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Abstract

In this dissertation we study differential equations with both discontinuous hystere-
sis of non-ideal relay type and delay terms. We study general properties (existence
and uniqueness of solutions) and focus on the stability of periodic solutions. We
give an application for control theory.

In Chapter I we study hysteresis-delay ordinary differential equations. We show
existence and uniqueness of solutions for such equations. In order to study sta-
bility of periodic solutions, we create a Poincaré map and show that the stability
is determined by the spectrum of its formal linearization. This last step turned
out to be especially challenging. We reduce the stability analysis of the formal
linearization to an equivalent finite-dimensional problem.

In Chapter II we study hysteresis-delay parabolic partial differential equation. The
hysteresis and delay terms are in the boundary condition of the equation. This
can be seen as applying an additional controller (delay) to a thermostat model
with hysteresis. Applying nonlocal and semigroup theory we prove existence and
uniqueness of solutions for such equations. We decompose the problem into a
system of infinitely many ordinary differential equations via the Fourier decom-
position. Under a certain assumption we show that stability of periodic solutions
is determined by finitely many equations. In the last section we give examples in
which there is a periodic solution that can be stabilized by using the methods of
this dissertation.



Zusammenfassung

In dieser Doktorarbeit untersuchen wir die allgemeinen Eigenschaften, wie das Da-
sein und die Eindeutigkeit von Lösungen, von Differentialgleichungen mit sowohl
unstetiger Hysterese der ,,nichtidealen Relais-Art“, als auch Verzögerungstermen.
Wir besorgen eine kontrolltheoretische Anwendung.

In Kapitel I untersuchen wir gewöhnliche Hysterese-Verzögerungsgleichungen, in-
dem wir die Existenz und Eindeutigkeit von Lösungen derartiger Gleichungen be-
weisen. Um die Stabilität von regelmäßigen Lösungen zu bestimmen, konstruieren
wir eine geeignete Poincaré-Abbildung und zeigen, daß sich die Stabilität mit-
tels des Spektrums von deren formalen Linearisation bestimmen läßt; dieser letzte
Schritt erwies sich als besonders anspruchsvoll. Wir führen die Stabilitätsanal-
yse der formalen Linearisation auf ein äquivalentes endlich-dimensionales Problem
zurück.

In Kapitel II betrachten wir parabolische Hysterese-Verzögerungsdifferentialgle-
ichungen, wobei sich die Hysterese- und Verzögerungsterme in den Randbedingung
ergeben. Solche Systeme folgen aus einem Thermostatmodell mit Hystere, auf das
ein Kontroller (Verzögerungsoperator) wirkt. Unter Verwendung der Halbgrup-
pen und nicht-lokalen Theorie beweisen wir das Dasein und die Eindeutigkeit von
Lösungen derartiger Gleichungen. Durch Fourieranalyse zerlegen wir dieses Prob-
lem in ein System unendlich vieler gewöhnlicher Differentialgleichungen. Unter
einer gewissen Annahme zeigen wir, daß sich die Stabilität von regelmäßigen
Lösungen durch endlich viele Gleichungen bestimmen läßt. In dem letzten Ab-
schnitt führen wir Beispiele an, in denen es eine regelmäßige Lösung, die unter
Verwendung der Methoden dieser Dissertation stabilisiert werden kann, gibt.
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Introduction

In this dissertation we develop a general theory of hysteresis-delay differential equa-
tions, i.e., differential equations with both a discontinuous hysteresis operator and
delay terms. Our focus is on the stability of periodic solutions of such equations.
We concentrate on the situation where the period equals the delay.

This introduction is structured as follows. We begin by introducing the main
problems to be studied in the dissertation (problems (1) and (3)). Then we list
the main difficulties in studying these problems and the main results that are
achieved in the dissertation. Next we give a survey of literature, state the layout
of the dissertation, and conclude the introduction with some preliminary notation.

1. Hysteresis-delay ordinary differential equations

We consider a linear delay term and a non-ideal relay hysteresis operator (see
below), which is a discontinuous nonlinear operator. The main problem that we
study takes then the form

u′(t) = kH(Mu)(t)−Λu+ Bu(t− 2T ), t > 0,

u(t) = ϕ(t), t ∈ (−2T, 0),

u(0+) = x.

(1)

Here

• u(t), k ∈ RN ,

• Λ,B ∈ RN×N ,

• M is a linear functional on RN ,

andH(Mu)(t) is a discontinuous hysteresis operator of non-ideal relay type defined
as follows (see Figure 1 and the accurate definition in Section 1.2): Fix two thresh-
olds α and β such that α < β. If Mu(t) ≤ α or Mu(t) ≥ β, then H(Mu)(t) = 1 or
H(Mu)(t) = −1 respectively. If Mu(t) ∈ (α, β), then H(Mu)(t) takes the same
value as “just before”. We say that the hysteresis switches when it jumps from 1
to −1 (or vice versa). The corresponding time moment is called a switching time.
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Figure 1: Hysteresis operator of non-ideal relay type

Note that problem (1) is an infinite-dimensional problem (due to delay) with
a discontinuous right hand side (due to the hysteresis).

We remark that the delay is taken to be 2T due to technical reasons: it makes
the (lengthy) calculations in later sections more elegant. The 2T -periodic solution
that we study is symmetric around its mid-point (see Assumption 2.12). If we
denoted its period by T , then the mid-point would be T

2
. But we want to avoid

fractions as much as possible, and hence denote the period by 2T (and hence also
the delay). This makes the mid-point T .

We study this problem in Chapter I
(
see problem (1.1)–(1.3)

)
. We prove gen-

eral properties (such as existence and uniqueness of solutions) and focus mainly
on studying stability of 2T -periodic solutions. See a summary of results in Sec-
tion 3 of the introduction.

In Chapter II we use the theory developed in Chapter I in order to study stability
of 2T -periodic solutions of parabolic hysteresis-delay partial differential equations.
This is motivated by an application, described in Section 2 of the introduction.

2. Hysteresis-delay partial differential equations and a model
application

The main PDE problem that is studied in Chapter II is a parabolic PDE with
non-ideal relay operator and a delay term on the boundary (problem (3) defined
below). We show here the motivation for considering this problem and its relation
to problem (1).

Hysteresis operators arise naturally in mathematical models of physical systems.
In certain cases they are used as controllers. In the last twenty years delay equa-
tions have also been used as “controllers” via the application of Pyragas control
(see below). We describe next a control scheme that has both hysteresis and delay
terms. This scheme is partly the motivation for developing the general hysteresis-
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delay differential equations theory in this dissertation.

Thermal control model (hysteresis only). As an example of a system con-
trolled by hysteresis, consider a model of thermal control in a bounded domain
Q ⊂ Rn. It was originally proposed by Glashoff and Sprekels [19, 20]). In this
model, the temperature in the domain is regulated via heating (or cooling) ele-
ments on the boundary of the domain. The heating elements operate based on
information received from thermal sensors inside the domain and obey hysteresis
laws. Denoting the temperature at a point x ∈ Q at time t by u(x, t), the equations
governing the system take the form

∂u(x, t)

∂t
= ∆u(x, t), x ∈ Q, t > 0,

∂u

∂ν

∣∣∣∣
∂Q

= k(x)H(û)(t), t > 0,
(2)

where ν is the outward normal to the boundary, k(x) is the density of the heating
elements, and

û(t) :=

∫
Q

m(x)u(x, t)dx

is the mean temperature in Q at time t with some weight function m(x). The
hysteresis operator H plays the role of controlling feedback, which means that it
determines when the system cools down or heats up. Problem (2) contains no
reaction term for simplicity.

Modified thermal control model (hysteresis and delay). Gurevich [22]
and Gurevich and Tikhomirov [25] showed the existence of both stable and unsta-
ble periodic solutions for problem (2) (both co-existing in the same system and
separately for different k(x) and m(x)).

It may be desirable to change these stability properties. For example, in some
cases the thermal control model has two periodic solutions. One of them, with a
small period, is stable (but not desired, as it causes rapid switchings of the con-
troller which may be physically damaged as a result), and another, with a larger
period, is unstable (but desired). Hence the following question arises: Is it possible
to change the stability of such solutions in a way that the solutions themselves are
unchanged (especially for desired periodic solutions)?

We attempt to change the stability by employing a method known as Pyragas
control as follows: Assume that up(x, t) is a 2T -periodic solution to problem (2).
Due to periodicity, expressions of the form u(x, t − 2T ) − u(x, t) vanish for all
t ≥ 2T when evaluated for up. Such terms are called Pyragas terms. We mod-
ify problem (2) by inserting such a term into the boundary condition (since the

13



heating elements are on the domain of the boundary), thus obtaining the system

∂u(x, t)

∂t
= ∆u(x, t), x ∈ Q, t > 0,

∂u

∂ν

∣∣∣∣
∂Q

= k(x)H(û)(t) + b(x)(û(t)− û(t− 2T )), t > 0,
(3)

where b(x) is some smooth function on ∂Q called the Pyragas coefficient. Since
the periodic solution up vanishes on the new added term, it is still a solution to
problem (3). The question now is whether b(x) can be chosen such that the sta-
bility of up is changed? We answer this question in Chapter II.

Reduction to a finite-number of ODEs. As we already mentioned, the bulk
of this dissertation (Chapter I) is devoted to the study of the ODE problem (1).
The question is: how can one reduce the PDE problem (3) to a problem of the
form (1)? A complete account of how such a reduction is possible is given in Sec-
tions 6.4 and 7, but we point out the main idea here. It is composed of two steps.

In the first step we do a Fourier decomposition with respect to the eingenfunc-
tions of the Laplacian with homogeneous Neumann boundary conditions. This
results in a system of infinitely many ODEs.

In the second step we include an additional assumption: the weight function m(x)
has a finite number of non-zero Fourier modes. Then we show that the stability of
a periodic solution to the system of infinitely many ODEs depends on the stability
of a corresponding periodic solution to a problem of the form

u′(t) = kH(Mu)(t)−Λu+ A[u(t− 2T )− u(t)], t > 0,

u(t) = ϕ(t), t ∈ (−2T, 0),

u(0+) = x.

The last problem is of the form of problem (1).

A similar process was carried out by Gurevich [22] for problem (2).

3. Difficulties and summary of results

Difficulties. We list here the main difficulties in studying stability of solutions of
problem (1).

1. The main problem is the interaction between discontinuity (caused by hys-
teresis) and infinite-dimensionality (caused by delay). Specifically, to which
space do the initial data belong?

We study the stability of a periodic solution via a Poincaré map (see Sec-
tion 3) and calculate a formal linearization1 of the map in the process (see

1By a formal linearization we mean formally creating an expression for the Fréchet derivative
of the Poincaré map, without showing that it is indeed its derivative.
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Section 4). This Poincaré map, P(ϕ, x), involves the term u(ϕ, x; tswitch(ϕ, x)),
where u(ϕ, x; t) is a solution to problem (1) and tswitch(ϕ, x) is its switching
time. Formally differentiating P at the initial data of the periodic solution
(ϕp, xp), yields that the formal linearization contains the time derivative of
the periodic solution u′p. Due to periodicity this equals the derivative of the
initial data ϕ′p.

The derivative ϕp is not in C[−2T, 0], and hence the formal linearization
is not a well-defined operator on C[−2T, 0] or W 1

p (−2T, 0) (Sobolev spaces),
see Discussions 1.6 and 4.19. The derivative ϕ′p is, however, a well-defined
operator on Lp spaces, but these spaces do not fit for linearization either:
the formal remainder, P(ϕp + ν, xp + y) − P(ϕp, xp) − DP(ϕp, xp)[ν, y], is
not o(ν) in Lp spaces. A hybrid space must be taken as the space of initial
data, which is a Lebesgue space on the interval (−2T, 0) and a fractional
Sobolev space on its subinterval (−T − σ, 0) with a small σ > 0. This space
is denoted by Bsp, see Section 2.1 for its exact definition. See Discussion 4.19
for a detailed explanation of this choice.

We stress that the derivative of the initial data does not exist when one uses
a Poincaré map to study delay equations without hysteresis (see [14, Chap-
ter XIV.3]). However, an analogous derivative does occur when one uses a
Poincaré map to study hysteresis equations without delay (see [22,25]). But
then the initial data belongs to the space RN and not to a function space,
hence this difficulty is not present.

2. There is another difficulty related to the interaction between discontinu-
ity and delay. It occurs when trying to calculate the total derivative of
the Poincaré map. The periodic solution itself has an extra regularity (see
Lemma 2.13), hence the Poincaré map appears to have partial derivatives
on it, but not everywhere on the neighbourhood of it. Hence, the Poincaré
map does not have a total derivative on the periodic solution, and it is not
straightforward that the formal linearization determines stability.

3. The formal linerization that we find is an infinite-dimensional operator (due
to delay), hence analysis of its spectrum is not straightforward.

Summary of results. The following lists the main results in this dissertation.

Chapter I.

• Existence and uniqueness of solutions to the hysteresis-delay ODE prob-
lem (1) is proved (Theorem 1.12).

• Poincaré map is defined for a given periodic solution (Section 3). It is shown
that the stability of the periodic solution depends on the stability of a fixed
point of the Poincaré map (Lemma 3.18).
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• The main theorem of Chapter I shows that the stability of a fixed point of
the Poincaré map depends on the spectral radius of the formal linearization
of the map (Theorem 4.18). An explicit expression is given for the latter.

• The spectral radius of the linear operator that determines the stability of
a fixed point of the Poincaré map is studied (Section 5). This problem is
reduced to a finite-dimensional problem, which leads to finding the roots of
an explicitly given scalar characteristic equation (Lemma 5.13).

Chapter II.

• Existence and uniqueness of solutions to a hysteresis-delay parabolic PDE
problem (3) is proved (Theorem 6.22).

• Reduction of the stability problem of a given periodic solution to a hysteresis-
delay parabolic PDE problem (3) to an ODE problem (1) (Theorem 7.6) is
shown.

• Application: examples in which there exists a periodic solution that can be
stabilized using the methods developed in this dissertation are given (Theo-
rem 8.5).

4. Survey of literature

Non-ideal relay hysteresis. The monograph [33] prompted a great number
of mathematical works on general hysteresis. Considerable amount of models of
hysteresis with ordinary differential equations were studied. Periodic solutions for
ordinary differential equations with a hysteresis of non-ideal relay type were stud-
ied e.g. in [6, 46]. Non-ideal relay and partial differential equations were handled
in [7,53], where the focus was on issues such as existence, uniqueness or regularity
of solutions. Periodicity was studied mostly in the case of the thermal control
problem.

Thermal control model. A model similar to problem (2) was suggested in [19,
20]. For a one-dimensional spatial domain (n = 1) periodicity was studied in [18,
21, 42]. The case of a multidimensional domain (n ≥ 2) turned out to be much
harder for discontinuous hysteresis. One possible solution was to consider a con-
tinuous model of hysteresis [23].

The first results for periodic solutions in a multidimensional domain with dis-
continuous hysteresis on the boundary were established in [24] using a fixed-point
method. A new approach, which decomposed the equation into a system of in-
finitely many ODEs, was suggested in [22] and further investigated in [25]. In the
latter paper, an algorithm for finding periodic solutions was given. In addition,
the existence of stable and unstable periodc solutions was shown, but the question
of stabilizing/destabilizing them was not discussed.

Delay differential equations. Delay equations were thoroughly studied in the
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last few decades. The reader is referred to [14, 27] for a general introduction on
the topic. Periodic solutions were also well studied for delay equations, including
stability analysis via a Poincaré map [14, Chapter XIV.3]. Pyragas control, which
add a non-invasive control in the form of a delay term to an equation, was sug-
gested in [43], and has since then become very popular. A summary of the vast
amount of results following the original publication can be found in [44].

Hysteresis-Delay differential equations. Systems with delay and hystere-
sis are a relatively new topic. It was studied mostly for ordinary differential
equations with delay only inside the hysteresis operator [10, 17, 36, 56], namely
H(u(· − τ))(t) = H(u)(t− τ).

Questions regarding periodic solutions for such problems were studied for very
specific models and equations [2, 4, 29,31,34].

Problems where the delay is in the hysteresis are simpler to study compared
with problem (1), since the delay then adds only a finite number of dimensions
to the system [11, 48]. In [48] a rather general form of such equations was stud-
ied, and it was shown that the Poincaré map is smooth in a neighbourhood of a
periodic orbit under some limitations. Possible bifurcations, such as grazing or
corner collision bifurcations, were shown to arise from violations of those limita-
tions. Those bifurcation situations may render the Poincaré map discontinuous.
Questions of existence, uniqueness or stability analysis of periodic orbits in general
settings were not discussed.

There are very few papers about differential equations with continuous hysteresis
and delay outside the hysteresis operator. Existence of oscillating solutions to the
problem

u′(t) = C − hω(t− τ)u(t− τ), t > 0,

ω(t) = Hβ(u(t)), t > −τ,

where Hβ is the generalized play model (see e.g. [53]) was shown in [9,57]. Periodic
solutions or stability analysis was not studied there.

To the best knowledge of the author, no papers on discontinuous hysteresis of
non-ideal relay type with delay outside the hysteresis exist.

5. Layout

This dissertation consists of two chapters. Chapter I studies a system of finitely
many ordinary differential equations with hysteresis and delay terms. Chapter II
studies parabolic partial differential equations with hysteresis and delay terms on
the boundary.

Chapter I consists of Sections 1–5. The main goal of this chapter is to anal-
yse the stability of periodic solutions to problem (1).
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In Section 1 we define the system of ODEs to be studied and establish its funda-
mental properties (such as existence and uniqueness of solutions).

In Sections 2–5 (the remaining sections in Chapter I), we study stability of periodic
solutions.

In Section 2 we define what stability is and state the main problem of Chap-
ter I: studying the stability of a periodic solutions.

In Section 3 we introduce the main tools for studying stability: the Poincaré
and hit maps. We show that stability of the Poincaré map implies stability of the
periodic solution.

In Section 4 we study linearization (i.e., Fréchet derivative) the Poincaré map.
This step, which is normally a straightforward one, becomes the technical heart of
Chapter I. This is due to the fact that the Poincaré map has a discontinuity that
comes from the hysteresis.

In Section 5 we study the spectrum of the formal linearization of the Poincaré
map from the previous section. It is an infinite-dimensional operator due to the
delay. We reduce the analysis of it to a spectral problem for a finite-dimensional
operator, namely, studying the root of a scalar characteristic function.

Chapter II consists of Sections 6–8. The main goal of this chapter is to anal-
yse the stability of periodic solutions for problem (3). Specifically, we show that
unstable periodic solutions to problem (2) become a stable periodic solutions to
problem (3) under an appropriate choice of b(x).

In Section 6 we define the PDE to be studied and establish its fundamental prop-
erties (such as existence and uniqueness of solutions). In Section 6.4 and 6.5 we
convert the problem to a system of infinitely many ODEs.

In Section 7 we show that the stability of the periodic solution depends on finitely
many ODEs.

Finally, in Section 8, we give an application of our theory. We give examples
in which there is a periodic solution that can be stabilized using the methods of
this dissertation.

6. Preliminary notation

The following notation is used throughout this dissertation.

1. Operators are denoted by bold letters: P, Π, et cetera. Matrices are also
denoted by bold letters since they are linear operators: A, B et cetera.
There is one exception to the rule: The hysteresis operator H is denoted by
a mathematical calligraphic letter to empathize its importance.
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2. Arguments of linear operators are put between square bracket: L[ν, y]. Ar-
guments of nonlinear operators are put between standard round brackets:
P(ϕ, x). If the linear operator depends only on one argument, then the
brackets may be omitted: Mu.

3. Spaces are usually denoted using a blackboard font: R (real numbers), C
(complex numbers), et cetera.

4. For a product of two normed vector spaces, we use the product norm given
by the sum of the norms of each space, i.e, if X, Y are normed spaces, then
the norm of X× Y is ‖ · ‖X + ‖ · ‖Y.

5. When evaluating the norm of a vector, we omit its brackets, i.e. norm of
(ν, y) is ‖ν, y‖.

6. There are two different types of derivatives in this dissertation. The notation
is as follows.

6.1. A weak derivative [45] is denoted by putting an apostrophe, i.e.,

The weak derivative of f(t) with respect to t : f ′(t).

6.2. A Fréchet derivative [16] is denoted by D. We also refer to it a lin-
earization in this dissertation (as a Fréchet derivative is the act of find-
ing the linear part of an operator). There is a distinction between total
and partial derivatives: if X, Y are Banach space, and P : X× R→ Y
is a nonlinear operator, then we denote the

• Total Fréchet derivative (or: linearization) of P applied to (ν, y) by
DP(ϕ, x)[ν, y].

• Partial Fréchet derivative of P with respect to ϕ or x byDϕP(ϕ, x)[ν]
or DxP(ϕ, x)[ν], respectively.
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Chapter I

Ordinary Hysteresis-Delay
Differential Equations



1. Setting of the problem. Existence and

uniqueness of solutions

In this section we establish the setting for Chapter I. The main equation is presented.
The operators that compose it are defined. In the bulk of the section we prove funda-
mental properties of the problem, specifically, existence and uniqueness of solutions. We
close the section by showing that solutions are uniformly Lipschitz continuously depen-
dent on their initial data (when the hysteresis has a fixed value).

1.1 General hysteresis-delay ordinary differential equation

We call a differential equation a hysteresis-delay differential equation if it
has both hysteresis and delay terms. Consider the N -dimensional hysteresis-delay
ordinary differential equations (the specific form in which it is written is motivated
in Section 2 in the introduction)

u′(t) = kH(Mu)(t)−Λu+ A[u(t− 2T )− u(t)], t > 0, (1.1)

with initial conditions

u(t) = ϕ(t), t ∈ (−2T, 0), (1.2)

u(0+) = x. (1.3)

where u(0+) is in the sense of traces from the right. Here

• u(t) ∈ RN , k ∈ RN ,

• M = (m0, . . . ,mN−1), m0 6= 0 is a linear functional on RN , called average2,

• Λ,A ∈ RN×N ,

• T ∈ R+ (positive real numbers),

are all fixed, and

• the hysteresis operator H is defined in Section 1.2.

Discussion 1.1. The natural (and shorter) way to write equation (1.1) would be

u′(t) = kH(Mu)(t)−Bu(t) + Cu(t− 2T ), (1.4)

where B,C are n × n matrices3. This is just a rewrite of problem (1.1) with
B := (Λ + A) and C := A. There are two reasons for why we chose our specific
form.

2Such a functional with non-zero entries in its vector representation is called a non-trivial
functional.

3There is a minus sign before B in order to be consistent with Notation 1.7 later on.
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1. In Chapter II we study a hysteresis-delay PDE and reduce it to a system of
ODEs

(
see Section 7, especially problem (7.1)

)
. This system has the form of

problem (1.1)–(1.3) (the letter Λ also comes from this reduction). See also
Section 2 in introduction.

2. In the introduction we presented Pyragas control. It is a method to control
the stability of periodic solutions. If we consider the simple linear hysteresis
ODE

u′(t) = kH(Mu)(t)−Λu,

then equation (1.1) is a Pyragas controlled version of it for a 2T -periodic
solution.

Another thing that may raise an eyebrow is the choice of the delay; why is it 2T
and not just T? The reason is technical. See the explanation in the introduction.

1.2 Hysteresis operator

The term hysteresis applies to a wide number of operators; the specific one that
we use is called a non ideal relay operator. We first define it rigorously, and
then try to explain it in an informal way. The following definition is standard. It
is taken from Visintin [53, chapter VI]. See also Krasnosel’skĭı [33].

Definition 1.2 (Hysteresis). Fix α, β ∈ R such that α < β. For any g ∈ C[0, T1]
(the space of continuous functions on [0, T1]), T1 ∈ R+, the hysteresis operator (or
a non ideal relay operator)

z = H(g) : [0, T1]→ {−1, 1},

is defined as follows (see Figure 2). Let Xt = {t′ ∈ (0, t] : g(t′) = α or β}. Then

z(0) :=

{
1 if g(0) < β,

−1 if g(0) ≥ β,

z(t) :=


z(0) if Xt = ∅,
1 if Xt 6= ∅ and g(maxXt) = α,

−1 if Xt 6= ∅ and g(maxXt) = β.

(1.5)

Definition 1.3 (Switching time). A time t1 is called a switching time (or just
a switching) for a function g ∈ C[0, T1], if the function H(g)(t) is discontinuous
at t1.

Informal explanation. The hysteresis operator H is a discontinuous operator.
For any continuous function g the hysteresis is a function from [0, T1] to {−1, 1}.
Since the range has only two discrete elements, there is a jump when the hysteresis
changes its value.

The hysteresis includes two constants in its definition: α < β. The interval [α, β]
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is called the hysteresis gap.

If g(t) is not in the hysteresis gap for a given t, then the output of the hysteresis
operator is very simple. It equals 1 if g(t) < α, and −1 if g(t) > β.

Things get interesting if g(t) is in the hysteresis gap. Then the value of the hys-
teresis depends on the history of g(t) (hence the name: hysteresis means “lagging
behind” in ancient Greek). Informally, we can say that the hysteresis stays with
the value that it had “just before”.

Another explanation is that the hysteresis does not change its value as long as
g(t) is in the hysteresis gap. Intuitively, we can think of it as a “lazy” operator,
since it is too “lazy” to change its value in the hysteresis gap. The value in the
gap depends on whether g(t) entered the gap through α (then the hysteresis will
be 1 in the gap) or β (hysteresis will be −1 in the gap). Once g(t) leaves the gap,
i.e., equals α or β, the hysteresis may be obliged to change its values.

Remark 1.4. The definition in Visintin [53] has an extra parameter ξ ∈ {−1, 1}.
It denotes the value of the hysteresis in the case g(0) ∈ (α, β). Here we assume,
without loss of generality, that ξ = 1.

Mu

H

α β

hysteresis gap

Figure 2: Hysteresis operator of non-ideal relay type

1.3 Definitions: spaces, solutions and switching points

To define a solution for problem (1.1)–(1.3), we first need to define the appropriate
Lebesgue and Sobolev spaces. The following definitions are standard.

Let Lp(a, b), 1 < p <∞, be the Lebesgue space on the real line with the norm

‖ϕ‖Lp(a,b) =

(∫ b

a

|ϕ(s)|pds
) 1

p

.

Let L∞ be the space of essentially bounded measurable functions with the norm

‖ϕ‖L∞(a,b) = ess supt∈(a,b)|ϕ(t)|.
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Denote N copies of the space Lp, 1 < p ≤ ∞ by Lp:

Lp(a, b) = (Lp(a, b))
N ,

with the norm of ϕ = (ϕ1, . . . , ϕN), ϕ1, . . . , ϕN ∈ Lp(a, b), given by

‖ϕ‖Lp(a,b) =

(∫ b

a

‖ϕ(s)‖pRNds
) 1

p

, 1 < p <∞,

‖ϕ‖L∞(a,b) = ess supt∈(a,b)‖ϕ(s)‖RN .

If the interval (a, b) is not specified, then

Lp := Lp(−2T, 0).

Let W 1
p (a, b) be the standard Sobolev space of Lp functions whose weak deriva-

tive belongs to Lp(a, b), with the norm

‖ϕ‖W 1
p (a,b) = ‖ϕ‖Lp(a,b) + ‖ϕ′‖Lp(a,b).

Denote N copies of W 1
p (a, b) by W1

p(a, b).

Define similarly for k ∈ N the space W k
p (a, b) as the standard Sobolev space of

Lp(a, b) functions which are k times differentiable, where each derivative belongs
to Lp(a, b). Denote N copies of W k

p (a, b) by Wk
p(a, b).

Definition 1.5 (solution to problem (1.1)–(1.3)). Given T1 > 0, a function u ∈
Lp(−2T, T1) ∩W1

p(0, T1) (i.e. u ∈ Lp(−2T, T1) and u
∣∣
(0,T1)

∈W1
p(0, T1)) is called a

solution to problem (1.1)–(1.3) on [−2T, T1] with initial data (ϕ, x) ∈ Lp × RN , if
u satisfies equation (1.1) for a.e. t > 0, condition (1.2) for a.e. t ∈ (−2T, 0) and
condition (1.3) in the sense of traces.

A function u is called a solution on [−2T,∞) if it is a solution on [−2T, T1] for
every T1 > 0.

We write

u(ϕ, x; t)

for the solution to problem (1.1) with initial conditions (1.2)–(1.3).

Discussion 1.6. Readers experienced with delay equations may wonder about the
choice of the space Lp for initial data (and not the more standard space C[−2T, 0]
of continuous functions). The space C[−2T, 0] has an obvious advantage that the
extra initial condition, u(0+) = x, is not needed for it. We try to motivate here
why did we choose the space Lp nevertheless.

First note that solutions of problem (1.1)–(1.3) do not become smoother with
time (unlike in classical delay differential equations). This happens since a change
of value of the hysteresis causes a discontinuity in the derivative. Whether the
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initial data are in C[−2T, 0] or in Lp, we end up with the same regularity for
t > 0 (which is W1

p(0,∞), see Theorem 1.12). If we choose the space C[−2T, 0] for
initial data, we would lose generality (less possible initial data) and gain no extra
regularity.

The real problem arises when considering the stability of a periodic solution. In the
method that we choose to study stability, some process of linearization is needed
(see Section 4). The linearization depends on the switching time of the periodic
solution, which in turn depends on its initial data. Using the chain rule eventually
yields a derivative of the initial data of the periodic solution around which we try
to linearize (specifically, of ϕ from condition (1.2), see Section 4.2 for details).

Due to periodicity the initial data has the same regularity of the solution (see
Lemma 2.13), and hence it does have a weak derivative. However, this weak
derivative is in the Lp space. Hence the linearization belongs to the space Lp, and
not to to the space of continuous functions. Which is why we end up working with
the Lp space.

1.4 Existence and uniqueness of solutions

In this section we prove existence and uniqueness results for problem (1.1)–(1.3).

Notation 1.7. For brevity, we use the following notation throughout the rest of
this chapter.

B = (Λ + A). (1.6)

This is the same B that was used in Discussion 1.1. Equation (1.1) rewritten with
B is:

u′(t) = kH(Mu)(t)−Bu(t) + Au(t− 2T ), t > 0. (1.7)

The value of the hysteresis H(Mu)(t) in equation (1.7) can be 1 or −1. Hence
we define two versions of this equation. In the one where H(Mu)(t) = +1 we
denote the unknown function as u+(t), and in the other, where H(Mu)(t) = −1,
as u−(t).

u′+(t) = k −Bu+(t) + Au+(t− 2T ), t > 0, (1.8)

u+(s) = ϕ+(s), s ∈ (−2T, 0), (1.9)

u+(0+) = x+ (1.10)

and

u′−(t) = −k −Bu−(t) + Au−(t− 2T ), t > 0, (1.11)

u−(s) = ϕ−(s), s ∈ (−2T, 0), (1.12)

u−(0+) = x−. (1.13)

Solutions to these problems are defined in a similar fashion as in Definition 1.5. We
denote by u±(ϕ±, x±; t) a solution to problem (1.8)–(1.10) or problem (1.11)–(1.13)
respectively with initial data (ϕ±, x±).
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Remark 1.8. In the rest of this section we treat only the case in which the initial
data x in (1.3) is such that Mx < β. This means that H(Mu)(0) = 1. The proofs
for the other case are similar.

The proofs in this section use the equivalent integral form of problems (1.8)–
(1.10) and (1.11)–(1.13).

u+(t) = e−Btx+ +

∫ t

0

eB(s−t)Au+(s− 2T )ds+

∫ t

0

eB(s−t)kds, (1.14)

u+(s) = ϕ+(s), s ∈ (−2T, 0). (1.15)

u−(t) = e−Btx− +

∫ t

0

eB(s−t)Au−(s− 2T )ds−
∫ t

0

eB(s−t)kds, (1.16)

u−(s) = ϕ−(s), s ∈ (−2T, 0). (1.17)

The next lemma shows existence and uniqueness of solutions for the previous two
integral equations.

Lemma 1.9. For any T1 > 0, there exists a unique solution u+(t) ∈W1
p(0, T1)

(
or u−(t)

)
of problem (1.14)–(1.15)

(
or (1.16)–(1.17)

)
with initial data (ϕ+, x+)

(
or (ϕ−, x−)

)
∈

Lp(−2T, 0)× RN .

Proof. We prove for u+. The proof is similar for u−.

The proof uses the method of steps4. For t ∈ (0, 2T ), u+ on the right hand
side of equation (1.14) can be replaced by the initial data ϕ+.

u+(t) = e−Btx+ +

∫ t

0

eB(s−t)Aϕ+(s− 2T )ds+

∫ t

0

eB(s−t)kds, t ∈ (0, 2T ).

Then u+ ∈W1
p(0, 2T ), since ϕ+ ∈ Lp(−2T, 0).

Do the same for t ∈ (2T, 4T ), using (u+(s + 2T )s∈(−2T,0), u+(2T )) as the new
history (i.e., initial data). Continue doing so using the method of steps (see Foot-
note 4) for the intervals (4T, 6T ), (6T, 8T ) et cetera, until an interval that contains
T1 is reached.

The next lemma shows that a solution has finitely many switching points in a
finite time interval.

Lemma 1.10 (switchings do not accumulate). For every (ϕ, x) ∈ Lp × RN and
T1 > 0, there exists a positive integer

N̄ := N̄(ϕ, x, T1) > 0

4This is a standard method for dealing with delay equations. See [50, Chapter 2].
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such that for a time sequence 0 < t1, t2, . . . , tN̄ , if u(t) is defined on [0, tN̄ ],
t1, t2, . . . , tN̄ are switching times of u, and u(t) = u(ϕ, x; t) is a solution to prob-
lem (1.1)–(1.3) on [−2T, tN̄ ], then

tN̄ > T1

and u(t) is a solution to problem (1.1)–(1.3) on [−2T, T1].

Proof. We focus on proving that tN̄ > T1. This immediately implies that u(t) is a
solution to problem (1.1)–(1.3) on [−2T, T1].

Let t0, 0 < t0 < T1, be the smallest time such that Mu(t0) = α. If there is
no such t0, then there is no more than one switch, and the proof is done. Without
loss of generality assume that t0 = 0.

To prove the existence of N̄ it is sufficient to bound from below the difference
between two adjacent switchings times (for times smaller than T1). We do so in
two steps.

Step I. Denote

G := min{1, 2T}, (1.18)

where G stands for “Gap”, as in “the gap between intersections”5.

If the difference between switchings is bigger than or equal to G, then it is bounded
from below by G. If it is smaller than G, then we bound it from below in Step I.I.

Step I.I. Let i ≥ 1 be odd such that Mu(ti) = β. Assume that ti− ti−1 < G, and
found a lower bound under this assumption.

In the interval [ti−1, ti], u(t) equals the solution u+(t− ti−1) of (1.14)–(1.15) with
initial data6

(ϕ(1), x(1)) := (ϕ, x) if i = 1, or

(ϕ(i), x(i)) := (u(s+ ti−1)
∣∣
s∈(−2T,0)

, u(ti−1)) ∈ Lp(−2T, 0)× RN if i 6= 1.

Since ti is a switching time, then Mu+(ti−ti−1) = β. Hence integral equation (1.14)
implies that (after reordering the terms on the right hand side)

β = Mu+(ti − ti−1)

= M

[
e−B(ti−ti−1)x(i) +

∫ ti

ti−1

eB(s−ti)kds+

∫ ti

ti−1

eB(s−ti)Au+(s− ti−1 − 2T )ds

]
.

5This constant was chosen because the estimate in step I.I is true only for differences smaller
than or equal to min{1, 2T}. See specifically equation (1.21) for the choice of 1. See the paragraph
after equation (1.19) for the choice of 2T .

6The initial data of the case i = 1 is defined differently since it is the original initial data of
u(ϕ, x; t).

28



The first term inside the square brackets on the right hand side can be written
by [39, Chapter 1, Theorem 2.4]

e−B(ti−ti−1)x(i) = x(i) −B

∫ ti

ti−1

eB(ti−1−s)x(i)ds.

Hence
β = Mu+(ti − ti−1)

= M

[
x(i) −B

∫ ti

ti−1

eB(ti−1−s)x(i)ds+

∫ ti

ti−1

eB(s−ti)kds

+

∫ ti

ti−1

eB(s−ti)Au+(s− ti−1 − 2T )ds

]
.

(1.19)

Since we handle the case where ti− ti−1 < G ≤ 2T , the function u+ in the integral
in the preceding equation can be replaced by the initial data ϕ(i). The operator
M is linear. Then the previous equation yields

β = Mu+(ti − ti−1)

= Mx(i)︸ ︷︷ ︸
=α

+M

[
−B

∫ ti

ti−1

eB(ti−1−s)x(i)ds+

∫ ti

ti−1

eB(s−ti)kds

+

∫ ti

ti−1

eB(s−ti)Aϕ(i)(s− ti−1 − 2T )ds

]
.

Move α to the left hand side, take absolute value on both sides and use the fact
that M is a bounded linear operator.

|β − α| ≤ ‖M‖
∥∥∥∥−B

∫ ti

ti−1

eB(ti−1−s)x(i)ds+

∫ ti

ti−1

eB(s−ti)kds

∥∥∥∥
RN

+ ‖M‖
∥∥∥∥∫ ti

ti−1

eB(s−ti)Aϕ(i)(s− ti−1 − 2T )ds

∥∥∥∥
RN
.

(1.20)

Set

Q := max
t∈[0,T1]

{‖e−Bt‖}.

Then equation (1.20) and Lemma 9.9 (for the second term) imply that

|β − α|

≤ (ti − ti−1)‖M‖Q
(
‖B‖‖x(i)‖RN + ‖k‖RN

)
+ (ti − ti−1))

p−1
p Q‖A‖‖M‖‖ϕ(i)‖Lp(ti−1,ti).

(1.21)

Note that (ti − ti−1) < (ti − ti−1)
p−1
p (since we assumed in Step I.I that the gap is

smaller than G ≤ 1), and that ‖ϕ(i)‖Lp(−2T,−2T+ti−ti−1) ≤ ‖ϕ(i)‖Lp(−2T,0). Inequality
(1.21) then becomes

|β − α| ≤ (ti − ti−1)
p−1
p ‖M‖Q

(
‖B‖‖x(i)‖RN + ‖k‖RN + ‖A‖‖ϕ(i)‖Lp(−2T,0)

)
.
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Isolate (ti − ti−1).

ti − ti−1 ≥

(
|β − α|

‖M‖Q
(
‖B‖‖x(i)‖RN + ‖k‖RN + ‖A‖‖ϕ(i)‖Lp(−2T,0)

)) p
p−1

.

Step I.II. Recall that the last inequality in Step I.I was achieved under the as-
sumption that ti − ti−1 < G, and conclude that

ti − ti−1 ≥ min

{
G,

(
|β − α|

‖M‖Q
(
‖B‖‖x(i)‖RN + ‖k‖RN + ‖A‖‖ϕ(i)‖Lp(−2T,0)

)) p
p−1
}
.

(1.22)

A similar calculation can be done for even i. Hence the bound (1.22) is true for
i ∈ N ≥ 1.

Step II. In order to bound away from zero in [0, T1] the right hand side of (1.22),
we need to bound x(i) and ϕ(i) uniformly for each i for which ti < T1. We look
for a bound on ‖u(t)‖RN for t ∈ [0, T1]. This gives, naturally, a bound on x(i), but
also a bound on ϕ(i) since

‖ϕ(i)‖Lp(−2T,0) ≤ ‖ϕ‖Lp(−2T,0) + T
1
p

1 ‖u(t)‖L∞(0,T1).

Write the general hysteresis-delay problem (1.1)–(1.3) in an integral form

u(t) = e−Btx+

∫ t

0

eB(s−t)Au(s− 2T )ds+

∫ t

0

eB(s−t)kH(Mu)(t)ds, (1.23)

u(s) = ϕ(s), s ∈ (−2T, 0). (1.24)

The integral involving Au in equation (1.23) can be divided into two parts. One
where t ∈ [0, 2T ], and u equals the initial data ϕ. The other7 for t > 2T . Equation
(1.23) takes the form

u(t) = e−Btx+

∫ 2T

0

eB(s−t)Aϕ(s− 2T )ds

+

∫ t

2T

eB(s−t)Au(s− 2T )ds+

∫ t

0

eB(s−t)kH(Mu)(t)ds.

Take RN norm on both sides. The following inequality takes place for t ∈ [0, T1],
regardless of the sign of the hysteresis H

‖u(t)‖RN ≤ Q‖x‖RN + (2T )
p−1
p Q‖A‖‖ϕ‖Lp + T1Q‖k‖RN +

∫ t

0

Q‖A‖‖u(s)‖RNds.

7We implicitly assumed here that T1 > 2T . If it is not then the integral for t > 2T does not
exist and the evaluation continues in the same manner.
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If we set

α := Q‖x‖+ (2T )
p−1
p Q‖A‖‖ϕ‖Lp + T1Q‖k‖,

β := Q‖A‖,

then the inequality can be written as

‖u(t)‖RN ≤ α +

∫ t

0

β‖u(s)‖RNds.

Gronwall’s Lemma ( [26], section 1.3, equations (3.1)–(3.2)) implies that

‖u(t)‖ ≤ α +

∫ t

0

βαe(t−s)βds.

The right hand side is continuous for t ∈ [0, T1], and hence there is a bound for
u(t) for t ∈ [0, T1].

Consider an alternative equivalent definition (see discussion after the definition)
of a solution to the general problem (1.1)–(1.3).

Definition 1.11 (Solution). Given T1 > 0, a function u ∈ Lp(−2T, T1)∩W1
p(0, T1),

is a solution to problem (1.1)–(1.3) with initial data (ϕ, x) ∈ Lp(−2T, 0)× RN if

1. u has finitely many switching times t1 < t2 < · · · < tj in the interval [0, T1]
(or possibly no switching times at all).

2. u(t) equals the solution u
(1)
+ (t) of problem (1.8)–(1.10) with initial data

(ϕ, x) ∈ Lp(−2T, 0) × RN , for t ∈ [−2T, t1] (or t ∈ [−2T, T1] if there are
no switching times).

3. If there is at least one switching time, define tj+1 := T1 (if tj < T1). Then
for every 2 ≤ i ≤ j + 1 (or every 2 ≤ i ≤ j if tj = T1) the following hold, if
t ∈ [ti−1, ti],

3.1. For even i: the solution satisfies

u(t) = u
(i)
− (t− ti−1),

where u
(i)
− is the solution to problem (1.11)–(1.13) with initial data

(u(s+ ti−1)s∈(−2T,0), u(ti−1)) ∈ Lp(−2T, 0)× RN .

3.2. For odd i > 1: the solution satisfies

u(t) = u
(i)
+ (t− ti−1),

where u
(i)
+ is the solution to problem (1.8)–(1.10) with initial data

(u(s+ ti−1)s∈(−2T,0), u(ti−1)) ∈ Lp(−2T, 0)× RN .
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Due to Lemma 1.10, if a solution exists on [0, T1], then it has finitely many
switching times. Then items 2 and 3 of Definition 1.11 are just a more detailed
description of Definition 1.5, and the two definitions are equivalent.

Theorem 1.12. For every (ϕ, x) ∈ Lp(−2T, 0)×RN there exists a unique solution
to problem (1.1)–(1.3) in [−2T,∞).

Proof. We prove only for the case where Mx < β. The proof for the other case is
similar.

Choose T1 > 0 and let N̄(ϕ, x, T1) be given by Lemma 1.10.

We use Definition 1.11 of a solution: define u(1)(t) to be the solution to prob-
lem (1.8)–(1.10) with initial data (ϕ, x). By Lemma 1.9, u(1)(t) exists uniquely.
Denote by t1 > 0 the smallest time such that u(1)(t1) = β or t1 = T1 if no such
time exists. By Definition 1.11 this means that u(t) exists uniquely on [−2T, t1]
and equals u(1)(t) for a.e. t ∈ [−2T, t1].

If t1 < T1, define u(2)(t) to be the solution to problem (1.11)–(1.13) with ini-
tial data (u(s + t1)s∈(−2T,0), u(t1)) ∈ Lp(−2T, 0) × RN . Denote by t2 > t1 the
smallest time such that u(2)(t2− t1) = α, or t2 = T1 if no such time exists. Setting
u(t) := u(2)(t−t1) and repeating the same arguments as in the previous paragraph,
show that there exists a unique solution on [−2T, t2].

If t2 < T1, continue and define times t3, t4 . . . in the same manner. By Lemma 1.10,
there exists ti such that i ≤ N̄(ϕ, x, T1) and ti > T1. This shows that the solutions
exists uniquely on [−2T, T1].

Since T1 > 0 was chosen arbitrarily, by definition the solutions exist uniquely
on [−2T,∞).

To finish the section we prove an auxiliary result on u+ and u− from equa-
tion (1.8) and equation (1.11), respectively. It is used in Section 3 (in the proofs
of Lemma 3.12 and Lemma 3.18).

Lemma 1.13. The solution u+(ϕ, x; t) (u−(ϕ, x; t)) of problem (1.8)–(1.10) ((1.11)–
(1.13)) is Lipschitz continuously dependent on its initial data uniformly with re-
spect to t in bounded intervals, i.e, for every ε > 0 and T1 > 0, there exists δ > 0
and L > 0 such that if

‖ν, y‖Lp(−2T,0)×RN ≤ δ

then

‖u±(ϕ+ ν, x+ y; t)− u±(ϕ, x; t)‖RN ≤ L‖ν, y‖Lp(−2T,0)×RN

for every t ∈ [0, T1].
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Proof. We prove only for u+. The proof is given via the method of steps (see
Footnote 4).

In the first step, assume that t ∈ [0, 2T ]. The integral formula for u+ (equa-
tion (1.14)) shows that u+(ϕ, x; t) is affine linear in the first two variables. Hence

‖u+(ϕ+ ν, x+ y; t)− u+(ϕ, x; t)‖RN

≤
∥∥e−Bty∥∥RN +

∥∥∥∥∫ t

0

eB(s−t)Aν(s− 2T )ds

∥∥∥∥
RN

≤ C‖ν, y‖Lp(−2T,0)×RN ,

for every t ∈ [0, 2T ], where C > 0 is some constant and the integral of ν is bounded
by Lemma 9.9.

If T1 < 2T , then choose L := C and δ ≤ ε
L

and the proof is complete. If not,
then continue developing in steps until there is a step that contains T1. The task
of choosing L and δ in the case where there is more than one step is left to the
reader.
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2. Stability. Statement of the problem

In this section we state the main problem of Chapter I: studying the stability of a pe-
riodic solution. For this purpose we first define what stability is and in which space
stability is being checked.

The main problem of Chapter I can be phrased informally as follows.

Problem statement (informal): Let up be a periodic solution to problem (1.1)–
(1.3). Determine the stability of up.

Before stating the problem formally (Section 2.4), we have to define to which
space perturbations belong (Section 2.1) and what stability is (Section 2.3).

2.1 Definitions: spaces

When studying the stability of a solution, one asks “in which space is it stable?”.
This technical question is of extreme importance in Chapter I. The reason is that
in order to study stability, we try to create (Section 4) a linear version of the
problem (in some sense which is defined there). Due to the discontinuous nature
of the hysteresis, linearization is a big challenge. So instead of the question “in
which space is the solution stable?” we find ourselves asking “in which space is
the problem linearizable?”

It will turn out that a Lebesgue space (Lp) is not regular enough for this task,
while a Sobolev space (W1

p) is a bit too regular. A space “in between” those two
is needed: a fractional Sobolev space. For further discussion, see Section 4.3.

A function ϕ is defined to be in the fractional Sobolev space, W s
p (a, b), p > 1,

0 < s < 1, if the following norm is finite:

‖ϕ‖W s
p (a,b) = ‖ϕ‖Lp(a,b) +

(∫ b

a

∫ b

a

|ϕ(t)− ϕ(s)|p

|t− s|1+sp
dsdt

) 1
p

<∞. (2.1)

We call the second term in relation (2.1), the seminorm of W s
p (a, b).

Denote N copies of W s
p (a, b) by Ws

p(a, b).

The following condition on p and s is essential for the properties of Ws
p spaces

that we use. See Appendix 9.4. It is assumed, without further mention, through-
out the rest of the chapter.

Condition 2.1. The constants p, s satisfy the following condition:

p > 1, 0 < s < 1, ps < 1. (2.2)
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We note that the concept of a trace at t ∈ [a, b] is not defined8 for Ws
p space

under Condition 2.1. See [51, Chapter 4] for details. This means that the initial
condition u(0+) = x in equation (1.3) is still needed9.

The fractional Sobolev space is used to define the space Bsp(a, b). It is a space
that contains functions that “begin” as Lp function and “turn into” a fractional
Sobolev function at some time point.

Let a, b ∈ R be constants such that −2T < a < b (T is the fixed constant from the
general ordinary hysteresis-delay equation (1.1)). Define

Bsp(a, b) = Lp(−2T, b) ∩Ws
p(a, b) (2.3)

to be the space of functions ϕ ∈ Lp(−2T, b) such that ϕ restricted to the interval
[a, b] is in the space Ws

p(a, b). The norm of Bsp(a, b) is defined as

‖ϕ‖Bsp(a,b) = ‖ϕ‖Lp(−2T,b) + ‖ϕ‖Ws
p(a,b).

Finally, the following space Bsp is used in the sequel to study the stability of a

periodic solution. Fix a constant σ such that 0 < σ ≤ T
3
. Define the space

Bsp := Bsp(−T − σ, 0) = Lp(−2T, 0) ∩Ws
p(−T − σ, 0).

The choice of σ is flexible, and stability can be shown for every 0 < σ ≤ T
3
. The

only difference would be the size of allowed perturbations, see Remark (4.24). As
for the reason for the bound T

3
, see the proof of Lemma 4.30 Step II(1).

From now on, the space Bsp will be our main working space. Definition 1.11 of
a solution remains the same, since Bsp ⊂ Lp(−2T, 0).

We remind that the spaces defined in this document are summarized in Table 1.
The reader may refer back to that table whenever needed.

2.2 Hysteresis-delay ordinary differential equations in frac-
tional Sobolev spaces

As mentioned in the previous subsection, stability will be shown for perturbations
in the space Bsp×RN . For this we define the operators Ψ± and ψ±. The properties
of Ψ± and ψ± and the fact that they are well-defined operators are stated and
proved in Lemmas 2.3 and 2.6.

Definition 2.2. Define the operator

ψ+ : Bsp × RN × (0, 2T )→ Bsp,

8However, a trace is defined when ps > 1.
9Note that the initial condition u(0+) = x from the right is well-defined, since u ∈W1

p(0,∞)
by Definition 1.5. The fact that no trace is defined for Ws

p means that u(0−) is not defined.
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as

ψ+(ϕ, x, t)(θ) :=
ϕ(θ + t), θ ∈ [−2T,−t),

e−B(θ+t)x+

∫ θ+t

0

eB(s−t−θ)Aϕ(s− 2T )ds+

∫ θ+t

0

eB(s−t−θ)kds︸ ︷︷ ︸
=u+(ϕ,x;θ+t)

, θ ∈ [−t, 0],

(2.4)
where 0 < t < 2T (which is why we can use ϕ in the expression). Note that ψ+

was defined using a solution to problem (1.8)–(1.10) (see (1.14)–(1.15)).

We show in the proof of Lemma 2.3 that ψ+(ϕ, x, t)|(−t,0) ∈ W1
p(−t, 0), hence

ψ+(ϕ, x, t)(0) is well-defined and we can introduce the operator

Ψ+ : Bsp × RN × (0, 2T )→ Bsp × RN ,

Ψ+(ϕ, x, t) = (ψ+(ϕ, x, t),ψ+(ϕ, x, t)(0)).
(2.5)

The operator Ψ+ can be treated as the flow of problem (1.8)–(1.10) in the space
Bsp×RN for t ∈ (0, 2T ) (though we do not prove the flow properties for it, as they
are not used in this dissertation).

Define the operators ψ− and Ψ− in a similar way.

Lemma 2.3. The operators Ψ± and ψ± are well-defined operators continuous
with respect to t ∈ (0, 2T ).

Proof. We prove the well-definiteness claim only for the operators ψ+ and Ψ+.
For this we show that the operators indeed go from the domain-range specified in
Definition 2.2.

The function u+ belongs to the space W1
p(0, t) for each 0 < t < 2T (Lemma 1.9),

and hence ψ+

∣∣
(−t,0)

∈ W1
p(−t, 0) and specifically ψ+

∣∣
(−t,0)

∈ Ws
p(−t, 0). By its

definition, the function ϕ(·+ t)
∣∣
(−T−σ,−t) belongs to the space Ws

p(−T − σ,−t) for

t < T + σ. Hence Lemma 9.5 implies that ψ+ ∈Ws
p(−T − σ, 0). It is straightfor-

ward that ψ+ ∈ Lp and hence ψ+ ∈ Bsp.

As stated before, for a fixed t ∈ (0, 2T ), the operator ψ+(ϕ, x, t) is in the space
W1

p(−t, 0). Hence ψ+(ϕ, x, t)(0) exists in the sense of traces, and the operator Ψ+

is well-defined.

We show the continuity only for the operator ψ+. Define an extension to ψ+

to [−2T, 2T ] as

ψ̃+(ϕ, x, t)(θ) :=

{
ϕ(θ + t) θ ∈ [−2T,−t),
u+(ϕ, x; θ + t) θ ∈ [−t, 2T ].

For every 0 < t < 2T , the operator ψ̃+(ϕ, x, t) belongs to the space Ws
p(−T −

σ − t, 2T − t) if t < T − σ or to the space Ws
p(−2T, 2T − t) otherwise, using
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the same argument as for ψ+. Hence, by Lemma 9.4 (with Q = [−T − σ, 0] and
Q′ = [max{−T − σ − t,−2T}, 2T − t]) for any ε > 0 there exists δ1 > 0 such that
if |δ| ≤ δ1 then

‖ψ̃+(ϕ, x, t+ δ)− ψ̃+(ϕ, x, t)‖Ws
p(−T−σ,0) ≤ ε.

Note that ψ+(ϕ, x, t)
∣∣
(−2T,0)

= ψ̃+(ϕ, x, t)
∣∣
(−2T,0)

, and hence the Ws
p(−T − σ, 0)

norm of ψ+ is continuous with respect to t. The continuity of ψ+ with respect
to t ∈ (0, 2T ) in the Bsp norm follows since the continuity of the Lp norm (which
composes the Bsp norm) is straightforward.

Remark 2.4. Lemma 2.3 and Lemma 9.5 imply that u ∈ W s
p (0, T1) for every T1 ≥ 0.

Remark 2.5. The continuity in the Lemma 2.3 was given for t ∈ (0, 2T ). We
remark that

‖Ψ(ϕ, x, t)− (ϕ, u+(ϕ, x; 0))‖Bsp×RN → 0 as t→ 0.

Lemma 2.6. The operators Ψ± are continuously dependent on the “initial data”
in the following sense. For every ε > 0 and 0 < T1 < T + σ, there exists δ =
δ(ε, T1) > 0 such that if

‖ν, y‖Bsp×RN ≤ δ,

then

‖Ψ+(ϕα + ν, xα + y, t)−Ψ+(ϕα, xα, t)‖Bsp×RN ≤ ε,

‖Ψ−(ϕβ + ν, xβ + y, t)−Ψ+(ϕβ, xβ, t)‖Bsp×RN ≤ ε,

for every t ∈ (0, T1].

Proof. We prove the claim only for Ψ+ = (ψ+,ψ+(0)). Since ψ+(ϕ, x, t)(0) =
u+(ϕ, x; t), then the result for ψ+(ϕ, x, t)(0) was proved in Lemma 1.13. We
prove it now for ψ+. The Bsp norm is composed as a sum of the Lp norm and
Ws

p(−T − σ, 0) norm. We bound only the latter and leave the Lp bound to the
reader.

Fix ε > 0 and T1 < T + σ. Assume without loss of generality that ε < T .

Step I. Let t ∈ [ε, T1]. By expression (2.4) for ψ+:∥∥ψ+(ϕα + ν, xα + y, t)−ψ+(ϕα, xα, t)
∥∥
Ws
p(−T−σ,0)

=

∥∥∥∥{ ν(θ + t), θ ∈ [−2T,−t),
u+(ϕα + ν, xα + y; θ + t)− u+(ϕα, xα; θ + t)), θ ∈ [−t, 0].

∥∥∥∥
Ws
p(−T−σ,0)

Since the lengths of the intervals (−T − σ,−t) and (−t, 0) are bounded from
below by min{T + σ− T1, ε} (for fixed ε and T1), Lemma 9.6 implies that there is
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C1 := C1(ε, T1) > 0 and C̃1 = C̃1(ε, T1) > 0 such that

‖ψ+(ϕα + ν, xα + y, t)−ψ+(ϕα, xα, t)‖Ws
p(−T−σ,0)

≤ C1

(
‖ψ+(ϕα + ν, xα + y, t)−ψ+(ϕα, xα, t)‖Ws

p(−T−σ,−t)

+ ‖ψ+(ϕα + ν, xα + y, t)−ψ+(ϕα, xα, t)‖Ws
p(−t,0)

)
,

= C1

(
‖ν(·+ t)‖Ws

p(−T−σ,−t) +

∥∥∥∥e−B(·+t)y +

∫ ·+t
0

eB(s−·−t)Aν(s− 2T )ds

∥∥∥∥
Ws
p(−t,0)

)
≤ C1 · C̃1‖ν, y‖Bsp×RN ,

where we used formula (1.14) for u+ and C̃1 is some positive constant. Choose
δ1 ≤ ε

C1·C̃1
to obtain the desired result for t ∈ [ε, T1].

Step II. Consider 0 < t < ε, and extend the norm to the interval [−T − σ, ε].

‖ψ+(ϕα + ν, xα + y, t)−ψ+(ϕα, xα, t)‖Ws
p(−T−σ,0)

≤ ‖ψ+(ϕα + ν, xα + y, t)−ψ+(ϕα, xα, t)‖Ws
p(−T−σ,ε)

=

∥∥∥∥{ ν(θ + t) θ ∈ [−2T,−t)
u+(ϕα + ν, xα + y; θ + t)− u+(ϕα, xα; θ + t)) θ ∈ [−t, ε].

∥∥∥∥
Ws
p(−T−σ,ε)

Since the lengths of the intervals (−T −σ,−t) and (−t, ε) are bounded from below
by min{T + σ − T1, ε} (for fixed ε and T1), then Lemma 9.6 implies that there is
C2 := C2(ε, T1) and C̃2 > 0 such that

‖ψ+(ϕα + ν, xα + y, t)−ψ+(ϕα, xα, t)‖Ws
p(−T−σ,ε)

≤ C2

(
‖ψ+(ϕα + ν, xα + y, t)−ψ+(ϕα, xα, t)‖Ws

p(−T−σ,−t)

+ ‖ψ+(ϕα + ν, xα + y, t)−ψ+(ϕα, xα, t)‖Ws
p(−t,ε)

)
= C2

(
‖ν(·+ t)‖Ws

p(−T−σ,−t) + ‖e−B(·+t)y +

∫ ·+t
0

eB(s−·−t)Aν(s− 2T )ds‖Ws
p(−t,ε)

)
≤ C2 · C̃2‖ν, y‖Ws

p(−T−σ,0)×RN ,

where we used again formula (1.14) for u+ and C̃2 is some positive constant.
Choose δ2 ≤ ε

C2·C̃2
to get the desired result for t ∈ [0, ε].

Taking δ = min{δ1, δ2} proves the lemma.
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2.3 Periodic solutions and stability

Definition 2.7 (Periodic solution). A solution u(t) of problem (1.1)–(1.3) on
[−2T,∞) is called a τ -periodic solution to problem (1.1)–(1.3) if τ > 0 and

u(τ) = x,

u(τ + s) = ϕ(s), s ∈ (−2T, 0),

H(Mu)(τ) = H(Mu)(0).

Definition 2.7 uses implicitly the uniqueness result from Theorem 1.12: if a
solution returns to the exact same initial point and history (and the same value of
hysteresis) after time τ , then it will do so after every nτ for n ∈ N.

Definition 2.8 (Orbit). Let u be a solution to problem (1.8)–(1.10) on [−2T,∞)
with initial data (ϕ, x). Denote the orbit of u(ϕ, x; t) as γ(ϕ, x) ⊂ Bsp × RN and
define it as

γ(ϕ, x) = {
(
u(ϕ, x; t+ s)|s∈(−2T,0), u(ϕ, x; t)

)
|t ≥ 0}.

The orbits Γ1, Γ2 ⊂ Bsp × RN are defined, using up from Assumption 2.12 below,
as

Γ1 := {
(
up(s+ t)|s∈(−2T,0), up(t)

)
|t ∈ [0, T ]},

Γ2 := {
(
up(s+ t)|s∈(−2T,0), up(t)

)
|t ∈ [T, 2T ]}.

The orbit of the periodic solution up then equals

Γ = Γ1 ∪ Γ2.

Definition 2.9 (Stability). The periodic solution up is called stable (or orbitally
stable) if for every neighbourhood Ω of Γ, there exists neighbourhoods Ω1 of Γ1

and Ω2 of Γ2 such that if

(ϕ, x) ∈ Ω1, Mx < β or (ϕ, x) ∈ Ω2, Mx ≥ β,

then γ(u) ⊂ Ω.

The periodic solution up is called asymptotically stable (or orbitally asymp-
totically stable), if in addition to the previous requirements, there exists neigh-
bourhoods Θ1 of Γ1 and Θ2 of Γ2 such that if

(ϕ, x) ∈ Θ1, Mx < β or (ϕ, x) ∈ Θ2, Mx ≥ β,

then

dist((u(ϕ, x; t+ s)s∈(−2T,0), u(ϕ, x; t)),Γ)→ 0 as t→∞,

where distance is taken in the Bsp × RN space.

The periodic solution up is called unstable if it is not stable.
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Remark 2.10. In this dissertation we prove asymptotic stability of periodic solu-
tions. However, it is possible to slightly modify the proofs to show asymptotic
exponential stability, i.e., that in addition to asymptotic stability, there exist
0 < q < 1, k > 0 and neighbourhoods Υ1 of Γ1 and Υ2 of Γ2 such that if

(ϕ, x) ∈ Υ1, Mx < β or (ϕ, x) ∈ Υ2, Mx ≥ β,

then

dist((u(ϕ, x; t+ s)s∈(−2T,0), u(ϕ, x; t)),Γ) ≤ kqt

for all t ≥ 0.

Remark 2.11. For delay equations, the space in which the solution lies is often
different from the phase space. A solution u(t) of (1.1)–(1.3) belongs to RN for
every t ≥ 0, but the phase space is Bsp × RN .

It is possible to define a flow on this phase space. However, we will not do so
as it is not necessary for the stability definition that we use. Note that in order to
define a flow properly, the hysteresis, H, needs to have an additional parameter.
This parameter will hold the value of the hysteresis in the case that the initial
value of the function is between (α, β) (as mentioned in Remark 1.4).

2.4 Problem statement

The following assumption is valid for the rest of Chapter I.

The assumption is inspired from a periodic solution to the heat equation with
hysteresis on the boundary [22, 25]. We consider this periodic solution and prob-
lem in Section 8 in Chapter II of the dissertation.

Assumption 2.12. Assume that problem (1.1)–(1.3) has a 2T -periodic solution
up := up(ϕ

α, xα; t) such that

1. The initial data xα satisfies10 Mxα = α.

2. The periodic solution up has exactly two switching times along its period:
one at t = T (where Mup(T ) = β) and one at t = 2T (where Mup(2T ) = α).

3. The derivative of ϕα is anti-symmetric with respect to the point t = −T , in
the sense that

ϕα′(θ) = −ϕα′(θ + T ) θ ∈ [−2T,−T ].

These derivatives exist in light of Lemma 2.13 below.

4. The switching is transverse in the sense that

dMup(T−)

dt
,
dMup(2T−)

dt
6= 0. (2.6)

10We could also study stability if Mxα = β. But we choose Mxα = α, due to our choice of
initial state of the hysteresis to be 1 for α < x < β, see Remarks 1.4 and 3.8 for more details.
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The next lemma shows that items (1),(2) in Assumption 2.12 imply that up is
piecewise smooth.

Lemma 2.13. If items (1),(2) in Assumption 2.12 take place, then ϕα is in the
space C∞[−2T,−T ] ∩ C∞[−T, 0].

Proof. Since up satisfies problem (1.1)–(1.3), then its expression for t ∈ [0, T ] is:

up(t) = e−Btxα +

∫ t

0

eB(s−t)Aϕα(s− 2T )ds+

∫ t

0

eB(s−t)kds.

Since ϕα ∈ Lp(−2T,−T ), then up ∈ W1
p(−T, 0). Then periodicity shows that

ϕα ∈ W1
p(−2T,−T ), which in turn implies that up ∈ W2

p(−T, 0) and hence ϕα ∈
W2

p(−2T,−T ). Continuing with this argument shows that ϕα ∈Wk
p(−2T,−T ) for

every k ∈ N, and hence ϕα ∈ C∞[−2T,−T ].

Consider the expression for up for t ∈ [T, 2T ]:

up(t) = e−Btxα +

∫ T

0

eB(s−t)Aϕα(s− 2T )ds+

∫ t

T

eB(s−t)Aϕα(s− 2T )ds+

∫ t

0

eB(s−t)kds.

Repeating the same argument as before shows that ϕα ∈ C∞[−T, 0].

We study the following problem.

Problem 2.14. Assume up is a 2T -periodic solution to (1.1)–(1.3) that satisfies
Assumption 2.12. Determine the stability of up.
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3. Poincaré and hit maps

In this section we define the main tool for studying stability: the Poincaré map. Due
to the discontinuous nature of the problem, the Poincaré map is a composition of two
maps. We call those maps “hit maps”, and define them in this section as well.

In Section 3.1, the Poincaré and hit maps are defined.

In Section 3.2, the continuity and differentiability of the hit operator is proved.

In Section 3.3, basic properties of the Poincaré and hit maps are proven. This sec-
tion ends with a result that motivates the study of the Poincaré map. Namely that
the stability of a periodic solution depends on that of its corresponding Poincaré
map. In addition, we show in Lemma 3.19 that solutions that begin “close” to the
initial data of the periodic solution are “almost” periodic themselves.

3.1 Definition of the Poincaré and hit maps

Discussion. The general idea behind a Poincaré map is a shift of study: from a
differential equation to an associated operator (called a Poincaré map).

This idea was first suggested by Poincaré in 1899 [41] in order to study the
three body problem in celestial mechanics. Nowadays a Poincaré map is a com-
mon tool to study the stability of periodic solutions.

Take some initial data for a periodic solution. Let us call it (ϕα, xα) as in our case
(see Assumption 2.12). Choose a hyperspace (called a cross-section) that contains
the initial data. In our case it is Tα (see Definition 3.1). The cross-section must
have the following property: there is an open neighbourhood of (ϕα, xα) in the
cross-section such that solutions that begin in this open neighbourhood, reach the
cross-section in some finite time. The Poincaré map takes a solution from this
neighbourhood to the point at which it reaches the cross-section.

Due to periodicity, (ϕα, xα) is a fixed point of the Poincaré map. It turns out
(Lemma 3.18) that the stability of the periodic solution depends on the stability
of the fixed point (ϕα, xα) of the Poincaré map. See, e.g., Wiggins [54] for a de-
tailed explanation of a Poincaré map.

For reasons explained below, we need two cross-sections (hyperspaces) for our
usage of the Poincaré map. We define them now.

Definition 3.1 (cross-sections). Consider the following cross-sections (subspaces
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of co-dimension one11) of Bsp × RN :

Tα = {(ϕ, x) ∈ Bsp × RN |Mx = α}, and

Tβ = {(ϕ, x) ∈ Bsp × RN |Mx = β}.

The point x is needed since, as was already mentioned in Section 2.1, a trace is
not defined for functions in the space Bsp when 0 < ps < 1.

We build a Poincaré map as a map from Tα to itself.
Due to the discontinuity of the system (caused by the hysteresis operator), the

Poincaré map is a composition of two maps: one from Tα to Tβ (called Pβ, since
it goes to the hyperspace Tβ), and the second the other way around, from Tβ to
Tα (called Pα).

We call each of those maps a hit map since they take a solution until it “hits”
one of the cross sections. Note that the “hit” time of a solution is also its switching
time.

Remark 3.2. It may be confusing that all the definitions below focus on operators
with a subscript β. The reason is that the Poincaré map first takes the periodic
solution (ϕα, xα) to Tβ, and this is done via the hit map Pβ. It may be counter
intuitive that the map Pβ is applied before the map Pα, but we use that notation
nevertheless since it is easier to remember that the map Pβ hits the hyperspace
Tβ.

Before defining the hit maps, we need to define the time moment at which a
solution “hits” the subspaces Tβ or Tα. We remind the reader that u+ is a solution
to the general problem (1.1)–(1.3) when H = 1 (it was defined in problem (1.8)–
(1.10)).

Definition 3.3 (Hit time operator). Let (ϕ, x) ∈ Lp × RN , Mx < β. We call an
operator

tβ : Lp × RN → R,

a hit time operator (or simply a hit operator) if

Mu+(ϕ, x; tβ(ϕ, x)) = β,

and

Mu+(ϕ, x; t) 6= β for t ∈ [0, tβ(ϕ, x)).

If no such time exists, then

tβ(ϕ, x) =∞.

Define tα(ϕ, x) in a similar way with Mx > α.

11These are subspaces of co-dimension one since M is a non-trivial linear functional (see the
definition after equation (1.3)).
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Remark 3.4. It would be consistent with the definition of stability (Definition 2.9)
to define tβ on the space Bsp (as the first component in the product space). We
choose the space Lp for two reasons. The first is that the properties of the hit
operator (Lemma 3.12 and Lemma 3.15) can be proved on the space Lp (unlike
the stability result). The second is that in later sections we need results for tβ on
the space Lp.

It is important to remark that the results for the hit operator are also true if it
is treated as an operator from Bsp × RN → R, since Bsp is continuously embedded
in Lp [13].

By the definition of up (Assumption 2.12), it is straightforward that tβ(ϕα, xα) =
T . In Lemma 3.12 we show that the hit time tβ is finite for functions in some
neighbourhood (ϕα, xα).

Definition 3.5 (Hit map). Consider the following nonlinear map

Pβ : Dom(Pβ)→ Tβ, Dom(Pβ) := {(ϕ, x) ∈ Tα
∣∣tβ(ϕ, x) <∞},

defined as

Pβ(ϕ, x) = (PB
β(ϕ, x), PR

β (ϕ, x)︸ ︷︷ ︸
=PB

β(ϕ,x)(0)

) =
(
u+(ϕ, x; tβ(ϕ, x) + s)|s∈(−2T,0), u+(ϕ, x; tβ(ϕ, x))

)
.

(3.1)

Define Pα in a similar way.
The maps Pβ and Pα are called hit maps. We say that Pβ (Pα) hits Tβ (Tα)

at time tβ (tα).

Remark 3.6. In what follows we limit the initial data to be such that the hit time
tβ(ϕ, x) is less than one delay step (2T ). In this case Pβ has the explicit expression

Pβ(ϕ, x) := Ψ+(ϕ, x, tβ(ϕ, x)), (3.2)

which uses Ψ+ (relation (2.5)) from Definition 2.2. In the same way we have an
explicit expression for Pα which uses Ψ− if tα(ϕ, x) < 2T . We use these expressions
in the rest of Chapter I.

Now we can finally define the Poincaré map P.

Definition 3.7 (Poincaré map). The nonlinear map

P : Dom(P)→ Tα,
Dom(P) := {(ϕ, x) ∈ Tα

∣∣(ϕ, x) ∈ Dom(Pβ),Pβ(ϕ, x) ∈ Dom(Pα)},

defined as

P = Pα ◦Pβ

is called the Poincaré map.
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Remark 3.8. Now we can see that the assumption on initial conditions of the hys-
teresis (Remark 1.4) limits the study of stability of a period solution with initial
condition xα = α.

The domain of the map Pβ is defined via the hit operator tβ. The hit opera-
tor tβ, in turn, is defined using the solution u+ of the case H = 1. The result is
that the map Pβ implicitly assumes that H = 1.

Now, the fact that the Poincaré map applies Pβ first means that we implicitly
assume that if α < Mu(0) < β then H(Mu)(0) = 1. We could, in theory, define
the Poincaré map as Pβ ◦Pα (to study stability of uβp ). This would implicitly as-
sume the opposite (if α < Mu(0) < β, then H(Mu)(0) = −1), and would require
us to re-define the hysteresis in Subsection 1.2 accordingly.

Finally, we define what we mean by the stability of a fixed point of a Poincaré
map.

Definition 3.9. A fixed point (ϕ, x) ∈ Tα of P is called stable if for every ε > 0
there exists δ > 0 such that if

‖ν, y‖Bsp×RN < δ, (ϕ+ ν, x+ y) ∈ Tα,

then

Pn(ϕ+ ν, x+ y) ∈ Dom(P),

and

‖Pn(ϕ+ ν, x+ y)− (ϕ, x)‖Bsp×RN ≤ ε,

for all n ∈ N ∪ {0}.

A fixed point (ϕ, x) ∈ Tα is called asymptotically stable, if in addition to
the previous requirements:

‖Pn(ϕ+ ν, x+ y)− (ϕ, x)‖Bsp×RN → 0 as n→∞.

A fixed point of P is called unstable if it is not stable.

The next subsection studies properties of the hit operator and the Poincaré
and hit maps at (ϕα, xα) (the initial data of the periodic solution up). For that we
now introduce some notation related to the periodic solution.

Notation 3.10. Let up be the periodic solution from Assumption 2.12.

1. The initial data for the periodic solution up is (ϕα, xα). Due to periodicity

ϕα(t) = up(t+ 2T ), t ∈ (−2T, 0).
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2. Assumption 2.12 implies that (ϕα, xα) ∈ Dom(Pα). Denote

(ϕβ, xβ) := Pβ(ϕα, xα).

Then the switching times in Assumption 2.12 show that

tβ(ϕα, xα), tα(ϕβ, xβ) = T.

Periodicity shows that

(ϕα, xα) = Pα(ϕβ, xβ).

In addition (ϕα, xα) ∈ Dom(P), and (ϕα, xα) is a fixed point of P, i.e.,

P(ϕα, xα) = (ϕα, xα).

Remark 3.11. From this point on, most results in Chapter I can be phrased in two
analogous ways. One related to the hit map Pβ (or components of it, like tβ,Ψ+

from this section, and Lβ,hβ from the next section). The other is related to Pα.

We only state results related to the hit map Pβ, but use each result as it was
proved also for Pα. The “translation” of a result from one case to the other is a
matter of changing letters. Each β is changed to α (and vice versa). Each + is
changed to − (and vice versa). However, in some important results we state both
versions.

3.2 Properties of the hit operator

To study problem (2.14) we study the stability of the fixed point (ϕα, xα). To do
this we want P to be differentiable at (ϕα, xα). P is composed of the map Pβ,
which in turn uses the hit time operator tβ. The next lemma shows that tβ is
locally Lipschitz continuous at (ϕα, xα), while Lemma 3.15 shows that it is also
Fréchet differentiable. See Remark 3.4 as to why we use the space Lp.

Lemma 3.12. There exists some δ > 0 such that if

‖ν, y‖Lp×RN ≤ δ,

then

tβ(ϕα + ν, xα + y) <∞.

In addition, tβ : Lp × RN → R is locally Lipschitz continuous at (ϕα, xα) in the
following sense:

|tβ(ϕα + ν, xα + y)− tβ(ϕα, xα)| ≤ C‖ν, y‖Lp×RN ,

where C = C(δ) > 0 is independent of (ν, y).
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Proof. Existence and continuity. Existence is shown in the process of showing
continuity. For continuity, choose ε > 0.

Step I. According to equation (2.6) in Assumption 2.12, Mup intersects the hy-
perspace Mx = α transversally. Thus, there are some

0 < ε1 ≤ ε,

0 < ρ1,

such that

Mu+(ϕα, xα;T + ε1) = β + ρ1.

The average operator M is a continuous operator, u+ is uniformly continuously
dependent on initial data at (ϕα, xα) by Lemma 1.13. Hence there exists some
δ1 = δ1(ε) > 0 not depending on ε1 such that if

‖ν, y‖Lp×RN ≤ δ1,

then

|Mu+(ϕα + ν, xα + y;T + ε1)−Mu+(ϕα, xα;T + ε1)| ≤ ρ1.

This shows that tβ(ϕ+ ν, x+ y) <∞ and gives an upper bound

tβ(ϕα + ν, xα + y) ≤ T + ε1 ≤ T + ε.

Step II. Choose some 0 < ε2 ≤ min{ε, T}. Define ρ2 as

ρ2 := min
t∈[0,T−ε2]

β −Mu(ϕα, xα, t).

Note that ρ2 > 0 since T is the first switching time of Mup by Assumption 2.12
(i.e, T is the first time that Mup = β). Repeating the process from Step I shows
the existence of some δ2 > 0 such that if

‖ν, y‖Lp×RN ≤ δ2,

then

|Mu+(ϕα + ν, xα + y; t)−Mu+(ϕα, xα; t)| ≤ ρ2

for every t ∈ [0, T − ε2]. This shows that

tβ(ϕα + ν, xα + y) ≥ T − ε2 ≥ T − ε.

Step III. Take δ := min{δ1, δ2}. Then if

‖ν, y‖Lp×RN ≤ δ,

then

|tβ(ϕα + ν, xα + y)− tβ(ϕα, xα)| ≤ ε.
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locally Lipschitz. Take 0 < δ̃ that satisfies the continuity, and ‖ν, y‖Lp×RN ≤ δ̃

(we change to δ̃ since now we need to find 0 < δ ≤ δ̃ such that locally Lipschitz
continuity holds).

The solution u+(ϕα + ν, xα + y; t) can cross either before (Figure 3 left) or af-
ter (Figure 3 right) the periodic solution. If it crosses at the same time, then any
Lipschitz constant will do. Unlike in the figure, the two graphs can intersect one
another on the way, but this is irrelevant for our argument.

The periodic solution is transverse at the crossing time by Assumption 2.12, and
since tβ is continuous at (ϕα, xα), we can assume that δ̃ is small enough such that
the dynamics is as in one of the two images in Figure 3, i.e, tβ(ϕα + ν, xα + y) is
in a neighbourhood N of tβ(ϕα, xα), in which Mu+(ϕα, xα; t) is monotone.

Solutions of problem (1.1)–(1.3) are continuous. Hence, a vertical line, C1 (see fig-
ure) taken from the point tβ(ϕα+ν, xα+y) intersects the graph of Mu+(ϕαp , x

α
p ; t).

t

α

β
C2

Mu+(ϕα + ν, xα + y; t)

Mu+(ϕα, xα; t)

C1

t

α

β

Mu+(ϕα + ν, xα + y; t)

Mu(φα, xα, t)

C1

C2

Figure 3: Crossing of functions before/after the periodic solution.

By the notation in Figure 3.

C2 := |tβ(ϕα + ν, xα + y)− tβ(ϕα, xα)| ≤ C1

mint∈N{dMu+(ϕα,xα;t)
dt

}
≤ ConstC1,

(3.3)

where the last inequality follows since dMu+(ϕα,xα;t)
dt

is bounded away from zero for
t ∈ N .

We are left with bounding C1. By its definition.

C1 = |Mu+(ϕα + ν, xα + y; tβ(ϕα + ν, xα + y))−Mu+(ϕα, xα; tβ(ϕα + ν, xα + y))|.

By Step I, tβ(ϕα+ν, xα+y) < T +ε. The average operator M is a linear bounded
operator, u+ is Lipschitz continuously dependent on its initial data (Lemma 1.13)
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for a finite t (here, t < T+ε). Hence there is 0 < δ ≤ δ̃ such that if ‖ν, y‖Lp×RN < δ,
then the previous equation becomes

C1 ≤ Const‖ν, y‖Lp×RN .

Combine this with equation (3.3) to obtain locally Lipschitz continuity.

From this point on we only consider, without further mention, (ν, y) small
enough such that tβ(ϕα+ν, xα+y) < 2T . Such (ν, y) exists due to to Lemma 3.12
and the fact that tβ(ϕβ, xα) = T . In this case, expression (3.2) for Pβ holds.

The following notation shortens the proofs in the rest of this subsection.

κ := κ(ν, y) := tβ(ϕα, xα)− tβ(ϕα + ν, xα + y). (3.4)

The next lemma shows a connection between the magnitudes of κ and (ν, y). We
do not specify which norm of f we use, so that the lemma will be as general as
possible. To evaluate κ we take its absolute value, since κ ∈ R.

Lemma 3.13. Let B be a Banach space. If a function f : R→ B is such that

‖f(κ)‖B = O(|κ|G),

for some G > 0, then F (ν, y) := f(κ(ν, y)) satisfies

‖F (ν, y)‖B = O(‖ν, y‖GLp×RN ).

Proof. By the big-O definition, there exist C, ε1 > 0 such that if |κ| ≤ ε1, then

‖f(κ)‖B ≤ C|κ|G.

By Lemma 3.12, tβ is locally Lipschitz continuous at (ϕα, xα). Hence, there is
ε ≤ ε1 such that if ‖ν, y‖Lp×RN ≤ ε, then

|κ(ν, y)| ≤ ε1 (continuity),

|κ(ν, y)| ≤ L‖ν, y‖Lp×RN (locally Lipschitz continuity),

where L is the Lipschitz constant of tβ. Hence if ‖ν, y‖Lp×RN ≤ ε, then

‖f(κ)‖B ≤ C|κ(ν, y)|G ≤ CLG‖ν, y‖GLp×RN .

This shows that F (ν, y) = O(‖ν, y‖GLp×RN ).

The hit time operator is defined via Mu+. Hence we define the following
notation.

Notation 3.14. Let u+(ϕ, x; t) be the solution to problem (1.8)–(1.10). Denote
the operator

u : Lp × RN × R→ R,
as

u(ϕ, x, t) := Mu+(ϕ, x; t).
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Lemma 3.15. The hit time operator tβ is Fréchet differential at (ϕα, xα). More-
over, it can be written as

tβ(ϕα + ν, xα + y) = tβ(ϕα, xα) +Dtβ(ϕα, xα)[ν, y] +O(‖ν, y‖
min{2− 1

p
,1+ 1

p
}

Lp×RN ),

where the linear operator

Dtβ := Dtβ(ϕα, xα) : Lp × RN → R

is given by
Dtβ[ν, y] = −(Dtu)−1D(ϕ,x)u[ν, y], (3.5)

where

Dtu := Dtu(ϕα, xα, tβ(ϕα, xα)) : R→ R,
D(ϕ,x)u := D(ϕ,x)u(ϕα, xα, tβ(ϕα, xα)) : Lp × RN → R.(

We prove in the course of the proof that u has partial derivatives by t and (ϕ, x)
at the point (ϕα, xα, tβ(ϕα, xα)).

)
Proof. By the definition of tβ and u+, it is straightforward that tβ(ϕ, x) > 0 is the
first positive time such that u(ϕ, x, tβ(ϕ, x)) = β.

If 0 < t < 2T , then the method of steps (see Footnote 4) and the integral form of
u+ in relation (1.14) show that

u(ϕ, x, t) = M

[
e−Btx+

∫ t

0

eB(s−t)kds)︸ ︷︷ ︸
:=u1(x,t)

+ M

∫ t

0

eB(s−t)Aϕ(s− 2T )ds

]
︸ ︷︷ ︸

:=u2(ϕ,t)

. (3.6)

We can use expression (3.6) since we assumed (after the proof of Lemma 3.12)
that (ν, y) is small enough such that

tβ(ϕα + ν, xα + y) < 2T.

We calculate the linear parts of u1,u2 from relation (3.6) separately in Steps I and
II. In Step III we merge them together, and use it to get the Fréchet derivative of tβ.

For brevity, we write in the rest of the proof T instead of tβ(ϕα, xα) and T−κ(ν, y)
instead of tβ(ϕα + ν, xα + y). These equalities are known from Assumption 2.12
and Definition (3.4) of κ.

Step I. The function u1 is smooth in x and t. It can be expanded in a Tay-
lor series12

u1(xα + y, T − κ(ν, y)) =

u1(xα, T ) +Dxu1(xα, T )y −Dtu1(xα, T )κ(ν, y) +O(‖ν, y‖2
Lp×RN ),

(3.7)

12For Taylor series for Fréchet derivative see [55] (Chapter 4.6).
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where the big-O follows Lemma 3.13, and the fact that ‖y‖RN ≤ Const‖ν, y‖Lp×RN .

Step II. The function u2 is linear in ϕ, hence

u2(ϕα + ν, T − κ(ν, y)) = u2(ϕα, T − κ(ν, y)) + u2(ν, T − κ(ν, y)). (3.8)

Step II.I. By the expression for u2 in equation (3.6):

u2(ϕα, T − κ(ν, y)) = M

[
e−B(T−κ(ν,y))

∫ T−κ(ν,y)

0

eBsAϕα(s− 2T )ds

]
.

By Lemma 2.13 ϕα belongs to the spaces W1
p(−2T, 0), C∞[−2T,−T ] and C∞[−T, 0].

Hence u2(ϕα, ·) belongs to the spaces W 2
p (0, 2T ), C∞[0, T ] and C∞[T, 2T ]. It fol-

lows from Sobolev’s inequality that

|u2(ϕα, T − κ(ν, y))− u2(ϕα, T ) + u′2(ϕα, T )κ(ν, y)|
≤ Const‖u2(ϕα, · − κ(ν, y))− u2(ϕα, ·) + u′2(ϕα, ·)κ(ν, y)‖W 1

p (T−δ,T ),
(3.9)

where δ > 0 is a fixed constant between 0 and T .
Apply the finite difference Lemma (Lemma 9.2) with Q = [T − δ, T ] and Q′ =

[0, T + 2δ] on both u2 and u′2 to establish that

‖u2(ϕα, · − κ(ν, y))− u2(ϕα, ·) + u′2(ϕα, ·)κ(ν, y)‖W 1
p (T−δ,T ) ≤ |κ|1+ 1

p .

The previous inequality, inequality (3.9), and Lemma 3.13 imply that

|u2(ϕα, T − κ(ν, y))− u2(ϕα, T ) + u′2(ϕα, T )κ(ν, y)︸ ︷︷ ︸
Dtu2(ϕα,T )κ(ν,y)

| = O(‖ν, y‖
1+ 1

p

Lp×RN ). (3.10)

Step II.II. By the expression for u2 in equation (3.6):

u2(ν, T − κ(ν, y)) = M[e−B(T−κ(ν,y))

∫ T−κ(ν,y)

0

eBsAν(s− 2T )ds].

Inside the average function M there is a composition of two terms. The first is
smooth with respect to t in the operator norm13:

e−B(T−κ(ν,y)) = e−BT +O(‖ν, y‖) +O(|ν, y‖2), (3.11)

where the big-O notation follows from Lemma 3.13.

In the second term the integral can be divided into two parts:∫ T−κ(ν,y)

0

eBsAν(s− 2T )ds =

∫ T

0

eBsAν(s− 2T )ds+

∫ T−κ(ν,y)

T

eBsAν(s− 2T )ds.

(3.12)

13I.e, ‖O(‖ν, y‖)‖ ≤ Const‖ν, y‖Lp×RN .
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The first integral on the right hand side is linear in ν. On the second integral we
can apply Lemma 9.9:∥∥∥∥∥
∫ T−κ(ν,y)

T

eBsAν(s− 2T )ds

∥∥∥∥∥
RN
≤ Constκ

p−1
p ‖ν(· − 2T )‖Lp(T,T+κ(ν,y)) ≤ ‖ν, y‖2− 1

p ,

(3.13)
where the last inequality follows Lemma 3.12.

Combining relations (3.11)–(3.13) yields

|u2(ν, T − κ(ν, y) ︸ ︷︷ ︸
=Dϕu2(ϕα,yα,T )ν

)− u2(ν, T )| = O(‖ν, y‖2− 1
p ). (3.14)

Step III. Combining together relations (3.7), (3.8), (3.10), and (3.14) yields

β = u(ϕα + ν, xα + y, T − κ(ν, y))

= u1(xα, T ) + u2(ϕα, T )︸ ︷︷ ︸
u(ϕα,xα,T )=β

+Dxu1(xα, T )y +Dϕu2(ϕα, xα, T )ν︸ ︷︷ ︸
=D(ϕ,x)u(ϕα,xα,T )[ν,y]

−Dtu1(xα, T )κ(ν, y)−Dtu2(ϕα, xα)κ(ν, y)︸ ︷︷ ︸
−Dtu(ϕα,xα,T )κ(ν,y)

+O(‖ν, y‖
min{2− 1

p
,1+ 1

p
}

Lp×RN ).

Recall that κ(ν, y) = tβ(ϕα, xα) − tβ(ϕα + ν, xα + y) (relation (3.4)). Then the
previous equality becomes

−D(ϕ,x)u(ϕα, xα, T )[ν, y] +O(‖ν, y‖
min{2− 1

p
,1+ 1

p
}

Lp×RN )

= Dtu(ϕα, xα, T )[tβ(ϕα, xα)− tβ(ϕα + ν, xα + y)].
(3.15)

Note that u(ϕα, xα, T ) = Mup(T ) (since (ϕα, xα) generates the periodic solution).
Then
Dtu(ϕα, xα, T ) : R → R is invertible, since dMup(T )

dt
6= 0 (Assumption 2.12). This

means that relation (3.15) implies that

tβ(ϕα + ν, xα + y)

= tβ(ϕα, xα)−
(
Dtu

(
ϕα, xα, T

))−1

D(ϕ,x)u(ϕα, xα, T )[ν, y] +O(‖ν, y‖
min{2− 1

p
,1+ 1

p
}

Lp×RN ).

Taking the linear part of it yields the Fréchet derivative of tβ.

3.3 Properties of the Poincaré and hit maps

In Lemma 3.12 we ensured that Pβ is defined in a neighbourhood of (ϕα, xα). The
next lemma shows that it is also continuous at (ϕα, xα).

Lemma 3.16. The operator Pβ is continuous at (ϕα, xα), i.e., for every ε > 0
there is a δ > 0 such that if

‖ν, y‖Bsp×RN ≤ δ,
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then

(ϕα + ν, xα + y) ∈ Dom(Pβ), (3.16)

and

‖Pβ(ϕα + ν, xα + y)−Pβ(ϕβ, xβ)‖Bsp×RN ≤ ε. (3.17)

Proof. The proof is in terms of Ψ+ from formula (3.2) for Pβ. Choose ε > 0.
Assume without loss of generality that ε < σ.

By Lemma 2.3, the operator Ψ+(ϕα + ν, xα + y, t) : Bsp × RN × R → Bsp × RN

is continuous with respect to t. Hence there exists 0 < δ1 ≤ ε such that if

|t− tβ(ϕα, xα)| ≤ δ1,

then

‖Ψ+(ϕα, xα, t)−Ψ+

(
ϕα, xα, tβ(ϕα, xα)

)
|Bsp×RN ≤

ε

2
. (3.18)

By Lemma 3.12, the operator tβ is continuous in (ϕα, xα). Since the Bsp norm is
embedded in the Lp norm (which is used in Lemma 3.12), there exists δ2 > 0 such
that if

‖ν, y‖Bsp×RN ≤ δ2,

then

|tβ(ϕα + ν, xα + y)− tβ(ϕα, xα)| ≤ δ1.

Combining this with inequality (3.18) implies that

‖Ψ+

(
ϕα, xα, tβ(ϕα + ν, xα + y)

)
−Ψ+

(
ϕα, xα, tβ(ϕα, xα)

)
‖Bsp×RN ≤

ε

2
. (3.19)

Since Ψ+ is continuously dependent on initial for t ∈ (0, T + σ) (Lemma 2.6) and
|tβ(ϕα + ν, xα + y)| < T + σ (since δ1 ≤ ε < σ), there exists δ ≤ δ2 such that if

‖ν, y‖Bsp×RN ≤ δ,

then

‖Ψ+

(
ϕα + ν, xα + y, tβ(ϕα + ν, xα + y)

)
−Ψ+

(
ϕα, xα, tβ(ϕα + ν, xα + y)

)
‖Bsp×RN ≤

ε

2
.

(3.20)

Hence if ‖ν, y‖Bsp×RN ≤ δ then

‖Ψ+

(
ϕα + ν, xα + y, tβ(ϕα + ν, xα + y)

)
−Ψ+

(
ϕα, xα, tβ(ϕα, xα)

)
‖Bsp×RN

≤ ‖Ψ+

(
ϕα + ν, xα + y, tβ(ϕα + ν, xα + y)

)
−Ψ+

(
ϕα, xα, tβ(ϕα + ν, xα + y)

)
‖Bsp×RN︸ ︷︷ ︸

≤ε/2 by inequality (3.20)

+ ‖Ψ+

(
ϕα, xα, tβ(ϕα + ν, xα + y)

)
−Ψ+

(
ϕα, xα, tβ(ϕα, xα)

)
‖Bsp×RN︸ ︷︷ ︸

≤ε/2 by inequality (3.19)

≤ ε

2
+
ε

2
= ε.
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This means that if

‖ν, y‖Bsp×RN ≤ δ,

then

‖Pβ(ϕα + ν, xα + y)−Pβ(ϕα, xα)‖Bsp×RN ≤ ε.

Remark 3.17. If tβ(ϕα + ν, xα + y) > tβ(ϕα, xα), then the proof in Lemma 3.16
can be repeated for every t ∈ [tβ(ϕα, xα), tβ(ϕα + ν, xα + y)].

Hence for every ε > 0 there exists δ > 0 such that if

(ν, y) ≤ δ,

then

‖Ψ+(ϕα + ν, xα + y, t)−Ψ+

(
ϕα, xα, tβ(ϕα, xα)

)
‖Bsp×RN ≤ ε

for every

t ∈ [tβ(ϕα, xα), tβ(ϕα + ν, xα + y)].

This remark is used in the proof of the next lemma.

Lemma 3.18. The periodic solution up is asymptotically stable (or stable or unsta-
ble) if and only if the fixed point (ϕα, xα) of the Poincaré map P is asymptotically
stable (or stable or unstable respectively).

Proof. It is straightforward that if (ϕα, xα) is an unstable fixed point of P, then
up is unstable. It is also clear that if up is stable or asymptotically stable, then
(ϕα, xα) is a stable or asymptotically stable fixed point of P respectively. To finish
the proof we have to show that stability and asymptotically stability of (ϕα, xα)
imply the same for up.

By Lemma 3.16, Pβ and Pα are continuous at (ϕα, xα) and (ϕβ, xβ) respectively.
Remember that Pβ(ϕα, xα) = (ϕβ, xβ). Then the chain rule implies that P is
continuous at (ϕα, xα). Hence, for every ε > 0, there is a δ > 0 such that if

‖ν, y‖Bsp×RN ≤ δ,

then

‖Pβ(ϕα + ν, xα + y)− (ϕβ, xβ)‖Bsp×RN ≤ ε,

‖P(ϕα + ν, xα + y)− (ϕα, xα)‖Bsp×RN ≤ ε.

Choose ε > 0.

For each (ν, y) ∈ Bsp × RN denote by t1(ν, y) and t2(ν, y) the first and second
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switchings of the solution u(ϕα + ν, xα + y; t) (we take (ν, y) small enough such
that two switching times exist).

Step I. We show in this step that for every ε > 0 there is a 0 < δ̄ ≤ ε such
that if

‖ν, y‖Bsp×RN ≤ δ̄,

then

dist((u(ϕα + ν, xα + y; t+ s)|s∈(−2T,0), u(ϕα + ν, xα + y; t)),Γ) ≤ ε, for every 0 ≤ t ≤ t2(ν, y).
(3.21)

For t = 0 the claim follows from the definition of u(ϕα + ν, xα + y; t) and the fact
that ‖ν, y‖Bsp×RN ≤ δ̄ ≤ ε. We focus next on t ∈ (0, t2(ν, y)].

Fix some 0 < γ < σ. Due to the continuity of tα and tβ in Lemma 3.12, there
exists δ1 > 0 such that if

‖ν, y‖Bsp×RN ≤ δ1,

then both t1(ν, y) and t2(ν, y)− t1(ν, y) are less than or equal to T + σ − γ (such
t1 and t2 exist due to the continuity of Pβ and the hit time operators).

By continuous dependence on initial data from Lemma 2.6, there exists δ2 > 0
such if

‖ν, y‖Bsp×RN ≤ δ2,

then

‖Ψ−(ϕβ + ν, xβ + y, t)−Ψ−(ϕβ, xβ, t)‖ ≤ ε for every t ∈ (0, T + σ − γ].

This shows that if t2(ν, y)− t1(ν, y) ≤ tα(ϕβ, xβ), then

dist(Ψ−(ϕβ + ν, xβ + y, t),Γ2) ≤ ε for every t ∈ (0, t2(ν, y)− t1(ν, y)]. (3.22)

Otherwise, use Remark 3.17 to show that there exists δ3 ≤ δ2 such that if

‖ν, y‖Bsp×RN ≤ δ3,

then inequality (3.22) for holds for every t ∈ [tα(ϕα, xα), t2(ν, y)− t1(ν, y)].

Use the same argument on Ψ+. Hence there exists δ4 > 0 such that if

‖ν, y‖Bsp×RN ≤ δ4,

then

dist(Ψ+(ϕα + ν, xα + y; t),Γ1) ≤ ε, for every t ∈ [0, t1(ν, y)].
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Choose δ5 > 0 such that if

‖ν, y‖Bsp×RN ≤ δ5,

then

‖Pβ(ϕα + ν, xα + y)− (ϕβ, xβ)‖Bsp×RN ≤ δ3.

Taking δ̄ = min{δ1, δ4, δ5} shows inequality (3.21).

Step II. Assume, without loss of generality14, that M[xα + y] = α. Denote
t0 := 0 and the return times of P(ϕα + ν, xα + y) to Tα by t2, t4, . . . .

If (ϕα, xα) is a stable fixed point of P, then there exists δ ≤ δ̄ such that if

‖ν, y‖Bsp×RN ≤ δ

then

Pn(ϕα + ν, xα + y) ∈ Dom(P),

‖Pn(ϕα + ν, xα + y)− (ϕα, xα)‖Bsp×RN ≤ δ̄

for all n ∈ N ∪ {0}.

By Step I, for each ti, i = 0, 2, 4, . . . (i is even)

dist(u(ϕα + ν, xα + y; t),Γ) ≤ ε, for every t ∈ [ti, ti+2].

Hence dist(u(ϕα + ν, xα + y; t),Γ) ≤ ε for t ≥ 0.

Now assume that (ϕα, xα) is an asymptotically stable fixed point of P. Choose
arbitrary ε2 < ε and δ̄2 such that Step I holds (with ε2 playing the role of ε there).
Due to asymptotic stability there exists n ∈ Z ∪ {0} such that

‖Pn(ϕα + ν, xα + y)− (ϕα, xα)‖Bsp×RN ≤ δ̄2.

This implies that dist(u(ϕα + ν, xα + y; t),Γ) ≤ ε2 for t ≥ t2n (t2n is the time that
Pn returns to Tα).

Lemma 3.19 (Almost periodicity of perturbed solutions). If (ϕα, xα) is an asymp-
totically stable fixed point of the Poincaré map P, then for every ε > 0 there exists
neighbourhoods Ω1 of Γ1 and Ω2 of Γ2 such that if

(ϕ, x) ∈ Ω1,Mx < β or (ϕ, x) ∈ Ω2,Mx ≥ β,

then

‖u(ϕ, x; t+ 2T )− u(ϕ, x; t)‖RN ≤ ε,

for all t ≥ 0 and

‖u(ϕ, x; t+ 2T )− u(ϕ, x; t)‖RN → 0 as t→∞.
14The proof when M[xα + y] 6= α follows by continuous dependency on initial conditions of

Ψ±(Lemma 2.6) and continuity of Pα and Pβ (Lemma 3.16), using similar methods that were
used in this subsection.
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Proof. Choose ε > 0.

By Theorem 3.18 up is an asymptotically stable periodic solution. Hence we can
choose δ1 such that if ‖ν, y‖Bsp×RN ≤ δ1, then dist((u(ϕ, x; t+s)s∈(−2T,0), u(ϕ, x; t)),Γ) ≤
ε
4

for all t ≥ 0 (where the distance is taken in the Bsp ×RN norm). Using this and
the fact that u satisfies equation 1.4 we can bound the Lp-norm of the derivative
of u for all ‖ν, y‖Bsp×RN ≤ δ1 and every t ≥ 0 in the following way:

‖u′(ϕα + ν, xα + y; t+ ·)‖Lp ≤ ‖k‖Lp + ‖B‖‖u(ϕα + ν, xα + y; t+ ·)‖Lp
+ ‖C‖‖u(ϕα + ν, xα + y; t− 2T + ·)‖Lp ≤ C1,

(3.23)
for some constant C1 > 0, where the last inequality follows from the fact that the
distance of u from Γ is bounded.

Choose δ2 > 0 such that (ϕα, xα) is an asymptotically stable fixed point of P
with δ1 playing the role ε (in Definition 3.9).

For each (ν, y) ∈ Bsp × RN denote by t1(ν, y) and t2(ν, y) the first and second
switchings of the solution u(ϕα + ν, xα + y; t) (we take (ν, y) small enough such
that two switching times exist).

The operator t2(ν, y) is continuous at (ν, y) = (0, 0) since tβ and tα are con-
tinuous at (ϕα, xα) and (ϕβ, xβ) respectively, Pβ is continuous at (ϕα, xα), and
Pβ(ϕα, xα) = (ϕβ, xβ) (see Notation 3.10). Choose δ3 > 0 such that if

‖ν, y‖ ≤ δ3,

then

|t2(ν, y)− 2T | ≤ min{
(

ε

2C1

) p
p−1

,
T

2
}. (3.24)

Let δ := min{δ1, δ2, δ3}. Choose ‖ν, y‖Bsp×RN ≤ δ, and let t1, t2, .. be the switching
times of u(ϕα + ν, xα + y; t) in [0,∞). Assume, without loss of generality (see
Footnote 14), M[xα + y] = α and denote t0 = 0.

Choose an even i ∈ Z ∪ {0}, and let t ∈ [ti, ti+2]. Then

‖u(ϕα + ν, xα + y; t+ 2T )− u(ϕα + ν, xα + y; t)‖RN
≤ ‖u(ϕα + ν, xα + y; t+ ti+2 − ti)− u(ϕα + ν, xα + y; t+ 2T )‖RN︸ ︷︷ ︸

(A)

+ ‖u(ϕα + ν, xα + y; t+ ti+2 − ti)− u(ϕα + ν, xα + y; t)‖RN︸ ︷︷ ︸
(B)

.

To evaluate (A), assume without loss of generality that ti+2 − ti − 2T < 0, then

(A) =

∥∥∥∥∫ 0

ti+2−ti−2T

u′(t+ 2T + r)dr

∥∥∥∥
RN
≤ ‖u′‖L1(ti+2−ti−2T,0)

≤ |ti+2 − ti − 2T |1−
1
p‖u′‖Lp(ti+2−ti−2T,0) ≤ C1|ti+2 − ti − 2T |

p−1
p ≤ ε

2
,
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where the last two inequalities follow relations (3.23) and (3.24).

As for (B) write t as t = ti + s, and note that s < 3T since ti+2 − ti < 3T
by relation (3.24). Recall that i is even, and then

(B) = ‖u(ϕα + ν, xα + y; ti+2 + s)− u(ϕα + ν, xα + y; ti + s)‖RN

= ‖u(P
i
2

+1(ϕα + ν, xα + y); s)− u(P
i
2 (ϕα + ν, xα + y); s)‖RN

≤ ‖u(P
i
2

+1(ϕα + ν, xα + y); s)− u(ϕα, xα; s)‖RN

+ ‖u(P
i
2 (ϕα + ν, xα + y); s)− u(ϕα, xα; s)‖RN

≤ ε

4
+
ε

4
=
ε

2
,

where the inequalities follow from the fact that both ‖P i
2 (ϕα + ν, xα + y) −

(ϕα, xα)‖Bsp×RN and ‖P i
2

+1(ϕα + ν, xα + y)− (ϕα, xα)‖Bsp×RN are less than or equal
to δ1 and up is asymptotically stable. This proves the first claim of the theorem.

Finally, to see the second claim we repeat the proof using the additional two
facts:

1. Since up is asymptotically stable, then if ‖ν, y‖ ≤ δ then for every ε > 0
there exists T1 > 0 such that dist((u(ϕ, x; t + s)s∈(−2T,0), u(ϕ, x; t)),Γ) ≤ ε

4

for all t ≥ T1.

2. The expression |ti+2 − ti − 2T | → 0 as i→∞ since (ϕα, xα) is an asymptot-
ically stable fixed point of P and Lemma 3.12.
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4. Stability analysis of the Poincaré map

In the previous section we showed that stability of a periodic solution follows from
that of the associated fixed point of the Poincaré map P (Lemma 3.18). In this section
and the next one, we analyse the stability of this fixed point.

The ideal way to do that is to show that the stability of P follows from that of its
linearization, i.e., its Fréchet derivative. We calculate this linearization formally15, but
unfortunately do not give a rigorous proof that it is indeed a linearization.

What can be done rigorously is calculating the linearization of three compositions of
the hit maps: PβPαPβ. The reason lays in the fact that though we begin with initial
data in the space Bsp ×RN , for t > 2T the new initial data for a solution belongs to the

space W1
p(−2T, 0)×RN (see Definition 1.5). After three iterations, a big enough portion

of the first component of the initial data is in W1
p so that rigorous linearization can be

achieved.

The main result of this section shows the connection between the spectrum of the formal
linearization of P at a fixed point, and the stability of the fixed point.

The section is organized as follows:

In Section 4.1 we create a projected versions of the Poincaré and hit maps.

In Section 4.2 we calculate, formally, the linearization of the projections of the
hit maps at a fixed point. This formal calculation gives us a candidate for the
linearization to work with in this and the next section.

In Section 4.3 we state the main result: if the spectrum of the formal linearization
is less (greater) than one, then the fixed point is stable (unstable). We prove this
result in the last two subsections.

In Section 4.4 we give a rigorous calculation of the linearization of the projec-
tion of PβPαPβ. Finally, in Section 4.5 we give the proof of the theorem from
Section 4.3.

4.1 Projections

The Poincaré map P was defined in Section 3.1 (Definition 3.7) as acting from the
cross-section Tα to itself. The projection which we introduce in this subsection
reparametrize Tα to be the space Bsp × RN−1.

Notation 4.1. Due to its ubiquity we define the constant

N1 := N − 1. (4.1)

15i.e, using some mathematical tools without checking their validity.
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Projection. Let x = {xj}Nj=1 ∈ RN and w = {wj}N1
j=1 ∈ RN1 . Define the orthogo-

nal projection ER : RN → RN1 as

ERx := {xj+1}N1
j=1.

Define the lift operators Rα : RN1 → {x ∈ RN |Mx = α} ⊂ RN and Rβ : RN1 →
{x ∈ RN |Mx = β} ⊂ RN as

Rαw =

(
α

m0

− 1

m0

N−1∑
j=1

mjwj, {wj}N−1
j=1

)
,

Rβw =

(
β

m0

− 1

m0

N−1∑
j=1

mjwj, {wj}N−1
j=1

)
,

(4.2)

where m0 6= 0 by its definition in Section 1.

The following relations hold by definition for every w ∈ RN1 .

ERRαw = ERRβw = w.

Define a projection on the space Bsp × RN as

E : Bsp × RN → Bsp × RN1 : E[ϕ, x] = (ϕ,ERx). (4.3)

The projections Πα of the hit map Pα and Πβ of Pβ are

Πα : Bsp × RN1 → Bsp × RN1 , Dom(Πα) = {(ϕ,w)|(ϕ,Rαw) ∈ Dom(Pα)},
Πβ : Bsp × RN1 → Bsp × RN1 , Dom(Πβ) = {(ϕ,w)|(ϕ,Rβw) ∈ Dom(Pβ)},

defined as

Πα : Bsp × RN1 → Bsp × RN1 , Πα(ϕ,w) = EPα(ϕ,Rβw),

Πβ : Bsp × RN1 → Bsp × RN1 , Πβ(ϕ,w) = EPβ(ϕ,Rαw).
(4.4)

The projection of the Poincaré map P

Π : Bsp × RN1 → Bsp × RN1 , Dom(Π) = {(ϕ,w)|(ϕ,Rαw) ∈ Dom(P)},

is defined as

Π(ϕ,w) = EP(ϕ,Rαw) or equivalently as Π(ϕ,w) = ΠαΠβ(ϕ,w). (4.5)

Notation 4.2. Denote the projections of xα, xβ from Notation 3.10 to RN1 by

wα = ERxα, wβ = ERxβ, wα, wβ ∈ RN1 .

Remark 4.3. The maps Πα and Πβ are continuous at (ϕα, wα) and (ϕβ, wβ) re-
spectively. This follows from the fact that Pα,Pβ are continuous at these points
(respectively) by Lemma 3.16.

Notation 4.4. Later we compose the projections of the hit maps. It is easier to de-
note such compositions by concatenation of indices; i.e, Παβ(ϕ,w) := ΠαΠβ(ϕ,w),
Πβαβ(ϕ,w) := ΠβΠαΠβ(ϕ,w), et cetera. We use similar notation also for the
composition of the operators hα and hβ later in the section (see Section 4.4).
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4.2 Formal linearization

The Poincaré map is defined in Definition 3.7 as a composition of two hit maps,

P = PαPβ.

If the hit maps had a linearization (a Fréchet derivative), then the composition of
their linearizations would be the linearization of the Poincaré map.

We cannot prove that the hit maps are linearizable (see discussion in Sec-
tion 4.3). But if we assume that they are linearizable, then we can calculate the
linearization formally, i.e, using mathematical tools without worrying whether
this is allowed or not.

It turns out in the main theorem of this section (Theorem 4.18) that the stabil-
ity of the fixed point (ϕα, xα) of P depends on the spectral radius of this “formal”
linearization.

We remind that by relations (3.2) and (2.5) Pβ is written as

Pβ(ϕ, x) =
(
ψ+(ϕ, x, tβ(ϕ, x)),ψ+(ϕ, x, tβ(ϕ, x))(0)

)
,

where the operator

ψ+ : Bsp × RN × R+ → Bsp,

was defined in (2.4) (recall that ψ+(ϕ, x, t)(θ) has an explicit value at θ = 0).
The map Pα is written in a similar way, where ψ− plays the role of ψ+. The
next lemma shows that ψ+ has partial derivatives with respect to (ϕ, x) and t at(
ϕα, xα, tβ(ϕα, xα)

)
.

Lemma 4.5. The operator ψ+ has partial derivatives

D(ϕ,x)ψ+

(
ϕα, xα, tβ(ϕα, xα)

)
: Bsp × RN → Bsp,

Dtψ+

(
ϕα, xα, tβ(ϕα, xα)

)
: R→ Bsp

such that

ψ+

(
ϕα + ν, xα + y, tβ(ϕα, xα)

)
= ψ+

(
ϕα, xα, tβ(ϕα, xα)

)
+D(ϕ,x)ψ+

(
ϕα, xα, tβ(ϕα, xα)

)
[ν, y],

ψ+

(
ϕα, xα, tβ(ϕα, xα)− κ

)
= ψ+

(
ϕα, xα, tβ(ϕα, xα)

)
−Dtψ+

(
ϕα, xα, tβ(ϕα, xα)

)
κ

+O
(
|κ|1−s+

1
p

)
.

(4.6)
These derivatives are given by

D(ϕ,x)ψ+

(
ϕα, xα, tβ(ϕα, xα)

)
[ν, y] =

{
ν(θ + t), θ ∈ [−2T,−T ),∫ θ
−T e

B(s−θ)Aν(s− T )ds+ e−B(θ+T )y, θ ∈ [−T, 0],

Dtψ+

(
ϕα, xα, tβ(ϕα, xα)

)
κ =

{
ϕα′(θ + T )κ, θ ∈ [−2T,−T ),
u′+(ϕα, xα; θ + T )κ, θ ∈ [−T, 0].

(4.7)
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Proof. The result for D(ϕ,x)ψ+ follows from the formula of ψ+ (relation 2.4) and
the fact that ψ+ is affine linear in ϕ and x.

For the t derivative assume for simplicity that κ is positive (this is also the case
on which we focus in later subsections). Recall that tβ(ϕα, xα) = T by Assump-
tion 2.12(2). To prove the claim we show that if Dtψ+ is given by (4.7) then

ψ+(ϕα, xα, T − κ)−ψ+(ϕα, xα, T ) +Dtψ+(ϕα, xα, T )κ = O
(
|κ|1−s+

1
p

)
. (4.8)

We evaluate the Lp norm in Step I.I and the Ws
p(−T − σ, 0) norm in Step I.II.

Step I.I. By relation (4.7) and formula (2.4) for ψ+, the left hand side of re-
lation (4.8) equals{

ϕα(θ + T − κ), θ ∈ [−2T,−T + κ),
u+(ϕα, xα; θ + T − κ), θ ∈ [−T + κ, 0],

−
{
ϕα(θ + T )− ϕα′(θ + T )κ, θ ∈ [−2T,−T ),
u+(ϕα, xα; θ + T )− u′+(ϕα, xα; θ + T )κ, θ ∈ [−T, 0].

Consider ϕα extended in a 2T -periodic way for t ≥ 0 and recall that it is the initial
data for the periodic solution up (Assumption 2.12). Hence:

u+(ϕα, xα; θ) = up(θ) = ϕα(θ) for θ ∈ [0, T ].

Create an extension U(θ) of ψ+(ϕα, xα;T )(θ) to [−3T, T ]:

U(θ) :=

{
ϕα(θ + T ) θ,∈ [−3T, 0),
u+(ϕα, xα; θ + T ), θ ∈ [0, T ].

(4.9)

The restriction of U(θ − κ) to θ ∈ [−2T, 0] equals ψ+(ϕα, xα, T − κ)(θ) since

U(θ − κ)

∣∣∣∣
θ∈[−2T,0]

=

{
ϕα(θ + T − κ), θ ∈ [−3T + κ, κ)
u+(ϕα, xα; θ + T − κ), θ ∈ [κ, T + κ]

∣∣∣∣
θ∈[−2T,0]

= ϕα(θ + T − κ)
∣∣
θ∈[−2T,0]

=

{
ϕα(θ + T − κ), θ ∈ [−2T,−T + κ),
u+(ϕα, xα; θ + T − κ), θ ∈ [−T + κ, 0].

Hence the left hand side of relation (4.8) equals(
U(θ − κ)− U(θ) + κU ′(θ)

)∣∣∣∣
θ∈[−2T,0]

.

Apply Lemma 9.2(2) to U(θ) with Q = [−2T, 0] and Q′ = [−3T, T ], where U
belongs in the spaces W2

p(−2T,−T ) and W2
p(−T, 0) so that

‖U(θ − κ)− U(θ) + κU ′(θ)‖Lp = O(κ1+ 1
p ) = O(‖ν, y‖

1+ 1
p

Lp×RN ). (4.10)
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Step I.II. By Lemma 9.6, the estimate of the Ws
p(−T −σ, 0) norm can be divided

into the intervals [−T − σ,−T ] and [−T, 0].

The W1
p(−T −σ,−T ) estimate is straightforward since U ′(θ) belongs to C∞[−T −

2σ,−T ] by Lemma 2.13.

In the interval [−T, 0] there is a complication: U ′(θ) has a jump at θ = −T :
it is equal to ϕα′(0+)−ϕα′(0−) at this point. Hence U ′ is not W1

p(−T − σ, 0) and
we cannot apply Lemma 9.2 to U ′ (as we did for U in Step I.I). We overcome this
difficulty using an auxiliary function f :

f(θ) :=

{
aθ, θ ∈ [−σ, 0],
0, θ ∈ (0,∞),

(4.11)

where a = ϕα′(0+)− ϕα′(0−).

The function f has two properties which are relevant to us. The first is that

‖f‖Ws
p(−κ,T−κ) is nonlinear16 of order O(κ)1−s+ 1

p by Lemma 9.11. The second is
that if f is added to ϕα, then the jump in the derivative is eliminated. The non-
linearity f is the main reason that we use Ws

p norm and not W1
p.

We add and subtract f from the right hand side of (4.8), and estimate the re-
sult in the interval θ ∈ [−T, 0]. It is less than or equal to

‖ϕα(θ + T − κ)− ϕα(θ + T ) + ϕα′(θ + T )κ+ f(θ + T − κ)‖Ws
p(−T,0)︸ ︷︷ ︸

(i)

+ ‖f(θ + T − κ)‖Ws
p(−T,0)︸ ︷︷ ︸

(ii)

(4.12)

By Lemma 9.11, the term (ii) from relation (4.12) is of order O(|κ|1−s+
1
p ) (as we

already mentioned).

We focus now on term (i). The Ws
p(−T, 0) norm of this term is bounded by

the W1
p(−T, 0) norm. The only difficulty is evaluating the Lp(−T, 0) norm of the

derivative.

The expression ϕα′(θ + T ) + f ′(θ + T ) belongs to the space W1
p(−T − σ, σ) since

the addition of f ′ eliminated the jump in the derivative of ϕβ
′
. This expression

belongs also to the spaces W2
p(−T − σ, 0) and W2

p(0, σ). Hence Lemma 9.2(2) can
be applied on it with Q = (0, T ) and Q′ = (−T − σ, σ).

Before applying Lemma 9.2, let us calculate the weak derivative of ϕα′(θ + T ) +
f ′(θ + T ) in [−T, 0]. The derivatives f ′, f ′′ vanish in [0, T ] (since the derivative is

16Note that 1− s+ 1
p > 1 if and only if ps < 1, which is satisfied by Condition 2.1.
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taken from the right at 0). Hence the weak derivative of ϕα′(θ+ T ) + f ′(θ+ T ) in
[0, T ] equals ϕ′′α. Lemma 9.2(2) yields now that

‖(i)′‖Lp(−T,0) = ‖ϕα′(θ + T − κ) + f ′(θ + T − κ)− ϕα′(θ + T ) + ϕ′′α(θ + t)κ‖Lp(−T,0)

= O(|κ|1+ 1
p ).

A similar proof as in Lemma 4.5 yields the following result.

Lemma 4.6. The operator ψ− has partial derivatives by (ϕ, x) and t at the point(
ϕβ, xβ, tα(ϕβ, xβ)

)
, with their expressions given by

D(ϕ,x)ψ−
(
ϕβ, xβ, tα(ϕβ, xβ)

)
[ν, y]

=

{
ν(θ + t), θ ∈ [−2T,−T ),∫ θ
−T e

B(s−θ)Aν(s− T )ds+ e−B(θ+T )y, θ ∈ [−T, 0],

Dtψ−
(
ϕβ, xβ, tα(ϕβ, xβ)

)
κ

=

{
ϕβ
′
(θ + T )κ, θ ∈ [−2T,−T ),

u′−(ϕβ, xβ; θ + T )κ, θ ∈ [−T, 0].

(4.13)

Finally we comment about the W1
p(−σ, 0) norm of the partial t-derivative of

ψ±. It is used in the proofs of Lemmas 4.29, and 4.30.

Lemma 4.7. The operator Dtψ+ : R → Lp ∩W1
p(−σ, 0) in 4.7 is bounded, and

the following estimate takes place

‖ψ+(ϕα, xα, T − δ)−ψ+(ϕα, xα, T ) +Dtψ+(ϕα, xα, T )δ‖W1
p(−σ,0) = O

(
|δ|2
)
.

A similar estimate takes place for ψ−.

Proof. The proof follows from formula (4.7) and the fact that u+(ϕα, xα; θ) and
u−(ϕβ, xβ; θ) are in the space C∞(0, T ) by Assumption 2.12 and Lemma 2.13.

We next define the linear operator L as the formal linearization of ψ+ at(
ϕα, xα, tβ(ϕα, xα)

)
(or equivalently ofψ− at

(
(ϕβ, xβ), tα(ϕβ, xβ)

)
, see Remark 4.10

below).

Definition 4.8. The formal linearization of ψ+ is a linear operator

L : Bsp × RN → Bsp

defined as

L[ν, y] = Dtψ+

(
ϕα, xα, tβ(ϕα, xα)

)
D(ϕ,x)tβ(ϕα, xα)[ν, y]

+D(ϕ,x)ψ+

(
ϕα, xα, tβ(ϕα, xα)

)
[ν, y],

(4.14)

where D(ϕ,x)tβ(ϕα, xα) is given in Lemma 3.15 and Dtψ+

(
ϕα, xα, tβ(ϕα, xα)

)
and

D(ϕ,x)ψ+

(
ϕα, xα, tβ(ϕα, xα)

)
are given in Lemma 4.5. Note that L is a sum of the

partial derivatives of ψ+ at (ϕα, xα, tβ(ϕα, xα)) (however, since we did not prove
that ψ+ has partial derivatives in a neighbourhood of (ϕα, xα, tβ(ϕα, xα)), it is not
its derivative).
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The proof of the following lemma follows from Definition 4.8 of L, Lemmas 4.5
and 3.15, Lemma 4.6, and Assumption 2.12(4).

Lemma 4.9. The operator L equals

L[ν, y]

=


− ϕα′(θ+T )

M
(
ϕα′(−T−)

) ·M(∫ 0

−T e
BsAν(s− T )ds+ e−BTy

)
+ ν(θ + T ), θ ∈ [−2T,−T ),

− ϕα′(θ−T )

M
(
ϕα′(−T−)

) ·M(∫ 0

−T e
BsAν(s− T )ds+ e−BTy

)
+

+
∫ θ
−T e

B(s−θ)Aν(s− T )ds+ e−B(θ+T )y, θ ∈ [−T, 0].
(4.15)

Remark 4.10. Due to Lemma 4.6 and Assumption 2.12(3) we can define L equiv-
alently as:

L[ν, y] = Dtψ−
(
ϕβ, xβ, tα(ϕβ, xβ)

)
D(ϕ,x)tα(ϕβ, xβ)[ν, y] +D(ϕ,x)ψ−

(
ϕβ, xβ, tα(ϕβ, xβ)

)
[ν, y].

The following result is a direct consequence from the structure of L in for-
mula (4.15) and Lemma 9.5.

Lemma 4.11. The operator L is a bounded linear operator both as a map

L : Lp(−2T, 0)× RN → Lp(−2T, 0) ∩W1
p(−T, 0),

and as a map
L : Bsp(−σ, 0)× RN → Bsp(−T − σ, 0).

Definition 4.12. The formal linearizations of Pβ and Pα via L are an operator
from the space Bsp × RN to itself, given by((

L[ν, y]
)
(θ),

(
L[ν, y]

)
(0)
)
, (4.16)

where L[ν, y] is well-defined at θ = 0 (in the sense of trace) by Lemma 4.11.

Before we define the formal linearization of the projections of the hit maps, we
need to calculate the linearization of the lift operators. The formula for Rα and
Rβ (relation (4.2)) implies that they have the same linearization

DRz := DRαz = DRβz =

(
− 1

m0

N−1∑
j=1

mjzj, {zj}N−1
j=1

)
, (4.17)

where z ∈ RN1 .

Motivation 4.13. Definition 4.14, follows the following calculation.

LΠ[ν, z] = DΠβ(ϕα, wα)[ν, z] = D(EPα(ϕ,Rβw)) = ED(Pα(ϕ,ERRβw))

= E(Dψ+(ϕ,ERRβw), Dψ+(ϕ,ERRβw)(0)) =
(
L[ν,DRz],ERL[ν,DRz](0)

)
.
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Definition 4.14. Denote the formal linearization Πα at (ϕβ,ERxβ) and Πβ at
(ϕα,ERxα) by LΠ. The chain rule and relation (4.16) imply (see Remark 4.13)
that it should be defined as

LΠ : Bsp × RN1 → Bsp × RN1 ,

LΠ[ν, z] :=
(
L[ν,DRz],ERL[ν,DRz](0)

)
.

(4.18)

The following result is a direct consequence from Lemma 4.11 and formula (4.18).

Lemma 4.15. The operator LΠ is a bounded linear operator both as a map

LΠ : Lp(−2T, 0)× RN1 →
(
Lp(−2T, 0) ∩W1

p(−T, 0)
)
× RN1 ,

and as a map

LΠ : Bsp(−σ, 0)× RN1 → Bsp(−T − σ, 0)× RN1 .

We denote the norms of these linear operators in their respective spaces by ‖LΠ‖(1)

and ‖LΠ‖(2).

4.3 Theorem: stability of the Poincaré map

The following condition is valid throughout the rest of the chapter. It is an addition
to Condition 2.1 (namely, ps < 1).

Condition 4.16. The constants p, s satisfy the following condition:

1 < p < 2,
1

p
+ s > 1. (4.19)

Remark 4.17. Condition 4.16 comes up while looking for spaces in which the prob-
lem is rigorously linearizable. See Lemmas 4.29 and 4.30.

Conditions 2.1 and 4.19 are equivalent to

0 < s < 1 and 1 < p < min

{
1

s
,

1

1− s

}
.

Hence for every choice of 0 < s < 1 there exists p such that s and p satisfy these
conditions.

We state now the main result of the section: stability of the Poincaré map.

Theorem 4.18. Let Conditions 2.1 and 4.16 hold. If the spectral radius r(LΠ) is
such that

r(LΠ) < 1, (4.20)

then (ϕα, xα) is an asymptotically stable fixed point of the Poincaré map P = Pαβ.
If

r(LΠ) > 1, (4.21)

then (ϕα, xα) is an unstable fixed point of the Poincaré map.
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The proof is given at the end of the section. It combines results which are
proved in the next subsections.

Discussion 4.19. The technical settings in this paper can look strange without an
explanation. They are mostly dictated by the proof of Theorem 4.18, so now is a
good point to discuss them. The interesting questions are:

1. Why do we use the space Ws
p (in the definition of Bsp)?

2. Why do we need the constant σ (also in the definition of Bsp)?

3. Why do we differentiate three iterations of the hit maps (in Theorem 4.20
below)?

If the reader understands the choices, then going through the proofs in this section
becomes a much easier task.

Section 4.2 shows that the main ingredient of the formal linearization of the
hit map is the operator L, which is the formal linearization of the operator ψ+.
For the brevity of this discussion we ignore for the moment the argument x (so
everything depends only on ϕ). Denote a perturbation of ϕα by ν, and recall that
tβ(ϕα) = T . The resulting perturbation of tβ is then tβ(ϕα + ν) = T − κ for
κ = O(‖ν‖Lp) by Lemma 3.12. Assume for the moment κ > 0 (this is the case
where difficulties are encountered).

If L was the Fréchet derivative of ψ+, then we would have

‖ψ+(ϕα + ν, T − κ)−ψ+(ϕα, T )− Lν‖ = o(‖ν‖) (4.22)

for an appropriate norm (same on both sides). We will answer questions 1–3 by
trying to prove (4.22).

If we examine the expressions for ψ+ (given by (2.4)) and L (given by (4.15)),
we see that both operators are defined in a piecewise way. One can see the main
difficulties looking first at the interval θ ∈ (−2T,−T ). On this interval, the ex-
pression in the norm in the left hand side of (4.22) contains, in particular, the
term

B(θ) := ν(θ + T − κ)− ν(θ + T ), θ ∈ (−2T,−T ).

Space for ν. Due to Definition 1.5 of a solution, the first natural choice would
be ν ∈ Lp. However, without additional regularity of ν, (B) is not o

(
‖ν‖Lp

)
.

Another option is a Sobolev space. Since the arguments of the functions in (B)
are at least −T −κ, then if we choose a small σ > 0, and ν ∈ Lp ∩W1

p(−T − σ, 0),
then for all 0 < κ < σ

‖B‖Lp(−2T,−T ) ≤ Const‖ν‖W1
p(−T−σ,0)κ = O

(
‖ν‖2

Lp∩W1
p(−T−σ,0)

)
, (4.23)

where the last inequality follows from Lemma 3.12. To get the same norm on
both sides in (4.22), we now have to estimate, in particular, ‖B‖W1

p(−T−σ,−T ). This
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cannot be done directly without extra regularity of ν, but iterations of the Poincaré
map help to gain regularity (see discussion below).

However, the Fréchet derivative of ψ+(ϕ, tβ(ϕ)) at ϕα would then involve the
Fréchet derivative with respect to time of the function ψ+(ϕα, ·) : R → Lp ∩
W1

p(−T − σ, 0). To show its differentiability at t = T , we would have to estimate
the W1

p(−T − σ, 0) norm of

up(θ + T − δ)− up(θ + T ) + u′p(θ + T )δ, θ ∈ (−T − σ, 0), (4.24)

where up is the periodic solution. But the function in (4.24) does not belong to
W1

p(−T −σ, 0) because u′p(θ+T ) in general has a jump at θ = −T . This difficulty
cannot be solve by iterating the Poincaré map. The remedy is to take Ws

p(−T−σ, 0)
instead of W1

p(−T −σ, 0), see the proof of Lemma 4.5 and specifically the usage of
the auxiliary function f there. Estimate (4.23) still holds for ν ∈ Lp×Ws

p(−T−σ, 0)
due to Besov’s inequality (Lemma 9.3)

‖B‖Lp(−2T,−T ) ≤ Const‖ν‖Ws
p(−T−σ,0)κ

s ≤ Const‖ν‖Ws
p(−T−σ,0)‖ν‖sLp . (4.25)

However, to estimate ‖B‖Ws
p(−T−σ,−T ), the iteration is still needed.

Iterations. First consider two iterations of the hit maps: PαPβ (in the proof
we iterate the reparametriztions of the hit maps, Πα and Πβ, but for this discussion
the hit maps themselves will do). Denote the new perturbation for Pα by ν1 (we
still omit the argument x):

ν1 := Pβ(ϕα + ν)−Pβ(ϕα) = ψ+(ϕα + ν, T − κ)− ϕβ.

Set κ1 := tα(ϕβ) − tα(ϕβ + ν1) = T − tα(ϕβ + ν1), and assume that κ1 > 0 (this
is again the most difficult case). We need to estimate the term equivalent to B(θ)
for two iterations, in the Ws

p(−T − σ,−T ) norm, i.e.,

‖ν1(θ + T − κ1)− ν1(θ + T )‖Ws
p(−T−σ,−T ).

We pass to the W1
p(−T − σ,−T ) norm, and try to estimate

‖ν ′1(θ + T − κ1)− ν ′1(θ + T )‖Lp(−T−σ,−T ). (4.26)

We note that ν1 satisfies a delay differential equation (given in (4.41) further on).
Examining this delay differential equation shows that (4.26) includes ‖ν(· − κ1)−
ν‖Lp(−T−σ−κ,−T ). If ν belonged to Ws

p(−T − 2σ,−T ), then an estimate similar
to (4.25) would work. But ν belongs only to Ws

p(−T − σ,−T ).
However, when we take three iterations and define κ2 (> 0 to be definite)

similarly to κ1, we end up with ‖ν(·−κ2)−ν‖Lp(−σ−κ1−κ,0) (see (4.41) and (4.42)).
Since ν ∈Ws

p(−T − σ, 0), this is estimated analogously to (4.25).

4.4 Linearization of a composition of three projections of
the hit map

“The above argument is somewhat long, but each step consists in proving a rather
simple inequality” - Timothy Gowers (The Princeton companion to mathematics)
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In this subsection we find the linearization of Πβαβ = ΠβΠαΠβ. Our candidate
for the linearization is L3

Π, where LΠ is given in Definition 4.14. While LΠ was
never proved to be the linearization of Πα or Πβ, we do prove in this section that
L3

Π is the linearization of Πβαβ.

The main result of the section is Theorem 4.20. To state this theorem, we de-
fine the operators hΠ

β ,h
Π
α : Bsp × RN1 → Bsp × RN1 as

Πβ(ϕα + ν, wα + z) = Πβ(ϕα, wα) + LΠ[ν, z] + hΠ
β (ν, z),

Πα(ϕβ + ν, wβ + z) = Πα(ϕβ, wβ) + LΠ[ν, z] + hΠ
α (ν, z),

(4.27)

where Πβ,Πα are defined in (4.4) and LΠ in (4.18).

Recall PB
β from the definition of Pβ in relation (3.1), and define the operator

hβ : Bsp × RN → Bsp as

hβ(ν,DRz) := PB
β(ϕα + ν, xα +DRz)−PB

β(ϕα, xα)− L[ν,DRz]. (4.28)

Then relations (4.4) (for Πβ), (4.18) (for LΠ), (4.17) (for Rα), (4.27) and (4.28)
imply that the term hΠ

β (or hΠ
α , see Remark 3.11) can be written17 as

hΠ
β (ν, z) = (hβ(ν,DRz),ERhβ(ν,DRz)(0)). (4.29)

Theorem 4.20. The map

Πβαβ = (ΠB
βαβ,Π

R
βαβ) : Bsp × RN1 → Bsp × RN1 , (4.30)

is Fréchet differentiable (i.e., linearizable) at (ϕα, xα). Its derivative equals (LΠ)3.
In particular Πβαβ can be written as

Πβαβ(ϕα + ν, wα + z) = Πβαβ(ϕα, wα) + (LΠ)3[ν, z] + hΠ
βαβ(ν, z). (4.31)

Here

1. LΠ is a linear bounded operator defined in equation (4.18), with L given
by (4.14) or equivalently by (4.15),

2. hΠ
βαβ : Bsp × RN1 → Bsp × RN1 is a nonlinear term of order O(‖ν, z‖γBsp×RN1

),

where γ = min{2− 1
p
, 1
p

+ s, 1− s+ 1
p
}.

Note that γ > 1 due to Conditions 4.16 and 2.1.

17The evaluation of hβ is at DRz since Rα is affine linear, and hence Rα(wα + z) = Rαw
α +

DRz = xα +DRz.
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Proof of Theorem 4.20. By Lemma 3.16, the hit maps are continuous at (ϕα, xα).
Hence, without further mention, we assume that (ν, z) is sufficiently small such
that the solution u(ϕα + ν,ER[wα + z]; t) has at least three switchings in (0,∞).18

Part I. Calculating the nonlinear part hΠ
βαβ(ν, z).

We express hΠ
βαβ (from relation (4.31)) in terms of L,hΠ

β and hΠ
α . This follows

from the next (long but simple) calculation. It repeatedly uses representations
(4.27) for19 Πα and Πβ:

Πβαβ(ϕα + ν, wα + z)−Πβαβ(ϕα, wα)

= LΠ [Παβ(ϕα + ν, wα + z)−Παβ(ϕα, wα)]︸ ︷︷ ︸
(1)

+ hΠ
β

 =:(ν2,z2)︷ ︸︸ ︷
Παβ(ϕα + ν, wα + z)−Παβ(ϕα, wα)


︸ ︷︷ ︸

(2)

.

(4.32)

Expand (1) in order to extract the term (LΠ)3 (the candidate for the Fréchet
derivative) from it:

(1)

= LΠ

[
LΠ

[
Πβ(ϕα + ν, wα + z)−Πβ(ϕα, wα)

]
+ hΠ

α

(
Πβ(ϕα + ν, wα + z)

−Πβ(ϕα, wα)
)]

= LΠ

[
LΠ

[
LΠ[ν, z] + hβ(ν, z)

]
+ hΠ

α

(
Πβ(ϕα + ν, wα + z)−Πβ(ϕα, wα)

)]
= (LΠ)3[ν, z] + LΠ

[
LΠhΠ

β (ν, z) + hΠ
α

( =:(ν1,z1)︷ ︸︸ ︷
Πβ(ϕα + ν, wα + z)−Πβ(ϕα, wα)

)]
︸ ︷︷ ︸

(3)

.

(4.33)
To make those “monstrous” expressions more readable, we define:

(ν1, z1) := Πβ(ϕα + ν, wα + z)−Πβ(ϕα, wα) (for (3) in equation (4.33)),

(ν2, z2) := Παβ(ϕα + ν, wα + z)−Παβ(ϕα, wα) (for (2) in equation (4.32)).
(4.34)

The nonlinear part, hΠ
βαβ(ν, z), is (2) in equation (4.32) plus (3) from the last line

in (4.33). Using the notation above, it can be written as

hΠ
βαβ(ν, z) = LΠ

[
LΠhΠ

β (ν, z) + hΠ
α (ν1, z1)

]
+ hΠ

β (ν2, z2). (4.35)

18The existence of such (ν, z) follows from the fact that Pβ ,Pα are continuous at (ϕα, xα) by
Lemma 3.16, and hence the composition of PαPβPα is continuous as well.

19In the usage of representation (4.27), we look at expressions of the kind of Πβαβ(ϕα+ν, wα+
z) as
Πβ(Παβ(ϕα, wα) + Παβ(ϕα + ν, wα + z)−Παβ(ϕα, wα)).

70



To prove the lemma we need to show that equation (4.35) is of order γ in the
Bsp(−T − σ, 0)× RN1 norm20. Apply this norm on the previous equation, and use
the triangle inequality.

‖hΠ
βαβ(ν, z)‖Bsp×RN1 =

∥∥LΠ

[
LΠhΠ

β (ν, z) + hΠ
α (ν1, z1)

]
+ hΠ

β (ν2, z2)
∥∥
Bsp×RN1

≤
∥∥LΠ

[
LΠhΠ

β (ν, z) + hΠ
α (ν1, z1)

]∥∥
Bsp×RN1

+
∥∥hΠ

β (ν2, z2)
∥∥
Bsp×RN1

.

By Lemma 4.15, LΠ : Bsp(−σ, 0)×RN1 → Bsp(−T − σ, 0)×RN1 is bounded. Using
the norm ‖ · ‖(1) from this lemma on the first term on the right hand side yields∥∥LΠ

[
LΠhΠ

β (ν, z) + hΠ
α (ν1, z1)

]
+ hΠ

β (ν2, z2)
∥∥
Bsp(−T−σ,0)×RN1

≤ ‖LΠ‖(2)

∥∥LΠhΠ
β (ν, z) + hΠ

α (ν1, z1)
∥∥
Bsp(−σ,0)×RN1

+
∥∥hΠ

β (ν2, z2)
∥∥
Bsp(−T−σ,0)×RN1

≤ ‖LΠ‖(2)

∥∥LΠhΠ
β (ν, z)

∥∥
Bsp(−σ,0)×RN1

+ ‖LΠ‖(2)

∥∥hΠ
α (ν1, z1)

∥∥
Bsp(−σ,0)×RN1

+
∥∥hΠ

β (ν2, z2)
∥∥
Bsp(−T−σ,0)×RN1

.

Use Lemma 4.15 again, this time with the property LΠ : Lp(−2T, 0) × RN1 →
Bsp(−σ, 0)× RN1 and the ‖ · ‖(2) norm.∥∥LΠ

[
LΠhΠ

β (ν, z) + hΠ
α (ν1, z1)

]
+ hΠ

β (ν2, z2)
∥∥
Bsp(−T−σ,0)×RN1

≤ ‖LΠ‖(2) ‖LΠ‖(1)

∥∥hΠ
β (ν, z)

∥∥
Lp(−2T,0)×RN1

+ ‖LΠ‖(2)

∥∥hΠ
α (ν1, z1)

∥∥
Bsp(−σ,0)×RN1

+
∥∥hΠ

β (ν2, z2)
∥∥
Bsp(−T−σ,0)×RN1

≤ Const
( ∥∥hΠ

β (ν, z)
∥∥
Lp(−2T,0)×RN1︸ ︷︷ ︸
(1)

+ ‖hα(ν1, z1)‖W1
p(−σ,0)︸ ︷︷ ︸

(2)

+ ‖hβ(ν2, z2)‖Bsp(−T−σ,0)∩W1
p(−σ,0)︸ ︷︷ ︸

(3)

)
.

(4.36)
Lemmas 4.28-4.30 show that the right hand side of (4.36) is O(‖ν, z‖γBsp×RN1

) and

conclude the proof.
Part II. A proof that equation (4.36) is O(‖ν, z‖γBsp×RN1

)

Part II.I: Preliminaries for the estimate

Notation 4.21. Denote
y := DRz,

y1 := DRz1,

y2 := DRz2.

(4.37)

Notation 4.22. Using the previous notation, Notation 4.2 (for wα, wβ), and the
fact that Rα,Rβ from relation (4.2) are affine linear operators, the following liftings

20In Section 2.1 we abbreviate Bsp = Bsp(−T − σ, 0). We sometimes omit this abbreviation in
the proof for clarity; The norm Bsp is being evaluated in different intervals in the same equation,
and it may be confusing if only one of those intervals is abbreviated.
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to Tα and Tβ satisfy

Rα(wα + z) = Rα(wα)︸ ︷︷ ︸
xα

+DRz = xα + y,

Rβ(wβ + z1) = Rβ(wβ)︸ ︷︷ ︸
xβ

+DRz1 = xβ + y1,

Rα(wα + z2) = Rα(wα)︸ ︷︷ ︸
xα

+DRz2 = xα + y2,

Notation 4.23. The methods for estimating hΠ
βαβ differ slightly for different

switching times. We give a proof here only for the case where the first three
switching times are less than T , i.e.

tβ(ϕα + ν, xα + y) = T − κ,
tα(ϕβ + ν1, x

β + y1) = T − κ1,

tβ(ϕα + ν2, x
α + y2) = T − κ2,

(4.38)

where

κ, κ1, κ2 > 0.

This case is the hardest, as it leaves the “largest chunk” of history corresponding
to the perturbed initial data to deal with in the analysis.

Using this notation, ν1, ν2 (defined in equation (4.34)) can be written as21

ν1(θ) =


ν(θ + T − κ) + ϕα(θ + T − κ)− ϕα(θ + T ), θ ∈ [−2T,−T ],
ν(θ + T − κ) + ϕα(θ + T − κ)− u+(ϕα, xα; θ + T )︸ ︷︷ ︸

=ϕα(θ−T )

, θ ∈ (−T,−T + κ],

u+(ϕα + ν, xα + y; θ + T − κ)− u+(ϕα, xα; θ + T ), θ ∈ (−T + κ, 0],

(4.39)

and

ν2(θ) =



ν1(θ + T − κ1) + ϕβ(θ + T − κ1)− ϕβ(θ + T ), θ ∈ [−2T,−T ],
ν1(θ + T − κ1) + ϕβ(θ + T − κ1)− u−(ϕβ, xβ; θ + T )︸ ︷︷ ︸

=ϕβ(θ−T )

, θ ∈ [−T,−T + κ1),

u−(ϕβ + ν1, xβ + y1︸ ︷︷ ︸
=Rβ(wβ+z1)

; θ + T − κ1)− u−(ϕβ, xβ; θ + T )︸ ︷︷ ︸
=ϕβ(θ−T )

, θ ∈ [−T + κ1, 0].

(4.40)

21Note that ν1, ν2 were defined in relation (4.34) as the Bsp components of Πβ ,Πα. Those
components are the same as in Pβ ,Pα (see the definition in equation (4.4)). The maps Pβ ,Pα

are defined via ψ+,ψ− (see the definition in equation (2.4)), and the formulas for ν1, ν2 are
calculated by ψ+,ψ−.
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Since u+ satisfies equations (1.8)–(1.10), it follows that ν1(θ) satisfies, for θ ∈
(−T + κ, 0), the following equation:

ν̇1(θ) = −Bν1(θ) + Aν1(θ − 2T ), θ ∈ (−T + κ, 0),

ν1(θ) = ν(θ + T − κ) + ϕα(θ + T − κ)− ϕα(θ + T )︸ ︷︷ ︸
=up(θ) for θ≥−T

, θ ∈ [−3T + κ,−T + κ],

ν1(−T + κ+ 0) = xα + y − ϕα(−2T + κ).
(4.41)

In the same manner, ν2(θ) satisfies, for θ ∈ [−T + κ1, 0], the equation

ν̇2(θ) = −Bν2(θ) + Aν2(θ − 2T ), θ ∈ (−T + κ1, 0),

ν2(θ) = ν1(θ + T − κ1) + ϕβ(θ + T − κ1)

− ϕβ(θ + T )︸ ︷︷ ︸
=up(T+θ) for θ≥−T

, θ ∈ [−3T + κ1,−T + κ1],

ν2(−T + κ+ 0) = xβ + y1 − ϕβ(−2T + κ1).

(4.42)

Remark 4.24. Without further mention we assume in the rest of the proof that
(ν, z) is small enough such that κ+κ1 +κ2 < σ and σ+κ+κ1 +κ2 < T (remember
that σ is in the definition of Bsp in Section 2.1).

The next (very) technical lemma establishes a number of estimates on ν1, ν2

and the different κ’s. For clarity, we note next to each estimate at least one place
in which it is used.

Recall from Notation 4.23 that we study the case of κ, κ1, κ2 > 0. If some of
them are negative, then some adjustments to the estimates in the following lemma
are needed, specifically, some intervals will be splitted differently (e.g., estimate
(7)).

Recall also that according to Lemma 9.6 it is possible to divide an estimate in
the W1

p norm into two intervals, as long as each of the intervals is bounded from
bellow (i.e., the length of the intervals cannot depend on κ, since κ goes to zero
as ‖ν, y‖Bsp×Rn does).

Lemma 4.25. The following estimates take place with constants independent of
κ, κ1, κ2.

(1) ‖ν1‖Lp(−2T,0) ≤ Const‖ν, y‖Lp×RN . Used in Step II of Lemma 4.29.

(2) ‖ν1‖W1
p(−T+κ,0) ≤ Const‖ν, y‖Lp×RN . Used in Lemma 4.29 to estimate the

Lp(−2T, 0) norm.

(3) ‖ν1‖Ws
p(−2T+κ,−T ) ≤ Const‖ν, y‖Bsp×RN . Used in Step II of Lemma 4.29.

(4) ‖ν1‖Ws
p(−2T,0) ≤ Const‖ν, y‖

1
p

Bsp×RN
. Used in Lemma 4.29 to show the Lp(−2T, 0)

estimate.

(5) ‖ν2‖Lp(−2T,0) ≤ Const‖ν, y‖Lp×RN . Used in Step II of Lemma 4.30.
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(6) ‖ν2‖W1
p(−T+κ1,0) ≤ Const‖ν, y‖Lp×RN . Used in Step II of Lemma 4.30, inter-

val (2).

(7) ‖ν2‖Ws
p(−T−σ,−T+κ1) ≤ Const‖ν, y‖

1
p

Lp×RN . Used in Lemma 4.30 to estimate

the Lp(−2T, 0) norm.

(8) ‖ν2‖Ws
p(−2T,−T ) ≤ Const‖ν, y‖

1
p

Bsp×RN
. Used in Step II of Lemma 4.30, interval

(3).

(9) ‖y1‖, ‖y2‖ ≤ Const‖ν, y‖Lp×RN .

(10) κ, κ1, κ2 ≤ Const‖ν, y‖Lp×RN .

Proof. Estimate (10) for κ is a direct consequence of Lemma 3.12 on locally Lips-
chitz continuity of the hit operator for (ν, y) small enough (in the Bsp×RN norm).
We mention it here, since it is used to prove estimates (1)–(3).

(1) Relation (4.39) is a piecewise expression for ν1. We estimate each interval
separately.

• θ ∈ (−2T,−T ): The initial data ϕα is in the space W1
p(−2T, 0) (since

ϕα(θ − 2T ) = up(θ) for θ ∈ [0, 2T ]), and belongs to C∞[−2T,−T ] and
C∞[−T, 0] (Lemma 2.13). We use this and estimate (10) for κ to bound
the expression given by equation (4.39):

‖ν1‖Lp(−2T,−T ) = ‖ν(·+ T − κ) + ϕα(·+ T − κ)− ϕα(·+ T )‖Lp(−2T,−T )

≤ ‖ν‖Lp(−T−κ,−κ) +

∥∥∥∥∫ T

T−κ
ϕα′(·+ s)ds

∥∥∥∥
Lp(−2T,−T )︸ ︷︷ ︸

≤Constκ‖ϕα′‖L∞(−2T,0)

≤ Const‖ν, y‖Lp×RN .

.

• θ ∈ (−T,−T + κ): By Assumption 2.12, u+(ϕα, xα; θ+T ) equals up(θ+
T ). If we extend ϕα in a 2T -periodic way, then u+(ϕα, xα; θ + T ) =
ϕα(θ + T ) for θ ≥ −T (since up is a 2T -periodic solution). This makes
relation (4.39) very similar to the previous interval:

‖ν1‖Lp(−T,−T+κ) =
∥∥ν(·+ T − κ) + ϕα(·+ T − κ)

− u+(ϕα, xα; ·+ T )
∥∥
Lp(−T,−T+κ)

= ‖ν(·+ T − κ) + ϕα(·+ T − κ)− ϕα(·+ T )‖Lp(−T,−T+κ)

≤ ‖ν‖Lp(−κ,0) +

∥∥∥∥∫ T

T−κ
ϕα′(θ + s)ds

∥∥∥∥
Lp(−T,−T+κ)

≤ Const ‖ν, y‖Lp×RN ,

where the constant is independent of κ (since we didn’t use the length
of the interval).
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• θ ∈ (−T + κ, 0). By relation (4.39) for ν1 and integral representa-
tion (1.14) for u+

‖ν1‖Lp(−T+κ,0) = ‖u+(ϕα + ν, xα + y; ·+ T − κ)− u+(ϕα, xα; ·+ T )‖Lp(−T+κ,0)

≤ Const‖ν, y‖Lp×RN ,

where the last equality follows from the fact that u+ is Lipschitz con-
tinuous in all variables22 and estimate (10) for κ.

(2) The Lp(−T + κ, 0) norm was already estimated in (1). It is sufficient to
estimate the norm of the weak derivative. By equation (4.41) for ν ′1 and its
initial condition

‖ν ′1‖Lp(−T+κ,0) = ‖−Bν1(·) + Aν1(· − 2T )‖Lp(−T+κ,0)

=
∥∥−Bν1(·) + A

[
ν(· − T − κ)

+ ϕα(· − T − κ)− ϕα(· − T )
]∥∥

Lp(−T+κ,0)

≤ ‖B‖‖ν1‖Lp(−T+κ,0)

+ ‖A‖
(
‖ν‖Lp(−2T,−T−κ) + ‖

∫ −T
−T−κ

ϕα′(·+ s)ds‖Lp(−T+κ,0)

)
= Const

(
‖ν1‖Lp(−T+κ,0) + ‖ν‖Lp(−2T,−T−κ) + κ

)
≤ Const‖ν, y‖Lp×RN ,

where the last inequality follows from estimates (1) and (10) in this lemma.
Note that even though the length of the interval depends on κ (and hence
on ν), the final estimate is independent of κ.

(3) The curly brackets in the next equations show to which interval the argument
of a function belongs to. We use curly brackets in a similar way in the rest

22The only somehow difficult part in the calculations may be the term

‖
∫ θ+T

0
e−B(s−θ−T )Aν(s − 2T )ds‖Lp(−T+κ,0). This is done by writing the definition of the

Lp norm. By Lemma 9.9

(∫ 0

−T+κ

∥∥∥∥∥
∫ θ+T

0

e−B(s−θ−T )Aν(s− 2T )ds

∥∥∥∥∥
p

RN
dθ

) 1
p

≤ Const

(∫ 0

−T+κ

(∫ T

0

‖ν(s− 2T )‖RN ds

)p
dθ

) 1
p

≤ Const
(∫ 0

−T+κ

‖ν‖pLp(−2T,0)dθ

) 1
p

≤ Const‖ν‖Lp(−2T,0).
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of this chapter. By relation (4.39)

‖ν1‖Ws
p(−2T+κ,−T ) = ‖ν(·+ T − κ) + ϕα(·+ T − κ)− ϕα(·+ T )‖Ws

p(−2T+κ,−T )

≤ Const
(
‖ν(·)‖Ws

p(−T,−κ) + ‖ϕα (· − κ)︸ ︷︷ ︸
∈[−T,−κ]

− ϕα (·)︸︷︷︸
∈[−T+κ,0]

‖W1
p(−T+κ,0)

)
≤ Const

(
‖ν‖Ws

p(−T,−κ) + κ‖ϕα′‖C(−T,0)

)
≤ Const‖ν, y‖Bsp×RN ,

where we used estimate (10) and the mean value theorem since ϕα is C∞[−T, 0]
(Lemma 2.13). Note that even though the length of the interval depends on
κ (and hence on ν), the final estimate is independent of κ.

(4) The Lp(−2T, 0) norm was already estimated in (1), the Ws
p(−T + κ, 0) in

(2) (it is bounded by the W1
p(−T + κ, 0) norm), and the Ws

p(−2T + κ,−T )
norms in (3).

We are left with estimating the Ws
p(−2T,−2T + σ),Ws

p(−T − σ,−T + κ)
norms23.

• (−2T,−2T + σ): By relation (4.39)24.

‖ν1‖Ws
p(−2T,−2T+σ) = ‖ν(θ + T − κ) + ϕα(θ + T − κ)− ϕα(θ + T )‖Ws

p(−2T,−2T+σ)

≤ Const
(
‖ν‖Ws

p(−T−κ,−T ) + ‖ϕα(θ − κ)− ϕα(θ)‖W1
p(−T,−T+σ)

)
≤ Const

(
‖ν‖Ws

p(−T−κ,−T )+

+ ‖ϕα(θ − κ)− ϕα(θ)‖W1
p(−T,−T+κ)

+ ‖ϕα(θ − κ)− ϕα(θ)‖W1
p(−T+κ,−T+σ)

)
.

The first term is obviously bounded by ‖ν, y‖Bsp×RN , and the third term

is bounded in the same way as in estimate (3). However, this method
does not work for the second term, since ϕα has a jump in the derivative
at T . We bound it as follows.

‖ϕα(θ − κ)− ϕα(θ)‖W1
p(−T,−T+κ) ≤ Const

(
‖ϕα(θ − κ)− ϕα(θ)‖Lp(−T,−T+κ)

+ ‖ϕα′(θ − κ)− ϕα′(θ)‖Lp(−T,−T+κ)

)
≤ 2κ

1
p (‖ϕα‖L∞(−2T,0) + ‖ϕα′‖L∞(−2T,0)),

where the last inequality follows Jensen’s inequality, the fact that ϕα′

is bounded by Assumption 2.12(3), and estimate (10) from this lemma.

23Actually, we need to estimate the Ws
p(−2T,−2T + κ),Ws

p(−T,−T + κ) norms. But since
Ws
p norm cannot be divided to subintervals which are arbitrarily close to zero (in this case, as κ

goes to zero.), we replace κ by σ to have a finite size of the interval, and then we can decompose
by Lemma 9.6 into intervals which are bounded away from zero.

24Note that ν is indeed in Ws
p in the regions in the calculations, since κ < σ, and ν ∈

Ws
p(−T − σ, 0) by definition of the space Bsp.
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• (−T − σ,−T + κ): By Assumption 2.12, u+(ϕα, xα; θ+T ) equals up(θ+
T ). If we extend ϕα in a 2T -periodic way, then u+(ϕα, xα; θ + T ) =
ϕα(θ + T ) for θ ≥ −T (since up is a 2T -periodic solution). Then by
relation (4.39)

‖ν1‖Ws
p(−T−σ,−T+κ) = ‖ν(·+ T − κ) + ϕα(·+ T − κ)

− ϕα(·+ T )‖Ws
p(−T−σ,−T+κ)

≤ ‖ν(·+ T − κ)‖Ws
p(−T−σ,−T+κ)

+ ‖ϕα(·+ T − κ)− ϕα(·+ T )‖W1
p(−T−σ,−T )

+ ‖ϕα(·+ T − κ)− ϕα(·+ T )‖W1
p(−T,−T+κ).

The ν term is bounded naturally, the first ϕα term is bounded in the
same way as in estimate (3), and the second ϕα term is bounded in the
same way as in the interval (−2T,−2T + σ).

For estimates (5)–(8), we need estimate (9) for y1 and estimate (10) for κ1. For
the first one, we use Sobolev’s inequality.

‖y1‖RN =‖ν1(0)‖RN ≤ Const‖ν1‖W1
p(−T+κ,0) ≤ Const‖ν, y‖Lp×RN ,

where the last inequality is by estimate (2) in this lemma. Estimate (10) for κ1

holds by the definition of κ1 in (4.38), Lemma 3.12 on locally Lipschitz continuity
of the hit operator and estimate (1) in this lemma.

(5) Using a similar proof as in (1), with obvious replacements of κ by κ1, and α
by β, and estimate (10) for κ1, yields

‖ν2‖Lp(−2T,0) ≤ ‖ν1, y1‖Lp(−2T,0)×RN ≤ ‖ν, y‖Lp(−2T,0)×RN ,

where the last inequality follows estimates (1) and (9) in this lemma.

(6) Using a similar proof as in (2), with the same adjustments as in (5).

(7) θ ∈ (−T − σ,−T + κ1): Extend ϕβ in a 2T -periodic way (as we did for ϕα

in estimate (1)). By equation (4.40) for ν2:

‖ν2‖Ws
p(−T−σ,−T+κ1) = ‖ν1(·+ T − κ1) + ϕβ(·+ T − κ1)

− ϕβ(·+ T )‖Ws
p(−T−σ,−T+κ1)

≤ ‖ν1‖Ws
p(−σ−κ1,0) + ‖ϕβ(· − κ1)− ϕβ(·)‖Ws

p(−σ,κ1)

≤ ‖ν1‖Ws
p(−σ−κ1,0) + Const‖ϕβ(· − κ1)− ϕβ(·)‖W1

p(−σ,0)+

+ Const‖ϕβ(· − κ1)− ϕβ(·)‖W1
p(0,κ1),

where the last inequality is obtained by the triangle inequality and the fact
that ϕβ is W1

p. The function ν1 was already bounded in estimate (2). The
second term (with the W1

p(−σ, 0) norm) is bounded as in estimate (3) in this
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lemma. For the last two terms use the triangle inequality to bound each of
the functions separately.

‖ϕβ‖W1
p(−κ1,0) = ‖ϕβ‖Lp(−κ1,0) + ‖ϕβ ′‖Lp(−κ1,0)

≤ κ
1
p

1 (‖ϕβ‖L∞(−2T,0) + ‖ϕβ ′‖L∞(−2T,0)) ≤ Const‖ν, y‖
1
p

Bsp×RN
.

Evaluate ‖ϕβ‖Ws
p(0,κ1) in the same way.

(8) θ ∈ (−2T,−T ): By equation (4.40) for ν2, the triangle inequality, and the

fact that W1
p is embedded in Ws

p

‖ν2‖Ws
p(−2T,−T ) =

∥∥ν1(θ + T − κ1) + ϕβ(θ + T − κ1)− ϕβ(θ + T )
∥∥
Ws
p(−2T,−T )

≤ ‖ν1(·)‖Ws
p(−T−κ1,−κ1) + Const‖ϕβ(· − κ1)− ϕβ(·)‖W1

p(−T,−T+κ1)

+ ‖ϕβ(· − κ1)− ϕβ(·)‖W1
p(−T+κ1,0).

The norm of ‖ν1‖ was bounded in estimate (4), and the second term (involv-
ing ϕβ) is bounded as in the proof of (7). The third term (also involving ϕβ)
is estimated by Const‖ϕβ‖W2

p(0,T )κ1 followed by estimate (10) for κ1.

(9) y1 was already bounded after (4). We bound y2 in exactly the same way,
using estimate (6).

(10) This was shown for κ before the proof of (1), and for κ1 before the proof
of (4). For κ2 the inequality holds due to estimate (5) in this lemma and
Lemma 3.12.

We need two final remarks before estimating hΠ
βαβ. They show that the esti-

mates of hα,hβ can be divided into two complementary parts.

Remark 4.26. The operator hβ (equation (4.28)) is defined via PB
β (the first com-

ponent of Pβ, see equation (3.1)) and L (Definition (4.8)).
The operator PB

β(ϕ, x) is defined as ψ+(ϕ, x, tβ(ϕ, x)) (Remark 3.6). The op-
erator ψ+ is affine linear in (ϕ, x) by relation (2.4). Hence it can be written as

ψ+(ϕα + ν, xα + y, tβ(ϕα + ν, xα + y)) = ψ+(ϕα, xα, tβ(ϕα + ν, xα + y))︸ ︷︷ ︸
ψ

(A)
+

+D(ϕ,x)ψ+(ϕα, xα, tβ(ϕα + ν, xα + y))[ν, y]︸ ︷︷ ︸
ψ

(B)
+

.

(4.43)
In a similar way, formula (4.14) shows that the operator L can also be written as
a sum of two terms:

L[ν, y] = Dtψ+(ϕα, xα, tβ(ϕα, xα))
(
D(ϕ,x)tβ(ϕα, xα)

)
[ν, y]︸ ︷︷ ︸

L(A)

+D(ϕ,x)ψ+(ϕα, xα, T )[ν, y]︸ ︷︷ ︸
L(B)

.

(4.44)
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Remark 4.27. Define the following operators using the notation from Remark 4.26:

h
(A)
β (ν, y) := ψ

(A)
+ −ψ+(ϕα, xα, T )− L(A),

h
(B)
β (ν, y) := ψ

(B)
+ − L(B).

(4.45)

Then hβ (equation (4.28)) can be written as

hβ(ν, y) = h
(A)
β (ν, y) + h

(B)
β (ν, y). (4.46)

Similarly we could write

hΠ
β (ν, y) = h

Π,(A)
β (ν, y) + h

Π,(B)
β (ν, y). (4.47)

Part II.II: Estimating hΠ
βαβ (equation (4.36))

We estimate in Lemmas 4.28, 4.29 and 4.30 the (1), (2), (3) terms in equation (4.36)
respectively. We show that each of those estimates is of order higher than or equal
to γ (and at least the estimate in Lemma 4.30 is of order γ). This proves Theo-
rem 4.20.

In what follows we use frequently estimates (1), (4), (7) and (8) from Lemma 4.25.

‖ν1‖Lp(−2T,0), ‖ν2‖Lp(−2T,0), ‖y1‖RN , ‖y2‖RN , κ, κ1, κ2 ≤ Const‖ν, y‖Lp(−2T,0)×RN .

These oft-used inequalities will be repeatedly applied in the sequel without further
mention.

We remind the reader that Lp = Lp(−2T, 0) (Section 1.3), and Bsp = Bsp(−T −σ, 0)
(Section 2.1).

Lemma 4.28 (corresponds to (1) in equation (4.36)). The operator hΠ
β (equa-

tion (4.29)) satisfies

‖hΠ
β (ν, z)‖Lp×RN = O

(
‖ν, z‖

min{2− 1
p
,1+ 1

p
,1+s}

Bsp×RN1

)
,

where (ν, z) ∈ Bsp × RN1.

Proof. Following Remark 4.27, we carry out the calculations in two steps.

Step I. h
Π,(A)
β . It is enough to bound ‖h(A)

β (ν,DRz)‖Lp∩W1
p(−σ,0). Let y := DRz

(as in equation (4.37)). We carry out the estimate in terms of y. This will imply
the estimate in z, since ‖y‖RN ≤ ‖DR‖‖z‖RN1 due to (4.37).

Adding and subtracting Dtψ+(ϕα, xα, tβ(ϕα, xα))κ to h
(A)
β yields

h
(A)
β (ν, y) = ψ+(ϕα, xα, tβ(ϕα + ν, xα + y))−ψ+(ϕα, xα, tβ(ϕα, xα)) +Dtψ+(ϕα, xα, tβ(ϕα, xα))κ︸ ︷︷ ︸

(I)

−Dtψ+(ϕα, xα, tβ(ϕα, xα))κ−Dtψ+(ϕα, xα, tβ(ϕα, xα))
(
D(ϕ,x)tβ(ϕα, xα)

)
[ν, y]︸ ︷︷ ︸

(II)

,
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where κ = T − tβ(ϕα + ν, xα + y) (see Notation 4.23). The estimate for (I) fol-
lows once noticing that in the proof of Lemma 4.5, in (4.10), the Lp estimate is

O
(
|κ|1+ 1

p

)
, and using Lemmas 4.7 and 4.25(10).

Write (II) using the distributive law:

(II) = Dtψ+(ϕα, xα, tβ(ϕα, xα))
[
− κ−D(ϕ,x)tβ(ϕα, xα)[ν, y]

]
.

The operator Dtψ+ : R → Lp ∩W1
p(−σ, 0) is linear and bounded by Lemma 4.7.

The absolute value of the term inside the brackets isO(‖ν, y‖
min{2− 1

p
,1+ 1

p
}

Lp×RN ) (Lemma 3.15),

which implies that (II) is of the same magnitude.

Step II. h
Π,(B)
β . We estimate the Lp and the RN1 norms of ‖hΠ

β (ν, z)‖Lp×RN1 sepa-

rately. To estimate the Lp norm, we estimate ‖hΠ
β (ν,DRz)‖Lp . Write h

(B)
β (equa-

tion (4.45)) using tβ(ϕα, xα) = T , tβ(ϕα + ν, xα + y) = T − κ and the expression
for ψ+ from equation (2.4).

h
(B)
β (ν, y)(θ) =

{
ν(θ + T − κ), θ ∈ [−2T,−T + κ),

e−B(θ+T−κ)y +
∫ θ+T−κ

0
eB(s−θ−T+κ)Aν(s− 2T )ds, θ ∈ [−T + κ, 0],

−
{
ν(θ + T ), θ ∈ [−2T,−T ),

e−B(θ+T )y +
∫ θ+T

0
eB(s−θ−T )Aν(s− 2T )ds, θ ∈ [−T, 0].

(4.48)
Define

ρ(θ) := e−Bθy +

∫ θ

0

eB(s−θ)Aν(s− 2T )ds. (4.49)

Then

h
(B)
β (ν, y)(θ) =

{
ν(θ + T − κ), θ ∈ [−2T,−T + κ),
ρ(θ + T − κ), θ ∈ [−T + κ, 0],

−
{
ν(θ + T ), θ ∈ [−2T,−T ),
ρ(θ + T ), θ ∈ [−T, 0].

(4.50)

The function ρ satisfies the equation

ρ′(θ) = −Bρ+ Aν(θ − 2T ), θ > 0, (4.51)

ρ(0) = y. (4.52)

The previous equation and the definition of ρ (relation (4.49)) imply that

‖ρ′‖Lp(0,T ), ‖ρ‖Lp(0,T ) ≤ Const(‖ν, y‖Lp×RN ). (4.53)

Since W1
p(−T, 0) is embedded in Ws

p(−T, 0), then

‖ρ‖Ws
p(0,T ) ≤ Const‖ρ‖W1

p(0,T ) ≤ Const(‖ν, y‖Lp(−2T,0)×RN ). (4.54)

We divide the interval [−2T, 0] into three non-intersecting intervals and estimate

the Lp norm of h
(B)
β in each of those intervals.
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(1) θ ∈ [−2T,−T ]: By equation (4.50)

‖h(B)
β (ν, y)‖Lp(−2T,−T ) = ‖ν(θ + T − κ)− ν(θ + T )‖Lp(−2T,−T )

= ‖ν(θ − κ)− ν(θ)‖Lp(−T,0).

The function ν is Ws
p in this interval since −T −κ > −T −σ (Remark 4.24).

Then Besov’s inequality (Lemma 9.3) shows that

‖h(B)
β (ν, y)‖Lp(−2T,−T ) ≤ κs‖ν‖Ws

p(−T−σ,0) ≤ Const‖ν, y‖1+s
Bsp×RN

. (4.55)

(2) θ ∈ [−T,−T + κ]: By equation (4.50)

‖h(B)
β (ν, y)‖Lp(−T,−T+κ) = ‖ν(θ + T − κ)− ρ(θ + T )‖Lp(−T,−T+κ)

= ‖ν(θ − κ)− ρ(θ)‖Lp(0,κ).

Each function is in Ws
p(−T,−T + κ). The space Ws

p(−σ, 0) is continuously
embedded in the space L p

1−sp
(−σ, 0) [13, Theorem 6.5] and hence

‖ν(θ − κ)‖Lp(0,κ) ≤ κ
1
p
− 1−sp

p ‖ν‖L p
1−sp

(−κ,0) ≤ κ
1
p
− 1−sp

p ‖ν‖L p
1−sp

(−σ,0)

≤ κs‖ν‖Ws
p(−σ,0) ≤ ‖ν, y‖1+s

Bsp×RN
.

(4.56)

The estimate for ρ is similar.

(3) θ ∈ [−T + κ, 0]: By equation (4.50)

‖h(B)
β (ν, y)‖Lp(−T+κ,0) = ‖ρ(θ + T − κ)− ρ(θ + T )‖Lp(−T+κ,0).

Then ρ is in W1
p(−T, 0) (4.53). The estimate is identical to region (1), by

additionally applying equation (4.54).

The RN1 norm is bounded by Const‖h(B)
β (ν, y)(0)‖RN . We note that by 4.48

‖h(B)
β (ν, y)(0)‖RN =

∥∥∥e−B(T−κ)y +

∫ T−κ

0

eB(s−(T−κ))Aν(s− 2T ) ds− e−BT y

+

∫ T

0

eB(s−T )Aν(s− 2T ) ds
∥∥∥
RN

≤
∥∥e−BT (eBκ − I

)∥∥ ‖y‖RN +

∫ T−κ

0

∥∥∥eB(s−T )
∥∥∥ ∥∥eBκ − I

∥∥ ‖Aν(s− 2T )‖RN ds

+

∫ T

T−κ

∥∥∥eB(s−T )
∥∥∥ ‖Aν(s− 2T )‖RN ds.

(4.57)

It is easy to see that the first term in the right hand side of (4.57) isO
(
‖ν, y‖2

Bsp×RN

)
.

The second term in the right hand side of (4.57) is estimated as∫ T−κ

0

∥∥eB(s−T )
∥∥∥∥eBκ − I

∥∥ ‖Aν(s− 2T )‖RN ds ≤ Const

∫ T

0

|κ| ‖ν(s− 2T )‖RN ds

≤ Const|κ|‖ν‖L p
1−sp
≤ Const|κ|‖ν‖Ws

p

= O
(
‖ν, y‖2

Bsp×RN

)
.
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The third term in the right hand side of (4.57) is estimated as∫ T

T−κ

∥∥eB(s−T )
∥∥ ‖Aν(s− 2T )‖RN ds ≤ Const

∫ T

T−κ
‖ν(S − 2T )‖RN ds

≤ Constκ1− 1−sp
p ‖ν‖L p

1−sp
≤ Constκ1− 1−sp

p ‖ν‖Ws
p

= O

(
‖ν, y‖

2− 1−sp
p

Bsp×RN

)
= O

(
‖ν, y‖min{2− 1

p
, 1
p

+s}
)

Lemma 4.29 (corresponds to (2) in equation (4.36)). The operator hα (equa-
tion (4.28)) satisfies

‖hα(ν1, DRz1)‖Lp∩W1
p(−σ,0) = O

(
‖ν, z‖

min{2− 1
p
, 1
p

+s}
Bsp×RN1

)
, (4.58)

where (ν1, z1) ∈ Bsp × RN1 are defined in (4.34).

Proof. As in the previous lemma we carry out the calculations in terms of y :=
DRz and y1 := DRz1 (defined in (4.37)). The final estimate is in terms of y. This
implies the estimate in z, since ‖y‖RN ≤ ‖DR‖‖z‖RN1 due to (4.37).

For the Lp norm estimate, repeat the proof of Lemma 4.28, with (ν1, z1) ∈ Bsp×RN1

instead of (ν, z) and κ1 instead of κ. Use the following estimates (Lemma 4.25(1),(4)):

‖ν1‖Lp ≤ Const‖ν, y‖
1
p

Lp×RN ,

‖ν1‖W1
p(−T,0) ≤ Const‖ν, y‖

1
p

Bsp×RN
.

This changes the final estimate in relation (4.55) in Step II(1), where the last
inequality changes to

κs1‖ν1‖Ws
p(−T−σ,0) ≤ ‖ν, y‖

1
p

+s

Lp×RN ,

and in relation (4.56) in Step II(2), where the last inequality changes to

κs1‖ν1‖Ws
p(−σ,0) ≤ ‖ν, y‖

1
p

+s

Lp×RN .

Hence the Lp norm estimate becomes

‖hα(ν1, DRz1)‖Lp = O

(
‖ν, z‖

min{2− 1
p
, 1
p

+s}
Bsp×RN1

)
.

This is still of nonlinear magnitude since 1
p

+ s > 1 (Condition 2.1). Note that
the terms in the “minimum” are slightly different than in Lemma 4.28, since
1
p

+ s < 1 + 1
p
, 1 + s.

To complete the proof, the norm of W1
p(−σ, 0) needs to be estimated. To do
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so, we need to estimate the weak derivative in the interval (−σ, 0).

Following Remark 4.27, we carry out the calculations in two steps.

Step I. h
(A)
α . The estimate follows under similar arguments as in Step I in Lemma 4.28

with additional usage of Lemmas 4.7 and 4.25(1),(9),(10).

Step II. h
(B)
α . Write h

(B)
β (ν1, y1) (equation (4.45)) for θ ∈ [−σ, 0], using tβ(ϕα, xα) =

T , tβ(ϕα+ν, xα+y) = T−κ1 and the expression for ψ− from equation (2.4) (recall
Remark 3.11).

h(B)
α (ν1, y1) =e−B(θ+T−κ1)y1 +

∫ θ+T−κ1

0

eB(s−θ−T+κ1)Aν1(s− 2T )ds−

− e−B(θ+T )y1 −
∫ θ+T

0

eB(s−θ−T )Aν1(s− 2T )ds.

Define

ρ1(θ) := e−Bθy1 +

∫ θ

0

eB(s−θ)Aν1(s− 2T )ds, θ > 0. (4.59)

Then

h(B)
α (ν, y) = ρ1(θ + T − κ1)− ρ1(θ + T ). (4.60)

The function ρ1(θ) satisfies the equation

ρ′1(θ) = −Bρ1(θ) + Aν1(θ − 2T ), θ > 0. (4.61)

The definition of ρ1 (relation (4.59)) shows that it belongs to the space W1
p(T −

2σ, T ). We estimate its norm

‖ρ1‖Lp(T−2σ,T ) ≤ Const‖y1‖RN +

(∫ T

T−2σ

∥∥∥∥∫ θ

0

eB(s−θ)Aν1(s− 2T )ds

∥∥∥∥p
RN
dθ

) 1
p

.

The second term in the preceding equation is less than or equal to

Const

(∫ T

T−2σ

(∫ θ

0

‖ν1(s− 2T )‖RNds
)p

dθ

) 1
p

≤ Const

(∫ T

T−2σ

‖ν1‖pLp(−2T,−T )

) 1
p

≤ Const‖ν1‖Lp(−2T,−T ).

By the previous two inequalities and the equation for ρ′ (equation (4.61))

‖ρ1‖Lp(T−2σ,T ) ≤ Const(‖y1‖RN + ‖ν1‖Lp(−2T,−T )) ≤ Const(‖ν, y‖Lp×RN ),

‖ρ′1‖Lp(T−2σ,T ) ≤ ‖B‖‖ρ1‖Lp(T−2σ,T ) + ‖A‖‖ν1‖Lp(−T−2σ,−T ) ≤ Const(‖ν, y‖Lp×RN ).
(4.62)
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By relation (4.60)

‖h(B)′

β (ν1, y1)‖Lp(−σ,0) = ‖ρ′1(θ + T − κ1)− ρ′1(θ + T )‖Lp(−σ,0)

=

∥∥∥∥−B
[
ρ1(θ + T − κ1)− ρ1(θ + T )

]
+ A

[
ν1(θ − T − κ1︸ ︷︷ ︸
∈[−T−σ−κ1,−T−κ1]

)− ν1(θ − T )︸ ︷︷ ︸
∈[−T−σ,−T ]

]∥∥∥∥
Lp(−σ,0)

,

where the last estimate follows from equation (4.61).
The terms involving ν1 and ρ1 are estimated, as in Step II,(1) in the previous

lemma, by Lemma 9.3(1).
The term involving ν1 is estimated as follows (recall that σ ≤ T

3
by its definition

in Section 2.1).

‖A
[
ν1(θ − κ1 − T )− ν1(θ − T )

]
‖Lp(−σ,0) ≤ κs1‖A‖‖ν1‖Ws

p(−T−2σ,−T ) ≤ Const‖ν, y‖1+s
Bsp×RN

,

where the last inequality follows from Lemma 4.25(3).

The term involving ρ1 is estimated as follows.∥∥−B
[
ρ1(θ + T − κ1)− ρ1(θ + T )

]∥∥
Lp(−σ,0)

≤ κs1‖B‖‖ρ1‖Ws
p(T−2σ,T ) ≤ Const‖ν, y‖1+s

Lp×RN ,

where the last inequality follows equation (4.62).

Lemma 4.30 (corresponds to (3) in equation (4.36)). The operator hβ (equa-
tion (4.28)) satisfies

‖hβ(ν2, DRz2)‖Bsp(−T−σ,0) = O

(
‖ν, z‖

min{2− 1
p
, 1
p

+s,1−s+ 1
p
}

Bsp×RN1

)
, (4.63)

and

‖hβ(ν2, DRz2)‖W1
p(−σ,0) = O

(
‖ν, z‖

min{2− 1
p
, 1
p

+s,1−s+ 1
p
}

Bsp×RN1

)
, (4.64)

where (ν2, z2) ∈ Bsp × RN1 are defined in equation (4.34).

Proof. As in the previous lemma we carry out the calculations in terms of y :=
DRz, y1 := DRz1 and y2 := DRz2 (defined in relation (4.37)). The final estimate
is in terms of y. This implies the estimate in z, since ‖y‖RN ≤ ‖DR‖‖z‖RN1 .

The Lp(−2T, 0) norm estimate is similar to that in the previous lemma since
(ν2, z2) ∈ Bsp × RN (here we use Lemma 4.25(6), (7) and (8)). Hence

‖hβ(ν2, DRz2)‖Lp(−2T,0) = O(‖ν, z‖
min{2− 1

p
, 1
p

+s}
Bsp×RN1

).

To complete the proof, the norm of Ws
p(−T − σ, 0) needs to be estimated.
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Following Remark 4.27, we carry out the calculations in two steps.

Step I. h
(A)
β . Estimate (4.63) follows under similar arguments as in Step I in

Lemma 4.28 with additional usage of Lemma 4.25(5),(9),(10) and Lemma 4.7 for
estimate (4.64).

Step II. h
(B)
β . We estimate the Ws

p(−T −σ, 0) norm via the W1
p(−T −σ, 0) norm.

Write h
(B)
β (ν2, y2) (relation (4.45)) for θ ∈ [−T − σ, 0], using tβ(ϕα, xα) = T (As-

sumption 2.12), tβ(ϕα + ν, xα + y) = T − κ2 (relation (4.38)) and the expression
for ψ+ from formula (2.4) (cf. (4.48)):

h
(B)
β (ν2, y2)

=

{
ν2(θ + T − κ2), θ ∈ [−2T,−T + κ2),

e−B(θ+T−κ2)y2 +
∫ θ+T−κ2

0
eB(s−θ−T+κ2)Aν2(s− 2T )ds, θ ∈ [−T + κ2, 0],

−
{
ν2(θ + T ), θ ∈ [−2T,−T ),

e−B(θ+T )y2 +
∫ θ+T

0
eB(s−θ−T )Aν2(s− 2T )ds, θ ∈ [−T, 0].

(4.65)
Define (cf. (4.49))

ρ2(θ) := e−Bθy2 +

∫ θ

0

eB(s−θ)Aν2(s− 2T )ds. (4.66)

Then (cf. (4.50))

h(B)
α (ν2, y2) =

{
ν2(θ + T − κ2), θ ∈ [−2T,−T + κ2),
ρ2(θ + T − κ2), θ ∈ [−T + κ2, 0],

−
{
ν2(θ + T ), θ ∈ [−2T,−T ),
ρ2(θ + T ), θ ∈ [−T, 0].

(4.67)

The function ρ2 satisfies the equation

ρ′2(θ) = −Bρ2(θ) + Aν2(θ − 2T ), θ > 0. (4.68)

The previous equation and the definition of ρ2 show that ρ2 ∈ W1
p(0, T ) and

satisfies (use Lemma 4.25(5), (9))

‖ρ2‖Lp(0,T ) ≤ ‖ν, y‖Lp×RN ,
‖ρ′2‖Lp(0,T ) ≤ ‖ν, y‖Lp×RN .

(4.69)

The previous equation and the definition of ν2 yield that h
(B)
α (ν2, y2) ∈W1

p(−T −
σ, 0) (by relation (4.65), Lemma 4.25(6) and ν2(0) = y2 by (4.34), (4.37) and (4.40)).

By (4.69)

‖ρ2‖W1
p(0,T ) ≤ Const(‖ν, y‖Lp×RN ). (4.70)

We divide the interval [−2T, 0] into three non-intersecting intervals, and estimate

the Lp norm of h
(B)′

β in each of those intervals. This gives an estimate of the

Lp(−T − σ, 0) of h
(B)′

β .
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(1) θ ∈ [−T − σ,−T ]: By relation (4.65),

‖h(B)′

α (ν2, y2)‖Lp(−T−σ,−T ) = ‖ν ′2(θ + T − κ2)− ν ′2(θ + T )‖Lp(−T−σ,−T )

= ‖ν ′2(θ − κ2)− ν ′2(θ)‖Lp(−σ,0)

= ‖ −B[ν2(θ − κ2)− ν2(θ)]

+ A[ν2(θ − 2T − κ2)︸ ︷︷ ︸
[−2T−σ−κ2,−2T−κ2]

− ν2(θ − 2T )︸ ︷︷ ︸
[−2T−σ,−2T ]

]‖Lp(−σ,0),

where the last equality is given by equation (4.42) (for derivative of ν2) since
σ ≤ T

3
by its definition (see Section 2.1). The last line in the previous relation

equals by relation (4.42) (initial conditions of ν2) to:∥∥∥∥−B
[
ν2(θ − κ2)− ν2(θ)

]
+

+ A
[
ϕβ(θ − κ1 − κ2 − T )︸ ︷︷ ︸
[−T−σ−κ1−κ2,−T−κ1−κ2]

−ϕβ(θ − κ1 − T )︸ ︷︷ ︸
[−T−κ1−σ,−T−κ1]

−ϕβ(θ − κ2 − T )︸ ︷︷ ︸
[−T−σ−κ2,−T−κ2]

+ϕβ(θ − T )︸ ︷︷ ︸
[−T−σ,−T ]

+

+ ν1(θ − κ1 − κ2 − T )︸ ︷︷ ︸
[−T−σ−κ1−κ2,−T−κ1−κ2]

− ν1(θ − κ1 − T )︸ ︷︷ ︸
[−T−σ−κ1,−T−κ1]

]∥∥∥∥
Lp(−σ,0)

.

The ν2 terms are bounded by Besov’s inequality (Lemma 9.3).

‖ −B
[
ν2(θ − κ2)− ν2(θ)

]
‖Lp(−σ,0) ≤ Constκs‖ν2‖Ws

p(−2σ,0) ≤ Const‖ν, y‖1+s
Lp×RN ,

where the last inequality follows from Lemma 4.25(6) once noticing that
−T + κ1 < −2σ since σ ≤ T

3
by its definition (see Section 2.1).

The ϕβ terms can be written as (since their argument is between [−2T,−T ])∫ 0

−κ1

∫ 0

−κ2
ϕβ
′′
(θ − T + s+ r)dsdr.

Hence∥∥∥∥∫ 0

−κ1

∫ 0

−κ2
ϕβ
′′
(θ − T + s+ r)dsdr

∥∥∥∥
Lp(−σ,0)

≤ Constκ1κ2 ≤ Const‖ν, y‖2
Lp×RN .

The ν1 terms are bounded by Besov’s inequality (Lemma 9.3) and Lemma 4.25,
(3):

‖ν1(θ − κ1 − κ2 − T )− ν1(θ − κ2 − T )‖Lp(−σ,0) ≤ κs1‖ν1‖Ws
p(−T−κ2−σ,−T−κ2)

≤ Const‖ν, y‖1+s
Bsp×RN

.

(2) θ ∈ [−T,−T + κ2]: By equation (4.67).

‖h′(B)
α (ν2, y2)‖Lp(−T,−T+κ2) = ‖ν ′2(θ + T − κ2)− ρ′(θ + T )‖Lp(−T,−T+κ2)

= ‖ν ′2(θ − κ2)− ρ′2(θ)‖Lp(0,κ2)

= ‖ −Bν2(θ − κ2) + Bρ2(θ)

+ A
[
ν2(θ − 2T − κ2)− ν2(θ − 2T )

]
‖Lp(0,κ2),

(4.71)
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where the last equality follows from equation (4.42) (derivative of ν2), and
equation (4.68) (derivative of ρ2).

The first two terms in the last line of the previous equation are bounded
in the same way as in interval (2) in Step II in Lemma 4.28. The term
involving ν2 is bounded as follows:

‖ −Bν2(θ − κ2)‖Lp[0,κ2] ≤ Constκ
1
p

2 ‖ν2(θ − κ2)‖W1
p[0,κ2] ≤ Const‖ν, y‖

1+ 1
p

Lp×RN ,

where the last inequality follows from Lemma 4.25(6), (10). The term in-
volving ρ2 is bounded as follows:

‖ρ2‖Lp[0,κ2] ≤ Constκ
1
p

2 ‖ρ2‖W1
p[0,κ2] ≤ Const‖ν, y‖

1+ 1
p

Lp×RN ,

where the last inequality follows from inequality (4.69).

For the last two terms in the last line in equation (4.71) we write∥∥A[ν2(· − 2T − κ2)− ν2(· − 2T )]
∥∥
Lp(0,κ2)

≤ Const
(
‖ν2‖Lp(−2T−κ2,−2T )︸ ︷︷ ︸

(I)

+ ‖ν2‖Lp(−2T,−2T+κ2)︸ ︷︷ ︸
(II)

)
. (4.72)

We bound (I) in (4.72) in a similar method as in (4.56) in Lemma 4.28,
using (4.42) and Lemma 4.25(3),(10).

(I) ≤ ‖ν1‖Lp(−T−κ1−κ2,−T−κ2) + ‖ϕβ(θ − T − κ1)− ϕβ(θ − T )‖Lp(−κ2,0)

≤ Const
(
κs2‖ν1‖Ws

p(−T−σ,−T ) + κs2‖ϕβ(θ − T − κ1)− ϕβ(θ − T )‖W1
p(−σ,0)

)
≤ Const

(
κs2‖ν1‖Ws

p(−T−σ,−T ) + κs2κ1‖ϕβ(θ − T )‖W2
p(−T,0)

)
≤ Const‖ν, y‖1+s

Lp×RN .

We bound (II) in (4.72) using Lemma 9.3 and Lemma 4.25(8),(10).

(II) ≤ κs2‖ν2‖Ws
p(−2T,−2T+σ) ≤ Const‖ν, y‖

s+ 1
p

Lp×RN .

(3) θ ∈ [−T + κ2, 0]: By equation (4.67) and equation (4.68).

‖h′(B)
α (ν2, y2)‖Lp(−T+κ2,0) = ‖ρ′2(θ + T − κ2)− ρ′2(θ + T )‖Lp(−T+κ2,0)

= ‖ρ′2(θ − κ2)− ρ′2(θ)‖Lp(κ2,T )

=

∥∥∥∥∥−B

[
ρ2(θ − κ2)− ρ2(θ)

)
+ A

[
ν2(θ − 2T − κ2)− ν2(θ − 2T )

]∥∥∥∥∥
Lp(κ2,T )

≤ ‖B
(
ρ2(θ − κ2)− ρ2(θ)

]
‖Lp(κ2,T )

+ ‖A
[
ν2(θ − 2T − κ2︸ ︷︷ ︸
∈[−2T,−T−κ2]

)− ν2(θ − 2T )︸ ︷︷ ︸
∈[−2T+κ2,−T ]

]
‖Lp(κ2,T ).
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Estimate both terms in the preceding equation by Besov’s inequality (Lemma 9.3).
The first term is estimated as

‖ −B
[
ρ2(θ − κ2)− ρ2(θ)

]
‖Lp(κ2,T ) ≤ ‖B‖κs2‖ρ2‖W s

p (0,T ) ≤ Const‖ν, y‖1+s
Lp×RN ,

where the last inequality follows from equation (4.70).

The second term is estimated as

‖A
[
ν2(θ − 2T − κ2)− ν2(θ − 2T )

]
‖Lp(κ2,T ) ≤ Constκs2‖ν2‖Ws

p(−2T,−T )

≤ Const‖ν, y‖
1
p

+s

Bsp×RN
,

where the last inequality follows Lemma 4.25(8).

We note that estimate (3) in Step II proves relation (4.64).

(end of the proof of Theorem 4.20)

4.5 Proof of Theorem 4.18

We first show that (ϕα, wα) is an asymptotically stable point of the operator Πβαβ

(in a sense defined in the following lemma).

Lemma 4.31. If the spectral radius r(LΠ) of LΠ (see (4.18)) satisfies

r(LΠ) < 1,

then (ϕα, wα) is an asymptotically stable point of Πβαβ in the sense that there is
some δ > 0 and some constants E > 0, C with (r(LΠ))3 < C < 1 such that if
(ν, z) ∈ Bsp × RN1 satisfies

‖ν, z‖Bsp×RN1 ≤ δ,

then25 for every odd n ∈ Z, n ≥ 1,∥∥∥∥∥
(

Πβαβ ◦Παβα

)n−1
2

Πβαβ(ϕα + ν, wα + z)− (ϕβ, wβ)

∥∥∥∥∥
Bsp×RN1

≤ ECn‖ν, z‖Bsp×RN1 ,

(4.73)

and for every even n ∈ Z, n ≥ 2,∥∥∥∥∥
(

Παβα ◦Πβαβ

)n
2

(ϕα + ν, wα + z)− (ϕα, wα)

∥∥∥∥∥
Bsp×RN1

≤ ECn‖ν, z‖Bsp×RN1 .

(4.74)

25The cumbersome technical phrasing of the result basically says that the chains of the type
ΠβαβΠαβαΠβαβ . . . et cetera are stable.
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The same result is true also for Παβα.

Proof. We prove the result only for Πβαβ (see Remark 3.11).
By Lemma 9.8, there exists an equivalent norm ‖·‖∗Bsp×RN1

such that ‖LΠ‖∗ < 1

and
‖ν, z‖Bsp×RN1 ≤ ‖ν, z‖∗Bsp×RN1

for every (ν, z) ∈ Bsp ×RN1 . It is straightforward that

if the result is true for ‖ ·‖∗, then it is also true for ‖ ·‖. Hence we assume, without
loss of generality26, that ‖LΠ‖ < 1 (naturally, nonlinear terms remain nonlinear
also in the equivalent norm).

Step I. Following Notation 3.10

(ϕβ, wβ) = Πβαβ(ϕα, wα).

Then Theorem 4.20 shows that

‖Παβα(ϕα + ν, wα + z)− (ϕβ, wβ)‖Bsp×RN1 = ‖(LΠ)3[ν, z] + hΠ
βαβ(ν, z)‖Bsp×RN1 ,

(4.75)

where (ν, z) ∈ Bsp×RN1 , LΠ is linear and hΠ
βαβ(ν, z) is o

(
‖ν, z‖

min{2− 1
p
, 1
p

+s,1−s+ 1
p
}

Bsp×RN1

)
.

Choose G > 0 such that ‖LΠ‖3 + G < 1. Due to Theorem 4.20 there exists
some δ > 0 such that if

‖ν, z‖Bsp×RN1 ≤ δ,

then

‖hΠ
βαβ(ν, z)‖Bsp×RN1 ≤ G‖ν, z‖Bsp×RN1

Let ‖ν, z‖Bsp×RN1 ≤ δ. Then the right-hand side of equality (4.75) is estimated as

‖(LΠ)3[ν, z] + hΠ
βαβ(ν, z)‖Bsp×RN1

≤ ‖(LΠ)3[ν, z]‖Bsp×RN1 + ‖hΠ
βαβ(ν, z)‖Bsp×RN1

≤ (‖LΠ‖3 +G)‖ν, z‖Bsp×RN1 .

Step II. We prove the result only for even n. The proof for odd n is similar. The
proof is by induction.

First show for n = 2. Choose ‖ν, z‖Bsp×RN1 ≤ δ, where δ is such that Step I

holds both27 for Πβαβ and Παβα at the points (ϕα, wα) and (ϕβ, wβ), respectively.
Then

‖Πβαβ(ϕα + ν, wα + z)− (ϕβ, wβ)‖Bsp×RN1 ≤ C‖ν, z‖Bsp×RN1 ≤ δ,

‖Παβα(ϕβ + ν, wβ + z)− (ϕα, wα)‖Bsp×RN1 ≤ C‖ν, z‖Bsp×RN1 ≤ δ.
(4.76)

26We show that if ‖LΠ‖ < 1, then the result holds for E = 1. But this is true only for the
equivalent norm ‖ · ‖∗. For the original norm ‖ · ‖ an extra constant is needed (which comes from
the equivalence of the two norms).

27The result from Step I holds also for Παβα (see Remark 3.11).
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where C < 1. Consider estimate (4.74) with n = 2:

‖Παβα ◦Πβαβ(ϕα + ν, wα + z)− (ϕα, wα)‖Bsp×RN1

= ‖Παβα

(
(ϕβ, wβ) + Πβαβ(ϕα + ν, wα + z)− (ϕβ, wβ)︸ ︷︷ ︸

≤δ in the Bsp×RN1 norm by (4.76)

)
− (ϕα, wα)‖Bsp×RN1

≤ C‖Πβαβ(ϕα + ν, wα + z)− (ϕβ, wβ)‖Bsp×RN1

≤ C2‖ν, z‖Bsp×RN1 ≤ δ.

(4.77)
Assume that the lemma is true for some even n. Then for n+ 2∥∥∥∥∥(Παβα ◦Πβαβ)

((
Παβα ◦Πβαβ

)n
2

(ϕα + ν, wα + z)

)
− (ϕα, wα)

∥∥∥∥∥
Bsp×RN1

=

∥∥∥∥∥(Παβα ◦Πβαβ)

(
(ϕα, wα) +

(
Παβα ◦Πβαβ

)n
2

(ϕα + ν, wα + z)− (ϕα, wα)︸ ︷︷ ︸
≤δ by induction assumption in the Bsp×RN1 norm

)

− (ϕα, wα)

∥∥∥∥∥
Bsp×RN1

.

By estimate (4.76) the preceding norm is less than or equal to

C2‖
(

Παβα ◦Πβαβ

)n
2

(ϕα + ν, wα + z)− (ϕα, wα)‖Bsp×RN1 ≤ Cn+2‖ν, z‖Bsp×RN ,

where the last inequality follows by the induction assumption. This concludes the
proof for even n.

Proof of Theorem 4.18.
Step I. Stability. We begin by showing that (ϕα, wα) is an asymptotically stable
fixed point of Π (understood in a similar sense as in Definition 3.9). Then we use it
to prove the asymptotic stability of (ϕα, xα) as a fixed point of the Poincaré map P.

Step I.I. Stability of Π. Enumerate the iterations of the projected hit maps as
follows.

I0 := (ϕα + ν, wα + z),

I1 := Πβ(ϕα + ν, wα + z),

I2 := Παβ(ϕα + ν, wα + z),

I3 := Πβαβ(ϕα + ν, wα + z),

and so on for every n ∈ N ∪ {0}.

Choose ε > 0. Choose constants E ≥ 1, C < 1 that satisfy Lemma 4.31 with
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δ1 ≤ ε
E

.

From relation 4.5 (definition of Π) it is straightforward that

‖Π(ϕ,w)‖Bsp×RN1 ≤ Const‖P(ϕ,Rαw)‖Bsp×RN

for every (ϕ,w) ∈ Bsp × RN . This and Lemma 3.16 show that there exists δ,
0 < δ < δ1 such that if

‖ν, z‖ ≤ δ,

then

‖I1 − (ϕβ, wβ)‖, ‖I2 − (ϕα, wα)‖ ≤ δ1.

Let ‖ν, z‖ be less than δ. By Lemma 4.31, (ϕα, wα) is an asymptotically stable
fixed point of Πβαβ(I0) and Πβαβ(I2) (in the sense defined in Lemma 4.31), and
(ϕβ, wβ) is an asymptotically stable fixed point of Παβα(I1).

Choose n ∈ N, n ≥ 3. All the norms in the following paragraph are the Bsp × RN1

norm. We omit them for brevity.

1. Let n mod 3 = 0. If n is odd, then ‖In− (ϕβ, wβ)‖ ≤ ECn‖ν, z‖ ≤ ECnδ1 ≤
Cnε < ε. If n is even, then ‖In − (ϕα, wα)‖ ≤ ECn‖ν, z‖ < ε.

2. Let n mod 3 = 1. If n is odd, then ‖In−(ϕα, wα)‖ ≤ ECn‖I1−(ϕβ, wβ)‖ < ε.
If n is even, then ‖In − (ϕβ, wβ)‖ ≤ ECn‖I1 − (ϕβ, wβ)‖ < ε.

3. Let n mod 3 = 2. If n is odd, then ‖In−(ϕβ, wβ)‖ ≤ ECn‖I2−(ϕα, wα)‖ < ε.
If n is even, then ‖In − (ϕα, wα)‖ ≤ ECn‖I2 − (ϕα, wα)‖ < ε.

This shows that (ϕα, wα) is an asymptotically stable fixed point of Π.

Step I.II. Stability of the Poincaré map P. Define the operator RP :
Bsp × RN1 → Bsp × RN as

RP (ϕ,w) = (ϕ,Rαw).

This operator is bounded, and satisfies

RPE = I. (4.78)

By the definition of Π in equation (4.5), the Poincaré map P can be written as

P(ϕα + ν, xα + y) = RPΠE(ϕα + ν, xα + y),

Pn = RPΠnE(ϕα + ν, xα + y),
(4.79)

whenever (ϕα + ν, xα + y) ∈ Tα. Choose ε > 0. Choose δ > 0 such that the Step
I.I holds with ε

‖DRP ‖ instead of ε.
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Note that RP (like Rα from (4.2)) is an affine linear operator. Hence, RP (ϕ1, w1)−
RP (ϕ2, w2) = DRP (ϕ1−ϕ2, w1−w2). By this and the stability of the fixed point
(ϕα, wα) of Π from Step I.I, if ‖ν, y‖ ≤ δ, then (we omit the Bsp × RN norm for
brevity)

‖Pn(ϕα + ν, xα + y)− (ϕα, xα)‖
= ‖RPΠnE[ϕα + ν, xα + y]−RP (ϕα, wα)‖
= ‖DRP [Πn(ϕα + ν, wα + ERy)− (ϕα, wα]‖

≤ ‖DRP‖Πn(ϕα + ν, wα + ERy)− (ϕα, wα)‖ ≤ ‖DRP‖ ε

‖DRP‖
≤ ε,

where the last line follows from that fact that ‖ν,ERy‖Bsp×RN ≤ ‖ν, y‖Bsp×RN ≤ δ.

Step II. Instability. Consider the operator

Παβαβαβ : Bsp × RN1 → Bsp × RN1 .

It is a composition of the operator Παβα and Πβαβ. Using Theorem 4.20 on both
operators, we can write their composition at the point (ϕα + ν, wα + z) as

Παβαβαβ(ϕα + ν, wα + z) = Παβαβαβ(ϕα, wα) + L6
Π[ν, z] + h̃(ν, z),

where ‖h̃(ν, z)‖Bsp×RN1 = O(‖ν, z‖γ2), where γ = min{2− 1
p
, 1
p

+ s, 1− s+ 1
p
} > 1.

Since the spectral radius of LΠ is bigger than one, then the spectral radius of
L6

Π is also28 bigger than 1. By [28, Theorem 5.1.5], since the nonlinear part h̃ is
of big-O order γ2 > 1, then (ϕα, wα) is an unstable fixed point of Παβαβαβ. This
shows that Π = Παβ is also unstable.

Finally, the instability of P follows since by (4.5) and relations (4.78) and (4.79):

‖Πn(ϕα + ν, wα + z)− (ϕα, wα)‖ ≤ ‖E‖‖Pn(ϕα + ν, xα + Rαz)− (ϕα, xα)‖.

28This follows from Gelfand’s formula for spectral radius, which says that r(LΠ) =

limn→∞ ‖LnΠ‖
1
n . Applying it on L6

Π shows that r(L6
Π) = limn→∞ ‖(LΠ)6n‖ 1

n . Define m = 6n

transfers the last terms to limm→∞ ‖(LΠ)m‖ 6
m = r(LΠ)6 > 1.
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5. Spectral analysis of the Poincaré map

In the previous section we showed that the stability of the Poincaré map depends
on the spectral radius of its linearization (the “formal” linearization of its projection,
to be exact). Calculating this spectral radius is not easy, since it is an operator on an
infinite-dimensional space. In this section we simplify this calculation by reducing it to
an equivalent finite-dimensional problem.

In this section we study the operator LΠ defined in equation (4.18) in the previous
section. This is important since the stability of of the periodic solution up as a fixed
point of the Poincaré map depends on the spectral radius of LΠ (Theorem 4.18).

In Section 5.1 we show (Lemma 5.6) that the operator LΠ can be written as a
sum of two operators: a Volterra-type operator, and a finite-rank operator (Defi-
nition 5.5). In Lemma 5.7 we give the basis for the range of the finite-rank operator.

In Section 5.2 we note (Lemma 5.8) that LΠ is a power-compact operator. This
means that its spectral radius depends only on its eigenvalues. In Theorem 5.13
we reduce the problem of calculating eigenvalues of Lp to an equivalent finite-
dimensional problem.

Finally, in Section 5.3, we give a formula for the matrix of the finite-dimensional
problem.

5.1 Writing LΠ as a matrix-valued operator

The main component of LΠ is the operator L (Definition 4.14). This operator was
calculated, formally, as a linearization at the initial data that generates the periodic
solution, (ϕα, xα) (Definition 4.8). These initial data are symmetric around t =
T (Assumption 2.12). This symmetry gives the structure of L two interesting
properties.

1. In each of the expressions that composes it, L uses either ϕ(θ)|θ∈[−2T,−T ] or
ϕ(θ)|θ∈[−T,0] (or none of them) - but never both!

2. L is written as a piecewise function, which is defined separately on the in-
tervals [−2T,−T ] and [−T, 0].

See equation (4.15) for the structure of L.

These properties motivate the transformation from the space Bsp to the direct
product space (

Lp(−T, 0) ∩Ws
p(−σ, 0)

)
×Ws

p(−T, 0).

We introduce notation for the product space in the previous line.
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Notation 5.1. Denote

Bswp := Lp(−T, 0) ∩Ws
p(−σ, 0), (5.1)

where the w stands for a “working space”.

Definition 5.2. Let ν ∈ Bsp. Define a linear operator

U : Bsp → Bswp ×Ws
p(−T, 0)

as

U[ν] =

(
ν(θ − T )
ν(θ)

)
,

where θ ∈ [−T, 0].

The inverse of U

U−1 : Bswp ×Ws
p(−T, 0)→ Bsp

is defined as

U−1

(
ν1(θ)
ν2(θ)

)
=

{
ν1(θ + T ), θ ∈ [−2T,−T ),
ν2(θ), θ ∈ [−T, 0],

where ν1 ∈ Bswp , ν2 ∈Ws
p(−T, 0).

The next definition transforms L and LΠ to the direct product space.

Definition 5.3. The linear operator

L̃ : Bswp ×Ws
p(−T, 0)× RN → Bswp ×Ws

p(−T, 0), (5.2)

is defined as

L̃[ν1, ν2, y] := U
[
L
[
U−1[ν1, ν2], y

]]
.

The linear operator

L̃Π : Bswp ×Ws
p(−T, 0)× RN1 → Bswp ×Ws

p(−T, 0)× RN1 ,

is defined as (cf. Definition 4.14))

L̃Π(ν1, ν2, z) =

(
L̃[ν1, ν2, DRz],ER[L̃[ν1, ν2, DRz](0)

])
. (5.3)

Lemma 5.4. A complex number λ ∈ σ(LΠ) if and only if λ ∈ σ(L̃Π).
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Proof. Define the operator Ũ : Bsp × RN → Bswp ×Ws
p(−T, 0)× RN as follows:

Ũ

[
ν
y

]
=

(
U(ν)
y

)
.

It is straightforward that Ũ is linear and invertible matrix. Let λ ∈ C, and consider
the operator (λI− L) and (λI− L̃) (note that I denotes the appropriate identity

in each case). Using Ũ we have the following connections:

(λI− L̃) = Ũ(λI− L)Ũ−1,

(λI− L) = Ũ−1(λI− L̃)Ũ,

which shows that (λI− L) has a bounded inverse if and only if (λI− L̃) has.

The next definition is used to describe the structure of LΠ.

Definition 5.5. A linear operator Q in a Banach space is called a finite-rank
operator if

dimRange(Q) <∞.

In the next lemma we show that L̃Π is a composition of two operators, one of
them is a finite-rank operator.

Lemma 5.6. The linear operator L̃Π can be written as

L̃Π

ν1

ν2

z

 =

(
F + V

)ν1

ν2

z

 . (5.4)

Here F (see equation (5.7)) is a finite-rank operator and V is of the form

V :=

 0 I 0
V 0 0
0 0 0

 , (5.5)

where V is given by29

Vν1 =

∫ θ

−T
eB(s−θ)Aν1(s)ds, θ ∈ (−T, 0). (5.6)

Proof. By equation (4.15)

L[ν,DRz]

=


− ϕα′(θ+T )

M
[
ϕα′(−T−)

]M[ ∫ 0

−T e
BsAν(s− T )ds+ e−BTDRz

]
+ ν(θ + T ), θ ∈ [−2T,−T ),

− ϕα′(θ−T )

M
[
ϕα′(−T−)

]M[ ∫ 0

−T e
BsAν(s− T )ds+ e−BTDRz

]
+

+
∫ θ
−T e

B(s−θ)Aν(s− T )ds+ e−B(θ+T )DRz, θ ∈ [−T, 0],

29V is called a Volterra operator. It is not needed to know what is a Volterra operator for
our cause. We prove all the properties of it that are needed for this dissertation. For a general
definition and analysis of Volterra operators, see Väth [52].
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where (ν, z) ∈ Bsp × RN1 .

Using this and the definition of L̃ (Definition 5.3), we have

L̃(ν1, ν2, DRz)

=

 − ϕα′(θ)

M
[
ϕα′(−T−)

]M[ ∫ 0

−T e
BsAν1(s)ds+ e−BTDRz

]
+ ν2(θ)

− ϕα′(θ−T )

M
[
ϕα′(−T−)

]M[ ∫ 0

−T e
BsAν1(s)ds+ e−BTDRz

]
+
∫ θ
−T e

B(s−θ)Aν1(s)ds+ e−B(θ+T )DRz

 ,

where (ν1, ν2, z) ∈ Bswp ×Ws
p(−T, 0)× RN1 and θ ∈ [−T, 0] in each row.

Set

c1(ν1) := −
M
∫ 0

−T e
BsAν1(s)ds

M
[
ϕα′(−T−)

] ,

c2(z) := − Me−BTDRz

M
[
ϕα′(−T−)

] .
Then L̃ can be written in a more elegant way (remember that M is a linear operator
(Section 1)):

L̃[ν1, ν2, DRz] =

(
(c1(ν1) + c2(z)) · ϕα′(θ) + ν2(θ)

(c1(ν1) + c2(z)) · ϕα′(θ − T ) +
∫ θ
−T e

B(s−θ)Aν1(s)ds+ e−B(θ+T )DRz

)
.

The linear operator L̃Π (formula (5.3)) can be written as

L̃Π

ν1

ν2

z

 = F + V =


F1 0 F3

F4 0 F6
1 + F6

2

F7 0 F9


︸ ︷︷ ︸

=:F

+

 0 I 0
V 0 0
0 0 0


︸ ︷︷ ︸

=:V


ν1

ν2

z

 , (5.7)

where

1. F1ν1 = c1(ν1) · ϕα′(θ),

2. F3z = c2(z) · ϕα′(θ),

3. F4ν1 = c1(ν1) · ϕα′(θ − T ),

4. F6
1z = c2(z) · ϕα′(θ − T ), F6

2z = e−B(θ+T )DRz,

5. F7ν1 = ER
[
((V + F4)ν1)(0)

]
,

6. F9z = ER
[
(F6

1z + F6
2z)(0)

]
,

and V is given in (5.6).

In the next lemma we show that F is a finite-rank operator and find its basis.
For this we denote the standard base of RN1 by r1, . . . , rN−1.
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Lemma 5.7. The operator F is a finite-rank operator with dim Range(F) < 2N−
1. Moreover, if we define the basis functions, e1, . . . , e2N−1 ∈ Bswp ×Ws

p(−T, 0) ×
RN1, as

e1 :=

 ϕα′(θ)
ϕα′(θ − T )

0

 ,

ei :=

 0
e−B(θ+T )DRri−1

0

 , i = 2, . . . , N,

ei :=

 0
0

ri−N ,

 , i = N + 1, . . . , 2N − 1,

then

Range(F) ⊂ span{ei}2N−1
i=1 ,

and

F

ν1

ν2

z

 =
2N−1∑
i=1

fiei, (5.8)

where

f1 = [c1(ν1) + c2(z)],

fi = zi−1, i = 2, . . . , N,

fi = 〈F7ν1 + F9z), ri−N〉RN1 , i = N + 1, . . . , 2N − 1.

Proof. By relation (5.7) for F

F

ν1

ν2

z

 =

F1 0 F3

F4 0 F6
1 + F6

2

F7 0 F9

ν1

ν2

z

 =

 F1ν1 + F3z
F4ν1 + F6

1z + F6
2z

F7ν1 + F9z


=

F1ν1 + F3z
F4ν1 + F6

1z
0


︸ ︷︷ ︸

(A)

+

 0
F6

2z
0


︸ ︷︷ ︸

(B)

+

 0
0

F7ν1 + F9z


︸ ︷︷ ︸

(C)

.

We write (A),(B),(C) in the basis {ei}.

(A). By the expressions for F’s in the proof of Lemma 5.6, (A) equals

(A) =

 [c1(ν1) + c2(z)] · ϕα′(θ)
[c1(ν1) + c2(z)] · ϕα′(θ − T )

0

 = [c1(ν1) + c2(z)]e1(θ) = f1e1.
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(B). By the expressions for F’s in the proof of Lemma 5.6, (B) equals

(B) =

 0
e−B(θ+T )DRz

0

 =
N∑
i=2

zi−1

 0
e−B(θ+T )DRri

0

 =
N∑
i=2

fiei.

(C). Note that F7ν1 + F9z ∈ RN1 . Hence (C) equals

(C) =

 0
0∑N−1

i=1 〈F7ν1 + F9z, ri〉RN1ri

 =
2N−1∑
i=N+1

fiei.

5.2 Finite-dimension reduction

In this subsection we first show that it is sufficient to study only the eigenvalues
of LΠ. Then we create a linear problem that checks if a nonzero λ is an eigenvalue
of LΠ.

Lemma 5.8. A complex number λ 6= 0 satisfies λ ∈ σ(LΠ) (spectrum of LΠ) if
and only if λ is an eigenvalue of LΠ.

Proof. By Lemma 5.4, σ(L̃Π) = σ(LΠ). Hence we show that λ 6= 0 ∈ σ(L̃Π) if and

only if λ is an eigenvalue of L̃Π. We show next that the operator L̃Π

2
is compact,

and by [15, chapter VII4.5, Theorems 5 and 6] this shows that the spectrum of L̃Π

is composed only of zero and possibly eigenvalues.

By Lemma 5.6, L̃Π = F + V , where F is a finite-rank operator. Then

L̃Π

2
= F2 + FV + VF + V2.

All the terms in the previous equation besides V2 are finite-rank operators. Every
finite-rank operator is obviously compact. It remains to show that V2 is compact.

By equation (5.5), V2 from Bswp ×Ws
p(−T, 0)× RN1 to itself is given by

V2 =

V 0 0
0 V 0
0 0 0

 .

Hence to show that V2 is compact, we need to show that V is compact as an
operator on the space Bswp , and on the space Ws

p(−T, 0).

The operator V is continuous from the space Ws
p(−T, 0) (and Bswp ) to the space

W1
p(−T, 0). The latter is compactly embedded into Bswp and Ws

p(−T, 0). The proof
is complete by noticing that Ws

p(−T, 0) (and Bswp ) are embedded in Lp(−T, 0).
Hence V : Ws

p(−T, 0) or Bswp →Ws
p(−T, 0) is a compact operator.
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If A = 0 in problem (1.1)–(1.3), then the delay term disappears. The next

lemma determines the eigenvalues of L̃Π in this case.

Lemma 5.9. Let A = 0. Then σ(L̃Π) = {eigenvalues of F9} ∪ {0}, where 0 is an

eigenvalue of L̃Π with infinite geometrical multiplicity.

Proof. By Lemma 5.8 it is enough to look for the eigenvalues of L̃Π.

If A = 0, then c1(ν1)=0 and V = 0. Hence the operators F1, F4 and F7 equal

zero as well. By relation (5.7), λ is an eigenvalue of L̃Π if and only if

L̃Π

ν1

ν2

z

 =

0 I F3

0 0 F6
1 + F6

2

0 0 F9

ν1

ν2

z

 =

 ν2 + F3z
(F6

1 + F6
2)z

F9z

 = λ

ν1

ν2

z

 . (5.9)

Consider λ 6= 0. From the previous relation it follows that if λ is an eigenvalue
L̃Π, then it is an eigenvalue of F9. On the other hand, if λ is an an eigenvalue of
F9 with eigenvector z, then λ is an eigenvalue of L̃Π with the eigenfunction: 1

λ
((F6

1 + F6
2)z + F3z

1
λ
(F6

1 + F6
2)z

z

 .

Consider now λ = 0. By (5.9 λ = 0 is an eigenvalue of L̃Π if and only if ν2 + F3z
(F6

1 + F6
2)z

F9z

 =

0
0
0


which shows that for every ν1 ∈ Bswp , every vector of the following form is an
eigenfunction corresponding to eigenvalue λ = 0.ν1

0
0



Remark 5.10. If b = 0 (as in Lemma 5.9), then the delay has no effect on prob-
lem (1.1)–(1.3), and it is equivalent to a problem without delay. It is possible to
build a Poincaré map to this problem (without delay), and calculate its lineariza-
tion explicitly (in a similar way as in [25]). The linearization is then the same as
the matrix F9.

The operator L̃Π is a sum of two operators, one of them is a finite-rank operator.
The next lemma shows that the problem of finding the eigenvalues of a finite-rank
operator is a finite-dimensional problem.

Lemma 5.11. Let Q be a linear finite-rank operator in a Banach space B (with
range R(Q) ⊂ Y, where Y is finite-dimensional). Then λ 6= 0 and ρλ are an eigen-
value and an eigenfunction of Q respectively, if and only if they are an eigenvalue
and an eigenfunction of the finite-dimensional operator

Q|Y : Y→ Y.
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Proof. The direction ⇐ is straightforward.

For ⇒: If ρλ is an eigenfunction of Q, then Qρλ = λρλ. Hence ρλ = 1
λ
Qρλ ∈

R(Q) ⊂ Y.

For the dimension reduction we would have to examine the resolvent set of V ,
i.e., study the inverse of (λI − V) for λ 6= 0.

Before stating the theorem we remark that the inverse of (λI−V) is well known
for Volterra operators when ρ is a R-valued function. Then it is calculated via
the Neumann series 30. However, this is not true for RN -valued functions in gen-
eral and particularly not in our case. The reason is that the matrices A,B in
equation (5.6) are not necessarily commutative (which is needed for the Neumann
series).

Lemma 5.12. The operator

(λI − V) : Lp(−T, 0)× Lp(−T, 0)× RN1 → Lp(−T, 0)× Lp(−T, 0)× RN1

is invertible for every λ 6= 0. Its inverse is given by

(λI − V)−1

ρ1

ρ2

q

 =

ν1

ν2

z

 ,

where
ν1 = (λ2I−V)−1[ρ2 + λρ1],

ν2 = λν1 − ρ1,

z =
1

λ
q,

(5.10)

and (λ2I−V)−1 : Lp(−T, 0)→ Lp(−T, 0) is given by

(λ2I−V)−1ρ =
1

λ2
ρ− 1

λ2
(B− 1

λ2
A)

∫ θ

−T
e(B− 1

λ2
A)(s−θ)ρds+

1

λ2
B

∫ θ

−T
e(B− 1

λ2
A)(s−θ)ρds,

(5.11)

for ρ ∈ Lp(−T, 0).

Proof. Step I. Take λ 6= 0. By relation (5.5) (for the operator V)

(λI− V)

ν1

ν2

z

 =

 λI −I 0
−V λI 0

0 0 λI

ν1

ν2

z

 =

 λν1 − ν2

−Vν1 + λν2

λz

 =

ρ1

ρ2

q

 .

It is straightforward that

z =
1

λ
q

30To calculate via the Neumann series, note that (λI −V)−1 = 1
λ (I − 1

λV)−1. Then use the
Neumann series (I− 1

λV)−1 =
∑∞
n=0( 1

λV)n.
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and that

ν2 = λν1 − ρ1,

−Vν1 + λν2 = ρ2.

Plug the expression for ν2 from the first line in the previous equation into the
second line:

−Vν1 + λ2ν1 − λρ1 = ρ2.

Isolate ν1:

ν1 = (λ2I−V)−1[ρ2 + λρ1].

This proves equation (5.10), provided that λ2I−V is invertible in Lp(−T, 0), which
we show in Step II.

Step II. Set µ = λ2. We are looking for the inverse of µI −V.
Step II.I. Existence of an inverse. The operator V is compact [12, Chapter II,
Proposition 4.7], while µI−V is a Fredholm operator with index zero [12, Chapter
XI, Proposition 3.3]. According to a corollary of Fredholm alternative ( [12, Chap-
ter VII, Corollary 7.10]), µI−V has an inverse if and only if the only solution to
the problem

(µI −V)% = 0 (5.12)

is % = 0.

If (µI − V)% = 0, then % = 1
µ
V%. Since V : Lp(−T, 0) → W1

p(−T, 0), % ∈
W1

p(−T, 0). Differential relation (5.12) using the expression for V (relation (5.6))
µ%′ −A%+ B

∫ θ

−T
eB(s−θ)A%(s)ds︸ ︷︷ ︸

=µ%

= µ%′ + (µB−A)% = 0,

%(−T ) = 0,

where the initial condition follows relation (5.12). By the previous equation
% ∈ W2

p(−T, 0) ⊂ C1(−T, 0) (the space of continuously differentiable function).
Thus the theory of ordinary differential equations implies that the last equation
has a unique solution % = 0.

Step II.II. Inverse on a dense subspace. Consider (µI −V) as an operator
from C∞[−T, 0] to C∞[−T, 0]. Choose ρ ∈ C∞[−T, 0]. We look for % ∈ C∞(−T, 0)
such that

µ%−
∫ θ

−T
eB(s−θ)A%(s)ds = ρ. (5.13)
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It is possible to differentiate both sides since %, ρ ∈ C∞[0, T ]:{
µ%′ −A%(θ) + B

∫ θ
−T e

B(s−θ)A%(s)ds = ρ′,

%(−T ) = ρ(−T )0.

By equation (5.13), B
∫ θ
−T e

B(s−θ)A%(s)ds = µB%−Bρ. Hence the previous equa-
tion becomes {

µ%′ + (µB−A)% = ρ′ + Bρ,
%(−T ) = 0.

By the semigroup theory [39] the solution is

(µI−V)−1ρ = % =
1

µ
ρ− 1

µ
(B− 1

µ
A)

∫ θ

−T
e(B− 1

µ
A)(s−θ)ρds+

1

µ
B

∫ θ

−T
e(B− 1

µ
A)(s−θ)ρds.

(5.14)

By Step II.I this % is a unique solution from Lp(−T, 0) for equation 5.13.
Step II.III. Extension to Lp. The operator (µI −V)−1 from equation (5.14) is
a bounded linear operator both from Lp(−T, 0) into itself.

By [1, Corollary 2.30], C∞(−T, 0) is dense in Lp(−T, 0), hence (µI − V)−1 has
a unique extension to Lp(−T, 0) given by (5.14).

Step II.IV. Replacing µ by λ2 yields equation (5.11).

The next lemma is the main lemma of this section. It shows that checking if
a complex number λ 6= 0 is an eigenvalue of LΠ is equivalent to finding the eigen-
values of a finite-rank operator. By the previous lemma it is a finite-dimensional
problem.

Lemma 5.13. A complex λ 6= 0 is an eigenvalue of L̃Π with eigenfunction ζ :=
(ν1, ν2, z) if and only if

ρ := (λI − V)ζ (5.15)

is an eigenfunction with eigenvalue 1 of the finite-rank operator F(λI − V)−1 :
Lp × Lp × RN1 → Lp × Lp × RN1, i.e,

F(λI − V)−1ρ = ρ. (5.16)

Proof. ⇒: A complex number λ 6= 0 is an eigenvalue of L̃Π if there exists ζ :=
(ν1, ν2, z) ∈ Bswp ×Ws

p(−T, 0)× RN1 such that (by relation (5.4))

(λI − V − F)ζ = 0. (5.17)

Let ρ := (λI −V)ζ ∈ Lp×Lp×RN1 . The operator (λI −V) is invertible for every
λ 6= 0 by Lemma 5.12, hence ζ = (λI − V)−1ρ. Then (5.17) implies that

0 = (λI − V − F)(λI − V)−1ρ = (I − F(λI − V)−1)ρ.

⇐: Let ρ satisfy (5.16). Then ρ ∈ Range(F). From the expression of range F
from Lemma 5.7, it follows that ρ ∈ Bswp ×Ws

p(−T, 0) × RN1 , and hence from
the expression for (λI − V)−1 from Lemma 5.12, it follows that (λI − V)−1ρ ∈
Bswp ×Ws

p(−T, 0)× RN1 . Set ζ = (λI − V)−1ρ to complete the proof.
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5.3 The matrix of the linear operator F(λI − V)−1

Definition 5.14. By Lemma 5.7, for every ei, i = 1, . . . , 2N − 1, we can write

F(λI − V)−1(ei) = f1,ie1 + f2,ie2 + · · ·+ fn,ien.

The matrix [F(λI−V)−1] = {fj,i} is called the matrix of the operator F(λI−V)−1.
The eigenvalues of F(λI−V)−1 : Lp → Lp are the same as those of [F(λI−V)−1].

In this section we calculate the matrix [F(λI −V)−1]. Recall the linearization
DR of the lift operators given by (4.17).

Define Q(ei, λ), i = 1, . . . , n, λ 6= 0 ∈ C, as in the following formulas using
Lemma 5.12 and ei from Lemma 5.7.

For i = 1:

F(λI − V)−1e1 = F


(λ2I−V)−1

[
ϕα′(θ − T ) + λϕα′(θ)︸ ︷︷ ︸
=:Q(e1,λ)

]
λQ(e1, λ)− ϕα′(θ)

0


= F

 Q(e1, λ)
λQ(e1, λ)− ϕα′(θ)

0

 .

For i = 2, . . . , N :

F(λI − V)−1ei = F


(λ2I−V)−1e−B(θ+T )DRri−1︸ ︷︷ ︸

=:Q(ei,λ)

λQ(ei, λ)
0

 = F

 Q(ei, λ)
λQ(ei, λ)

0

 .

For i = N + 1, . . . , 2N − 1:

F(λI − V)−1ei =
1

λ
F

 0
0

ri−N


=

1

λ

(
c2(ri−N)e1 + ei−N+1

+
2N−1∑
j=N+1

[
ER 〈(F6

1 + F6
2)ri−n

]
(0), rj−N

〉
RN1

ej

)
.
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Then, by the expression for F in (5.7) for i = 1:

[F(λI − V)−1e1] =



c1

(
Q(e1, λ)

)
0
. . .
0

〈ER
[
(V + F4)Q(e1, λ)

]
(0), r1〉RN1

. . .
〈ER

[
(V + F4)Q(e1, λ)

]
(0), rN−1〉RN1



}
N − 1

.

For i = 2, . . . , N :

[F(λI − V)−1ei] =



c1

(
Q(ei, λ)

)
0
. . .
0

〈ER
[
(V + F4)Q(ei, λ)

]
(0), r1〉RN1

. . .
〈ER

[
(V + F4)Q(ei, λ)

]
(0), rn−1〉RN1



}
N − 1

.

For i = N + 1, . . . , 2N − 1:

[F(λI − V)−1ei] =



1
λ
c2(ri−N)

0
. . .
0
1
λ

0
. . .
0

1
λ
〈ER[(F6

1 + F6
2)ri−n](0), r1〉RN1

. . .
1
λ
〈ER[(F6

1 + F6
2)ri−n](0), rN−1〉RN1



←− i-N+1


N − 1

.
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Chapter II

Controlling the Controller:
Partial Hysteresis Differential

Equations and Pyragas Control

105



6. Setting of the problem. Existence and

uniqueness

In this section we establish the setting for Chapter II. The main equation is pre-
sented. In the bulk of the section we prove fundamental properties of the problem,
specifically, existence and uniqueness of solutions. In order to show these, we reduce the
problem to an equivalent infinite-dimensional ordinary differential equation.

6.1 Setting of the problem

An equation is called a hysteresis-delay partial differential equation (HD-
PDE) if it is a differential equation that has both hysteresis and delay terms
(either in the equation itself or in its boundary conditions). Let Q ⊂ Rn be a
bounded domain with smooth boundary. Consider the following HDPDE:

∂u(x, t)

∂t
= ∆u(x, t), t > 0, x ∈ Q, (6.1)

with the boundary condition

∂u

∂ν

∣∣∣∣∣
∂Q

= H(Mu)(t)k(x) + b(x)(Mu(t− 2T )−Mu(t)), t > 0, x ∈ ∂Q, (6.2)

and the initial conditions

u(x, t) = ϕ(x, t), t ∈ (−2T, 0), x ∈ Q, (6.3)

u(x, 0+) = ψ(x), x ∈ Q, (6.4)

where u(x, 0+) is in the sense of traces from the right. Here

• b(x) and k(x) are given functions from C∞(∂Q),

• M is a linear average function defined as

Mϕ =

∫
Q

m(x)ϕ(x)dx,

where ϕ is a given function from the space L2(Q). For functions u(x, t) we
use the notation

Mu(t) = M[u(·, t)],

• the hysteresis operator H is defined in Chapter I (Definition 1.2),

• 2T is the period of the specific periodic solution whose stability we want to
change. We remind the reader that the delay term is added as a Pyragas
control once a periodic solution with period 2T is already known. We choose
2T instead of T to be compatible with Chapter I. See the explanation in the
introduction.
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Definition 6.1. We call the term Mu(t−2T )−Mu(t) (without b(x)) in the bound-
ary condition (6.2) a Pyragas term, since it appears due to applying Pyragas
control to the problem (see Section 2 in introduction). We use the name “Pyragas
term” along this chapter for similar terms of this form.

Discussion 6.2. The initial condition at t = 0 may seem redundant at first, since
we can use the first initial condition to imposes a condition on u(x, 0+) in the
sense of traces, i.e., u(x, 0+) = ϕ(x, 0−). However, if we define u(x, 0+) in that
way, it will belong to the space L2(Q). This turns out to be not regular enough
for showing existence and uniqueness of solutions (see Lemma 6.10).

The following condition corresponds to [25, Condition 2.1] (there it was defined
for problem (6.1)–(6.4) without delay). We assume that this condition holds for
the remainder of the chapter.

Condition 6.3. The functions m and k satisfy the following conditions∫
∂Q

k(x)dΓ > 0,

∫
Q

m(x)dx > 0.

6.2 Definitions: spaces and solutions

Denote by L2 := L2(Q) the space of square-integrable Lebesgue functions on Q,
and by W 1

2 := W 1
2 (Q) the Sobolev space of weakly differentiable functions, with

the norms

‖ϕ‖L2 =

(∫
Q

|ϕ(x)|2dx
) 1

2

,

‖ϕ‖W 1
2

=

(∫
Q

|ϕ(x)|2 + |∇ϕ(x)|2dx
) 1

2

.

Define similarly for k ∈ N the spaces W k
2 := W k

2 (Q) of k times weakly differentiable
functions, with the norm ∫

Q

∑
|α|≤k

|Dαϕ(x)|2dx

 1
2

,

where α is a multi-index. Define the spaces W
1/2
2 (∂Q) and W

3/2
2 (∂Q) as all func-

tions ϕ : ∂Q→ R such that the following norm is finite:

‖ϕ‖
W

1/2
2 (∂Q)

:= inf
{
‖u‖W 1

2 (Q) : u ∈ W 1
2 (Q), u

∣∣
∂Q

= ϕ
}
,

‖ϕ‖
W

3/2
2 (∂Q)

:= inf
{
‖u‖W 2

2 (Q) : u ∈ W 2
2 (Q), u

∣∣
∂Q

= ϕ
}
.

Let B be a Banach space. Denote by L2(a, b;B) (a < b) the space of square-
integrable B-valued functions, and by W 1

2 (a, b;B) the Sobolev space of weakly
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differentiable B-valued functions with the norms

‖ϕ‖L2(a,b;B) =

(∫ b

a

‖ϕ(s)‖2
Bds

) 1
2

,

‖ϕ‖W 1
2 (a,b;B) =

(∫ b

a

‖ϕ(s)‖2
B + ‖ϕ′(s)‖2

Bds

) 1
2

.

Using this notation, the space of initial data for problem (6.1)–(6.4) is denoted by

W := W 1
2

(
− 2T, 0;L2(Q)

)
×W 1

2 (Q). (6.5)

Finally, solutions will belong to the anisotropic Sobolev space W 2,1 defined as

W 2,1(Q× (a, b)) :=
{
u ∈ L2(a, b;W 2

2 (Q)) : ut ∈ L2(a, b;L2(Q))
}
,

where ut is the weak t-derivative of u. Note that W 2,1(Q×(a, b)) ⊂ C
[
a, b;W 1

2 (Q)
]

[35].

Definition 6.4. Let T1 > 0. A function u(x, t) is called a (strong) solution
to problem (6.1)–(6.4) on [−2T,T1] with initial data (ϕ, ψ) ∈ W if u ∈
W 1

2 (−2T, 0;L2(Q))∩W 2,1(Q×(0, T1))
(
this implies also that, u ∈ L2(−2T, T1;L2(Q))

)
,

and u satisfies equation (6.1) and relation (6.3) for a.e. t, and relations (6.2)
and (6.4) in the sense of traces.

A function u is called a (strong) solution to problem (6.1)–(6.4) on [−2T,∞)
if it is a solution to this problem on [−2T, T1] for every T1 > 0.

A switching time for a function u(t) is defined similarly to Definition 1.3.

We use the following basis for the spaces L2 and W 1
2 .

Notation 6.5. Let {λj}∞j=0 and {ej(x)}∞j=0 be the eigenvalues and eigenfunctions
of the spectral problem for the Laplacian

−∆ej = λjej,

∂ej
∂ν

∣∣∣∣
∂Q

= 0.
(6.6)

The following is true by [38, Chapter IV, 1.3].

1. The eigenvalues satisfy 0 = λ0 < λ1 < . . . ,

2. The set {ej} forms an orthonormal basis for L2, e0(x) =
√
mes(Q),

3. The set {ej} forms a basis for W 1
2 (while {ej/

√
λj + 1} forms an orthonormal

basis),

4. If f ∈ W 1
2 (Q), define fL to be coefficients of f in L2(Q), and fH to be the

coefficients of f in W 1
2 (Q) with respect to the basis {ej/

√
λj + 1}. Then the

following connection exists:

fL =
1√

1 + λj
fH .
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5. If v =
∑∞

j=0 vjej ∈ L2(Q), then the norm

‖v‖2
L2(Q)

is equivalent to
∞∑
j=0

|vj|2.

6. If v =
∑∞

j=0 vjej ∈ W 1
2 (Q), then the norm

‖v‖2
W 1

2 (Q)

is equivalent to the norm
∞∑
j=0

(1 + λj)|vj|2.

6.3 Existence and uniqueness of solutions for a fixed hys-
teresis value

The value of the hysteresis H(Mu)(t) in equation (6.1) can be ±1. Hence we
define two versions of problem (6.1)–(6.4). In the one where H(Mu)(t) = +1 we
denote the unknown function as u+, in the other, where H(Mu)(t) = −1, as u−
(cf. Section 1.4):

∂u+(x, t)

∂t
= ∆u+(x, t), t > 0, x ∈ Q,

∂u+

∂ν

∣∣∣∣∣
∂Q

= k(x) + b(x)(Mu+(t− 2T )−Mu+(t)), t > 0, x ∈ ∂Q,

u+(x, t) = ϕ+(x, t), t ∈ (−2T, 0), x ∈ Q,
u+(x, 0+) = ψ+(x) x ∈ Q,

(6.7)

and

∂u−(x, t)

∂t
= ∆u+(x, t), t > 0, x ∈ Q,

∂u−
∂ν

∣∣∣∣∣
∂Q

= −k(x) + b(x)(Mu−(t− 2T )−Mu−(t)), t > 0, x ∈ ∂Q,

u−(x, t) = ϕ−(x, t), t ∈ (−2T, 0), x ∈ Q,
u−(x, 0+) = ψ−(x), x ∈ Q.

(6.8)

Solutions to problems (6.7) and (6.8) are defined as in Definition 6.4.

Remark 6.6. The results in this subsection are proved only for problem (6.7), as
the proofs for problem (6.8) are similar with obvious changes.

Lemma 6.7. There exists a unique solution to problem (6.7).
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The proof of Lemma 6.7 is given at the end of this subsection.

We use the method of steps (see Footnote 4). In the first step t ∈ [0, 2T ], and
hence u+(x, t − 2T ) = ϕ(x, t − 2T ) in the boundary condition of equation (6.7).
This leads to the problem (where we replaced u+ by u for readability)

∂u(x, t)

∂t
= ∆u(x, t), t ∈ (0, 2T ), x ∈ Q, (6.9)

∂u

∂ν

∣∣∣∣∣
∂Q

= k(x) + b(x)(Mϕ(t− 2T )−Mu(t)), x ∈ ∂Q, (6.10)

u(x, 0+) = ψ, x ∈ Q. (6.11)

We call u a solution to problem (6.9)–(6.11) on [0,T1] if u ∈ L2(−2T, T1;L2(Q))∩
W 2,1(Q × (0, T1)) and u satisfies equation (6.9) for almost every t in [0, T1], and
relations (6.10) and (6.11) in the sense of traces.

It is straightforward that if u is a solution to problem (6.9)–(6.11) on [0, 2T ],
then u (extended to [−2T, 0] as ϕ) is a solution to problems (6.7) on [−2T, 2T ].

Define the spatially nonlocal linear operator B : L2(Q)→ W 1
2 (∂Q) as

B[ϕ](x) := b(x)Mϕ. (6.12)

It is easy to see that if we set

g(t) = Mϕ(t− 2T ),

then g ∈ W 1
2 (0, 2T ) and problem (6.9)–(6.11) is written with the aid of B and g

as 

∂u(x, t)

∂t
= ∆u(x, t), t ∈ (0, 2T ),

∂u

∂ν

∣∣∣∣∣
∂Q

+ Bu = b(x)g(t) + k(x),

u(x, 0) = ψ(x).

(6.13)

We prove in the next two lemmas a general result about existence and uniqueness
of solutions to parabolic problems.

Notation 6.8. The unbounded operator A and bounded operator Ā are defined
as

A : L2(Q)→ L2(Q),

Av = ∆v,

Dom(A) =

{
v ∈ W 2

2 (Q) :
∂v

∂ν

∣∣∣∣
∂Q

+ Bv = 0

}
,
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and

Ā : W 2
2 (Q)→ L2(Q)×W 1/2

2 (∂Q),

Ā = (∆v,
∂v

∂ν

∣∣∣∣∣
∂Q

+ Bv).

Note that A and Ā corresponds to the same problem.

Lemma 6.9. The operator A generates an analytic semigroup.

Proof. A closed operator A with dense domain generates an analytic semigroup if
and only if [37, Definition 1.3.1 and Theorem 1.3.3] there exists ω ∈ R such that

(1) there exist 0 < δ < π
2

such that Θ := {λ 6= ω : | arg(λ−ω)| < π
2

+δ} ⊂ ρ(A),
and

(2) there exists C > 0 such that if λ ∈ Θ, λ 6= ω, then

‖(A− λI)−1‖ ≤ C

|λ− ω|
.

We prove that A satisfies those two conditions via [49, Theorem 21.1, Lemma
21.1]. We use the following notation31:

Aq = ∆− q2I,

A1
j = 0, j = 0, 1,

B0
1 : W 2

2 (Q)→ L2(∂Q), B0
1v =

∂v

∂ν

∣∣
∂Q
,

B1
1l = 0, l = 0, 1,

B2
10 : W 1

2 (Q)→ L2(∂Q) and W
3
2

2 (Q)→ W
1
2

2 (∂Q), B2
10v = b(x)

∫
Q

v(x)dx,

B2
11 = 0,

where arg q is in some sector Θ with angle less than π. There are three conditions
to be satisfies in the above-mentioned lemma and theorem from [49]. Condition
21.1 is satisfied by [47, Chapter 3], while condition 21.2 is satisfied by [32, Section
5.1], and condition 21.3 is satisfied by [37, Chapter 3].

Denote, as in [49],

L(q) : W2
2(Q)→ L2(Q)×W 1/2

2 (∂Q), L(q) = (Aq,B
0
1 + B2

10).

By [49, Theorem 21.1, Lemma 21.1] the following holds.

31This system is in the form of equations (21.1)–(21.2) in [49], with the parameters: m = 1,
mµ = 1, k = 0, l = 1 and pl = 1/2.
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1. There exists q1 > 0 such that for q ∈ {q ∈ Θ : |q| ≥ q1} the operator L(q)
has a bounded inverse

L−1(q) : L2 ×W1/2
2 (∂Q)→W2

2(Q).

This shows that condition (1) for a generator with ω = q2
1 holds when λ = q2.

2. The following estimate holds for every u ∈ Dom(A) and f such that (A −
q2I)u = f :

q2‖u‖L2(Q) = q2‖(A− q2I)−1f‖L2(Q) ≤ Const‖f‖L2(Q),

which shows condition (2) for the generator with ω = q2
1 holds when λ = q2.

Finally Dom(A) is dense in L2(Q) by [40, Lemma 1].

Lemma 6.10. For any F ∈ L2

(
0, 2T ;L2(Q)

)
, h ∈ W 1

2 (Q) and T1 > 0, there exists
a unique solution u ∈ W 2,1

(
Q× (0, T1)

)
to the following problem:

ut = ∆u+ F (t)(x), t ∈ (0, 2T ), x ∈ Q,

∂u

∂ν

∣∣∣∣∣
∂Q

+ Bu = 0, x ∈ ∂Q,

u(x, 0) = h(x), x ∈ Q.

(6.14)

Proof. Equation (6.14) can be written as

v′(t)−Av(t) = F (t),

v(0) = h.
(6.15)

This is the same form as equation (1.1) in [3, Chapter I, section 1.1]32. By [3,
Chapter I, section 1.3, Theorem 3.7 and the conditions in the beginning of 3.3] if

1. A generates an analytic semigroup, and

2. h ∈ W 1
2 (Q),

then there exists a unique solution. The result follows from the fact that the
operator A generates an analytic semigroup by Lemma 6.9.

Lemma 6.11. There exists no more than one solution to problem (6.9)–(6.11) on
[0, T1].

Proof. Let u1, u2 be two solutions of problem (6.9)–(6.11) with the same initial
data (ϕ, ψ). If we set v = u1 − u2, then v satisfies the problem

∂v(x, t)

∂t
= ∆v(x, t), t ∈ (0, 2T ), x ∈ Q,

∂v

∂ν

∣∣∣∣∣
∂Q

+ b(x)Mv(t) = 0 x ∈ ∂Q,

v(x, 0) = 0.

The preceding problem satisfies the conditions of Lemma 6.14 and hence it has a
unique solution v ≡ 0.

32Setting the space E in their notation to be L2(Q).
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To be able to use Lemma 6.10, we convert problem (6.13) into a nonlocal prob-
lem with homogeneous Neumann boundary conditions. For this we use auxiliary
functions vb, vk, which are defined as solutions to the following problems:

∆vb = fb(x), x ∈ Q,

∂vb
∂ν

∣∣∣∣∣
∂Q

+ Bvb = b(x), x ∈ ∂Q,
(6.16)


∆vk = fk(x), x ∈ Q,

∂vk
∂ν

∣∣∣∣∣
∂Q

+ Bvk = k(x), x ∈ ∂Q.
(6.17)

where fb, fk ∈ L2(Q) are chosen such that there exist solutions vb, vk ∈ W 2
2 (Q) for

problems (6.16) and (6.17) respectively. The existence of such fb, fk is shown in
Lemma 6.12.

Define w(x, t) as

w(x, t) := u(x, t)− g(t)vb(x)− vk(x).

Following this definition, w satisfies the problem
wt = ut − g′(t)vb(x) = ∆u− g′(t)vb(x) = ∆w + ∆vk + g(t)∆vb − g′(t)vb(x),

∂w

∂ν

∣∣∣∣∣
∂Q

+ Bw = b(x)g(t) + k(x)− b(x)g(t)− k(x) = 0,

w(x, 0) = ψ(x)− g(0)vb(x)− vk(x).

If we set

F (t)(x) := ∆vk + g(t)∆vb − g′(t)vb(x),

h(x) := ϕ(x, 0)− g(0)vb(x)− vk(x),

then F ∈ L2

(
0, 2T ;L2(Q)

)
and h ∈ W 1

2 (Q). This leads to the problem
wt = ∆w + F (t)(x), t ∈ (0, 2T ), x ∈ Q,

∂w

∂ν

∣∣∣∣∣
∂Q

+ Bw = 0, x ∈ ∂Q,

w(x, 0) = h(x), x ∈ Q.

(6.18)

The next lemma shows that problems (6.16) and (6.17) have solutions.

Lemma 6.12. There exist fb, fk ∈ L2(Q) such that there exist solutions to prob-
lems (6.16) and (6.17).
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Proof. We prove the lemma for problem (6.16), since the proof for problem (6.17)
is similar.

Consider the operator

Ā0 : W 2
2 (Q)→ L2(Q)×W 1/2

2 (Q), (6.19)

Ā0v =

∆v,
∂v

∂ν

∣∣∣∣∣
∂Q

 = 0. (6.20)

It is well known [38] that the Fredholm index of Ā0 is zero.

We would like to show that Ā is a compact perturbation of ¯̄A. This will fol-
low if the operator B : W 2

2 (Q)→ W
1/2
2 (Q) is a compact operator. Indeed, the fact

that b ∈ C∞(Q̄) shows that

B : W 2
2 (Q)→ W 1

2 (∂Q)

is bounded, while W 1
2 (Q) is compactly embedded into W

1/2
2 (∂Q) (see e.g. [35]).

The compactness of B shows [12, Chapter XI, Theorem 3.11], that Ā is a Fredholm
operator and ind(Ā) = 0. The fact that the Fredholm index of Ā is zero, implies
that dimN(Ā) = codimR(Ā) < ∞ (where N denotes the kernel, and R denotes
the range).

It is clear that problem (6.16) has a solution if and only if (fb, b) ∈ R(A), which

by the previous paragraph means that (fb, b) is orthogonal in L2(Q) ×W 1/2
2 (∂Q)

to finitely many elements (cj, dj), j = 1, . . . , M̄ :

〈(fb, b), (cj, dj)〉 = 0, j = 1, . . . , M̄ .

Since 〈(fb, b), (cj, dj)〉 = 〈fb, cj〉+ 〈b, dj〉, the previous equations imply that

〈fb, cj〉 = −〈b, dj〉, j = 1, . . . , M̄ .

Choose fb(x) = −
∑M̄

j=1
〈b,dj〉cj(x)

‖cj‖2L2(Q)

to obtain the desired result.

Lemma 6.7. The proof is given in the method of steps (see Footnote 4).

In each step Lemma 6.11, the way that we constructed problem (6.18) and the
fact that h ∈ W 1

2 (Q) (since ϕ, g, vb, vk ∈ W 1
2 (Q)), imply that problem (6.9)–

(6.11) has a unique solution if problem (6.18) has a solution. The latter follows
from Lemma 6.10 from the fact that problem (6.18) has the structure of prob-
lem (6.14).
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6.4 Reduction to an infinite-dimensional system of ordi-
nary differential equations for a fixed hysteresis value

In this section we present an equivalent infinite-dimensional system of ordinary dif-
ferential equations for problem (6.1)–(6.4). To do so we represent the coefficients in this
problem in the basis {ej} from Notation 6.5.

Recall the basis ej for L2(Q) and W 1
2 (Q) from Notation 6.5. It follows from

Definition 6.4 of a solution that if u is a solution to problem (6.7), then u(·, t) is
in the space W 2

2 (Q) for a.e. fixed t ≥ 0. Hence each solution u can be written in
the {ej} basis as

u(x, t) =
∞∑
j=0

uj(t)ej(x), (6.21)

where the converges is in the L2 norm and

uj(t) := 〈u(·, t), ej〉L2 =

∫
Q

u(x, t)ej(x)dx.

Similarly the weak t-derivative of u is in the space L2(Q) for a.e. t, and is written
as a series in L2(Q) by

ut(x, t) =
∞∑
j=0

u′j(t)ej(x).

Define similar coefficients for the other terms in problem (6.1)–(6.4) and in prob-
lems (6.16) and (6.17).

mj =

∫
Q

m(x)ej(x)dx, kj =

∫
∂Q

k(x)ej(x)dΓ, bj =

∫
∂Q

b(x)ej(x)dΓ,

ϕj(t) =

∫
Q

ϕ(x, t)ej(x)dx, ψj =

∫
Q

ψej(x)dx,

vb,j =

∫
Q

vb(x)ej(x)dx, vk,j =

∫
Q

vk(x)ej(x)dx.

Note that the
∑∞

j

√
1 + λjψj converges in W 1

2 since ψ ∈ W 1
2 (Q) by assumption.

We also note that bj, kj are not the Fourier coefficients of b(x), k(x). However,
by [22, Lemma 2.1] the following holds (this is used in the next subsection in the
proof of Lemma 7.6).

Lemma 6.13. The following series converge:

∞∑
j=1

(
|bj|2

λj

)
<∞,

∞∑
j=1

(
|kj|2

λj

)
<∞.
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Proof. The proof follows from [22, Lemma 2.1]. There it is shown for k, b ∈
H1/2(∂Q).

The following is compatible with Condition 4.2 in [25].

Condition 6.14. The function m(x) has only M <∞ nonzero mj(x) in its series
representation, i.e,

m(x) =
M−1∑
j=0

mjej(x).

Here we assumed, for simplicity, that the first M coefficients are the nonzero ones.

Lemma 6.15. By Condition 6.14 the average of u(x, t) satisfies

Mu(t) =
M−1∑
j=0

mjuj(t).

Proof. Plug the series representation of m(x) into the definition of Mu(t):

Mu(t) =

∫
Q

m(x)u(x, t)dx =

∫
Q

∞∑
j=0

mj(x)ej(x)u(x, t)dx =
∞∑
j=0

∫
Q

mj(x)u(x, t)ej(x)dx

=
∞∑
j=0

mjuj(t) =
M−1∑
j=0

mjuj(t),

where the last equality follows from Condition 6.14.

The next two problems are infinite-dimensional ordinary differential equations
versions of problems (6.7) and (6.8).

u′j,+(t) = kj − λjuj+ + bj
(
Mu+(t− 2T )−Mu+(t)

)
, t > 0,

uj,+(t) = ϕj(t), t ∈ (−2T, 0),

uj,+(0+) = ψj.

(6.22)

u′j,−(t) = −kj − λjuj− + bj
(
Mu−(t− 2T )−Mu−(t)

)
, t > 0,

uj,−(t) = ϕj(t), t ∈ (−2T, 0),

uj,−(0+) = ψj.

(6.23)

Here j ∈ N∪ {0}, u±(x, t) =
∑∞

j=0 uj,±(t)ej(x), Mu± is given by Lemma 6.15 and

the initial data ϕj,± ∈ W 1
2 (−2T, 0), ψj,± ∈ R are such that

ϕ±(x, t) =
∞∑
j=0

ϕj,±(t)ej(x) ∈ W 1
2 (−2T, 0, L2(Q)),

ψ±(x) =
∞∑
j=0

ψj,±ej(x) ∈ W 1
2 (Q),

(6.24)
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with the norms

‖ϕ±‖W 1
2 (−2T,0;L2(Q)) =

(
∞∑
j=0

‖ϕj,±‖2
L2(−2T,0) +

∞∑
j=0

‖ϕ′j,±‖2
L2(−2T,0)

) 1
2

,

‖ψ±‖W 1
2 (Q) =

(
∞∑
j=0

(1 + λj)|ψj,±|2
) 1

2

.

These norms are equivalent to the norms of W 1
2 (−2T, 0;L2(Q)) and W 1

2 (Q) re-
spectively defined in Section 6.2 (see Notation 6.5).

Definition 6.16. A function u+(x, t) :=
∑∞

j=0 uj,+(t)ej(x) is called a solution

to problem (6.22) with initial data (ϕ+, ψ+) ∈ W 1
2 (−2T, 0, L2(Q)) × W 1

2 (Q) if
u+ ∈ W 1

2 (−2T, T1, L2(Q) ∩ W 2,1(0, T1) satisfies problem (6.22) for almost every
t ∈ [−2T, T1] for every T1 > 0, and the initial condition uj(0+) = ψ in the sense
of traces from the left.

In the same manner we define a solution to problem (6.23).

The following result shows a connection between the PDE problem (6.7) (prob-
lem (6.8)) and problem (6.22) (problem (6.23)).

Theorem 6.17. A function u+(x, t) is a strong solution to the PDE problem (6.7)
(problem (6.8)) if and only if

∑∞
j=0 uj,+(t)ej(x)

(∑∞
j=0 uj,−(t)ej(x)

)
satisfy the

ODE problem (6.22) (problem (6.23)).

Proof. We prove the result only for problems (6.7) and (6.22). The proof for prob-
lems (6.8) and (6.23) follows in a similar manner. We write u := u+ and uj := uj,+
for readability.

⇒: Let u be a solution to the PDE problem (6.7). We show now that uj is
the solution to the j-th equation in the ODE problem (6.22) for every j. Since
u ∈ W 1

2 (−2T, T1, L2(Q) ∩W 2,1(0, T1) for every T1 > 0 by definition of a solution
for problem (6.7), then u also solves problem (6.22).

Multiply the first equation in problem (6.7) by ej(x) and integrate over Q. Inte-
gration by parts yields for a.e. t > 0∫

Q

utejdx =

∫
Q

∆uejdx =

∫
∂Q

∂u

∂ν

∣∣∣∣∣
∂Q

ejdΓ−
∫
Q

∇u∇ejdx. (6.25)

The first term on the left hand side of the previous equality equals uj
′(t). The last

term in the previous equality equals by integration by parts

−
∫
Q

∇u∇ejdx = −
∫
∂Q

u
∂ej
∂ν

∣∣∣∣∣
∂Q

dΓ︸ ︷︷ ︸
=0

+

∫
Q

u∆ejdx.
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Using the boundary conditions of u from problem (6.7) and the fact that λj are
the eigenvalues of (6.6), the right hand side of equation (6.25) equals∫

∂Q

k(x)ej(x)dΓ +

∫
∂Q

b(x)ej(x)Mu(t− 2T )dΓ

−
∫
∂Q

b(x)ej(x)Mu(t)dΓ−
∫
Q

λju(x, t)ej(x)dx,

which implies that

uj
′(t) = kj − λjuj(t) + bj(Mu(t− 2T )−Mu(t)).

⇐: We show that the ODE problem (6.22) has no more than one solution. Since
by Lemmas 6.11 and 6.10 there is a unique solution to the PDE problem (6.7),
and since the coefficients of every solution to problem (6.7) are a solution to prob-
lem (6.22), by the above argument this will show that a solution to problem (6.22)
is a solution to problem (6.7).

The proof uses the method of steps (see Footnote 4).

Consider the j-th equation (j = 0, . . . ,M − 1) of problem (6.22) and recall
Lemma 6.15:

u′j(t) = kj − λjuj(t) + bj


M−1∑
j=0

mjuj(t− 2T )−
M−1∑
j=0

mjuj(t)︸ ︷︷ ︸
:=UM (t)

 . (6.26)

In the first step, the system is of the form

ũ′(t) = Au(t) + B(t),

where A ∈ RM×M and B(t) ∈ L2(RN) and ũ = (u1, .., uM−1). It is well known
that such a system has a unique solution in the space W 1

2 (0, T1) for each T1 > 0.

For j = M + 1, . . . ,∞, the equation for uj is

u′j = kj − λjuj(t) + bjU
M(t),

where UM is defined in equation (6.26). The unique solution to the preceding
equation is

uj(t) = ψje
−λjt +

∫ t

0

eλj(s−t)(kj + bjU
M(s))ds,

where each uj is in the space W 1
2 (0, T1) for each T1 > 0.

Continuing in the method of steps (see Footnote 4) shows that for every j, (ϕj, ψj) ∈
W 1

2 (−2T, 0)× R and every T1 > 0, problem (6.22) has no more than one solution
in the space W 1

2 (−2T, 0) ∩W 1
2 (0, T1). In particular, this shows that there is no

more than one solution to problem (6.22).
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6.5 Existence and uniqueness of solution to the hysteresis-
delay partial differential equation

We begin by introducing an infinite-dimensional ODE version of problem (6.1)–
(6.4). Consider the following infinite-dimensional system of ordinary differential
equations:

u′j(t) = H(Mu)(t)kj − λjuj + bj
(
Mu(t− 2T )−Mu(t)

)
, t > 0,

uj(t) = ϕj(t), t ∈ (−2T, 0),

uj(0+) = ψj,

(6.27)

where j ∈ N ∪ {0}, u(x, t) =
∑∞

j=0 uj(t)ej(x), Mu is given by Lemma 6.15 and
the initial data is defined similarly as for problems (6.22) and (6.23). Solutions to
problem (6.27) are defined similarly as in Definition 6.4.

The next lemma shows that switchings do not accumulate for problem (6.27) (cf.
Lemma 1.10).

Lemma 6.18. For every (ϕ, ψ) ∈ W and T1 > 0, there exists a positive integer

N̄ := N̄(ϕ, x, T1) > 0

such that for a time sequence 0 < t1, t2, . . . , tN̄ , if u(x, t) is defined on Q× [0, tN̄ ],
t1, t2, . . . , tN̄ are switching times of u, and u is a solution to problem (6.27) on
[−2T, tN̄ ], then

tN̄ > T1

and u is a solution to problem (6.27) on [−2T, T1].

Proof. Switching times of u are times at which H(Mu)(t) changes its value. By
Corollary 6.15

H(Mu)(t) = H

(
M−1∑
j=0

mjuj

)
(t).

The switchings are decided by the dynamics of problem (6.26) from the previ-
ous proof. Then the result follows from Lemma 1.10 in Chapter I since ϕj ∈
L2(−2T, 0).

By the previous lemma the following definition is an alternative definition for
solutions of problem (6.27).

Definition 6.19 (solution to ODE problem (6.27)). Given T1 > 0, a function
u(x, t) :=

∑∞
j=0 uj(t)ej(x) is a solution to problem (6.27) with initial data (ϕ, ψ) ∈

W 1
2 (−2T, 0, L2(Q))×W 1

2 (Q) if

1. u has finitely many switching times t1 < t2 < · · · < tj in the interval [0, T1]
(or possibly no switching times at all).
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2. u equals the solution u
(1)
+ (t) of problem (6.22) with initial data (ϕ, ψ) ∈ W ,

for t ∈ [−2T, t1] (or t ∈ [−2T, T1] if there are no switching times).

3. If there is at least one switching time, define tj+1 := T1 (if tj < T1). Then
for every 2 ≤ i ≤ j + 1 (or every 2 ≤ i ≤ j if tj = T1) the following hold, for
t ∈ [ti−1, ti],

3.1. For even i: the solution satisfies

u(x, t) = u
(i)
− (x, t− ti−1),

where u
(i)
− is the solution to problem (6.23) with initial data

(u(x, s+ ti−1)s∈(−2T,0), u(x, ti−1)) ∈ W .

3.2. For odd i > 1: the solution satisfies

u(x, t) = u
(i)
+ (x, t− ti−1),

where u
(i)
+ is the solution to problem (6.22) with initial data

(u(x, s+ ti−1)s∈(−2T,0), u(x, ti−1)) ∈ W .

Combining Definition 6.19 and Lemmas 6.17 and 6.18 yields the following
lemma.

Lemma 6.20. The following takes place.

1. For every (ϕ, ψ) ∈ W and T1 > 0, there exists a positive integer

N̄ := N̄(ϕ, x, T1) > 0

such that for a time sequence 0 < t1, t2, . . . , tN̄ , if u(x, t) is defined on
Q × [0, tN̄ ], t1, t2, . . . , tN̄ are switching times of u, and u is a solution to
problem (6.1)–(6.4) on [−2T, tN̄ ], then

tN̄ > T1

and u is a solution to problem (6.1)–(6.4) on [−2T, T1].

2. A function u(x, t) is a solution to problem (6.1)–(6.4) on [−2T, T1] if and
only if u(x, t) =

∑∞
j=0 uj(t)ej(x) is a solution to problem (6.27) on [−2T, T1].

By the previous lemma, the following definition is equivalent Definition 6.4.

Definition 6.21 (solution to problem (6.1)–(6.4)). Given T1 > 0, a function
u ∈ L2(−2T, T1;L2(Q)) ∩ W 2,1(Q × [0, T1]) is a solution to problem (6.1)–(6.4)
with initial data (ϕ, ψ) ∈ W if

1. u has finitely many switching times t1 < t2 < · · · < tj in the interval [0, T1]
(or possibly no switching times at all).
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2. u(x, t) equals the solution u
(1)
+ (x, t) of problem (6.7) with initial data (ϕ, ψ) ∈

W , for t ∈ [−2T, t1] (or t ∈ [−2T, T1] if there are no switching times).

3. If there is at least one switching time, define tj+1 := T1 (if tj < T1). Then
for every 2 ≤ i ≤ j + 1 (or every 2 ≤ i ≤ j if tj = T1) the following hold, if
t ∈ [ti−1, ti],

3.1. For even i: the solution satisfies

u(x, t) = u
(i)
− (x, t− ti−1),

where u
(i)
− is the solution to problem (6.23) with initial data

(u(x, s+ ti−1)s∈(−2T,0), u(x, ti−1)) ∈ W .

3.2. For odd i > 1: the solution satisfies

u(x, t) = u
(i)
+ (x, t− ti−1),

where u
(i)
+ is the solution to problem (6.22) with initial data

(u(x, s+ ti−1)s∈(−2T,0), u(x, ti−1)) ∈ W .

Finally we state the main theorem in this section.

Theorem 6.22. For every (ϕ, ψ) ∈ W there exists a unique solution to problem
(6.1)–(6.4) on [−2T,∞).

Proof. The proof is similar to the proof of Theorem 1.12 in Chapter I, using
Lemmas 6.7 and 6.20.
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7. Conditional stability and reduction to a

system of finitely-many ODEs

In this subsection we define the stability of a solution and prove that stability is
determined by finitely many hysteresis-delay ordinary differential equations.

We being by dividing the system of ordinary differential equations into two com-
plementary subsystems.

Definition 7.1 (Guiding-guided decomposition). Recall that in Condition 6.14
we assumed, for simplicity that the first M coefficients of m(x) in its series repre-
sentation are non-zero. Recall also that by Corollary 6.15,

Mu(t) =
M−1∑
j=0

mjuj(t).

Consider for j = 0, . . . ,M − 1 the independent system

u′j(t) = kj − λju(t) + bj

(
M−1∑
j=0

mjuj(t− 2T )−
M−1∑
j=0

mjuj(t)

)
, t > 0

uj(t) = ϕj(t), t ∈ (−2T, 0),

uj(0+) = ψj,

(7.1)

and for j = M, . . . ,∞ the (non-independent) system

u′j(t) = kj − λju(t) + bj

(
M−1∑
j=0

mjuj(t− 2T )−
M−1∑
j=0

mjuj(t)

)
, t > 0

uj(t) = ϕj(t), t ∈ (−2T, 0),

uj(0+) = ψj,

(7.2)

where the initial data is defined similarly as for problems (6.22) and (6.23).

We call problem (7.1) the guiding system and problem (7.2) the guided sys-
tem. This terminology is fitting since Theorem 7.6 shows that the stability of a
periodic solution to the guided system depends on that of a periodic solution to
the guiding system.

For any vector u = {uj}j≥0 we use the following notation

ū = {uj}j=0,...,M−1, u0 = {uj}j≥M .

The decomposition of problem (6.27) implies a corresponding decomposition of the
space W 1

2 (Q):

W 1
2 = W̄ ×W 0,
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where the norm of W̄ and W 0 are given by

‖ū‖W̄ =

( ∑
j=0,...,M−1

(1 + λj)|uj|2
) 1

2

, ‖u0‖W 0 =

( ∑
j=M,...,∞

(1 + λj)|uj|2
) 1

2

.

Throughout this section, we make the following assumption. It is a natural
assumption in light of [22, 25] (where existence of periodic solutions of the heat
equation with hysteresis on the boundary were proved).

Assumption 7.1. Assume that

1. Problem (6.1)–(6.4) has a periodic solution up with period 2T generated by
initial data (ϕα, ψα) ∈ W .

2. The function ūp satisfies Assumption 2.12.

Since the switching time of up depends only on ūp, then due to Assumption 2.12
up has exactly two switching points along its period, at t = T and t = 2T . Hence
we make the additional notation :

(ϕβ, ψβ) =
(
up(s+ T )|s∈(−2T,0), up(T )

)
,

which is the value of up in the phase space W at its switching time T .

Definition 7.2. The orbits Γ1 = (Γt1,Γ
x
1), Γ2 = (Γt2,Γ

x
2) ⊂ W are defined as

Γ1 := {(up(s+ t))
∣∣
s∈(−2T,0)

, up(t))
∣∣t ∈ [0, T ]},

Γ2 := {(up(s+ t))
∣∣
s∈(−2T,0)

, up(t))
∣∣t ∈ [T, 2T ]}.

The orbit of the periodic solution in the space W equals then

Γ = (Γt,Γx) = Γ1 ∪ Γ2.

Definition 7.3. A 2T -periodic solution up of problem (6.1)–(6.4) is called stable33

(or orbitally stable) if for any neighbourhood Λx of Γx in W 1
2 (Q) there exist

neighbourhoods Ω1 of Γ1 and Ω2 of Γ2 in W such that if

(ϕ, ψ) ∈ Ω1, Mψ < β or (ϕ, ψ) ∈ Ω2, Mψ ≥ β,

then the solution to problem (6.1)–(6.4) with initial data (ϕ, ψ), belongs to Λx for
t ≥ 0.

A 2T -periodic solution up is called asymptotically stable (or orbitally asymp-
totically stable), if in addition to the previous requirements, there exist neigh-
bourhoods Θ1 of Γ1 and Θ2 of Γ2 in W such that if

(ϕ, ψ) ∈ Θ1, Mψ < β or (ϕ, ψ) ∈ Θ2, Mψ ≥ β,

33The main goal in this chapter is to stabilize an unstable periodic solution from [25]. The
instability in [25] was in the space W 1

2 (Q). Hence here, while we have to take perturbations in
the spaceW (since it is the phase space), we show only that solutions stay in the neighbourhood
of the periodic solution in the space W 1

2 (Q).
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then the solution u of problem (6.1)–(6.4) with the initial data (ϕ, ψ) satisfies

dist(u(t),Γx)→ 0 as t→∞,

where the distance is taken in the W 1
2 (Q) space.

Remark 7.4. By equivalence of norms (see Notation 6.5), stability can be defined
in the same manner for up as a solution to the ODE problem (6.27). Moreover,
a periodic solution to the PDE problem (6.1)–(6.4) is stable if and only if it is
stable for problem (6.27). In the rest of the section we discuss stability of up
as a solution to the infinite-dimensional system of ordinary differential equations
problem (6.27).

Remark 7.5. Recall the definition of the Poincaré map P from Chapter I (Defini-
tion 3.7). Since W 1

2 (a, b) ⊂ W s
p (a, b) (for a < b and p, s satisfying Conditions 2.1

and 4.16), we can create a Poincare map P for (ϕ̄α, ψ̄α) (the initial data that gen-
erates the periodic solution to the guiding system (7.1)) such that (ϕ̄α, ψ̄α) is a
fixed point of P. Recall also Definition 3.9 of an asymptotically stable fixed point
for P. It is used in the statement of the next theorem.

Theorem 7.6. Let up be a periodic solution to PDE problem (6.1)–(6.4) satis-
fying Assumption 7.1. If (ϕ̄α, ψ̄α) is an asymptotically stable fixed point of the
corresponding Poincaré map P, then up is asymptotically stable periodic solution
to problem (6.1)–(6.4).

Proof. In light of Definition 6.21, and Theorem 6.17, we treat up as a solution to
problem (6.27).

Assume that (ϕ̄α, ψ̄α) is an asymptotically stable fixed point of P.

By Lemma 3.18 ūp is an asymptotically stable solution (in the sense of Defini-
tion 2.9). Hence it is sufficient to show that the solution to the guided system is
asymptotically stable. Choose ε > 0.

Let u be a solution to problem (6.27) with initial data (ϕ, ψ). Denote the Pyragas
term of problem (6.27) as

G(t) :=
∑

j=0,...,M−1

mjuj(t− 2T )−
∑

j=0,...,M−1

mjuj(t). (7.3)

By Lemma 3.19 for every ε > 0 there exists δ > 0 such that if

‖(ϕ̄, ψ̄)− (ϕ̄α, ψ̄α)‖W 1
2×RM ≤ δ,

then |G(t)| ≤ ε for all t ≥ 0 and

G(t)→ 0 as t→∞.

We use the following notation: Let t0, t1, . . . be the switching times of u, and
assume, without loss of generality, that Mu(t0) = α. We leave the proof of the
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theorem for t ∈ [0, t0] to the reader, as its method is similar to the rest of the proof.

Denote

(ϕ(1), ψ(1)) := (ϕ, ψ) if i = 1,

(ϕ(i), ψ(i)) := (u(s+ ti)
∣∣
s∈(−2T,0)

, u(ti)) ∈ W if i 6= 1,

and denote by u(i) the solution between the switchings ti and ti+1 (i.e., u(i) is a
restriction of u on [ti, ti+1]). In addition, use the notation

ci :=

{
‖ψ(i) − ψα‖W 1

2 (Q), if i is even,

‖ψ(i) − ψβ‖W 1
2 (Q), if i is odd.

Following problem (7.2) and the Definition 6.19 of a solution, the equation for the

guided system u
(i)
j , j = 0, . . . ,M − 1 when i ∈ N is even is

u
(i)′

j (t) = kj − λju(i)
j + bjG(t), t ∈ (ti, ti+1),

u
(i)
j (ti) = ψ

(i)
j ,

u
(i)
j (t) = ϕ

(i)
j (t), t ∈ (ti − 2T, ti).

The history in the previous equation is “contained” inside G(t), hence it is equiv-
alent to

u
(i)′

j = kj − λju(i)
j + bjG(t), t ∈ (ti, ti+1),

u
(i)
j (ti) = ψ

(i)
j .

Solving the previous equation yields

u
(i)
j (t) = e−λj(t−ti)(ψ

(i)
j −

kj
λj

) +
kj
λj

+ e−λjt
∫ t

ti

eλjrbjG(r)dr.

Step I. In this step we show that for every ε > 0 there exists δ > 0 such that if
‖(ϕ, ψ)− (ϕα, ψα)‖W ≤ δ, then ci ≤ ε for all i ≥ 1 and ci → 0 as i→∞.

Let i be even and j ≥ M . Recall that u
(i)
j (ti+1) = ψ

(i+1)
j , and that T and 2T

are the switching times of up in its period (Assumption 7.1). The term ci+1 then
equals

u(i)(ti+1)− ψβ

= e−λj(ti+1−ti)
(
ψ

(i)
j −

kj
λj

)
− e−λjT

(
ψαj −

kj
λj

)
+ e−λjti+1

∫ ti+1

ti

eλjrbjG(r)dr,

(7.4)
where we use the fact that ψβ = up(T ). The square of theW 0 norm of u(i)(ti+1)−ψβ
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is

c2i+1 =
∑
j≥M

(1 + λj)

∣∣∣∣e−λj(ti+1−ti)
(
ψ

(i)
j −

kj
λj

)
− e−λjT

(
ψαj −

kj
λj

)
+ e−λjti+1

∫ ti+1

ti

eλjrG(r)dr

∣∣∣∣2

≤ 2

( ∑
j≥M

(1 + λj)

∣∣∣∣e−λj(ti+1−ti)
(
ψ

(i)
j −

kj
λj

)
− e−λjT

(
ψαj −

kj
λj

)∣∣∣∣2︸ ︷︷ ︸
=:(A)

+
∑
j≥M

(1 + λj)

∣∣∣∣e−λjti+1

∫ ti+1

ti

eλjrbjG(r)dr

∣∣∣∣2︸ ︷︷ ︸
=:(B)

)
.

(7.5)
Part (A) is estimated in Step I.I, and part (B) in Step I.II.

Step I.I. By relation (7.5) and Lemma 9.10(1).

(A) =
∑
j≥M

(1 + λj)

∣∣∣∣e−λj(ti+1−ti)
(
ψ

(i)
j −

kj
λj

)
− e−λj(ti+1−ti)

(
ψαj −

kj
λj

)

+ e−λj(ti+1−ti)
(
ψαj −

kj
λj

)
− e−λjT

(
ψαj −

kj
λj

) ∣∣∣∣2
=
∑
j≥M

(1 + λj)

∣∣∣∣e−λj(ti+1−ti)(ψ
(i)
j − ψαj ) +

(
e−λj(ti+1−ti) − e−λjT

)(
ψαj −

kj
λj

)∣∣∣∣2
≤ (1 + χ)

∑
j≥M

(1 + λj)
∣∣∣ψ(i)

j − xαj
∣∣∣2 e−2λj(ti+1−ti)

+ χ̄
∑
j≥M

(1 + λj)

∣∣∣∣ψαj − kj
λj

∣∣∣∣2 ∣∣e−λj(ti+1−ti) − e−λjT
∣∣2 .

(7.6)
Let λ∗ = minj≥M λj > 0. Fix χ > 0 such that

γ := (1 + 2χ)e−2λ∗T < 1. (7.7)

By Lemma 3.12 (tβ is locally Lipschitz continuous), if the perturbation of the
guiding system is small enough, then there exists a constant C1 such that (see
notation of spaces in Chapter I Section 1.3).

|ti+1 − ti − T | ≤ C1‖(ϕ̄(i), ψ̄(i))− (ϕα, xα)‖(
Lp(−2T,0)

)M
×RM

≤ C1‖(ϕ̄(i), ψ̄(i))− (ϕα, xα)‖(
W 1

2 (−2T,0)
)M
×RM

.

Now choose i large enough such that ‖(ϕ̄(i), ψ̄(i))−(ϕα, xα)‖(W 1
2 (−2T,0))M×W̄ is small

enough and relation (7.7) will yield that

(1 + χ)e−2λj(ti+1−ti) ≤ (1 + 2χ)e−2λ∗T < 1.

126



Combining the preceding inequality with relation (7.6) shows that

(A) ≤ γ‖ψ(i) − ψα‖2
W 0 + χ̄

∑
j≥M

(1 + λj)

∣∣∣∣ψαj − kj
λj

∣∣∣∣2 ∣∣e−λj(ti+1−ti) − e−λjT
∣∣2 . (7.8)

Choose (by taking large i) the initial data (ϕ̄(i), ψ̄(i)) such that ‖(ϕ̄(i), ψ̄(i)) −
(ϕα, xα)‖(

W 1
2 (−2T,0)

)M
×RM

is small enough such that ti+1 − ti > T
2
. Then

∣∣e−λj(ti+1−ti) − e−λjT
∣∣ ≤ e−λj

T
2 |ti+1 − ti − T |

≤ C2

∥∥(ϕ̄(i), ψ̄(i))− (ϕ̄α, ψ̄α)
∥∥(

W 1
2 (−2T,0)

)M
×RM

.

The sum
∑

j≥M(1 + λj)
∣∣∣ψαj − kj

λj

∣∣∣2 in relation (7.8) converges due to Lemma 6.13.

Relation (7.8) implies then that

(A) ≤ γ ‖ψ(i) − ψα‖2
W 1

2 (R∞)︸ ︷︷ ︸
c2i

+C3

∥∥(ϕ̄(i), ψ̄(i))− (ϕ̄α, ψ̄α)
∥∥2(

W 1
2 (−2T,0)

)M
×RM

.

Note that
∥∥(ϕ̄(i), ψ̄(i))− (ϕ̄α, ψ̄α)

∥∥(
W 1

2 (−2T,0)
)M
×RM

→ 0 for even i → ∞ since we

assumed that (ϕα, ψα) is an asymptotically stable fixed point of P.

Repeat the same process for odd i with replacing α by β (and vice versa) to
show this estimate for every i.

Step I.II. Now we estimate (B) in relation (7.5). We have∣∣∣∣e−λjti+1

∫ ti+1

ti

eλjrbjG(r)ds

∣∣∣∣2 ≤ (e−λjti+1

∫ ti+1

ti

|eλjrbjG(r)|ds
)2

.

Choose an arbitrary γ̄ > 0. As we mentioned after relation (7.3), if ‖(ϕ̄, ψ̄) −
(ϕ̄α, ψ̄α)‖(

W 1
2 (−2T,0)

)M
×RM

is small enough, then |G(r)| ≤ γ̄, and hence

∣∣∣∣e−λjti+1

∫ ti+1

ti

eλjrbjG(r)ds

∣∣∣∣2 ≤ b2
j γ̄

2

λ2
j

(
1− e−λj(ti+1−ti)

)2 ≤
b2
j γ̄

2

λ2
j

.

Use this in (B) from relation (7.5):

(B) ≤
∑
j≥M

γ̄2

(
b2
j

λ2
j

+
b2
j

λj

)
= C4 γ̄

2,

where the last inequality follows Lemma 6.13. To prove that (B) → 0 as i → ∞
we note that supt∈[ti,ti+1] |G(t)| → 0 as i → ∞ by Lemma 3.19. Hence the choice
of γ̄ goes to 0 as i→∞.

This process can be repeated for odd i. Hence Steps I.I and I.II in addition
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to Lemma 9.10 show what was claimed in the beginning of Step I.

Step II. Choose ε > 0. We show that if ci ≤ ε, then dist(ui(t),Γ) ≤ Cε for
every t ∈ [ti, ti+1], where C > 0 is some constant. We show this only for even i, as
odd i follows similarly.

Step II.I. In the same manner that we achieved relation (7.4), the following
relation holds for every ti ≤ t ≤ ti + T , t < ti+1.

u
(i)
j (t)− ϕαj (t− ti) = e−λj(t−ti)

(
ψ

(i)
j −

kj
λj

)
− e−λj(t−ti)

(
ψαj −

kj
λj

)
+ e−λjt

∫ t

ti

eλjrbjG(r)dr

= e−λj(t−ti)
(
ψ

(i)
j − ψ

α
j

)
+ e−λjt

∫ t

ti

eλjrbjG(r)dr.

Applying the W 0 norm yields

‖u(i)(t)− ϕα(t− ti)‖2W 0 =
∑
j≥M

(1 + λj)

∣∣∣∣e−λj(t−ti) (ψ(i)
j − ψ

α
j

)
+ e−λjt

∫ t

ti

eλjrG(r)dr

∣∣∣∣2
≤ C5

∑
j≥M

(1 + λj)
∣∣∣e−λj(t−ti) (ψ(i)

j − ψ
α
j

)∣∣∣2
+ C5

∑
j≥M

(1 + λj)

∣∣∣∣e−λjt ∫ t

ti

eλjrbjG(r)dr

∣∣∣∣2

≤ C5

∑
j≥M

(1 + λj)
∣∣∣ψ(i)
j − ψ

α
j

∣∣∣2︸ ︷︷ ︸
≤‖ψ(i)−ψα‖2

W1
2 (Q)

+C5

∑
j≥M

(1 + λj)

∣∣∣∣e−λjt ∫ t

ti

eλjrbjG(r)dr

∣∣∣∣2 .

The first term in the last line is bounded by ε and goes to 0 using Step I, and we
use the same method that we used in Step I.II for the second term.

Step II.II. If ti+1 − ti > T and ti + T ≤ t ≤ ti+1, then

u
(i)
j (t)− ϕαj (T ) = e−λj(t−ti)

(
ψ

(i)
j −

kj
λj

)
− e−λjT

(
ψαj −

kj
λj

)
+ e−λjt

∫ t

ti

eλjrbjG(r)dr,

which is bounded similarly to Step I, with t replacing ti+1 and using the fact that
t− ti − T ≤ ti+1 − ti − T is small.
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8. Application: Stabilization of a periodic

solution

In this section we stabilize unstable periodic solutions. We consider a system taken
from [25], where it is known that an unstable periodic solution exists. We give sufficient
conditions under which stabilization of the periodic solution from [25] is possible. Fi-
nally, we give a family of examples in which we stabilize an unstable slow-oscillating34

periodic solution given in [25].

In this section we consider PDE problems having the form of problem (6.1)–(6.4)
with b(x) ≡ 0. It was first studied in [25], where they considered a thermal control
problem. It is shown in [25] that this problem has, for some choice of parameters,
an unstable periodic solution with a period 2T (we remark that the definition of in-
stability in [25] is different from the one in this dissertation, though see Lemma 8.1
for the connection between the problems). Recall that this periodic solution is also
a solution for nonzero b(x), since the delay was chosen as Pyragas control (see Sec-
tion 2 in introduction).

The goal in this section is to stabilize this unstable periodic solution. By stabi-
lizing we mean that we find a function b(x) 6≡ 0 such that the periodic solution
to problem (6.1)–(6.4) with this b(x) is stable, while it is unstable for b(x) ≡ 0.
The main result of the section is Theorem 8.5, which provides a family of systems
in which stabilization is achieved.

This section uses in the notation from Chapter I, as we use the theory from there
to study the stability of the guiding system. Writing the guiding system (7.1) in
the notation of problem (1.1)–(1.3) from Chapter I yields

u′(t) = kH(Mu)(t)−Λu+ A[u(t− 2T )− u(t)], for t > 0,

u(t) = ϕ(t), for t ∈ (−2T, 0),

u(0+) = x,

(8.1)

34By slow-oscillating periodic solution, we mean a system with an unstable periodic solution
up of period p1 such that the system has another periodic solution with period p2 < p1. Hence,
solution up oscillates slower than the solution with period p2.

129



where

A =


m0b0 m1b0 . . . mM−1b0

m0b1 m1b1 . . . mM−1b1

. . . . . . . . . . . .
m0bM−1 m1bM−1 . . . mM−1bM−1

 =


b0

. . .

. . .

. . .
bM−1

(m0 . . . mM−1

)
,

k =


k0

. . .

. . .

. . .
kM−1

 , Λ =


0 0 . . . 0
0 λ1 . . . 0
. . . . . . . . . . . .
0 . . . 0 λM−1

 ,

ϕ = (ϕ1, . . . , ϕM−1)T , x = (x1, . . . , xM−1)T .
(8.2)

Note especially that the first row of Λ is zero.

If b0 = b1 = · · · = bM−1 = 0 this system is equivalent to the guiding system
in [25], for which there were given conditions under which a system of this kind
has an unstable periodic solution. The next lemma shows the connection between
stability in this chapter and the stability in [25].

Lemma 8.1. Consider the linear operator LΠ (from Section 5) that corresponds
to problem (8.1). If b0 = b1 = · · · = bM−1 = 0, then the eigenvalues of LΠ equal a
union of the eigenvalues of the matrix from [25, formula (4.17)] and zero.

Moreover, the periodic solution up is stable if and only if the corresponding
periodic solution in [25] is stable.

Proof. By Lemma 5.9 if b0 = b1 = · · · = bM−1 = 0, then the eigenvalues of L̃Π

(which are equal to those of LΠ by Lemma 5.4) are {eigenvalues of materix F9} ∪
{0} (where F9 is given in the proof of Lemma 5.6). A direct calculation shows
that F9 equals the matrix [25, formula (4.17)].

As for stability, we note that when b = 0, then the history ϕ plays no rule in
the stability in Definition 7.3, and the definition is equivalent to Definition [Defi-
nition 3.3] [25] of stability.

We consider the case M = 3, which is the simplest case in which an unstable
periodic solution exists in [25]. For simplicity, choose

b := b0 = b1 = b2 ∈ R.

Problem (8.1) takes the form

u′0(t) = k0H(Mu)(t) + b(Mu(t− 2T )−Mu(t)),

u′1(t) = k1H(Mu)(t)− λ1u1(t) + b(Mu(t− 2T )−Mu(t)),

u′2(t) = k2H(Mu)(t)− λ2u2(t) + b(Mu(t− 2T )−Mu(t)),

(8.3)

with initial conditions defined as in (8.1).
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For simplicity again, fix m1,m2, and treat b,m0 as parameters. By [22, 25] if
b ≡ 0, then there exists a unique periodic solution that satisfies Assumption 7.1
for each m0 and b = 0 for certain choices of β − α. Due to the way that we chose
the delay, it is also a periodic solution when b 6= 0 (but not necessarily unique).
Following Theorem 7.6, it is sufficient to study the stability (in the sense of Defi-
nition 2.9) of the guiding system (7.1) (which equals (8.3) for M = 3).

Assume that β − α is such that a periodic solution that satisfies Assumption 7.1
exists. By abuse of notation we denote up(b,m0) := up(0,m0) to be a periodic
solution to the guiding system (8.3) (where the parameters are used to denote
that there may be a different periodic solution for each choice of b and m0).

For each b and m0, the linear operator LΠ(b,m0) from Section 4 is defined for
up(b,m0). By Theorem 4.18, the stability of up(b,m0) depends on the spectral
radius of LΠ(b,m0). In Section 5 we showed that the spectral radius is decided by
the eigenvalues of LΠ. In Lemma 5.13 we showed that there exists a polynomial
(namely, det

(
I− [F(µI− V)−1]

)
such that µ 6= 0 is an eigenvalue of LΠ if and only

if it is a root of this polynomial. Denote this polynomial by J(b,m0, µ) (again, it
depends on the parameters b,m0 of the system, and now also on µ 6= 0).

Treat µ as µ = µ1 + iµ2 and J as

J(b,m0, µ1, µ2) = J1(b,m0, µ1, µ2) + iJ2(b,m0, µ1, µ2),

where J1 and J2 are real-valued. Identifying the complex plane with R2, J becomes
an operator from R4 → R2. Note that J1, J2 and their partial derivatives by
b,m0, µ1, µ2 are continuously dependent on b,m0, µ1, µ2. This is straightforward
from Section 5.3.

Lemma 8.2. If µ be a root of J(b,m0, µ), then its complex conjugate µ̄ is also a
root of J(b,m0, µ).

Proof. The proof follows once noting that the coefficients of the matrix [F(µI− V)−1]
are real, see Section 5.3.

By the definition of J and Lemma 8.2 for b = 0 and a fixed m0, the polynomial
J has

• two simple complex conjugated non-real roots or one simple non-zero real
root,

• one root at zero.

The following assumption gives conditions on the nonzero roots. It is valid without
further mention throughout the rest of the section.

Assumption 8.3. For b = 0, we assume that there exist m1, m2 and m̃ such that

1. There are two complex conjugated roots (or one real root) of J on the unit
sphere for m0 = m̃,
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2. There are two complex conjugated roots (or one real root) of J outside unit
sphere for m0 < m̃,

3. All the roots of J are inside unit sphere for m0 > m̃,

By Lemma 8.2 when m0 = m̃, J has one root not below the imaginary axis. Denote
it by µ̃1 + iµ̃2.

Remark 8.4. Periodic solution that satisfy Assumption 8.3 can be build from [25,
Example 4.1]. The periodic solutions there are such that the stable ones have a
smaller period than the unstable ones. Hence, we call the stable periodic solutions
“fast-oscillating periodic solutions”, and the unstable periodic solutions “slow os-
cillating periodic solution”. We will stabilize now such slow-oscillating periodic
solutions, which are often the desirable ones in application.

The stabilization Theorem 8.5 will contain two conditions. We develop them
in two steps before stating the theorem.

Step I. The spectrum is upper semicontinuous [30, Chapter IV.3.1]. Hence for
every ε > 0 there is a δ > 0 such that if

‖(b,m)− (0, m̃)‖R2 ≤ δ,

then the eigenvalues of LΠ(b,m0) are contained in the set

S := Bε(µ̃1 + iµ̃2) ∪Bε(µ̃1 − iµ̃2) ∪Bε(0). (8.4)

Let us prove that if

det


∂J1

∂µ1

∂J1

∂µ2
∂J2

∂µ1

∂J2

∂µ2

 6= 0 at the point (0, m̃, µ̃1, µ̃2), (8.5)

then there is one eigenvalue in Bε(µ̃1 + iµ̃2), one eigenvalue in Bε(µ̃1 − iµ̃2), and
all the rest are in Bε(0). The balls are taken in the complex plane, and ε should
be small enough such that the balls do not intersect.

If (8.5) holds, then the implicit function theorem yields that there is a neigh-
bourhood of (0, m̃) and functions µ1(b,m0), µ2(b,m0) such that

J(b,m0, µ1, µ2) = 0

in this neighbourhood if and only if

µ1 = µ1(b,m0), µ2 = µ2(b,m0).

In particular, J(b,m0, λ1.λ2) has one root in Bε(µ̃1 + iµ̃2). This completes the
proof, since by the way that we defined J, µ 6= 0 is an eigenvalue of LΠ(b,m0) if
and only if J(b,m0, µ1, µ2) = 0.
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Step II. We want to show that a change of b pushes the eigenvalues inside the
unit sphere. Change to polar coordinates and define the operator J̃ : R4 → R2 as

J̃(b,m0, θ, r) = J(b,m0, r cos θ, r sin θ).

The operators J̃1 and J̃2 are defined as they were for J. The operator J̃ vanishes
at (0, m̃, θ̃, 1), where θ̃ is the angle of (µ̃1, µ̃2) in the complex plane. If the following
condition holds

det

∂J̃1

∂b

∂J̃1

∂θ
∂f2

∂b

∂f1

∂θ

 6= 0 at the point (0, m̃, θ̃, 1), (8.6)

then by the implicit function theorem there is a neighbourhood of (m̃, 1) and
function b(m0, r), θ(m0, r) such that

f(r,m0, b, θ) = 0,

in this neighbourhood if and only if

b = b(m0, r), θ = θ(m0, r).

The following statement is the main theorem in this section. See also Figure 8.

Theorem 8.5. If Assumption 8.3 and relations (8.5) and (8.6) take place, then
there exists m∗ < m̃ and b∗ 6= 0 such that up(0,m

∗) is an unstable periodic solution
to problem (8.3), and up(b

∗,m∗) is a stable periodic solution to problem (8.3).

imλ

reλ

λ(m̃, b = 0)

λ(m∗, b∗]

λ(m∗, b = 0]

Figure 4: Theorem 8.5. The eigenvalue of J above the imaginary axis is depicted
on the unit circle.

Proof. Choose 0 < ε small enough, such that if relation (8.5) holds, then there is
a neighbourhood N of (0, m̃) such that if (b,m0) ∈ N , then J(b,m0, µ1, µ2) has
only one eigenvalue in Bε(µ̃1 + iµ̃2). By Lemma 8.2 it is sufficient to determine
this eigenvalue to study stability.
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Since relation (8.6) holds, there is a neighbourhood Ñ of (m̃, 1) such that if

(m0, r) ∈ Ñ then the result in Step II holds. Choose m∗ < m̃ and r∗ < 1

such that (m∗, r∗) ∈ Ñ .

Since m∗ < m̃, the (µ1, µ2) root of J(0,m∗, µ1, µ2) above the imaginary axis is
outside the unit sphere (i.e. up(0,m

∗) is an unstable periodic solution). Since
r∗ < 1, then up(m

∗, r∗) is a stable periodic solution.
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9. Appendix: Generalities

This appendix collects all general notation and lemmas which are used in this dis-
sertation.

9.1 List of spaces

Table 1 summarizes the spaces used in this dissertation.

Chapter I
Symbol Description Definition
RN1 RN−1

Lp(a, b) Lebesgue space p-integrable functions on the real line
Lp(a, b) N copies of Lp(a, b) (Lp(a, b))

N

Lp with weak derivative which is Lp
W1
p(a, b) N copies of W 1

p (a, b) (W 1
p (a, b))N

W s
p (a, b), 0 < s < 1 Fractional Sobolev space ‖ϕ‖Lp(a,b) +

(∫ b
a

∫ b
a
|ϕ(t)−ϕ(s)|p
|t−s|1+sp dsdt

) 1
p

Seminorm of W s
p (a, b)

(∫ b
a

∫ b
a
|ϕ(t)−ϕ(s)|p
|t−s|1+sp dsdt

) 1
p

Ws
p(a, b) N copies of W s

p (W s
p (a, b))N

Bsp(a, b), −2T < a < b, Lp(−2T, b) ∩Ws
p(a, b)

Bswp Intermediate working space Lp(−T, 0) ∩Ws
p(−σ, 0)

Chapter II
L2 := L2(Q) Lebesgue space Square integrable functions on Q
W k

2 := W k
2 (Q) Sobolev space k times weakly differentiable functions

whose derivatives belong L2

W
1/2
2 (∂Q), W

3/2
2 (∂Q) Fractional Sobolev spaces

L2(a, b;B) square-integrable B-valued function
W 1

2 (a, b;B) Sobolev space of weakly differentiable
B-valued functions

W W 1
2

(
− 2T, 0;L2(Q)

)
×W 1

2 (Q)
W 2,1(Q× (a, b)) anisotropic Sobolev space

Table 1: Spaces

The following embedding is used often in the dissertation.

Lemma 9.1. The space W1
p is embedded in the space Ws

p (where the bound depends
on the size of the domain) [13, Proposition 2.2].

9.2 Finite difference lemma: Fréchet derivatives of W1
p func-

tions

A version of the lemma in this section can be found in Mikhailov [38][Chapter III,
3.4]. The version that appears here is a modification of the theorem there, with
three main differences:

1. While in Mikhailov it is required for the function to be compactly supported,
we require it to be defined on a larger region.
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2. While Mikhailov handles the L2 norm, we handle the Lp, p ≥ 1 norm (which
is the case in this dissertation, see Condition 4.16).

3. We give an estimate of the nonlinear term (under extra conditions on the
function). This is needed to estimate the nonlinearity in the proofs of
Lemma 4.28 and Lemma 4.30.

Lemma 9.2. Let p ≥ 1, Q′ = (a, b) and Q b Q′ be a bounded interval.

1. If f ∈ W 1
p (Q′), then for δ small enough

‖f(·+ δ)− f(·)− δf ′(·)‖Lp(Q) = o(|δ|), (9.1)

where o depends on f .

2. If f additionally in W 2
p (a, c) and W 2

p (c, b) for some a < c < b, c ∈ Q, then

‖f(·+ δ)− f(·)− δf ′(·)‖Lp(Q) = O(|δ|1+ 1
p ), (9.2)

where O depends on f .

Proof. Step I. We first prove the following claim: if f ∈ W 1
p (Q′) is compactly

supported in Q′, then relation (9.1) holds. If in addition f belongs to the spaces
W 2
p (a, c) and W 2

p (c, b), then relation (9.2) holds.

Consider positive δ for simplicity. Assume for the time being that f ∈ C̊1(Q′)
(continuously differentiable functions with support in Q′). We extend f to be
zero out of Q′. Due to the compact support of f , the extension makes it W 1

p (R).
Equation (9.1) is equivalent to∣∣∣∣∣∣∣∣f(·+ δ)− f(·)

δ
− f ′(·)

∣∣∣∣∣∣∣∣
Lp(R)

→ 0 as δ → 0.

Since we assume for the moment that f also has a classical derivative (which equals
the weak one), then

f(θ + δ)− f(θ)

δ
− f ′(θ) =

1

δ

[∫ θ+δ

θ

f ′(s)− f ′(θ)ds
]
.

Taking it to the p-th power, integrate over the whole interval on both sides, and
use Hölder’s inequality:∫ ∞

−∞

∣∣∣∣f(θ + δ)− f(θ)

δ
− f ′(θ)

∣∣∣∣p dθ ≤ 1

δ

∫ ∞
−∞

∣∣∣∣∫ θ+δ

θ

f ′(s)− f ′(θ))ds
∣∣∣∣p dθ

≤ 1

δ

∫ δ

0

∫ ∞
−∞
|f ′(θ + r)− f ′(θ)|p dθdr.

Restricting both sides to Q′ = (a, b) yields∣∣∣∣∣∣∣∣f(·+ δ)− f(·)
δ

− f ′(·)
∣∣∣∣∣∣∣∣p
Lp(Q′)

≤ 1

δ

∫ δ

0

∫ b

a

|f ′(θ + r)− f ′(θ)|p dθ︸ ︷︷ ︸
(∗)

dr. (9.3)
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Now we explain why inequality (9.3) is true for general W 1
p (Q′) functions with

compact support (which is extended by zero out of Q′). For this we refer the
reader to the proof of Mikahilov [38, Chapter III, Section 3.4, Theorem 3]. The
general idea is to approximate f by its averaging function with, with a sufficiently
small averaging radius, ρ. The averaging functions are in C̊1(Q′) and hence satisfy
inequality (9.3). The space C̊1(Q′) is dense in W 1

p (Q′) with zero trace, and hence
taking the limit as ρ→ 0 yields the appropriate result.

To obtain equation (9.1) we need to use the theorem for continuity in the mean
of functions in the space Lp(Q

′), p ≥ 1. The proof of this lemma is exactly the
same as the proof for L1(Q′) and L2(Q′) in [38, III.2,Theorem 4]. This continuity
implies that for every ε > 0, there is a γ = γ(f) > 0 such that if |r| ≤ |δ| ≤ γ,
then the last term in inequality (9.3) (denoted as (*)) satisfies

(∗) ≤ εp.

Using this and inequality (9.3) we get that

∣∣∣∣∣∣∣∣f(θ + δ)− f(θ)

δ
− f ′

∣∣∣∣∣∣∣∣p
Lp(Q)

≤ εp,

for |δ| ≤ γ. This shows equation (9.1) for functions which are compactly supported
in Q′.

To show Equation (9.2) we assume that f is W 2
p (a, c) and W 2

p (c, b), and develop
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(*):

(∗) =

∫ c−δ

a

|f ′(θ + r)− f ′(θ)|p dθ +

∫ c

c−δ
|f ′(θ + r)− f ′(θ)|p dθ

+

∫ b

c

|f ′(θ + r)− f ′(θ)|p dθ

≤
∫ c−δ

a

∣∣∣∣∫ r

0

f ′′(θ + s)ds

∣∣∣∣p︸ ︷︷ ︸
≤(

∫ r
0 |f ′′(θ+s)|ds)

p

dθ +

∫ c

c−δ
|f ′(θ + r)|p dθ

+

∫ c

c−δ
|f ′(θ)|p dθ +

∫ b

c

∣∣∣∣∫ r

0

f ′′(θ + s)ds

∣∣∣∣p︸ ︷︷ ︸
≤(

∫ r
0 |f ′′(θ+s)|ds)

p

dθ

≤ rp−1

∫ c−δ

a

∫ r

0

|f ′′(θ + s)|p dsdθ︸ ︷︷ ︸
=
∫ r
0

∫ c−δ+s
a |f ′′(θ)|pdθds

+

∫ c−r

c−δ
|f ′(θ + r)|p dθ +

∫ c

c−r
|f ′(θ + r)|p dθ

+ δ |f ′(θ)|pL∞(a,c) + rp−1

∫ b

c

∫ r

0

|f ′′(θ + s)|p dsdθ︸ ︷︷ ︸∫ r
0

∫ b+s
c+s |f ′′(θ)|

pdθds

≤ rp ‖f ′′‖pLp(a,c) + (δ − r) |f ′|pL∞(a,c)

+ r ‖f ′‖pL∞(c,b) + δ |f ′(θ)|pL∞(a,c) + rp ‖f ′′‖pLp(c,b) .

Plugging this back into equation (9.3) instead of (*) yields∥∥∥∥f(θ + δ)− f(θ)

δ
− f ′

∥∥∥∥p
Lp(Q′)

≤ 1

δ

∫ δ

0

rp ‖f ′′‖pLp(a,c) + δ |f ′|pL∞(a,c)

+ r ‖f ′‖pL∞(c,b) + δ |f ′(θ)|pL∞(a,c) + rp ‖f ′′‖pLp(c,b) dr

≤ 1

p+ 1
‖f ′′‖pLp(a,c) δ

p + δ |f ′‖pL∞(a,b) +
1

p+ 1
‖f ′′‖pLp(c,b) δ

p.

This shows equation (9.2) for f which is compactly supported in Q′.

Step II. Since Q is compactly contained in the interior of Q′, there exist sub-
sets Q1, Q2 b Q′ such that Q ⊂ Q1 ⊂ Q2 ⊂ Q′. Take a function η such that

η(θ) =

{
1 θ ∈ Q1,
0 θ ∈ Q′/Q2

, η ∈ C∞(Q̄′)

Observe that the product of f and η, is such that fη(θ) ∈ W 1
p (Q′) is compactly

supported in Q′. Step I implies that

‖fη(θ + δ)− fη(θ)− δ(fη)′(θ)‖Lp(Q′) → 0 as δ → 0.
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Choose |δ| < dist{∂Q, ∂Q1}. Then∫
Q′
|fη(θ + δ)− fη(θ)− δ(fη)′(θ)|pdθ

=

∫
Q′/Q

|fη(θ + δ)− fη(θ)− δ(fη)′(θ)|pdθ +

∫
Q

|fη(θ + δ)− fη(θ)− δ(fη)′(θ)|pdθ → 0

as δ → 0. Since both terms on the right hand side in the previous equations are
non-negative, then∫

Q

|fη(θ + δ)− fη(θ)− δ(fη)′(θ)|pdθ → 0 as δ → 0.

By the definition of η, fη(θ) = f(θ) if θ ∈ Q. Then, the way in which we selected
δ, shows that the previous equation equals∫

Q

|f(θ + δ)− f(θ)− δf ′|pdθ → 0 as δ → 0.

Equation (9.2) follows in a similar manner.

9.3 Besov’s inequality

Lemma 9.3. Let p > 1 and s ∈ [0, 1]. Let a < b and 0 < σ < b − a. If
f ∈ W s

p (a, b+ σ) and δ ∈ (0, σ/2), then

‖f(θ + δ)− f(θ)‖Lp(a,b) ≤ Constδs‖f‖W s
p (a,b+σ).

If f ∈ W s
p (a− σ, b) and δ ∈ (−σ/2, 0), then

‖f(θ − δ)− f(θ)‖Lp(a,b) ≤ Constδs‖f‖W s
p (a−σ,b).

In both cases, Const > 0 does not depend on f .

Proof. For s < 1 the proof follows from [5, Chap. IV, Eq. (14)]. For s = 1, the

result is obtained by representing f(θ + δ)− f(θ) =
∫ δ

0
f ′(θ + s) ds.

9.4 Properties of fractional Sobolev spaces

Lemma 9.4 (Fractional Sobolev functions are continuous in the norm). Let Q,Q′ ⊂
R be bounded domains such that Q b Q′. If ps < 1, then any function f in Ws

p(Q
′)

is continuous in the following sense. For every ε > 0 there exists δ > 0 such that
if

|y| ≤ δ,

then

‖f(·+ y)− f(·)‖Ws
p(Q) ≤ ε,

where δ < dist(∂Q, ∂Q′) (for the statement to be well-defined).
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Proof. Choose ε > 0.

Since ps < 1, the set C∞0 (Q′) (compactly supported smooth function in Q′) is
dense in Ws

p(Q
′) [51, 4.3.2, Theorem 1]. Then there exists f̃ ∈ C∞0 (Q′) such that

‖f − f̃‖Ws
p(Q′) ≤

ε

3
.

Note that if f ∈Ws
p(Q

′), then ‖f‖Ws
p(Q) ≤ ‖f‖Ws

p(Q′). Hence the previous inequality
implies that

‖f − f̃‖Ws
p(Q) ≤ ‖f − f̃‖Ws

p(Q′) ≤
ε

3
,

‖f(·+ y)− f̃(·+ y)‖Ws
p(Q) ≤ ‖f − f̃‖Ws

p(Q′) ≤
ε

3
,

where |y| < dist(∂Q, ∂Q′).

Since f̃ ∈ C∞0 (Q′), there is a 0 < δ < dist(∂Q, ∂Q′) such that if |y| ≤ δ, then

‖f̃(·+ y)− f̃(·)‖Ws
p(Q) ≤ Const‖f̃(·+ y)− f̃(·)‖C1(Q̄) ≤

ε

3
.

Hence, if |y| < δ, then

‖f(·+ y)− f(·)‖Ws
p(Q)

≤ ‖f(·+ y)− f̃(·+ y)‖Ws
p(Q) + ‖f̃(·+ y)− f̃(·)‖Ws

p(Q) + ‖f̃(·)− f(·)‖Ws
p(Q)

≤ ε

3
+
ε

3
+
ε

3
= ε.

Lemma 9.5. If f1 ∈ Ws
p(a, b) and f2 ∈ Ws

p(b, c), where s < 1
p
, p > 1, then the

function

f(θ) =

{
f1(θ), θ ∈ [a, b),
f2(θ), θ ∈ [b, c],

belongs to Ws
p(a, c).

Proof. Define the space

W̃s
p(a, b) = {ϕ|ϕ ∈Ws

p(R), suppϕ ∈ [a, b]}

by Triebel [51, Chapter 4.3.2, Theorem 1], if s ≤ 1
p

and s− 1
p
6= integer then

W̃s
p(a, b) = Ws

p(a, b).

This means that supp f1 ∈ [a, b] and hence the function

f̃1(θ) =

{
f1(θ), θ ∈ [a, b),
0, θ ∈ [b, c],

is in the space Ws
p(a, c). In the same way, the function

f̃2(θ) =

{
0, θ ∈ [a, b),
f2(θ), θ ∈ [b, c],

is in the space Ws
p(a, c). Since f = f̃1 + f̃2, then f ∈Ws

p(a, c).
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The following lemma is proved in [8].

Lemma 9.6. Let f ∈Ws
p(a, c), s < 1

p
, and b such that a < b < c. Then

‖f‖Ws
p(a,c) ≤ C

(
‖f‖Ws

p(a,b) + ‖f‖Ws
p(b,c)

)
,

where C →∞ as min{b− a, c− b} → 0.

9.5 Spectral radius and equivalent norms

Definition 9.7 (spectral radius). Let L : X → X be a bounded linear operator.
The spectral radius of L is defined as

r(L) = sup{|λ|;λ ∈ σ(L)}.

By [12, Chapter VII.3] the limit ‖Ln‖ 1
n exists and

r(L) = lim
n→∞

‖Ln‖
1
n .

Lemma 9.8. Let X be a Banach space with a norm ‖ · ‖. Let L : X → X be a
bounded linear operator. If the spectral radius satisfies

r(L) < 1,

then there exists an equivalent norm on X, ‖ · ‖∗ such that

‖L‖∗ < 1

and if ϕ ∈ X, then

‖ϕ‖ ≤ ‖ϕ‖∗.

Proof. Let c ∈ R be such that

r(L) < c < 1.

Let ϕ ∈ X. Define the norm

‖ϕ‖∗ :=
∞∑
n=0

‖Lnϕ‖
cn

.

Note that the series converge:

‖ϕ‖∗ =
∞∑
n=0

‖Lnϕ‖
cn

≤
∞∑
n=0

‖Ln‖‖ϕ‖
cn

,

where the convergence of the last series is by the root test for the convergence of
a series.

lim
n→∞

(
‖Ln‖
cn

) 1
n

= lim
n→∞

‖Ln‖ 1
n

c
=
r(L)

c
< 1. (9.4)
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We leave it to the reader to check the norm properties of ‖ · ‖∗.

Next we show that the norms are equivalent. On the one hand, ‖ϕ‖ ≤ ‖ϕ‖∗,
since

‖ϕ‖ ≤ ‖ϕ‖+
∞∑
n=1

‖Lnϕ‖
cn︸ ︷︷ ︸

≥0

= ‖ϕ‖∗.

On the other hand, ‖ϕ‖∗ ≤ Const‖ϕ‖ by (9.4). Finally, we show that ‖L‖∗ < 1.

‖Lϕ‖∗ =
∞∑
n=0

‖Ln+1ϕ‖
cn

= c

∞∑
n=0

‖Ln+1ϕ‖
cn+1

≤ c‖ϕ‖∗.

9.6 RN norm of an integral of an Lp function

Lemma 9.9. Let f ∈ Lp(a, b), p > 1. Then∥∥∥∥∫ b

a

f(s)ds

∥∥∥∥
RN
≤ (b− a)

p−1
p ‖f‖Lp(a,b) .

Proof. The proof follows from the calculation.∥∥∥∥∫ b

a

ϕ(s)ds

∥∥∥∥
RN
≤
∫ b

a

‖ϕ(s)‖RN ds = ‖ϕ‖L1(a,b) ≤ (b− a)
p−1
p ‖ϕ‖Lp(a,b) ,

where the last inequality follows from Hölder’s inequality.

9.7 Technical Lemmas

The following lemma is used in the proof of Theorem 7.6.

Lemma 9.10. The following takes place.

1. For every χ > 0, there exists χ̄ > 0 such that

(a+ b)2 ≤ (1 + χ)a2 + χ̄b2, (9.5)

for every a, b ∈ R.

2. Let a sequence c1, c2, . . . of nonnegative numbers satisfy the inequalities

ci+1 ≤ γci + fi, i ∈ N,

where fi are positives, fi → 0 as i→∞ and γ < 1 is independent of i. For
every ε > 0 there is δ > 0, such that if

c1 ≤ δ,

fi ≤ δ for all i ∈ N,

then ci ≤ ε for all i ∈ N and ci → 0 as i→∞.
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Proof. 1. We use “Young’s inequality with epsilon”

2ab ≤ χa2 +
b2

χ
.

Hence

(a+ b)2 = a2 + b2 + 2ab ≤ a2 + b2 + χa2 +
b2

χ
= (1 + χ)a2 + (1 +

1

χ
)b2.

Set χ̄ = 1 + 1
χ

to get relation (9.5).

2. Fix an arbitrary ε > 0. Choose γ̄ > 0 such that γ + γ̄ < 1, and δ > 0 such
that δ ≤ (1 − γ − γ̄)ε. Assume that fi ≤ δ for all i ∈ N and that c1 ≤ δ.
Then c1 ≤ ε and

c2 ≤ γc1 + f1 ≤ γε+ (1− γ − γ̄)ε ≤ (1− γ̄)ε ≤ ε.

Continue by induction. If ci ≤ ε, then

ci+1 ≤ γci + fi ≤ (1− γ̄)ε ≤ ε,

which shows that ci ≤ ε for all i ∈ N.

Now take an arbitrary ε1 > 0. By the lemma’s assumption, there exists
N1 > 0 such that fi ≤ (1 − γ − γ̄)ε1 if i ≥ N1. Thus, for every i ≥ N1, if
ci ≥ ε1 then

ci+1 ≤ γci + (1− γ − γ̄)ε1 ≤ (1− γ̄)ci,

and if ci ≤ ε1 then

ci+1 ≤ γci + (1− γ − γ̄)ε1 ≤ (1− γ̄)ε1 ≤ ε1,

which implies that there exists N2 ≥ N1 such that ci ≤ ε1 for all i ≥ N2.

9.8 Nonlinear auxiliary function

Lemma 9.11. Let a function f be defined as

f(θ) :=

{
aθ θ ∈ [−δ, 0]
0 θ ∈ (0,∞),

(9.6)

where a ∈ R and δ ∈ (0, 1) ∩ (0, T ). Then for s ∈ (0, 1)

‖f‖Ws
p(−δ,T−δ) ≤ Constδ1−s+ 1

p , (9.7)

where Const > 0 does not depends on δ and T .
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Proof. We have

‖f‖Lp(−δ,T−δ)

=

(∫ T−δ

−δ
|f(θ)|pdθ

) 1
p

=

(∫ 0

−δ
|aθ|pdθ

) 1
p

=
a

p+ 1
δ1+ 1

p ≤ Constδ1+ 1
p
−s.

Now we estimate the seminorm(∫ T−δ

−δ

∫ T−δ

−δ

(
|f(t)− f(r)|p

|t− r|1+sp

)
drdt

) 1
p

=

(∫ T−δ

−δ

∫ 0

−δ

(
|f(t)− f(r)|p

|t− r|1+sp

)
drdt+

∫ T−δ

−δ

∫ T−δ

0

(
|f(t)|p

|t− r|1+sp

)
drdt

) 1
p

= |a|

(∫ 0

−δ

∫ 0

−δ

∣∣t− r|p−1−sp) drdt︸ ︷︷ ︸
(A)

+

∫ T−δ

0

∫ 0

−δ

(
|r|p

|t− r|1+sp

)
drdt︸ ︷︷ ︸

(B)

+

∫ 0

−δ

∫ T−δ

0

(
|t|p

|t− r|1+sp

)
drdt︸ ︷︷ ︸

(C)

) 1
p

.

Estimate each part separately. We have

(A) =
2

(p− sp)(p− sp+ 1)
δp−sp+1.

After changing the order of integration, (B) = (C). We must calculate only (C)
then:

(C) =︸︷︷︸
0≤t≤r

∫ 0

−δ

∫ T−δ

0

(
(−t)p(r − t)−1−sp) drdt = −

∫ 0

−δ

1

sp
(−t)p

[
(r − t)−sp

] ∣∣∣∣r=T−δ
r=0

dt

=

∫ 0

−δ

1

sp
(−t)p((−t)−sp − (T − δ − t)−sp)dt ≤

∫ 0

−δ

1

sp
(−t)p−spdt

= − 1

(sp)(p− sp+ 1)

[
(−t)p−sp+1

] ∣∣∣∣0
−δ

=
δp−sp+1

(sp)(p− sp+ 1)
.

Taking it to the power of 1
p

both on (A) and (C) (=(B)), we obtain estimate

(9.7).
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[31] J. Kopfová and T. Kopf. Differential equations, hysteresis, and time delay. Z.
Angew. Math. Phys., 53(4):676–691, 2002.

[32] S. G. Krantz. Partial differential equations and complex analysis. Studies in
Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. Lecture notes
prepared by Estela A. Gavosto and Marco M. Peloso.
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