7. Elektrische Leitfähigkeit

7.1. Widerstandsmessungen

In der Tabelle 15 werden jeweils Werte für zwei Frequenzen aus dem mittleren Messbereich angegeben, da diese Messwerte den geringsten Messfehler zeigen. Die Einzelergebnisse sind nicht direkt vergleichbar, weil die Dotierungsgrade unterschiedlich sind. Da keine lineare Abhängigkeit des spezifischen Widerstandes ρ vom Dotierungsgrad vermutet wird, konnte keine Normierung dieser Größe vorgenommen werden. Aus dem gemessenen Widerstand R wurde mit Hilfe der Formel 19 (Kapitel 4) mit dem Elektrodenabstand r = 0,12 cm, der Breite der Plasmapolymerschicht b = 0,4 cm und der Schichtdicke d [1 nm = $1 \cdot 10^{-7}$ cm] der spezifische Widerstand ρ berechnet. Der Fehler der Schichtdicke d liegt bei etwa 10 %.

Tabelle	15:	Spezifische	Widerstände	ρ	der	in	Tabelle	11	(Kapitel	6)	aufgeführten
Plasmapolymere und alkalimetalldotierten Plasmapolymere:											

Dotierung	undotiert					Lith	iun	1	Natrium				Kalium			
Monomer (Schichtdicke d)	ρ [Ω cm]					ρ [Ω	cm]	ρ [Ω cm]				ρ [Ω cm]			
(Sementalexe d)	@ 10 ³ Hz		@ 10 ⁴ Hz		@ 10 ³ Hz		@ 10 ⁴ Hz		@ 10 ³ Hz		@ 10 ⁴ Hz		@ 10 ³ Hz		@ 10 ⁴ Hz	
↓ ↓																
Acetylen	1. 1	0^{6}	2.	10^{4}	8.	10 ⁵	6.	10^{4}	9.	10^{5}	2.	10 ⁴	8.	10 ⁴	6.	10^{4}
(45 nm)	1 1	0	2	10	Ŭ	10	Ŭ	10	-	10	2	10	Ŭ	10	Ū	10
Ethylen	$2 \cdot 1$	0^{5}	8.	10^{4}	2.	10^{5}	2.	10^{4}	3.	10^{4}	3.	10^{3}	1.	10^{4}	1.	10^{4}
(10 nm)		Č	-								-		_			
1,3-Butadien	5· 1	0^{4}	5.	10 ⁴	3.	10 ⁵	5.	10 ⁴	3.	10 ⁵	5.	10 ⁴	5.	10 ⁴	1.	10 ⁴
(20 nm)																
Styrol	8· 1	0^{6}	7.	10^{4}	7.	10 ⁵	2.	10 ⁵	6.	10 ⁴	1.	10 ⁴	1.	10 ⁶	1.	10 ⁶
(220 nm)																

Die ermittelten spezifischen Widerstände für die undotierten und alkalimetalldotierten Plasmapolymere liegen zwischen $10^3 \Omega$ cm und $10^6 \Omega$ cm. Das bedeutet, alle hier untersuchten Plasmapolymere sind Halbleiter mit einem spezifischen Widerstand, der in der Größenordnung des spezifischen Widerstandes von Silizium (2,3 · $10^5 \Omega$ cm) liegt [VII.1, VII.2]. Bei Alkalimetall-Kohlenstoffverhältnissen von 0,04-0,16 (siehe Tabelle 11, Kapitel 6) kann auch von intrinsischer Leitfähigkeit der dotierten Schichten ausgegangen werden. Perkolationseffekte [VII.3, VII.4], wie z.B. bei russgefüllten Polymeren, sind erst ab Dotand-Kohlenstoffverhältnissen von etwa 0,20 zu erwarten [VII.1, Seite 5].

In einigen Fällen ist überraschender Weise trotz erhöhter Ladungsträgerdichte bei dotierten Filmen eine Zunahme des spezifischen Widerstandes gegenüber den undotierten Plasmapolymeren zu erkennen (siehe Tabelle 15). Da die Leitfähigkeit das Produkt aus Ladungsträgerdichte und Ladungsträgerbeweglichkeit ist, muss in diesen Fällen die Ladungsträgermobilität eingeschränkt sein. Dies könnte z.B. durch Koordination von Alkalimetallen an π -Elektronen des Plasmapolymers geschehen [vgl. VII.5].

Der Effekt der einzelnen Alkalimetalle auf den spezifischen, elektrischen Widerstand der Plasmapolymere zeigt keinen allgemeingültigen Trend. In den Fällen des plasmapolymerisierten Acetylens und Ethylens zeichnet sich eine Abnahme des spezifischen Widerstandes in der Reihe der Dotanden Li < Na < K ab. Beim plasmapolymerisierten Styrol wird der geringste spezifische Widerstand durch Na-Dotierung erzielt, beim plasmapolymerisierten 1,3-Butadien durch K-Dotierung.

Die Proben wurden vor der Messung einige Zeit an der Luft gelagert und sind deshalb oxidiert. Dies erhöht üblicherweise den spezifischen elektrischen Widerstand [z.B. VII.6, Seite 79, VII.1, Seite 216-218] bzw. senkt die spezifische Leitfähigkeit.

7.2. Modellbetrachtung des Ladungstransports

Obwohl der Schwerpunkt dieser Arbeit auf der spektroskopischen Untersuchung der Plasmapolymere bezüglich ihres chemischen Aufbaus liegt, sollen im folgenden einige der Widerstandsmessungen diskutiert werden, die charakteristische Frequenzabhängigkeiten zeigen:

Abbildung 59: Darstellung des spezifischen Widerstandes ρ über der Frequenz ω der Wechselspannung für Nadotiertes, plasmapolymerisiertes Styrol.

Generell steigt im Fall eines Band-Leitungsprozesses der elektrische Widerstand mit steigender Frequenz an, während der elektrische Widerstand bei Hüpfprozessen mit steigender Frequenz abnimmt [VII.7, VII.8, VII.9, Seite 39]. Der Wechselstrom-Widerstand ρ ist nach einem empirisch ermittelten Zusammenhang $\rho(\omega) \approx \omega^n$ exponentiell mit der Frequenz ω verknüpft [VII.10, VII.11]. Der in Abbildung 60 gezeigte Verlauf des spezifischen Widerstands ρ von natriumdotiertem, plasmapolymerisiertem Styrol zeigt zwischen der Frequenz 10^2 Hz und 10^4 Hz einen etwa nach $f(\rho) \approx \omega^{-1.7}$ verlaufenden Abfall des spezifischen Widerstandes mit steigender Frequenz. Dies könnte nach dem Garton-Modell [VII.12] auf Hüpfprozesse zwischen tiefen Haftstellen⁶ ($\Delta E \leq k \cdot T$) hinweisen. Im Bereich der hohen Frequenzen 10^5 Hz bis 10^6 Hz tritt eine Sättigung ein und der spezifische Widerstand von etwa $2 \cdot 10^3 \Omega$ cm ist frequenzunabhängig [VII.7].

⁶ Sogenannte Haftstellen sind Akzeptor- oder Donor-Niveaus, die z.B. durch Dotierung entstehen und in ungeordneten Systemen ungleichmässig in der Bandlücke ΔE (siehe Kapitel 2) verteilt sind [VII.13, VII.14].

Abbildung 60: Darstellung des spezifischen Widerstandes ρ über der Frequenz ω der Wechselspannung für jeweils K-dotiertes, plasmapolymerisiertes Ethylen (EtK) und Acetylen (AcK).

Der spezifische Widerstand von kaliumdotiertem, plasmapolymerisiertem Acetylen (siehe Abbildung 60) zeigt zwischen 25 Hz und 10⁴ Hz einen Abfall mit dem Verlauf $f(\rho) \approx \omega^{-0.9}$, was auf Hüpfmechanismen hindeutet. Bei Frequenzen größer als 10⁴ Hz steigt der spezifische Widerstand steil an und eine elektrische Leitung ist bei Frequenzen höher als 10⁵ Hz nicht mehr zu messen. Dieser Anstieg bei höheren Frequenzen ist typisch für Band-Leitungsprozesse [VII.7, VII.8]. Der spezifische Widerstand von kaliumdotiertem, plasmapolymerisiertem Ethylen (siehe Abbildung 60) zeigt zwischen 25 Hz und 10³ Hz einen ähnlichen Verlauf, wie das natriumdotierte, plasmapolymerisierte Styrol (siehe Abbildung 59). Im Bereich zwischen 10³ Hz und 10⁴ Hz ist der spezifische Widerstand der Probe dann aber nahezu frequenzunabhängig. Dies kann mit elektrischer Leitung in bzw. in der Nähe ($\Delta E \ll k \cdot T$) eines Bandes begründet werden kann [VII.7, VII.8, VII.9, VII.12]. Bei Frequenzen größer als 10⁴ Hz steigt der spezifische Widerstand ebenfalls steil an und eine elektrische Leitung ist bei Frequenzen höher als 10⁵ Hz nicht mehr zu messen.