7 Anhang

7.1 Verzeichnisse

7.1.1 Abbildungsverzeichnis

- Abbildung 2-1 : Chemische Struktur von β -Cyclodextrin (CA7, links) sowie Atomnummerierung der Glukoseneinheit (rechts) (Saenger et al. 1998) 7
- Abbildung 2-2 : Kegelstruktur von Cyclodextrin mit 6 bis 8 Glukoseuntereinheiten (Aree 2000)
- Abbildung 2-3 : Löslichkeit in Wasser von verschieden methylierten β-Cyclodextrin-Derivaten (Harata 1991)
- Abbildung 2-4 : Struktur von CA6 (α-Cyclodextrin) mit Nomenklatur der Atome eines Glukosebausteins; das Hexagon verbindet die sechs Sauerstoffatome der glykosidischen Verbindung, die gepunkteten Linien stehen für mögliche Wasserstoffbrücken zwischen benachbarten Glukosen (Harata 1998) 14
- Abbildung 2-5 : Kristallstruktur von TRIMEG·2H₂O, aus warmer Lösung (80 °C); der Makroring nahm eine elliptische Form an, bei der zwei diametral gegenüberliegende Glukosereste "geflippt" und deren O6-CH₃-Gruppen einwärts zum Schließen der Kavität gedreht waren, so dass eine Schüsselform resultierte; C-, O- und H-Atome in cyan, rot bzw. grün, die gestrichelte Linien stehen für H-Brücken zu Wassermolekülen (Steiner und Saenger 1998a; Aree 2000) 16
- Abbildung 2-6 : Seitenansicht eines der vier TRIMEG-Moleküle (Schüsselform) von (4TRIMEG)·19.3H2O, ohne Wasserstoffatome; die Wassermoleküle (schwarze Punkte) sind mit H-Brücken eingezeichnet (Aree et al. 1999c) 17
- Abbildung 2-7 : Kristallstruktur von DIMEB·15 H_2O mit den lokalisierten Wassermolekülen (vergleiche Abbildung 2-5 für das Farbschema) (Aree et al. 2000b) 18
- Abbildung 2-8 : Clathrat-Hydrat-Kanal-Struktur des Kristallgitters von DIMEB·15 H_2O in den Ebenen ac (Abbildung a) und bc (Abbildung b); es sind zwei DIMEB-Moleküle mit ihrer 2fach Drehachse (§) sowie das Schema der Kristall-Kanal-Anordnung (Abbildung a, Einfügebild) dargestellt (Aree et al. 2000b) 19
- Abbildung 2-9 : Das Wassermolekül (linkes Bild) mit der Elektronendichteverteilung (rechtes Bild), wobei die positiven Ladungsbereiche bei den Wasserstoffatomen und die negativen bei den Orbitalen der freien Elektronenpaare liegen (Ludwig 2001)
- Abbildung 2-10 : Bindung zweier Wassermoleküle über eine Wasserstoffbrücke O-H…O (Voet und Voet 1992) 23
- Abbildung 2-11 : Die Struktur von hexagonalem Eis E $\rm I_h$ (links) und kubischem Eis E $\rm I_c$ (rechts) (Ludwig 2001) 25

- Abbildung 2-12 : Löslichkeit von Natriumsulfat in Wasser in Abhängigkeit von der Temperatur (Reich 1993) 30
- Abbildung 2-13 : Anordnung der über H-Brücken gebundenen Wassermoleküle in der Umgebung eines apolaren Moleküls in Form von Clathratstrukturen der Käfigtypen I und II : Dodekaeder (5¹²), Tetrakaidekaeder (5¹²6²) und Hekkaidekaeder (5¹²6⁴) (Ludwig 2001)
- Abbildung 2-14 : Infrarot-Absorptionsspektrum von Wasser bei 25 °C im spektralen Bereich von 1000 cm⁻¹ bis 4000 cm⁻¹ (Venyaminov und Prendergast 1997) 37
- Abbildung 2-15 : IR-Spektren von H₂O in (a) Ethylen-Oxid bei O °C, (b) DMSO bei 30 °C, (c) Pyridin bei -20 °C, (d) 2,4,6-Collidine bei -20 °C, (e) Triethylamin bei -44 °C und (f) von Eis bei -40 °C (Glew und Rath 1971) 39
- Abbildung 3-1 : Opto-mechanischer Aufbau im Spektrometer IFS 66 (Bruker Saxonia Analytik) 52
- Abbildung 3-2 : Photo des Probenhalters für das Spektrometer53
- Abbildung 3-3 : Aufbau der Scheibenzellen aus CaF_2
- Abbildung 3-4 : Interferenz in der mit Luft gefüllten Zelle (George und McIntyre 1987) 55
- Abbildung 3-5 : FTIR-Spektrum von TRIMEG in wässriger Lösung, gemessen ohne Referenzzelle (helle Kurve) mit Basislinie (Punktlinie) und nach Abzug der Basislinie (dunkle Kurve) 63
- Abbildung 4-1 : FTIR-Spektren von Wasser im Bereich 1350 cm⁻¹ bis 4000 cm⁻¹; Messungen mit zwei Zellen ohne Referenzküvette (schwarze bzw. rote Kurve) sowie mit beiden Zellen in Differenzanordnung (grüne Kurve); Basislinie y=0 in blau; unterhalb von 2500 cm⁻¹ vierfach vergrößerte Darstellung, Probentemperatur 20 °C 71
- Abbildung 4-2 :NormierteDarstellungderFTIR-SpektrenvonWasserimBereich1350 cm⁻¹ bis 4000 cm⁻¹ aus Abbildung 4-173
- Abbildung 4-3 : Wasserspektren in Differenzanordnung und für eine variierte Anzahl von Scans gemessen (10 °C Probentemperatur) 74
- Abbildung 4-4 : Wasserspektrum bei 10 °C Probentemperatur
- Abbildung 4-5 : H_2O -Spektren für Probentemperaturen zwischen 5 °C und 50 °C sowie eine anschliessende Wiederholungsmessung bei 30 °C; der spektrale Bereich 1300-2500 cm⁻¹ wurde vierfach vergrössert, Temperaturen siehe Darstellung 76
- Abbildung 4-6 : FTIR-Spektren von H_2O (blaue Linie) und 155 mmol/L TRIMEG in Wasser (rote Linie) (Abbildung 4-6a und Abbildung 4-6b) sowie Differenzspektrum aus Cyclodextrin- minus Wasserkurve (Abbildung 4-6c und Abbildung 4-6d); Probentemperatur jeweils 10 °C, normierte, zum Teil vergrößerte Darstellung 77
- Abbildung 4-7 : FTIR-Spektrum von TRIMEG in Lösung (155 mmol/L) bei 20 °C (schwarz) und das in KBr gemessene Absorptionsspektrum von TRIMEG bei Raumtemperatur (rot) 79

54

75

- Abbildung 4-8 : Verhältnisse der Peakhöhen $\mathcal{A}^{\text{Luft}}$ von Cyclodextrin-Bande (1460 cm⁻¹) und H₂O-Bande (1650 cm⁻¹) als Funktion der Konzentration der TRIMEG-Lösungen in mmol/L, wobei bei den Konzentrationen zwischen Ausgangswerten (grüne Vollquadrate) und anhand der linearen Ausgleichskurve (grüne Linie) korrigierten Werten (grüne Hohlquadrate) unterschieden wurde (alle Messungen 20 °C) 81
- Abbildung 4-9 : FTIR-Spektren von TRIMEG-Lösungen mit unterschiedlicher Konzentration (s. Abb.); Probentemperatur 10 °C, Spektren auf null bei ca. 4000 cm⁻¹ verschoben 82
- Abbildung 4-10 : Vergrößerte Darstellung für den Bereich 3600 cm⁻¹ bis 3900 cm⁻¹ der Spektren aus Abbildung 4-9 84
- Abbildung 4-11 : FTIR-Spektren von TRIMEG in wässriger Lösung (155 mmol/L) für Probentemperaturen zwischen 5 °C und 50 °C 85
- Abbildung 4-12 : Differenzspektren im Bereich der OH-Streckschwingungsbanden, berechnet durch Abzug der Wasserspektren aus Abbildung 4-5 von den TRIMEG-Spektren (155 mmol/L) aus Abbildung 4-11, Probentemperatur 5 °C bis 50 °C 86
- Abbildung 4-13 : FTIR-Spektren von γ -Cyclodextrin (180 mmol/L, 10 °C, rote Kurve) und H_2O (10 °C, grüne Kurve) sowie KBr-Spektrum von γ -Cyclodextrin (Raumtemperatur, blaue Kurve) (Abbildung a und b); Differenzspektrum aus Lösungs- minus Wasserspektrum (Abbildung c und d) 88
- Abbildung 4-14 : FTIR-Spektren von TRIMEB (circa 210 mmol/L, grüne Kurve) und H_2O (blaue Kurve) (Abbildung 4-14a und b) sowie die Differenz aus Lösungs- minus Wasserspektrum (schwarze Kurve, Abbildung 4-14c und d), Probentemperatur 10 °C 90
- Abbildung 4-15 : FTIR-Spektren von TRIMEB in verschiedenen Konzentrationen, alle Messungen bei 10 °C 91
- Abbildung 4-16 : Differenzspektren aus TRIMEB-Lösungsspektren (~210 mmol/L) minusWasserspektren für Probentemperaturen zwischen 5 °C und 50 °C92
- Abbildung 4-17 : FTIR-Spektren von DIMEB in Lösung (~220 mmol/L, rot) und H_2O (blau) sowie KBr-Spektrum von DIMEB (magenta) (Abbildung a und b), Probentemperatur 10 °C; Differenz aus Lösungs- minus Wasserspektrum (Abbildung c und d) 93
- Abbildung 4-18 : FTIR-Spektren von β -Cyclodextrin in gesättigter Lösung (grün) und H_2O (blau), Probentemperatur 10 °C, KBr-Spektrum von β -Cyclodextrin (hellblau) (Abbildung a und b); Differenzkurve aus Lösungs- minus Wasserspektrum (Abbildung c und d) 95
- Abbildung 4-19 : FTIR-Spektren von Glukose (35 %) in wässriger Lösung (rote Kurve) und Wasser (blaue Kurve), Probentemperatur 10 °C, sowie KBr-Spektrum von Glukose bei Raumtemperatur (grüne Kurve, Abbildung a und b); Differenzkurve aus den Spektren von Glukose-Lösung minus Wasser (schwarze Kurve, Abbildung c und d)
- Abbildung 4-20 : FTIR-Spektren von 2,3,4,6-Tetra-O-Methyl-D-Glukose in Lösung (20 %,
orange Kurve) und Wasser (blaue Kurve), Probentemperatur 10 °C, (Abbildung a und b)
sowie die Differenzkurve dieser beiden Spektren (Abbildung c und d)98

- Abbildung 4-21 : Temperaturabhängigkeit der Differenzspektren von Tetramethylglukose (20 %) und Wasser für 5 °C bis 50 °C 99
- Abbildung 4-22 : FTIR-Spektren von Dimethylsulfoxid gegen Luft (dunkelgelbe Kurve), Dimethylsulfoxid in wässriger Lösung (25 %, violette Kurve) und Wasser (blaue Kurve) (Abbildung a und b) sowie die Differenzkurve aus den Spektren der wässrigen Lösung minus Wasser (Abbildungen c und d), alle Messungen bei 10 °C
- Abbildung 4-23 : Temperaturabhängigkeit der Lösungsspektren von DMSO (25 %) minus Wasserspektren für 5 °C bis 50 °C 101
- Abbildung 4-24 : FTIR-Spektren von $MgCl_2$ in Lösung (0.96 mol/L, violette Kurve) und Wasserspektrum (blaue Kurve) bei 10 °C Probentemperatur (Abbildungen a und b) sowie Differenzkurve dieser beiden Messungen (Abbildungen c und d) 102
- Abbildung 4-25 : Temperaturabhängigkeit der Lösungsspektren von $MgCl_2$ (0.96 mol/L) minus Wasser für 5 °C bis 50 °C 103
- Abbildung 4-26 : FTIR-Spektren der Lösungen von Methyl- (schwarz), Dimethyl- (rot) und Trimethylammonium-Chlorid (grün, jeweils 25 %ig und pH 8) sowie von Wasser (blau), alle Messungen 10 °C 104
- Abbildung 4-27 : FTIR-Spektren von Trimethylammonium-Chlorid in Lösung ((CH₃)₃NH⁺Cl⁻, 25 %ig, 10 °C, pH 7.7, grüne Kurve) und Wasser (blaue Kurve) (Abbildung a und b) sowie Differenzspektrum aus Lösungs- minus Wasserspektrum (schwarze Kurve, Abbildung c und d)
- Abbildung 4-28 : Differenzspektren aus Trimethylammonium-Chlorid-Lösungs- (25 %, pH 7.7) minus Wasserspektren für Probentemperaturen zwischen 5 °C und 50 °C 107
- Abbildung 4-30 : Lorentz- (L) und Gauß-Profil (G) mit gleicher Halbwertsbreite, Peakposition und Fläche (Demtröder 2003) 110
- Abbildung 4-31 : FTIR-Spektrum der TRIMEG-Lösung (155 mmol/L, 10 °C, schwarze Kurve) und Zerlegung in vier Einzelbanden mit Gauß-Glockenkurvenform (Programm MSGAUSS, Kurven 1 bis 4), die resultierenden Parameter und die Summe der Einzelkurven (rote Kurve) sind angegeben (Abbildung a); Differenz aus experimentellen Spektrum minus Summe der Einzelkomponenten (Abbildung b)
- Abbildung 4-32 : Temperaturabhängigkeit der Peakmaxima der drei Einzelbanden der OH-Streckschwingungsbande des Wasserspektrums (einschließlich Fehlerabweichung) 114
- Abbildung 4-33 : Temperaturabhängigkeit der Peakmaxima der drei Einzelkomponenten für die TRIMEG- (155 mmol/L, Abbildung a) und TRIMEB-Lösungsspektren (~210 mmol/L, Abbildung b)

- Abbildung 4-34 : Relative Flächenanteile der drei Gauß-Profile um 3400 cm⁻¹ im Wasserspektrum, dargestellt in Abhängigkeit von der Temperatur (Nummerierung analog zu Abbildung 4-32ff.) 118
- Abbildung 4-35 : RelativeFlächenanteilederdreiEinzelkomponentenderOH-StreckschwingungsbandeimTRIMEG- (155 mmol/L, Abbildung a)undTRIMEB-Lösungsspektrum (300 mg/mL, Abbildung b)119
- Abbildung 4-36 : Relative Flächenanteile der drei Einzelkomponenten im Tetramethylglukose-(20 %, Abbildung a) und DMSO-Lösungsspektrum (25 %, Abbildung b) 120
- Abbildung 4-37 : Relative Flächenanteile der drei Einzelkomponenten im Spektrum von MgCl₂ (1 mol/L, Abbildung a) und Trimethylammonium-Chlorid in Lösung (25 %, Abbildung b) 121
- Abbildung 4-38 : Experimentell aus den Absorptionen von Wasser und TRIMEG bestimmte Verhältnisse A^{Luft}/A des Küvettensatzes 2 in Abhängigkeit von der Cyclodextrin-Konzentration sowie die lineare Anpassung der Messwerte und die Nullpunktextrapolation, alle Messungen bei 20 °C 123

7.1.2 Tabellenverzeichnis

- Tabelle 2-1 : Physikalische Daten der sechs kleinsten Cyclodextrin-Derivate (nach (Saenger et al. 1998)) 8
- Tabelle 2-2 : Physikalische Daten der methylierten α-,β- und γ-Cyclodextrin-Derivate (nach
(Uekama und Irie 1987), vergleiche Tabelle 2-1)12
- Tabelle 2-3 : Liste mit Nomenklatur der Schwingungen der Wassermoleküle mit zugeordneten
Bandenpositionen im IR-Absorptionsspektrum (Grund-, Gasphasen- und
Flüssigphasenmoden) für H2O und D2O (a(Nielsen 1997), b(Venyaminov und Prendergast
1997), c(Benedict et al. 1956; Gailar und Dickey 1960; Tursi und Nixon 1970)45
- Tabelle 2-4 : Spektrale Absorptionsbereiche der Schwingungen von Methylengruppen (Colthup
et al. 1990)47
- Tabelle 2-5 : SpektraleAbsorptionsbereichederSchwingungenvonMethylgruppen(inaliphatischen Verbindungen) (Colthup et al. 1990)48
- Tabelle 3-1 : Molare Absorptionskoeffizienten für Wasser (Venyaminov und Prendergast 1997) 56
- Tabelle 3-2 : Liste der verwendeten Küvettenpaare, Schichtdicken aus den
Wasserabsorptionskoeffizienten nach Venyaminov et al. bestimmt (Venyaminov und
Prendergast 1997)57
- Tabelle 3-3 : Liste der untersuchten Verbindungen
- Tabelle 4-1 : Vergleich der Zerlegung mittels MSGAUSS und Origin : Maximapositionen der drei bzw. vier Einzelkomponenten im Wasserspektrum um 3400 cm⁻¹ sowie lineare Basislinie 111
- Tabelle 4-2 : Peakmaxima (in cm⁻¹) der vier Gauß-Profile um 3400 cm⁻¹; Zerlegung der
Lösungsspektren der methylierte Cyclodextrine TRIMEG und TRIMEB sowie weiterer
Verbindungen mit Hydrathülle (10 °C, optimale Kompensation); in Klammern die
Wellenzahldifferenz zum Ergebnis der TRIMEG-Lösung116
- Tabelle 4-3 : Schichtdicken d_p der Probezelle und d_R der Referenzzelle in μ m sowie Verhältnis d_R/d_p beider Zellen nach verschiedenen Methoden 124

67

7.1.3 Abkürzungen

ATR	Attenuated Total Reflection, IR-Messmethode	
CAn Cycloamylose mit n D-Glukosen :		
CA6	α-Cyclodextrin	
CA7	β-Cyclodextrin	
CA8	γ-Cyclodextrin	
CD	Cyclodextrin (in Formeln) :	
DIMEA	Hexakis (2,6-di-O-methyl)-α-CD	
DIMEB	Heptakis (2,6-di-O-methyl)-β-CD	
DIMEG	Octakis (2,6-di-O-methyl)-γ-CD	
TRIMEA	Hexakis (2,3,6-tri-O-methyl)-α-CD	
TRIMEB	Heptakis (2,3,6-tri-O-methyl)-β-CD	
TRIMEG	Octakis (2,3,6-tri-O-methyl)-7-CD	
DMSO	Dimethylsulfoxid ((CH3)2 SO)	
E I _c	kubisches Eis eins	
E I _h	hexagonales Eis eins	
FIR	ferner Infrarot-Spektralbereich	
FTIR	Fourier-Transform-Infrarot-Spektroskopie, IR-Messmethode	
H-Brücke	Wasserstoffbrücke	
HWB	Halbwertsbreite	
I _{MAX}	Intensität am Peakmaximum	
IR	Infrarot (-Spektroskopie)	
KBr	IR-Zellenmaterial:Kalium-Bromid	
Kronenether	zyklischer Ether mit m Ringgliedern und n Sauerstoffen, [m]Krone-n	
15Crown5	$C_{10}H_{20}O_5$	
18Crown6	$C_{12}H_{24}O_{6}$	
neg	negativ(e Bande)	
POE	Polyethylenglykol	
vdW-R	van-der-Waals-Radius	
ΔG	freie Enthalpie(-änderung) (Gibbsches Potential; engl. free energy)	
ΔH	Enthalpie(-änderung)	
ΔS	Entropie(-änderung)	

7.2 Inhaltsverzeichnis

Zusammenfassung	i
English Abstract	iii
Inhalt	v
1 Themenstellung	1
1.1 Motivation	1
1.2 Realisierung	2
1.3 Aufbau der Dissertation	3
2 Methyliertes Cyclodextrin in wässriger Lösung	5
2.1 Cyclodextrin : Chemie und Struktur	7
2.1.1 Allgemeine Beschreibung der Cycloamylose	7
2.1.2 Methyliertes Cyclodextrin	11
2.1.3 Kristallstruktur von Cyclodextrin (CA6 bis CA8)	14
2.1.3.1 Allgemeine Eigenschaften	14
2.1.3.2 Hydrate von nicht methylierten Cyclodextrinen	15
2.1.3.3 Kristallisation methylierter Cyclodextrine	15
2.1.3.4 Kalt gezüchtete Kristalle des methylierten Cyclodextrins	17
2.1.3.5 Lemma	20
2.2 Wasser als Struktur gebendes Element	21
2.2.1 Grundlagen der Wasserstruktur	21
$2.2.1.1$ Das Molekül H_2O	21
2.2.1.2 Die Wasserstoffbrücke	22
2.2.1.3 H-Brückenanordnung in Wasser	24
2.2.1.4 Bindungstypen des Wassers als Eis	25
2.2.1.5 Modelle für die Wasserstruktur	26
2.2.2 Wasser als Lösungsmittel	28
2.2.2.1 Lösungsverhalten von Stoffen in Wasser	28

2.2.2.2 Temperaturabhängigkeit der Löslichkeit	28
2.2.2.2 Temperaturabhangigken der Löslichken	
2.2.2.3 Hydrophobe Ellekte	
2.3 Spektron des Wassers und wässriger Läsungen	
2.3.1 Spektren des wassers und wassinger Lösungen	25
2.3.1.1 IN-Absorptionsspektrum von wasser	ა <u>ა</u>
2.3.1.2 FIR-Spektrum und Eisspektrum	38
2.3.1.3 Schwingungskopplungen und Resonanzeffekte	38
2.3.1.4 Einfluss der OH-Brücken auf die Schwingungen	40
2.3.1.5 Die OH-Schwingung in anderen Verbindungen	41
2.3.1.6 Welche Schwingungen tragen zur Bande um 3400 cm ⁻¹ bei?	42
2.3.1.7 KBr-Spektrum von β-Cyclodextrin	44
2.3.1.8 Resümee der IR-Absorption des Wassers	44
2.3.2 Zuordnung von Banden der Cyclodextrine	47
3 Ausführung der Messung	49
3.1 Methoden und Messaufbauten	50
3.1.1 Fourier-Transformation-Infrarot-Spektroskopie	50
3.1.2 Apparatur	52
3.1.2.1 Das Spektrometer	52
3.1.2.2 Probenhalter	53
3.1.2.3 Probenzellen	54
3.2 Zur Durchführung der Messung	59
3.2.1 Experimenteller Ablauf	59
3.2.1.1 Zusammenbau der Zellen	59
3.2.1.2 Makro gesteuerter Ablauf der Messung	60
3.2.1.3 Einstellungsparameter	60
3.2.1.4 Auswertung	61
3.2.2 Bestimmung der Probenkonzentration	62
3.2.2.1 Rechengrößen für die Konzentrationsbestimmung	62

3.3 Messvorhaben	66
3.3.1 Probenauswahl und -vorbereitung	66
3.3.2 Übersicht der untersuchten Verbindungen	67
4 Beschreibung der Ergebnisse	69
4.1 FTIR-Spektrum von Wasser	71
4.1.1 Beschreibung des Wasserspektrums	71
4.1.2 Reproduzierbarkeit der Spektren	74
4.1.3 Wasserspektrum in der Differenzanordnung	75
4.1.4 Einfluss der Temperatur auf die Wasserspektren	76
4.2 Messungen mit Gamma-Cyclodextrin-Derivaten	77
4.2.1 Spektrum von TRIMEG in wässriger Lösung	77
4.2.2 Das KBr-Feststoffspektrum für TRIMEG	79
4.2.3 Konzentrationsabhängige FTIR-Spektren von TRIMEG	80
4.2.3.1 Bestimmung der Probenkonzentrationen	80
4.2.3.2 Einfluss der Konzentration auf die TRIMEG-Spektren	82
4.2.3.3 Optimale Konzentration für TRIMEG	84
4.2.4 Temperaturabhängigkeit der Spektren von TRIMEG	85
4.2.5 Gamma-Cyclodextrin	88
4.3 Untersuchung der Beta-Cyclodextrin-Derivate	90
4.3.1 Spektrum der Lösung von voll methyliertem TRIMEB	90
4.3.2 Variation der TRIMEB-Konzentration	91
4.3.3 Einfluss der Temperatur auf die TRIMEB-Lösungsspektren	92
4.3.4 Zweifach methyliertes DIMEB	93
4.3.5 Spektrum von Beta-Cyclodextrin in Lösung	94
4.4 Weitere untersuchte Verbindungen	97
4.4.1 FTIR-Spektren von Glukose-Derivaten in Lösung	97
4.4.1.1 Glukose	97
4.4.1.2 Vierfach methylierte Glukose	98

4.4.2 DMSO als hoch polare Verbindung	100
4.4.3 MgCl ₂ Hexahydrat in Lösung	
4.4.4 FTIR-Spektren methylierter Amine in Lösung	104
4.4.4.1 Methylierte Amine	104
4.4.4.2 Trimethylammonium-Chlorid in wässriger Lösung	106
4.4.4.3 Ammoniumchlorid-Lösung	108
4.5 Analytische Ausführungen	109
4.5.1 Betrachtung der OH-Streckschwingungsbande	109
4.5.1.1 Mögliche Modellvorstellungen für die Bandenzerlegu	ng 109
4.5.1.2 Das Wasserspektrum als Referenzkurve	110
4.5.1.3 Cyclodextrin-Lösungsspektren	112
4.5.1.4 Peakmaxima der Gauß-Einzelkomponenten	114
4.5.1.5 Vergleich der Peakmaxima in Wasser- und Lösungss	pektren 115
4.5.1.6 Flächenverteilung der drei Gauß-Profilkurven	118
4.5.2 Weitergehende Berechnungen anhand der experimentelle	en Daten 122
4.5.2.1 Schichtdickenermittlung der Küvettenpaare	122
4.5.2.2 Abschätzung der Molekülzahl in der Hydrathülle	125
5 Diskussion	129
5.1 Das FTIR-Spektrum wässriger Lösungen	130
5.1.1 Eliminierung des Bulkwasseranteils	130
5.1.2 Das korrigierte Wasserspektrum der Lösungen	131
5.2 Änderungen der Streckschwingungsbande	132
5.2.1 Korrigierte Wasserspektren der TRIMEG-Lösungen	132
5.2.1.1 Die drei Einzelkomponenten	132
5.2.1.2 Peakmaxima	133
5.2.1.3 Flächenanteile der Einzelbanden	134
5.2.2 Korrigierte Wasserspektren der TRIMEB-Lösungen	135
5.2.3 Tetramethylglukose	135

$\mathbf{r} \circ \mathbf{A} \mathbf{D} \mathbf{M} \mathbf{C} \mathbf{O} = 1 \mathbf{M} \cdot \mathbf{C} \mathbf{I}$	196
5.2.4 DMSO und $MgCl_2$	130
5.2.5 Anzahl der Wassermoleküle in der Hydrathülle	136
5.3 Abschluss und Ausblick	138
6 Bibliographie	139
7 Anhang	148
7.1 Verzeichnisse	148
7.1.1 Abbildungsverzeichnis	148
7.1.2 Tabellenverzeichnis	153
7.1.3 Abkürzungen	154
7.2 Inhaltsverzeichnis	155

Zu guter Letzt ...

spreche ich Herrn Prof. Heinz Welfle meinen tiefen Dank aus, diese Dissertation ermöglicht und bei der so langen Auseinandersetzung mit dem widrigen Wasser geholfen zu haben. Herrn Prof. Wolfram Saenger danke ich für die Themenstellung und großzügige Unterstützung meiner Arbeit.

Die Kollegen der Arbeitsgruppe haben mir immer mit sehr viel Hilfe und Erfahrung zur Seite gestanden, allen voran danke ich Frau Dr. Karin Welfle und Herrn Dr. Rolf Misselwitz. Frau Brunhilde Kannen war nicht nur in kleinen Dingen eine große Hilfe.

Gern erinnere ich mich an die gute Zusammenarbeit mit Thammarat Aree und Olaf Nimz von der Gruppe Saenger an der FU Berlin, Jörg Contzen, Olaf Gaiser, Remo Rohs, der Kristallographen-Gruppe und Prof. Udo Heinemann sowie den vielen Kollegen am MDC, die mir immer wieder mit Rat und Tat beistanden. Für die Hilfe bei den Auswertungen am Rechner muss ich mich besonders bei Dr. Otto Ristau und Klaas Max bedanken. Herrn Dr. Wolf-Dietrich Hunnius danke ich für die Möglichkeit, die KBr-Spektren aufnehmen zu können. Ein Dank geht auch an die Mitglieder des Graduiertenkollegs "Modellstudien" und dessen Leiter, Prof. Wolfgang Höhne, für gegebene Unterstützung und Diskussionen.

Diese Arbeit wurde ermöglicht mit Mitteln der DFG, des MDCs und der Arbeitsgruppe Saenger.

Nix wäre vollendet ohne Familie, Freunde und "meine Frauen": Gilla, Lilly und wie sie alle heißen mögen :-)

Selbstständigkeitserklärung

Ich versichere, die vorliegende Arbeit selbständig angefertigt, keine anderen als die angegebenen Quellen bzw. Hilfsmittel benutzt und noch keiner Prüfungsbehörde vorgelegt zu haben.

Berlin, im Juli 06

Stefan Lättig

Fink und Frosch

Im Apfelbaume pfeift der Fink Sein: pinkepink! Ein Laubfrosch klettert mühsam nach Bis auf des Baumes Blätterdach Und bläht sich auf und quackt: »Ja ja! Herr Nachbar, ick bin och noch da!«

Und wie der Vogel frisch und süß Sein Frühlingslied erklingen ließ, Gleich muß der Frosch in rauhen Tönen Den Schusterbaß dazwischen dröhnen.

»Juchheija heija!« spricht der Fink. »Fort flieg ich flink!« Und schwingt sich in die Lüfte hoch.

»Wat!« ruft der Frosch, »Dat kann ick och!« Macht einen ungeschickten Satz, Fällt auf den harten Gartenplatz, Ist platt, wie man die Kuchen backt, Und hat für ewig ausgequackt.

Wenn einer, der mit Mühe kaum Geklettert ist auf einen Baum, Schon meint, daß er ein Vogel wär, So irrt sich der.

Wilhelm Busch