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Zusammenfassung

Klassische Arbeiten in der Neuroanatomie legen nahe, dass die Anordnung von Rinden-

feldern in räumlichen Gradienten ein zentrales Organisationsmerkmal der Großhirn-

rinde darstellt. Räumliche Gradienten in kortikaler Mikrostruktur und Konnektivität

konnten in Versuchstieren eindeutig nachgewiesen werden. Entsprechende Studien im

menschlichen Gehirn waren hingegen bisher nicht praktikabel. Daher bleibt auch die

Bedeutung struktureller Gradienten für den funktionellen Aufbau des menschlichen Ko-

rtex derzeit ungeklärt.

Die vorliegende Dissertation macht sich aktuelle Fortschritte in der Magnetreso-

nanztomographie und neue analytische Ansätze zunutze um räumliche Gradienten im

menschlichen Kortex in vivo zu untersuchen. Wir führen zunächst einige sachdienliche

Werkzeuge ein und weisen anschließend nach, dass verschiedene kortikale Eigenschaften

in einem Gradienten zwischen sensomotorischen und transmodalen Regionen organ-

isiert sind. Dieser Gradient findet in der Verteilung des intrakortikalen Myelingehalts

Ausdruck und erfasst einen Großteil der Varianz funktioneller Konnektivitätsmuster.

Er steht mit der spezifischen Geometrie des Kortex in enger Beziehung und spiegelt

sich in einem funktionellen Spektrum zunehmender Abstraktion wider. Wir schlagen

schließlich vor, dass dieser Gradient eine grundlegende Organisationsachse des men-

schlichen Kortex darstellt und arbeiten ein hierauf basierendes intrinsisches kortikales

Koordinatensystem aus. Eine Erforschung des Kortex im Hinblick auf seine intrin-

sischen Dimensionen kann unser Verständnis davon befördern, wie die strukturellen

Bedingungen des Kortex sein funktionelles Spektrum hervorbringen.
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Abstract

Classical work in neuroanatomy suggests that the spatial arrangement of cortical areas

in overarching gradients is a key organizational feature of the cerebral cortex. While

studies performed in experimental animals provide strong evidence for spatial gradi-

ents in cortical microstructure and connectivity, similar research in humans has been

obstructed by methodological challenges. In consequence, the significance of structural

gradients for human cortical function remains unaddressed.

The work presented in this dissertation capitalizes on recent advances in magnetic

resonance imaging and novel analytic strategies to investigate spatial gradients in the

human cerebral cortex in vivo. We first introduce a set of relevant tools and proceed

to demonstrate a global gradient in cortical features that spans between sensorimotor

and transmodal areas. This gradient is reflected in the distribution of intracortical

myelin and captures the main axis of variance in functional connectivity patterns. It

is spatially embedded in the intrinsic geometry of the cortex and tracks a functional

spectrum of increasing abstraction. Finally, we propose that this gradient constitutes

a core organizing axis of the human cerebral cortex, and describe an intrinsic cortical

coordinate system on its basis. Studying the cortex with respect to its intrinsic dimen-

sions can inform our understanding of how the spectrum of cortical function emerges

from structural constraints.



vi

List of original publications

This dissertation is based on the following publications (in the order of appearance):

Technical reports

Huntenburg, J.M., Wagstyl, K., Steele, C.J., Funck, T., Bethlehem, R.A.I., Foubet,

O., Larrat, B., Borrell, V. & Bazin, P.-L. (2017a). Laminar Python: tools for

cortical depth-resolved analysis of high-resolution brain imaging data in Python.

Research Ideas and Outcomes, 3 (e12346). doi: 10.3897/rio.3.e12346

Huntenburg, J.M., Steele & Bazin, P.-L. (in preparation for GigaScience). Nighres

– processing tools for high-resolution neuroimaging.

Huntenburg, J.M., Abraham, A., Loula, J., Liem, F., Dadi, K. & Varoquaux, G.

(2017b). Loading and plotting of cortical surface representations in Nilearn. Re-

search Ideas and Outcomes, 3 (e12342). doi: 10.3897/rio.3.e12342

Margulies, D.S., Falkiewicz, M. & Huntenburg, J.M. (2016). A cortical surface-based

geodesic distance package for Python. GigaScience, 5 (1), 1920. doi: 10.1186/s13742-

016-0147-0-q

Data paper

Mendes, N., Oligschlaeger, S., Lauckner, M. E., Golchert, J., Huntenburg, J. M.,

Falkiewicz, M., ... Margulies, D. S. (under review at Scientific Data). A functional

connectome phenotyping dataset including cognitive state and personality measures.

(Preprint available on bioRxiv doi: 10.1101/164764)



vii

Empirical studies

Huntenburg, J.M., Bazin, P.-L., Goulas, A., Tardif, C.L., Villringer, A., Margulies,

D.S. (2017c). A systematic relationship between functional connectivity and intra-

cortical myelin in the human cerebral cortex. Cerebral Cortex, 27 (2), 981-997. doi:

10.1093/cercor/bhx030

Oligschlaeger, S., Huntenburg, J.M., Golchert, J., Lauckner, M.E., Bonnen, T.,

Margulies, D.S. (2016). Gradients of connectivity distance are anchored in primary

cortex. Brain Structure and Function (222)(5). doi: 10.1007/s00429-016-1333-7

Margulies, D.S., Ghosh, S.S., Goulas, A., Falkiewicz, M., Huntenburg, J.M., Langs,

G., Bezgin, G., Eickhoff, S.B., Castellanos, F.X., Petrides, M., Jefferies, E., Small-

wood, J. (2016). Situating the default-mode network along a principal gradient of

macroscale cortical organization. Proceedings of the National Academy of Sciences

USA, 113 (44), 12574-12579. doi: 10.1073/pnas.1608282113

Opinion article

Huntenburg, J.M., Bazin, P.-L., Margulies, D.S. (accepted). Large-scale gradients

in human cortical organization. Trends in Cognitive Sciences.



viii

List of Figures

Figure 1.1 Cortical gradients in the macaque monkey cortex . . . . . . . . . 3

Figure 1.2 The visual hierarchy in the macaque monkey cortex . . . . . . . . 7

Figure 1.3 Connectivity gradients reflect functional organization in V1 . . . 13

Figure 2.1 Volume-preserving principle of cortical laminae . . . . . . . . . . 19

Figure 2.2 Surface plotting in Nilearn. . . . . . . . . . . . . . . . . . . . . . 25

Figure 2.3 Geodesic distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 3.1 Image processing pipeline for Study 1 . . . . . . . . . . . . . . . 37

Figure 3.2 Gradients in intracortical T1 and functional connectivity . . . . . 39

Figure 3.3 A gradient in connectivity distance . . . . . . . . . . . . . . . . . 43

Figure 3.4 Geodesic distance from transmodal peak regions . . . . . . . . . . 47

Figure 3.5 Functional abstraction increases along the principal gradient . . . 50

Figure 4.1 A sensorimotor-to-transmodal gradient in the human cerebral cortex 53

Figure 4.2 A distance-based intrinsic coordinate system of the human cerebral

cortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



ix

Abbreviations

AC anterior commissure

AP anterior-posterior

CNS central nervous system

DMN default mode network

EPI echoplanar imaging

fMRI functional magnetic resonance imaging

Hz Hertz

µm micrometer

min minute

mm millimeter

MP2RAGE magnetization prepared two rapid acquisition gradient echoes

MRI magnetic resonance imaging

ms millisecond

PA posterior-anterior

PC posterior commissure

PCC posterior cingulate cortex

ROI region of interest

sec second

T Tesla

T1(w) (weighted for) longitudinal relaxation time

T2(w) (weighted for) transversal relaxation time

TE echo time

TI inversion time

TR repetition time

V1 primary visual cortex



x



Chapter 1

Introduction

For more than a century, neuroscientists have studied the cerebral cortex by delineating

individual cortical areas and mapping their function (Brodmann, 1909; Vogt & Vogt,

1919). This agenda has substantially advanced in recent years, as automated parcella-

tion methods improve and datasets of unprecedented size and quality become available

(Amunts & Zilles, 2015; Eickhoff et al., 2017; Glasser et al., 2016). Non-invasive func-

tional neuroimaging has made it possible to associate even high-level human cognitive

functions with activity in particular areas or networks. Nevertheless, our understanding

of how these complex functions emerge remains fragmentary.

A core tenet of biology is that knowing the structure of a system is essential for a

far-reaching understanding of its function (e.g Gudden, 1886). Knowing the structure

involves a detailed description of the systems individual subunits, such as cortical areas.

But it also requires to understand how these subunits are organized in a complex entity

from which function arises. The work presented in this dissertation therefore starts

from the premise that in order to understand cortical function, we need to comple-

ment the characterization of individual cortical areas with a description of their spatial

arrangement.

Early formulations of this perspective can be found in theories from classical neu-

roanatomy (Brockhaus, 1940; Pandya & Sanides, 1973; Pandya & Yeterian, 1985;

Sanides, 1962, 1969, 1972; Vogt & Vogt, 1919). They state that the spatial layout of



2

cortical areas is not arbitrary, but a consequence of developmental mechanisms, shaped

through evolutionary selection. The location of an area among its neighbors therefore

reflects its microstructural characteristics, its connections to other parts of the cortex,

and eventually its position in functional processing hierarchies. While these theories

are based on qualitative post-mortem studies of mostly non-human species, the papers

presented in this dissertation capitalize on state-of-the-art neuroimaging and novel an-

alytic approaches to investigate the spatial organization of the human cerebral cortex

in vivo. Their common goal is to identify general principles in the spatial layout of the

human cortex, that can add to our understanding of how this complex structure gives

rise to the spectrum of human cognitive functions.

1.1 Spatial gradients in cortical organization

1.1.1 Progressive microstructural differentiation

A prominent approach to describe cortical organization are architectonic methods,

which were established in the early twentieth century by Cécile and Oscar Vogt and

their collaborators. The Vogt-Vogt school mainly focused on the meticulous description

of individual areas based on their microstructural differentiation in sections stained for

cells (cytoarchitectonics, Brodmann, 1909) or myelinated fibers (myeloarchitectonics,

Vogt & Vogt, 1919).1 However, in a short paragraph of their main work the Vogts

comment on the spatial arrangement of areas, remarking that an area typically rep-

resents the intermediate stage of differentiation between its neighbors (Vogt & Vogt,

1919, p.369, ”Die Tatsache einer arealen Gradation”). This concept of areal gradation

was later revisited by one of the Vogts’ collaborators, Harald Brockhaus, who explicitly

1Cortical areas vary in terms of how clearly the six major cortical layers and their sublayers can be
discerned, in their emphasis on infra- or supragranular layers, and their overall myelin content. A de-
tailed description of areal differentiation can be found e.g. in Nieuwenhuys (2013). In the most general
terms, highly differentiated areas present with easily discernible layers, an emphasis on supragranular
layers and high myelin content.
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traced directions of differentiation in his work on the insular cortex (Brockhaus, 1940).

Friedrich Sanides, another collaborator of the Vogts, eventually made the spatial ar-

rangement of cortical areas central to his research. In his comparative studies Sanides

recognized that the entire mammalian cortex can be divided in two parallel trends of

progressive microstructural differentiation, and proposed that these Ur-Trends repre-

sent the course of neocortical evolution (Sanides, 1962, 1969, 1972) (Figure 1.1). This

thesis was in striking agreement with the dual origin theory, previously proposed by

Dart (1934) and Abbie (1940, 1942) in more primitive species, and extended it to the

mammalian cortex. According to this theory, the neocortex evolved out of two primor-

dial origins: the hippocampal archicortex and the pyriform (or olfactory) paleocortex.

Trends of progressive microstructural differentiation can be traced from each of the

origins, and the position of an area in these trends reflects when they emerged during

evolution. Sanides work in larger mammalian cortices showed that each of the two

major trends in fact subsumes multiple sub-progressions in the different cortical lobes

(Figure 1.1). Most relevant to the current dissertation is the basic conclusion that the

relative spatial position of cortical areas is meaningful as it reflects their microstructural

differentiation and phylogenetic history.

Figure 1.1 Cortical gradients in the macaque monkey
cortex. Schematic representation of the progression of the two
evolutionary gradients in the macaque monkey. The medial gra-
dient emerges from the hippocampal archicortex (HIPPO), and
the lateral gradient from the pyriform or olfactory paleocortex
(OLF). Each gradient splits in multiple sub-gradients in the dif-
ferent lobes (Pandya & Yeterian, 1985).
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While the observation of an orderly spatial progression in microstructural differenti-

ation is consistent across studies, different researchers have used various terms to refer

to this phenomenon (e.g. areal gradation, directions of differentiation, Ur-Trends). For

clarity, we will use the term spatial gradient, or simply gradient, throughout this dis-

sertation. We define gradients as axes of variance in cortical features along which areas

fall in a spatially continuous order. Areas that resemble each other with respect to the

feature of interest – here their level of microstructural differentiation – occupy similar

positions along the gradient. While the aforementioned literature describes gradients

in microstructural features only, the next chapters will discuss evidence that spatial

gradients represent a more general organizational principle of the cerebral cortex.2

1.1.2 Converging gradients in cortical microstructure and

connectivity

While Sanides studied microstructural gradients in the macaque monkey and human

frontal lobe, he noted their spatial similarity with the basic dorsal-ventral subdivi-

sion that had been described in macaque monkey frontal lobe connectivity by Nauta

(1964) (Sanides, 1972). Based on this observation Sanides initiated a collaboration

with Deepak Pandya, who was at the forefront of an emerging field studying cortical

connections through invasive tract-tracing. Together they investigated the relation-

ship between microstructure and connectivity in the macaque monkey cortex (Pandya

& Sanides, 1973). Pandya and his collaborators subsequently pursued this combined

approach in numerous studies, which consistently found that microstructural spatial

gradients are paralleled by the organization of cortico-cortical connections (reviewed in

Pandya et al., 2015). According to these studies, most connections follow a particular

microstructural gradient and connect areas in relative close spatial proximity within

2Importantly, the concept of spatial gradients does not discount the idea of discrete cortical areas
but instead moves their spatial relationship into focus. It remains agnostic regarding the long-standing
debate of whether transitions between individual areas are sharp or gradual (e.g. Bailey & von Bonin,
1951).
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this gradient. Links between distant areas, and across gradients are less common. No-

tably, the existing long-range connections preferentially occur between areas that have a

comparable level of microstructural differentiation (Pandya & Sanides, 1973; Pandya &

Yeterian, 1985, 1990).3 This last claim in particular has more recently been supported

by quantitative analyses of tract-tracing data from the macaque monkey (Beul et al.,

2015), cat (Beul et al., 2014), and mouse cortex (Goulas, Uylings, & Hilgetag, 2016),

showing that areas with similar microstructural differentiation are more likely to be

connected. Microstructural similarity has therefore been suggested as a general wiring

rule of the mammalian cortex (Barbas, 2015; Goulas, Werner, et al., 2016; Pandya et

al., 2015).

These findings open a new perspective on the concept of spatial gradients. Typically,

areas that occupy a similar position along a cortical gradient can be found close to each

other on the cortical sheet. This is a plausible consequence of the observations that

neighboring areas do not show extreme differences in their level of microstructural dif-

ferentiation (cf. Vogt & Vogt, 1919) and that most connections are short (cf. Markov et

al., 2011; Schüz & Braitenberg, 2002). The findings described in the previous paragraph

emphasize that spatially distant areas can also have a similar level of microstructural

differentiation and be linked through long-range connections. While such areas have

originally been understood to occupy a comparable position along separate gradients,

an alternative interpretation is that they occupy a comparable position along a sin-

gle gradient spanning the entire cortex. Proximity in the space of the gradient would

still largely reflect proximity on the cortical sheet, but also group distant areas close

to each other along the gradient, if they are linked through long-range connections

and microstructural similarity. This more global view has not explicitly been stated

in the original theories, but constitutes a core concept introduced in this dissertation.

3This principle does not generally hold for primary sensorimotor areas, which, with the exception
of the somatosensory and motor cores, do not directly connect to each other.
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It does, however, resonates with a proposition of Pandya and colleagues, according

to which spatially disparate but strongly connected areas represent functional entities.

These functional networks are suggested to have emerged in response to the particu-

lar environmental challenges placed upon the organism at a specific time in evolution

(Pandya et al., 2015). In line with the premise of the dual origin theory – that the

microstructural differentiation of an area reflects its phylogenetic age – this view sug-

gests that long-range connections between microstructurally similar areas are rooted

in the simultaneous development of these areas during evolution.4 It also broaches the

question in how far the spatial gradients described in microstructure and connectivity

are significant for the functional organization of the cortex.

1.1.3 Global functional processing hierarchies

The relationship of spatial gradients and cortical function can be illustrated through the

well-researched example of the macaque monkey visual system (Felleman & Van Essen,

1991; Markov et al., 2014). A visual hierarchy has been established by ordering areas

based on their microstructural features and classifying their interconnections in feed-

forward and feedback (cf. Barbas, 1986). Although structurally defined, this hierarchy

captures the functional organization of the visual system. Low-level visual features

are extracted in early visual areas and get increasingly abstracted and integrated with

information from other systems, as they are passed up the hierarchy. This sequence

has often been depicted in form of an abstract diagram (Figure 1.2 a, left). But when

mapped onto the cortex, it becomes obvious that the flow of information along the

visual hierarchy follows an orderly spatial progression from one area to the next along

the cortical sheet (Figure 1.2 a, right). This observation has more recently been quanti-

4A complementary theory suggests that long-range connections between distant, but microstruc-
turally similar areas arise through the timing of neurogenesis during ontogenetic development. Areas
with similar microstructural differentiation are populated in the same time window and thus repre-
sent the most likely connection partners for each other. See Barbas (2015) and Goulas, Uylings, and
Hilgetag (2016) for a more detailed account.
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fied, by showing that the position of an area in the visual hierarchy is highly correlated

to its geodesic distance from the primary visual cortex (Wagstyl et al., 2015) (Figure

1.2 b).5 The functional specialization of areas in the visual hierarchy is thus strongly

related to their spatial arrangement along the cortical sheet. Similar functional pro-

cessing hierarchies have been described for the somatomotor (Felleman & Van Essen,

1991) and auditory system (Hackett et al., 1998), and show a comparable relationship

to the distance along the cortical sheet from respective primary areas (Wagstyl et al.,

2015).

A B

Figure 1.2 The visual hierarchy in the macaque monkey cortex. A functional processing
hierarchy in the macaque monkey visual system has been established based on structural features. A
The visual hierarchy represented as an abstract diagram (left) and projected on a cortical flat map
(right) (Felleman & Van Essen, 1991). B The hierarchical level of visual regions (left) is strongly
related to the geodesic distance from the primary visual cortex V1 (right) (Wagstyl et al., 2015)

But how can functional organization be described beyond these sensorimotor hi-

erarchies? Do similar principles hold in regions of the frontal, temporal and parietal

cortex, that have been associated with high-level cognitive functions such as social cog-

nition (Spreng & Grady, 2010) or reward-guided decision making (Rushworth et al.,

2011)? Marsel Mesulam was one the first to propose that functional processing hier-

archies extend beyond sensorimotor systems to transmodal regions (Mesulam, 1998).6

He suggested that abstract functional categories emerge from the convergence of infor-

5Geodesic distance measures the relative position of areas along the cortical sheet, independent of
its folding. It will be discussed further in Sections 2.2.2 and 3.2.

6Transmodal, in contrast to unimodal, refers to cortical areas whose activity is not specific to a
single modality of sensory input or motor output.
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mation across different sensory modalities along a global processing hierarchy. From

an information theoretical point of view this explanation is compelling. But Mesulam

proposed an abstract schematic, similar to the classical diagram of the visual hierarchy,

and it remains unaddressed how this global hierarchy is embedded in the space of the

cortex. Furthermore, the concept of a global processing hierarchy is to large extents

based on empirical data from research in macaque monkeys. Another question is there-

fore, whether it still applies to the massively expanded transmodal areas in the human

cortex.

An interesting perspective on both questions can be found in the recently proposed

tethering hypothesis (Buckner & Krienen, 2013). It argues that the functional attributes

of transmodal areas are in fact a consequence of their increasing spatial distance from

molecular patterning centers, which closely regulate the development of sensorimotor

regions. Released from such molecular constraints, transmodal regions present with

more flexible circuit patterns and in particular form long-range connections. These

facilitate the integration of information across systems. This theory supports the idea

that the spatial arrangement of cortical areas might play an important role, not only

for sensorimotor processing hierarchies (Wagstyl et al., 2015), but for the emergence

of a global processing hierarchy spanning the entire cortex. It also offers a framework

in which the massive expansion of transmodal areas in humans naturally leads to an

extension of this hierarchy, and an increasing emphasis on information integration and

abstract representations.

The aforementioned theories suggest a global cortical processing hierarchy, along

which information is integrated across multiple domains into progressively more ab-

stract representations. Local gradients within specific cortical systems could be situ-

ated and understood as part of this global framework. However, these conclusions are

largely deduced from individual findings in different parts of the cortex, many of them

obtained in experimental animals. An explicit demonstration of a global functional



9

hierarchy in the human cortex, and its relationship to spatial gradients, is yet to be

provided.

1.2 Studying spatial gradients in the human

cerebral cortex in vivo

The previous section reviewed comprehensive work on spatial gradients in cortical mi-

crostructure and connectivity, and their potential relationship to functional processing

hierarchies. Of the studies discussed, the vast majority are based on invasive approaches

in experimental animals or post-mortem samples. In addition, they often pursue a qual-

itative approach and many conclusions remain schematic. The work in this dissertation

aims to complement this line of research with a quantitative investigation of spatial gra-

dients in the human cerebral cortex in vivo. This endeavor has been enabled through

recent advances in neuroimaging technology and analysis, which will be introduced in

the following and further discussed throughout the remaining chapters (in particular

Section 5.1 and 5.2).

1.2.1 Using high-resolution T1 maps to investigate cortical

microstructure

The investigation of cortical microstructure has traditionally been confined to histolog-

ical studies of post-mortem samples, stained for cells or myelinated fibers. However,

with recent developments in ultra-high field (≥ 7 Tesla) and quantitative magnetic

resonance imaging (MRI) it is now possible to assess measures related to cortical mi-

crostructure in vivo (Weiskopf et al., 2015). Specifically, as the longitudinal relaxation

time (T1) in MRI is sensitive to gray matter myelin content (Bock et al., 2009; Geyer

et al., 2011; Stüber et al., 2014) maps of intracortical T1 have been introduced as an

in vivo proxy for cortical microstructure, and revived interest in myeloarchitectonic ap-

proaches (Glasser et al., 2016; Nieuwenhuys, 2013). Increasingly available quantitative
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sequences (e.g. MP2RAGE, Marques et al., 2010) drastically minimize the problem of

radio frequency bias fields in T1 images (but see Lutti et al. (2014)) and enable a direct

comparison of T1 maps across sessions, subjects and imaging sites (Turner, 2015). In

addition, remarkable improvements in the signal-to-noise ratio at high field strength

provide increasing spatial resolutions, that allow for intracortical sampling and reduce

partial volume effects (Turner, 2013; Zaretskaya et al., 2017).

Taking advantage of these developments, the work presented in the current disser-

tation uses quantitative T1 maps acquired at 7 Tesla (7T) to estimate intracortical

myelin content and draw conclusions about cortical microstructure in vivo. T1 maps

display a gradient of decreasing myelin density from primary toward transmodal regions

which is in line with histological studies (Hopf, 1956; Hopf & Vitzthum, 1957; Sanides,

1962; Vogt & Vogt, 1919). The co-occurrence of local changes in intracortical T1 maps

with certain architectonic (Geyer et al., 2011; Glasser & Van Essen, 2011), functional

(Bridge et al., 2005; Sigalovsky et al., 2006), and topographic (Dick et al., 2012; Sereno

et al., 2013) boundaries, and with rapid changes in functional connectivity patterns

(Glasser et al., 2016), exemplifies the meaningful relationship of intracortical T1 to

other measures of cortical organization. Moreover quantitative T1 has recently been

characterized by the highest intrasubject and intersubject reliability in a comparison

of several approaches to map intracortical myelin (Haast et al., 2016). For simplicity,

intracortical T1 and intracortical myelin content will be used interchangeably through-

out this work, fully acknowledging the serious limitations of measuring myelin using

MRI which will further be discussed further in Section 5.1.

1.2.2 Assessing intrinsic cortical organization using resting

state functional connectivity

Resting state functional MRI (fMRI) measures spontaneous low-frequency fluctuations

in the blood oxygen level dependent signal, in the absence of a specified task demand.
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Temporal correlations of these fluctuations across spatially distributed areas are com-

monly referred to as functional connectivity (Biswal et al., 1995). While functional

connectivity also reflects indirect links between areas (Adachi et al., 2012), it is largely

constrained by anatomical connections, as demonstrated in several studies in the human

brain (Hagmann et al., 2008; Hermundstad et al., 2013; Honey et al., 2009; Skudlarski

et al., 2008), as well as on the basis of macaque monkey tract-tracing data (Miranda-

Dominguez et al., 2014; Vincent et al., 2007). Functional connectivity patterns robustly

reproduce across different sites and protocols (Biswal et al., 2010) and show good test-

retest reliability (Shehzad et al., 2009). Resting state functional connectivity has there-

fore become a widely used measure of the intrinsic organization of the human cortex,

which is shaped and constrained by anatomical connections.

When analyzing whole-brain functional connectivity, a temporal correlation value is

assigned to each pair of voxels or surface nodes resulting in a high-dimensional connec-

tivity matrix. In order to extract intelligible information from such high-dimensional

data, methods for dimensionality reduction are required. The most common approach

is to group cortical regions into networks of strongly interconnected areas (e.g Yeo et

al., 2011), or into locally confined parcels with high internal connectivity, which have

been shown to partly overlap with architectonic areas (e.g. Glasser et al., 2016). These

approaches are efficient but typically impose hard cut-offs between, and homogeneity

within parcels. By treating parcels as discrete, independent entities the resulting rep-

resentations fail to capture more gradual changes and overarching spatial relationships

(Jbabdi et al., 2013).

More recently, pioneering studies have demonstrated continuous spatial patterns of

connectivity in the human cerebral cortex (Atasoy et al., 2016; Haak et al., 2017; Langs

et al., 2014, 2015; Sepulcre et al., 2012; Taylor et al., 2015). Instead of parcellating,

these studies simplify the complex connectivity matrix to a small set of connectivity

gradients. The most generic way to derive such gradients is to find the main axes of
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variance in the data through decomposition or embedding techniques such as Laplacian

Eigenmaps (Belkin & Niyogi, 2003) or diffusion maps (Coifman & Lafon, 2006). In these

approaches, the original dimensions of the connectivity matrix are replaced by a set of

new dimensions, chosen so that most of the variance in the data is captured by just a

few of these dimensions. This can drastically reduce the number of dimensions that are

required to represent the data, with few assumptions on its internal organization. Often

the new dimensions are inherently ordered, so that the first dimension explains most of

the variance in the connectivity matrix (it is sometimes called dominant), the second

dimension explains the second most variance, and so on. Each cortical location can now

be described by a set of values reflecting where it falls along the new dimensions. Each

dimension is a continuous representation of one aspect of connectivity organization, in

other words, a connectivity gradient. Areas that occupy a similar position on one of

these gradients resemble each other in the aspect of connectivity the gradient represents.

A set of gradients derived from a decomposition represents superimposed aspects

of connectivity organization. The interpretation of these gradients can be challenging

because the decomposition does not provide information about the particular connec-

tivity features that are reflected in each gradient. A recent study demonstrated that in

the case of the primary visual cortex, connectivity gradients reflect important aspects

of functional organization (Haak et al., 2017): the decomposition of primary visual cor-

tex functional connectivity yielded two dominant gradients, one reflecting eccentricity

and the other reflecting polar angle (Figure 1.3 a-b). Importantly, when the gradients

were superimposed and a clustering algorithm was applied, the resulting parcellation

did not reflect either of the retinotopic aspects (Figure 1.3 c). It thus appears that

decomposing functional connectivity patterns into overlapping gradients is a promising

new approach to investigate cortical organization, and a fruitful complement to spa-

tially discrete parcellations. However, similar studies attempting to relate connectivity

gradients to other structural or functional features on the scale of the entire cortex have
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not yet been performed.

A B C

Figure 1.3 Connectivity gradients reflect functional organization in V1. The two dominant
gradients (here called ”connectopies”) of group-level primary visual cortex (V1) functional connec-
tivity reflect stimulus-based retinotopic organization. A The first connectivity gradient has a strong
spatial correlation to V1’s eccentricity map. B The second connectivity gradient has a strong spatial
correlation to V1’s polar angle map. C A parcellation based on the superimposed gradients is not
meaningfully related to the functional organization of V1. (Haak et al., 2017)

1.3 Aim of the dissertation

The core aim of this dissertation was to apply the concept of spatial gradients in cortical

organization – theoretically founded in classical neuroanatomy – to human neuroimag-

ing. A first step towards this goal was to investigate the relationship between cortical

microstructure, assessed using quantitative T1 maps, and gradients in resting state

functional connectivity in the human cerebral cortex. A second step aimed to further

characterize functional connectivity gradients, their relationship to the intrinsic corti-

cal geometry, and to a putative global hierarchy in human cortical function. Given the

novelty of the data and methods employed, an important aspect of this work was to de-

velop the required image processing tools and to make them accessible to the scientific

community.



14



15

Chapter 2

Methodological work

The aforementioned aims entail a set of empirical questions that we pursued in three

studies discussed in Chapter 3. Yet, a large part of the work towards these aims was

methodological. The questions we were interested in required access to high-quality data

sets and specialized software tools. While we made use of several pre-existing open data

sets and toolboxes, we also put a strong emphasis on making our own contribution to the

scientific community. We released the data that we acquired for public use, made our

analysis code openly available and developed significant parts of it into well-documented

open source software.

Towards this last goal, we chose Python as our programming language. In recent

years, Python has repeatedly been ranked as the most popular programming language1

and a vibrant community has built around its application to scientific computing2.

Especially in the field of neuroscience, Python has enjoyed a growing success (Muller et

al., 2015). For example, Nipy3 is a community of practice devoted to the development of

versatile open source packages for the analysis of neuroimaging data in Python. Projects

under the Nipy umbrella include Nibabel (Brett et al., 2016), which supports reading

and writing of common neuroimaging data formats in Python, Nipype (Gorgolewski

et al., 2011), which provides a uniform interface to combine existing software tools

1https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages

2https://www.scipy.org/

3http://nipy.org/

https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
https://www.scipy.org/
http://nipy.org/
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in efficient pipelines, Nilearn (Abraham et al., 2014), a machine learning toolbox for

neuroimaging data, and many others. We aimed to closely integrate our development

efforts with this community to maximize the usefulness of our code to other researchers

and ensure sustainability by winning active contributors.

Below, we summarize several coding projects relevant to the empirical work dis-

cussed in this dissertation. Section 2.1 describes the development of Python tools for

processing of high-resolution neuroimaging data. Starting out with a set of functions

serving a specific application (Huntenburg et al., 2017a), we subsequently developed

this project into a comprehensive software framework for high-resolution image pro-

cessing, that also provides a platform for future contributions from other researchers

(Huntenburg, Steele & Bazin, in preparation). In Section 2.2 we describe our efforts

to integrate support for cortical surface representations, essential to studying the spa-

tial layout of cortical features, in Python-based neuroimaging software. In particular,

we initiated cortical surface support in Nilearn (Huntenburg et al., 2017b), and intro-

duced a package which facilitates the calculation of geodesic distance along the cortical

sheet (Margulies, Falkiewicz & Huntenburg, 2016). Finally, we published a large data

set, containing raw and preprocessed structural and resting state MRI data as well as

a range of phenotypic measures (Mendes et al., under review), which we describe in

Section 2.3.

2.1 Processing tools for high-resolution

neuroimaging in Python

As discussed in the introduction, recent advances in high-field and quantitative MRI

make it possible to image the whole brain at an unprecedented level of detail (Weiskopf

et al., 2015). This data allows researchers to ask new questions about brain structure

and function in vivo, particularly taking into account the intracortical distribution
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of features (Trampel et al., 2017). Concurrently, the amount of neuroimaging data

collected per subject in any given experiment increases considerably at this resolution.

While the availability of ultra-high field scanners is growing and first 7T MRI data sets

have been made publicly available (Forstmann et al., 2014; Gorgolewski et al., 2015;

Tardif et al., 2016), software tools are lagging behind. Standard neuroimaging software

is often challenged by the new data, resulting in an urgent demand for dedicated tools

that can leverage the anatomical detail of high-resolution MRI data and scale well with

their increasing size (see also Goebel, 2012; Zaretskaya et al., 2017). CBS High-Res

Brain Processing Tools (CBS Tools) is a software suite which addresses this gap by

providing cutting-edge methods for efficient processing of MR images at sub-millimeter

resolution (Bazin et al., 2014). CBS Tools have been developed in Java as a set of

plugins for the MIPAV software package (McAuliffe et al., 2001) and the JIST pipeline

environment (Lucas et al., 2010). Unfortunately, this rather complex design can make

the installation and handling of CBS Tools challenging for naive users and impedes

contribution of other researchers. Since rapid methodological advances in the dynamic

field of high-resolution neuroimaging are to be expected, we perceived a growing need

for a transparent software platform, through which newly developed methods can be

made available to the community and improved collaboratively. We therefore started a

new software project in Python pursuing two major goals. First, we aimed to provide an

easy-to-use and well-documented implementation of CBS Tools, which eliminates heavy

dependencies and facilitates interactive data exploration and integration with popular

Python-based neuroimaging tools. Second, we paid particular attention to setting up

a project that encourages contributions by other researchers in either Python or Java.
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2.1.1 Laminar Python (Technical report 1)

In a first step (Huntenburg et al., 2017a), we built the code repository Laminar Python4,

which is dedicated to disseminating one of CBS Tools’ most differentiating features – the

volume-preserving modeling of cortical laminae. For sampling data at different levels of

intracortical depths, it is a common approach to construct multiple surfaces, or cortical

laminae, between the white matter boundary and the pial surface. These laminae have

previously been defined by simply keeping a constant distance between the boundaries

(equidistant approach), or by computing equipotentials using the Laplacian equation.

In contrast, the implementation in CBS Tools is based on the neuroanatomical work by

Bok (1929), who observed that the thickness of architectonically defined layers changes

throughout the cortex to compensate for cortical folding, while the volume of corti-

cal segments remains stable (Figure 2.1 a). CBS Tools takes into account the local

curvature of the cortical sheet and models cortical laminae which obey Bok’s volume-

preserving principle (Figure 2.1 b). These laminae provide an anatomically meaningful

coordinate system of intracortical depth, which outperforms equidistant and Laplacian

approaches in representing ground-truth architectonic layers in post-mortem samples

(Waehnert et al., 2016, 2014).5

Laminar Python is a standalone package which provides user-friendly Python inter-

faces to the volume-preserving modeling of cortical laminae and associated CBS Tools

functions. We used the JCC package6 to encapsulate the original CBS Tools Java

classes with C++ code, making them available to the Python interpreter. We then

implemented a Python wrapper function around each encapsulated class to convert the

4https://github.com/juhuntenburg/laminar python

5It is important to distinguish between the architectonically defined cortical layers (typically six
in neocortical areas) and the analytically defined laminae of which an arbitrary number can be mod-
eled between the white matter and pial surface. While laminae modeled using the volume-preserving
approach do not themselves represent individual layers, they provide a coordinate system which real-
istically follows the course of the layers throughout the cortex.

6http://lucene.apache.org/pylucene/jcc/index.html

https://github.com/juhuntenburg/laminar_python
http://lucene.apache.org/pylucene/jcc/index.html
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A B

Figure 2.1 Volume-preserving principle of cortical laminae. According to Bok (1929), the
thickness of cortical layers changes to compensate for stretching and compression due to the curvature
of the cortical sheet. Thus, the volume fraction of each layer in a cortical segment, delimited by
radial principal dendrites, remains constant (A). The volume-preserving model of intracortical depth
proposed by Waehnert et al. (2014) implements this principle by dividing the cortex into segments and
modeling laminar compartments with equal volumes within those segments. The distance of a given
reconstructed intracortical surfaces from the pial and white matter boundaries therefore varies with
cortical curvature (B).

input data to Java structures, initiate a Java virtual machine, call the main Java class

with the specified parameters, collect, convert and return the output data. Thus, the

actual processing still relies on the same, extensively optimized and tested Java code as

the original CBS Tools. But since the interfacing between Python and Java is entirely

taken care of inside the function, the user only interacts with Python code. Additional

input and output functions in pure Python are designed to automatically recognize and

load most commonly used data formats, while maintaining flexibility to accommodate

loading of non-standard data formats using custom scripts. Data is internally repre-

sented as Nibabel SpatialImages (volumes) or dictionaries (surfaces, cf. Section 2.2)

and can be passed in the form of file names or memory objects.

We chose to include a set of CBS Tools functions that enables the user to start from

a simple tissue classification, compute cortical laminae using the volume-preserving

approach, and sample at the different depth levels given by these laminae from any

intensity image that is aligned with the tissue classification. This workflow is illustrated
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in an example included in the repository7 which uses 7T MRI data of an adult ferret

(voxel size = 120 µm isotropic), testifying that CBS Tools is not only applicable to

human neuroimaging data. We used Nilearn (Abraham et al., 2014) for visualization to

demonstrate the straightforward integration of our package with other popular Python-

based neuroimaging software.

In sum, Laminar Python provides an easy-to-use implementation of the CBS Tools

functions necessary to construct and sample from volume-preserving cortical laminae.

It no longer requires installation of MIPAV and JIST, and allows for interactive data

exploration in Python at each processing stage. The transparent Python interfaces

and comprehensive example make the new tools intuitive to use, and the adoption of

standardized data objects enables easy integration with other popular Python-based

neuroimaging software tools.

2.1.2 Nighres (Technical report 2)

After we had established the feasibility of our approach with Laminar Python, a more

complete migration of CBS Tools’ functionality to Python was a logical next step.

We therefore launched Nighres8, an entire software framework for processing of high-

resolution and quantitative neuroimaging data in Python (Huntenburg, Steele & Bazin,

in preparation). While building on the same basic design, Nighres was developed to

solve a set of open issues that had remained unaddressed in Laminar Python. First, we

wanted to provide a more comprehensive set of processing tools for a range of appli-

cations. Second, the package should be set up with continuous integration, automated

builds and straightforward installation via the pip installation tool9. Third, a major

goal was to build an extensive online documentation that includes step-by-step exam-

7https://github.com/juhuntenburg/laminar python/blob/master/examples/laminar

python demo.ipynb

8https://github.com/nighres/nighres

9https://pip.pypa.io/en/stable

https://github.com/juhuntenburg/laminar_python/blob/master/examples/laminar_python_demo.ipynb
https://github.com/juhuntenburg/laminar_python/blob/master/examples/laminar_python_demo.ipynb
https://github.com/nighres/nighres
https://pip.pypa.io/en/stable
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ples showcasing the usage of different functions with publicly available data. Fourth, it

was particularly important for us to create a framework that can flexibly be extended

by other researchers and to provide thorough instructions for developers.

The initial release of Nighres satisfies these four core demands. The toolbox pro-

vides functions for skull stripping, atlas-guided tissue classification using the MGDM

algorithm (Bogovic et al., 2013; Fan et al., 2008), cortex extraction using CRUISE

(Han et al., 2004), creation of level set surface representations, volume-preserving mod-

eling of cortical laminae (Waehnert et al., 2014), cortical depth-dependent intensity

sampling and basic bandpass filtering. The majority of these tools represent Python

wrappers around original CBS Tools Java classes and follow the same basic structure

as described above for Laminar Python. However, Nighres also includes first tools that

are written in pure Python. This illustrates how we envision Nighres to develop, as a

flexible framework to which new or existing tools can easily be added in a variety of

formats, depending on the specific requirements of the operation and the preferences of

the contributing researcher. Nighres uses the same basic data handling conventions as

Laminar Python, although we made an effort to improve the input and output functions

and raise more informative errors upon incorrect usage.

While both Python and Java are cross-platform languages, the JCC package that

we used to encapsulate the CBS Tools Java classes generates C++ code and thus

makes the compilation platform-specific. We therefore implemented an automated build

script that compiles the original CBS Tools Java code and builds the wrappers using

JCC. For Nighres, this process i completely independent of the heavy MIPAV and

JIST dependencies, while Laminar Python sidestepped only the installation of these

packages but still required their libraries during the build process. We set up continuous

integration using Travis CI10 to test the build upon any changes to the code base and,

10https://travis-ci.org/

https://travis-ci.org/
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for any tagged releases, deploy the package to the Python Package Index (PyPI)11. The

user can then download the package, run the fully automated build script to recompile

the Java code and C++ wrappers on their platform, and finally use pip to install the

modules and all their dependencies. Subsequently, Nighres can simply be imported into

any Python environment.

A major advance compared to Laminar Python and CBS Tools is Nighres’ extensive

online documentation.12 We used Sphinx13 to create a documentation that automat-

ically parses the docstrings of all Nighres functions. This simplifies the maintenance

of an online documentation that is always up to date with the code, and encourages

writing code with comprehensive docstrings. The documentation is hosted on readthe-

docs.org, which automatically updates it upon changes to the github repository. Beside

the documentation of the individual functions, we also implemented detailed examples

that demonstrate the usage of different tools combined in small workflows. The exam-

ples are based on publicly available data that we host on NITRC (Kennedy et al., 2016).

When an example is run for the first time, the data is automatically downloaded so

that users can familiarize themselves with Nighres immediately after installation, using

examples with known outcome.

Finally, the online documentation contains an in-depth developer’s guide that leads

contributors through all steps necessary to submit code changes, new Python functions,

new wrappers for CBS Tools functions or improvements of the documentation, to the

Nighres github repository. We aimed to write a guide that makes it feasible for any

researcher working with high-resolution neuroimaging data to contribute to Nighres,

even without much previous experience in software development.

11https://pypi.python.org/pypi

12http://nighres.readthedocs.io/en/latest/

13http://www.sphinx-doc.org/en/stable/

https://pypi.python.org/pypi
http://nighres.readthedocs.io/en/latest/
http://www.sphinx-doc.org/en/stable/
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With Nighres we thus built a user-friendly and well-documented Python package

that makes high-resolution image processing tools available to the research commu-

nity. The existing toolbox is easy to install and provides a comprehensive set of ad-

vanced techniques that enable segmentation and laminar analysis of cortical MRI at

sub-millimeter resolutions in reasonable times. While the current functionality is largely

based on CBS Tools, we hope that the flexible framework and the extensive developer’s

guide encourage contribution of new tools in a variety of formats, stimulate collabora-

tion and accelerate progress in the promising field of high-resolution neuroimaging.

2.2 Cortical surface representations and geodesic

distance

The research questions of this dissertation focus on the spatial layout of the human

cerebral cortex. Since the human cortex is highly convoluted, surface representations

are essential for exposing cortical regions that are buried in sulcal depths, and study-

ing how features change along the cortical sheet. Moreover, as discussed in Section

2.1.1, intracortical surface reconstructions are used to sample data at different levels

of intracortical depths. Cortical surfaces are most commonly represented as triangular

meshes.14 In a triangular mesh, a set of nodes (or vertices) is linked through edges

in many small, connected triangles (or faces) which together build a three-dimensional

shape. A cortical surface representation thus consists of a set of nodes, defined by

three-dimensional coordinates in space, and a set of triangles, defined by the indices of

the nodes that form their three corners. A description of how cortical surfaces can be

derived from anatomical MRI scans is beyond the scope of this summary. But once a

14An alternative is the volumetric representation of cortical surfaces as signed distance functions, or
level sets. Such representations have favorable mathematical properties and several Nighres processing
tools rely on level sets internally. However, mesh representations are advantageous for the purposes
discussed in this chapter and a more in-depth discussion of level sets can be found elsewhere (e.g.
Bazin et al., 2014).
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cortical surface has been constructed, any volumetric MRI data can be sampled on the

surface by assigning to each surface node the data point (or data vector, for example a

time series) of the voxel that the three-dimensional coordinates of the node fall into.

Surface-based approaches have traditionally been implemented in dedicated, heavy-

weight software suites (e.g. Dale et al., 1999; Fischl et al., 1999; Goebel, 2012; Ra-

machandran & Varoquaux, 2011), which provide excellent tools for standard analyses

of cortical surface data. However, due to rigid data organization, extensive dependen-

cies, or closed source code these packages can be difficult to integrate with other tools

and to adapt for new applications or unusual data types. As pointed out above, the de-

velopment of flexible, open source Python tools for neuroimaging analysis has recently

gained momentum. However, these tools focus almost exclusively on volumetric data.15

In two small software projects we therefore initiated the development of flexible and

light-weight functions to explore, analyze and visualize cortical surface data in Python.

2.2.1 Loading and plotting of cortical surface representations

in Nilearn (Technical report 3)

Two core functionalities that will invariantly be required for a software framework to

support cortical surfaces are, first, to load surface data for processing and, second, to

plot the processing results on a cortical surface. We implemented respective functions

in Nilearn, a toolbox for machine learning applications in neuroimaging (Huntenburg et

al., 2017b). Nilearn shapes neuroimaging data into a feature matrix suited for statistical

learning using the more general machine learning framework scikit-learn (Pedregosa et

al., 2011). This design lends itself to be adapted for additional data formats such as

cortical surfaces. Furthermore, Nilearn is a mature open source project with an active

community, making it likely that the support for cortical surface data will be maintained

15Exceptions are tools like Nipype (Gorgolewski et al., 2011) and PySurfer (https://pysurfer
.github.io/) , which provide functionality to process and visualize cortical surfaces, but depend on
FreeSurfer software to do so.

https://pysurfer.github.io/
https://pysurfer.github.io/
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and extended in the future.

In order to limit external dependencies to standard Python libraries, we imple-

mented loading of surface mesh geometries and data sampled on the surface using Ni-

babel (Brett et al., 2016) and rendering using Matplotlib’s plot trisurf function (Droet-

tboom et al., 2016). Beyond these two libraries, only Numpy (der Walt et al., 2011) is

required. A considerable challenge was posed by the multitude of surface file formats

currently in use, and the absence of an obvious community standard. Our loading

functions automatically determine the input type and convert the data to standard

Python objects. Mesh geometries are internally represented as a list of two Numpy

arrays (nodes coordinates and triangle indices), and data to be displayed on the mesh

as a single N-dimensional Numpy array. It is also possible to pass these data structures

directly, allowing the user to load non-standard file formats with custom scripts. The

core plotting function initiates a figure, renders the mesh and calculates the color for

each triangle from the node-wise sampled data. This function provides maximal flex-

ibility as almost all common Matplotlib parameters, such as colormaps or thresholds,

can be adapted. We additionally implemented wrapper functions with sensible default

parameters for common use cases such as plotting a region of interest (ROI, Figure

2.2 a) or a statistical map (Figure 2.2 b). Finally, we included extensive examples in

the Nilearn online documentation to demonstrate the application of the new functions

based on publicly available data.16

BA

Figure 2.2 Surface plotting in
Nilearn. Example output of the func-
tions for plotting surface representations
in Nilearn. A ROI in the posterior cin-
gulate cortex (PCC) B Map of func-
tional connectivity to the PCC seed re-
gion (Huntenburg et al. 2017b).

16http://nilearn.github.io/auto examples/01 plotting/plot surf stat map.html#sphx

-glr-auto-examples-01-plotting-plot-surf-stat-map-py,
http://nilearn.github.io/auto examples/01 plotting/plot surf atlas.html#sphx-glr

-auto-examples-01-plotting-plot-surf-atlas-py

http://nilearn.github.io/auto_examples/01_plotting/plot_surf_stat_map.html#sphx-glr-auto-examples-01-plotting-plot-surf-stat-map-py
http://nilearn.github.io/auto_examples/01_plotting/plot_surf_stat_map.html#sphx-glr-auto-examples-01-plotting-plot-surf-stat-map-py
http://nilearn.github.io/auto_examples/01_plotting/plot_surf_atlas.html#sphx-glr-auto-examples-01-plotting-plot-surf-atlas-py
http://nilearn.github.io/auto_examples/01_plotting/plot_surf_atlas.html#sphx-glr-auto-examples-01-plotting-plot-surf-atlas-py
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In this project, we implemented light-weight functions for loading and plotting of

cortical surface data. The functions are easy to use but flexible enough to adapt to a

range of use cases. The current code was developed as part of the Nilearn package but

its transparent structure and minimal dependencies make it suitable to be reused for

other packages. While our project only provides basic functionality, it represents a first

step towards supporting cortical surface data in Python-based neuroimaging tools.

2.2.2 A cortical surface-based geodesic distance package for

Python (Technical report 4)

In volumetric data representations the distance between two data points (voxels) is given

by their Euclidean distance in the acquisition space (Figure 2.3). In contrast, surface

representations make it possible to analyze the distance between two data points (sur-

face nodes) in the anatomically meaningful space of the cortical sheet. For example,

two data points located at the opposite walls of a deep sulcus will be close in voxel

space, but much further apart on the surface. When studying the spatial organization

of cortical features in gradients, we are interested in the relative position of different re-

gions along the cortical sheet, which can be captured by their geodesic distance (Figure

2.3). Geodesic distance refers to the shortest distance between two locations along the

surface mesh. It is independent of the external configuration of the cortical sheet, such

as specific folding patterns, and therefore represents a measure of the intrinsic geometry

of the cortex (Griffin, 1994).17 As discussed in Section 1.1.3, geodesic distance from

primary sensorimotor regions has been shown to capture progressive differentiation in

structural hierarchies (Wagstyl et al., 2015). We suggest that the relative position of

areas along the cortical sheet can also be useful to approximate developmental trajecto-

17Griffin provides an intuitive explanation of the difference between intrinsic and extrinsic properties
in his work The intrinsic geometry of the cerebral cortex : ”Properties of surfaces can be divided into
two classes: intrinsic and extrinsic. Intrinsic properties are invariant under transformations that do
not stretch or tear the surface. Extrinsic properties are dependent on the particular configuration of
the surface in space. Thus a sheet of paper has the same intrinsic properties whether it is flat or
crumpled but not the same extrinsic properties.” (Griffin, 1994, p.262)
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ries of cortical expansion. While common approaches to characterize cortical expansion

focus on local increases in surface area (e.g Winkler et al., 2012), we are particularly

interested in the geometric relationships between areas that result from this expansion,

and can be described by their geodesic distance. We will further discuss our applications

of the geodesic distance measure in Section 3.2.

Figure 2.3 Geodesic distance. While Euclidean dis-
tance is measured along a straight line between two points
in three-dimensional space (black), geodesic distance mea-
sures the shortest path along the cortical surface (purple)
(Oligschlaeger et al., 2016).

Because no specific tool for analyzing geodesic distance along cortical surface repre-

sentations was available, we developed a small Python package called SurfDist18 tailored

to this application (Margulies, Falkiewicz & Huntenburg, 2016). It is based on an exact

geodesic distance implementation that measures the shortest path between two loca-

tions on a surface mesh, independent of the mesh resolution (Mitchell et al., 1987). This

is particularly important in the case of neuroimaging data, where the mesh resolution

depends on the original resolution of the acquired data and thus might be sub-optimally

coarse. We adapted this exact geodesic distance calculation for easy application to com-

mon surface formats used in neuroimaging and implemented a solution to prevent the

shortest path from passing through non-cortical regions such as the medial wall. The

package also includes a Nipype pipeline for group-level batch processing and functions

for visualization of the results based on the code discussed in Section 2.2.1.

Taken together, geodesic distance is a measure of the intrinsic cortical geometry,

which is particularly useful to capture spatial relationships along the cortical sheet.

SurfDist facilitates straightforward calculation of the exact geodesic distance on com-

18http://github.com/margulies/surfdist

http://github.com/margulies/surfdist
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monly used cortical surface meshes.

2.3 Data paper

All data used in this work is openly available. Two of our empirical studies (Study 1

and 3) are based on previously published data sets that have been described in detail

elsewhere (Glasser et al., 2013; Gorgolewski et al., 2015; Tardif et al., 2016; Van Essen

et al., 2013). We further made an extended version of the data used in Study 2 publicly

available, as discussed below (Mendes et al., under review). In addition, all code we

used for data processing and analyses can be found online, as will be pointed out in

the respective sections throughout. We thereby ensure that our entire research process

is transparent to other researchers for reproduction and critical discussion.

The data set we published includes structural and functional MRI and extensive

phenotypic data from 194 healthy participants in an age range of 20 to 75 years. All

MRI data were acquired using a whole-body 3T scanner (Magnetom Verio, Siemens

Healthcare, Erlangen, Germany) equipped with a 32-channel Siemens head coil. The

MRI data for each participant comprises a structural scan acquired using a three-

dimensional MP2RAGE sequence (Marques et al. 2010, voxel size = 1.0 mm isotropic,

TR = 5000 ms, TE = 2.92 ms, TI1/2 = 700/2500 ms, flip angle 1/2 = 4/5◦, scan

duration = 8.22 min) and four resting state fMRI scans acquired using a multiband

gradient echo EPI sequence (Feinberg et al. 2010; Moeller et al. 2010, voxel size = 2.3

mm isotropic, TR = 1400 ms, TE = 39.4 ms, flip angle = 69◦, multiband acceleration

factor = 4, scan duration = 15 min 30 sec). Sequences were identical across the four

resting state runs, with the exception of alternating slice orientation and phase-encoding

direction, to vary the spatial distribution of distortions and signal loss. Thus, the y-axis

was aligned parallel to the AC-PC axis for runs 1 and 2, and parallel to orbitofrontal

cortex for runs 3 and 4. The phase-encoding direction was AP for runs 1 and 3, and
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PA for runs 2 and 4. Before each pair of runs with the same y-axis orientation (run 1-2

and run 3-4) an additional gradient echo fieldmap (voxel size = 2.3 mm isotropic, TR

= 680 ms, TE1/2 = 5.19 / 7.65 ms, flip angle = 60◦, scan duration = 2.03 min) and

a pair of spin echo images with reversed phase encoding directions (voxel size = 2.3

mm isotropic, TR = 2200 ms, TE = 52 ms, flip angle = 90◦, echo spacing = 0.67 ms,

phase encoding = AP / PA, scan duration = 0.20 min each) were acquired, providing

two alternative means of distortion correction of the resting state fMRI data. The

four resting state scans can be concatenated to obtain a long time series of over one

hour which is advantageous for many analysis strategies. Alternatively, within-session

test-retest analyses can be performed, for example to assess the impact of the mid-

session repositioning. 109 of the subjects also took part in a second study, in which an

additional resting state scan was acquired using the same sequence. This data provides

the opportunity for cross-session test-retest analyses and will be published soon.

We released all raw MRI data in the standardized brain imaging data structure

(BIDS, Gorgolewski et al., 2016). In addition, we provided a carefully preprocessed

and quality controlled version of the data. Reusable preprocessing pipelines were im-

plemented in Nipype (Gorgolewski et al., 2011) and all code is openly available.19 A

detailed description of the preprocessing strategy and all employed tools can be found

in the data paper. In short, the structural scan of each participant was used to ob-

tain a cortical surface reconstruction and a nonlinear transformation to MNI152 space.

Spatial transformations of the resting state data included motion corrected, distortion

correction using the gradient echo fieldmap, and boundary-based registration to the

structural scan, and were applied in a single interpolation. The time series were de-

noised using a general linear model with the following nuisance regressors: six motion

parameters and their first derivatives, intensity outliers, linear and quadratic trends

19https://github.com/NeuroanatomyAndConnectivity/pipelines/tree/master/src/

lsd lemon

https://github.com/NeuroanatomyAndConnectivity/pipelines/tree/master/src/lsd_lemon
https://github.com/NeuroanatomyAndConnectivity/pipelines/tree/master/src/lsd_lemon
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and six regressors representing physiological noise as identified from signal fluctuations

in the white matter and cerebrospinal fluid using the aCompCor approach (Behzadi et

al., 2007). Finally, the time series were bandpass filtered (0.01 – 0.1 Hz), mean centered

and variance normalized. The published data includes the denoised time series in native

subject space and MNI152 space, as well as brain masks and all nuisance regressors.

We created quality reports for each individual resting state scan illustrating subject

motion, coregistration quality and temporal signal-to-noise ratio. All quality reports

were inspected by at least two researchers. Where issues with individual data could

not be fixed, preprocessed data was excluded from the release (5 subjects). The data

set also includes extensive phenotypic assessment comprising a range of self-reported

personality measures, features of self-generated mental experience and cognitive abil-

ities. In total, participants filled out 31 questionnaires, performed 7 behavioral tasks

and reported 4 probes of in-scanner mind wandering. Because these data are not used

in the current work, we refer to the data paper for further details.

In sum, we published a large data set combining high-quality MRI data with broad

state and trait phenotypic assessments. Extensive preprocessing and quality control

pipelines for the MRI data were implemented as part of this dissertation (Study 2) and

have been made available online for reference and reuse. This code and data permits

reproduction of our results obtained in Study 2. It further enables a multitude of fu-

ture studies exploring the intrinsic functional architecture of the brain and its potential

relationship to higher-order cognitive faculties, self-generated mental experience and

personality features.

In this chapter we described several methodological contributions that were part of the

current dissertation. We developed open source software tools for processing of high-

resolution neuroimaging data and for the analysis of cortical surface representations.

Further, we published a large MRI data set along with extensive pipelines for prepro-
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cessing and quality control. In Chapter 3, we will discuss three empirical studies in

which we employed these resources to address the research questions outlined in the

introduction.



32



33

Chapter 3

Empirical studies

The research compiled in the introduction suggests that the arrangement of cortical

areas in spatial gradients is a fundamental principle of cortical organization. While most

of the underlying studies have been performed in experimental animals, the core aim of

this dissertation was to apply the idea of spatial gradients to human neuroimaging. This

chapter summarizes three empirical studies in which we investigated the spatial layout

of cortical microstructure and functional connectivity, and related it to the intrinsic

geometry and functional specialization of the human cerebral cortex.

A crucial indicator that spatial gradients might indeed be a general principle of

cortical organization is the convergence of gradients across two important aspects: cor-

tical microstructure and connectivity (Section 1.1.2, Pandya et al., 2015). In Study

1 (Huntenburg et al., 2017c), we asked whether this fundamental link also holds in

the human cortex in vivo. We used high-resolution quantitative T1 to estimate intra-

cortical myelin content and resting state functional connectivity to approximate the

organization of cortico-cortical connections. Via the decomposition of the functional

connectivity matrix into a set of gradients, we found a strong correspondence between

the distribution of intracortical myelin and a principal gradient of variance in functional

connectivity. Our findings lead us to hypothesize that the particular spatial layout of

this principal gradient represents an important organizing axis1 of the human cortex.

1Throughout this dissertation, we will use the terms global gradient, organizing axis and intrinsic
dimension roughly interchangeable.
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In Study 2 (Oligschlaeger et al., 2016), we specifically focused on predictions of the

tethering hypothesis introduced in Section 1.1.3 (Buckner & Krienen, 2013). This the-

ory points out that the disproportionate expansion of transmodal areas positions them

in increasing distance to molecular patterning centers, which constrain the organization

of sensorimotor regions. As a result, transmodal areas acquire novel characteristics, for

example the formation of connections to distant areas, that facilitate integration of

information across systems. This hypothesis offers a potential insight into the specific

connectional and functional features that vary between the sensorimotor and the trans-

modal extreme of the principal gradient of functional connectivity from Study 1. Em-

ploying geodesic distance to describe trajectories of cortical expansion, we investigated

the distribution of local to distant functional connectivity. In line with the tethering

hypothesis, we found that the distance-to-connected-areas gradually increased with in-

creasing geodesic distance from primary sensorimotor areas, and peaked in regions of

transmodal cortex. We further demonstrated that the spatial gradient of distance-to-

connected-areas provides a meaningful order for the major functional subdivision of the

cortex, represented by canonical resting state networks.

The gradient in distance-to-connected-areas from Study 2 showed a strong spatial

resemblance to the principal gradient of functional connectivity described in Study 1.

We therefore hypothesized that the principal gradient, too, is closely linked to the in-

trinsic geometry of the cortex and its functional specialization. In Study 3 (Margulies

et al., 2016), we examined these relationships explicitly and extended the analysis of

cortical function to a more comprehensive and fine-grained approach. We demonstrated

that the spatial layout of the principal gradient can essentially be reproduced from the

geodesic distance between primary sensorimotor areas and the peaks of transmodal re-

gions. In line with the results from Study 2, we found that the spatial layout of this

gradient provides an organizing framework for resting state networks, ordering them

along a hierarchy of increasing abstraction. Here, we additionally performed a meta-
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analysis which confirmed that the principal gradient of functional connectivity tracks a

continuous spectrum from activation patterns elicited by direct perception and action

to those associated with abstract and internally-directed functions. We suggested that

this layout provides a spatial embedding for the global functional processing hierarchy

proposed by Mesulam (Section1.1.3, Mesulam, 1998) and a potential explanation for

the distinctive role of the default mode network (DMN) in cognition. Additionally,

we described a secondary gradient of functional connectivity which separates different

sensorimotor modalities and aligns with a second dimension of Mesulam’s schematic.

Both gradients are consistent across human functional connectivity and macaque mon-

key tract-tracing data, indicating that they represent two fundamental, phylogenetically

conserved axes of cortical organization

3.1 A systematic relationship between functional

connectivity and intracortical myelin in the

human cerebral cortex (Study 1)

As described in the introduction, there is strong evidence for a link between the spatial

organization of microstructure and connectivity in the mammalian cortex. In particular,

long-range connections preferentially occur between regions that show a similar degree

of microstructural differentiation. This principle has been established through studies

of the mouse (Goulas, Uylings, & Hilgetag, 2016), cat (Beul et al., 2014) and macaque

monkey cortex (Beul et al., 2015; Pandya et al., 2015; Scholtens et al., 2014), employing

a combination of invasive tract-tracing and post-mortem histology. But the invasive

nature of such methods has so far impeded systematic research into the relationship

between cortical microstructure and connectivity in the human brain. Recent studies

have addressed this challenge by comparing MRI-based measures of cortical connectivity

to cytoarchitectonic atlas information (von Economo & Koskinas, 1925), demonstrating

a relationship between connectivity and supragranular neuron complexity (van den
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Heuvel et al., 2016, 2015) or supragranular cell density (Goulas, Werner, et al., 2016).

However, spatial accuracy is limited when mapping atlas information from tables or

two-dimensional drawings in stereotactic space, and the discrete parcellation scheme

prohibits the analysis of gradual changes.

In Study 1, we built on recent developments in high-resolution and quantitative MRI

to overcome these limitations. Using MRI data acquired at ultra-high field (7T) enabled

us to compare in vivo measures reflecting cortical microstructure and connectivity in

the same group of individuals at high spatial resolution. Specifically, we assessed the

relationship between quantitative T1 maps, which are sensitive to intracortical myelin,

acquired using the MP2RAGE sequence (Marques et al. 2010, 0.5 mm isotropic voxel

size) and resting state functional connectivity acquired using a custom EPI sequence

(1.5 mm isotropic voxel size, 3000 ms repetition time, 4x15 min scan duration).2 The

data had been published previously (Gorgolewski et al., 2015; Tardif et al., 2016) and we

used data sets of 9 subjects for which both types of images were available. To preserve

the exceptional spatial precision provided by this data, we implemented a specialized

image processing pipeline employing the tools described in Section 2.1 (Figure 3.1).

This pipeline included nonlinear coregistration of the functional to the structural data

to correct for the significant distortions caused by strong field inhomogeneities at 7T (cf.

Huntenburg et al., 2014). To sample intracortical T1, we constructed 11 intracortical

depth levels using a volume-preserving approach (Waehnert et al., 2014). As described

in Section 2.1.1 this method accounts for the influence of local cortical curvature on

laminar thickness and thus provides an anatomically correct intracortical coordinate

system (Figure 2.1). We then averaged the T1 values of the five central levels of

intracortical depths to obtain a map of intracortical T1 for each subject, which is

minimally biased by partial volume effects with the white matter and cerebrospinal

2In this section, scanning parameters are reduced to the most essential information for readability.
More information can be found in the original papers in the appendix.
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Figure 3.1 Image processing
pipeline for Study 1. Resting
state images were nonlinearly coreg-
istered to the structural space of
the same subject. A group-specific
surface template was created using
mid-cortical surfaces and intracorti-
cal T1 contrasts of all subjects in a
multi-modal multi-surface registra-
tion approach. The group-average
surface was downsampled and pro-
jected into the space of each sub-
ject for sampling of resting state
time series and T1 profiles. Cortical
depth profiles were sampled accord-
ing to a volume-preserving princi-
ple; only the central values were av-
eraged to minimize partial volume
effects (Huntenburg et al., 2017c).

fluid.3 For the resting state fMRI data we employed a denoising strategy that minimizes

the impact of head motion and physiological fluctuations. We sampled the denoised

time series data on the subject’s mid-cortical surface. For each pair of surface nodes we

computed the temporal correlation of the associated time series, yielding the subject

level functional connectivity matrix. A multi-modal multi-surface registration approach

was to used to align the mid-cortical surfaces of all subjects and create a study-specific

surface template (Tardif et al., 2015). This technique combines information about

cortical curvature and the distribution of intracortical T1 to optimize the registration,

and preserves more of the original cortical geometry than other popular algorithms. The

intracortical T1 maps and the functional connectivity matrices were averaged across all

subjects.

3As further discussed in Section 5.1, we did not analyze the distribution of intracortical T1 across
different cortical laminae in this study, but used the layering approach to obtain an unbiased estimate
of average intracortical T1.



38

Functional connectivity was overall higher between areas that resembled each other

in their estimated myelin content, than between areas with rather different myelin con-

tent. This relationship showed substantial spatial variation, with a strong correlation

between the two measures in unimodal sensorimotor regions and low correlation in sev-

eral transmodal regions. To investigate this relationship further, we aimed to identify

specific aspects functional connectivity patterns that show a particularly strong link to

intracortical myelin content. We therefore performed nonlinear dimensionality reduc-

tion using diffusion maps (Coifman & Lafon, 2006) to extract gradients of functional

connectivity as described in Section 1.2.2. The first – or principal – gradient of func-

tional connectivity showed a substantially higher correlation to intracortical T1 than we

had observed when considering the entire functional connectivity matrix. This gradient

spans between primary visual, auditory and somatomotor areas at one end and trans-

modal regions such as the angular gyrus, anterior cingulate and posteromedial cortex,

middle temporal gyrus and middle and superior frontal gyri at the other end (Figure

3.2 b). The principal gradient thus captures an aspect of functional connectivity or-

ganization which is maximally different between primary sensorimotor and transmodal

regions and strongly related to the distribution of intracortical myelin content. In other

words, areas that resemble each other in the aspect of functional connectivity that is

represented by the principal gradient, also have a similar intracortical myelin content.

However, some deviations remained in regions of the posteromedial cortex and the angu-

lar gyrus (Figure 3.2, white circles). Employing a formal model comparison procedure

we found that these deviations could be alleviated by combining the principal gradient

with two additional gradients (gradient 4 and 5). Thus, particular aspects of functional

connectivity, in our approach captured mainly in gradient 1 and to some extent in gra-

dient 4 and 5, show a spatial distribution that is strongly related to that of intracortical

myelin. At the same time, a substantial amount of variance in the functional connec-

tivity data, captured in gradient 2, 3, and ≥ 6, cannot be explained by the distribution

of intracortical myelin. This finding illustrates how decomposing functional connectiv-
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ity into separate one-dimensional gradients can help to identify links between specific

aspects of this high-dimensional data and a second variable, which might be obscured

when considering all functional connections at once (cf. Sections 1.2.2., Figure 1.3).
T
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Figure 3.2 Gradients in intracortical T1 and functional connectivity. The group-level map of
intracortical T1 (A) and the principal gradient of group-level functional connectivity (FC1, B) show
similar spatial distributions. Deviations can be observed especially in posteromedial cortex and the
inferior parietal lobe (white circles). Nodes with low signal quality in either imaging modality were
excluded from the analysis (Huntenburg et al., 2017c).

To corroborate our findings, we showed that the observed relationship between func-

tional connectivity and intracortical myelin was not driven by the spatial smoothness of

the maps nor an underlying common dependency of both measures on spatial proximity

or cortical thickness. Moreover, we were able to replicate the relationship between es-

timated intracortical myelin and functional connectivity in general, and the strong link

to the principal gradient of functional connectivity in particular, in a second publicly

available data set acquired at 3T (Glasser et al., 2013; Van Essen et al., 2013). While

this data set provided a lower spatial resolution (0.7 mm and 2 mm isotropic voxel

size, respectively, for the structural data and resting state data), and a more indirect

measure of intracortical myelin (the ratio of T1-weighted over T2-weighted images) it
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contained data from 820 subjects and thus allowed us to confirm our core findings in a

larger sample.

In sum, we demonstrated a systematic relationship between the spatial distribution

of functional connectivity and intracortical myelin in the human cerebral cortex. Our

findings are in agreement with comprehensive reports linking histologically assessed

microstructure and connectivity in different mammalian species. Using high-resolution

and quantitative MRI data, as well as specialized image processing tools, we were

able to extend these findings to the human cerebral cortex in vivo. In particular, we

identified a principal gradient of functional connectivity that captures a spectrum of

connectivity patterns between primary sensorimotor areas and transmodal regions and

is strongly related to intracortical myelin content (Figure 3.2). While two additional

gradients of functional connectivity were found to relate to intracortical myelin, the

principal gradient undoubtedly showed the strongest link in two independent data sets.

These findings lead us to conclude that the principal gradient of functional connectivity

captures an important spatial axis of cortical organization, reflected in connectivity and

microstructure. We were now interested in understanding more about the potential

roots of this organizing axis (Study 2) and its significance for cortical function (Study

3).

3.2 Gradients of connectivity distance are

anchored in primary cortex (Study 2)

In Study 1, we identified a principal spatial gradient which spans between primary sen-

sorimotor areas and transmodal regions and represents the main axis of variance in func-

tional connectivity patterns across the cortex. However, the decomposition approach

used to derive this gradient does not provide information about the specific features of

functional connectivity that vary along its spectrum. In Study 2 (Oligschlaeger et al.,
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2016), we examined one candidate feature more closely – a region’s spatial distance to

its connection partners. While unimodal sensorimotor areas demonstrate a strong pref-

erence to form local connections with neighboring regions, typically organized in strict

feedforward-feedback patterns (Felleman & Van Essen, 1991), transmodal areas often

connect to each other over long distances (Sepulcre et al., 2010). As discussed in Section

1.1.3, the tethering hypothesis (Buckner & Krienen, 2013) has linked this observation to

the massive expansion of transmodal regions during human evolution and ontogenetic

development (Hill et al., 2010). The disproportionate growth of transmodal areas sub-

stantially increases their distance to molecular patterning centers which determine the

hierarchical organization of sensorimotor areas (Buckner & Krienen, 2013). Released

from these molecular constraints, transmodal regions have been suggested to acquire

more flexible properties and, for example, form long-range connections without clear hi-

erarchical patterns. As described in Section 2.2.2, geodesic distance is a measure of the

intrinsic cortical geometry which captures the relative spatial position of areas along the

cortical sheet. According to the dual origin theory (Section 1.1.1), this relative spatial

position reflects the sequence in which areas arose through cortical expansion during

evolution. We therefore suggested that geodesic distance is a useful proxy to describe

the trajectory of cortical expansion. The tethering hypothesis adds that the spatial

position of an area influences its connectional characteristics via distance to develop-

mental patterning centers. Based on this premise, we hypothesized that the prevalence

of long-range connections increases continuously with increasing geodesic distance from

primary sensorimotor areas – representing the location of maximum influence of molecu-

lar patterning centers – and peaks in late developing transmodal regions. The tethering

hypothesis also proposes that the trajectory of cortical expansion is significant for the

differences in functional attributes between sensorimotor and transmodal regions. We

aimed to test this prediction by examining if an increasing emphasis on distant over lo-

cal connections provides an organizing framework for canonical resting state networks,

which have consistently been associated with distinct functional domains (Smith et al.,
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2009).

Towards these goals we characterized each point on the cortical surface based on its

average geodesic distance to its highly connected areas (”distance-to-connected-areas”).

It is important to highlight, that the distance-to-connected-areas does not reflect the

average length of white matter fibers between connected regions, but instead captures

how far connected areas are positioned from each other on the cortical surface. We used

the MRI data described in Section 2.3 from a subsample of 77 healthy adults. This

subsample was obtained by restricting the age range to 18-40 years in order to mitigate

developmental and aging-related variance. Details on image acquisition and processing

can be found in Section 2.3 and the associated data paper (Mendes et al., under review).

We computed a functional connectivity matrix for each subject based on over one hour of

resting state fMRI data (2.3 mm isotropic voxel size, 1400 ms repetition time, 4 x 15 min

30 sec scan duration). Further, we used each subject’s structural scan (1 mm isotropic

voxel size) to reconstruct the cortical surface and quantify the geodesic distance between

each pair of nodes on this surface (Section 2.2.2). For each surface node, distance-to-

connected-areas was calculated by first thresholding its functional connectivity to the

top 2% strongest connections and then averaging its geodesic distance to all nodes

that survived this threshold.4 The distance-to-connected-areas thus represents a node’s

average geodesic distance from the areas it is most strongly connected to. As we wanted

to know how the distance-to-connected-areas relates to a node’s spatial separation from

primary sensorimotor regions, we also assigned to each node its geodesic distance to

the closest of three cortical landmarks in primary regions: the calcarine sulcus, the

temporal transverse sulcus, and the central sulcus. For visualization purposes, all maps

were projected on a standard surface template and averaged across subjects. We also

used a canonical resting state network parcellation (the 17-network template by Yeo et

al., 2011) to sample the network-specific distributions of distance-to-connected-areas.

4The results were robust for a range of thresholds (5, 10, 15, 20, 25 and 30%)



43

Sorting distributions by increasing mean suggested three groups of networks. To confirm

this observation, distributions were then compared between each pair of networks using

the Jensen-Shannon divergence measure. K-means clustering was applied to the Jensen-

Shannon divergence matrix to group the networks.

Figure 3.3 A gradient in connectiv-
ity distance. The group-level map of the
distance-to-connected-areas shows a gradient
from the shortest distances in primary cortex
to the longest distances in transmodal regions.
The shortest distances delineate primary au-
ditory, somatosensory (left box ), and visual
(right box ) areas (Oligschlaeger et al., 2016).

Confirming our hypothesis, the distance-to-connected-areas was shortest in primary

sensorimotor regions and increased nearly linearly with geodesic distance from primary

landmarks, peaking in transmodal regions (Figure 3.3). In fact, the shortest values

of distance-to-connected areas precisely delineated cortical landmarks of primary areas

(Figure 3.3, boxes). This observed distribution of distance-to-connected-areas is strik-

ingly similar to the spatial layout of the principal gradient of functional connectivity

(Figure 3.2 b), indicating that at least on important features that is reflected in the

principal gradient is a transition from local to distant connections. Furthermore, using

an established resting state network parcellation, we were able show that distance-to-

connected-areas provides an order for the major functional subdivisions of the cerebral
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cortex: it is shortest in unimodal networks, such as the visual and the somatomotor

network, intermediate in dorsal and ventral attention networks, and highest in fronto-

parietal control networks and the DMN. We will return to this observation and its

potential interpretation in Study 3.

Taken together, we demonstrated a continuous spatial distribution of a specific as-

pect of functional connectivity – the distance-to-connected-areas – which is anchored

in primary sensorimotor regions and progresses towards transmodal areas. Our find-

ing is line with the idea that the preference for local hierarchies, comprised of short

feedforward-feedback connections, vanishes with increasing spatial separation from pri-

mary regions and connections between distant regions begin to emerge (Buckner &

Krienen, 2013). Moreover, the spatial gradient between primary and transmodal re-

gions also captures major functional subdivisions of the cortex, pointing towards a role

of cortical location in shaping functional specialization that will be discussed further

in Study 3. A remarkable similarity of the map of distance-to-connected-areas (Figure

3.3) to the principal gradient of functional connectivity (Figure 3.2 b) allows for some

tentative conclusions. First, the variance in functional connectivity captured by the

principal gradient represents – at least in part – a continuous transition from local to

distant connectivity patterns, rooted in developmental gradients. Second, the principal

gradient of functional connectivity is strongly related the intrinsic geometry of the cor-

tex as measured with geodesic distance. Third, this core axis of cortical organization

is not only reflected in cortical microstructure (Study 1) but also captures a functional

spectrum from direct environmental in- and output to high-level cognitive functions.

These observations prompted us to explicitly investigate the relationship of the princi-

pal gradient of functional connectivity with intrinsic geometry and distributed function

in greater detail in the following.
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3.3 Situating the default mode network along a

principal gradient of macroscale cortical

organization (Study 3)

Study 1 demonstrated a systematic link between the principal gradient of functional

connectivity and the distribution of intracortical myelin. The findings from Study

2 further indicated that an area’s position along this principal gradient is related to

its geodesic distance from primary regions and its functional role. These last two

conclusions, however, were based on the spatial similarity of the principal gradient

of functional connectivity to the distribution of distance-to-connected-areas alone. In

Study 3 (Margulies et al., 2016), we strove for an explicit investigation of the proposed

relationships between the principal gradient of functional connectivity, the intrinsic

geometry of the cortex and distributed functional specialization. In particular, we

wanted to know if the principal gradient could provide a spatial embedding for the

global functional processing hierarchy proposed by Mesulam (Section 1.1.3, Mesulam,

1998).

We used a publicly available data set comprising preprocessed MRI data from 820

healthy adult subjects (Glasser et al., 2013; Van Essen et al., 2013).5 Specifically, we

obtained subject-level functional connectivity matrices from one hour of preprocessed

resting state fMRI data, acquired using a multiband EPI sequence (Uğurbil et al. 2013,

2 mm isotropic voxel resolution, 700 ms repetition time, 4x15 min scan duration). The

resting state time series had been sampled on cortical surface reconstructions derived

from a combination of two structural scans acquired using a T1-weighted (T1w) and

T2-weighted (T2w) sequence, respectively (Glasser et al. 2013, both 0.7 mm isotropic

voxel resolution). All data were provided on a standard cortical surface and we averaged

5The same data set was used for replication in Study 1.
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the functional connectivity matrices across subjects for our analyses.

Like in Study 1, we used diffusion maps for dimensionality reduction of the func-

tional connectivity data. The resulting principal gradient of functional connectivity,

accounting for most of the variance in functional connectivity patterns, showed the

same distribution as described in Study 1. It was anchored at one end by primary

visual, somatomotor, and auditory regions. The other extreme of the gradient was

located in transmodal regions of the frontal, parietal and temporal lobe, in humans

collectively described as the DMN. In this study, we also described a secondary gra-

dient that separated different unimodal regions from each other, with visual areas in

the occipital cortex at one end, and somatosensory and motor regions surrounding the

central sulcus, as well as the auditory cortex in the temporal perisylvian region at the

opposite end.6 Notably, we could reproduce the spatial distribution of both gradients

in a publicly available data set of macaque monkey cortico-cortical connections based

on tract-tracing experiments (Bakker et al., 2012; Stephan et al., 2001).

As stated above, one of our main interests was to find out whether the principal

gradient indeed tracks the spatial trajectories of geodesic distance between primary

sensorimotor and transmodal regions. We selected seven spatially separate peak nodes

at the transmodal extreme of the gradient and calculated the minimum geodesic dis-

tance from all other nodes on the cortex to any of these peak nodes. With striking

spatial precision, these transmodal peaks were located at the maximum possible dis-

tance along the cortex from morphological landmarks in primary sensorimotor regions

(Figure 3.4). More generally, gradient values varied continuously with geodesic distance

between transmodal peaks and primary sensory landmarks.

The other major question we wanted to address in Study 3 was if the position of

6The same secondary gradient had been observed in both data sets in Study 1, but since it did not
substantially correlate with the distribution of intracortical myelin, we did not focus on it then.
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Figure 3.4 Geodesic distance from
transmodal peak regions. Minimum
geodesic distance was measured from
peak nodes at the transmodal end of the
principal gradient of functional connec-
tivity (red). The highest distances pre-
cisely converge at landmarks in primary
sensorimotor areas (dotted lines). Gray
arrows indicate equidistance from differ-
ent peak nodes. cs, central sulcus; cals,
calcarine sulcus; tt, transverse temporal
gyrus (Margulies et al., 2016).

cortical regions along the principal gradient is related to their functional specialization.

Similar to Study 2, we initially focused on major functional subdivisions represented in

a widely used resting state network parcellation (7-network parcellation by Yeo et al.,

2011). While these large-scale networks are highly reproducible and have robustly been

associated with distinct functional domains, an organizing framework explaining their

spatial organization has so far been lacking. We were able to show that the principal

gradient of functional connectivity can provide such an organizing axis. Cortical nodes

assigned to the same network were found to cluster at similar positions along the gra-

dient, even if they were spatially far apart. In particular, nodes of the DMN grouped

at one extreme of the gradient, maximally separated from the visual and the somato-

motor networks (Figure 3.5 a). Between these two extremes, the dorsal attention and

salience networks occupied positions closer to the sensorimotor modalities while the

fronto-parietal network was positioned towards the DMN. Based on the functional do-

mains typically associated with these networks, our findings indicate that the principal

gradient of functional connectivity provides a spatial axis along which cortical function

orderly progresses from direct environmental in- and output, through functions related

to attention and cognitive control, towards abstract, stimulus-independent domains.

To provide a more direct link between the principal gradient and these cognitive do-

mains, we next performed a meta-analysis using the Neurosynth database (Yarkoni et

al., 2011).7 We binned the principal gradient in five-percentile increments and sorted

7We obtained similar results when repeating the analysis using the BrainMap database (Fox &
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Neurosynth topic terms according to their weighted average z-statistic associating them

with each of these bins. This analysis revealed a spectrum of increasing functional ab-

straction that follows the spatial layout of the gradient from unimodal to transmodal

regions. Confirming our findings from the network analysis, topic terms progressed

from those related to direct perception and action, through domain-general terms re-

lated to attention, inhibition and working memory, to abstract concepts such as social

cognition, semantics or autobiographical memory (Figure 3.5 b).

Collectively, our findings in Study 3 manifest the principal gradient of functional

connectivity as a core axis of human cortical organization. The spatial layout of this

gradient accounts for the relative position of canonical networks and captures a func-

tional spectrum from perception and action to more abstract cognitive functions. This

organization aligns with the global functional processing hierarchy proposed by Mesu-

lam (1998). While Mesulam’s proposal remained schematic, our findings indicate that

the principal gradient of functional connectivity and its close relationship to the in-

trinsic geometry of the cortex provide the spatial embedding for this global hierarchy.

As a concrete example we suggest that the position of the DMN at one extreme end

of the principal gradient, and at maximum geodesic distance from primary sensorimo-

tor regions, can help to understand its special role in cognition. Initially identified

through a tendency to deactivate during tasks, the DMN has been associated with a

variety of stimulus-independent cognitive domains, such as thinking about one’s own

past or future, considering mental states of others, mind wandering and creative think-

ing (Raichle, 2015; Spreng & Grady, 2010). Such processes require the integration of

information from different systems and abstraction from concrete content. We propose

that the spatial insulation of DMN regions from areas that operate on direct envi-

ronmental input is crucial for these high-level functions to emerge (see Section 5.3 for

further discussion).

Lancaster, 2002).
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The converging findings from our three empirical studies provide strong evidence for

a spatial gradient spanning between sensorimotor and transmodal regions, that con-

stitutes a core axis of human cortical organization. While we initially discovered this

gradient by decomposing functional connectivity data, we subsequently accumulated ev-

idence that its spatial layout captures important aspects of cortical microstructure and

functional specialization. The gradient can essentially be reconstructed from the sim-

ple measure of geodesic distance between primary sensorimotor areas and transmodal

peak regions. We additionally described a secondary gradient of functional connectivity

which separates different sensory domains from each other. Both gradients were con-

sistent across human functional connectivity and macaque monkey tract-tracing data,

indicating that they might represent phylogenetically conserved axes of cortical orga-

nization.8 We found our observation regarding these two gradients to align with other

recent demonstrations of global trends in cortical organization and, based on this cumu-

lative evidence, developed the concept of an intrinsic coordinate system of the human

cerebral cortex, which will be discussed in the next chapter.

8This finding also lends further support for the validity of using resting state functional connectivity
to assess the organization of cortico-cortical connections.
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Figure 3.5 Functional abstraction increases along the principal gradient. A The principal
gradient of functional connectivity provides an organizing framework for canonical resting state net-
works (left). Box plots represent the seven networks and are ordered by the mean principal gradient
value of all nodes that fall within a network (right) (blue-somatomotor, purple-visual, green-dorsal at-
tention, pink-salience, yellow-fronto-parietal, beige-limbic, red-default mode) B Meta-analysis results
using 24 Neurosynth topic terms show that the principal gradient reflects a functional processing hierar-
chy of increasing abstraction. Topic terms are ordered by their weighted average association with maps
representing 5-percentile bins along the principal gradient. autobiographical mem., autobiographical
memory; multisensory proc., multisensory processing (Margulies et al., 2016).



51

Chapter 4

Opinion article

The approach to understand cortical organization in terms of spatial gradients is his-

torically based in post-mortem studies and has rarely been adopted in current human

neuroimaging. In three MRI studies we accumulated evidence for a dominant spatial

gradient in the human cerebral cortex in vivo, which spans between primary sensori-

motor and transmodal regions. This gradient is present in the spatial distribution of

functional connectivity and intracortical myelin, shows a strong relationship to the in-

trinsic geometry of the cortex and captures a functional spectrum of increasing abstrac-

tion. Motivated by our own results and converging findings from the recent literature

we aspired to lift the cortical gradient framework from classical neuroanatomy litera-

ture and increase its visibility in current human neuroimaging. In our opinion article

(Huntenburg et al., accepted), we drew together different lines of research in support

of the notion that cortical features are organized in large-scale spatial gradients, and

proposed that these gradients build the dimensions of an intrinsic coordinate system of

the human cerebral cortex.

We began by discussing a rostrocaudal gradient in cortical microstructure which

has been described in the cortex of different mammalian species (Cahalane et al., 2012;

Charvet et al., 2015, 2017; Collins et al., 2010). The rostrocaudal organization aligns

with known neurodevelopmental gradients and there is strong evidence that it arises

from the temporal sequence of neurogenesis (Cahalane et al., 2012, 2014; Charvet &
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Finlay, 2014).1 However, deviations from this organization have been reported in mul-

tiple species. Especially in the human cortex, a rostrocaudal gradient is not sufficient to

explain the distribution of microstructural features. Instead, we and others have demon-

strated a gradient in MRI-based markers of cortical microstructure which is anchored

in primary sensorimotor regions and radiates towards higher-order areas in parietal,

temporal and prefrontal cortex (Huntenburg et al., 2017c, Burt et al., 2017; Glasser et

al., 2016; Rowley et al., 2015; Tardif et al., 2015; Whitaker et al., 2016) (Figure 4.1

a). Similarly, gene expression gradients in the cortex of more primitive mammals show

a rostrocaudal organization (Krienen et al., 2016), while dimensionality reduction of

gene expression data in the human cortex has revealed a principal gradient spanning

from primary sensorimotor to transmodal temporal and frontal areas (Hawrylycz et al.,

2012). Cortical development is far less understood in humans as compared to other

mammals. However, based on the aforementioned evidence we raised the possibility

that the deviation from purely rostrocaudal patterns in the adult human cortex could

be rooted in spatially more complex developmental gradients. As previously discussed

in Study 2, the distribution of these gradients might be influenced by the massive and

disproportionate expansion of transmodal areas in the human lineage, which increases

their distance from molecular patterning centers (Buckner & Krienen, 2013).

The opinion article also outlines our findings regarding the principal gradient of

functional connectivity, covered in Chapter 3. We will not repeat this discussion here,

but point out that our results align with other recent studies, consistently demon-

strating sensorimotor-to-transmodal gradients in human cortical connectivity through

various methodological approaches (Atasoy et al., 2016; Langs et al., 2014, 2015; Sepul-

cre et al., 2012; Taylor et al., 2015) (Figure 4.1 b). Likewise, our demonstration of a

global functional processing hierarchy along the principal gradient is in line with others

1A more detailed account of the proposed developmental mechanism can be found in Section 5.3
and in the original article in the appendix
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Figure 4.1 A sensorimotor-to-
transmodal gradient in the human
cerebral cortex. A basic sensorimotor-
to-transmodal organization is apparent
in different cortical features as assessed
with MRI. A Intracortical myelin
increases along the sensorimotor-to-
transmodal gradient (Huntenburg et
al., 2017c). B The main variance in
functional connectivity patterns spans
between primary sensorimotor areas
and transmodal regions of the DMN.
The connectivity gradient does not
have a unit, but it is strongly related
to a spectrum of concrete-to-abstract
cognitive domains (cf. Figure 3.5)
(Margulies et al., 2016). C The map
shows a superposition of the first three
semantic category-processing gradients.
The largest axis of variation separates
perceptual and physical categories in
sensorimotor areas from more abstract
concepts in transmodal regions (Huth et
al., 2016). D The length of events that
are represented in a given area, here
extracted from movie-watching data,
varies from short events in sensory areas
to long events in transmodal regions
(only patterns with high between-subject
consistency are shown, for example,
somatosensory regions did not respond
consistently to the auditory-visual input
in this study) (Baldassano et al., 2016).

holding the view that processing hierarchies extend beyond sensorimotor systems into

transmodal areas (Badre & D’Esposito, 2009; Chanes & Barrett, 2016). The most direct

support comes from a study presenting a principal gradient of semantic categories that

varies smoothly from concrete perceptual and quantitative descriptions in sensorimotor

areas, to abstract category representations related to emotions and social interactions

in transmodal regions (Huth et al., 2016)(Figure 4.1 c).

Together, the aforementioned studies indicate a spatial relationship between gradi-

ents in cortical microstructure, gene expression, connectivity and function. Beyond this

spatial correlation, we found a potential explanation for how structural and functional
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gradients might be linked in recent work on temporal integration hierarchies (Baldas-

sano et al., 2016; Ding et al., 2016; Hasson et al., 2015, 2008; Honey et al., 2012; Lerner

et al., 2011). These studies show that the temporal window, across which information

is integrated, varies across the cortex. While primary sensory areas, at one extreme,

track fast changes of a scene on the order of milliseconds, transmodal association ar-

eas, at the other extreme, integrate information across seconds, minutes, or longer, to

encode slowly changing states of the world, complex concepts and situations (Figure

4.1 d). There is strong evidence that this temporal hierarchy is based on differences in

the frequency of intrinsic fluctuations across cortical areas (Honey et al., 2012; Murray

et al., 2014; Stephens et al., 2013). This variation in intrinsic time scales, in turn, has

been shown to emerge from the interplay of local microstructural gradients and long-

range connections in a computational simulation (Chaudhuri et al., 2015), providing

the potential link between structural gradients, temporal hierarchies and eventually

functional specialization (see also Section 5.3).

In our view, these collective findings draw a clear picture of an organizing gradient

from sensorimotor to transmodal regions that establishes an axis along which all areas of

the cerebral cortex can be situated. In the last part of our opinion article, we therefore

proposed that this gradient constitutes the core dimension of an intrinsic coordinate

system of the human cerebral cortex. While it is common practice in human neuroimag-

ing to describe cortical locations with respect to arbitrary coordinates imposed by the

measurement techniques, such as voxel grids, intrinsically-defined coordinates are based

on the underlying organization of the cortex itself. Instead of indicating the position

of a cortical location in three-dimensional space, intrinsic coordinates indicate its rel-

ative position along functional hierarchies and gradients of structural features. The

exact configuration of such a coordinate system and even the number of its dimensions

remain to be resolved, but we proposed a working model in our article. This model

is based on the observation that there is a strong relationship between the relative
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position of areas along the sensorimotor-to-transmodal gradient, and their relative po-

sition along the cortical surface. The first dimension of the intrinsic coordinate system

can therefore be constructed from the spatial distance along the cortical surface from

transmodal regions to primary areas (Figure 4.2 a, cf. Study 3). Moreover, our model

contains a second intrinsic dimension. As described in Study 3, a secondary gradient of

connectivity in the human and macaque monkey cortex separates different functional

domains from each other. A similar organization has been observed for a secondary gene

expression gradient (Hawrylycz et al., 2012), and is reflected in laminar microstructure

(Waehnert et al., 2016) as well as dynamically selected temporal integration hierarchies

(Chaudhuri et al., 2015). The distinction between sensorimotor modalities thus offers

an additional axis of cortical differentiation. Our model demonstrates that this second

dimension, too, can be reproduced from geodesic distance along the cortex, describing

each cortical location by its relative distance from morphological landmarks in primary

auditory, visual and somatomotor areas (Figure 4.2 b). The proposed intrinsic coordi-

nate system is thus entirely constructed from the intrinsic geometry of the cortex, but

captures gradients in multiple structural and functional features.

While many questions remain open, our working model provides a starting point for

an intrinsic organizational template of the human cerebral cortex. As will be discussed

in more depth in Section 5.3, the intrinsic coordinate system can serve as a common

space to integrate observations across time points, measurement modalities, subjects

(Langs et al., 2014, 2015) and even across species (Charvet & Finlay, 2014), and fosters

novel analytic approaches (Falkiewicz et al., 2017; Haak et al., 2017). With our opinion

article, we hope to stimulate a new perspective in which we try to understand the cortex

with respect to its own, intrinsic dimensions.
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Figure 4.2 A distance-based intrinsic coordinate system of the human cerebral cortex.
We propose an intrinsic coordinate system based on the geodesic distance along the cortex. Each
data point in the intrinsic coordinate space (left) represents a location on the cortical surface (right).
A Data points are colored according to the first intrinsic dimension. This dimension is given by
the geodesic distance between sensorimotor and transmodal regions, represented in a color spectrum
from red to blue. In other words, the minimum geodesic distance of a cortical location from any of
the red transmodal peak regions determines its position along the first intrinsic dimension. In the
abstract representation (left), this dimension is represented by concentric circles of increasing size.
When displayed on the cortical surface (right) it largely aligns with the feature maps in Figure 4.1. B
Data points are colored according to the second intrinsic dimension, which differentiates between the
different sensory modalities. The position of a cortical location along this dimension is given by its
relative geodesic distance from three morphological landmarks in primary areas. Each cortical location
is assigned an RGB value composed of its proximity to each of these landmarks (calcarine sulcus = red,
transverse sulcus = green, central sulcus = blue). That means, the closer a cortical location is to the
calcarine sulcus, the higher its R-value, and so on. The second dimension is captured by the distance
along the arc of the abstract representation of the intrinsic coordinate space (left) (Huntenburg et al.,
accepted).
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Chapter 5

General discussion

The main aim of this dissertation was to apply the concept of spatial gradients in

cortical organization – emanating from classical neuroanatomical studies in experimen-

tal animals – to the human cerebral cortex in vivo. This goal was realized in three

empirical studies, which employed state-of-the-art neuroimaging technology and novel

analysis strategies to investigate the spatial distribution of different cortical features in

the human cortex (Chapter 3). The current dissertation additionally presented a set of

technical reports introducing open source software tools and data that may serve future

research interests in this evolving field (Chapter 2).

Our findings confirmed the general idea of a significant spatial arrangement of corti-

cal areas and extended it to the human cortex. Going beyond the original accounts, our

studies provided converging evidence that a global gradient between sensorimotor and

transmodal regions captures a core axis of human cortical organization. This global

spatial gradient was reflected in the distribution of intracortical myelin, assessed us-

ing high-resolution quantitative T1 maps (Study 1), and in the principal spatial motif

of functional connectivity patterns, extracted using dimensionality reduction (Study 1

and 3). A link to the intrinsic cortical geometry was established by employing geodesic

distance as a proxy for trajectories of cortical expansion between primary sensorimo-

tor and transmodal regions (Study 2 and 3). This approach illustrated that geodesic

distance essentially reproduces the principal gradient of functional connectivity. A key

feature varying along its spatial axis was found to be the increasing distance to func-
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tionally connected areas with increasing distance from primary sensorimotor regions

(Study 2). Finally, the sensorimotor-to-transmodal gradient was shown to provide an

organizing framework for canonical resting state networks (Study 2 and 3) and a spatial

embedding for a global functional hierarchy of increasing abstraction (Study 3).

Taken together, the results of our empirical studies indicated that core aspects

of human cortical organization are spatially arranged along a global sensorimotor-to-

transmodal gradient. This layout subsumes multiple gradients in individual cortical

systems and is embedded in the intrinsic geometry of the cortex. In a subsequent

opinion article, we proposed that the sensorimotor-to-transmodal gradient represents

the first dimension of a distance-based intrinsic coordinate system of the human cortex

(Chapter 4). A second dimension is given by the relative distance between cortical

landmarks, representing the different primary sensory domains. This concept entails

a new perspective on human cortical organization and gives rise to a range of novel

scientific and methodological questions that will be discussed below.

5.1 The potential of in vivo histology to

investigate microstructural gradients

Spatial gradients were originally described in cortical microstructure (Section 1.1.1).

Until recently, this aspect of cortical organization was exclusively accessible through

histological studies on post-mortem samples. However, substantial advances in high-

resolution and quantitative MRI now facilitate non-invasive assessment of microstruc-

tural features in the human brain (Paus, 2017; van der Zwaag et al., 2016; Weiskopf

et al., 2015). Because the signal-to-noise ratio in MRI scales supra-linearly with the

strength of the static magnetic field, increasingly available ultra-high field scanners

provide good image quality even at sub-millimeter resolutions (Pohmann et al., 2016).

Furthermore, quantitative sequences yield individual maps of the parameters underlying
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the image contrast – such as the different relaxation time constants or susceptibility ef-

fects – in physical units. This makes it possible to compare absolute values across brain

areas, sessions, subjects and imaging sites (Turner, 2015). It also enables a more direct

inference about how different microstructural components influence individual MR pa-

rameters, which can be hard to disentangle in standard weighted images. Quantitative,

high-resolution MRI therefore provides a new tool for mapping biologically relevant vari-

ables such as relative axonal myelination (g-ratio, Paus & Toro, 2009), macromolecular

tissue volume (Mezer et al., 2013), iron and myelin concentration (Stüber et al., 2014).

Questions about the brain’s microstructure, that had previously required histological

approaches, can thus be addressed non-invasively in humans (sometimes referred to as

in vivo histology, Weiskopf et al. 2015). Nevertheless, quantitative MRI is not a direct

measure of microstructural components, and its spatial resolution is still low compared

to histology. A crucial advantage of MRI over histology in the current context is that

it does not require the slicing of brain tissue. It is thus ideally suited to capture global

gradients in three-dimensional space.

In this dissertation, we specifically used quantitative T1 acquired at 7T to investi-

gate the distribution of intracortical myelin content in the human cerebral cortex (Study

1). Overall myelination has been described to increase along gradients of microstruc-

tural differentiation (Hopf, 1956; Hopf & Vitzthum, 1957; Sanides, 1962), making it a

suitable measure to describe such gradients. We acquired quantitative T1 maps using

the MP2RAGE sequence (Marques et al., 2010) which have been shown to reflect gray

matter myelin content (Stüber et al., 2014) and were used in many recent works (Lutti

et al., 2014; Sereno et al., 2013; Tardif et al., 2015; Waehnert et al., 2016). Alternative

quantitative MRI techniques, such as magnetization transfer imaging (Dousset et al.,

1992) and myelin water imaging (Mackay et al., 1994) are more specific to myelin than

T1 but provide lower spatial resolution. Another popular approach to assess intracor-

tical myelin, the ratio of T1w over T2w images (Glasser et al., 2016, 2014; Glasser &
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Van Essen, 2011), has not yet been validated against histological data and shows a lower

intra- and intersubject reproducibility than quantitative T1 (Haast et al., 2016). Yet,

the spatial distribution of the T1w/T2w ratio generally appears similar to quantitative

T1, and we were able to confirm our main results in Study 1 using T1w/T2w-based

estimates of intracortical myelin. Of note, quantitative T1 is also influenced by the

concentration of intracortical iron (Stüber et al., 2014), which however is strongly colo-

calized to intracortical myelin (Fukunaga et al., 2010). Ferritin particles embedded

in the myelin sheath function as a storage for oligodendrocytes, that require iron for

the production and repair of myelin (Connor & Menzies, 1996; Todorich et al., 2009).

Therefore, independent of the exact contributions of iron and myelin, it appears justified

to interpret T1 as to largely reflect the distribution of intracortical myelin.

For the analyses presented in Study 1, we used the average intracortical myelin con-

tent as a proxy for microstructural differentiation. The high spatial resolution of the

underlying T1 maps helps to obtain an unbiased estimate of this average, by improving

the definition of cortical boundaries to the white matter and cerebrospinal fluid and

reducing partial volume effects (Zaretskaya et al., 2017). Defining anatomically mean-

ingful intracortical depth levels through a volume-preserving approach (Section 2.1.1)

further aids in sampling T1 from consistent layers throughout the cortex (Waehnert et

al., 2014). However, in contrast to classic myeloarchitectonic techniques, we did not

analyze the radial distribution of myelin across the cortical depth. Radial differences

in myelin content can be comparable in size to horizontal differences between cortical

areas (Lutti et al., 2014), and the increasing spatial resolution in MRI has fostered new

approaches to investigate the laminar distribution of intracortical myelin (see Trampel

et al. 2017 for a review). While early studies mainly focused on detecting the conspicu-

ous stria of Gennari in the primary visual cortex (Duyn et al., 2007; Sánchez-Panchuelo

et al., 2012; Turner et al., 2008), more recent work has demonstrated differences in the

laminar myelin distribution across multiple areas of the human cerebral cortex (Dinse
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et al., 2015; Fracasso et al., 2016; Marques et al., 2017; Waehnert et al., 2016; Whitaker

et al., 2016). Methods to extract and analyze radial myelin profiles are still in their

infancy, but more elaborate and robust approaches are likely to emerge from this line

of research soon (e.g. Kok et al., 2016). It will then be possible to expand the global

spatial gradient in intracortical average myelin, presented here, with a more detailed

examination of how the laminar distribution of intracortical myelin changes along the

cortical sheet.

Taken together, high-resolution and quantitative MRI represent essential tools for

the investigation of global microstructural gradients in the human cerebral cortex in

vivo. Intracortical myelin in particular has been described to vary along such gradi-

ents, can reliably be assessed using quantitative T1 maps, and will likely yield further

insights when studied at laminar resolution in the future. At the same time, it is cru-

cial to appreciate that there is no simple one-to-one relationship between the measured

MR signal and underlying microstructural components. In order to draw neurobiolog-

ical conclusions, for example about the mechanisms through which spatial gradients

emerge during development, or how they give rise to differences in functional special-

ization, progress in two domains will be critical. First, the contribution of different

microstructural features to MRI-based measures needs to be evaluated against ex vivo

data (e.g Fracasso et al., 2016; Leuze et al., 2017; Stüber et al., 2014). Second, biophys-

ical models linking microstructural phenomena and MRI readout have to be improved

or newly developed (Lerch et al., 2017; Weiskopf et al., 2015). Only under these pre-

requisites, in vivo histology will be able to fully live up to its promise and provide

fundamental insights about the human brain at a biologically relevant level. Such in-

sights will be essential to uncover the cellular and molecular basis of spatial gradients

observed in MR images.
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5.2 Spatial motifs in cortical connections

Research investigating cortical connectivity focuses on the relationship between pairs

of locations on the cortex, and thereby yields complex, high-dimensional data in the

form of connectivity matrices. The premise of any connectivity analysis is to break

down this complexity and extract interpretable patterns. Influenced by the dominant

approach of studying cortical organization through a division into spatially discrete

areas (Vogt & Vogt, 1919), connectivity analyses have often aimed at deriving discrete

network parcellations (e.g. Power et al., 2011; Yeo et al., 2011). These parcellations

provide converging information about the organization of cortical regions in spatially

distributed, but strongly interconnected networks, which overlap with functionally de-

fined activation patterns (Smith et al., 2009). However, parcellations describe networks

as homogeneous and independent entities. This prevents the detection of spatial regu-

larities in connectivity patterns within a parcel, and between different parcels (Jbabdi

et al., 2013).

Another widely-used method to analyze connectivity data are graph-theoretical ap-

proaches (e.g Bullmore & Sporns, 2009; van den Heuvel & Sporns, 2013). These typ-

ically require pre-existing cortical parcellations to define the nodes of the graph. A

graph provides an abstract description of the cortical network along with topological

measures such as degree, path length or hubness. While such descriptions can be illumi-

nating regarding the flow of information, they classically disregard spatial information

altogether and neglect that the cortical network is embedded in anatomical space. In-

cluding spatial features in graph-theoretical models leads to the revision of some current

assumptions about cortical networks (Knoblauch et al., 2016). For example, it has been

shown that the often cited small-world properties (Watts & Strogatz, 1998) of the cortex

arise from its distribution of connection lengths by necessity, without implying a par-

ticular clustering pattern as typically assumed (Lang et al., 2017). This illustrates that
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spatial aspects can inform and refine existing descriptions of connectivity organization.

As standard analysis strategies focus on dividing the cortex in discrete networks, or

describing its topological properties, they fall short of capturing the spatial arrangement

of connections central to the concept of gradients in cortical organization. On the other

hand, the classical studies on gradients in connectivity do not provide an alternative

analytic approach. While they report the specific projection patterns of injected tracers

in detail, the descriptions of the overarching spatial gradients remain qualitative and

schematic (cf. Figure 1.1). One core aspect of these descriptions, the preference on long-

range connections to occur between regions of similar microstructural differentiation,

has subsequently been confirmed in a quantitative fashion (Beul et al., 2015, 2014;

Goulas, Uylings, & Hilgetag, 2016). But analytical approaches to characterize spatial

motifs in connectivity patterns emerged only most recently (Atasoy et al., 2016; Haak

et al., 2017; Langs et al., 2014, 2015; Sepulcre et al., 2012; Taylor et al., 2015). A

particularly promising method is the decomposition of the connectivity matrix into a

set of superimposed gradients (Section 1.2.2). The work presented in this dissertation

was the first to show that such connectivity gradients, derived on the scale of the

entire cortex, capture core aspects of cortical organization reflected in microstructure

(Study 1) and functional specialization (Study 3). Study 2 furthermore presented a

first indication that connectivity gradients in the adult brain might arise from the

influence of molecular gradients during development. While the conceptual implication

of these findings will be discussed in Section 5.3, the following highlights some of the

methodological advancements that this new strategy to analyze cortical connections

entails.

One question that arises when characterizing connectivity gradients is how to com-

pare them statistically across subjects or sessions. In their study examining connectivity

gradients in the visual and motor cortex, Haak et al. (2017) proposed to exploit sta-

tistical tools from a spatial inference technique called trend surface analysis (Gelfand



64

et al., 2010). In this approach, spatial gradients are parameterized using polynomial

base functions to model the main surface trend, and a Gaussian process to model small

variations. Differences between gradients can then be tested for via statistical inference

on the model coefficients. While common statistical approaches used in neuroimag-

ing are based on voxel- or node-wise comparisons, tools to statistically compare the

spatial layout of cortical maps have so far been lacking. The potential impact of this

new approach therefore extends far beyond the comparison of connectivity gradients to

virtually any measure that can be mapped onto the cortex.

A particularly innovative application of connectivity gradients is to model task ac-

tivation patterns as the weighted sum of a set of gradients (Falkiewicz et al., 2017).

Activity patterns can then be compared across task conditions and across subjects

through statistical inference on the gradient weights. The underlying idea is similar to

the hyperalignment approach, initially proposed by Haxby et al. (2011) for the human

ventral temporal cortex. These authors acquired fMRI data while subjects were exposed

to long and complex stimuli. They then created a high-dimensional representational

space from the activation patterns across time, to which all subjects were aligned (hy-

peralignment). Individual task activation patterns were modeled as a weighted sum of

the dimensions of this representational space (basis functions). Task activation patterns

could be predicted across subjects at a much higher accuracy using hyperalignment as

compared to anatomical alignment. Instead of extracting basis functions from exten-

sive experiments with complex stimuli, connectivity gradients derived from resting state

fMRI could be used in a similar way in the future. In support of this idea, the work

presented in this dissertation indicates that connectivity gradients capture core orga-

nizing axes of the human cerebral cortex, which are likely to shape functional response

patterns (see also Tavor et al., 2016).

Both aforementioned use cases are based on the idea that the overall spatial layout

of a connectivity gradient is more meaningful than its exact anatomical manifestation
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in an individual cortex. The same notion is the basis for another important application

– the alignment of subjects via gradient-matching. Langs et al. (2015) showed that

aligning connectivity gradients across individuals improves matching accuracy of func-

tionally equivalent areas compared to morphological alignment. This approach even

facilitated mapping of functional networks from healthy individuals to those whose

networks are disrupted by tumors (Langs et al., 2014). Gradient matching also has

the potential to ease the integration of data from different modalities for intersubject

alignment. Dominant connectivity gradients, along with maps of morphology, task ac-

tivation and intracortical myelin content, could represent different dimensions to be

aligned simultaneously. This method would be similar to the one recently proposed by

Glasser et al. (2016), but avoids a discrete parcellation scheme. Moreover, as indicated

by the results of Study 3, connectivity gradients might be phylogenetically conserved

and could represent a novel approach for interspecies alignment independent of area

definition and homology (Charvet et al., 2017).

Characterizing spatial motifs in cortical connectivity through gradients thus presents

a fruitful complement to parcellations and graph-theoretical analyses. The spatial

perspective fosters methodological innovations that bring the layout of cortical maps

into focus, and inspires fresh approaches to longstanding challenges such as cortical

alignment. The basic idea of decomposing high-dimensional data into superimposed

spatial gradients, and the associated analytical tools, can be extended to other high-

dimensional data such as gene expression, functional co-activation, or laminar profiles.

5.3 A core intrinsic dimension of the human

cerebral cortex

A key contribution of this dissertation is the proposal of an intrinsic coordinate system of

the human cerebral cortex with a sensorimotor-to-transmodal core dimension (Chapter



66

4). This approach is inspired by the concept of a natural coordinate system of the

vertebrate central nervous system (CNS) by Nieuwenhuys and Puelles (2015). Instead of

using Cartesian coordinates, the natural coordinate system describes CNS organization

along three built-in dimensions: the curved long axis of the neural tube and two limiting

curved planes, given by the ventricular and the meningeal surfaces. These organizing

axes manifest themselves during CNS development through the orientation of blood

vessels and fibers, and the migratory paths of neurons. Simple rostrocaudal patterns

found in the cerebral cortex of more primitive mammals align with the long axis of the

natural coordinate system. However, Chapter 3 and 4 have presented evidence that the

core axis of the human cerebral cortex deviates from this rostrocaudal organization.

The concept of the intrinsic coordinate system thus borrows from the basic idea of the

natural coordinate system – to use a structures intrinsic, naturally occurring axes for

describing its organization – and applies it to the specific case of the human cerebral

cortex.1

The work discussed in Chapter 3 and 4 has shown that important aspects of cortical

organization – such as microstructure, gene expression, connectivity and function – are

organized along a gradient from primary sensorimotor areas to transmodal regions.

Furthermore, there is a strong relationship between the relative position of areas along

this gradient and their relative position along the cortical surface. Chapter 4 therefore

proposed that the first intrinsic dimension of the human cerebral cortex is given by

the geodesic distance between transmodal and primary areas (Figure 4.2). This global

gradient extends the classical studies on cortical gradients by unifying the multiple

1Using the term intrinsic coordinate system, rather than natural coordinate system aims to dif-
ferentiate this proposition from the original concept by Nieuwenhuys and Puelles (2015). While the
natural coordinate system is directly deduced from detailed knowledge about CNS development, the
gradients discussed in this dissertation are inferred from various, often indirect, measures of cortical
organization in the adult brain, and retrospectively associated with developmental processes. This is
not to imply that the intrinsic coordinate system of the cerebral cortex is categorically different from
the natural coordinate system of the CNS. In contrast, the developmental processes which establish
cortical gradients might eventually be uncovered and facilitate an integration between both coordinate
systems.
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individual progressions that they describe (e.g Pandya et al., 2015; Sanides, 1962) in

a single dimension. While such an overarching framework was implied in the classical

work, it had never actually been shown analytically. As indicated in the previous two

sections, this advancement has at least partly been enabled by new tools. Detecting

global gradients in a complete reconstruction of the cortical sheet, obtained from a three-

dimensional MRI scan, is more feasible than combining information from post-mortem

samples, in which gradients had to be traced through stacks of adjacent slices. Similarly,

the analytical and computational means to decompose high-dimensional connectivity

data into superimposed spatial gradients were not available when the classical studies

were performed. This latter innovation in particular, has enabled the insight that

long-range connections represent an additional layer of organization which links local

gradients. Spatially distant areas that share a similar microstructure and long-range

connections thus get situated at a comparable position of one global gradient, instead

of a comparable position along separate gradients (cf. Section 1.1.2).

The sensorimotor-to-transmodal core axis of the human cortex offers a concrete spa-

tial implementation of the global processing hierarchy suggested by Mesulam (1998)(Sec-

tion 1.1.3). Local hierarchies, for example in the visual system (Felleman & Van Essen,

1991), have been vital for understanding the functional role of individual cortical ar-

eas. A global processing hierarchy, embedded in the intrinsic geometry of the cortex,

has the potential to particularly elucidate the role of the DMN in human cognition,

which remains incompletely understood (Raichle, 2015; Spreng & Grady, 2010). Study

3 showed that DMN regions are positioned at a maximum geodesic distance from pri-

mary sensorimotor areas (Figure 3.4). We suggested that this spatial insulation of the

DMN from the direct environmental in- and output, processed in sensorimotor regions,

enables functions that require the abstraction from concrete content such as mind wan-

dering (Mason et al., 2007) or creative thought (Beaty et al., 2014). Furthermore,

Study 2 demonstrated that regions of the DMN show the highest average distance to
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their functionally connected partners (Figure 3.3). This makes them ideally suited to

integrate information across systems in complex tasks such as considering the mental

states of others (Amft et al., 2015). According to the tethering hypothesis, the emer-

gence of long-range connections in DMN regions is a result of their distance from the

constraints of molecular patterning centers (Buckner & Krienen, 2013). This release

from developmental determination could also underlie the flexible and learning-related

properties of the DMN that enable the generation of alternative behavioral strategies

(Haggard, 2008). Finally, Hasson et al. (2015) have proposed that the representation

of complex concepts in the DMN can be explained from its position at the top of a

sensorimotor-to-transmodal hierarchy of temporal integration (cf. Chapter 4). These

authors suggest that each region along the hierarchy segregates incoming information

into discrete events at its preferred intrinsic timescale. This leads to representation

of short sensory events, and respective memory traces, in primary regions, and encod-

ing of abstract concepts that build on many pieces of information, or situations that

unfold over a longer time span, in regions of the DMN (Figure 4.1 d)(Baldassano et

al., 2016; Hasson et al., 2015; Yeshurun et al., 2017). This model specifically explains

the involvement of DMN regions in thinking about the past and imagining the future

(Schacter & Addis, 2007). The position of the DMN at one extreme of the sensorimotor-

to-transmodal core axis can thus provide new insights into the functional role of these

regions, which can be difficult to understand via task-based activation studies.

Functions commonly associated with the DMN, such as social cognition, remem-

bering the past and planning the future, are often described as hallmarks of human

cognition. The sensorimotor-to-transmodal gradient offers a new perspective on the

emergence of such functions through phylogeny and ontogeny. It has been suggested

that microstructural gradients in the mammalian cortex result from the temporal se-

quence of neurogenesis (Cahalane et al., 2012, 2014; Charvet & Finlay, 2014), which

begins uniformly across the cortex but terminates later in primary sensorimotor re-
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gions (Rakic, 2002). Primary areas therefore undergo a higher number of cell cycles,

producing a high number of small neurons. In transmodal regions, neurogenesis likely

terminates much earlier (although the exact numbers for the human brain are unknown),

so that more time can in turn be devoted to the growth of large neurons with dense and

complex dendritic trees (Elston, 2000, 2003). The sensorimotor-to-transmodal gradient

thus signifies a shift in computational capacity, from a high number of units process-

ing high frequency input in primary sensorimotor areas, to a lower number of highly

connected units ideally suited for information integration in transmodal regions (Caha-

lane et al., 2012). This gradient is more pronounced in species with larger cortices and

longer developmental schedules, leading to greater differences in neurogenesis termina-

tion across areas (Cahalane et al., 2014; Charvet et al., 2015; Charvet & Finlay, 2014).

A possible implication is that the specific functional spectrum of the human cortex re-

sults from an evolutionary selection on an extended developmental schedule – which is

indeed considerably longer in humans as compared to all other mammals (Workman et

al., 2013) – that leads to steeper structural gradients (Cahalane et al., 2014). The func-

tional attributes of DMN regions could consequently be explained from an amplified

emphasis on highly connected processing units at the expanded transmodal end of this

gradient. While the resulting cognitive capacities could plausibly present an evolution-

ary advantage, the underlying adaptations would not be found in some uniquely human

property of respective regions, but in genes determining the developmental schedule of

the cortex (Buckner & Krienen, 2013). Importantly, these considerations are based

on dispersed pieces of evidence from different species in various contexts and remain

hypothetical for now. Yet, they point to an interesting research avenue, exploring the

differences of cortical gradients across species and investigating if an adaptive pressure

on steeper cortical gradients might indeed underlie the evolution towards an extended

spectrum of cognitive functions.

In sum, this dissertation presented evidence for a core axis in human cortical orga-
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nization which is embedded in a spatial gradient between sensorimotor and transmodal

areas. This gradient, and a secondary gradient separating different sensory modalities,

build the dimensions of the proposed intrinsic coordinate system of the human cere-

bral cortex. Much like cortical surface representations have been introduced to analyze

neuroimaging data in the space of the folded cortical sheet itself, rather than an ar-

bitrary voxel grid, a gradient-based intrinsic coordinate system is a next step towards

describing the cortex in reference to its internal organization, rather than the way we

measure it. This perspective facilitates the integration of findings in a common concep-

tual framework and reinforces their interpretation in the context of cortical development

and evolution.

5.4 Open questions and future prospects

How do we understand one of our bodies’ most remarkable systems – the human cere-

bral cortex? The work presented in this dissertation started from the premise that

profound knowledge about the general principles governing a system’s structure is vital

for understanding its function (Gudden, 1886). In human neuroscience, the functions in

question are our own cognitive abilities, functions so elaborate and integral to our per-

ception of what makes us human, that it can be hard to imagine them arising through

the right configuration of cells and fibers, or – on the spatial scale on which we operate

– the right arrangement of cortical areas. Human neuroimaging has yielded a plethora

of studies associating areas or networks with specific cortical functions. Yet, the general

principles of how these areas and networks are arranged to form a highly integrated

entity, and how this organization gives rise to the spectrum of human cognitive func-

tions, remain largely unsettled. This might in part be because our view on the cortex is

shaped and constrained by the techniques we use to measure it. With the intrinsic coor-

dinate system of the human cerebral cortex this dissertation aims to stimulate a shift in

perspective towards ”meeting the brain on its own terms” (Haueis, 2014), that is, ana-
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lyzing the cortex with respect to its intrinsic organization. The arrangement of areas in

spatial gradients, forming the intrinsic dimensions, does not itself constitute an expla-

nation for how the functional spectrum of the cortex arises. But it offers a framework

for unifying observations across a variety of domains in order to deduce general rules

and construct new models on their basis (e.g. Cahalane et al., 2014; Chaudhuri et al.,

2015). A gradient-based intrinsic coordinate system thus constitutes a novel research

agenda with diverse applications and new methodological and conceptual challenges.

One fundamental question is how best to construct the intrinsic coordinate system

and how many meaningful dimensions it contains. We have suggested a working model

with two distance-based dimension which, however, constitutes a starting point rather

than a final solution. It is likely that the exact configuration of these dimensions needs

to be revised and that further dimensions will be added. Furthermore, it remains to be

investigated if brain structures other than the cerebral cortex, such as the cerebellum or

the basal ganglia, are organized along corresponding gradients. If so, the next question

is how gradients in different structures relate to each other, and if they can be unified

into a single coordinate system. The most important methodological challenge related

to such gradients might be to optimize techniques for aligning them across individuals

(Langs et al., 2015; Lombaert et al., 2015). When decomposing data from individual

subjects, matching the gradients is not trivial – signs and order can be flipped or the

data can be decomposed along different dimensions altogether. Thorough evaluation

studies will be required in order to distinguish meaningful interindividual variation from

methodological artifacts.

Assuming that the organization in spatial gradients is not just an evolutionary side

effect, but has adaptive value, it can be asked what advantage this arrangement bears

for the computational capacities of the cortex. One possibility is that the slow spatial

variation of features ensures proximity of strongly connected regions, which perform

similar functions, to reduce wiring cost (Charvet et al., 2015, 2017; Jbabdi et al., 2013).
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The functional relevance of this arrangement has been illustrated in a study showing

that sensory impairment after spinal cord injury is closely related to a discontinuity

in somatotopic gradients (Saadon-Grosman et al., 2015). This opens a set of potential

research questions, investigating if neurological and psychiatric conditions are associ-

ated with specific alterations in cortical gradients. For example, stroke-induced lesions

might cause local disruptions or even global reorganization of cortical gradients.

The perhaps most crucial, but most challenging questions to address, concern the

emergence of cortical gradients during development. Research into this aspect could

substantially enhance our understanding about the significance of the intrinsic cortical

dimensions and the mechanisms by which they are determined. Furthermore, the com-

parison of these dimensions across species could help to uncover the particular changes

through which the human cerebral cortex with its unique functional spectrum arose

from its phylogenetic predecessors.

5.5 Conclusion

The spatial arrangement of cortical areas is not arbitrary. An area’s position along a

global organizing gradient, spanning between sensorimotor and transmodal extremes,

reflects its structural features and functional role. Recognizing this relationship in-

troduces a new perspective in which cortical organization is described with respect

to its own, intrinsic dimensions. It takes us beyond the localization of functions to

areas and networks, towards an understanding of how the spectrum of cognitive ca-

pacities emerges from the spatial arrangement of structural features. Uncovering the

neurodevelopmental basis of these intrinsic dimensions, and exploring their convergence

and variation across species, has the potential to demystify the emergence of uniquely

human cognitive functions.
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Introduction

Recent advances in ultra-high field and quantitative MRI facilitate non-invasive imaging of
the  whole  brain  at  an  unprecedented  level  of  detail  (Weiskopf  et  al.  2015).  Standard
neuroimaging  software  is  not  optimised  for  processing  such  images.  Thus,  there  is  a
growing demand for dedicated tools that can take advantage of the additional information
provided by the new data, and scale well with their increasing size. CBS High-Res Brain
Processing Tools (CBSTools, Bazin et al. 2014) is a suite of software tools for processing
MR images at submillimeter resolution. CBSTools have been developed in Java as a set of
plugins  for  the  MIPAV  software  package  and  the  JIST  pipeline  environment  (https://
www.nitrc.org/projects/cbs-tools/).

In  this  project,  we  made  a  subset  of  CBSTools  modules  available  in  Python  (https://
github.com/juhuntenburg/laminar_python, Huntenburg 2017). The standalone package no
longer requires installation of MIPAV and JIST, and allows for interactive data exploration at
each  processing  stage.  The  Python  interfaces  also  enable  easy  integration  with  other
popular Python-based neuroimaging software tools such as Nibabel (Brett  et  al.  2016),
Nipype (Gorgolewski et al. 2011) and Nilearn (Abraham et al. 2014). We focused on a set
of modules that enable the analysis of multiple horizontal laminae within the cortical sheet
(Waehnert  et  al.  2016).  The  package  implements  an  equivolumetric  approach  for
generating  intracortical  laminae  (Waehnert  et  al.  2014),  which  accounts  for  the
dependence of layer thickness on cortical folding (Bok 1929).

Approach

Our aim was to provide user-friendly Python interfaces to the CBSTools modules and make
these available in a platform independent manner with minimal dependencies. We used the
JCC package (http://lucene.apache.org/pylucene/jcc/index.html) to encapsulate the original
Java classes. We then implemented a set of Python wrapper functions which convert the
input data to Java data structures, initiate a Java virtual machine, call the main Java class
with the specified parameters, collect, convert and return the output data.

Input and output data can either be passed as files or specific Python data structures. We
chose  to  represent  volumetric  data  as  Nibabel  SpatialImages  (http://nipy.org/nibabel/
reference/nibabel.spatialimages.html),  in  particular  Nifti1Images.  These  standardized
objects simplify data exchange with other software tools. Finding a solution to represent
surface data proved to be more difficult, since neither a community standard, nor a suitable
precedent solution in other Python tools exists. Here, we decided to represent a surface
mesh as a dictionary with the entries coords, an array containing the coordinates of the
mesh vertices, and faces, an array containing the vertex indices of the mesh faces.

Functions  for  loading  and  saving  of  volumetric  and  surface  mesh  data  in  various  file
formats (currently nifti, gifti, ply, vtk, obj and Freesurfer formats) can be called directly by
the user, but are also employed by the main processing functions. The loading functions
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automatically determine the input type: supported file formats are loaded and Python data
structures are tested for compliance with the expected pattern. This approach is inspired by
the input and output management in Nilearn. It makes it easy for the user to call the main
functions directly on their data files, without further specifications. At the same time, it is
flexible  to  accommodate  non-standard  data  formats,  which  the  user  can  load  into  the
appropriate Python data structure with custom scripts.

Results

The set of functions implemented in this package enables sampling of a given intensity
image on multiple intracortical  laminae,  starting from a simple tissue classification.  We
illustrated  their  usage  in  an  example  workflow  (https://github.com/juhuntenburg/
laminar_python/blob/master/examples/laminar_python_demo.ipynb). Here, the initial inputs
are two binary images demarcating the inner and outer boundary of the cortical grey matter
of a ferret (Mustela putorius furo) brain (Fig. 1a). Both images are converted into levelset
representations using the create_levelsets function (Fig. 1b). The levelsets are passed to
the layering function, which subdivides the intracortical space between the two boundaries
in equivolumetric laminae. This function outputs three images: a continuous (Fig. 1c) and a
discrete  (Fig.  1d)  representation  of  equivolumetric  intracortical  depth,  and  levelset
representations of each of the intracortical surfaces. In the example, the latter output is
passed to the profile_sampling function, together with an aligned T2 contrast image. T2
values  are  then  sampled  at  different  cortical  depths  (Fig.  1e).  Importantly,  the
equivolumetric laminae do not represent architectonic layers, but provide an anatomically
meaningful coordinate system of cortical depth.

The example data is taken from a 7 Tesla MR scan of an adult ferret (voxel size = 120 µm
isotropic). With no additional manipulation, the package was readily applied to the animal
data, testifying that it can also be used for cross-species analysis. Nilearn plotting functions
were used for visualization, demonstrating the straightforward integration between the two
packages.

Limitations and future directions

The current  stage of  the project  faces several  limitations,  which might  be overcome in
future  work.  First,  we  focused  on  a  subset  of  CBSTools  modules.  A  more  complete
migration  of  CBSTools  functionality  to  Python  is  a  logical  next  step.  Second,  platform
independence  has  not  yet  been  achieved  and  requires  pre-compilation  of  the  JCC
wrappers  on  different  platforms.  Third,  atlases,  lookup  tables  and  example  data  are
currently located within the GitHub repository. Better solutions for providing these files and
other relevant datasets to the user should be found in the long term. Fourth, while our
approach ensures general compatibility with other Python-based neuroimaging software,
we aim for a closer integration, for instance by providing Nipype interfaces. Fifth, CBSTools
are mainly used for processing MRI data, but are generally applicable to other types, such
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as histological data. It would be interesting to expand usability to different data types and
provide respective examples.

Conclusion

We encapsulated a subset of CBSTools in Python and implemented user-friendly interfaces
for the laminar analysis of high-resolution MR images. This is a first step to making high-
resolution data processing tools available to the broader community, which also aims to
encourage other scientists to contribute with their own code.
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Figure 1. 

Laminar  python pipeline,  demonstrated using high-resolution MR data of  a ferret  brain.  a)
Binary images demarcating inner (grey-white matter interface, top) and outer (pial  surface,
bottom) boundaries of the cortex. b) Levelset representations of the same surfaces, where
positive values are assigned to voxels outside of the volume deliminated by the surface, and
negative values to voxels inside, each increasing in value with euclidean distance from the
surface.  c)  Continuous  equivolumetric  intracortical  depth,  which  models  the  positions  of
laminae relative to cortical morphology. d) Discrete representations of equivolumetric depth
levels.  e)  T2 values,  sampled at  the  six  equivolumetric  intracortical  depths.  Note  that  the
equivolumetric  laminae  do  not  represent  architectonic  layers,  but  provide  an  anatomically
meaningful coordinate system of cortical depth.
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Abstract
With recent improvements in magnetic resonance imaging (MRI) at ultra-high �elds, the amount of data collected per
subject in a given MRI experiment has increased considerably. Standard image processing packages are often challenged by
the size of these data and dedicated methods are needed to leverage their extraordinary spatial resolution. Here we
introduce a �exible Python toolbox which implements a set of advanced techniques for high-resolution neuroimaging.
With these tools, segmentation and laminar analysis of cortical MRI data can be performed at resolutions up to 500 µm in
reasonable times. Comprehensive online documentation makes the toolbox easy to use and install. An extensive
developer’s guide encourages contributions of other researchers that will help to accelerate progress in the promising �eld
of high-resolution neuroimaging.
Key words: Neuroimaging in Python; High-resolution MRI; Ultra-high �eld MRI; Laminar MRI; Python Java integration

Background
Advances in ultra-high �eld (7 Tesla and above) MRI now
make it possible to image the whole brain at an unprecedented
level of detail [1]. Submillimeter resolutions and quantitative
metrics reveal �ne-grained variations in structure and
function that were previously undetectable in vivo, and allow
researchers to ask new questions about the human brain.
Examples include the investigation of intracortical myelin [e.g
2, 3, 4, 5], the laminar organization of the cortical sheet [e.g.
6, 7, 8, 9, 10], feedforward and feedback patterns in cortical

connections [11, 12, 13] and the detailed description of small
cortical and subcortical structures [14, 15] and their function
[16].

While ultra-high �eld scanners have become increasingly
available and the �rst open 7 Tesla MRI data sets have been
released [17, 18, 19], software tools still lag behind. Standard
neuroimaging software packages are often not designed to
handle the growing data size and new quantitative contrasts.
Three-dimensional MRI data grows as a cube of its resolution,
and computational complexity generally ranges between
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Key Points
• A toolbox dedicated to the processing of high-resolution MRI data
• Lightweight and �exible code written in Python for ease of use, expansion and integration with other tools
• Extensive documentation with developer’s guide and usage examples based on open data

O(N logN) and O(N2). Therefore, a change in spatial resolution
from 1 mm to 0.5 mm easily entails an increase in compu-
tational requirements by a factor of 15 to 60, depending on
the methods used. Moreover, many new applications, such as
laminar analysis, have only become possible with higher reso-
lutions and are not implemented in existing software packages.
CBS High-Res Brain Processing Tools (CBS Tools) is

a software suite which addresses this gap by providing
cutting-edge methods for e�cient processing of MR images
at submillimeter resolution [20]. For example, CBS Tools
implements routine cortical segmentation at resolutions as
high as 400 µm, processing of quantitative MRI sequences
such as MP2RAGE, MPM or QSM [20], laminar analysis [7],
and small vessel segmentation [21]. While this software has
been well-received as a key tool set for quantitative and
high-resolution neuroimaging, its adoption has been slowed
by the complex infrastructure it builds on. CBS Tools have
been developed in Java as a set of plugins for the MIPAV
software package [22] and the JIST pipeline environment
[23]. The MIPAV / JIST framework provides a graphical
interface for building analysis pipelines and implements many
convenient tools, but it comes with a complex installation
procedure, heavy dependencies, and limited documentation.
More importantly, it is di�cult to integrate with other popular
neuroimaging tools, limiting its software ecosystem.
Meanwhile, a range of versatile, interoperable open source

packages for the analysis of neuroscienti�c data has been de-
veloped using the increasingly popular programming language
Python [24]. For example, Nipy1 is a community of practice
devoted to the use of Python in the analysis of neuroimaging
data, encompassing popular tools such as Nibabel [25], Nipype
[26], Nilearn [27] and many others.
Here we present Nighres2 – a new toolbox that makes the

quantitative and high-resolution image processing capabilities
of CBS Tools available in Python. Nighres is a user-friendly
Python package which interfaces with CBS Tools while avoiding
the JIST and MIPAV dependency tree. It facilitates integration
with other Python-based neuroimaging tools and interactive
data exploration, for example in Jupyter notebooks3. Nighres
features comprehensive online documentation with usage ex-
amples that are based on publicly available data sets. An ex-
tensive developer’s guide encourages external contributions in
Java or Python. With this new package, we aim to make the
capacities of CBS Tools accessible to a wider community, high-
light the potential of new high-resolution image processing
methods, and foster collaboration in this emerging �eld.

Implementation

1 http://nipy.org/
2 NeuroImaginG at High RESolution
3 http://jupyter.org/

Architecture and design
The Nighres package consists of two core Python modules. The
module cbstools contains the original CBS Tools Java classes
that have been encapsulated using the JCC package4. JCC en-
capsulates the Java code with C++ code, to make it accessible to
the Python interpreter, and produces a complete Python exten-
sion module. The module nighres includes the Python inter-
faces that are exposed to the user. It is organized in submod-
ules that represent di�erent application areas.5 For example,
the submodule laminar contains functions related to laminar
analysis of the cortical sheet. The Python interfaces in each
submodule are currently of two types:
i. Functions that wrap Java classes
ii. Functions in pure Python
Functions that wrap Java classes
The initial motivation to develop Nighres was to provide a user-
friendly interface to the functionality of CBS Tools, leveraging
the �exibility of Python. Therefore, a majority of the current
functions in Nighres constitute Python wrappers which inter-
nally execute the original CBS Tools Java classes. These func-
tions generally adhere to the following basic structure (a simple
example can be found in the function probability_to_levelset):
i. Evaluate input parameters
ii. Start Java virtual machine
iii. Initiate Java class through JCC wrapper
iv. Load input data and cast to Java array
v. Pass additional parameters to Java class
vi. Execute Java class
vii. Collect outputs of Java class and cast back
viii. Return outputs (optional: save outputs)
Thus, the actual processing still relies on the same optimized
Java code as in the original CBS Tools. However, since the
Nighres function takes care of the interfacing between Python
and Java, the user only interacts with Python code.
Functions in pure Python
Our long-term vision is for Nighres to become a central plat-
form for new high-resolution image processing tools as they
are developed. As discussed above, Python is rapidly becoming
the most popular programming language in the neuroimaging
community. The modular design of Nighres allows for easy in-
tegration of pure Python processing routines, and for the use of
other neuroimaging software that has been (or can be) wrapped
in Python independently with pipelining tools such as Nipype
[26]. In addition, we have included a core set of lightweight
convenience functions for input and output, parameter han-
dling, and �le naming in Python to simplify function calls and
minimize the integration burden for new methods.

4 http://lucene.apache.org/pylucene/jcc/index.html
5 For consistency the submodule names are based on the original module
organization in CBS Tools
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Data handling
Data handling within Nighres follows established and widely
used standards in the imaging community to ensure maxi-
mum interoperability. Where possible, Nighres uses the Ni-
babel package for handling imaging data [25]. Input and out-
put functions are designed to automatically recognize and load
most commonly used data formats, while maintaining �exi-
bility to accommodate loading of non-standard data formats
using custom scripts. Data is internally represented as Niba-
bel Nifti1Images (volumes) or Python dictionaries (surfaces) and
can be passed in the form of �le names or memory objects. Pro-
cessing results are returned as memory objects, functions with
multiple outputs return a dictionary storing the di�erent out-
puts. Outputs can also be saved to disk. For saving, modi�ers
are appended to the output �le names that refer to the name of
the function and the speci�c output (e.g. _layering_depth for
the continuous depth output of the volumetric layering func-
tion). Output names can be set to have a speci�c pre�x or, by
default, append modi�ers to the main input �le name.

Distribution
While both Python and Java are cross-platform languages,
the JCC package that is used to encapsulate the CBS Tools
Java classes generates C++ code and thus makes compilation
platform-speci�c. We therefore implemented an automated
build script that compiles the original CBS Tools Java code and
builds the wrappers using JCC. We set up continuous integra-
tion using Travis CI6 to test the build upon any changes to
the code base on Github and, for any tagged releases, deploy
the package to the Python Package Index7. The user can then
download the package, run the fully automated build script to
recompile the Java code and C++ wrappers on their platform,
and �nally use the pip installer8 to install the modules and all
their dependencies. Subsequently, Nighres can simply be im-
ported into any Python environment.
We also provide a container allowing users to test Nighres

in a preset environment, without actually installing it on their
system. For this option the user only has to install Docker9, a
lightweight container platform that runs on Linux, Windows
and Mac OS X. The Nighres Docker�le10 can then be used to
build an Ubuntu 14 Trusty Docker image that contains a suit-
able Java installation, Nighres, and Jupyter Notebook.
Dependencies
One goal of Nighres was to reduce external dependencies. We
therefore restricted the required packages for Nighres’ core
functionality to Nibabel, for reading and writing of common
neuroimaging data formats [25], and Numpy, for e�cient
manipulation of data arrays [28]. The functions wrapping
CBS Tools code require the CBS Tools Java library as well the
Java matrix manipulation11 and Apache Commons Math12 li-
braries. However, these libraries are automatically recom-
piled, wrapped and installed from the CBS Tools github repos-
itory13 upon installation of Nighres. Our example work�ows
use Nilearn’s [27] plotting functionality for visualizing their
results, but will automatically skip plotting if Nilearn is not
installed.

6 https://travis-ci.org/nighres
7 https://pypi.python.org/pypi/nighres
8 https://pip.pypa.io/en/stable/
9 https://www.docker.com/
10 https://github.com/nighres/nighres/blob/master/Dockerfile
11 http://math.nist.gov/javanumerics/jama/
12 http://commons.apache.org/proper/commons-math/
13 https://github.com/piloubazin/cbstools-public

Support �les
Nighres automatically installs all essential support �les includ-
ing statistical atlases for brain segmentation, look-up tables
for topological constraints, templates for high-resolution spa-
tial normalization, and a cerebellar lobular atlas [29]. In addi-
tion, example data from publicly released 7 Tesla data sets is
hosted on the Nighres project page14 at the neuroimaging infor-
matics tools and resources clearinghouse [NITRC, 30], and au-
tomatically downloaded when running the example work�ows
(see below).

Documentation
Beyond functional code, clear and concise documentation is one
of the most important drivers of software use and longevity.
Nighres’ online documentation15 was implemented using the
Sphinx documentation tool16 and automatically generates on-
line content from the original function docstrings, which
are written according to the the Numpy/Scipy documentation
guidelines17. This design ensures that the documentation stays
up-to-date with minimal overhead for developers, and is in-
tuitive for users. Extensive example work�ows provide users
with easily understandable and reproducible code, as described
in the following section. Finally, the online documentation
contains an in-depth developer’s guide that leads contribu-
tors through all steps necessary to submit code changes, new
Python functions, new wrappers for CBS Tools functions or im-
provements of the documentation, to the Nighres github repos-
itory. We aimed to write a guide that makes it feasible for any
researcher working with high-resolution neuroimaging data to
contribute to Nighres, even without much previous experience
in software development.

Usage example
In the following we present one of Nighres’ usage example
pipelines. The example shows how to obtain a tissue classi-
�cation from MP2RAGE data [31] by performing the following
steps:
i. Downloading the open MP2RAGE data set from NITRC
ii. Removing the skull and creating a brain mask
iii. Atlas-guided tissue classi�cation using a multiple object
geometric deformable model (MGDM) [32]

The outputs of the plotting functions are shown in Figure 1.

Import and download
First we import nighres and the os module to set the output
directory.
import nighres
import os

out_dir = os.path.join(os.getcwd(),’nighres_examples/
↪→ tissue_classification’)

We also try to import Nilearn plotting functions. If Nilearn is
not installed, plotting will be skipped.
skip_plots = False

14 https://www.nitrc.org/projects/nighres/
15 http://nighres.readthedocs.io/en/latest/
16 http://www.sphinx-doc.org/en/stable/
17 https://numpydoc.readthedocs.io/en/latest/format.html
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try:
from nilearn import plotting

except ImportError:
skip_plots = True
print(’Nilearn could not be imported, plotting will be

↪→ skipped’)

Now we download an example MP2RAGE [31] dataset that is
hosted on NITRC [30]. It is the structural scan of the �rst sub-
ject, �rst session of the 7 Tesla Test-Retest dataset published
by Gorgolewski et al. [18]
dataset = nighres.data.download_7T_TRT(out_dir)

Skull stripping
The �rst processing step is skull stripping. Only the second
inversion image of the MP2RAGE sequence is required to cal-
culate the brain mask. But if we input the quantitative T1 map
and the T1-weighted image as well, they will be masked for us.
We also save the outputs in the out_dir speci�ed above and use
a subject ID as the base �le name.
skullstripping_results =
nighres.brain.mp2rage_skullstripping(second_inversion=

↪→ dataset[’inv2’],t1_weighted=dataset[’t1w’],t1_map=
↪→ dataset[’t1map’], save_data=True,file_name=’
↪→ sub001_sess1’,output_dir=out_dir)

To check if the skull stripping worked well ,we plot the brain
mask on top of the original image (Figure 1a). Nighres, like
Nilearn [27], uses Nibabel [25] Nifti1Image objects to pass data
internally. Therefore, we can directly pass the outputs to
Nilearn’s plotting functions without saving and reloading. Al-
ternatively, the images stored in out_dir can be opened in any
common interactive viewer that can read the Nifti data format.
if not skip_plots:

plotting.plot_roi(skullstripping_results[’brain_mask’],
↪→ dataset[’t1w’], annotate=False, black_bg=False
↪→ , draw_cross=False, cmap=’autumn’)

MGDM classi�cation
Next, we use the masked data as input for tissue classi�cation
with the MGDM algorithm [32]. MGDM works with a single
contrast, but can be improved with additional contrasts. In this
case we use the T1-weigthed image as well as the quantitative
T1 map.
mgdm_results = nighres.brain.mgdm_segmentation(
contrast_image1=skullstripping_results[’t1w_masked’],

↪→ contrast_type1="Mp2rage7T",contrast_image2=
↪→ skullstripping_results[’t1map_masked’],
↪→ contrast_type2="T1map7T",save_data=True, file_name
↪→ ="sub001_sess1", output_dir=out_dir)

Now we look at the topology-constrained segmentation that
MGDM created (Figure 1b)
if not skip_plots:

plotting.plot_img(mgdm_results[’segmentation’], vmin=1,
↪→ vmax=50, cmap=’cubehelix’, colorbar=True,
↪→ annotate=False, draw_cross=False)

MGDM also creates an image which represents for each voxel
the distance to its nearest border (Figure 1c). It is useful to
assess where partial volume e�ects may occur.

if not skip_plots:
plotting.plot_anat(mgdm_results[’distance’], vmin=0,

↪→ vmax=20, annotate=False, draw_cross=False,
↪→ colorbar=True)

This examples implements a complete work�ow for advanced
processing of a quantitative MR contrast at high spatial reso-
lution (voxel size = 0.5 mm isotropic). With the openly avail-
able and automatically downloaded data, any user can try out
Nighres’ functionality immediately after installation and then
adapt the clearly explained code for their own use case.

A

B

C

Figure 1. Tissue classi�cation from MP2RAGE data. A The brain mask ob-
tained from skull stripping. (Note that the white rectangles in the image oc-
cur because the data has been "defaced" for anonymization) B The segmented
brain structures. C A representation of each voxel’s distance to their nearest
borders for assessing partial volume e�ects. Visualization performed within
the script using Nilearn [27].

Discussion
We developed a Python toolbox that specializes in processing
high-resolution brain imaging data. It has been designed with
two key purposes in mind:
i. to provide the neuroimaging community with user-
friendly access to cutting-edge high-resolution image pro-
cessing tools,
ii. to create a �exible framework that can be extended by
other researchers, along with thorough instructions on how
to contribute.
The availability of high-resolution and quantitative MRI

data, and the interest in new research directions that this
data enables, are rapidly growing [e.g 33, 34]. At the same
time, the image processing tools that would be required to
leverage the new level of spatial detail provided by this data
are largely missing. Only a few major neuroimaging packages
have begun to adapt their tools for these purposes [35, 36].
However, these packages are limited by their closed source
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code or rigid data organization, while it is crucial that newly
emerging methods can be �exibly adapted, collaboratively
developed, and integrated with other tools.
CBS Tools provides dedicated open source methods for

high-resolution image processing [20]. Unfortunately, its
complex design and heavy dependencies can make the
installation and handling challenging for naive users, and
impede contributions from other researchers. With Nighres
we provide a �exible and user-friendly implementation of
CBS Tools’ functionality, which eliminates the dependency
on MIPAV and JIST. Another major advance of Nighres
compared to CBS Tools is its extensive online documentation.
Besides comprehensives explanation of every function’s in-
and outputs, carefully documented usage examples provide
step-by-step instructions of how the di�erent tools can be
combined to create complete processing pipelines.
The current implementation of Nighres contains a set of

cutting-edge methods, but rapid methodological advances
are to be expected in the dynamic �eld of high-resolution
neuroimaging. We therefore designed Nighres as a transparent
software platform through which newly developed methods
can be made available to the community and improved
collaboratively. New or existing tools can easily be added in
a variety of formats, depending on the speci�c requirements
of the operation and the preferences of the developer. The
extensive developer’s guide aims to encourage contributions
even from researchers with little previous experience in
software development.
We aimed to closely integrate our package with the existing

community around neuroimaging tools in Python. To this end,
we adopted standardized objects for internal data handling,
which can easily be exchanged with other tools. An example is
the seamless visualization of Nighres outputs using Nilearn’s
[27] plotting functions as showcased in the usage example
(Figure 1).
A major limitation of the current package is that it has been

developed and tested for common Linux platforms only. The
C++ code generated by JCC to interfaces with the CBS Tools
Java classes makes the compilation platform dependent. We
addressed this issue by providing an automated build script
that recompiles this code upon installation. While this process
has only been tested on Linux, the design makes a future
adaptation to Mac OS X platforms straightforward. Support
for Windows is not currently planned. However, the provided
Docker�le enables usage of Nighres in a container on any
platform that supports Docker.
Many future extension of the current package can be

envisioned. Besides integrating more of the original CBS Tools
functions, a main goal is to extend functionality with new
tools coded directly in Python. To ensure e�cient processing
of the large data this might require the implementation of
critical processes as C-extension through Cython18. Another
goal is to provide integration with tools for parallel processing
and job management on compute clusters.
In sum, we developed a user-friendly and well-documented

Python package that makes cutting-edge high-resolution im-
age processing tools available to the research community. The
toolbox is easy to install and provides a comprehensive set
of advanced techniques. While the current functionality is

18 http://cython.org/

largely based on CBS Tools, we hope that the �exible frame-
work encourages contribution of new tools, stimulates collabo-
ration, and accelerates progress in the promising �eld of high-
resolution neuroimaging.

Availability and requirements
• Project name: Nighres
• Project home page: https://github.com/nighres/nighres
• Operating system(s): Linux
• Programming language: Python, Java
• Other requirements: Java≥1.7, Python≥2.7, Numpy≥1.13,
Nibabel≥2.1.0

• License: Apache License 2.0

Availability of supporting data
The data sets supporting the results of this article are available
in the NITRC image repository [30] under https://www.nitrc.
org/frs/?group_id=1205.
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Abstract
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Introduction

The human cerebral cortex is highly convoluted. Surface representations of neuroimaging
data are essential to study cortical topography and to expose areas buried in sulcal depths.
Surface-based  approaches  have  traditionally  been  implemented  in  dedicated  software
suites, that can be hard to integrate with other tools. While the development of versatile
Python tools for neuroimaging has recently gained momentum (e.g. http://nipy.org/), most
of  these  tools  focus  on  volumetric  data.  A  notable  exception  is  PySurfer  (https://
pysurfer.github.io/),  a  Python  package  for  rendering  neuroimaging  data  on  the  cortical
surface.  PySurfer  provides  high-level  functions  to  visualise  data  processed  with  the
Freesurfer  software  (Dale  et  al.  1999,  Fischl  et  al.  1999a).  However,  this  design
complicates adaptation for other input data as it imposes a specific file layout. Moreover,
PySurfer requires the Mayavi library (Ramachandran and Varoquaux 2011) which can be
complicated to install.

Here we present a project that departs from this landscape in two ways: it strives 1) to
provide plotting for cortical surface data in Python under minimal dependencies, and 2) to
integrate surface data with multivariate processing in the Nilearn toolbox (Abraham et al.
2014).

Approach

In order to limit  external  dependencies to standard*1 Python libraries,  we implemented
loading of surface data using Nibabel (Brett et al. 2016) and rendering of the triangular
surface meshes using Matplotlib (Hunter 2007). Beyond these two packages, only Numpy
(van der Walt et al. 2011) is required.

All  functions  are  integrated  in  Nilearn's  plotting  module.  The  core  functionality  is
implemented  in  plot_surf,  which  initiates  the  figure  and  axes,  renders  the  mesh using
Matplotlib's plot_trisurf function, and assigns colour for each triangle from the node-wise
input data. While plot_surf provides maximal parameter flexibility, we complemented it with
wrapper functions setting sensible default parameters for most common use cases.

A considerable challenge was posed by the multitude of surface file formats currently in
use,  and  the  absence  of  an  obvious  community  standard.  The  implemented  loading
functions  automatically  determine  the  input  type  and  convert  it  to  a  standard  Python
structure.  Input  can  be  any  file  that  can  be  read by  Nibabel.  Internally,  surface  mesh
geometries are represented as a list of two Numpy arrays (vertex coordinates and face
indices), and data to be displayed on the mesh as a single Numpy array. It is also possible
to pass these data structures directly. This design makes it easy to load common surface
file formats, but also allows the user to load other formats with custom scripts.
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Results and limitations

The resulting functions are demonstrated in two examples. The example data is hosted on
NITRC  (https://www.nitrc.org/) and  data  fetchers  for  easy  download  and  reuse  were
implemented as part of this project.

In the first example, the Destrieux atlas (Destrieux et al. 2010) is displayed on Freesurfer's
fsaverage5 standard surface (Fischl et al. 1999b) using the plot_surf_roi function (Fig. 1).
This  function  is  optimised  for  plotting  discrete  patches  and  each  triangle  is coloured
according to the median value of  its  three nodes.  While this  strategy prevents blurring
between patches, some boundaries appear rugged. This could be addressed in the future
by considering edge length during the determination of the triangle colours.

The  second  example  uses  resting-state  fMRI  data  from 1  out  of  102  subjects  of  the
enhanced NKI sample (Nooner et al. 2012), which was preprocessed and sampled on the
fsaverage5 surface (https://github.com/fliem/nki_nilearn) using Nipype (Gorgolewski et al.
2011). A seed region in the left posterior cingulate cortex is extracted from the Destrieux
atlas and displayed using the plot_surf_roi function in a medial view (Fig. 2a). The view
parameter is currently dependent on user specification of the hemisphere, and optimised
for the orientation of Freesurfer templates. Since the orientation of the brain in 3D space
can  differ  for  other  meshes,  a  solution  which  allows  to  specify  elevation  and  azimuth
directly, or determines a sensible view automatically, will be an important next step.

Next in the example, functional connectivity of the seed region to all other cortical nodes in
the same hemisphere is calculated using Pearson's product-moment correlation coefficient.
The  resulting  correlation  map  is  plotted  using  plot_surf_stat_map (Fig.  2b),  which
determines face colours based on a linear interpolation of the node values and defaults to
a  symmetric  diverging  colormap.  The example  also  demonstrates  how images can be
thresholded, plotted in a different colour scheme (Fig. 2c) and saved to disk.

 
Figure 1. 

Destrieux atlas plotted on the fsaverage5 surface template using the plot_surf_roi function. a
Convoluted pial surface geometry of the left hemisphere. b Inflated pial surface geometry of
the left hemisphere.
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In  figures  1  and  2a-c,  sulcal  depth  information  is  used  for  shading  of  the  convoluted
surface. While the depth data currently has to be provided by the user, it is conceivable to
include  utilities  for  calculating  sulcal  depth  internally.  If  no  sulcal  depth  information  is
provided, the functions default to displaying a semi-transparent mesh to expose the 3D
structure without shading (Fig. 2d). Transparency can also be controlled using the alpha
parameter.

Beyond the specific limitations discussed above, some general issues remain to be solved
in future work. Currently, each figure contains a single view surrounded by a lot of white
space.  Convenient  plotting  of  more  complex  scenes,  including  different  views  and  a
colorbar, would be desirable. Moreover, 3D rendering remains relatively slow, a problem
which is adressed in an ongoing effort to improve the underlying Matplotlib code (https://
github.com/matplotlib/matplotlib/pull/6085). Finally, the present design still  requires many
low-level inputs from the user. To avoid this, it might be necessary to represent surfaces in
a more complex object, such as a Nibabel GiftiImage. A challenge here is the lack of a
standard representation of surface data in the community.

 
Figure 2. 

Seed-based functional connectivity example. a Seed region in the posterior cingulate cortex
(PCC). b Pearson product-moment correlation coefficient from the seed region time series to
all  other nodes.  c The same map as in b,  thresholded and plotted with a different  colour
scheme. d The same map as in b, plotted without sulcal depth information for shading.
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Conclusion

We  implemented  a  set  of  functions  to  load  and  plot  surface  representations  of
neuroimaging  data  in  Python  and  demonstrated  their  application  in  examples.  The
functions are easy to use, flexibly adapt to different use cases, and only require Numpy,
Matplotlib and Nibabel. While multiple features remain to be added and improved, this work
presents a first step towards the support of cortical surface data in Nilearn.
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Introduction
The human cerebral cortex, whether tracing it through phylogeny or
ontogeny, emerges through expansion and progressive differentiation
into larger and more diverse areas. While current methodologies ad-
dress this analytically by characterizing local cortical expansion in the
form of surface area [1] several lines of research have proposed that
the cortex in fact expands along trajectories from primordial anchor
areas [2,3] and furthermore, that the distance along the cortical surface
is informative regarding cortical differentiation [4]. We sought to inves-
tigate the geometric relationships that arise in the cortex based on ex-
pansion from such origin points. Towards this aim, we developed a
Python package for measuring the geodesic distance along the cortical
surface that restricts shortest paths from passing through nodes of
non-cortical areas such as the non-cortical portions of the surface mesh
described as the “medial wall’.
Approach
The calculation of geodesic distance along a mesh surface is based
in the cumulative distance of the shortest path between two points.
The first challenge that arises is the sensitivity of the calculation to
the resolution of the mesh: the coarser mesh, the longer the shortest
path may be, as the distance becomes progressively less direct. This
problem has been previously addressed and subsequently imple-
mented in the Python package gdist [https://pypi.python.org/pypi/
gdist/], which calculates the exact geodesic distance along a mesh
by subdividing the shortest path until a straight line along the cortex
is approximated [5]
The second challenge, for which there was no prefabricated solution,
was ensuring that the shortest path only traverses territory within
the cortex proper, avoiding shortcuts through non-cortical areas in-
cluded in the surface mesh — most prominently, the non-cortical
portions along the medial wall. Were the shortest paths between
two nodes to traverse non-cortical regions, the distance between
nodes would be artificially decreased, which would have artifactual
impact on the interpretation of results. This concern would be
especially relevent to the ‘zones analysis’ described below, where the
boundaries between regions would be altered. It was therefore
necessary to remove mesh nodes prior to calculating the exact

geodesic, which requires reconstructing the mesh and assigning the
respective new node indices for any seed regions-of-interest.
Finally, to facilitate applications to neuroscience research questions,
we enabled the loading and visualization of data from commonly
used formats such as FreeSurfer and the Human Connectome Project
(HCP). A Nipype pipeline for group-level batch processing has also
been made available [6]. The pipeline is wrapped in a command-line
interface and allows for straightforward distance calculations of en-
tire FreeSurfer-preprocessed datasets. Group-level data are stored as
CSV files for each requested mesh resolution, source label and hemi-
sphere, facilitating further statistical analyses.
Results
The resultant package, SurfDist, achieves the aforementioned goals
of faciliating the calculation of exact geodesic distance on the cor-
tical surface. We present here the distance measures from the central
and calcarine sulci labels on the FreeSurfer native surfaces (Fig. 14b).
The distance measure provides a means to parcellate the cortex
using the surface geometry. Towards that aim, we also implement a
‘zones analysis’, which constructs a Voronoi diagram, establishing par-
titions based on the greater proximity to a set of label nodes
(Fig. 14c).
Surface rendering of the results draws from plotting functions as im-
plemented in Nilearn [7] and exclusively relies on the common li-
brary matplotlib to minimize dependencies. The visualization applies
sensible defaults but can flexibly be adapted to different views, col-
ormaps and thresholds as well as shadowing using a sulcal depth
map.
Conclusions
The SurfDist package is designed to enable investigation of intrinisic
geometric properties of the cerebral cortex based on geodesic dis-
tance measures. Towards the aim of enabling applications specific to
neuroimaging-based research question, we have designed the pack-
age to facilitate analysis and visualization of geodesic distance met-
rics using standard cortical surface meshes.
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com/margulies/surfdist
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Table 6 (abstract A16). User feedback

User Level EOU Time Notes

Novice 1 8 00:35:25 Required walk through support

Novice 2 8 00:52:55 Required support for basic terminal commands only;
then was able to complete independently

Moderate
1

3 00:23:45 Required no support

Moderate
2

4 00:22:10 Required no support

Expert 1 3 00:11:34 Required no support

Expert 2 -
DE

3 02:00:00 Getting scripts to run took several minutes but
reorganizing data and troubleshooting with freesurfer
took significant time

Expert 3 –
DE

2 01:15:00 Required walk through support

EOU: Ease of Use score (1–10) 1 = easiest, 10 = hardest. Time: the time it took
for the user to setup and learn to use the scripts. DE: User’s expertise is with a
different computational environment than the one required by the scripts
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Introduction
Cloud computing resources, such as Amazon Web Services (AWS)
[http://aws.amazon.com], provide pay-as-you-go access to high-
performance computer resources and dependable data storage solu-
tions for performing large scale analyses of neuroimaging data [1].
These are particularly attractive for researchers at small universities
and in developing countries who lack the wherewithal to maintain
their own high performance computing systems. The objective of
this project is to upload data from the 1000 Functional Connectomes
Project (FCP) [2] and International Neuroimaging Datasharing Initia-
tives (INDI) [3] grass-roots data sharing initiatives into a Public S3
Bucket that has been generously provided by AWS. This will make
the data more quickly accessible for AWS-based analysis of these
data, but will also improve the speed and availability of access to this
data for analyses performed outside of the cloud. To begin with, we
focused on the following collections:

� The autism brain imaging data exchange (ABIDE) consists of
structural MRI and resting state functional MRI from 1113
individuals (164 F, 948 M, 6–64 years old, 539 with autism
spectrum disorders, 573 typical controls) aggregated from 20
different studies [4]

� The ADHD-200 contains structural MRI and resting state
functional MRI from 973 individuals (352 F, 594 M, 7–21 years

old, 362 with attention deficit hyperactivity disorder (ADHD),
585 typically developing controls) collected from 8 sites [5]

� The Consortium for Reliability and Reproducibility (CoRR) consists
of 3,357 structural MRI, 5,093 resting state fMRI, 1,302 diffusion
MRI, and 300 cerebral blood flow scans from 1629 subjects
(673 F, 956 M, 6–84 years old, all typical controls) acquired in a
variety of test-retest designs at 35 sites [6]

� The Enhanced Nathan Kline Institute - Rockland Sample (ENKI-RS)
consists of structural MRI, resting state functional MRI, diffusion
MRI, cerebral blood flow, and a variety of task functional MRI
scans and deep phenotyping on over 700 participants from
across the lifespan and a variety of phenotypes acquired at a
single site [7] The acquisition of this collection is ongoing.

� The Addiction Connectome Preprocessed Initiative (ACPI) [http://
fcon_1000.projects.nitrc.org/indi/ACPI/html/index.html] consists
of 216 structural MRI and 252 functional MRI from 192 subjects
(44 F, 148 M, 18–50 years old) from three datasets generated by
NIDA investigators.

Approach
Data for the ADHD-200, ABIDE, CoRR, and Rockland Sample data col-
lections are currently downloadable from NITRC [http://fcon_1000.-
projects.nitrc.org/] as a series of large (>2GB) tar files. The process of
uploading the data involved downloading and extracting the data
from these tar files, organizing the individual images to the standard-
ized INDI format [http://fcon_1000.projects.nitrc.org/indi/indi_data_-
contribution_guide.pdf] and then uploading the data to S3. We
developed a S3 upload script in python using the Boto AWS software
development kit [https://aws.amazon.com/sdk-for-python/] to facili-
tate this process. We also developed a download script in python
that provides basic query functionality for selecting the data to
download from a spreadsheet describing the data.
Results
The entirety of the CoRR, ABIDE, ACPI, and ADHD-200 data collections
and ENKIRS data for 427 individuals were uploaded during the OHBM
Hackathon event. The data are available as individual files to make it
easily indexable by database infrastructures such as COINS [8] LORIS
[9] and others. Additionally, this makes it easy for the users to down-
load just the data that they want. The data in the bucket can be
browsed and downloaded using a GUI based S3 file transfer software
such as Cyberduck [http://cyberduck.io] (see Fig. 14), or using the Boto
Python library [https://github.com/FCP-INDI/INDI-Tools]. One can con-
nect to the bucket using the configuration shown in Fig. 15. The data is
structured as follows: bucketname/data/Projects/ProjectName/Data-
Type. For example you can access raw data from the ENKI-RS, as shown
in Fig. 15, by specifying the following path in CyberDuck: https://
s3.amazon.com/fcp-indi/data/Projects/RocklandSample/RawData
Conclusions
Uploading data shared through the FCP and INDI initiatives improves
its accessibility for cloud-based and local computation. Future efforts
for this project will include uploading the remainder of the FCP and
INDI data and organizing the data in the new brain imaging data
structure (BIDS) format [10].
Availability of supporting data
More information about this project can be found at: https://github.
com/DaveOC90/INDI-Organization-Scripts
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Fig. 14 (abstract A17). a Schematic illustrating the distance (b) and
zone (c) analyses. b FreeSurfer labels from the central and calcarine
sulci depicted on the individual inflated surface (left), and the exact
geodesic distance from the two labels presented on an individual
pial surface (right). c Zones delineated based on proximity to the
central (red) or calcarine (blue) sulci
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Abstract 1 

 2 

The dataset enables exploration of higher-order cognitive faculties, self-generated mental 3 

experience, and personality features in relation to the intrinsic functional architecture of the 4 

brain. We provide multimodal magnetic resonance imaging (MRI) data and a broad set of state 5 

and trait phenotypic assessments: mind-wandering, personality traits, and cognitive abilities. 6 

Specifically, 194 healthy participants (between 20 and 75 years of age) filled out 31 7 

questionnaires, performed 7 tasks, and reported 4 probes of in-scanner mind-wandering. The 8 

scanning session included four 15.5-min resting-state functional MRI runs using a multiband EPI 9 

sequence and a high-resolution structural scan using a 3D MP2RAGE sequence. This dataset 10 

constitutes one part of the MPI-Leipzig Mind-Brain-Body database.  11 
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 1 

Background & Summary  2 

 3 

Understanding the unique features of brain organization giving rise to distinct patterns of 4 

behavior, cognition, and mental experience remains one of the key research questions in the 5 

emerging field of human functional connectomics
1
. Functional connectivity has become a 6 

prominent method for investigating phenotypic differences across individuals
2,3

. However, there 7 

is ever greater need for validation of findings across independent datasets. The dataset presented 8 

here joins several others in contributing to this research agenda
4-6

 and provides an additional 9 

resource for cross-site validation studies. 10 

 11 

We acquired a wide range of self-reported personality measures as well as features of self-12 

generated mental experience. In addition, a core magnetic resonance imaging (MRI) dataset—13 

including one-hour of resting-state functional MRI (rs-fMRI) data—was acquired on 194 healthy 14 

participants. Questionnaires and behavioral measures were acquired over several follow-up 15 

sessions.  16 

 17 

This dataset constitutes one part of the MPI-Leipzig Mind-Brain-Body database. It enables 18 

exploration of individual variance across cognitive and emotional phenotypes in relation to the 19 

brain. All MRI data were acquired on the same Siemens Verio 3Tesla MRI scanner.  20 

 21 

 22 

Methods 23 

 24 

Participants 25 

 26 

In total, datasets from 194 native German-speaking participants are included (94 female, mean 27 

age = 34 years, median age = 27, SD = 16 years; Fig. 1). All participants were scanned on a 3 28 

Tesla magnetic resonance imaging (MRI) scanner (Siemens Magnetom Verio) for the acquisition 29 

of one structural and four rs-fMRI scans. In addition, extensive questionnaire and task 30 

performance data were acquired from each participant. A subset of participants (N=109) were 31 

also included in a complementary data acquisition. 32 

 33 

[Fig. 1 about here] 34 

 35 

Recruitment and inclusion criteria 36 

 37 

Prospective participants were initially recruited by the Leipzig Study for Mind-Body-Emotion 38 

Interactions project. Additional participants were recruited through online and poster 39 

advertisements. All participants were prescreened via telephone to determine their eligibility for 40 

the current study (Table 1). Participants fulfilling the eligibility criteria (including medical 41 

screening for MRI-scanning and neurological history) were invited to Max Planck Institute for 42 

Human Cognitive and Brain Sciences (MPI-CBS) where they were screened for past and present 43 

psychiatric disorders using the Structured Clinical Interview for DSM-IV (SCID-I
7
). After 44 

meeting eligibility criteria, participants received detailed information regarding the study. 45 

 46 
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All participants fulfilled the MRI safety requirements of the MPI-CBS (Supplementary Table 1), 1 

provided written informed consent (including agreement to their data being shared anonymously) 2 

prior to their participation in the study. Participants received monetary compensation for their 3 

participation. The study protocol was approved by the ethics committee at the medical faculty of 4 

the University of Leipzig (097/15-ff). 5 

 6 

[Table 1 about here] 7 

 8 

Data acquisition and protocol overview  9 

 10 

Participants were required to complete: 1) four functional MRI scans within one scanning 11 

session and, if not previously acquired, one structural scan; 2) a battery of personality, mind-12 

wandering, and emotional reactivity questionnaires spread over five appointments, and 3) a set of 13 

cognitive control, synesthesia, and creativity tasks spread over two appointments.  14 

 15 

 16 

[Table 2 about here] 17 

 18 

The data acquisition took place over five appointments over a two-year period (see Table 2):  19 

 20 

● Day 1: We acquired data on a set of questionnaires that were completed at MPI-CBS 21 

(Tables 2 and 3).  22 

● Day 2: We sent personalized links to participants, who could complete the set of online 23 

questionnaires at their convenience (Tables 2 and 3).  24 

● Day 3: Participants were scanned at the Day Clinic for Cognitive Neurology, University 25 

of Leipzig. Before entering the scanner, participants completed a pen-and-paper practice 26 

trial of the short version of the New York Cognition Questionnaire
8
. While in the 27 

scanner, and immediately after each of the four resting state runs, participants received 28 

the computerized version of the same questionnaire. Immediately after the scanning 29 

session participants received additional questionnaires and a set of tasks (Tables 2 and 3).  30 

● Day 4: The Abbreviated Math Anxiety Scale
9
 and the NEO Personality Inventory-31 

Revised
10-12

 were completed online at the participant’s convenience (Tables 2 and 3).  32 

● Day 5: We acquired data on a set of questionnaires and tasks that were administered at 33 

MPI-CBS. Tasks were conducted using pen-and-paper, computer-administered, as well as 34 

Limesurvey
98

 (version 2.00+) interfaces (Tables 2 and 3). 35 

 36 

Within each set of questionnaires and tasks, the order of presentation of questionnaires and tasks 37 

was randomized across participants. If participants failed to complete a given questionnaire it 38 

was excluded from data analysis. Due to dropout, not all participants completed the full set of 39 

questionnaires and tasks.  40 

 41 

[Table 3 about here] 42 

 43 

 44 

Drug screening prior to MRI data acquisition 45 

 46 
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Each of the participants was instructed not to use illicit drugs within two weeks of the scanning 1 

appointment. Participants were also requested to abstain from alcohol and caffeine consumption, 2 

as well as nicotine on the night prior to the scanning day and on the day of scanning. Before the 3 

beginning of the MRI session, participants’ urine was biochemically screened with a MULTI 8/2 4 

strip test (Diagnostik Nord, Schwerin, Germany) for the presence of buprenorphine (cutoff 5 

10ng/mL), amphetamine (cutoff 1000ng/mL), benzodiazepine (300ng/mL), cocaine (cutoff 6 

300ng/mL), methamphetamine (1000ng/mL), morphine/heroine (cutoff 300ng/mL), methadone 7 

(cutoff 300ng/mL), THC (cutoff 50ng/mL). Cutoff levels are those recommended by the 8 

American National Institute on Drug Abuse (NIDA
13

). Participants provided informed consent 9 

on the use of the urine strip test and agreed to its anonymous data sharing, prior to their 10 

participation in the study. 11 

 12 

MRI data acquisition 13 

  14 

All magnetic resonance imaging (MRI) data was acquired using a whole-body 3 Tesla scanner 15 

(Magnetom Verio, Siemens Healthcare, Erlangen, Germany) equipped with a 32-channel 16 

Siemens head coil at the Day Clinic for Cognitive Neurology, University of Leipzig. For each 17 

participant the following scans were obtained: 1) a high-resolution structural scan, 2) four rs-18 

fMRI scans, 3) two gradient echo fieldmaps and, 4) two pairs of spin echo images with reversed 19 

phase encoding direction. A low-resolution structural image of each participant was acquired 20 

using a FLAIR sequence for clinical screening. 21 

 22 

Structural scan 23 

 24 

The high-resolution structural image was acquired using a 3D MP2RAGE sequence
14

 with the 25 

following parameters:  voxel size = 1.0 mm isotropic, FOV = 256 x 240 x 176 mm
 
, TR = 5000 26 

ms, TE = 2.92 ms, TI1 = 700 ms, TI2 = 2500 ms, flip angle 1 = 4°, flip angle 2 = 5°, bandwidth 27 

= 240 Hz/Px, GRAPPA acceleration with iPAT factor 3 (32 reference lines), pre-scan 28 

normalization, duration = 8.22 min. From the two images produced by the MP2RAGE sequence 29 

at different inversion times (inv1 and inv2), a quantitative T1 map (t1map), and a uniform T1-30 

weighted image (t1w) were generated. Importantly, the latter image is purely T1-weighted, 31 

whereas standard T1-weighted image, for example acquired with the MPRAGE sequence, also 32 

contain contributions of proton density and T2*. It should be taken into account that such 33 

differences can affect morphometric measures
15

.  34 

 35 

For one participant, the structural scan is MPRAGE instead of MP2RAGE (the T1-weighted 36 

image file names contain the sequence type) with voxel size = 1 mm isotropic, FoV = 256 x 240 37 

x 176, TR = 2300 ms, TE = 2.98 ms, TI = 900 ms, flip angle = 9°, bandwidth = 238 Hz/Px.  38 

 39 

Resting-state scans 40 

 41 

Four rs-fMRI scans were acquired in axial orientation using T2*-weighted gradient-echo echo 42 

planar imaging (GE-EPI) with multiband acceleration, sensitive to blood oxygen level-dependent 43 

(BOLD) contrast
16,17

. Sequences were identical across the four runs, with the exception of 44 

alternating slice orientation and phase-encoding direction, to vary the spatial distribution of 45 

distortions and signal loss. Thus, the y-axis was aligned parallel to the AC-PC axis for runs 1 and 46 
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2, and parallel to orbitofrontal cortex for runs 2 and 4. The phase-encoding direction was A–P for 1 

runs 1 and 3, and P–A for runs 2 and 4. Further parameters were set as follows for all four runs: 2 

voxel size = 2.3 mm isotropic, FOV = 202 x 202 mm², imaging matrix = 88 x 88, 64 slices with 3 

2.3 mm thickness, TR = 1400 ms, TE = 39.4 ms, flip angle = 69°, echo spacing = 0.67 ms, 4 

bandwidth = 1776 Hz/Px, partial fourier 7/8, no pre-scan normalization, multiband acceleration 5 

factor = 4, 657 volumes, duration = 15 min 30 s. During the resting-state scans, participants were 6 

instructed to remain awake with their eyes open and to fixate on a crosshair. 7 

 8 

Scans for distortion correction  9 

 10 

Two prominent methods exist to correct for geometric distortions in EPI images: fieldmaps, 11 

which represent the degree of distortion as calculated from two phase images with different echo 12 

times
18,19

, and reverse phase encoding, in which pairs of “blip-up blip-down” images are 13 

acquired with opposite phase encoding direction — thus opposite distortions — and used to 14 

model a middle distortion-free image
20,21

. This dataset contains scans required for both methods 15 

to accommodate different preprocessing approaches and facilitate method comparison. Before 16 

each pair of resting-state runs with the same y-axis orientation (see above), the following scans 17 

were acquired in the same orientation as the subsequent resting-state scans: a pair of spin echo 18 

images (voxel size = 2.3 mm isotropic, FOV = 202 x 202 mm², imaging matrix = 88 x 88, 64 19 

slices with 2.3 mm thickness, TR = 2200 ms, TE = 52 ms, flip angle = 90°, echo spacing = 0.67 20 

ms, phase encoding = AP / PA, bandwidth = 1776 Hz/Px,  partial fourier 6/8, no pre-scan 21 

normalization, duration = 0.20 min each), and a gradient echo fieldmap (voxel size = 2.3 mm 22 

isotropic, FOV = 202 x 202 mm², imaging matrix = 88 x 88, 64 slices with 2.3 mm thickness, TR 23 

= 680 ms, TE1 = 5.19 ms, TE2 = 7.65 ms, flip angle = 60°, bandwidth = 389 Hz/Px, prescan 24 

normalization, no partial fourier, duration = 2.03 min). 25 

 26 

Additional scans 27 

 28 

109 subjects also took part in a complementary protocol. Therefore, additional modalities will be 29 

available for these subjects. Modalities include high-resolution T2-weighted (108 subjects), 30 

diffusion-weighted (109), 3D FLAIR (47), phases and magnitudes of gradient-echo images 31 

suitable for Susceptibility-Weighted Imaging (SWI), and Quantitative Susceptibility Mapping 32 

(QSM) (45 subjects), as well as an additional 15-minute resting-state scan for all 109 subjects. 33 

 34 

MRI data preprocessing 35 

 36 

To enhance data usability we provide preprocessed data from 189 subjects (five participants did 37 

not have all four resting-state scans available, and were excluded from preprocessing).
 
Data from 38 

five participants were further excluded due to failure at the preprocessing stage. The raw MRI 39 

data of these subjects are not corrupted, and are therefore available in the main database. 40 

Preprocessing pipelines were implemented using Nipype
22

 and are described in more detail 41 

below. All code is openly available  42 

(https://github.com/NeuroanatomyAndConnectivity/pipelines/tree/master/src/lsd_lemon). 43 

Importantly, the preprocessing performed here is just one out of a multitude of possible pipelines 44 

that could be conceived for this dataset. The decisions taken at individual processing steps will 45 

not be suitable for every application. Users are strongly advised to familiarize themselves with 46 



7 
 

the details of the workflow before adopting the preprocessed data for their study. We also 1 

encourage users to subscribe to the mailing list for updates and discussions regarding the 2 

preprocessing pipelines used here (http://groups.google.com/group/resting_state_preprocessing). 3 

  4 

 5 

Structural data 6 

 7 

The background of the uniform T1-weighted image was removed using CBS Tools
23

, and the 8 

masked image was used for cortical surface reconstruction using FreeSurfer’s full version of 9 

recon-all
24,25

. A brain mask was created based on the FreeSurfer segmentation results. 10 

Diffeomorphic nonlinear registration as implemented in ANTs SyN algorithm
26

 was used to 11 

compute a spatial transformation between the individual’s T1-weighted image and the MNI152 12 

1mm standard space.  13 

 14 

To remove identifying information from the structural MRI scans, a mask for defacing was 15 

created from the MP2RAGE images using CBS Tools
23

. This mask was subsequently applied to 16 

all anatomical scans. 17 

 18 

Functional data 19 

 20 

The first five volumes of each resting-state run were excluded. Transformation parameters for 21 

motion correction were obtained by rigid-body realignment to the first volume of the shortened 22 

time series using FSL MCFLIRT
27

. The fieldmap images were preprocessed using the 23 

fsl_prepare_fieldmap script. A temporal mean image of the realigned time series was rigidly 24 

registered to the fieldmap magnitude image using FSL FLIRT
28

 and unwarped using FSL 25 

FUGUE
29

 to estimate transformation parameters for distortion correction. The unwarped 26 

temporal mean was rigidly coregistered to the subject’s structural scan using FreeSurfer’s 27 

boundary-based registration algorithm
30

, yielding transformation parameters for coregistration. 28 

The spatial transformations from motion correction, distortion correction, and coregistration 29 

were then combined and applied to each volume of the original time series in a single 30 

interpolation step. The time series were masked using the brain mask created from the structural 31 

image (see above). The six motion parameters and their first derivatives were included as 32 

nuisance regressors in a general linear model (GLM), along with regressors representing outliers 33 

as identified by Nipype's rapidart algorithm 34 

(http://nipy.org/nipype/interfaces/generated/nipype.algorithms.rapidart.html), as well as linear 35 

and quadratic trends. To remove physiological noise from the residual time series, we followed 36 

the aCompCor approach as described by Behzadi and colleagues
31

. Masks of the white matter 37 

and cerebrospinal fluid were created by applying FSL FAST
32

 to the T1-weighted image, 38 

thresholding the resulting probability images at 99%, eroding by one voxel and combining them 39 

to a single mask. Of the signal of all voxels included in this mask, the first six principal 40 

components were included as additional regressors in a second GLM, run on the residual time 41 

series from the first GLM. The denoised time series were temporally filtered to a frequency 42 

range between 0.01 and 0.1 Hz using FSL, mean centered and variance normalized using 43 

Nitime
33

. The fully preprocessed time series of all for runs were temporally concatenated. To 44 

facilitate analysis in standard space, the previously derived transformation was used to project 45 

the full-length time series into MNI152 2mm space. The preprocessed data are made available in 46 
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the subjects’ native structural space and MNI standard space, along with the subject’s brain mask 1 

and all regressors used for denoising.  2 

 3 

Data security and data anonymization procedures 4 

 5 

Data for all participants was stored on our instance of the eXtensible Neuroimaging Archive 6 

Toolkit (XNAT
34

) v.1.6.5. at the MPI-CBS. Access to the initial project was restricted (via 7 

XNAT’s private project mode) to members of the Neuroanatomy & Connectivity Group at MPI-8 

CBS for initial curation and quality assessment of data. All data comprised in the MPI-Leipzig 9 

Mind-Brain-Body database were derived from MPI-CBS so data import into XNAT was done 10 

from a local secured network. 11 

 12 

A specially customized XNAT uploader was used to upload all participants’ data to XNAT. The 13 

native DICOM format was used for MRI data, whilst a standard ASCII (*.csv, *.txt) format was 14 

employed to upload all other experimental data such as surveys, test batteries, and 15 

demographical data. 16 

 17 

The anonymization measures applied to the MRI data consisted of removal of DICOM header 18 

tags containing information which could lead to the identification of test subjects as well as the 19 

defacing of all structural (NIFTI) scans. Specific surveys and test batteries containing sensitive 20 

information are only available via the restricted project in XNAT for which access needs to be 21 

applied for (see the Usage Notes section below). 22 

 23 

 24 

Code availability 25 

 26 

All code that was implemented for data acquisition and processing is available online 27 

(https://neuroanatomyandconnectivity.github.io/opendata/). Data handling and computation of 28 

summary measures were implemented in Python. The pipeline used for MRI preprocessing is 29 

also available  30 

(https://github.com/NeuroanatomyAndConnectivity/pipelines/tree/v2.0/src/lsd_lemon, release 31 

v2.0).  32 

 33 

The tasks that the participants received were implemented using the Python package PsychoPy2 34 

Experiment Builder v1.81.03
35,36

, OpenSesame 0.27.4
37

, and Presentation® software (Version 35 

16.5, Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com). We provide the 36 

respective source codes of the Adaptive Visual and Auditory Oddball Target Detection Task 37 
e.g.,38; c.f.,39

(Oddball; 38 

https://github.com/NeuroanatomyAndConnectivity/opendata/tree/master/scripts), Conjunctive 39 

Continuous Performance Task
40

 (CCPT; 40 

https://github.com/NeuroanatomyAndConnectivity/ConjunctiveContinuousPerformanceTask), 41 

and Emotional Task Switching
adapted from 41; see 42

 (ETS; 42 

https://github.com/NeuroanatomyAndConnectivity/opendata/tree/master/scripts).  43 

 44 

Data Records 45 

 46 
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Survey and task data 1 

 2 

A comprehensive list of behavioral and questionnaire data are given in Supplementary Table 2. 3 

Data from all questionnaires are released as summary scores. Results of questionnaires without 4 

summary scores are released as raw item scores, namely: Multi-Gender Identity Questionnaire 5 
adapted from 43

 (MGIQ), Mobile Phone Usage
44

 (MPU), Facebook Intensity Scale
45

 (FBI), New York 6 

Cognition Questionnaire
46

 (NYC-Q), and the short version of the New York Cognition 7 

Questionnaire
8
 (Short-NYC-Q). Task data for the CCPT

40
, ETS

 adapted from 41; see 42
, and oddball 8 

task
 e.g.,38; c.f.,39

 are available via subject-specific csv files. Accompanying specifications and 9 

information for each questionnaire and task are given in txt file format.  10 

 11 

A basic demographic summary is provided together with general information on data acquisition. 12 

The metafile includes gender, age (5-year bins), body mass index, handedness, current or past 13 

diagnosed psychiatric disorder(s), result of the drug test on day of scanning, and formal 14 

education. 15 

 16 

MRI data 17 

 18 

The dataset is organized in concordance with the Brain Imaging Data Structure (BIDS) format
47

. 19 

This facilitates data analysis, for example with BIDS-Apps
48

 (http://bids-apps.neuroimaging.io). 20 

BIDS-Apps encapsulate standard MRI analysis tools within an application that understands the 21 

BIDS format and allows to automatically access relevant data and metadata. 22 

 23 

MRI data are currently available from three locations:  24 

 25 

1. OpenfMRI.org platform also hosts the raw data (accession number ds000221): 26 

https://www.openfmri.org/dataset/ds000221/ 27 

 28 

2. International Neuroimaging Data-sharing Initiative (INDI): 29 

http://fcon_1000.projects.nitrc.org/indi/retro/MPI.html 30 

 31 

3. Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen (GWDG): 32 

https://www.gwdg.de/ 33 

Raw and preprocessed data at this location is accessible through web browser 34 

(https://ftp.gwdg.de/pub/misc/MPI-Leipzig_Mind-Brain-Body/) and a fast FTP 35 

connection (ftp://ftp.gwdg.de/pub/misc/MPI-Leipzig_Mind-Brain-Body/). In the case the 36 

location of the data changes in the future, the location of the dataset can be resolved with 37 

PID 21.11101/0000-0004-2CD6-A (e.g., https://hdl.handle.net/21.11101/0000-0004-38 

2CD6-A)  39 

 40 

Technical Validation 41 

 42 

All datasets were manually assessed for missing or corrupt data. Further quality control of the 43 

data was applied to the MRI and behavioral measures, as described below. 44 

 45 

 46 
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 1 

MRI data quality assessment 2 

 3 

Preprocessed MRI data were assessed for quality using the mriqc package
49

 8 (the code was 4 

adapted from https://github.com/chrisfilo/mriqc and can be found at 5 

https://github.com/NeuroanatomyAndConnectivity/pipelines/tree/master/src/lsd_lemon, release 6 

v2.0), implemented in Python. mriqc creates a report for each individual scan based on 7 

assessment of movement parameters, coregistration, and temporal signal-to-noise (tSNR) 8 

calculations. For comparison, all individual-level scores are displayed with respect to the group-9 

level distribution. We visually inspected the quality assessment reports for each subject to ensure 10 

adequate coregistration and fieldmap correction. 11 

 12 

As motion during the resting-state fMRI scan poses a substantial source of noise
50

, we 13 

characterized motion for each run as the mean and maximum framewise displacement (Fig. 2). 14 

Overall, the summary of motion parameters demonstrates that the data are largely of sufficient 15 

quality, with 89.2% of runs showing less than one voxel (2.3 mm) maximum framewise 16 

displacement, and a mean framewise displacement of 0.18 mm (SD = 0.08 mm). 17 

 18 

[Fig. 2 about here] 19 

 20 

Fieldmap correction provides an approach to correct for distortions due to susceptibility artifacts. 21 

While unable to recover signal loss, the correction of such nonlinear distortions improves 22 

coregistration between scan types, and group-level alignment
51

. As an example, we present a 23 

single dataset, pre- and post-fieldmap correction, in Fig. 3. As expected, fieldmap correction 24 

primarily shifted voxels within ventral regions.  25 

 26 

[Fig. 3 about here] 27 

 28 

Temporal signal-to-noise (tSNR), which is calculated on the voxel-level as the mean signal 29 

divided by the standard deviation, offers a general overview of the local differences across the 30 

brain. We observed lower tSNR in ventral regions, including the orbitofrontal and temporal 31 

cortex (Fig. 4).  32 

 33 

[Fig. 4 about here] 34 

 35 

Behavioral measures quality assessment 36 

 37 

Fifteen questionnaires without a published German version were in-house translated (English-38 

German). To ensure general usability of the translated questionnaires, their reliability was 39 

estimated using Cronbach’s Alpha coefficient (see Table 4). For comparison, the Cronbach’s 40 

Alpha coefficients from the original questionnaires are also reported in Table 4.  41 

Internal consistency of the majority of questionnaires was acceptable, with an average 42 

Cronbach’s Alpha of 0.78, thus showing that the German translations of those specific 43 

questionnaires are reproducible and valid. However, three questionnaires (Short Dark Triad79; 44 
original by

 
80, Body Consciousness Questionnaire54, and the Creative Achievement Questionnaire63) 45 

and four scales (two scales of the Five Facets of Mindfulness Questionnaire66, one scale of the 46 
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Metacognition Questionnaire73, and one scale of the Involuntary Musical Imagery Scale72) 1 

showed modest reliability, with Cronbach’s Alpha coefficient < 0.70, and should be interpreted 2 

with caution.     3 

 4 

 [Table 4 about here] 5 

 6 

Usage Notes 7 

 8 

The MRI dataset can be accessed at www.openfmri.org, http://fcon_1000.projects.nitrc.org, or 9 

https://www.gwdg.de/ and the behavioral data is available at www.nitrc.org 10 

(http://nitrc.org/projects/mpilmbb/). The following data are publicly available: 1) MRI data 11 

(structural and functional), 2) general demographic of the studied population, 3) summary scores 12 

and/or indexes of the questionnaires and tasks, and 4) raw scores of the measures that do not 13 

possess summary scores and have not been classified as sensitive. All MRI datasets are made 14 

available in NIFTI format, and all anatomical scans have been defaced.  15 

 16 

The dataset, protocols, and software used in the acquisition and processing of the data are 17 

documented, curated, and available for research purposes. For access to the behavioral data, 18 

users must first agree to the terms of data usage.  19 

 20 

Additional access to sensitive behavioral measures 21 

 22 

Individual behavioral scores and sensitive phenotypic measures may be made available upon 23 

request to the corresponding authors. The completion of additional data license and 24 

confidentiality forms will be required in advance of further data access.  25 

 26 

Acknowledgements 27 

 28 

This work was partially supported by the Volkswagen Foundation (AZ.: 89 440). We thank 29 

Shameem Wagner and Elizabeth Kelly for assistance in the preparation of the manuscript. 30 

 31 

Author contributions 32 

Conception, design, and preparation of the manuscript: D.S.M., J.G., J.M.H., M.E.L., M.F., 33 

N.M., S.O.  34 

Behavioral data analyses: J.G., M.E.L., S.O.   35 

MRI data preprocessing: J.M.H., M.E.L. 36 

Quality Control of MRI data: D.S.M., J.G., J.M.H., M.E.L., S.O. 37 

Contributions to study design: B.M.B., H.E., J.P., J.S., K.J.G., K.O., N.F. 38 

Participant recruitment: A.O., J.G., M.E.L., N.M., P.H., R.J., S.K., Y.K. 39 

Data acquisition: D.K., J.G., J.P., L.G., M.D., M.E.L., N.M., S.K., S.O.  40 

Data curation: M.F., R.C. 41 

Data contributions: A.B., A.R., A.V., D.K., H.L.S., J.R., J.R., M.E., M.G., M.U.  42 

All authors provided critical feedback and approval of the manuscript. 43 

 44 

Competing interests 45 

The authors declare no competing financial interests.  46 



12 
 

References 1 

 2 

1 Kelly, C., Biswal, B. B., Craddock, R. C., Castellanos, F. X. & Milham, M. P. 3 

Characterizing variation in the functional connectome: promise and pitfalls. Trends Cogn 4 

Sci. 16, 181-188 (2012). 5 

2 Smith, S. M. et al. A positive-negative mode of population covariation links brain 6 

connectivity, demographics and behavior. Nat. Neurosci. 18, 1565-1567 (2015). 7 

3 Vaidya, C. J. & Gordon, E. M. Phenotypic variability in resting-state functional 8 

connectivity: current status. Brain Connect 3, 99-120 (2013). 9 

4 Nooner, K. B. et al. The NKI-Rockland sample: a model for accelerating the pace of 10 

discovery science in psychiatry. Front Neurosci 6, 152 (2012). 11 

5 Holmes, A. J. et al. Brain Genomics Superstruct Project initial data release with 12 

structural, functional, and behavioral measures. Scientific data 2 (2015). 13 

6 Van Essen, D. C. et al. The WU-Minn human connectome project: an overview. 14 

Neuroimage 80, 62-79 (2013). 15 

7 Wittchen, H.-U., Kessler, R. C., Zhao, S. & Abelson, J. Reliability and clinical validity of 16 

UM-CIDI DSM-III-R generalized anxiety disorder. J Psychiatr Res 29, 95-110 (1995). 17 

8 Ruby, F. J., Smallwood, J., Engen, H. & Singer, T. How self-generated thought shapes 18 

mood—the relation between mind-wandering and mood depends on the socio-temporal 19 

content of thoughts. PloS One 8, e77554 (2013). 20 

9 Hopko, D. R., Mahadevan, R., Bare, R. L. & Hunt, M. K. The abbreviated math anxiety 21 

scale (AMAS) construction, validity, and reliability. Assessment 10, 178-182 (2003). 22 

10 Ostendorf, F. & Angleitner, A. NEO-Persönlichkeitsinventar (revidierte Form, NEO-PI-23 

R) nach Paul T. Costa und Robert R. McCrae.  (Hogrefe, 2004). 24 

11 Costa, P. T. & McCrae, R. R. The NEO personality inventory manual.  (Psychological 25 

Assessment Resources., 1985). 26 

12 Costa, P. T. & McCrae, R. R. Revised NEO personality inventory (NEO PI-R) and NEP 27 

five-factor inventory (NEO-FFI): professional manual.  (Psychological Assessment 28 

Resources Lutz, FL, 1992). 29 

13 Hawks, R. L. & Chiang, C. N. Urine testing for drugs of abuse.  (National Institute on 30 

Drug Abuse Rockville, MD, 1986). 31 

14 Marques, J. P. et al. MP2RAGE, a self bias-field corrected sequence for improved 32 

segmentation and T 1-mapping at high field. Neuroimage 49, 1271-1281 (2010). 33 

15 Lorio, S. et al. Neurobiological origin of spurious brain morphological changes: A 34 

quantitative MRI study. Hum Brain Mapp 37, 1801-1815 (2016). 35 

16 Feinberg, D. A. et al. Multiplexed echo planar imaging for sub-second whole brain FMRI 36 

and fast diffusion imaging. PloS One 5, e15710 (2010). 37 

17 Moeller, S. et al. Multiband multislice GE‐EPI at 7 tesla, with 16‐fold acceleration using 38 

partial parallel imaging with application to high spatial and temporal whole‐brain fMRI. 39 

Magn Reson Med 63, 1144-1153 (2010). 40 

18 Jezzard, P. & Balaban, R. S. Correction for geometric distortion in echo planar images 41 

from B0 field variations. Magn Reson Med 34, 65-73 (1995). 42 

19 Reber, P. J., Wong, E. C., Buxton, R. B. & Frank, L. R. Correction of off resonance‐43 

related distortion in echo‐planar imaging using EPI‐based field maps. Magn Reson Med 44 

39, 328-330 (1998). 45 

20 Chang, H. & Fitzpatrick, J. M. A technique for accurate magnetic resonance imaging in 46 



13 
 

the presence of field inhomogeneities. IEEE Trans Med Imaging 11, 319-329 (1992). 1 

21 Andersson, J. L., Skare, S. & Ashburner, J. How to correct susceptibility distortions in 2 

spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage 20, 3 

870-888 (2003). 4 

22 Gorgolewski, K. et al. Nipype: a flexible, lightweight and extensible neuroimaging data 5 

processing framework in python. Front Neuroinform 5, 13 (2011). 6 

23 Bazin, P.-L. et al. A computational framework for ultra-high resolution cortical 7 

segmentation at 7Tesla. Neuroimage 93, 201-209 (2014). 8 

24 Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis: I. Segmentation 9 

and surface reconstruction. Neuroimage 9, 179-194 (1999). 10 

25 Fischl, B., Sereno, M. I. & Dale, A. M. Cortical surface-based analysis: II: inflation, 11 

flattening, and a surface-based coordinate system. Neuroimage 9, 195-207 (1999). 12 

26 Avants, B. B. et al. A reproducible evaluation of ANTs similarity metric performance in 13 

brain image registration. Neuroimage 54, 2033-2044 (2011). 14 

27 Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust 15 

and accurate linear registration and motion correction of brain images. Neuroimage 17, 16 

825-841 (2002). 17 

28 Jenkinson, M. & Smith, S. A global optimisation method for robust affine registration of 18 

brain images. Med Image Anal 5, 143-156 (2001). 19 

29 Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W. & Smith, S. M. Fsl. 20 

Neuroimage 62, 782-790 (2012). 21 

30 Greve, D. N. & Fischl, B. Accurate and robust brain image alignment using boundary-22 

based registration. Neuroimage 48, 63-72 (2009). 23 

31 Behzadi, Y., Restom, K., Liau, J. & Liu, T. T. A component based noise correction 24 

method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 37, 90-101 25 

(2007). 26 

32 Zhang, Y., Brady, M. & Smith, S. Segmentation of brain MR images through a hidden 27 

Markov random field model and the expectation-maximization algorithm. IEEE Trans 28 

Med Imaging 20, 45-57 (2001). 29 

33 Rokem, A., Trumpis, M. & Perez, F. in Proceedings of the 8th Python in Science 30 

Conference (SciPy 2009). (eds G. Varoquaux, S. van der Walt, & J.  Millman) 68-75. 31 

34 Marcus, D. S., Olsen, T. R., Ramaratnam, M. & Buckner, R. L. The extensible 32 

neuroimaging archive toolkit. Neuroinformatics 5, 11-33 (2007). 33 

35 Peirce, J. W. PsychoPy—psychophysics software in Python. J. Neurosci. Methods 162, 8-34 

13 (2007). 35 

36 Peirce, J. W. Generating stimuli for neuroscience using PsychoPy. Front Neuroinform 2 36 

(2008). 37 

37 Mathôt, S., Schreij, D. & Theeuwes, J. OpenSesame: An open-source, graphical 38 

experiment builder for the social sciences. Behav Res Methods 44, 314-324 (2012). 39 

38 Huettel, S. A. & McCarthy, G. What is odd in the oddball task?: Prefrontal cortex is 40 

activated by dynamic changes in response strategy. Neuropsychologia 42, 379-386 41 

(2004). 42 

39 Golchert, J. et al. Individual variation in intentionality in the mind-wandering state is 43 

reflected in the integration of the default-mode, fronto-parietal, and limbic networks. 44 

Neuroimage 146, 226-235 (2017). 45 

40 Shalev, L., Ben-Simon, A., Mevorach, C., Cohen, Y. & Tsal, Y. Conjunctive continuous 46 



14 
 

performance task (CCPT)—a pure measure of sustained attention. Neuropsychologia 49, 1 

2584-2591 (2011). 2 

41 Whitmer, A. J. & Banich, M. T. Inhibition versus switching deficits in different forms of 3 

rumination. Psychol Sci 18, 546-553 (2007). 4 

42 Hildebrandt, L. K., McCall, C., Engen, H. G. & Singer, T. Cognitive flexibility, heart rate 5 

variability, and resilience predict fine‐grained regulation of arousal during prolonged 6 

threat. Psychophysiology 53, 880-890 (2016). 7 

43 Joel, D., Tarrasch, R., Berman, Z., Mukamel, M. & Ziv, E. Queering gender: studying 8 

gender identity in ‘normative’individuals. Psychol Sex 5, 291-321 (2014). 9 

44 Gorgolewski, K. Mobile phone usage.  (developed in-house). 10 

45 Ellison, N. B., Steinfield, C. & Lampe, C. The benefits of Facebook “friends”: Social 11 

capital and college students’ use of online social network sites. J Comput Mediat 12 

Commun 12, 1143-1168 (2007). 13 

46 Gorgolewski, K. J. et al. A correspondence between individual differences in the brain's 14 

intrinsic functional architecture and the content and form of self-generated thoughts. PloS 15 

One 9, e97176 (2014). 16 

47 Gorgolewski, K. J. et al. The brain imaging data structure, a format for organizing and 17 

describing outputs of neuroimaging experiments. Scientific data 3, 160044 (2016). 18 

48 Gorgolewski, K. J. et al. BIDS Apps: Improving ease of use, accessibility and 19 

reproducibility of neuroimaging data analysis methods. bioRxiv, 079145 (2016). 20 

49 Esteban, O. et al. MRIQC: Predicting Quality in Manual MRI Assessment Protocols 21 

Using No-Reference Image Quality Measures. bioRxiv, 111294 (2017). 22 

50 Power, J. D. et al. Methods to detect, characterize, and remove motion artifact in resting 23 

state fMRI. Neuroimage 84, 320-341 (2014). 24 

51 Jezzard, P. Correction of geometric distortion in fMRI data. Neuroimage 62, 648-651 25 

(2012). 26 

52 Derryberry, D. & Reed, M. A. Anxiety-related attentional biases and their regulation by 27 

attentional control. J Abnorm Psychol 111, 225 (2002). 28 

53 Achenbach, T. M. & Rescorla, L. A. Manual for the ASEBA adult forms & profiles. 29 

(Research Center for Children, Youth, & Families, University of Vermont, Burlington, 30 

VT, USA, 2003). 31 

54 Miller, L. C., Murphy, R. & Buss, A. H. Consciousness of body: private and public. J 32 

Pers Soc Psychol 41, 397 (1981). 33 

55 Beck, A. T., Ward, C. H., Mendelson, M., Mock, J. & ERBAUGH, J. An inventory for 34 

measuring depression. Arch. Gen. Psychiatry 4, 561-571 (1961). 35 

56 Beck, A. T., Steer, R. A. & Brown, G. K. Beck depression inventory-II. San Antonio 78, 36 

490-498 (1996). 37 

57 Hautzinger, M., Bailer, M., Worall, H. & Keller, F. BDI: Beck-Depressions-Inventar, 38 

Testhandbuch, 2. überarbeitete Auflage. Bern: Verlag Hans Huber (1995). 39 

58 Carver, C. S. & White, T. L. Behavioral inhibition, behavioral activation, and affective 40 

responses to impending reward and punishment: The BIS/BAS Scales. J Pers Soc 41 

Psychol 67, 319 (1994). 42 

59 Strobel, A., Beauducel, A., Debener, S. & Brocke, B. Eine deutschsprachige Version des 43 

BIS/BAS-Fragebogens von Carver und White. Zeitschrift für Differentielle und 44 

diagnostische Psychologie (2001). 45 

60 Gray, J. A. Precis of the neuropsychology of anxiety: An enquiry into the functions of the 46 



15 
 

septo-hippocampal system. Behav Brain Sci 5, 469-534 (1982). 1 

61 Gray, J. A. in A Model for Personality (ed Hans J. Eysenck)  246-276 (Springer Berlin 2 

Heidelberg, 1981). 3 

62 Farmer, R. & Sundberg, N. D. Boredom proneness—the development and correlates of a 4 

new scale. J Pers Assess 50, 4-17 (1986). 5 

63 Carson, S. H., Peterson, J. B. & Higgins, D. M. Reliability, validity, and factor structure 6 

of the creative achievement questionnaire. Creat Res J 17, 37-50 (2005). 7 

64 Johns, M. W. A new method for measuring daytime sleepiness: the Epworth sleepiness 8 

scale. Sleep 14, 540-545 (1991). 9 

65 Bloch, K. E., Schoch, O. D., Zhang, J. N. & Russi, E. W. German version of the Epworth 10 

sleepiness scale. Respiration 66, 440-447 (1999). 11 

66 Baer, R. A., Smith, G. T., Hopkins, J., Krietemeyer, J. & Toney, L. Using self-report 12 

assessment methods to explore facets of mindfulness. Assessment 13, 27-45 (2006). 13 

67 Schaal, N. K., Bauer, A.-K. R. & Müllensiefen, D. Der Gold-MSI: replikation und 14 

validierung eines fragebogeninstrumentes zur messung musikalischer erfahrenheit 15 

anhand einer deutschen stichprobe. Music Sci 18, 423-447 (2014). 16 

68 Müllensiefen, D., Gingras, B., Musil, J. & Stewart, L. Measuring the facets of musicality: 17 

The Goldsmiths Musical Sophistication Index (Gold-MSI). Pers Individ Dif 60, S35 18 

(2014). 19 

69 Zigmond, A. S. & Snaith, R. P. The hospital anxiety and depression scale. Acta Psychiatr 20 

Scand 67, 361-370 (1983). 21 

70 Herrmann-Lingen, C., Buss, U. & Snaith, P. Hospital Anxiety and Depression Scale-22 

Deutsche Version (HADS-D).  (Huber, 1995). 23 

71 Young, K. S. Internet addiction: The emergence of a new clinical disorder. Cyberpsychol 24 

Behav 1, 237-244 (1998). 25 

72 Floridou, G. A., Williamson, V. J., Stewart, L. & Müllensiefen, D. The Involuntary 26 

Musical Imagery Scale (IMIS). Psychomusicology: Music, Mind, and Brain 25, 28 27 

(2015). 28 

73 Wells, A. & Cartwright-Hatton, S. A short form of the metacognitions questionnaire: 29 

properties of the MCQ-30. Behav Res Ther 42, 385-396 (2004). 30 

74 Sadeghi, H., Hajloo, N., Babayi, K. & Shahri, M. The relationship between 31 

metacognition and obsessive beliefs, and procrastination in students of Tabriz and 32 

Mohaghegh Ardabili Universities, Iran. Iran J Psychiatry Behav Sci 8, 42 (2014). 33 

75 Ophir, E., Nass, C. & Wagner, A. D. Cognitive control in media multitaskers. Proc. Natl. 34 

Acad. Sci. U.S.A. 106, 15583-15587 (2009). 35 

76 Kuhl, J. & Kazén, M. Persönlichkeits-Stil-und Störungs-Inventar: PSSI; Manual.  36 

(Hogrefe, 2009). 37 

77 Tangney, J. P., Baumeister, R. F. & Boone, A. L. High self‐control predicts good 38 

adjustment, less pathology, better grades, and interpersonal success. J Pers. 72, 271-324 39 

(2004). 40 

78 Bertrams, A. & Dickhäuser, O. Messung dispositioneller Selbstkontroll-Kapazität: Eine 41 

deutsche Adaptation der Kurzform der Self-Control Scale (SCS-KD). Diagnostica 55, 2-42 

10 (2009). 43 

79 Paulhus, D. L. Dark triad of personality (D3-short). Measurement instrument database 44 

for the social sciences (2013). 45 

80 Jones, D. N. & Paulhus, D. L. Introducing the short dark triad (SD3) a brief measure of 46 



16 
 

dark personality traits. Assessment 21, 28-41 (2014). 1 

81 Carriere, J. S., Seli, P. & Smilek, D. Wandering in both mind and body: individual 2 

differences in mind wandering and inattention predict fidgeting. Can J Exp Psychol 67, 3 

19 (2013). 4 

82 Crowne, D. P. & Marlowe, D. A new scale of social desirability independent of 5 

psychopathology. J Consult Psychol. 24, 349 (1960). 6 

83 Stöber, J. Die Soziale-Erwünschtheits-Skala-17 (SES-17): Entwicklung und erste 7 

Befunde zu Reliabilität und Validität.  (1999). 8 

84 O'malley, P. M. & Bachman, J. G. Self-esteem and education: Sex and cohort 9 

comparisons among high school seniors. J Pers Soc Psychol 37, 1153 (1979). 10 

85 Stöber, J. Tuckman procrastination scale-Deutsch (TPS-D). Unveröffentlichtes 11 

Manuskript (1995). 12 

86 Tuckman, B. W. The development and concurrent validity of the procrastination scale. 13 

Educ Psychol Meas 51, 473-480 (1991). 14 

87 Whiteside, S. P. & Lynam, D. R. The five factor model and impulsivity: Using a 15 

structural model of personality to understand impulsivity. Pers Individ Dif 30, 669-689 16 

(2001). 17 

88 Lynam, D. R., Smith, G. T., Whiteside, S. P. & Cyders, M. A. The UPPS-P: Assessing 18 

five personality pathways to impulsive behavior. West Lafayette, IN: Purdue University 19 

(2006). 20 

89 McCarthy-Jones, S. & Fernyhough, C. The varieties of inner speech: links between 21 

quality of inner speech and psychopathological variables in a sample of young adults. 22 

Conscious Cogn 20, 1586-1593 (2011). 23 

90 Silvia, P. J. et al. Assessing creativity with divergent thinking tasks: Exploring the 24 

reliability and validity of new subjective scoring methods. Psychol Aesthet Creat Arts 2, 25 

68 (2008). 26 

91 Guilford, J., Christensen, P., Merrifield, P. & Wilson, R. Alternate uses: Manual of 27 

instructions and interpretation. Orange, CA: Sheridan Psychological Services (1978). 28 

92 Landmann, N. et al. Entwicklung von 130 deutschsprachigen Compound Remote 29 

Associate (CRA)-Worträtseln zur Untersuchung kreativer Prozesse im deutschen 30 

Sprachraum. Psychologische Rundschau (2014). 31 

93 Lee, C. S., Huggins, A. C. & Therriault, D. J. A measure of creativity or intelligence? 32 

Examining internal and external structure validity evidence of the Remote Associates 33 

Test. Psychol Aesthet Creat Arts 8, 446 (2014). 34 

94 Eagleman, D. M., Kagan, A. D., Nelson, S. S., Sagaram, D. & Sarma, A. K. A 35 

standardized test battery for the study of synesthesia. J. Neurosci. Methods 159, 139-145 36 

(2007). 37 

95 Jankowska, D. M. & Karwowski, M. Measuring creative imagery abilities. Front Psychol 38 

6, 1591 (2015). 39 

96 Young, K. S. Internet addiction: symptoms, evaluation and treatment. Innovations in 40 

clinical practice: A source book 17, 19-31 (1999). 41 

97 Streiner, D. L. Starting at the beginning: an introduction to coefficient alpha and internal 42 

consistency. J Pers Assess 80, 99-103 (2003). 43 

98 Limesurvey GmbH. / LimeSurvey: An Open Source survey tool /LimeSurvey GmbH, 44 

Hamburg, Germany. URL http://www.limesurvey.org 45 

 46 



17 
 

Data Citation 1 

 2 

1. Nooner, K.B., Colcombe, S.J., Tobe, R.H., Mennes, M., Benedict, M.M., Moreno, A.L., 3 

Panek, L.J., Brown, S., Zavitz, S.T., Li, Q., Sikka, S., Gutman, D., Bangaru, S., Schlachter, R.T., 4 

Kamiel, S.M., Anwar, A.R., Hinz, C.M., Kaplan, M.S., Rachlin, A.B., Adelsberg, S., Cheung, 5 

B., Khanuja, R., Yan, C., Craddock, C.C., Calhoun, V., Courtney, W., King, M., Wood, D., Cox, 6 

C.L., Kelly, A.M., Di Martino, A., Petkova, E., Reiss, P.T., Duan, N., Thomsen, D., Biswal, B., 7 

Coffey, B., Hoptman, M.J., Javitt, D.C., Pomara, N., Sidtis, J.J., Koplewicz, H.S., Castellanos, 8 

F.X., Leventhal, B.L., Milham, M.P. Enhanced Nathan Kline Institute-Rockland Sample 9 

http://fcon_1000.projects.nitrc.org/indi/enhanced/ (2012) 10 

 11 

2. Holmes, A. J. Brain Genomics Superstruct Project (GSP) LONI Image Data Archive 12 

http://neuroinformatics.harvard.edu/gsp/loni (2014) 13 

 14 

3. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K. WU-Minn 15 

HCP Consortium. https://www.humanconnectome.org/# (2013) 16 



Figure Legends 

 

Figure 1. Age distribution. Age distribution (5-year bins) of the participants split by gender. 

 

Figure 2. Quality assessment of resting-state fMRI scans. Distribution of motion (maximum 

and mean framewise displacement). 

 

Figure 3. Example impact of fieldmap correction.  

 

Figure 4. Temporal signal-to-noise (tSNR). Group-level variance in temporal signal-to-noise 

(tSNR) across the brain. tSNR values are lower in ventral regions including orbitofrontal and 

temporal cortex.  
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Understanding how the structure of cognition arises from the
topographical organization of the cortex is a primary goal in
neuroscience. Previous work has described local functional gradi-
ents extending from perceptual and motor regions to cortical
areas representing more abstract functions, but an overarching
framework for the association between structure and function is
still lacking. Here, we show that the principal gradient revealed by
the decomposition of connectivity data in humans and the macaque
monkey is anchored by, at one end, regions serving primary sensory/
motor functions and at the other end, transmodal regions that, in
humans, are known as the default-mode network (DMN). These
DMN regions exhibit the greatest geodesic distance along the cortical
surface—and are precisely equidistant—from primary sensory/motor
morphological landmarks. The principal gradient also provides an
organizing spatial framework for multiple large-scale networks and
characterizes a spectrum from unimodal to heteromodal activity in a
functional metaanalysis. Together, these observations provide a
characterization of the topographical organization of cortex and in-
dicate that the role of the DMN in cognition might arise from its
position at one extreme of a hierarchy, allowing it to process trans-
modal information that is unrelated to immediate sensory input.

topography | connectivity | cortical organization | default-mode network |
gradients

Akey assumption in neuroscience is that the topographical
structure of the cerebral cortex provides an organizing

principle that constrains its cognitive processes. Recent advances
in the field of human connectomics have revealed multiple large-
scale networks (1–3), each characterized by distinct functional
profiles (4). Some are related to basic primary functions, such as
movement or perceiving sounds and images; some serve well-
documented, domain-general functions, such as attention or
cognitive control (5–8); and some have functional characteristics
that remain less well-understood, such as the default-mode network
(DMN) (9, 10). Although the topography of these distinct distrib-
uted networks has been described using multiple methods (1–3), the
reason for their particular spatial relationship and how this con-
strains their function remain unclear.
Advances in mapping local processing streams have revealed

spatial gradients that support increasingly abstract levels of repre-
sentation, often extending along adjacent cortical regions in a
stepwise manner (11). In the visual domain, for example, the ventral
occipitotemporal object stream transforms simple visual features,
coded by neurons in primary visual cortex, into more complex visual
descriptions of objects in anterior inferior temporal cortical regions
and ultimately, contributes to multimodal semantic representations

in the middle temporal cortex and the most anterior temporal
cortex that capture the meaning of what we see, hear, and do (12–
15). Similarly, in the prefrontal cortex, a rostral–caudal gradient has
been proposed, whereby goals become increasingly abstract in an-
terior areas more distant from motor cortex, because they are
increasingly removed from selection processes that operate on
specific motor representations (5, 16–19). Much like the function–
structure correspondence elucidated by topographic maps within
sensory and motor areas (20, 21), these processing gradients provide
a systematic mapping between spatial position and a functional
spectrum of increasingly abstract representations (22).
Processing gradients have proven useful for understanding the

relation between specific regions and function in separate domains:
Mesulam (23) observed that the emergence of more abstract
functional classes of cortex may follow a similar trajectory, hy-
pothesizing that abstract categories emerge from the convergence
of information across modalities (Fig. 1C). This notion has recently
been extended by Buckner and Krienen (24), who proposed the
“tethering hypothesis,” arguing that association cortex gains its
functional attributes through its increasing spatial distance from
the constraints that determine the functional specialization of

Significance

We describe an overarching organization of large-scale connec-
tivity that situates the default-mode network at the opposite end
of a spectrum from primary sensory and motor regions. This to-
pography, based on the differentiation of connectivity patterns,
is also embedded in the spatial distance along the cortical surface
between these respective systems. In addition, this connectivity
gradient accounts for the respective positions of canonical net-
works and captures a functional spectrum from perception and
action to more abstract cognitive functions. These results suggest
that the default-mode network consists of regions at the top of a
representational hierarchy that describe the current cognitive
landscape in the most abstract terms.
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primary cortex. These viewpoints suggest that there may be
macroscale gradients that integrate information across multiple
domains into progressively more abstract representations, in which
local gradients within specific cortical systems could be situated
and understood.
One large-scale cortical system with function that remains

unclear is the DMN. Initially identified through its tendency to
deactivate during externally oriented tasks (25), the DMN has
since been shown to activate in tasks that depend on informa-
tion retrieved from memory, such as remembering the past or
thinking about the future, or considering the mental states of
others (reviews are in refs. 10 and 26). The DMN is also known
to play a role in states that are less related to ongoing environ-
mental events, such as daydreaming and mind wandering (27–30),
and contributes to lapses in external processing (31). A consensus
view on the role of the DMN in human cognition is still lacking,
however, because of the increasing number of cognitive domains in
which it has been implicated. As well as playing an active role during
states, such as autobiographical memory retrieval, social cognition,
and future thinking, the DMN has recently been shown to operate
in concert with regions implicated in cognitive control during
complex working memory tasks (32–36). This emerging evidence
illustrates that the DMN is not tied to a specific form of in-
formational content, leading to suggestions that it acts as a hub that
integrates representational information across the cortex (30, 37).
To understand the topographic organization of the cerebral

cortex at the macroscale (38), we explore how the principal vari-
ance in cortical connectivity relates to the topography of structure
and function by addressing four key questions. (i) Is there a mac-
roscale gradient of connectivity in the human brain that reflects the
systematic integration across modalities in a hierarchical fashion?
(ii) Does this macroscale organization relate to the geometric

structure of the cortex? (iii) Does the organization captured by the
principal gradient account for the spatial distribution of large-scale
networks and the associated functions across the cortex? (iv) Do
these observations provide a framework for understanding the
functional role of the DMN in cognition?

Results
We began our analysis by characterizing the components describ-
ing the maximum variance in functional connectivity patterns—
the extent to which nodes agree in the spatial distribution of cor-
relations—across the human cerebral cortex (Fig. 1 and Fig. S1).
The functional connectivity matrix consisted of 91,282 cortical
and subcortical “grayordinates” with a resolution of 2 mm from the
preprocessed dense connectome S900 release of the Human
Connectome Project (HCP) (39). These data were based on 1 h of
resting-state fMRI data acquired from 820 healthy adult individ-
uals. No further processing of the connectivity matrices beyond
those already implemented by the HCP, which included minimal
spatial smoothing of 2 mm FWHM (40), was conducted.
Rather than delineating discrete network parcellations, we

implemented a method that captures gradients in connectivity
patterns over space—a cortical feature termed “connectopies”
(41). This method, known as diffusion embedding (42), allows
local and long distance connections to be projected into a
common space more effectively than approaches that use linear
dimensionality reduction, such as principal component analysis
(SI Materials and Methods). The resultant components, which we
describe here as “gradients,” are unitless and identify the posi-
tion of nodes along the respective embedding axis that encodes
the dominant differences in nodes’ connectivity patterns.

A B

EDC

Fig. 1. The principal gradient of connectivity in both the (A) human and (B) macaque monkey cortices shows a spectrum between unimodal regions (dark blue) and
transmodal regions (sienna), which in the human cortex, peaks in regions corresponding to the DMN. The proximity of colors can be interpreted as greater similarity of
connectivity patterns. (C) The illustration of connectivity organization suggested by Mesulam (23) proposes a hierarchy of processing from distinct unimodal areas to
integrative transmodal areas. Labels Gradient 1 and Gradient 2, which were not included in the original figure, correspond to the results in D. Modified from ref. 23. (D) A
scatter plot of the first two connectivity embedding gradients. Gradient 1 extends between primary sensorimotor and transmodal regions (red). Gradient 2 separates
somatomotor and auditory cortex (green) from visual cortex (blue). Histograms depicting the distribution of values are presented on the respective axes. (E) Colors from the
scatter plot are presented on the cortical surface for anatomical orientation. A1, primary auditory; ag, angular gyrus; cing, anterior cingulate cortex; ifg, inferior frontal
gyrus; infs, intermediate frontal sulcus; L, limbic; M1, primary motor; mfg, middle frontal gyrus; mtc, middle temporal cortex; P, parietal; Pf, prefrontal; phf, para-
hippocampal formation; pmc, posteromedial cortex; ps, principal sulcus; S1, primary somatosensory; sfg, superior frontal gyrus; V1, primary visual; vmpfc, ventromedial
prefrontal cortex.
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The Principal Gradient in Humans and Macaque Monkeys. The prin-
cipal gradient (Fig. 1A), which accounts for the greatest variance
in connectivity in the human brain (Fig. S2), is anchored at one
end by the primary and unimodal visual, somatosensory/motor,
and auditory regions. At the other end are regions including the
angular gyrus, rostral anterior cingulate, posteromedial cortex,
middle temporal gyrus, and middle and superior frontal gyri—
regions that, in humans, are collectively described as the DMN.
Regions situated between the two extreme ends of the principal
gradient include the inferior frontal sulcus, the intraparietal
sulcus, and the inferior temporal sulcus, constituting hetero-
modal integration and higher-order cognitive regions.
The initial proposal of Mesulam (23) was motivated by tract-

tracing studies conducted in the macaque monkey. To determine
whether our method would generalize to these forms of data, we
performed the same embedding analysis on a publicly available
database of tract-tracing studies conducted in the macaque monkey.
The principal gradient of the macaque monkey cerebral cortex is
presented in Fig. 1B and similar to the human functional connec-
tivity-based results, anchored at one end by visual and somatosen-
sory/motor regions and at the other end by higher-order transmodal
regions in the temporal lobe and the medial and lateral prefrontal
cortexes. The cross-species correspondence of the principal gradient
suggests that this axis of connectivity variation is phylogenetically
conserved and may represent a primary dimension of cortical ex-
pansion (43).
The topography of the principal gradient in both the human and

macaque monkey is consistent with the claim that cortical con-
nectivity is organized along a dimension spanning primary/unimodal
and transmodal regions—a hypothesis that is summarized sche-
matically along the Gradient 1 dimension in Fig. 1C. However, for
this spectrum to indicate hierarchical integration across distinct
modalities, the following connectivity component should distinguish
between primary modalities as indicated by the dimension Gradient
2 in Fig. 1C.
Consistent with the hypothesis by Mesulam (23) (Fig. 1C), the

component accounting for the second-most variance in connectivity
in the human brain differentiates regions solely within the unimodal
end of the principal gradient (Fig. 1D). One end of the spectrum is
characterized by regions of the occipital cortex implicated in pro-
cessing visual input, whereas the opposite end includes the so-
matosensory and motor regions surrounding the central sulcus as
well as the auditory regions of the temporal perisylvian region (Fig.
1E). The convergence described by the first two connectivity gra-
dients across sensory/motor modalities and toward a singular set of
nodes within transmodal cortex is consistent with the claim that the
principal gradient is organized along a dimension that integrates
unimodal regions in a hierarchical manner (Fig. 1C). Moreover, the
principal gradient, anchored at one end by the DMN, contains
within it several local processing gradients that have already been
described within the temporal and frontal lobes (12–15, 17–19).

Additional gradients describing progressively less connectivity vari-
ance are available in Fig. S1.

DMN Peaks of the Principal Gradient Are Equidistant from Primary
Areas. Having characterized the topography of a principal gra-
dient in connectivity, we next investigated whether it is related to
the intrinsic geometry of the cortex. To do so, we examined
whether regions at the extreme of the DMN end occupy spatial
locations that are maximally distant along the cortical surface
from unimodal regions. We selected seven peak cortical nodes
across the DMN clusters of the principal gradient and calculated
the minimum geodesic distance from all other nodes to any of
these “seed” nodes (additional description of methods is in SI
Materials and Methods).
Fig. 2 shows that cortical distance reproduces many features of

the spatial embedding of the principal gradient. Four of the peak
DMN nodes are equidistant from the central sulcus, which is the
topographical landmark of primary somatosensory/motor cortex.
Likewise, we observe a similar correspondence with the calcarine
sulcus, marking the location of primary visual cortex. More gener-
ally, distance clearly increases with lower principal gradient values,
with an especially rapid transition in the connectivity gradient be-
tween 25 and 40 mm and plateaus at the extremes (Fig. 2B). This
relationship is, nevertheless, captured by a linear fit (R2 = 0.55). It is
noteworthy that unimodal regions are at least 40 mm from the
DMN peaks. In similar analyses of macaque monkey cortical dis-
tance (Fig. S3), we observed a comparable distance threshold for
unimodal regions. In sum, this analysis shows that the principal
connectivity gradient reflects macrostructural features of cortical
organization: the nodes corresponding to one extreme end of the
gradient—core regions of the DMN—are maximally distant from
regions that directly govern perception and action.

The Principal Gradient Captures the Spatial Layout of Large-Scale
Networks. We next examined the extent to which the principal
gradient captures the macroscale layout of intrinsic functional
connectivity networks. Despite the high reproducibility of large-
scale resting-state networks (1, 44–46), there is no clear over-
arching spatial schema to explain the transition of one network
to another. We examined the widely used seven-network par-
cellation by Yeo et al. (2) with respect to the position of each
network along the principal gradient (Fig. 3A). [Results using the
17-network parcellation from ref. 2 are presented in Fig. S4.]
Fig. 3 shows that networks are not randomly distributed along

this dimension: instead, as shown in the box plots in Fig. 3B,
cortical nodes from the same network tend to cluster at similar
positions. Importantly, the DMN identified in this parcellation
(Fig. 3, red) occupies one extreme position along the principal
gradient and is maximally separated from visual (Fig. 3, purple)
and motor (Fig. 3, blue) networks, which are at the other extreme.
One exception is the limbic network (Fig. 3, beige), which includes
an extensive range of values. However, the spatial distribution of

A B

Fig. 2. (A) The minimum geodesic distance (in millimeters) from each point on the cortical surface to seven seed nodes located in the positive peaks of the principal
gradient. Morphological landmarks of primary areas denoted by white dotted lines, such as the central sulcus (cs; somatosensory/motor), calcarine sulcus (cals; visual),
and transverse temporal gyrus (tt; auditory), are equidistant from the surrounding DMN peaks (illustrated by arrows). Gray lines mark the calculated equidistant line.
(B) The contour scatter plot shows the negative relationship between geodesic distance from seven positive peak locations and the principal gradient (R2 = 0.55).
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this network may be accounted for by low signal to noise within
the original data used for parcellation (2), and it may, thus, not
accurately reflect the connectivity of its constituent regions.
This analysis, therefore, shows that the principal gradient of

connectivity provides a framework for the spatial ordering of
large-scale networks. In addition, the principal gradient captures
similar, repeating transitions between these networks, which occur
across cortical lobes (Fig. 3C). We represent this consistent ar-
rangement as a schematic illustration in Fig. 3D. Notably, outlier
gradient values for each network are located predominantly at
their boundaries (Fig. S5), suggesting that, in some cases, the
principal gradient describes gradual connectivity transitions that
are obscured by discrete network parcellation.

Distribution of Functions Along the Principal Gradient. Our final
analysis explored whether the regions located at the DMN ex-
treme of the gradient serve functions that are abstracted from
perception and action. We conducted a metaanalysis using the
NeuroSynth database (47) [Figs. S6 and S7 show corresponding
analysis using the BrainMap database (48)] and examined the
association between a list of topic terms with regions of interest
created from five-percentile bins of the principal gradient. Topic
terms were sorted by their weighted average position along the
gradient, revealing a systematic shift in function. Fig. 4 shows
that the unimodal end is characterized by terms depicting acting
and perceiving, such as “motor,” “visual perception,” “multi-
sensory processing,” and “auditory processing,” whereas the end
characterized by the DMN emphasizes terms such as “social
cognition,” “verbal semantics,” and “autobiographical memory”—
tasks that rely on complex representations abstracted away from
specific sensory and motor processes. Between the extremes, we
observe domain-general functions, such as “cued attention,” “in-
hibition,” and “working memory,” in regions corresponding to the
dorsal attention and salience networks above (Fig. 3D).

Discussion
Our analysis characterized a principal gradient of cortical orga-
nization in the human connectome, which is anchored at one end
by systems implicated in perceiving and acting, and at the other
end by transmodal association regions, corresponding in humans
to the DMN (Fig. 1). A comparative analysis using tract-tracing

data from studies in the macaque monkey found a corresponding
gradient, providing initial evidence that this axis of connectivity
variation may be phylogenetically conserved. The observation that
the principal gradient corresponds to the intrinsic geometry of the
cortex—regions in the DMN have the greatest geodesic distance
along the cortical surface from primary sensory/motor areas—
further indicates this axis may provide a crucial blueprint for cor-
tical organization (Fig. 2). We also found that large-scale networks
are arranged along this axis, with the same transitions between
consistently adjacent networks occurring throughout the cortex
(Fig. 3). Finally, a task-based metaanalysis characterizing the func-
tional attributes of this gradient showed a spectrum of increasing
abstraction that follows the transition from unimodal cortex to the
extreme end of the gradient in the DMN (Fig. 4).
The location of the DMN at one extreme end of the principal

gradient provides an organizing principle for understanding its role
in cognition. First, these findings provide anatomical support for
why the DMN has been associated with processes that are un-
related to immediate stimulus input, such as daydreaming or mind
wandering (27, 28, 30). The DMN is at a maximal distance from
systems involved in perception and action in both functional con-
nectivity and anatomical space, indicating that the neural activity in
these regions is likely to be comparably insulated from direct en-
vironmental input (49, 50). Second, the location of the DMN as
equidistant from all sensory/motor systems is aligned with its broad
range of functions that requires integration between multiple
sensory systems, including episodic (51) and semantic memory (52–
54), social cognition (55, 56), goal-directed working memory tasks
(26, 32, 33, 35), and reward-guided decision making (57, 58). The
two cardinal features of the DMN related to abstraction––stimulus
independence and content heterogeneity––can be accounted for by
its position at the end of a topographical hierarchy that is equi-
distant from unimodal systems, thus acting as a hub of integration
across multiple sensory modalities (37) (Fig. 3D).
The principal gradient illustrates a broader topographic or-

ganization of large-scale connectivity (38) that accounts for the

A B

C D

Fig. 3. (A) The principal gradient values from each of seven networks (2) are
presented as (B) box plots ordered by the mean value. (C) Illustrative cutouts
taken from A to show the repeated patterns of network spatial adjacency
captured by the principal gradient. Arrows in A indicate the corresponding
orientation of the cutouts. (D) A schematic of the spatial relationships of ca-
nonical resting-state networks (2) applying the schema suggested in ref. 23
presented in Fig. 1C. dmn, default-mode network; dorsal attn, dorsal attention
network; sal, salience network; somato/mot, somatosensory/motor network.

Fig. 4. NeuroSynth metaanalysis of regions of interest along the principal
gradient using 24 topic terms. Terms are ordered by the weighted mean of their
location along the gradient. Sensory processing terms are located at the top
followed by domain-general cognitive functions and then, higher-order abstract
cognitive and memory-related processes. Similar results using the BrainMap
database are available in SI Materials and Methods. autobiographical mem.,
autobiographical memory; multisensory proc., multisensory processing.
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spatial arrangement of local processing streams throughout the
cerebral cortex. Gradients in both the temporal and prefrontal
cortexes are apparent in Fig. 1, showing that these hierarchies
are not isolated local phenomena; they emerge as elements of a
spectrum that begins within input–output systems and ends with
the DMN. Notably, our results are consistent with a recent
modification of the rostral–caudal processing gradient described
within lateral frontal cortex (59, 60). Rather than the more
rostral areas located farther along in the processing hierarchy
(18, 19), two distinct hierarchical gradients of temporal- and
feature-related abstraction converge in middle lateral prefrontal
cortex (60). The consistency between the principal gradient and
this revised lateral prefrontal hierarchy suggests that it may pro-
vide a source for future studies investigating the detailed topog-
raphy of local processing streams.
In addition to incorporating local processing streams within a

global framework, the principal gradient situates discrete large-
scale connectivity networks along a continuous spectrum. With
recent advances in multimodal cortical parcellation (61), this
approach provides a complementary means to describe the ge-
stalt of the cortical mosaic. Future studies are needed to better
characterize the types of transitions between different patterns of
large-scale connectivity and identify where processing occurs in a
stepwise (11) or “gradiential” manner (22).
It is now widely accepted that the DMN is important, because it

permits cognitive processing that is independent of the here and
now. This capacity is adaptive, because it permits flexibility: more
abstract representations of a stimulus enable the generation of
alternative behaviors, allowing original and creative thoughts to
emerge (62). Along those lines, a “positive–negative” axis of brain–
behavior covariation describes a similar connectivity spectrum,
distinguishing the DMN from sensory/motor regions (63). Beyond
supporting states of creativity and planning (64, 65), the DMN has
also been implicated in almost all psychiatric conditions (66), in-
dicating that there may be costs as well as benefits from the ca-
pacity to apprehend the world as it might be rather than seeing it
as it is right now.

Materials and Methods
The principal gradient was derived from human (39) and macaque (67, 68)
connectivity matrices using diffusion embedding (42)—a nonlinear di-
mensionality reduction technique (Fig. 1). Geodesic distance along the cor-
tical surface from peak nodes of the transmodal end of the principal
gradient, presented in Fig. 2, was calculated using an exact distance algo-
rithm (69, 70). For the comparison with canonical large-scale networks (Fig.
3), the principal gradient values were extracted from each of seven networks
from ref. 2. Finally, binarized masks at five-percentile increments of the
principal gradient were used as regions of interest in a NeuroSynth (47)
metaanalysis (Fig. 4). Additional information regarding methods is available
in SI Materials and Methods as well as Figs. S1–S7. All software used in this
study is openly available at https://neuroanatomyandconnectivity.github.io/
gradient_analysis/.

All MRI data used in this study were publicly available and anonymized.
Participant recruitment procedures and informed consent forms, including
consent to share deidentified data, were previously approved by the
Washington University Institutional Review Board as part of the HCP (39).
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