Abbildungsverzeichnis

Abbildung 1: Schematischer Aufbau einer zellulären Plasmamembran.	6
Abbildung 2: Die Glycokalix eukaryontischer Zellen.	7
Abbildung 3: Struktur von Sialinsäuren.	8
Abbildung 4: Synthetische metabolische Sialinsäurevorläufer.	_10
Abbildung 5: Systematik der Deuterostomia und ihre Vorkommen an Sialinsäuren.	_12
Abbildung 6: Strukturen typischer N- bzw. O-glycosidisch verknüpfter Oligosaccharide von	
Glycoproteinen	_14
Abbildung 7: Struktur des Gangliosids G _{M1} .	_17
Abbildung 8: Schematische Darstellung der Selektine und ihrer Liganden.	_19
Abbildung 9: N-terminale Bindungsdomäne des Siglec-1 (Sialoadhäsin).	_20
Abbildung 10: Proteinfamilie der humanen Siglecs.	_21
Abbildung 11: Biosynthese von UDP-GlcNAc in Säugetierzellen.	_29
Abbildung 12: Sialinsäurebiosynthese in Säugetierzellen.	_30
Abbildung 13: Schematische Darstellung der humanen GNE-Exonstruktur der GNE-Spleißvariant	en
nach Watts <i>et al.</i> (2003)	_35
Abbildung 14: Klassifikation der wichtigsten Muskelkrankheiten.	_36
Abbildung 15: Muskelquerschnitt eines h-IBM-Patienten.	_37
Abbildung 16: Schematische Darstellung der Lokalisation der h-IBM- (oben) und Sialurie- (unten)	
Punktmutanten im GNE-Gen	_38
Abbildung 17: Amplifikation von GNE2- und GNE3-codierender cDNA aus humaner Plazenta.	_43
Abbildung 18: N-terminale Sequenzen der hGNE-Isoformen.	_44
Abbildung 19: Aminosäure-Sequenzvergleich der N-Termini des humanen und murinen GNE2-	
Proteins.	_45
Abbildung 20: Verteilung der GNE-Isoformen innerhalb verschiedener humaner Zelllinien.	_46
Abbildung 21: Gewebsspezifische Verteilung der humanen GNE-Isoformen codierenden mRNAs.	_47
Abbildung 22: Gewebsspezifische Verteilung der murinen GNE-Isoformen codierenden mRNAs	_48
Abbildung 23: Schematische Darstellung der cDNAs der klonierten Konstrukte.	_49
Abbildung 24: PCR-Produkte der humanen und murinen GNE-Isoform-codierenden cDNAs.	_49
Abbildung 25: PCR-Analyse zum Nachweis von Virus im Erststock.	_51
Abbildung 26: Expression der humanen und murinen GNE isoformen.	_53
Abbildung 27: Aufgereinigte mGNE2 in einer SDS-PAGE mit anschließender Silberfärbung.	_54
Abbildung 28: MALDI-MS-Analyse zur Identifizierung der mGNE2-Doppelbande.	_54
Abbildung 29: Behandlung aufgereinigter mGNE2-Fraktionen mit alkalischer Phosphatase.	_55
Abbildung 30: SDS-PAGE mit anschließender Silberfärbung von in Anwesenheit von MG132	
exprimierter mGNE2.	_56
Abbildung 31: Aufgereinigte mGNE2-Mutante M32A in einer SDS-PAGE mit anschließender	
Silberfärbung	_57
Abbildung 32: α-GST-Western-Blot von hGNE3-Eluat.	_57

Abbildung 33: UDP-GlcNAc-2-Epimerase- und ManNAc-Kinase-Aktivitäten der gereinigten GNE-	
Isoformen	_58
Abbildung 34: Gelfiltrationsanalysen der gereinigten GNE-Isoformen.	_60
Abbildung 35: Gekoppelt-optischer Enzymtest zur hGNE2-Tetramer-Rückbildung.	_61
Abbildung 36: Radiometrischer UDP-GlcNAc-2-Epimerase-Assay der in CHO-Lec3-Zellen	
exprimierten GNE-Isoformen	_62
Abbildung 37: Amplifikation der cDNA-Konstrukte der GNE-Isoformen.	_63
Abbildung 38: Radiometrischer UDP-GlcNAc-2-Epimerase-Assay der hGNE-Pools und einzelner	
hGNE1-Klone	_64
Abbildung 39: PCR-Analyse der mit hGNE1 transfizierten BJA-B-Zelllinien.	_65
Abbildung 40: Histogramm der FACS-Analyse mit VVA-Lektin.	_66
Abbildung 41: Schematische Darstellung der Herstellung der cDNA des GNE2-Hybridproteins.	_67
Abbildung 42: α-GST-Immunoblot der Aufreinigung von GST-VCP.	_69
Abbildung 43: α-GST-Immunoblot des GST-Pull-downs mit GST-VCP und C-terminal His-getagte	m
hGNE1	_70
Abbildung 44: α -His- und α -GST-Immunoblot des His- <i>Pull-downs</i> mit GST-VCP bzw. GST und	
hGNE1-C-His.	_71
Abbildung 45: α -GST-Immunoblot des <i>Pull-downs</i> mit GST-VCP bzw. GST und hGNE1-C-His.	_72
Abbildung 46: (A) α -GST-Immunoblot von über Glutathion-Sepharose aufgereinigten Lysaten der	mit
GST-VCP bzw. GST und hGNE1 co-transfizierten Sf900-Zellen. (B) α-His-Immunoblot von über Ni	-
NTA-Agarose aufgereinigten Lysaten der mit GST-VCP bzw. GST und hGNE1 co-transfizierten Sf	900-
Zellen	_73
Abbildung 47: α-His-Immunoblot von Co-IP-Präzipitaten der Lysate von co-transfizierten Sf900-	
Zellen.	_74
Abbildung 48: Western-Blot-Analysen von Co-IP-Präzipitaten der Lysate von einzeln mit GST-VC	P
bzw. GST und hGNE1 transfizierten Sf900-Zellen.	_76
Abbildung 49: Überexpression der Oxr1-Isoformen in <i>E.coli</i> BL21-Zellen.	78
Abbildung 50: SDS-PAGE mit anschließender Coomassie-Färbung von in <i>E.coli</i> BL21-Zellen	
exprimierten Oxr1 long- bzw. Oxr1 short-Protein.	_79
Abbildung 51: MALDI-MS-Spektrum von Oxr1 short.	80
Abbildung 52: Sequenzabgleich zwischen den in der MALDI-MS-Analyse gefundenen Peptide un	d
den Datenbankeinträgen.	_80
Abbildung 53: Western-Blot-Analysen des His-Pull-downs mit Lysaten von GST-Oxr1 bzw. GST u	und
hGNE1 transfizierten Insektenzellen.	_83
Abbildung 54: Alternatives Spleißen des α -Tropomyosin-Gens der Ratte.	_96
Abbildung 55: BAC-TO-BAC [®] -Baculovirus-Expressionssystem.	_116
Abbildung 56: Morgan-Elson-Reaktion nach Reissig <i>et al.</i> , 1955	127
Abbildung 57: Colorimetrischer ManNAc-Kinase-Assay.	128