Diversin kontrolliert Zellmigrationsprozesse während der Gastrulation und Herzentwicklung in Vertebraten

Dissertation zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.)

eingereicht im Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin

vorgelegt von **Heinz Möller**aus Holte-Lastrup/Emsland

angefertigt am Max-Delbrück-Centrum für Molekulare Medizin Berlin in der Arbeitsgruppe von Prof. Dr. Walter Birchmeier

Berlin, im Februar 2007

Gutachter: Prof. Dr. Walter Birchmeier Prof. Dr. Fritz G. Rathjen

Datum der Disputation: 16.05.2007

Inhaltsverzeichnis

1	Zusammenfassung	5
2	Einleitung	6
	Der Wnt-Signalweg - Ein Überblick	7
	β-Catenin-unabhängige Wnt-Signalwege	8
	Planare Zellpolarität in Drosophila melanogaster	10
	Differenzierung des Komplexauges in Drosophila	13
	Frühe Embryogenese und Herzentwicklung im Zebrafisch	16
	Planare Zellpolarität in Vertebraten	20
	Die Funktion des Ankyrin-Repeat-Proteins Diversin im Wnt-Signalweg	24
	Zielsetzung der Arbeit	26
3	Ergebnisse	27
	Die Ankyrin-Repeat-Domäne von Diversin kontrolliert	
	Konvergenz und Extension im Zebrafischembryo	27
	Diversin vermittelt Signale stromabwärts der Nicht-kanonischen	
	Wnt-Liganden Wnt5a und Wnt11 und des putativen	
	Wnt-Korezeptors Glypican-4/6/Knypek	34
	Diversin wirkt im Nicht-kanonischen Wnt-Signalweg auf gleicher	
	Ebene wie Dishevelled und stromaufwärts der kleinen	
	GTPasen RhoA und Rac1	36
	Diversin ist essentiell für die Herzentwicklung im Zebrafisch	38
	Diversin und Diego sind funktional nur partiell identisch	41
	Dishevelled interagiert mit der Ankyrin-Repeat-Domäne von	
	Diversin im Nicht-kanonischen Wnt-Signalweg	44
	Die DEP-Domäne von Dishevelled vermittelt dessen	
	funktionelle Interaktion mit Diversin	49
4	Diskussion	52
	Homologe der Primär-PCP-Gene von Drosophila kontrollieren	
	Zellwanderungsprozesse im Zebrafischembryo	52
	Ankyrin-Repeat-Domänen als Vermittler wichtiger Signalprozesse	54
	Diversin und Dishevelled im Kontext der Nicht-kanonischen	
	Wnt-Signalkaskade	55
	Der Nicht-kanonische Wnt-Signalweg ist für die Herzentwicklung	
	von Vertebraten essentiell	56

	Vergleich der Funktion von Diversin mit seinem	
	Drosophila-Homolog Diego	59
	Der Mechanismus Diversin-vermittelter Nicht-kanonischer Wnt-Signale	61
5	Material und Methoden	66
	Molekularbiologische Standardmethoden, Chemikalien,	
	Kits und Geräte	66
	Bakterien- und Hefestämme, Zelllinien und Plasmide	66
	Hefe-2-Hybrid-Screen	67
	Zellkultur und Transfektion	70
	Bindungsstudien und Reporter-Assays	71
	Northern-Blot-Analyse	74
	Zebrafisch-Injektionen und In-Situ-Hybridisierung	75
	Drosophila Genetik	78
	Abkürzungen	79
6	Literaturverzeichnis	81
7	Anhang	98
	Abstract	98
	Eigene Publikationen	99
	Erklärung	100
	Danksagung	101