Nähere Erläuterungen enthält Abschnitt 4.1.4 auf Seite 73.

Abbildung B.1: Wachstum auf Ölsäure – atg-Mutanten: Die Zellen (OD₆₀₀=1) wurden 1:10, 1:100 und 1:1000 verdünnt und je 2 μ l auf die angegebenen Festmedien aufgetragen. Die Zellen wurden dann für 3 (Glucosemedien-G), 5 (Ethanolmedien-E) bzw. 6 Tage (Ölsäuremedien) bei 30°C inkubiert.

Abbildung B.2: Fluoreszenzaufnahmen von atg Mutanten Teil 1: Gezeigt sind Aufnamen von einzelnen Zellen, die entweder Pex3p-EGFP und PTS2-DsRed oder EGFP-PTS1 und PTS2-DsRed exprimierten.

Abbildung B.3: Fluoreszenzaufnahmen von atg Mutanten Teil 2: Gezeigt sind Aufnamen von einzelnen Zellen, die entweder Pex3p-EGFP und PTS2-DsRed oder EGFP-PTS1 und PTS2-DsRed exprimierten.

Abbildung B.4: Fluoreszenzaufnahmen von atg Mutanten Teil 3: Gezeigt sind Aufnamen von einzelnen Zellen, die entweder Pex3p-EGFP und PTS2-DsRed oder EGFP-PTS1 und PTS2-DsRed exprimierten.

Abbildung B.5: Subzelluläre Fraktionierung *atg*-Mutanten Teil 1: Die Abbildung zeigt die relativen Katalaseaktivitäten in vergleichbaren Mengen Pellet und Überstand einer Zentrifugation des PNS bei 25000g für 10 Minuten. *atg*-Mutanten bei denen die Aktivität im Überstand höher war als die Aktivität im Pellet sind rot gekennzeichnet. Die Fehlerbalken stellen die Standardabweichung dar (n=4).

Abbildung B.6: Subzelluläre Fraktionierung *atg*-Mutanten Teil 2: Die Abbildung zeigt die relativen Katalaseaktivitäten in vergleichbaren Mengen Pellet und Überstand einer Zentrifugation des PNS bei 25000g für 10 Minuten. *atg*-Mutanten bei denen die Aktivität im Überstand höher war als die Aktivität im Pellet sind rot gekennzeichnet. *cvt3* und *atg24* sind Originalmutanten aus der Arbeitsgruppe von D.J. Klionsky. Alle anderen Mutanten sind Deletionsmutationen des Wildtypstamms BY4742 (EUROFAN-Projekt) Die Fehlerbalken stellen die Standardabweichung dar (n=4).

C Klonierungsschemata

Abbildung C.1: Klonierungsschema – PTS2-DsRed: In einem Reaktionsansatz wurde das Plasmid YIplac204/PTS2-DsRed [145] mit den Restriktionsendonukleasen NcoI und Pst1 behandelt. In einem anderen Reaktionsansatz wurde das gleiche Plasmid mit den Restriktionsendonukleasen EcoRI und NcoI behandelt. Aus dem ersten Reaktionsansatz wurde das entstandene 700bp-Fragment isoliert. Aus dem zweiten Reaktionsansatz wurde das neben anderen Bruchstücken entstandene 800bp-Fragment isoliert. Der Vector YCplac111 wurde mit den Restriktionsendonukleasen EcoRI und PstI behandelt, der Vektor isoliert und mit den Fragmenten des Vektors YIplac204/PTS2-DsRed in einer Dreifachligation verbunden (pIH972).

Abbildung C.2: Klonierungsschema – Pex14p-EGFP: Aus genomischer DNA aus *Saccharomyces cerevisiae* wurde mit den Primern RE603 und RE604 der *PEX14*-ORF und 400bp aus dem *PEX14*-Promotor amplifiziert und das resultierende PCR-Fragment mit dem EcoRV behandelten SK+-Vektor ligiert (pIH011). Das Plasmid pIH011 und der Zielvektor pUG35 wurden mit den Restriktionsendonukleasen BamHI und SalI behandelt, der geschnittene Vektor und das 1425bp-Fragment des Plasmids pIH011 isoliert und beides miteinander ligiert (pIH013).

D Plasmidkarte

Abbildung D.1: Plasmidkarte pIH013: Das Plasmid kodiert für das Fusionsprotein Pex14p-EGFP. Die Expression erfolgt unter dem *PEX14*-Promotor. Das Basisplasmid ist pUG35 [106]. Es sind die Schnittstellen der Restriktionsendonukleasen angegeben, mit Hilfe derer die Klonierung durchgeführt wurde.

Danksagung

Am Ende dieser Arbeit möchte ich insbesondere meinem Lebensgefährten, Frank Meißner, für seine Unterstützung in den letzten Jahren und vor allem während der Zeit des Schreibens danken. Außerdem möchte ich mich hiermit für seine Hilfe bei der Bewältigung der vielen kleinen und großen technischen Probleme und für das Korrekturlesen der Arbeit herzlich bedanken.

Herrn Prof. R. Erdmann danke ich für die Betreuung der Arbeit und die vielen aufschlussreichen und interessanten Gespräche und Diskussionen der letzten Jahre.

Herrn PD Dr. W. Schuster danke ich für die Übernahme des Zweitgutachtens.

Tanja Schievelbusch, Andre Halbach, Dr. Jörg Eckert und Annette Schell-Steven möchte ich auf diesem Weg zum einen für die nette Arbeitsatmosphäre und zum anderen für das Korrekturlesen der Arbeit herzlich danken.

Für fachliche Ratschläge, Diskussionen, Hinweise und die geduldige Beantwortung meiner vielen Fragen danke ich außerdem Herrn Prof. R. Rottensteiner.

Bei Katja Rosenkranz möchte ich mich für die Hilfe bei der Komplexisolierung und der Blauen-Nativen Gelelektrophorese bedanken.

Monika Bürger danke ich für die Anfertigung der elektronenmikroskopsichen Aufnamen. Bei Gisela Wendel und Uta Ricken bedanke ich mich für die Betreuung der Stammsammlung und die Erstellung von Hefestämmen.

Elisabeth Becker danke ich hiermit für die Orientierungshilfen nach dem Umzug nach Bochum und die vielen kleinen Hilfestellungen im Laboralltag.

Außerdem möchte ich den Sekretärinnen Frau Scharf, Frau Witt-Reinhardt, Frau Peuker und Frau Wiese für Ihre Hilfe bei Einstellungsverfahren, Formularen, Anträgen und Bestellungen vielmals danken.

Zum Schluss möchte ich auch allen anderen Mitgliedern der Arbeitsgruppe R. Erdmann aus Berlin und Bochum für ihre Hilfe und die Beantwortung von Fragen danken.