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Preface

With high-throughput sequencing technology, the bottleneck that we are search-
ing for disease-causing mutations has shifted from data generation to data in-
terpretation. For many patients with rare Mendelian disorders genome data
exist but a conclusive pathogenic mutation has not been identified. Besides
the commonly used linkage analysis and intersection filters, the novel solutions
are required. Genome-wide association study (GWAS) has successfully identi-
fied a large number of disease-associated variants, but it mainly conducts on
common variants for common diseases or traits. With the development of se-
quencing technology and broad availability of high-throughput sequencing data,
such association studies can be extended to rare variants. This will allow us to
search for the missing heritability from rare variants in complex diseases and
additionally to analyze cohorts with rare phenotypes. However, there are spe-
cific characteristics of rare variants so that new bioinformatics and statistical
frameworks have to be developed. Especially the error rates of rare variants and
their geographical distribution is different from common variants. Methods for
population stratification between cases and controls thus have to be adapted to
avoid spurious associations. Especially for rare disorders, the ethnicities of the
affected individuals are often diverse. Such population substructure in the case
group can cause substantial inflation of test statistics and can yield artifacts in
case-control studies if not properly adjusted for. Existing techniques to correct
for confounding effects were especially developed for common variants but do
not properly work for rare variants.

I therefore analyzed the matching strategies to select suitable controls for
cases that originate from different ethnicities. This work was published in Bioin-
formatics 2015. The algorithms of similarity metric and the generation of simi-
larity matrix were done by Verena Heinrich. Based on the generated similarity

matrix, I developed an approach to build up a control group that is most sim-



ilar to the individuals in the case group with respect to ethnicity and data
quality. I simulated different disease entities with real exome data and showed
that similarity-based selection schemes can help to reduce false-positive associa-
tions and to optimize the performance of the statistical tests. Finally, I applied
this method to analyze a case group of five individuals with Catel-Manzke syn-
drome, which is an ultra-rare autosomal recessive disorder, and identified TGDS
as disease associated gene, this work is published in American journal of human
genetics 2014. As the prospect of genomic matchmaking database which is a
community to share patients, Prof. Peter N. Robinson and Dr. Peter M. Krawitz
discussed the required size of the database and the potential impact factors in
Human Mutation 2015. As it was built on the rare variants association tests, I
joined the simulation in this project.

With my research, I contributed to the following publications:

e Na, Zhu, Verena Heinrich, Thorsten Dickhaus, Jochen Hecht, Peter N
Robinson, Stefan Mundlos, Tom Kamphans and Peter M Krawitz. Strate-
gies to improve the performance of rare variant association studies by
optimizing the selection of controls. Bioinformatics (Oxford, England),

August 2015.

e Peter M Krawitz, Orion Buske, Na Zhu, Michael Brudno, and Peter N
Robinson. The Genomic Birthday Paradox: How Much Is Enough? Hu-
man mutation, 36 (10) : 989-97, October 2015

e Nadja Ehmke, Almuth Caliebe, Rainer Koenig, Sarina G Kant, Zornitza
Stark, Valérie Cormier-Daire, Dagmar Wieczorek, Gabriele Gillessen-Kaesbach,
Kirstin Hoff, Amit Kawalia, Holger Thiele, Janine Altmiiller, Bjérn Fischer-
Zirnsak, Alexej Knaus, Na Zhu, Verena Heinrich, Celine Huber, Izabela
Harabula, Malte Spielmann, Denise Horn, Uwe Kornak, Jochen Hecht,
Peter M Krawitz, Peter Niirnberg, Reiner Siebert, Hermann Manzke, Ste-
fan Mundlos. Homozygous and Compound-Heterozygous Mutations in
TGDS Cause Catel-Manzke Syndrome. American journal of human ge-

netics, 95(6):76370, December 2014.
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e Tom Kamphans, Peggy Sabri, Na Zhu, Verena Heinrich, Stefan Mundlos,
Peter N Robinson, Dmitri Parkhomchuk, Peter M Krawitz. Filtering for
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grees. PloS one, 8(8):¢70151, January 2013.
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Chapter 1

Introduction

1.1 Next generation sequencing

The introduction of dideoxynucleotides for chain termination by Sanger et al. [I]

marked a milestone in the history of [Deoxyribonucleic acid (DNA)|sequencing.

Automated Sanger sequencing [2] [3] was developed based on this concept, which
supports simultaneous sequencing of 1000 base pairs (bp) per fragment
in 96 capillaries. Automated Sanger sequencing was the core technology of the

Human Genome Project which took 13 years to map the entire human genome.

[Next generation sequencing (NGS)|sets itself apart from conventional capillary-

based sequencing, by the ability to process millions of sequence reads in parallel
rather than 96 at a time, in a cost-effective manner ( Figure [L.)).

The cost per reaction of [DNA] sequencing in Sanger sequencing followed
Moore’s Law [4] until January 2008. After that, the introduction of re-
sulted in a sudden and profound out-pacing of Moore’s law. Due to miniaturiza-
tion and parallelization, NGS platforms can generate millions of short sequence
reads in a cost-effective manner.

In 2005, Roche 454 pyrosequencer was introduced. It only cost one-sixth
to generate as much data as 50 capillary sequencers [5l [6]. In 2006, Illumina

launched Solexa Genome Analyzer which uses a technique called sequencing by



synthesis to generate tens of millions of short reads. Applied Biosystems made
SOLiD available in 2007, which generate 3G data of 35 bp reads per run with a
high accuracy. These three technologies have dominated the current sequencing
market. Table gives an overview of throughput of Illumina, 454 and Solid
technologies.

Via real-time microscopic imaging, all these high-throughput sequencers
made revolutions in detecting strand synthesis and in sequencing chemistry.
Currently, it can obtain 40 GB data by a single instrument on a single day [1].

It only took a single investigator few days to sequence a human genome.

Read Length Run Time 9Size/Run  cost/Mb  Error Rate

Platform (bp) (days) (Gb) (%) (%)

Roche 454 400 0.42 0.4—0.6 7 1
Illumina 2 x 150 0.3—-11 96-600 0.04 0.1
SOLiD 2 x 50 4 —7 ~ 150 0.07 <0.1

Table 1.1: technologies and their throughput until 2014. Data collected

from sequencing company websites.

Recently, third-generation sequencing methods have started emerging [§]. Also
called single molecule sequencing methods, they do not require a fragment am-
plification step but work on single DNA|molecules. These methods are expected
to deliver longer reads and lower costs per run. Currently, they are not widely
adopted. However, the definite trend in sequencing is decreasing costs
with increasing throughput and data quality.

These new technologies have also increased the spectrum of applications of
[DNA] sequencing to span a wide variety of research areas such as epidemiology,

population genetics, phylogenetics or biodiversity and so on [9].
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Figure 1.1: Costs associated with DNA sequencing. The data collected from
the National Human Genome Research Institute (NRGHI) in 2014. The black
line represents the cost of sequencing following the same pattern as Moores law.
The blue line shows the declining cost of sequencing per human genome over

time.

1.2 Sequencing strategies in human genetics

[NGY] technologies have revolutionized the study of human and medical genetics.
The continually decreasing price of sequencing makes whole genome sequencing
and whole exome sequencing studies of complex diseases feasible. However, the
costs are still considerable under the scale with the number of individuals, the
sequencing depth and the number of bases. Depending on the budget and the
goal of the study, different sequencing strategies could be selected: deep
[genome sequencing (WGS)} low depth [WGS| [Whole exome sequencing (WES)|

target-region sequencing and custom genotyping arrays (Table [1.2)).
Deep [WGY] is the most comprehensive dataset and has the highest proba-

bility of identifying the disease-causing mutation [I0]. However, it is hampered



by high costs and challenges of data interpretation, especially for non-coding
variants.

Low depth[WGS| provides a cost-effective alternative to deep[WGS] Although
the genotyping error rates are higher per position and individual, low-depth
can detect shared variants effectively [11]. With low depth one can
sequence more individuals compared to deep[WGS| at the same costs, which can
increase the power in association studies [12].

aims to sequence the 1% - 2% of the genome that codes for protein
[13]. usually comprises the consensus coding sequence (CCDS) which
consists of about 30 million bases, but the precisely targeted regions may differ
depending on the enrichment kit. The average depth of exome-sequencing is
typically around 60X-80X. An exome dataset is usually regarded high quality
if a fraction of more than 80 % of the target region is covered by more than
20X reads [I4]. The proportion of reads that map to the target region reflects
the efficiency of the enrichment. This enrichment factor is usually higher for
larger target regions and exomes. The primary limitation of exome sequencing
is that it only captures genetic variation in the exome and ignores the non-
coding regions which might limit the diagnostic yield. However, before deep
[WGS] becomes less costly, [WES| is a competitive approach that will probably
become a standard routine for some clinical indications.

Another cost effective strategy is the enrichment of customized target re-
gions. For molecular pathway diseases, a limited number of genes are involved.
For GPI-anchor deficiencies, we designed, for instance, such a customized gene-
panel [I5]. On one hand, this allows a further reduction in sequencing costs. On
the other hand, certain non-coding regions that contained pathogenic mutations
may additionally be incorporated in the set of customized oligo baits.

The last approach is customized genotyping arrays. It may include common

variants selected from [Genome-wide association study (GWAS)| and variants of

low frequency that might be potentially relevant to a specific study. The exome
chips developed by Illumina and Affymetrix provide an inexpensive array-based

approach to exome sequencing [I6]. The arrays collected data mainly from



12,000 sequenced exomes (mostly of European ancestry). It includes about
250,000 missense variants, 12,000 splicing variants, 7,000 stop-altering variants,
and ancestry-informative markers. For the European population, the majority
of variants with an allele frequency above 0.001 will be included in this ar-
ray. However, family specific variants or de novo mutations are obviously not
detectable with this approach.

Target specific resequencing and custom genotyping arrays make certain
assumptions about the relevant mutations. Whereas, [WGS|is a hypothesis-free

approach for disease gene identification.



Table 1.2: Array and sequencing platforms for variants analysis

Advantage Drawback
identify genomic variants; currently expensive;
Deep [WGS)| high confidence huge data amount
Low depth [WGS| cost-effective limited accuracy

high detection rate in

WES protein COdlIlg. exons; hmlteq to protein-
cost-effective coding exons
Tarcet rogi lower accuracy for
arget region ) ) ; ; .
sequencing inexpensive imputed rare variants;

limited region

limited coverage for
rare variants;
Custom array inexpensive currently specific
for Europeans

1.3 Disease gene identification

[NGS|technology revolutionized medical genetics by making[DNA]sequence broadly
available. As introduced above, the sequencing strategies are dependent on the
study goal and the budget. In the following we will discuss the usual consider-

ations for selecting individuals if the budget is limited. Most of these strategies



originate from the analysis of Mendelian disorders.

1.3.1 Selection strategies of sequencing individuals

In a family with a Mendelian disorder, it is assumed that all affected family
members share the same disease-causing mutation. The more distant the re-
lationship, the smaller is the set of shared rare variants. When only a fixed
number of family members can be sequenced, the best combination of individ-
uals is the one with the largest number of meioses, which can minimize the
number of variants[I7].

When quantitative traits are analyzed, intuitively the samples with the ex-
tremes phenotype should be sequenced. By this selection of patients, it may
increase the probability that differences in risk- or phenotype, and it may maxi-
mize the modifying alleles. The effect sizes estimated in phenotypic extremes are

also systematically larger than those estimated in random samples [18, [19] 20].

1.3.2 Strategies for disease gene identification

All sequencing approaches mentioned previously would yield thousands of vari-
ants per individual. In this section, common strategies to filter for potentially
pathogenic mutations or disease-linked loci will be discussed. Figure shows
three common scenarios encountered in rare Mendelian diseases. The ideal
situation is a large pedigree with multiple affected family members in several
generations. As shown in family A, the disorder is inherited in an autosomal
dominant mode in a large family. All family members are informative for a link-
age analysis and could be used to limit the genomic search space. In family B the
parents are healthy while about a quarter of the children are affected, suggesting
a recessive mode of inheritance. Depending on the degree of consanguinity a
search for homozygous or compound heterozygous candidate mutations is the
first line strategy. The scenario as shown in family C depicts some “sporadic”
cases and filtering for de novo mutations is an effective analysis strategy for such

phenotypes. Whenever the disease-causing mutations cannot be identified with



the classical analysis strategies, phenotypically similar cases can be grouped and

analyzed for gene associations.

;’%}m éT;m&DI«ODfDI«O

Figure 1.2: Common scenarios when analyzing rare disorders. Rectangles in

pedigrees represent male and circles represent female family members; filled
symbols represent affected individuals. A) Large pedigree with multiple affected
family members, autosomal dominant mode of inheritance B) A recessive trait
in a potentially non-consanguineous pedigree. C) Multiple “sporadic” cases in

nuclear families.

1.3.2.1 Linkage analysis

Classical linkage analysis can be used in a pedigree with multiple affected family
members to narrow the genomic search space. In a pedigree with a dominant or
recessive disorder, LOD score (logarithm of odds) is calculated for single genomic
position. We can use this score to determine if a loci is linked to a disorder. In
a consanguineous family with a recessive disorder, the disease-causing mutation
is rooted most likely in a common ancestor. The founder with the pathogenic
mutation transmitted the pathogenic allele to both parents. The parents share
the same haplotype with the pathogenic mutation but are only heterozygous for
this variant. Rare variants can be prioritized by identifying large homozygous
intervals in the genome of the affected individuals but not the healthy ones
via homozygosity mapping [2I]. An alternative strategy in large pedigrees is
to sequence several distantly related affected family members and to filter for
shared rare variants (see Section |1.3.1). Genotypes of sequenced unaffected

individuals can additionally help to exclude benign family specific variants [17].



1.3.2.2 Filtering for compound heterozygotes

In non-consanguineous families with a recessive disorder, a possible combination
of pathogenic mutations is compound heterozygotes. That means there are two
different pathogenic alleles in the same gene. The parents transmit two same
heterozygous mutations to all affected individuals. The disease locus can be
narrowed down by identity by descent mapping that identifies shared haplotypes
[22]. For exome data of multiple sequenced family members, direct filtering for
rare compound heterozygous variants is very effective. We have developed such a

filtering tool that was used successfully to identify several pathogenic mutations

23, 24]

1.3.2.3 De novo mutations

Many disorders such as [intellectual disability (ID)| often present as singular

cases in a family. In a landmark paper for non-syndromic it was shown that
the majority of cases are due to de novo mutations [25]. In an exome there are
about 0-3 new single nucleotide variants per individuals and nonsynonymous
events are highly likely to be pathogenic. On a genome-wide level de novo
mutations, notably structural variants, are much harder to detect and interpret

and are a current challenge to bioinformatics.

1.4 Genome-wide association studies

Whenever the disease-causing mutation cannot be conclusively identified in a
single pedigree, unrelated affected individuals can be combined to a case group
and analyzed for gene associations. Although this approach has so far been
mostly used for complex disorders, it also works for monogenic diseases. In
the following, it shows some of the commonalities and key differences between

association studies for Mendelian and common disorders. Association studies for

Mendelian disorders are always based on rare variants, [Rare variant association|

study (RVAS)| whereas association studies for complex diseases usually deal




with polymorphisms, [common variant association study (CVAS)l The power

of an association study depends on many factors, such as case and control
group sizes, the intended level of statistical significance, allele frequencies and
effect size of the variants [26] 27]. Despite the many differences there are also
challenges that are common to both approaches such as genetic heterogeneity
of the disorder and spurious associations due to population substructure. In
addition, not every sample is necessarily informative, such as the sample with

incompleteness of exome sequencing data.

1.4.1 Common versus rare variant association studies

The first variant association studies were motivated by the|common disease com-|

[mon variant (CDCV)| hypothesis, that assumes that a small number of common

variants have moderately small effects on the complex disease [28]. In [CVAS]

a variant is common if its minor allele frequency lies above 1% in the general
populations. The odds ratios for the functional polymorphisms are assumed
be modest (1.1-1.5). With these typical assumptions, a study with adequate
power would require at least a thousand subjects [29]. With the advancements

in [single nucleotide polymorphism (SNP)| genotyping technologies, [CVAS| have

been conducted and revealed many new loci [30, BI]. However, the identified
common variants can only explain about 30% of the heritability for numbers of
diseases and the has thus to be challenged [32], B3]. Different strategies
have been suggested to search for the “missing heritability”. One can either ex-
tend the search for polymorphisms with an even lower effect size, requiring ever
larger case groups, or one can include also rare variants, which makes different

statistical tests necessary [34] [35].

1.4.2 RVAS on complex and rare diseases

The theory of evolution predicts that purifying selection may lead deleterious
alleles rare. This should be particularly the case for loss of function variants

in vital genes. Thus, many research groups turned to search for rare variants,

10



commonly Minor allele frequency (MAF)| below 1% [36]. The majority of iden-

tified rare variant associations to date have odds ratio greater than two, and
the mean odds ratio is 3.74 [37]. Successful identified new gene associ-
ations in disorders such as type 1 diabetes, age-related macular degeneration
and Alzheimer’s disease [38] [39] 40, [4T] 42] [43] 44]. However, the rare variant
common diseases hypothesis doesn’t seem to apply to all complex diseases [45].
For instance in type 2 diabetes [40], schizophrenia [47], epilepsy [48], autism
[49] and autoimmune diseases [50], no significant associations with rare variants
were found so far. Thus, the importance of rare variants seems to depend on
genetic architecture of the disease.

In contrast to most common diseases with complex genetic interactions,
many rare diseases are Mendelian disorders. In the USA, a disease is called
rare if its prevalence is lower than 1/1,500 according to the Rare Diseases Act
of 2002, whereas the European Commission on Public Health choose a cutoff
of 1/2,000. The prevalence of rare diseases can vary between different popula-
tions, the geographic area and age. For instance, a collection of 40 rare diseases
that are due to a founder effect are significantly more common in Finns than
other populations [51I]. Due to the low prevalence of these disorders, research
funding is notoriously scarce, and the pathophysiology of many of them is not
yet clear. However, the identification of disease genes in rare Mendelian disor-
ders often deepens our understanding of related complex diseases and is thus
a promising field of research [52]. Although rare disorders are expected to be
monogenic, rare causal variants are difficult to identify due to the inherently
small case group sizes, and such diseases can be heterogeneous though following
Mendelian modes of inheritance. All above reason lead to the low performance
of RVAS]

The required number of cases are dependent on the relative risk, the disrup-
tive allele frequency and the selection coefficient. Given specific statistical power
(see Section and false positive rate, the higher relative risk of pathogenic
mutations can reduce the required effect size. The stronger selection on mu-

tations can lead to lower disruptive allele frequency, and further increase the

11



required sample size to achieve a specific power. The higher disruptive allele
frequency requires fewer samples. Note that rare pathogenic variants associ-
ated with the rare disorders usually have small disruptive allele frequency and
stronger selection coefficient.

Compared to [CVAS] [RVAS] differs in two aspects. Firstly, as rare variants
are so infrequent that it is impossible to conduct association tests for single
marker. It is required to aggregate rare variants in a genomic region and to
compare the accumulated frequency between groups. The aggregating strategy
further makes the second difference to that rare variants association test
is sensitive to variant filters and the aggregating bins. A good filter is the
one that could gather more damaging alleles while ignoring more benign alleles
in the particular genomic region, such as gene. Besides allele frequency, [RVAS)|
requires additional filters to enrich the deleterious mutations. Typically function
in protein-coding region is further used to categorize the variants.

The pathogenic mutations of rare disorders are expected to have extremely
high relative risk, as most of these mutations never occurred in controls or
healthy populations. For a specific disorder, more strict filters can be applied,
for instance, one can only test the nonsense mutations or highly conservative
mutations. To amplify the signal of associations, one could also collapse the
mutations on gene level or pathway level.

For the unrelated cohort with rare disorders, besides gene identification strat-
egy (Section , rare variants association tests could be the alternative
and more intuitive solution. Moreover, [RVAS|is advantageous to downgrade the
highly variable genes, as the number of mutations in controls can balance the

one in cases.

1.4.3 Population substructure

In genetic association study, a region (like a snp or a gene) with significant test
statistic may indicate the enrichment of a risk factor. These significant regions

could be true associations or spurious associations. The difference from data
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quality, population structure or genetic relatedness between case and control
groups can cause spurious associations and inflate test statistics [53]. The same
protocol for technologies and bioinformatics procedure may resolve the
difference in data quality between samples. However, the difference of popu-
lation substructure or genetic relatedness is tricky, which cause the difference
in allele frequency between groups due to systematic ancestry differences, as
demonstrated in Figure It could even exist among populations that were
assumed to be relatively homogeneous such as Europeans [54] 55 56]. Thus,
accounting for population stratification in association study is a crucial issue,

and is more challenging if family structure or cryptic relatedness present as well

[51].
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Figure 1.3: The demonstration of population structure at a SNP locus. Popu-
lation 2 has a lower frequency of allele A than that of population 1. Case group
and control group have different proportions of these two populations. The
significant signal of association comes from difference of allele and genotype fre-

quencies between cases and controls. The figure is adopted from Marchini et

al.[58]

1.4.3.1 Population substructure in CVAS

The reason for population stratification could be due to ancient population di-
vergence or recent genetic drift [57]. Many methods have been developed to ac-
count for the population stratification due to common variants. There are three

common strategies. The first one is genomic control which measures the extent
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of inflation from confounders. Genomic control could perform well if the strati-
fication due to genetic drift while it is too conservative if the stratification from
population divergence [59, [60]. The second method is to infer genetic ancestry,
such as principal component analysis (PCA) [53] or structured association [GI].
PCA assumes a small number of ancestral populations and admixture, so it can
only partially capture the multiple levels of population structure and genetic
relatedness. However, this method cannot account for cryptic relatedness and
family structure while some studies showed that cryptic relatedness was com-
mon in many datasets [59) [62]. The third method is based on the linear mixed
model (LMM), which can model population substructure, cryptic relatedness
and family structure. The basic method is to model phenotypes as a mixture of
fixed effects due to candiate SNP, and random effects due to confounders. The
effect of confouders is assumed to be randomly distributed and can be inffered
by the covariance of kinship matrix among samples [63]. Mixed model has been

applied in methods Emmax [64], TASSEL [65], FaST-LMM [66] and GEMMA
[67].

1.4.3.2 Population substructure in RVAS

The population stratification due to rare variants is more pronounced than with
common variants (Figure. The reason is following: The different frequency
of rare individual alleles between populations may result from geographic local-
ization and small number of shared rare variants [68]. There is a very low rate
of sharing of rare alleles even between very closely related human populations
[69]. Babron et al. investigated the stratification patterns in UK population
in three different allele frequency categories. They found that the top principal
component obtained from rare variants (< 1%) did not correlate with any prin-
cipal components from low frequency (1% < AF < 5%) or common variants
(> 5%) categories [70].

Furthermore, the total quantity of rare alleles is also different among pop-

ulations because of differences in effective population sizes,demographic events,
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bottlenecks or selective pressures. This may also deteriorate the spurious asso-
ciations in [RVAS] The reason is that, in order to increase the statistical power,
[RVAS] commonly use aggregation tests rather than single variant tests. In sin-
gle marker tests, stratification is only dependent of different allele frequencies
at individual sites. Whereas aggregation tests, which aggregate the number of
alleles across multiple positions, have to tackle population differences in both
individual allele frequencies and the total number of rare variants [6§].

These non-genetic risks which may contribute to the population stratifica-
tion may show a very specific distribution, such as the localized environment
exposure. Typically, the more localized a risk factor is ,the less we are likely
to know about it and the greater effect this lack of knowledge will have on rare
variants, which results in the difficulty for accounting for the known non-genetic

risk factors.
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Figure 1.4: Quantile-quantile (QQ) plots of association tests with sharply and
small spatial distributed risk. a) The inflation due to rare variants is higher
than due to common variants. b) None of the correction methods developed for
[CVAS] can account for the population stratification due to rare variants. The

figure is adopted from the study of Mathieson and McVean [71]

The study of Mathieson and McVean showed that none of the existing meth-
ods for accounting for the population stratification cannot work properly in
Genomic control cannot work because most variants have no correlation
with the nongenetic risk. PCA and mixed models assume a smooth distribu-
tion of minor allele frequency over ancestry space and all nongenetic risks are
linear related with top components (Figure . However, the small, sharp
region of risks would require a highly nonlinear function to be expressed, but it
cannot be achieved only by including the top components [71]. A new method
based on linear mixed model, FaST-LMM-Select, selected a few of phenotype-
selected variants to build the kinship matrix, instead of all SNPs in traditional
LMM. Compared to traditional LMM, the performance of FaST-LMM-Select is

that it can yield non-inflated test statistics. However, if the causal variants are
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spatially structured, the false positive rate could be under control but the statis-

tical power decreases as well, as the causal variants are treated as confounders

[14} [72} [73].

1.5 Matching strategies for correcting popula-

tion stratification

The confounding due to population stratification is caused by the mismatched
genetic ancestry between case and control groups. Thus, fine matching of cases
and controls based on genetic ancestry may help accounting for confounding.
Matching strategies try to set up case and control groups which share similar
genetic ancestry. The matching strategy can be implemented in different ap-
proaches, such as GEM [74], SpectralGEM [75], stratification score matching
[76] and GSM [77]. These approaches can be divided into two categories: An
estimation of genetic similarity among individuals that is based on 1) the an-
cestry components from principal components or spectral-graphs (GEM, Spec-
tralGEM) and 2) the average proportion of alleles shared identical-by-state over
large number of SNPs ( GSM).

Many of complex diseases, including studies of ulcerative colitis [78],
asthma [79], and presenile dementia [80], have employed fine matching to deal
with confounding due to population stratification. For RVAS, the performance

of the matching strategies still needs to be investigated.

1.6 Aim of the study and structure of the thesis

As shown above, [RVAS] for rare disorders is still needed further study and the
existing methods that account for population substructure cannnot correct the
inflation sufficiently in RVAS [27]. Therefore, I studied the performance of
[RVAY] in rare disorders and I also investigated the performance of 'matching

strategy’ in [RVAS] In the second chapter, I outlined the data used in this work
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including the in-house data, data from 1000 genome project and the simulated
disorders. I made an investigation of the features of variants and genes in the
clinical data and non-clinical data, which served for the following chapter. The
methods used in this work were described in the third chapter. I described the
similarity metrics which were used for the ‘'matching strategy’, the methods for
test statistics which used for the association tests, the methods for accounting
for the genetic relatedness and the workflow of simulations. I showed all results
in the fourth chapter. It included the performance of [RVAS| with the 'matching
strategy’, the factors which affected the results and the application of [RVAS]in
real cohorts. Finally, I summarized the implications of the project and gave an

outlook for future research in the last chapter.
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Chapter 2

Materials

2.1 Data-sets

2.1.1 In-House Exomes

In recent years, many patients with unknown genetic disorders were subjected
to [WES] at Charité, University Hospital Berlin. These inhouse cohorts con-
sisted of samples from multiple populations: European, Arabian, African and
Asian. The majority had the European background. It was also heterogeneous
cohorts, parts of exomes from patients with different diseases, such as Mabry
syndrome, Catel-Manzke syndrome and Marfan syndrome [81], [15] 24], [82], parts
from healthy parents and gathered controls. All exomes were enriched with
Agilent Human All Exon SureSelect baits and sequenced on Illumina Genome
Analyzer IIx and Hiseq. All sequences were mapped to human reference se-
quence GRCh37/hgl9, and variants were called with GATK [83]. As it took
many years to collect these cohorts, the data quality between samples varied
with the developed sequencing technologies. I removed the data of the children

in the trios to maximize the number of unrelated samples. I referred to this

cohort as |[Cohorts sequenced in Charité - Universitatsmedizin Berlin (BER)|in

the following.
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2.1.2 Data from 1000 Genomes Project

[1000 Genome Project (1IKGP)[is the first international project to sequence the

genomes of individuals from all over the world. One aim of the project was to
analyze the variability of allele frequencies between populations from different
continents. The allele frequencies for 26 populations from 2504 individuals in
total were made publicly available.

The 1000 Genome Project proceeded in 3 phases: phase pilot, phase 1 and
phase 3. Each phase analyzed through a combination of low-coverage [WGS| data
and targeted deep data [84] [I1]. This sequencing design is cost-effective
in discovering genotypic variants. Phase pilot and phase 1 had a mixture of
both read lengths 36bp to 160bp and used three sequencing platforms includ-
ing Mumina [85] 86], ABI SOLiD and Roche 454 while phase 3 only used the
Tllumina sequencing platform and reads lengths of 70 bp+ [87]. The uniform
sequence technology in phase 3 largely erased the difference in variants quality
[88, 89l [@0]. The employed bioinformatic tools were also improved in phase 3.
Many variant callers were used in phase 3, such as GATK [83], Samtools [91],
Delly [92] and Pindel [93]. It considered low coverage genome sequence and ex-
ome sequence together. 24 genotyping tools were used for calling short variants,
structural variants and short tandem repeats. Phase 3 integrated multi allelic
variants and complex events that were impossible in phase 1 (Figure . The
sequencing data quality was high for all populations, but it varied in populations

due to different sequencing centers (Figure [2.2)).
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Figure 2.1: A combination of low-coverage data and targeted deep

data was performed in Phase 3 of [[KGP| Phased variants were the consensus
results from 24 variant callers including 10 for calling short variants, two for
calling short tandem repeats and 12 for calling structural variants. This figure

was adopted from the 1000 Genomes Project Consortium.

As improvements in sequencing technology emerged, sequencing time and
cost reduced significantly. Along the way, more and more populations were se-
quenced across these phases. Finally, phase 3 sequenced 26 populations across
five continents, adding up to 2504 individuals in total. The populations are cho-
sen based on scientific, ethical and practical considerations, with the expectation
to obtain broadly representative genetic variation data for the vast majority of
individuals within each continent [I1]. All donors were over 18 years old and

healthy at the time of collection.
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Figure 2.2: More than 70% of the target region are covered by at least 20
reads for all samples. Populations of the same continent are color-coded, and
the number in front of the population ID indicates the size the cohort. There
is substantial variability in the median coverage for different subpopulations,

indicating different mean data qualities.

2.2 Simulated disorders

We selected eight known rare diseases with a prevalence lower than 1/1000

(Table [2.1)). From the inheritance pattern point of view, some disorders are

transmitted in the autosomal recessive pattern such as[Hyperphosphatasia with|

[mental retardation syndrome (HPMRS)} some disorders are in the autosomal

dominant pattern such as Noonan syndrome; some have several inheritance
patterns, likewise Deafness, which could be autosomal recessive or X-linked or
autosomal dominant pattern. Respecting the genetic heterogeneity, some dis-

eases are heterogeneous, which means that several genes could contribute to the
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disorders, such as The others are homogeneous in that all pathogenic
mutations are in the same gene. For example, gene HEXA is the only gene
associated with Tay-Sachs syndrome. In the following, the disorders and their

genetic mechanism are introduced.

Noonan Syndrome The typical features of Noonan Syndrome are typical
facial dysmorphology, short stature and congenital heart defects. Its incidence
lies between 1:1000 and 1:2500 in live births [941[05]. It is an autosomal dominant
disorder. Approximately 50% of cases are affected because of missense mutations
in gene PTPN11 on chromosome 12 which results in a gain of function of the
non-receptor protein tyrosine phosphatase SHP-2 protein [96] [07]. Another 20%
of patients possess missense mutations or gain-of-function mutations in the genes
KRAS [98], SOS1 [99], RAF1 [100], NRAS [101] and BRAF [102, T00]. The
genetic etiology for the remaining patients with Noonan Syndromes remains

unknown.

Nonsyndromic deafness Nonsyndromic deafness is hearing loss that is not
linked to abnormalities of the body. It has different patterns of inheritance.
75% —80% patients inherit the disorder in an autosomal recessive pattern which
is designated as DFNB. Another 20% — 25% of cases are in autosomal dominant
pattern which is designated DFNA [103]. 1% — 2% of the remaining cases
show an X-linked pattern of inheritance which is named as DEN [104]. 1%
inherit mitochondrial nonsyndromic deafness where a mother passed the altered
mitochondrialto all of the children [TI05]. Different inheritance can share
the same pathogenic gene, for instance, mutations on TECTA can cause deafness
in the dominant and recessive model.

To simplify the simulation of deafness in the current work, i only tested
DFNB Deafness. The approximate prevalence of DFNB in the general popula-
tion is ﬁ x 0.7 x 0.8 = 14 : 50,000, with a 1/2,000 incidences of congenital
hereditary hearing impairment in neonates, of which 70% have nonsyndromic

hearing loss [106] and 75% ~ 80% of cases with nonsyndromic hearing loss are
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autosomal recessive [107, [108].

50% of patients with autosomal recessive nonsyndromic hearing loss have
pathogenic mutations in GJB2 [109, 110, I11]. Mutations in numerous genes
make contributions to the other 50% patients, many of which have been found
only in one or two families. For the sake of simplicity, we only selected nine

reported genes and assumed that mutations in these genes contribute to the

pathogenesis of 20% of patients [T12] [113] [1T4].

Mabry syndrome Mabry syndrome, also known as [Hyperphosphatasia with|

[mental retardation syndrome] (IPMRS)), is a rare recessive genetic disorder that

causes mental retardation, seizures and characteristic raised blood levels of the
enzyme alkaline phosphatase. The incidence of Mabry syndrome is still un-
known but likely to be rare, as less than 30 cases were reported by the end
of 2014 [I15, 116l 17, TI8, 119, I5]. The inheritance model of Mabry syn-
drome is autosomal recessive. Mutations in PIGV, PIGO, PGAP2 or PGAP3
genes are the underlying cause. All of these genes are linked to the synthesis
of the glycosylphosphosphatidylinositol (GPI) anchor. Approximately 30% of
patients with Marby syndrom are affected because of mutations in gene PIGV
[82, [T18]. Mutations in the PIGO, PGAP2 and PGAPS3 genes contribute to a
small proportion of cases with HPMRS [I5] 24 [120].

Tay-Sachs disease Tay-Sachs disease is a neurodegenerative disorder caused
by a deficiency of an enzyme called hexosaminidase A, HEXA. Lack of this
enzyme causes rapid and progressive deterioration of the brain and nervous
system. HEXA gene produces a protein which forms the alpha subunit of hex-
osaminidase A. More than 120 mutations in gene HEXA are linked to Tay-Sachs
disease. The activity of the enzyme beta-hexosaminidase A is reduced or elimi-
nated due to these mutations [121]. Tay-Sachs syndrome is inherited autosomal
recessively. Its incidence is 1 in 3600 in the Ashkenazi Jewish Population and 1

in 360,000 in other populations [122 [123].
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Cystic fibrosis Cystic fibrosis is a recessive monogenic disorder caused by
mutations in cystic fibrosis transmembrane conductance regulator (CFTR) gene.
It causes various dysfunction in different organs, including lung disease, meco-
nium ileus, diabetes, and liver disease [124]. The incidence of cystic fibrosis is
estimated at around 1/2500 in Caucasians, 1/3500 in Europe, 1/350, 000 in Asia
and 1/15,000 in Africa [I25] 126]. It distributes across a broad age range. With
the development of health policies such as newborn screening, the incidence has

been lowered nowadays [127].

Neurofibromatosis type 1 Neurofibromatosis type 1 is multisystem disease
mainly related with skin and nervous system. Its typical feature is changes in
pigmentation and the growth of tumors along nerves in skin, brain, and other
parts of the body. It is genetically a homogeneous disorder caused by mutations
in the NF1 gene. The NF1 gene is related to protein neurofibromin which acts
as a tumor suppressor. Mutations in the NF1 gene result in its loss of function.
Neurofibromatosis type 1 is an autosomal dominant disorder. Its incidence is

about 1 in 3500 people worldwide [128] [129].

Catel-Manzke syndrome Catel-Manzke syndrome is depicted by a unique
form of bilateral hyperphalangy causing a clinodactyly of the index finger. It
is rare, as currently 28 cases with Catel-Manzke syndrome have been reported
[81, 130]. Mutations in gene TGDS cause this syndrome, which has a general
effect on connective tissue. The TGDS gene is related to either proteoglycan

synthesis or sulfation. Catel-Manzke syndrome is inherited in a recessive pattern

1.

Kabuki makeup syndrome The phenotypes of Kabuki makeup syndrome
are typical facial features, minor skeletal anomalies, the persistence of fetal
fingertip pads, mild to moderate intellectual disability, and postnatal growth
deficiency [I3T]. The incidence is about 1 out pf 32,000 newborns in Japan
[132] and 1 in 86,000 in Australia and New Zealand [I33]. Its incidence in other

26



ethnic groups is estimated to be similar to that in the Japanese population.
Mutations in gene KMT2D ( or MLL2) [134] or gene KDM6A [135, 136] lead
to this syndrome. 55 ~ 80% of the Kabuki makeup syndrome cases result
from mutations in gene KMT2D. 6% of cases possess mutations in the KDM6A
gene. The cause of the disorder in the remaining cases is still unknown [I37].
Mutations in KMT2D and KDM6A genes lead to the related functional enzyme
absent and further result in the development abnormalities. Mutations in gene
KMTZ2D are transmitted in an autosomal dominant pattern while mutations
in gene KDM6A are transmitted in an X-linked dominant pattern [I38]. As I
ignored sex chromosomes in this project, I only tested mutations in KMT2D

and set its prevalence as 70%.

Proportion of cases attributed Known pathogenic

Disease to mutations in specific genes mutations
PTPN11 (50%) 74
SOS1 (10%) 44
Noonan-Syndrome RAF1 (5%) 18
autosomal dominant KRAS (2%) 14
BRAF (2%) 4
NRAS (1%) 3
GJIB2 (50%) 56
ATP2B2 (2%) 2
CDH23 (2%) 5
Nonsyndromic CLDN14 (2%) 2
hearing impairment DFNB31 (2%) 1
autosomal recessive GJAL (2%) 0
MYO6 (2%) P
OTOA (2%) 1
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OTOF (2%) 8
TECTA (2%) 1
PIGV (30%) 9
HPMRS PIGO (10%) 2
PGAP2 (10%) 3
autosomal recessive PGAP3(10%) 0
Tay-Sachs disease
autosomal recessive HEXA (100%) 109
Cystic Fibrosis
autosomal recessive CFTR(100%) 825
Neurofibromatosis type 1
autosomal dominant NF1 (100%) 565
Catel-Manzke
autosomal recessive TGDS (100%) 5
Kabuki makeup syndrome
autosomal dominant KMT2D (70%) 10
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Table 2.1: Eight rare monogenic disorders were simulated for rare variant as-
sociation tests. This consists of four genetic homogeneous disorders and four
genetic heterogeneous disorders. Three autosomal dominant and five autosomal
recessive disorders were included from the perspective of inheritance mode. The

prevalence of mutations in each gene in heterogeneous disorders varies and are

obtained from literature.

2.3 Quality control

To obtain a set of genotype calls with high quality, I restricted the variants of
all datasets in the consensus coding sequence (CCDS) region of exome
comprising 28Mb. As the INDELs and multiple nucleotide positions had lower
accuracy [I39], T removed insertions, deletions and the positions with multiple
alternated alleles.

[BER]data included healthy samples and patients samples from many studies.
Due to the potential intrinsic divergency to the simulated disorders [T40], I
removed the known pathogenic mutations from the variants list. To reduce
the false positive calls in data, I also removed the site if less than 90%
exomes detected it and eliminated the positions which frequently occurred (at
least 10%) in BER, but never find in dbSNP database.

In this work, we made simulations for autosomal disorders, we thus ignored
the variants in chromosome X and Y, which largely removed the bias from sex

in the association tests.

2.4 Variant filters

[RVAS] requires aggregation of the variants in a genomic region, as rare variants

are too infrequent to test on individual variant [27]. Aggregation is the critical
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step for [RVAS} proper aggregation can increase the power of detecting associ-
ations in [RVAS In the attempt to enhance the proportion of the deleterious
alleles to the benign alleles as much as possible, a proper filter is required [T41].
In this work, I filtered variants from three classifications: the predicted effect
of protein function, the sequence conservation and allele frequency. In order to
choose a suitable cut-off for each filter, I firstly investigated the features between
non-clinical variants and clinical variants based on public data. I took variants
in Clinvar which had clinicalinvestigated significance ”pathogenic variants” or
"likely pathogenic” ([I42]) as clinical variants. Non-clinical data were the vari-
ants in dbSNP137 [143] that had never been cited in PubMed and not known
in the clinic context(no "PM” in field ’INFO’).

2.4.1 Predicted effect on protein function

In protein coding regions, mutations can be categorized into three general cate-
gories: synonymous mutations, nonsynonymous mutations and stop-codon mu-
tations. In a synonymous mutation or silent mutation, a change in one base
pair has no effect on the protein produced by the gene. Certain codon may be
more efficient than others in some cases [144] [T45], but silent mutations are often
assumed to be evolution neutral. Nonsynonymous mutations include missense
mutations and nonsense mutations. A missense mutation changes the code for
a single amino acid and further results in a different protein. For example,
Cystic Fibrosis is caused by some missense mutations [146] [I47]. Evolutionary
studies and an analysis of mutations responsible for Mendelian diseases suggest
that 20% of missense mutations are strongly deleterious; about 50% are weakly
deleterious, and the remainders are essentially neutral [I48] [149]. Nonsense
mutations change a single base pair and create a stop codon, which makes the
resulting protein nonfunctional. These mutations are so severely disruptive that
they may cause a disease [I50]. Stop-codon mutation is the opposite of nonsense
mutation, in that it changes the stop codon into a codon for an amino acid and

then leads to the protein being too large. Such mutations destroy the protein
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and can cause diseases too. A small part of Cystic Fibrosis patients are caused
by stop-codon mutations [I51]. Exome sequencing can also detect a small frac-
tion of non-coding sites with high quality [I52]. These variants include intronic
mutations, intergenic mutations, splicing mutations and so on. Except splicing
mutations, other non-codign mutations are little known.

I compared the distribution of mutations across different categories from two
data sets: non-clinical SNVs from dbSNP [143] and clinical SNVs from Clinvar
(Figure . It was found that about 70% of clinical mutations are nonsynony-
mous. The proportion is similar to that in the OMIM database [153] 154]. Only
0.6% of clinical mutations are synonymous. Some of these synonymous muta-
tions are found to be deleterious [144] [145], but the small deleterious proportion
indicates a large proportion of neural variants, which can dilute the effect of the
accumulation of disease-causing mutations. Thus, synonymous mutations were
ignored in this project. In the consideration of the severity of disrupting protein

structure, I only kept nonsynonymous mutations.
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Figure 2.3: The protein-function distribution of mutations in non-clinical data
and clinical data. The non-clinical data were the non-pathogenic variants in
dbSNP137. The clinical data were the pathogenic or likely pathogenic variants

in Clinvar. These variants were annotated with Jannovar [I55] [156].

2.4.2 Sequence conservation

A typical human genome carries around 300-600 nonsynonymous mutations that
are found in | 1% of the population at large, and not all nonsynonymous mu-
tations are deleterious. From the evolution point of view, nonsense mutations

are null mutations. Missense mutations are the mixture of null and neutral

32



mutations. The effect of missense mutations on molecular function, phenotype
and organism fitness can be extremely diverse. Some missense mutations can
be lethal or cause severe Mendelian disease. Some missense mutations can be
mildly deleterious, neutral or beneficial. Relying on computational prediction
programs, we can further quantify the functional significance of mutations [I57].
The prediction program classifies variants into ’conservation’ and ’acceleration’,
where ’acceleration” means the position is experiencing faster than neutral evo-
lution, and ’conservation’ means slower than neutral evolution. Most prediction
methods can predict that 70% — 90% of the amino acid substitutions in HGMD
[158], OMIM [I53] and Swiss-Prot [I59] are damaging [160, 154 1611 [162].

In this project, I used the phyloP score based on the alignments of the 44
ENCODE regions [I63], which constituted the largest published comparative
genomic data set for mammals [164], [I65]. Variants with positive phyloP scores
are conservative and indicate slower evolution than neutral drift. A higher
score for a variant means that it is more conservative and deleterious. Variants
are neutral if their phyloP scores are negative. Figure a) showed that
most of the clinical variants were conservative (score from 0 to 7). Around
1% clinical data were synonymous mutations and intronic mutations which had
small phyloP scores. Therefore, I chose phyloP score = 1 as the threshold to
include 88% clinical data.

2.4.3 Population allele frequencies
Allele frequency filter

Allele frequency is the most obvious filter for [RVAS] It is the proportion of a
particular allele occurring in a population. The incidence of rare disorders is
commonly less than 0.001 [I34] [I5] 166l [I67]. I investigated the allele frequency
distribution for clinical variants and non-clinical variants. Figureb) showed
that the vast majority of clinical variants were rare (< 0.1%) and less than half
non-clinical variants passed the threshold. I chose an allele frequency cut-off of

0.1% in this project.
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Figure 2.4: a) PhyloP scores distribution in non-clinical and clinical data. b)

Minor allele frequency distribution in non-clinical data and clinical data.

2.5 Residual variation Intolerance score

Petrovski et.al. introduced [residual variation intolerance score (RVIS)| score

to rank genes according to the likelihood to affect disease based on

[sequencing project (ESP)| data. It predicted the expected amount of common

functional variation based on the total amount of variants in each gene. Defining
Y as the total number of common function variants in a gene and X as the total
number of protein-coding variants. [RVIS| score was the studentized residual
when regressing Y on X. A gene with a negative score was intolerant, whereas
the gene with a positive score was tolerant [I68]. In this work, I annotated genes

with [RVIS| score.
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Chapter 3

Methods and simulations

3.1 Similarity metric

Epidemiological studies involve large numbers of individuals. As the genetic
background of individuals is relevant to disease-contributing variations, one con-
cern of these studies is to identify and characterize the genetic backgrounds by
their genomic profile. The admixture of populations or the cryptic relatedness
in the studied data result in false positives and false negatives. The strategies
for assessing the genetic backgrounds is to estimate the similarity score among
samples by the great number of markers [169]

Similarity metric is a method to quantify the genetic similarity of a pair using

a sets of markers. The simplest metric is to calculate the fraction of alleles shared

[[dentity by state] (TBS) over all the loci. we can use genetic similarity to infer the

relatedness of individuals or to check a pedigree for correctness [170] [I71] [172].
Moreover, we also can use it to estimate genotyping accuracy by calculating the

distance to the reference set with high quality like 1000 genome data [I73]. In

the following, I will describe [[dentity by state (IBS)|and its variations in detail.
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3.1.1 Basic IBS metric

[[BY| metric assesses the genetic similarity by calculating the fraction of posi-
tions that shared identity-by-state. The more positions two subjects shared
genotypes, the more similar the two subjects are.

[[BS| metric has many varieties by adapting the factors for weighting schemes,
such as allele frequency [I73] [I74] or nucleotide conservation score [I75] 176
[177).

Then one can set up an N x N similarity matrix .S for N individuals with a
similarity metric. Each element S; ; is the similarity score between individual i

and individual j.

1
Si,j =1- Ci ZI”(]{) * Ww(kﬁ) (31)
1] k

where

L wi(k) = a;(k)
0 ai(k) # 2;(k)

Wi (k) is the weight at position k and Cj; = >, W;;(k) is used for normal-
ization.

The underlying [[BS] metric calculates the fraction of alleles that any two
individuals share purely by state. It is simple to determine how many alleles (0,

1 or 2) a pair of individuals shared. For any position k, the weight is:
Wi, (k) =1 (32)

In this thesis, [BY| metric represented this metric. In the following, we in-

troduce two varieties of [[BS| metric differed in the weighting schemes.

3.1.2 Weighted IBS - !

In the basic[[BS|metric, each position contributes equally to the distance. How-
ever, we can also weight each position differently. Due to the combined effects

of exponential population growth and weak purifying selection, rare variants
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may excess in a population. The vast majority of protein-coding variations is
evolutionarily recent and rare [I78], they likely make a significant contribution
to human phenotypes and disease susceptibility. Thus, it is reasonable to give
higher weight to the rare variants for calculating similarity score. Each position
was weighted by the inverse of genotype frequency, in which rare variants have
higher weights [I73]. The weight at each position shared between individual i

and individual j:
1
f(zi(k))

where z;(k) is the genotype of individual i at position k. f(x;(k)) is the genotype

Wik = (3.3)

frequency of x;(k), which is determined in a large population genetics studies

such as|IKGP| This metric is designated as metric in this thesis.

3.1.3 Weighted IBS - V>

In the metric, rare variants played an important role in estimating the
genetic distance. As common SNPs can reflect a deep evolutionary history[179],
we also studied the third metric, where common variants were given higher
weight. The weighting scheme was built on Shannon’s information theory. In
this context, entropy H was a measure for the expected information content

(180} [181]: )
H == pilog(p:) (34)

i=1

where m is the number of possible genotypes at this position and p; is the
probability for each genotype i.

We can generate the similarity matrix among samples with either of the
three metrics or or and then apply it in matching strategies to
find the similarity-matched neighbors, or in linear mixed model for accounting

for population substructure. [64].
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3.2 Davies-Bouldin Index

[Davies-Bouldin Index (DB)|is a clustering metric to evaluate how well two

clusters are separated [I82]. We used to estimate the level of separation

between case and control group.

9 i=m—1 j=m
Secases Z dzg
mx(m—1) 4 e
=1 gj=14+1
2 i=n—1 j=n
Scont?"ols - " (n — 1) dz]

we 2SS
i=1 j=1
Scontrols + Scases
DB = 3.5
= (35)

Where m is the size of case group, n is the size of control group, d; ; is the
distance between samples ¢ and j measured by similarity metric. Two clusters

is well-separated if the score is low.

3.3 Rare variant association tests

[CVAS] commonly run single variant tests, which conduct test statistic, such as
x? test, for a single position. The typical significance threshold for single variant
tests is 5 x 107% in as one million common variants are expected in a
large cohorts [183].

Single variant tests are theoretically also possible for low-frequency variants
if the sample size is sufficiently large [I84]. However, for rare disorders, it is
usually not feasible to collect that many patients. Therefore, single variant

tests does not work in [RVAS
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Instead of testing each variant individually, RVAS| usually conducts aggrega-
tion tests or burden tests, which evaluate cumulative effects of multiple genetic
variants in a genomic region. Burden test collects information for multiple ge-
netic variants in the same genomic region into a single genetic score and test

the association between the score and the disorder. In this project, I used sev-

eral different burden tests. Most of simulations were run by [Cochran-Armitage|

[test for trend (CATT)| |[Combined Multivariate and Collapsing (CMC)| tests

and permutation tests, which were implemented in Java by myself. Variable
threshold tests and composite likelihood tests contributed to a small part of

results.

3.3.1 Cochran-Armitage test for trend

tests are applied for categorical data analysis. It aims to test for the
presence of an association between the responses and the ordered categories.
In case-control association tests, the responses are the phenotype of individuals
and the categories are different alleles or genotypes. Typically, we can set up a
contingency table for genotypes. The affected and unaffected individuals are two
responses while different genotypes (homozygous reference AA, heterozygous Aa
and homozygous alternate aa) are three categories.

Instead of setting up contingency table for each position as in single variant
tests, one can build the contingency table across a genomic region in aggregation

tests, where each cell is the cumulative sum for a genotype in this region (Table

51).

Table 3.1: Contingency table for burden tests

Genotype AA Aa aa Total

Cases O11 O12 O3 R
Controls  Oa; Oz 0Oas Ry
Total Ch Cy Cs N
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[CATT]is usuallt studied for the underlying trend. It emphasizes the impor-
tance of utilizing ordered categories in a contingency table [I85 [I86].

Hypothesis 1 there is a linear trend in binomial proportions of cases across

different genotypes.

Null Hypothesis 1 there is no linear trend in binomial proportions of cases

across different genotypes.

The linear regression model for [CATT] is:

Yi = a+ 3 * s, (3.6)

where y; is the real underlying proportion of cases in each genotype, and
s; is a score assigned to a genotype. s; is suggested to be {0,1,1} for the

dominant model, {0,0,1} for the recessive model and {0, 1,2} in the additive

model [I87, [I88].

The null hypothesis can be written as:
Ho:y1i=y2=ys
The alternative hypothesis is:
Hy i yp <y <wys, at least one strict inequality exists.

To measure and test the significance of the trend in y;, one can apply re-
gression analysis of 7 on score s, The prediction equation under ordinary least

squares fit is

di = p+b(s; — 5). (3.7)
3= Z?Zl Ci * Si (3 8)
- N ) .

O
= 3.9
U= (3.9)
Ry
= — Nl
V=5 (3.10)



X G i) (si— )

b 2?21 Cix (51— 9 (3.11)
The test statistic for [CAT1]is:
22 = _r * 23: Ori * (s; — 8)° (3.12)
Te-p) L

has an asymptotic chi-squared distribution with df = 1.

3.3.2 Combined Multivariate and Collapsing test

The collapsing method involves collapsing genotypes across variants in a region
and then applying a univariate test on the collapsed contingency table. It is a
powerful method for analyzing rare variants if the proportion of causal variants
is high. However, power of collapsing methods may reduce significantly if the
nonfunctional variants are misclassified. In contrast, a multivariate test is robust
in the presence of mis-classification of non-causal variants, although it is not

as powerful as collapsing methods. In order to integrate the merits of both

collapsing and multiple-marker tests, Li et.al. proposed |Combined Multivariate|

land Collapsing] (CMC)) method [189].

Collapsing Method Define an indicator variable X for the j** case individ-

uals as
1 rare variants present
X; =
0 otherwise
An individual rarely carry more than one variants in a region because of the
rarity of variants. The way to collapse genotypes across all sites in a region is:
the variable for an individual is one if a rare allele presents in this individual

at any site and otherwise zero. Then one can check whether the proportions of

individuals carried variants differ between groups via association tests.

Multivariate Test The multivariate test can test many variants simultane-

ously, such as Hotelling’s T2 test. In this project, I used Hotelling’s T2 test for

41



the multivariate test. Following Xiong et.al [I90], an indicator variable X; is

defined for the i site for the j** individual in the affected population:

1 Genotype is AA
Xji=4 0 Genotype is Aa
-1 Genotype is aa

Similarly, Y}; is for unaffected population. Let

X; = (X1, X)) (3.13)
Y= (Y, Vi) " (3.14)
1 A
Xi=—)Y X 1
; NAZ: ji (3.15)
Jj=1
1
Vi=—) Yj (3.16)
X =(Xq,..., X)) (3.17)
Y - (Yla "'anM)T (318)

Where M is the number of markers in this region, N4 is the number of
affected individuals and Nz is the number of unaffected individuals. The co-

variance matrix of the case and control groups is

Na Na

1 _ _ _ _
S=——— X; - X)(Xx;-X)" Y; = Y)(Y; -Y)T
T | 2 O~ O 0T+ 305 =05 -7)
(3.19)
Hotelling’s T2 statistic is denoted as
NiNi o - _
2 AN A T o—1
=——(X-Y)sS(X-Y 3.20
(X )T TE ) (3:20)
Under the null hypothesis that no variants is disease-associated,
Nao+Nz—M-—-1
A+ VA T? (3.21)

M(Na+Njz—2)
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is asymptotically distributed as an F distribution, with M and No+Njz—M —1

as degrees of freedom for a large sample size of cases and controls.

Na+Nj—M—1
M(Na+Njz—2)

T? ~F(M,Ns+Njz— M —1) (3.22)

Combined Multivariate and Collapsing Method The[CMC|method com-
bines the collapsing strategy and the multivariate test. It firstly classifies makers
into subgroups with predefined criteria, such as allele frequency or protein func-
tion. Then markers are collapsed into a single score within each group. In the
end, the multivariate test is applied to all subgroups. In the exome-wide data,
we took gene as a genomic region. Since we tested only the rare variants in this
project, we did not further divide a genomic region into subgroups according to
allele frequency. Therefore, the CMC| method in this project only worked as a

multivariate test.

3.3.3 Variable threshold test

The [Variable threshold (VT)|test is based on the intuition that some threshold

T for which variants with a [MAF] below T is more likely to be functional than
those variants with a [MAF]above T [191]. Test statistics can run on each allele
frequency threshold T. Price et al. [I91] used z-score test, defined 2,4, as the
maximum Z-score across values of T, and assessed the statistical significance
of zpar by permutations on phenotypes. The z-score test was calculated as

follows:

_ Xt 2 & Cij(my — )
VI T (67 Cy)?

where n was the total number of samples (including cases and controls). m

() (3.23)

was the number of variants in the tested genomic region. §Z-T was an indicator
variable that was equal to 1 if the frequency of SNP ¢ was below the threshold
T and otherwise zero. m; was the phenotype of sample j. T was the mean value
of 7; across samples. Cj; was the reference allele count of SNP ¢ in sample j.

z(T) was proportional to a standard normal variable.
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3.3.4 Composite likelihood ratio test

The |[Composite likelihood ratio (CLR)| test is designed to evaluate whether a

gene or other feature contributes to disease risk. The statistic value of this
test is the ratio of two likelihood functions based on the null hypothesis and
the alternative hypothesis. In the burden test, we first collapsed variants in a
genomic region, then calculated the maximum likelihood which was equal to the
observed frequency of the minor allele [192]. So the log-likelihood ratio was as

follows:

Lnun
A= —2lo
g( T )

(%)a(l _ L)(nafa)(L)u(]_ _ L)(nufu)

Na zn Ny

= —2log

Where m was the total number of mutations in a given gene. n was the total
observed genotypes in this gene among n, cases and n, controls. a was the
number of mutations appeared in n, cases and v was the number of mutations
in n, controls [I93]. The probability distribution of the test statistic A was

approximately a chi-squared distribution with one degree of freedom.

3.3.5 Permutation test

Permutation tests do not make any assumption on the specific distribution of
the underlying data, the basic assumption is only that it is possible that all of
the treatment groups are equivalent. Thus, its null distribution is obtained by
a random assignment of samples to case and control groups. The procedure of
permutation test is following:

step 1: compute the observed test statistic (Topps)-

step 2: enumerate all permutations of the labels (/N permutations).

step 3: read the fist permutation of the labels and assigned to each group

step 4: calculate the test statistic for the shuffled data.

step 5: go to next permutation of the labels until all permutations are tested
and repeat step 3-4.

step 6: use all test statistics from step 3-5 to construct the null distribution.
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step 7: find where the observed test statistic located in null distribution.
step 8: the permuted p-value (Tpermur = (M + 1)/(N + 1), where M is the
number of test statistics not smaller than T,bs).

For large data, to enumerate all permutations is very computationally inten-
sive. To balance the advantage of permutation test and its computational cost,
Monte Carlo sampling is proposed. The trick is that it randomly generates a

small number of permutations (like 1000) instead of all permutations at step 2

(194, 195].

3.4 Multiple testing corrections

When multiple hypotheses are tested in one experiment, the rate of false pos-
itives can significantly increase. In the random scenario, if m hypotheses are

tested simultaneously, m X « false positives are expected,where « is the signif-

icant level. In order to restrict the [Family-wise error rate (FWER)| a stricter

significance for multiple tests is required.

3.4.1 Bonferroni corrections

Bonferroni adjustment is one approach for multiple-tests correction. The idea
of Bonferroni correction is that: in order to control the expected significance
level for the entire family of tests at most «, the significance level of each single

test should be &, where m is the number of tests.

m’
Let Hy,..., H,, be a family of hypotheses and p, ..., p,, be p-values of each
(63

hypothesis. The Bonferroni correction states that choosing all p; < - will

control the [FWER] < a. The proof follows from Boole’s inequality:

FWER:Pr{LIJ(pigZ)}gIZ{Pr(pigi)}gmox:LSmx:l:a

where I is the subset of the true null hypotheses, having mg members. This
result does not require that the tests be independent. Although the Bonferroni

correction restricts false positives, it become very conservative when the number
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of tests is large. In turn, it increases the risk of generating false negatives.

3.4.2 Experiment-wide significance

When the study is small, the p-values from association tests are usually not
as significant as the expected under the null hypothesis. Bonferroni correction
will be too conservative in this case, therefore another approach to correct for
multiple testing is proposed. It calculates an experiment-wide significance level
with permutation method [I41] [196].

The procedure is quite similar as the way to generate the permuted p-values.
Instead to construct a null distribution for each test, it construct a null distri-
bution for the minimal p-value of all tests in each permutation.

Supposed that M tests (such as M genes to be tested) are included in the
data. The steps are as follows:
step 1: run statistical test on the original to get the observed p-values for all M
tests.
step 2: assuming that the categories of all samples are unknown, we re-sample
the labels for all samples.
step 3: run the same test on the new label samples data and get the smallest
empirical p-value.
step 4: repeat Step 2-3 for N times, such as N = 1000 or 10000....
step 5: construct the empirical distribution of the smallest p-values.
step 6: the value at the significance level(like 0.05) of this distribution is the

empirical significance for observed tests.
Unlike permutation p-value which is independent of statistical tests, em-

pirical significance depends on the statistical tests. Thus, the challenge of

experiment-wide significance is to select an appropriate statistic test.
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3.5 Readout of statistical tests

The classical approach to test hypothesis includes setting up a null hypothesis
(Hp) and an alternative hypothesis (H;), calculating a test statistic (T') in a

statistical test from the observed data, then finally deciding whether to reject

H, [197).

Power Statistical power is the probability that the test correctly rejects the
null hypothesis (Hp) when the alternative hypothesis (H;) is true.

power = P(reject Hy|H1 is true) (3.25)

Family-wise error rate [FWER]is the probability of making one or more
type I errors, where the test incorrectly rejects a null hypothesis, among all
hypotheses tests.

FWER=P(V >=1) (3.26)

where V is the number of type I error.

Top-ranked rate Top ranked rate is the probability that a test has the lowest
p-value when Hj is true. The reason for using a top ranked rate is that: it is
not possible to collect a large number of cohorts for rare disorder, so it is hard
to achieve a significant p-values t reject Hy. Therefore, it is reasonable to use
the top-ranked rate’ to evaluate the performance in [RVAS] In this thesis, I used

an alternative term ”top-ranked rate” or ”disease causing gene is top ranked”.

3.6 Accounting for confounders

In case-control association tests, population stratification due to individuals
from the multiple source populations, and cryptic relatedness due to the re-
latedness among individuals, are confounding factors. they may lead to false

association signals. It is therefore important to account for these confounders

[198].
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3.6.1 Accounting for population stratification

Population substructure between case and control groups is a major confounding
factor in case-control association studies that can cause spurious associations.
Some methods have been developed to correct these confoundings. The princi-
ple of the correction methods is to describe the effect of the confounding genetic
structure as random effects and quantify the covariation regarding the degree of
genetic relatedness among the samples. In[GWAS] principal-component analysis
(PCA) and linear mixed models are popularly used. The principal components
in PCA are estimated from a genome-wide covariance matrix holding all geno-
typed markers for all case-control individuals. However, PCA is unlikely to
correct for cryptic relatedness present in the data [53].

The linear mixed model also uses an empirical covariance matrix to account
for both pedigree and population structure. It can correct the empirical re-
latedness matrix encoding a wide range of sample structures, including both
hidden relatedness and population stratification. To make clear how the ’direct
adjustment’ methods performed on rare variants, we tried EMMAX to correct
the confoundings in this work. EMMAX is based on the linear mixed model
[64] and is implemented in EPACTS package [199]. In linear mixed models, the
phenotype is typically modeled as the sum of a fixed linear regression, including
the effects of the marker to be tested and a random linear-additive term that ac-
counts for unwanted confounding structure. The idea of confounder correction
with linear mixed model is to assume that the effects of confounding genetic
structure randomly exist. We can evaluate the covariation of these confounder’s
effects according to the genetic relatedness between samples. Phenotype y is
written as the mixed sum of a linear term in the fixed effects § and random

effect u, that The general variance component approach is as follows:
y=XB+Gu+e (3.27)

Where G is a N x S matrix holding S genotyped markers for N individuals.
Each locus is assumed to have the equal effect of the total genetic variance o2.

The S loci included in matrix G is assumed to have a mean of zero and unit
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variance. The realized relationship matrix (RPM) is defined as the empirical

covariance matrix

1
Krpar = gGGT (3.28)
the random genetic effect
G~ N(0,0°Krpu) (3.29)

RPM is used to capture the confounding variation in the phenotype. With
marginal likelihood method where the random genetic effect was marginalized

out, we could know the genetic variance 0'92.

3.6.2 Accounting for cryptic relatedness

Cryptic relatedness means that some of the individuals in case-controls cohorts
may have close relatedness. This situation violates the assumption of the case-
control association study that all genotypes are independent draws from the
overall population frequencies. Thus, it may lead to a larger variance than ex-
pected and further result in the false positive association in the association tests
59, [62]. Due to sample mix-ups, cryptic relatedness may exist between

samples.

The sample-relatedness can be investigated using both [[dentity by descent|

(IBD)| [200] and estimations [201, 202]. In this thesis, we investigated
sample-relatedness using estimates in PLINK [200]. The downstream anal-

ysis in [[BD] infered the possible relationships between the set of four alleles
of two individuals when assuming symmetry between maternal and paternal
gametes [203].

With the -genome option in PLINK, it is easy to compute pairwise kin-
ship estimates between any individuals. PLINK infers the relationship types,
such as siblings, parent-child and unrelated, with the proportion of loci where
individuals share zero, one and two alleles identical by descent. If the proba-
bility of a pair sharing two alleles is around one, it means that this pair is

monozygotic twins, or a pair is replicates of a single sample. If a pair shares zero
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alleles [[BD] at every locus, then they are unrelated. If a pair shares one allele
at every locus, then they are the parent-child relationship. The relatedness
between samples can be inferred by the proportion that two individuals share
identity by descent positions. For full siblings, they share respectively 25% zero
allele 50% one allele and 25% two alleles in the genome. The
proportion of identity by descent for full siblings is 25% in an infinitely large

panmictic population.

3.7 Simulation

3.7.1 Case group setup

In reality, the patients with the same disorder (especially rare disorder) are dis-
seminated all over the world. In the simulation, I randomly chose samples from
a pool as case group. The number of samples in the simulated cases was from
5 to 60. A cohort of five patients was typical for rare disorders while a cohort

of 60 patients was large enough for a rare disorder. I performed simulations on

and [KGP] data.

3.7.2 Spike pathogenic mutations

To simulate real cases, I further spiked causal mutations of a rare disorder into
cases. | simulated three dominant disorders and five recessive disorders. All
pathogenic mutations in these disorders were from the HGMD database [I55].
In these eight disorders, three of them were heterogeneous disorders. The other
five disorders were homogeneous disorders. All disorders were monogenic (Table
, although the disorder in different patients may be caused by different genes
(details in Section [2.2).

Figure shows the tree structure among disorders, genes and mutations.
si, © = (1,...,8), is the disorder of interest. g¢;;, j = 1,..., G, is the jth disease-
associated gene of disorder s;, G is the total number of disease-associated genes

for a disorder. w;; is the prevalence that patients carried mutations on this
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disease-associated gene. g;; of disorder s;. Vjj;i is the k" pathogenic mutation

in gene g; for disorder s;.

= Disorders, s;
/ | \\\‘ 15 N Wid = Probability, Wij

®e® ©®o0® -~
/LN RN RN VRN
. . ‘ . . . . ‘ . . . . = Pathogenic Mutations,v;;z

Figure 3.1: hierarchy of disorders, genes and mutations. Each disorder has one
or more disease-linked genes, and each gene has its own prevalence. Each gene

contains many pathogenic mutations (details in Section .

Figure [3:2] describes the process of selecting pathogenic mutations for case
group. When selecting the mutations to spike into cases, all disease-associated
genes of the disorder were obtained, then one of these genes was picked up
following their prevalence. The list of pathogenic mutations in the selected
gene was then read out. If the inheritance model of the simulated disorder
was autosomal dominant, I randomly chose one mutation in the list a and set
the genotype of the patient to be heterozygous. If the inheritance model was
autosomal recessive, then I randomly chose one or two mutations from the list.
If only one mutation was selected, then we set the genotype at this site for the
patient as homozygous. Otherwise, if two mutations were selected, then I added
two heterozygous mutations to the variants profile of this patient. All added

positions were set to be reference homozygous for control individuals.
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Figure 3.2: Workflow of spiking causal mutations into cases. The number of
mutations chosen for a patient depended on the inheritance of the disorders.

The probability to a gene being selected was dependent on its prevalence.
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3.7.3 Control Group Setup

The ideal situation in [GWAS]is that the individuals in controls groups have the
same population background as case groups. This can minimize the likelihood
of generating false positive associations due to various biases and confounding
data. In practice, the population stratification between cases and controls is
the well-known. The matched ethnicity between case and control groups can
minimize the population stratification [204].

As the "direct adjustment’ methods cannot work in (see Section7
the 'matching strategy’ is a possible alternative to correct for the population
stratification in [RVAS] which reduces the potential stratification at the design
stage.

In [GWAS] the number of controls was commonly equal to the number of
cases [46, [41) [38]. This is based on the reaseons that the correction methods
for population substructure worked best if the group size of case and control
was the same (according to the personal correspondence with EMMAX group).
However, it has been proposed that including more controls can increase power.
The study of Zondervan and Cardon [205] showed that the control:case ratio
up to ~ 3 to 4 would get the best performance while including as many control
as possible can maximize the power showd in the study of Zhuang et.al [140],
although the rate of false positives increased as well.

In the current work, I initialized the size of the control group as the same as
case group and then expanded the control group as large as possible. I used two
strategies to set up the control group, either in a similarity-matched way or in
a random way. In the similarity-matched method, I chose the individuals who
were genetically closer to the cases. In a random way, control individuals were
randomly chosen. As shown in Figure I ranked the similarity score for a
case to all individuals in the pool. If control group had the same size as case
group, then for each case individual, its first available nearest neighbor was its
control individual. If the size of the control group was larger than the size of

case group, we chose the first possible nearest neighbor of all cases in the first
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round, the second possible nearest neighbor of all cases in next round, and so

forth.

First Second Third
Nearest Nearest Nearest

cases neighbors from near to far

Figure 3.3: The strategy of choosing similarity-matched controls. The blue
points represented cases, and the horizontal row represented the neighbors of
each case from near to far. Green points represented the available individuals
in the remaining pool. The red points meant that the individuals were not

available in the remaining pool, as they were already in case group or control

group.

3.8 Summary of the chapter

In this chapter, I described the methods and simulations used in this thesis.
The similarity metrics are the basis of the 'matching strategy’. The 'matching
strategy’ chose the similarity-matched individuals as control group based on the

genetic similarity among individuals. Several statistical tests were applied to
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detect the associations, such as tests (CATT] test, [VI] test and [CLR] test).
I implemented [CATT] [CMC] test and permutation test in Java and used them

in most simulations. [CLR] test was used in the genomic matchmaking study.
test with and without EMMAX correction had been implemented in the
EPACTS package and was used in the part of verifying whether EMMAX works
in [RVAS] I studied the performance of [RVAS| with matching strategy from the
power and[FWER] which were widely used statistical term in association studies.
As the limited power observed in the simulations, I also took top-ranked rate
as a readout. To control the[FWER] I used the multiple tests corrections or the
experiment-wide significance in the results. The cryptic relatedness in this work
was accounted for by PLINK. [RVIS| was used to investigate the characteristic of
the frequent false positive genes in the following section. Finally, the workflows

of setting up simulations were introduced.
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Chapter 4

Results

In this chapter, I firstly introduced the procedure to prepare the data used for
simulation. I showed the data quality of [BER] and [[KGP] cohorts and the ge-

netic relatedness presented in these data. Then I compared the advantages and
disadvantages of the 'matching strategy’ in [RVAS] I showed the improvement
of RVAS] with matching strategy achieved in several readouts, such as enhanced
power and top-ranked rate and declined [FWER] I also made a study of the
frequent false positive genes. I further studied the factors which had impacts on
the performance of RVAS] such as the data quality of samples, the inheritance
model and heterogeneity of disorders, the number of controls, the statistical tests
and the variants filters. I also showed the application of [RVAS| on identifying
the disease-causing gene TGDS for Catel-Manzke Syndrome. Finally, I studied
the challenge of recruiting the samples with significantly different quality and
of collecting the cases with the same phenotypes from the genomic matching

community.

4.1 Data quality of two cohorts

Rare variants are sensitive to data quality. The low data quality may result

in large number of false rare variants. Here I compared the data quality of
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[BER] and [TKGP] cohorts from two aspects: read coverage and the genotyping

accuracy.

4.1.1 Read coverage

To evaluate the data quality, I firstly compared the fraction of the exome target
regions which were at least covered by 20 reads. The median of this fraction was
higher in [[KGP] than [BER] (Figure . I also calculated this fraction for the
subsets of samples (Srps, Sy2 and Syr1) which were the most similarity-
matched groups as cohorts (based on metric ). The mean

coverage of the cohorts S;pg, Sy, Sye differed from that of the entire IKGP

cohorts, indicating that the similarity metric is affected by data quality. The
entire data quality of Sy was lower than Sy and Syy2, due to W' metric put

more weight on rare variants, which were sensitive to data quality.
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Figure 4.1: Exome data quality of |BERI and |1KGP| cohorts. The fraction of

the target regions that are covered by > 20X correlate with the data quality
of exomes. The mean coverage of the data is higher than that of BER]
cohorts. The subset of Sres, Swt, Swe are composed of the [[KGD)|
individuals who are the first available closest individual for each [BER]individual
in different similarity metrics . The mean coverage of the cohorts
Sy differs from that of cohorts, indicating that metric can match
data quality too.
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4.1.2 Genotyping quality

is especially sensitive to genotyping errors as it puts higher weight on rare
variants. The distance to a reference dataset with high quality can be used to
assess the data quality of a test sample [I73]. A sample of high genotyping
quality is closer to the reference set than a sample with comparable ethnicity
but low genotyping quality. Normalization of this distance yields a dissimilarity
score that can be used for a quantitative comparisons. The genotyping quality
of samples can be evaluated by measuring the dissimilarity scores between the
tested samples and their nearest neighbors in the [KGP|reference set. The dis-
tribution of the dissimilarity score is set up for cohorts as well as
[in England and Scotland (GBR)|and [Finnish in Finland (FIN)| cohorts which
are two populations in [KGP]data. The median dissimilarity score for BER co-
horts is considerably higher than that of and (Figure. It is known
that the majority of BER] cohorts have European and Middle East background.
Therefore, there is no matched population in data. To remove the im-
pact of the reference population, [GBR] and [FIN] cohorts are excluded from the

reference set and the dissimilarity scores are recalculated. The exclusion of the
subpopulations itself makes the entire dissimilarity scores only slightly higher.
This indicates that the higher dissimilarity score in [BER] cohorts resulted from

the poor genotyping quality but not from the background of the reference sets.
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Figure 4.2: Genotyping accuracy of data. NN means the nearest
neighbors. The genetic distance from the tested samples to a reference dataset of
high genotyping accuracy correlates with the data quality. Comparing to [GBR]
and the higher dissimilarity score in [BER] indicates its lower genotyping
accuracy. Excluding and [FIN] from reference sets subtly changed the

distribution.

4.2 Cryptic relatedness in the data

In this work, I used PLINK to detect the cryptic relatedness hidden in the data.
In PLINK, the relatedness can be estimated by 6 = 0.5 x Z5 4+ 0.25 x Z;, where
Z5 is the fraction that is identical in both copies, Z; is the fraction that is
identical by descent in one copy. The cryptic relatedness is defined as 6 > 0.1.

I iteratively excluded one sample in the related pairs. Finally, 33 individuals in
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and nine individuals in [IKGP| data were removed (Figure ).
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Figure 4.3: Identification of cryptic relatedness. PLINK generated the related-
ness for BER] (A) and [TKGP]cohorts (B). Z; and Z are the fraction of positions
that are identical by one or zero copy for a pair of samples. Zy =1 — Zy — Z;
is the fraction of positions that are identical by two alleles. The relatedness of
samples is estimated by 6 = 0.5 %« Z3 + 0.25 % Z;. Red dots indicates pairs with

0 > 0.1 indicating cryptic relatedness.

4.3 Cluster analysis

4.3.1 Similarity metric in clustering population

Davies Boulding index (DB) evaluates intra-cluster similarity and inter-cluster
differences. The low indicates a better separation between clusters and the
tighter inside of a cluster (see detail in Chapter . The scores for pairs
of populations were calculated to estimate the separation between them, where
the similarities among individuals were based on different metrics and
w2

There are 26 populations in[IKGP]data, including East Asians, South Asians,

Africans, Europeans and Americans. [BER] cohorts mainly consist of Europeans
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and Arabs, a few of Africans and Asians. As[DB|score is not a normalized met-
ric, it cannot absolutely compare the level of separation among different metrics
but it is clear to see the difference in separating clusters due to different metrics.

As shown in Figure the highest score is for the test clusters to
themselves. There are peaks for the tested samples to the populations from
the same continents, which indicate the tested populations are close to the
populations from the same continents. Comparing to metric and the
tested population in [TKGP] data have better separation to other populations in
metric (as the peak is narrower). For instance, the distribution of [DB|scores
for population is sharper in metric than other metrics, that means,
[FIN] is only close to [GBR] while [FIN]is also close to population [CEU]
[Population in Spain (IBS)| and [Toscani in Italia (TSI)|in metric and
thus the cluster of is tighter with metric Moreover, fordata, it is
isolated to populations if using metric because scores between
[BER] and any population are always zero without variability. Whereas,
the distribution of score of data is rough in and especially in
metric The small peak for at region of European populations
[FIN] [CEU} IBS|and [T'SI) in metric indicates that is close to European
populations of data.
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Figure 4.4: @ score between populations. The lower score means the better
separation and tighter inside. A) the similarity used in calculating DB score
was generated based on metric B) the similarity used for calculating DB
score was generated based on metric C) the similarity used for calculating

DB score was generated based on metric @

4.3.2 Similarity metric in clustering case and control groups

I also used the Davies Boulding index (DB) [59] to quantify the separation
between case and control groups. A low score (See Chapter [3.2]) means
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that two clusters are better separated and the individuals in the two groups are
genetically further apart. I chose case individuals from [BER]and chose the same
number of controls from the remaining samples either randomly or matched
by similarity. Here I presented the results for the similarity metric but
the other metrics showed similar results. Compared to random selection, the
similarity-matched control groups were more similar to the case group. This was
especially prominent for small groups, as indicated by their higher scores
(Figure ). When group sizes increased, scores decreased in all selection
strategies. Because the remainders in the infinite pool are limited, it leads to a

large intersection between random controls and similarity-matched controls.
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Figure 4.5: score between case and control groups. A lower score
means control groups are genetically further from case groups. N* means the
number of samples in control group. Here case and control groups have the
same number of samples (5, 15, 30 and 45) from 1000 simulations were

run for each setting.

4.4 The definition of allele frequency

The allele frequencies are usually based on population data of the[ITKGD)]
[Aggregation Consortium (ExAC)| or [ESP| The profile of rare variants strongly

depends on populations [206] 207]. Thus, the definition of allele frequency had
a great impact on filtering variants. In addition, sequencing technologies and
bioinformatics processing pipelines may result in artifacts as well [89]. Finding
out the proper reference sets for the definition of allele frequency was firstly
studied in this project.The methodology is to investigate the effect of exclud-
ing/including the population of the tested samples in the reference sets. The
test samples were the cohorts [FIN] [Utah Residents (CEPH) with Northern and]
[Western European Ancestry (CEU )| in [TKGP] data and data. There was

a initially comparable number of nonsynonymous variants in all cohorts. The
variants were further filtered out if their allele frequency above 0.001, where
the reference sets for the definition of allele frequency were [IKGD)| data after
excluding cohorts (Figure A). For comparison, another allele frequency
profile was built based on the reference sets including the entire data
as well as [BER] cohorts, and the variants were re-filtered based on this profile.
With the new profile of allele frequency, the number of rare variants decreased
dramatically, especially for and cohorts (Figure B).

The changes due to including or excluding the test samples in the definition of
allele frequency showed that rare variants are population-specific. The inclusion
of removed a quarter of rare variants. The higher inbreeding coefficient
in may be responsible for the loss of the number of rare variants [208].

Furthermore, the dramatic change of the number of rare variants in [BER] caused
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by including [BER] in the reference sets indicated higher genotyping error rate
in this cohort. A low data quality and many genotyping errors resulted in a
substantially larger number of singletons in the [BER] cohort. Compared to
[BER] and [FIN] the number of rare variants in [CEU] were not affected much by
the inclusion of [BER] and [FIN} In general, the calling artifacts are randomly
distributed over the genome and present as singletons. Such artifacts cannot be

filtered out based on allele frequencies.
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Figure 4.6: Distribution of rare variants per exome for different pop-
ulations and sequencing studies. A) Excluding and from the
reference sets for calculating allele frequency. B) Includingand in the
reference sets. The number of rare variants per exome decreases dramatically

by including the tested population itself in reference sets, especially for @

4.5 ROC-like curves with different selection

schemes

In statistics, a |Receiver Operating Characteristic (ROC)| curve demonstrates

the performance of a binary classifier system when its discrimination threshold
varies. Usually the sensitivity is plotted against specificity at various threshold
settings. However, statistical power and [FWER]are more relevant in association
studies. Therefore I showed a [ROCHike curve with power against [FWER] In
Figure power ( see Equation [3.25) and [FWER] ( see Equation were

computed for simulations of five cases and five controls from [BER] Controls

were chosen randomly or in a similarity-matched way. For each case sample,
I spiked in either a homozygous or two heterozygous pathogenic mutations of
[APMRS] I ran 1000 simulations and computed the power-FWER value pairs for
the thresholds [0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9]. The
p-values were computed by 10,000 permutations per test. Compared to random
controls, [RVAS] with similarity-matched controls achieved lower [FWER] in any
metric and a slightly higher power in the and metrics. It indicated that

performance was improved if population substructure was accounted for.
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Figure 4.7: like curves for power against Case and control

groups of size 5 were simulated by choosing individuals from the BER cohort

either randomly or matched by their similarity. Three different metrics were

used to infer kinship matrices: and Pathogenic mutations of
Mabry syndrome (HPMRS) were spiked into the rare variant sets of individuals

of the case group and permutation-based p-values from were computed

for every gene. The value pairs for power and FWER] were plotted for a range
of significance levels ([0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and

0.9]), shown the color intensities at the lower right corner of the plot.
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4.6 Power of RVAS in different disorders

I studied the power of detecting the disease-causing genes for different disorders.
For all disorders, the power of the RVAS increases with the size of the case and
control groups. In general, it was more likely to detect a true association in a
disease with a recessive mode of inheritance, which was mainly due to the higher
burden of pathogenic alleles. Moreover, associations in small disease genes with
a highly conserved sequence like gene T'GDS were easier to be detected. For
the large and/or variable genes, the presence of many rare benign mutations

diluted the contribution of the pathogenic mutations (Figure [4.8]).
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Figure 4.8: Statistical power on different disorders. Eight disorders are
simulated with increasing group size. They consist of five single gene dis-
orders (Tay-Sachs Syndrome, Cystic Fibrosis, Catel-Manzke Syndrome, Neu-
rofibromatosis, Kabuki make-up Syndrome) and three heterogeneous disorders
(HPMRS] autosomal recessive hearing loss, Noonan Syndrome). Five of them
are recessive disorders (Tay-Sachs Syndrome, Cystic Fibrosis, Catel-Manzke
Syndrome, autosomal recessive hearing loss) and the other three are
dominant (Neurofibromatosis, Noonan Syndrome and Kabuki make-up Syn-
drome). N is the number of individuals in case group. N is the individuals
in control group. The power of the RVAS|is computed with permutation test.
The significance cutoff is 0.05.

4.7 'Top-ranked rate with different selection

schemes

For rare disorders, it is not feasible to collect large cohorts, but it is hard to
observe a very significant association with small cohorts if using multiple testing
corrections. Permutation test can compensate for this shortcoming, but it is
computationally intensive. Ideally, the p-values from the statistical tests at the
causal locus should be smaller than any tests at neutral loci. Therefore, I used
the rank of p-values as an alternative way to estimate the performance of the
association test. I used the term ”disease-causing gene is top ranked” in figures,
which meant the disease causal gene had the lowest p-value.

Figure showed that the probability of ranking the causal gene at the top
increased with growing case group size for both[BER]and [[KGP]subgroup which
were the closest neighbors tosamples inmetric (see Figure.

with any similarity-matched controls performed better than one with random

controls in while only one with controls performed better in [IKGP
data. I chose metric to evaluate the similarity between [BER| and [LKGP|
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data, because data quality had tiny influence on metric (see Figure [4.4)).
The probability of ranking disease-causing genes at the top in [BER] was lower
than in [[KGP] as the data quality of these two data had a large difference

(Figure [L.1)).
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Figure 4.9: Top-ranked rate of disease gene identification in and
[BER] The case and control groups have the same group size. All tests are
calculated from [CATT]} The simulated disorder in this figure is The
group sizes are increased from 5 to 60. (A) All case and control samples are
selected from (B) All cases and controls are selected from the subgroup
of The subgroup of IKGP)|is composed of samples which are the closest
neighbors of IE]E individuals.

4.8 False positives genes in two cohorts

I have shown the top-ranked rate and power of detecting disease-associated
genes, however, these two values are not high for small group size. Thus, I

studied the false positive genes occurred in [BER] and [ITKGP] data. The false

positive genes are the genes which had the lowest p-value in a simulation, but

not disease-associated genes. In order to investigate what kind of genes were
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false positive genes, I collected the frequency of each gene to be false posi-
tive. Figure showed the most ten frequent false positives observed in [BER]
and cohorts. For Sy2, a subgroup of cohorts (see Figure ,
these top 10 false positives were: GPR9S, LAMA5, MUC17, DNAH3, PLEC,
SYNE2, AHNAK, FLG, OTOF, ABCA13. For [BER] cohorts, these top 10
false positives were: FLG, MUC17, SYNE2, AHNAK2, CUBN, MUC6, PLEC,
HRNR, SYNE1, ABCA13. Five genes were very frequent false positives in both
cohorts. 12 false positive genes were observed in both cohorts. Gene CUBN and
gene HRNR were frequent for [BER] while they were never observed in
In contrast, gene OTOF was frequent in [[KGP] while it was never observed in
BER}
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Figure 4.10: The most frequent false positive genes in |1KGP| and |BERJ.
The ten most frequent false positives occurred indata (GPR98, LAMAS,
MUC17, DNAH3, PLEC, SYNE2, AHNAK, FLG, OTOF and ABCA13) and
BER] data (FLG, MUC17, SYNE2, AHNAK?2, CUBN, MUC6, PLEC, HRNR,
SYNE1 and ABCA18). The true positive genes are associated with

The false positive genes are the gene which have the lowest p-value but not
disease-associated genes. y-axis is the frequency of a false positive gene observed

in 1000 simulations. Here 15 cases and 15 control are randomly selected from

Sz of |TKGF’| and |EEEr Permutation tests are conducted here.

To classify these false positive genes, I learned the information of genes includ-
ing: length, [RVIS|and number of variants in two cohorts. A negative [RVIS|score
of a gene indicated purified selection while a positive score was likely to mean
either the absence of purifying selection or the presence of balanced or posi-
tive selection [I68]. Figure showed nine of 14 frequent false positives had
positive [RVIS| score. Gene HRNR did not have a RVIS score at present version
(2016-03-12, http://genic-intolerance.org/). The length of all false positives was
large. To further study the reason of these genes to be false positives, I collected
the number of variants of a gene in two cohorts. As shown in Figure B, all
false positive genes had a large number of variants in each cohort. Due to the
small number of variants in BER, gene OTOF was frequently observed in[IKGP)|
but not in [BER] It was true for gene CUBN and HRNR as well. Genes with
large RVIS, such as MUC16, were not frequently observed due to few variants
in two cohorts after filtering. Genes with a large number of variants in any co-
horts, such as gene PKD1 in[IKGP|and gene OR/A16 in[BER] were observed
false positives in the simulations, but not the ten most frequent ones.

Therefore, the large genes and the tolerant genes were more likely to be false
positive findings in [RVAS] It was also dependent on different data sets. Due to
sequencing center, filter definition or the population components, the number

of the variants in each gene varied among data sets.
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Figure 4.11: The classifiers of false positive genes A) Genes are classified
by gene length and [RVIS} Gene length is the cumulative length of exons in a
gene. [RVIS]is the data published in 2016-03-12 (http://genic-intolerance.org/).
B) The number of rare functional variants per gene in m and [IKGP| data.

4.9 Effect of data quality in RVAS

To carefully study the effect of the data quality and population background
on the performance of [RVAS] I conducted simulations on [BER] and two [IKGD)|
sub-populations, [FIN] and [GBR] [FIN] and [GBR] were homogeneous populations
while BER] was heterogeneous in their nature. [RVAS] for [GBR] and [FIN] data

had higher probability of ranking the disease-associated gene at the top than
one for Besides the difference in population background, the difference
of data quality had an impact on the performance of [BER] too. [GBR] and [FIN|

had a larger fraction of the target region with above 20 reads compared to
[BER] (Figure[4.12/ A). T therefore tested the performance of [RVAS| with variable

quality in the same population.

For this purpose, I only kept the samples which were at least 80% of the target
region had more than 20 reads (*_H). The samples with higher data quality,
such as GBR_H, FIN_H and BER_H, could increase the probability of ranking
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pathogenic genes. If comparing the performance between [GBR] and [FIN] [FIN]
had a higher probability of ranking the disease gene at the top than [GBR]
because was a more homogeneous population than [I1]. Therefore,

the high data quality and lesser population stratification could improve the

performance in [RVAS]
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Figure 4.12: Influence of population substructure and data quality on
disease gene identification. (A) The fraction of the target region in a sample
with coverage above 20 reads was used to estimate the data quality. The higher
the fraction a sample had, the lower the expected false positive and false negative
genotyping error rates. [FIN]and [GBR]were all unrelated TKGP]individuals from
these two populations. [BER] are the unrelated in-house samples. ” _H” were the
samples which had at least 80% target region with > 20 reads in these three
populations. (B) The probability of ranking the disease-causing gene at the top
increased with an expanding case group. N was the number of individuals in
case group. N* was the individuals in control group. Here controls were the
closest neighbors of cases with similarity metric W?'. The simulated disorder
was HPMRS. [BER] showed the worst performance. For all three populations,
the performance improved with higher data quality.
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4.10 Effect of extended control group in RVAS

To achieve a significant true association or rank the disease gene at the top,
high data quality and matched population stratification are required. Are there
any other ways to further improve the performance of RVASP While the size of
the case group with a rare disorder is small due to the rareness of the disease
in Mendelian disorders, there is theoretically no size limitation for the control
group.

Expanded control cohorts was suggested to increase power in [CVAS When
stratification was present, larger controls were preferred to decrease the chance
of matching errors [(7]. The optimal ratio of case:control was 1:4 proposed by
Zondervan et al. [204]. The exact ratio of diminishing return may vary according
to disease risk and allele frequency. If additional genotypes were effectively free,
power can be maximized by including as many controls as possible. [T40].

I therefore analyzed the performance of [RVAS| when gradually increasing the
control group size but keeping case group fixed. I made simulations on [BER]
data and the subgroup of Swe (see Figure . I randomly selected a
small number of cases (5 or 15) from a pool, then I chose controls at random
or in a similarity-matched way. I expanded the control group from as large as
case group to all available samples in each pool.

As shown in Figure the probability of ranking the disease gene at the
top increased as the control group size increased, which was consistent with
the findings in [CVAS] However, the optimal was neither four nor infinite. In
general, the optimal control group size for five cases was 60 for [BER] and 120
for the subgroup of (Figure A, B); When case group size was fixed
at 15, the optimum moved to 90 for and 120 for (Figure C,D).
Compared to random selection, the similarity-matched selections improved the
performance of prominently when the case group was small (size 5).
Around 10% higher probability at the optimal points was gained by match-
ing methods for both pools. Compared to the performance of the small control

group, the optimum controls increased the probability of ranking disease gene
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at the top by 20% ~ 40%.

[RVAS|with similarity-matched controls based on [T metric obtained the highest
probability of ranking disease-causing genes top for [BER] data, while the perfor-
mance with any similarity-matched controls was the same for data. The
reason is that BER] cohorts have more heterogeneous data quality than that of
data. W' metric is the most sensitive to data quality, as it gives high
weights to rare variants. It could match the data quality among samples, which
could improve the performance of [RVAS] From this analysis, we concluded that
the large control group could increase the performance in [RVAS] However, the
size of the optimal control group was highly dependent on the characteristic of
case group such as the group size, the patients’ individual ethnicities and the
carried disease, the characteristic of the pool such as the population structure
and the data quality. In contrast, it was independent of the similarity metrics. If
there was explicit population stratification, the optimum control was crucial for
[RVAS] If there was no population stratification, it may be beneficial to include
as many controls as possible, as the finding in [I40]. However, this did
not necessarily apply to ultra-rare variant disorders, as the patients may be from
different population across the world. A recent example was the patients with
Catel-Manzke syndrome [81]. Three patients came from northern Germany, one
patient was of British descent and the fifth was from Cameroon. Thus, controls
had to be chosen carefully with consideration for the population compositions
in cases and candidates controls.

Moreover, the size of the case group affected the optimal number in controls
too. This may be due to the alteration of population composition in the large

case group.
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Figure 4.13: Performance of with expanding control group. The
simulations are performed on exome data from [BER] cohort (A, C) and the sub-
group of Swe, (B, D). The size of the case group is kept fixed at 5 (A, B)
or 15 (C, D) individuals with pathogenic mutations form The probability

of ranking disease-causing genes top increases if including more controls.

4.11 Comparision of statistical tests in RVAS

The basic idea of burden tests is to collapse information for multiple genetic
variants into a single genetic score. They are powerful when a large proportion

of variants are causal and effects of these variants are in the same direction.
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In this work, I applied two burden tests, an univariate test [CATT]and a multi-
variate test test for eight rare disorders (Figure . In this simulation,
I randomly chose five cases from [[IKGP] then chose another 100 controls from
remaining with different selection strategies or random).
Neurofibromatosis and Kabuki make-up syndrome were caused by highly vari-
able genes NF1 and KMTZ2D. Due to many non-pathogenic mutations in these
genes, the probability of detecting such genes was low. For instance, the prob-
ability of detecting KMT2D was low in all tests. It was even harder to be
detected than gene PTPNI11 for Noonan syndrome. For these highly variable
genes, [CMC] performed better than [CATT] such as NFI and KMT2D. For
genes with high sequence conservation, performed better than [CMC]
This observation coincided with the conclusion of Li et.al that the inclusion of
non-causal variants in a genomic region had a smaller influence in multivariate
tests than univariate tests [I89]. The merit of the similarity-matched strategies
was independent of the statistical tests. For all disorders, it was more likely to
rank the disease gene at the top if the controls were chosen based on similarity

metric W1 that was the most sensitive to data quality.
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Figure 4.14: The performance of disease gene identification for differ-
ent disorders. The case group is composed of five random individuals from
data. 100 controls are chosen at random or in a similarity-matched way
from the remaining data. The solid line shows the results from [CATT]
tests and the dotted line shows the results from @ test.

4.12 Effect of variant filter in RVAS

As the number of rare alleles at a single position is too numerous to run single
marker tests, aggregation tests, which aggregate rare variants across a genomic
region, are suggested for RVAS] to increase the power. To avoid enriching noise
in a region, a proper filter can aggregate the damaging alleles and ignore benign
alleles. In this section, I studied the effect of variant filters on the performance
of RVAS]

Here I took [HIPMRS] as the simulated disorder. The variants were firstly fil-
tered with allele frequency and protein function. Subsequently, I only kept the
variants which were nonsynonymous and had minor allele frequency not greater
than 0.001. For comparison purposes, I further filtered the variants with phyloP
score greater than 1 (Section. All cases and controls were fromdata.
The case and control groups had the same group size. Control individuals were
randomly selected from [BER]

As shown in Figure .15 the stricter filter, nonsynonymous and conservative
rare variants, increased the probability to identify the disease-associated genes
in [RVAS] Because the stricter filters removed more background mutations in

the disease-associated gene when using the stricter filter.
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Figure 4.15: The effect of Variants filter on Besides filtering variants
by allele frequency, variants are further filtered with the protein function of
variants or the conservative score. Black line: the filter includes allele frequency
less than 0.1% and nonsense, missense and splicing. Red line: the filter includes
allele frequency less than 0.1%, nonsynonymous mutations and phyloP score

above one. N* is the number of samples in control group.

4.13 Direct adjustment approach in RVAS

As introduced in the Chapter [T} the ’direct adjustment’ method for population
substructure cannot work in[RVAS] To verify the conclusion, I applied EMMAX
[64] to account for the substructure induced by rare variants (Figure [4.16]).

EMMAX has already been implemented in EPACTS package [199] which of-
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fered several statistical tests with correction methods. I chose [VT] to check
whether EMMAX worked on [RVAS] in this simulation, as[VT]had already been
implemented with and without EMMAX model in the EPACTS package.

To make sure that the population substructure existed between case and control
groups, I chose cases from [GBR] and controls from other populations
except [GBR] The control individuals were selected at a random or in a similarity-
matched way with metric. Figure showed that the matching strategy
improved before/after correction. However, EMMAX cannot improve
the performance of RVAS] the performance with EMMAX was worse than one

without correction, which was consistent with the study of Mathieson et al. [73].
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Figure 4.16: EMMAX performed in|RVAS}| EMMAX was used to account for the

population stratification due to rare variants. Cases were chosen from [GBR] of

cohorts and controls were from other populations in [[KGP]data. Metric

W1 was used to calculate the similarity score among individuals.

4.14 Disease gene identification in real studies

I tested the performance of [RVAS|in the disease gene identification of three

monogenic disorders which were recently resolved, Kabuki make-up syndrome
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[134], HPMRS| [15] and Catel-Manzke syndrome [81]. There were ten unrelated
affected individuals with Kabuki make-up syndrome, 13 samples of [HPMRS]|

cohorts and seven unrelated cohorts for Catel-Manzke syndrome. All cohorts
were resolved with intersection filtering, by identifying the intersection genes
among most of the unrelated and affected individuals [25] 209)].

The example of studying of Kabuki make-up syndrome showed the limitations of
the conventional intersection approach. Ten unrelated individuals were studied,
seven of European ancestry, two of Hispanic ancestry and one of mixed European
and Haitian ancestry. Kabuki make-up syndrome was a dominant disorder.
Therefore Ng et al. firstly considered the gene for which all cases had at least
one previously unidentified nonsynonymous variant, splice acceptor and donor
site mutation or coding indel variant on it. With this filter, only MUC16 was
shared across ten exomes, which was highly likely to be a false positive gene
due to its extremely large size. Then they conducted a less stringent analysis
by looking for candidate genes shared among subsets of affected individuals.
Several groups of candidate genes were obtained. Finally, they prioritized the
candidate genes with genotypic and phenotypic stratification. They found only
nonsense mutations in KMT2D /MLL2 shared by four highest-ranked cases and
found another three cases with loss-of-function mutations in this gene.

As [RVAS] was more straightforward for disease gene identification, I simulated
the Kabuki make-up cohorts by subsequently increasing the number of cases
with pathogenic variants from one to ten. I randomly chose ten cases and
forty similarity matched controls from Further, T randomly spiked the
pathogenic variants into the case group. Finally, I tested the relationship be-
tween the number of cases with pathogenic mutations and the probability of
detecting the disease-caused gene at the top. [RVAS| ranked the disease gene at
the top position in almost 100% of the instances when at least six out of ten
individuals had pathogenic nonsynonymous mutations (Figure A, B).

For Catel-Manzke syndrome and [HPMRS| the identification of disease-
associated gene was highly effective even if the number of samples with

pathogenic mutations was smaller than that of the initial study. Especially
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the disease gene TGDS in Catel-Manzke syndrome had such a low variability
that it can readily be identified with as little as four affected samples (Figure
C, D). As[HPMRS| was a heterogeneous disorder, patients may be affected

due to mutations in different genes, thus more cases were needed to detect the
disease gene for m (Figure E, F).

Spurious associations often occurred for highly variable genes, such as genes
from the mucin family or genes that show a higher rate of calling artifacts, such
as the pseudogene KRT1 (Figure D). The false positive error resulting
from such genes can also be reduced by using a similarity-matched setup of the

control group.

85



A Kabuki make—up Syndrome B Kabuki make—up Syndrome (N°=5)

5100 o me-m--m--= = Most Similar
i~ - < —| - Random
=4 ”
<] ”
o 80 — 7
=) "
R o a @ - NEX1
2 60 ' g T2
D ) = R - KMT2D
= S B o KMT2D o &
‘5 40 - ! 5 M
E] - 2
8 / ©
@ ,/ ——
2 20 /
[<5] /
Rz} .=
= . = Most Similar
X o w--¢ - Random o -
T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 o 0.5 1 1.5 2
#of cases with pathogenic mutations Expected —log;oP
a.
C Catel-Manzke Syndrome D Catel—Manzke Syndrome (N°=3)
5100 — _ m----m----m = Most Similar
= Il 8 —| - Random
< - KRT1
o 80 — o
=] Al TGDS °® i
K% ,', o 6 — = TGDS
G S
£ 60 K E
[ . T
= o 3 T
£ 404 r = 4
3 K g EEEEE
o 'l w—
<5 2 -
@ 20 — g o
I
b5y /. =
Rz} ’ -
= / = Most Similar /
X o= - Random o -
T T T T T T T T T T T T
1 2 3 a 5 6 7 o 0.5 1 1.5 2
#of cases with pathogenic mutations Expected —logioP
I a.
E HPMRS HPMRS (N=7)
3 100 — - = Most Similar
= + Random
=
] ="
o 80 — R .
=] = 6 PGAP2
K%} P a
2 60 = g
= — -
5 . 7
> ’r = 4 — -
2 2 csHLL
2} 40 — ,:/ 2 PGAP2 ®
5] = o .
3 " 2
&3 20 =
D -
.8 4
= L = Most Similar
R o= - Random o -
T T T T T T T T T T T T
1 3 5 7 ] 11 13 o 0.5 1 1.5 2
#of cases with pathogenic mutations Expected —logioP

86




Figure 4.17: for three resolved monogenic disorders. The
pathogenic mutations of Kabuki make-up syndrome, [ HPMRS|and Catel-Manzke
syndrome have been identified in new disease genes by intersections of variant
candidates in case groups of unrelated, affected individuals comprising 10, 7 or
13 cases. Via [RVAS] approach with 40 controls, the probability of identifying
the disease gene in such cohorts was still considerable even when the number of
cases with pathogenic mutations in these cohorts was reduced markedly (A,C,
E). Additionally, a selection of similarity-matched controls may also help to
reduce spurious associations effectively: the QQ plots (B,D,F) showed the in-
stances of the [RVAS] simulations where 5, 3 and 7 individuals had pathogenic
mutations in the disease genes KMT2D, TGDS and PGAP2. It also showed
that the disease gene got the lowest p-value only if similarity-matched controls

were used.

4.15 RVAS on Catel-Manzke syndrome

From the simulated data in Section [I.14] the disease gene TGDS could be
identified in the Catel-Manzke syndrome cohorts with four cases. The homozy-
gous or compound heterozygous mutations in gene TGDS caused Catel-Manzke
syndrome [8I]. In our clinic, we collected seven families from all over the world
(Figure. Family 1 was from Cameroon, patient 2 was of mixed British and
South American descent, patients 3, 4 and 5 were of German descent, family 6
were Dutch and family 7 was from northern France.

Individuals in family 1 (proband and parents), family 2 (proband and parents),
family 4 (proband and mother), family 5 (proband and children) and the affected
individual of family 7 were subjected to exome sequencing.

The other four samples, the parents and the affected child from family 1 and
the affected child from family 7, were sequenced with Illumina HiSeq system

with paired-end 2 x 100 bp protocol. Sequence reads were mapped to human

genome reference hgl9 using Novoalign [2I0]. [Single nucleotide variant (SNV)|
and short [[nsertion and deletion (INDEL)| were also called by GATK toolkit.
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All variants were annotated at the functional level with Jannovar [I55].

T T LT

Figure 4.18: Pedigree structures in Catel-Manzke cohorts. Family 1 was

from Cameroon, patient 2 was of mixed British and South American descent,
patients 3, 4 and 5 were of German descent, family 6 was Dutch and family 7

was from northern France.

As no candidate gene was detected via the separate analysis of the families, all
affected individuals were collected to be a case group. In this pedigree (Figure
, the recessive inheritance model and the de novo dominant inheritance
model were considered. Under the hypothesis of de novo dominant mode, no
candidate gene was reliable. For the hypothesis of recessive inheritance mode,
only the singleton homozygous variants, and the heterozygous variants with
lower than 0.01 frequency were kept in cases, where allele frequency was based on
large population studies, such as[IKGP} [ExAC|http://exac.broadinstitute.
org/|) or (http://evs.gs.washington.edu/EVS/). The analysis of the
autosomal-recessive mode of inheritance yielded three candidate genes: MUCY,
MUC6 and TGDS. Mucin genes are highly variable, thus gene TGDS was the
most likely candidate. Its pathogenesis was established by bioinformatic predi-
cation tools and further biological function analysis. Based on the intersection
strategy, TGDS gene was identified.

I also ran[RVAS|on this cohort. Due to the limited components of in-house data,

I took [[KGP]and [BER]as control group. Metric [[7]]is sensitive to data quality,

it matched data quality rather than population background when the quality
among samples varies. Thus I used to estimate the similarity between

individuals and chose their first ten nearest neighbors as a control group from
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[BER] and [TKGP] In the similarity-matched controls, some controls were from

[BER] and some from [[KGPl The cases were close to their controls as shown in

the [Multidimensional scaling (MDS)|plot (only the five nearest neighbors were
plotted, Figure |4.19).

Figure 4.19: The plot illustrated the similarity between cases and all
[IKGP] and [BER] data. The similarity matrix was calculated based on metric
[ The colored dots with "X’ are cases. The colored dots without "X’ are the

selected closest controls. The dots of the same color indicate the first five closest
controls for a patient (with *X’). The orange circles are individuals from
The gray circles are the individuals from Some of the selected controls

seem far from the patients; it may be due to the visualization angle.

I only tested the missense or nonsense variants and further filtered out the vari-

ants with MAF above 0.001. The variants appeared more than three times in

89



our in-house data were also filtered out. The variants which occurred in case and
control individuals simultaneously were filtered out further. I then aggregated
variants in each gene and did [CATT] on these genes. Table [4.1] showed the
genes ranked among the top ten. With similarity-matched controls, gene TGDS
was ranked at the top and mucin genes were ranked at lower positions. With
the random controls, gene MUC4 still distracted analysis. The balanced dis-
tribution of rare variants in the case and similarity-matched controls degraded

the disturbed genes, especially the highly variable genes.

Matched Controls Random Controls
Rank Gene p-value Gene p-value
1 TGDS 2.32E7° MUC4 7.04E78
2 ANKRD20A4 1.08E~* TGDS 2.32E7°
3 ANKRD36B  1.08£=* ANKRD20A4 1.08E~*
4 FRG2C 1.06E—3 ANKRD36B 1.08E~*
5 KIR3DL1 1.06E—3 MUC16 2.92E4
6 POTED 1.06E—3 FRG2C 1.06E—3
7 SPATA20  2.38E73 POTED 1.06E~3
8 DNAHS5 341E73 MUC6 1.41E73
9 MUC4 3.41E73 SPATA20 2.38E73
10 PRR21 341E73 DNAH5 341E73

Table 4.1: Genes of the ten lowest p-values. The rank of p-values was
calculated in [CATT] with similarity-matched controls or random controls. The
similarity among individuals was obtained based on metric The 'matching
strategy’ improved the ranks. Gene MUC4 ranked at the top with random

controls while it ranked lower with the similarity-matched controls.

In this case, gene T'GDS ranked at the top for several reasons. Because TGDS
was a gene with high sequence conservation, it had few rare mutations in the

control group. In addition, Catel-Manzke was a homogeneous and recessive dis-
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order, all patients were affected by one or two pathogenic mutations on TGDS.

4.16 Genomic matchmaking database

Since many Mendelian disorders have not been elucidated, it is difficult for a

clinical center to obtain a sufficient number of patients. To circumvent this dif-

ficulty, [Genomic Matchmaking databases (GMD )| was proposed, which allowed

participants to submit genomic and phenotypic data in order to identify unre-
ported disease-associated genes by matching them with other comparable cases.
At least 3000 such genes are expected in Mendelian disorders [211]. However,
what is the sufficient data needed to ensure two or more individuals shared the
same disorders and caused by the same disease-caused gene? This problem re-
sembled the birthday paradox. In that scenario, the probability p of a matched
pair in a group of r individuals is:

p1— e s (4.1)
If 23 individuals were investigated, there was a 50% chance of finding a matched
pair. However, if there was an expected 50% chance of three individuals having
the same birthday, at least 88 individuals belonged to this group [212]. In the
similar calculation for 3000 disease-associate genes, the expected probability
of some individuals sharing the same disease-associated gene varied with the
group size (Figure A). Moreover, there were more factors that affected
the efficiency of identifying the disease causal gene in Mendelian diseases with
[RVAS] such as the detection rate of mutations, d, the inheritance model of the
disorder, the genetic heterogeneity h and the neutral rare variants .
This study showed that the lower proportion of rare neutral variants in the con-
trol group and the higher detection rate could increase the chance of identifying
the disease-associated genes (Figure B, C). From the standpoint of inheri-
tance models, the disease-associated genes were more difficult to detect if more

autosomal dominant diseases and heterogeneous disorders were involved in the

database (Figure C and D).
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Supposed that half of unsolved Mendelian diseases were dominant and half were

recessive, then a third of these diseases had homogeneity and another third had

heterogeneity with ten genes and the remaining third had heterogeneity with

30 genes. Furthermore, a 70% detection rate and a 0.02 rare neutral rate were

assumed. Under these assumptions, GMD would require approximately 80,000

patients in order to identify all disease-associated genes [193].
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Figure 4.20: The impact factors on Multinomial distribution was
used for simulating the relationship between the number of patients in GMD and
the identified disease genes. A) The influence of the size of the dataset. Large
data in the database increased the number of patients who shared the same
disease gene (c¢) and further increased the chance of solving the disease. B) The
influence from the background mutations. The rarer the neutral mutations A
which appeared in the control group, the greater the difficulty it had to identify
the disease genes. C) The influence of the inheritance model of disorders. The
disease associate genes of autosomal dominant disorders were more difficult to
detect than those of the recessive disorders. The lower rate of mutation detection
also decreased the chance of identifying the disease genes. D) The influence of
the heterogeneity of the disease-linked genes. Genetic heterogeneity affected the
chance of significantly identifying the disease-associated genes. The greater the
heterogeneity of the disorders, the harder it was to detect the disease associated

genes.
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Chapter 5

Discussion

[GWAS] have successfully identified hundreds of thousands of SNPs that con-
tribute to complex clinical conditions and phenotypic traits [213]. However, the
associations due to these SNPs can only explain a certain fraction of overall her-
itability [33] [32]. Therefore the assumption that rare variants play a significant
role in explaining this 'missing heritability’ came up.

Due to small cohorts and the intrinsic relationship inside the cohorts, rare dis-
ease genes can be traditionally resolved by linkage analysis and the intersection
filter among patients. However, researchers may be distracted by the artifacts
from large genes or the low complexity region, such as MUC gene or pseudo-
genes, because these genes are likely to pass the intersection filters. Besides
the traditional approaches, [RVAS] compares the patient cohorts to the healthy
cohorts. It can decrease false positive genes and prioritize the disease-associated
genes.

It is well known that population stratification can lead to spurious associations

in[GWAS] In[CVAS] many methods have developed for accounting for the strat-

ification. Generally, these methods can be divided into two classifiers. The first
cluster is the 'matching strategy’ at the design stage, which corrects for pop-
ulation stratification by involving tight matching of cases and controls. The

other cluster is ’direct adjustment’ after the design, which adjusts for the con-
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founding by using the ancestry components as covariates of association tests. A
comparison of the performance of these two approaches in [CVAS| reveals that:
when population stratification is small, the 'matching strategy’ approaches per-
form comparably to the ’direct adjustment’ approaches. However, when the
stratification becomes large, the 'matching strategy’ approaches perform stably
while the ’direct adjustment’ approaches perform variably depending on the al-
gorithms. For instance, genomic control [59] became too conservative, but PCA
approach [53] performed still well [77].

Comparing to[CVAS] population stratification is more pronounced in[RVAS| The
reasons are three-fold. Firstly, as many rare variants typically evolve recently,
it is more population-specific [71]. Secondly, as the demand for increases,
the patients with same disorders are dispersed all over the world. This further
exacerbates the stratification. Finally, RVAS|commonly uses burden tests, which
aggregate information across multiple sites. has to tackle the population
stratification in both individual allele frequencies and the total quantities of
rare variants [68]. All in all, to solve the problem of population stratification in
[RVAS] becomes a necessary and urgent task.

Unfortunately, the existing methods cannot correct the confounding of the strat-
ification due to rare variants. Therefore, I set up this study for searching the
strategy to account for the stratification due to rare variants.

In general, similar genetic backgrounds in case and control group can even up the
stratification, which is also the baseline of the 'matching strategy’. Therefore,
in this work, I worked on ’matching strategy’ to select the genetically similar
individuals to construct control group in the design stage of [RVAS]

To achieve this goal, three similarity metrics and were stud-
ied. From the perspective of evolution, common variants reflect older evolution-
ary history and contribute more to the population background. Whereas rare
variants are evolutionarily recent and have significant impact on human phe-
notypes and disease susceptibility. Thus, common variants and rare variants
are weighted differently in these three metrics. Rare variants are given higher

weights in metric and common variants get higher weights in metric
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Basic [[BS| metric gives the same weight to all variants.

Via simulations, I found that the 'matching strategy’ with all three metrics can
considerably account for the confounding of the population stratification. [RVAS)
with the matching strategy improves the statistical power, reduced the FWER
and also increased the probability of ranking the disease-associated genes at the
top.

Despite the consistent improvement of [RVAS| with the matching strategy, dif-
ferent performance among similarity metrics was observed. Metric can sep-
arate the populations by considering the population background and the data
quality, whereas and basic only consider the population background.
When the data quality among samples is comparable, separates the clus-
ter more clearly comparing to metric and basic In this scenario, the
matching strategy with metric improves the performance of more
than the other two metrics.

In the [CVAS] study, a larger control group has been proposed to increase the
power of the association tests. The optimal control:case ratio is suggested dif-
ferently in several study [205] [I40, [77]. In this work, I found that there was
also an optimal ratio of case:control in [RVAS] More surprisingly, [RVAS| with
the 'matching strategy’ plus the optimal ratio could maximize improvement.
In addition, the similarity metric for the 'matching strategy’ affects the per-
formance of [RVAS] but it cannot affect the optimal ratio. The optimal ratio
is dependent on the population structure and data quality in all samples, the
inheritance mode of disorders, the heterogeneity of disease-linked genes and the
tolerance of background variants of the statistical test. Moreover, the fraction
of components of ancestry correlated with disease risk is also likely to have effect
on the optimal ratio [77]. Guan et.al proposed the minimize a cost algorithm
to find the optimal control group in with inputted group size [(7]. This
algorithm needs to be tested in [RVAS] As the optimal ratio is study-specific in
[RVAS] individual efforts are also needed for each study design separately.

In the application of case studies, I showed the benefits due to a larger control

group and the ’matching strategy’. In the real-case study of Catel-Manzke
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syndrome, [RVAS| with the 'matching strategy’ and with a larger control group
ranked the disease-caused gene TGDS at the top while suspending the frequent
false positive genes out of the hit list. As another example, [RVAS] was able to
rank the disease-caused gene KMT2D at the top for Kabuki make-up syndrome
for a cohort of as small as six cases. Compared to the traditional linkage analysis
and the intersection filter among patients, [RVAS] resolves the disorder with
smaller cohorts, and accelerates the progress for identifying disease-associated
genes.

As the demand of [GMD)] increases, the patients with the same disorders are
dispersed all over the world. The population stratification between case and
control group will become even worse. It further highlights the importance of
the 'matching strategy’.

As many factors may affect the performance of [RVAS] there is still considerable
space to optimize these methods used in this work. In the following, I discuss
these factors and the limitation of this work, and suggest possible improvements
in further research of

As seen in this work, when the data quality among individuals significantly
varies, the influence of data quality in the similarity metric differed. Metric
clustered samples by data quality rather than ethnicity while the other two
metrics matched samples by ethnicity. However, none of the metrics can work
properly for the 'matching strategy’. This emphasizes the importance of good
data quality, but it also calls for a matching strategy which can overcome the
data quality difference to identify the right population background for further
study.

[CVAS]study has shown that choosing a small informative set of genetic variants
can estimate the genetic similarity as exact as involving all available markers.
This could be achieved, for instance, by selecting markers based on the Hardy-
Weinberg disequilibrium tests [77]. This idea also offers a hint for optimizing the
calculation of similarity matrix in the current work and improving the similarity
metric for the further research.

This study employed the individual-based 'matching strategy’ to select the tight
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matching controls. An alternative approach in[CVAS|for the 'matching strategy’
is cluster-based analysis, such as GEM [74] and spectral GEM [214]. In cluster-
based approach, multiple ancestry components are summarized into a single
scalar measure. Then the score is used to assign subjects to a small number of
strata. Regarding [CVAS]|study, it has been reported that these two approaches
perform similarly. Whether the cluster-based approach will also work for [RVAS]
demands further investigations.

The 'matching strategy’ with the expanded control group could maximize the
performance of RVAS| when the number of patients is fixed. However, due to the
extremely low prevalence of rare disorders, collecting sufficiently large cohorts
of unsolved phenotype is a major challenge for a single clinical center. Com-
munity effort may solve the problem of small cohorts, that is, many geneticists
contribute their cohorts to a large database [GMD] Expanded [GMD]can increase
the possibility to detect the disease-associated genes for the cohorts with similar
phenotypes. However, it also increases the possibility that the matched cases
may carry imprecise phenotypes, which will increase the potential for false pos-
itive associations as well [215]. Generally, genic tolerant genes or large genes
are prone to be false positive genes. The 'matching strategy’ can help to reduce
the false discoveries, but more strategies are required to prioritize and inter-
pret the interesting candidates. Some studies have developed scoring systems
to indicate how likely a gene is genic intolerant based on known large datasets,
such as based on or pLI score based on [168), 216], 2T7]. These
scores, especially pLI score, only perform well in identifying potential dominant
disease genes. For recessive disorders, several millions of healthy individuals in
a random mating population may be needed to detect a depletion of homozy-
gous LoF mutations. Alternatively individuals from consanguineous marriages
represent an alternative to detecting viable or lethal recessive gene via human
knockouts [218]. This kind of research will help to interpret recessive disease
genes.

Apart from the data quality and population components of samples, the number

of individuals in case and control groups, the features of disorders and the
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similarity metrics used in the 'matching strategy’, variants filter also have a
strong influence on the performance of [RVAS] The goal of variants filter in
[RVAY] is to aggregate the damaging alleles and ignore benign ones. A filter-
fixed approach is common in [RVAS] For instance, the non-synonymous variants
in the protein-coding region and variants with a frequency below a specific
threshold T are commonly used. The profiles of rare variants varied considerably
between different populations and different sequencing studies. Here again,
lower data quality which consequently caused more genotyping errors and more
diverse population backgrounds resulted in more singletons for in-house data.
Therefore, including in-house samples for allele frequency calculation can reduce
artifacts.

Besides allele frequency filter, one can also filter the variants with other criteria,
such as phylogenic score and mutation function. The stricter filter may increase
the probability of detecting the disease-linked genes in[RVAS] which is especially
true for the causal genes have high sequence conservation. However, it may
exclude the true disease-causing mutations, for instance, the pathogenic variants
of TAR syndrome consist of one rare variant and one polymorphism in most
cases [219]. Apparently, thorough understanding and careful analysis of the
disorders are required before choosing filters.

This work has focused on the association study for unrelated individuals. Be-

yond this method, the family-based association test (Family-based associationl

test (FBAT)) is also widely used. Both designs have advantages and disadvan-

tages. The disadvantage of the unrelated case-control study is that the signifi-
cant association may be due to the population stratification. The family-based
study designs are robust against population substructure, as the family mem-
bers have similar population background. However, it takes much more time
and money to gather the probands and their relatives in the family-based associ-
ation studies. The association test of unrelated individuals performs worse than
the family-based design if all trios data are available, whereas, the population-
based association study is more efficient than family-based association study if

limiting to the same expense [220] 221]. However, the power of population-based
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association tests highly depends on the number of patients, and the significant
association is hard to be observed in small cohorts.

Considering the merits and limitations of population-based association tests and
family-based association tests, a general framework unified both designs is pro-
posed. The integrative approach builds a connection between population-based
association tests and family-based association tests. Its test statistics includes
the statistics from population-based tests and correction factor for considering
the population structure and pefigree. This design improves the power and
decreases type I error. [222] 223 224].

In addition to the association tests for the population-based and family-based
data, a method for association tests without the control group was proposed
[216]. Tt particularly worked on estimating the enrichment of de novo mutations
in genes [225] 216]. It firstly estimated the expected per-gene probabilities of
de novo mutations for each mutation type (synonymous, missense, nonsense,
splice sites) from the public data. Secondly, it evaluated whether the observed
mutations in cases exceeded the expected number. Compared to [RVAS] on one
hand, this method focused on the de novo mutations, which had a much stricter
filter than for rare variants. On the other hand, this approach calculated the
association without control groups. It saved the cost of sequencing large control
cohorts, and it was efficient. This method offered the ability to evaluate the
rate of rare variation from learning large databases, such as[ESP|or This
method can work in individual genes where burden test would fail. To extend
this method to rare variants on a broad scale needs further study.

This study mainly discussed [RVAS] in the coding regions, as the coding se-
quence are the main functional and medically relevant part in the genome. By
contrast, the function of non-coding [DNA] cannot be deciphered only with the
sequence. Fortunately, a growing number of non-coding transcripts in gene
regulation and RNA processing have been confirmed, such as cis-regulatory ele-
ments: enhancers, silencers, promoters [226] [227]. Furthermore, many SNPs in
non-coding regions are significantly associated with disease in [228, 229].

Therefore, extending RVAS to non-coding regions is an obvious next step. In
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order to make RVAS feasible in the non-coding region, several major challenges
must be overcome.

The first challenge is how to filter the rare variants in the non-coding region.
Because rare variants in non-coding regions are likely to have smaller effects
and have an overwhelming number, the true signal will immerse in lots of false
positive findings. Thus, [RVAS| may require a much larger number of samples to
detect a comparable effect in the non-coding region compared to coding regions.
It also highlights the need for advanced annotation tools for rare variants in
whole genome to filter out as many disease-irrelevant variants as possible [230]
2311, 232, 233].

To aggregate the variants in a gene or pathway is the most intuitive way in
coding regions. However, non-coding regions have more complicated regula-
tory mechanism. There are many choices for aggregating variants in the whole
genome, such as genomic physical locations like window size or biological func-
tion units like topological association domains (TADs) [234] 235]. A good un-
derstanding of the studied disorders will help to choose the aggregation unit.
For example, for a disease of little previous research, we may test the aggrega-
tion unit from TAD regions to small interesting regions; For a disease with lots
of previous research, one could restrict the investigated regions to the known re-
gions related to the phenotypes. For instance, the interested HPO terms related
to the disorders can be generated with Phenomizer and the interested regions
(like TAD) can be further generated with known HPO terms [230] 237, 238, 239).
In the suspected regions, we could further divide the vast regions into small bins
and test all possible combinations of bins.

All in all, [RVAS] is a straightforward and efficient method to prioritize the
disease-caused genes in Mendelian disorders. Although there is still much work
to do in future, there is no doubt that [RVAS| will make a significant contribu-
tion to the identification of disease genes. In January 2016, NIH reported their
plan of genomic research for human disease. With increasing technical capabili-
ties and theoretical know-how, the endeavor to comprehensively understand the

genetic disease has just begun.
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Summary

It is well known that population substructure can lead to spurious associa-
tions in [GWAS] Two strategies, direct-adjustment’ and ’matching strategy’,
have been developed to account for such population stratification in [CVAS]
However, the population stratification behaves differently in [RVAS| and [CVAS]

It results that the existing methods based on ’direct adjustment’ strategy can-
not work in [RVAS] However, whether 'matching strategy’ would work in [RVAS]
is still unclear.
Therefore, in this work I studied the matching strategy at the design stage of
[RVAS] Three similarity metrics with different weighting schemes were set up
for the matching strategy. I evaluated the performance of RVAS| by power,
WER] and top-ranked rate. In addition, I also studied the impact factors for
[RVAS] performance, such as the data quality of samples, number of samples, the
inheritance model of disorders and the heterogeneity of disease-caused genes. I
also studied the existing problems in [RVAS] and also suggested the solutions,
such as the bad quality samples and the small number of cohorts. Finally,
I applied [RVAS] approach in the Catel-Manzke cohorts, [RVAY] identified the
disease-associated gene TGDS.
Thus, [RVAS] is a comprehensive approach to prioritize the causal genes in
Mendelian disorders. The 'matching strategy’ for [RVAS] could account for the
population stratification. [RVAS| with matching strategy could increase the sta-
tistical power and reduce the [FWER]
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Zusammenfassung

In genomweiten Assoziationsstudien, GWAS, koénnen Unterschiede in der ethnischen Herkunft der
Individuen in den Fall- und Kontrollgruppen zu Assoziationen fithren, die nicht auf den eigentlich zu
untersuchenden Phénotyp zuriickzufiihren sind. Diese Signale stellen damit unerwiinschte Artefakte
dar. Zur Vermeidung dieser fehlerhafter Assoziationen wurden Strategien entwickelt, die entweder
eine Korrektur auf zuvor definierten Gruppen vornehmen, oder aber Kontrollen passend zu den be-
troffenen Individuen auswéahlen. Neuerdings sind aufgrund moderner Sequenziertechnologien auch
Assoziationsstudien fiir seltene genetische Varianten, RVAS, moglich. Es zeigte sich jedoch, dass
hierbei eine nachtréagliche Korrektur nicht moglich ist, da seltene Varianten ein dafiir ungeeignetes
Verteilungsmuster aufweisen. In meiner Arbeit wurde untersucht, inwieweit eine Auswahl passender
Kontrollen Fehlerraten reduzieren kann und welche Metriken zur Ahnlichkeitsberechnung geeignet
sein konnten. Zur Auswahl der Kontrollen wurden unterschiedliche Distanzmetriken analysiert,
die eine Gewichtung anhand von Allelfrequenzen vornehmen. Die Giite dieser Auswahlverfahren
wurde anhand von simulierten Fall-Kontrollgruppen bewertet. Bei der Zusammensetzung der Fall-
gruppen wurde neben unterschiedlicher Herkunft der Individuen auch eine hohe Variabilitdt in der
Datenqualitit untersucht. Es zeigte sich, dass eine Ahnlichkeitsmetrik, die eine stirkere Gewich-
tung seltener Varianten vornimmt besonders gut geeignet ist, um fehlerhafte Assoziationen zu re-
duzieren. Bei einer kleinen Fallgruppengroe, wie sie fiir die meisten Studienkohorten Mendelscher
Erkrankungen typisch sind, konnten die erwiinschten Krankheitsgene leichter identifiziert werden,
wenn es sich um rezessive Erkrankungen handelte. Eine hohe Heterogenitdt der Erkrankung und
Variabilitat der Zielgene erschwerte die Detektion. Mit einer Vergroflerung der Kontrollgruppe
konnten Verbesserungen in der Detektionsrate erzielt werden. Die erarbeiteten Auswahlstrategien
wurden schliefllich angewendet, um eine Fallsammlung von Patienten mit Catel-Manzke Syndrom
zu analysieren. In den betroffenen Individuen konnte eine signifikante Anreicherung seltener Mu-
tationen im Gen T'GDS identifiziert werden, die eine Auswirkung auf die Proteinstruktur haben.
Die entwickelten Analyseverfahren konnen damit eingesetzt werden, um die Identifikation einer

Anreicherung klinisch relevanter Mutationen in Patientenkollektien zu erleichtern.
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CATT

CDCV
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CLR
CMC
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Cochran-Armitage test for trend.
[ &%

common disease common variant.

Utah Residents (CEPH) with Northern and
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common variant association study.
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Family-based association test.
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Family-wise error rate.
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Genomic Matchmaking databases.
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Genome-wide association study.
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Identity by descent.

Iberian Population in Spain. |61

Identity by state. ,
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intellectual disability. a
Insertion and deletion. @

Minor allele frequency.

Multidimensional scaling.

Next generation sequencing. , H
Receiver Operating Characteristic. Iél
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RVAS

RVIS

SNP

SNV

TSI

VT

WES
WGS

Rare variant association study. |§|,
28 B2 B7 (6} (2} B4 B3 69 B9 [T [OHR3)

F% E7T 2% P30 ™
residual variation intolerance score.

37

single nucleotide polymorphism.
Single nucleotide variant.

Toscani in Italia.

Variable threshold.
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