
       

 

 

 

 

Dissertation zur Erlangung des akademischen Grades  

Doktor der Naturwissenschaften (Dr. rer. nat)  

 

 

 

STRUCTURE-BASED PARTITIONING 

OF SEMANTIC WEB ONTOLOGIES 

 
 
 
 

eingereicht am  Fachbereich Mathematik und Informatik  

der Freien Universität Berlin von 
 

 

Gökhan Coşkun 
 
 
 

 
 
 

  

 



 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tag der Disputation: 1. Oktober 2014 
 
 
1. Gutachter: Prof. Dr. Robert Tolksdorf 
2. Gutachter: Prof. Dr. Heiner Stuckenschmidt 









 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Yesterday I was clever, so I wanted to change the world.   

Today I am wise, so I am changing myself.  

Jalal ad-Dīn Muhammad Rumi 

 
 

 





 

 





 

 i 

ABSTRACT 

Component-based development of large and complex software systems by small well 
defined building blocks improves the comprehension as well as the management and 
leads to reusable software modules and a scalable overall system. Accordingly, 
designing ontologies in a modular way is intuitively promising in order to benefit from 
the same advantages. However, the status quo is that the most publicly available 
ontologies are monolithic. For that reason the number as well as the size of available 
ontologies has increased with the growing utilization during the last years. In order to 
improve the efficient usage (e.g. through distributed and scoped reasoning for 
reasoners), to simplify the maintenance (e.g. through refactoring support) and to allow 
reusable components (e.g. through increased human understandability) there is a need 
to partition large ontologies into well-sized building blocks in a (semi-) automatic way. 
Especially from the viewpoint of the Semantic Web reusability is a crucial issue because 
an agreed common semantic model allows easy data integration and interoperability. 

Considering ontologies as networks of concepts connected through properties, 
utilizing network analysis techniques is a promising approach to analyze and partition 
ontologies. As a very well established discipline in science there are a lot of 
sophisticated methods, algorithms and tools for network analysis available. This work is 
driven by the belief that these methods can be modified and applied to ontologies, so 
that the ontology structure can be used to analyze the content and to identify regions, 
which can be seen as network "communities" representing subdomains of the ontology. 
Furthermore, the analysis of the structure enables a first evaluation of the usability by 
allowing different views, so that existing ontologies can be easier comprehended by 
ontology engineers. This is very important because refactoring and reusing existing 
models assume that these models are understood.  

In this regard, an adaptable structure-based ontology partitioning framework has 
been designed and implemented that utilizes community detection algorithms from the 
field of social network analysis. According to the motivation of the partitioning, the 
framework provides different configurable parameters. By this means the optimal 
solution for a certain motivation can be achieved. The proposed framework has been 
evaluated with a gold-standard approach for two concrete ontology partitioning cases. 
On the one hand, it was analyzed how term chunks from ontology documentation pages 
of thirteen ontologies can be reconstructed. On the other hand, it was investigated how 
the modules of four selected modular built ontologies can be reidentified.  

For both cases, 480 different combinations of configurations have been applied on 
each ontology. The performance of the framework has been measured with F-Measure 
similarity function applied on the reference model and the produced partitions.  This 
resulted in very good as well as very bad results. For that reason, the next problem was 
to define a strategy to select the best configuration for the partitioning process based 
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on the structure of the ontology and the motivation for partitioning. Two different 
approaches have been used in this regard. Firstly, the results with all ontologies and all 
configurations have been analyzed statistically. The values for the different parameters, 
which led to the best results, have been selected. Secondly, assuming that similar 
ontologies should be partitioned alike, each new ontology that should be partitioned 
has been compared to already partitioned ontologies with a distance metrics based on 
structural metrics. After the most similar ontology was identified, the configuration 
leading to the best results for the already known ontology has been applied on the new 
ontology.  

With both approaches similar tools could be outperformed significantly, whereas the 
similarity based approach led to minimally better results than the statistic approach. The 
overall result is that for both reconstructing term chunks as well as modular ontologies 
the reference models could be reproduced up to sixty percent. Even though this value is 
twice as good as the performance of the similar tools, this does not justify a fully 
automatic approach for ontology partitioning. However, it could be demonstrated that 
with the proposed framework at least a semi-automatic approach for ontology 
partitioning can be realized, that creates an acceptable first result that should be refined 
manually.  
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1 INTRODUCTION 

Component-based development of large and complex software systems from small 
well-defined building blocks improves comprehension as well as management and leads 
to reusable software modules and a scalable overall system (Sametinger, 1997). 
Accordingly, designing ontologies in a modular way is expected to benefit from the same 
advantages (Stuckenschmidt & Klein, 2004). However, the status quo is that most 
publicly available ontologies are monolithic. For that reason, there are plenty of large 
and complex ontologies online available. Table 1-1 shows some size properties of 
popular ontologies.  

 
 

Name Number of 
classes 

Number of 
properties 

File size Lines of code 

FOAF1  19 67 44 KB 605 

SIOC2 17 86 50.2 KB 851 

DBPedia3 394 1,748 747.6 KB 4237 

NCI Cancer4 27,652 70 34.4 MB 932,712 

Gene Ontology5 52,904 41 103.9 MB 2,009,934 

Table 1-1: Popular ontologies along with some size properties. (The number of classes and 
the number of properties have been extracted with Protege6.) 

The constantly growing number of online available ontologies for various domains 
(d’Aquin, Baldassarre, et al., 2007; Ding & Finin, 2006) increases the probability that 
reusable ontologies with acceptable quality are available. Since reusability is a crucial 
issue for the success of ontologies and especially for the Semantic Web, this is a highly 
desired trend. In fact, it is broadly accepted that efficient and effective reuse promises 
many benefits. Primarily, it enables saving necessary investment costs by avoiding the 
reconstruction of already existing ontologies. In order to understand the complexity of 

                                                        
1 http://xmlns.com/foaf/spec/ last access April 25th 2012 
2 http://rdfs.org/sioc/spec/ last access April 25th 2012 
3 http://wiki.dbpedia.org/Downloads37  last access April 25th 2012 
4 http://www.mindswap.org/2003/CancerOntology/nciOncology.owl last access April 25th 2012 
5 http://www.geneontology.org/GO.downloads.ontology.shtml last access October 10th 2013 
6 http://protege.stanford.edu/ last access April 25th 2012 

http://www.geneontology.org/GO.downloads.ontology.shtml
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ontology development and to assess the possible benefit of ontology reuse, it is 
essential to know that the importance of ontologies lies in the deep problem and 
domain analysis during the development process. According to Chandrasekaran et al., a 
"good" analysis clarifies the structure of the domain knowledge (Chandrasekaran, 
Josephson, & Benjamins, 1999). However, a good analysis, which is only one part of the 
overall ontology creation process, is a very cumbersome and time-consuming activity.  
Apart from saving investment costs, ontology reuse is expected to ensure a certain level 
of quality. The reason for this is that the longer an ontology exists and is reused, the 
more review processes it has gone through. Furthermore, in the context of the Semantic 
Web ontologies are considered the shared knowledge of distributed information 
systems (Bontas, Mochol, & Tolksdorf, 2005; Bontas & Mochol, 2005). In this regard, 
ontology reuse is also expected to support interoperability and system integration. 

Due to these important advantages, ontology reuse is recommended in most 
ontology engineering methodologies. However, the initially described issue of 
monolithically created large and complex ontologies leads to substantial problems 
exacerbating ontology reuse. Even though most ontology engineering methodologies 
mention the reuse of existing ontologies as a possible starting point, none of them 
provide detailed descriptions about the reuse process. Especially the analysis of 
discovered candidate ontologies and the decision if and to which extend they can be 
reused are still open research questions. Since decision making is always a matter of 
knowledge, the main question is how candidate ontologies can be comprehended fully. 
For that reason, appropriate size and complexity reduction methods and techniques 
become crucial. This especially holds for large and complex ontologies, whose 
development requires high effort. Therefore, their reuse would lead to much more 
benefit than the reuse of simple and easy to create ontologies.  

In order to support perception and to accelerate comprehension, it is important to 
visualize an ontology in an appropriate way (Dzbor & Motta, 2008). For ontologies with 
hundreds and thousands of concepts, it is impossible for the human mind to 
comprehend the whole content. In this regard, suitable support systems lower the 
burden to understand complex ontologies through reduction and projection techniques 
(Dzbor & Motta, 2008), e.g. by highlighting only relevant concepts or by reducing the 
complexity through partitioning. The latter is of particular interest because even the 
specification document of the Friend of a Friend (foaf) (Brickley & Miller, 2010) 
vocabulary, which is in comparison to the ontologies listed in Table 1-1 rather small, 
contains a  grouping of the concepts (illustrated in Figure 1-1). Such a grouping is 
treated as a particular application for ontology partitioning. Similar term chunks have 
been used in the documentations of other ontologies like the Music Ontology (Raimond 
et al., 2012), the Atom Activity Streams Ontology (Minno & Palmisano, 2010), and the 
Semantic Web Conference Ontology (Möller, Bechhofer, & Heath, 2009). Since they are 
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all about the same size like FOAF, they emphasize how fast increasing size and 
complexity exceeds the cognitive abilities of humans and important an appropriate 
presentation is.  

 
 

 

Figure 1-1: Term chunks of the FOAF vocabulary in the specification. 

In addition to ontology reuse, processes like interlinking, refactoring, maintenance 
and management are also depending on comprehension and would benefit from size 
and complexity reduction as well. It must be kept in mind that each one of these 
processes has different demands, e.g. regarding the size and the number of partitions to 
be created. Thus, this work’s objective is the realization of size and complexity reduction  
through an adaptable ontology partitioning framework. The targeted outcome is a 
support system that accelerates interlinking and reuse (e.g. through ontology 
documentation support) and simplifies maintenance (e.g. through refactoring and 
modularization support). 

1.1 Approach and Contribution 

A partitioning process to create building blocks from monolithic ontologies has to 
meet different requirements than a partitioning process for grouping of concepts into 
subdomains as in Figure 1-1. Apparently, different motivations for partitioning have 
different demands regarding the created partitions. Therefore, an ontology partitioning 
system must be either optimized only for one motivation or has to be adaptable.  Since 
the former can be realized as a fixed configuration of the latter, this work tackles the 
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development of an adaptable ontology partitioning framework that can be configured 
for different use cases.  

For the realization of such a framework, a structure-based approach and the 
utilization of network partitioning techniques have been chosen. The main rationale for 
this decision was the fact that there are various sophisticated methods and tools for 
network partitioning available. In this regard, considering ontologies as networks of 
concepts connected through properties, the adoption of network measures and 
network analysis techniques is a promising approach to analyze and partition 
ontologies. The assumption driving this work is that these techniques can be modified 
and applied on the structure of ontologies to create partitions.  

During the realization of the framework, basic research questions have been tackled 
in depth. In the following, these questions are formulated along with brief descriptions 
of the provided solutions: 

 

1. Which goals do ontology partitioning processes have and what are the 
expectations of different goals on the partitioning process? 
This question is discussed in Chapter 3 in depth, while the focus is primarily on 
two goals. Firstly, partitioning for grouping the concepts of an ontology for the 
documentation page. Secondly, partitioning to improve the maintainability. 

 
2. What is the structure of an ontology and how can it be represented as a graph? 

In Section 5.2, the structure and its representation are discussed and two 
different possible graph-representations are described. The first one is the 
standard RDF graph and the second one is a more class-centric representation 
similar to entity-relationship-diagrams. 

 
3. How can community algorithms be applied on these graph representations of the 

structure and which parameters are possible to allow configuring the partitioning 
process? 
In fact, the core contribution of this work is the answer to this question. The 
whole Chapter 4 describes the proposed framework. The basic notion for 
communities in social network is the Modularity function which is described in 
Section 5.4.1.  In order to allow configurable partitioning, two approaches have 
been proposed which are novelties in the field of ontology partitioning. The first 
one is a weighting function based on the properties. It is described in Section 5.5. 
By this means, the semantic is taken into account during the partitioning 
process. The second one is an extension of the Modularity function with the size 
and the number of the created partitions. This is described in Section 5.6. 
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4. How are the results of a partitioning process evaluated? 
The evaluation of ontology partitioning is an ongoing research field. Even though 
there are some proposals, it will be an open issue for a while because even the 
field of ontology evaluation - without taking modularity into account - is still an 
open research question. (It is broadly accepted that the quality of an ontology 
depends on its application field. That means that ontology evaluation has to be 
done in the context of a concrete application.) Since the addressed problems in 
this work are neither ontology evaluation nor the evaluation of ontology 
partitioning, they have been bypassed by utilizing existing reference partitionings 
which are created by humans (mostly by the authors of the ontology). 
Considering these reference partitionings as gold standards, the problem of the 
evaluation has been solved by reducing it to the calculation of the similarity 
between the reference models and the framework's outcome. This is presented 
in detail in Section 6.1 and in Section 6.2. 

 
The contribution of this work is an adaptable ontology partitioning framework that 

utilizes community detection algorithms from the field of social networks analysis. 
According to the goal of the partitioning, the framework provides different configurable 
parameters. During the work on this thesis, some parts of the contributions have been 
presented at workshops and conferences and have been published within the 
proceedings of those events. In the following these papers are listed: 

 

 Coskun, G. 2008. Ontologiemodularisierung im Unternehmenskontext Einleitung 
Anforderungen an Ontologieentwicklung im Unternehmenskontext Ontologie-
modularisierung im Unternehmenskontext. (Berlin, 2008). 
 

 Coskun, G. 2010. Structure-based Analysis and Modularization of Ontologies. 
Doctoral Consortium of the Future Internet Symposium 2010 (Berlin, 2010). 

 

 Coskun, G., Heese, R., Luczak-Rösch, M., Oldakowski, R., Paschke, A., 
Schäfermeier, R. and Streibel, O. 2009. Corporate Semantic Web Towards 
Deployment of Semantic Technologies in Enterprises. The Second Canadian 
Semantic Web Working Symposium (CSWWS 2009) (Kellowna, BC, Canada, 
2009). 

 

 Coskun, G., Heese, R., Luczak-Rösch, M., Oldakowski, R., Paschke, A., 
Schäfermeier, R. and Streibel, O. 2009. Towards a Corporate Semantic Web. 
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International Conference on Semantic Systems (I-SEMANTICS  ’09) (Graz, Austria, 
2009). 

 

 Coskun, G., Luczak-Rösch, M., Heese, R. and Paschke, A. 2009. Applying Ontology 
Modularization for Corporate Ontology Engineering. International Conference on 
Semantic Systems (I-SEMANTICS  ’09) (Graz, Austria, 2009). 

 

 Coskun, G., Luczak-Rösch, M., Heese, R. and Paschke, A. 2009. Survey of 
Ontology Modularization for Corporate Ontology Engineering. The Second 
Canadian Semantic Web Working Symposium (Kellowna, BC, Canada, 2009). 

 

 Coskun, G., Rothe, M. and Paschke, A. 2012. Ontology Content "At A Glance". 7th 
International Conference on Formal Ontology in Information Systems (Graz, 
Austria, 2012), 147–159. 

 

 Coskun, G., Rothe, M., Teymourian, K. and Paschke, A. 2011. Applying 
Community Detection Algorithms on Ontologies for Indentifying Concept 
Groups. 5th International Workshop on Modular Ontologies (Ljubljana, Slovenia, 
2011). 

 

 Heese, R., Coskun, G., Luczak-Rösch, M., Oldakowski, R., Paschke, A., 
Schäfermeier, R. and Streibel, O. 2010. Corporate Semantic Web – Semantische 
Technologien in Unternehmen. Datenbank-Spektrum. 10, 2 (Aug. 2010), 73–79. 

 

 Paschke, A., Coskun, G., Heese, R., Luczak-Rösch, M., Oldakowski, R., 
Schäfermeier, R. and Streibel, O. 2010. Corporate Semantic Web: Towards the 
Deployment of Semantic Technologies in Enterprises. Canadian Semantic Web - 
Technologies and Applications. W. Du and F. Ensan, eds. Springer US. 105–131. 

 

 Teymourian, K., Coskun, G. and Paschke, A. 2010. Modular Upper-Level 
Ontologies for Semantic Complex Event Processing. Proceeding of the 2010 
conference on Modular Ontologies Proceedings of the Fourth International 
Workshop WoMO 2010 (2010), 81–93.  
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1.2 Methodology and Thesis Outline 

Research in Information Systems can be categorized into two paradigms (Hevner, 
March, Park, & Ram, 2004). The first one is called Behavioral Science Paradigm and 
corresponds to research in natural sciences, which means that it comprises knowledge-
producing activities (March & Smith, 1995). 

 
"It seeks to develop and justify theories (i.e., principles and laws) that explain 
or predict organizational and human phenomena surrounding the analysis, 
design, implementation, management, and use of information systems.” 
(Hevner et al., 2004).  

 
The second one is called Design Science Paradigm and corresponds to an engineering 

approach (Hevner et al., 2004). It comprises knowledge-using activities to solve 
problems and to  improve information systems (March & Smith, 1995). Thus, it is 
sometimes referred to as Improvement Research. The Design Science Paradigm is 
accepted to be the best suitable paradigm for this work. It was used to structure the 
main research activities and narratives of this thesis. Takeda et al. propose a design 
cycle, which describes the different steps of a design processes (Takeda, Veerkamp, 
Tomiyama, & Yoshikawam, 1990). It is illustrated in Figure 1-2. 

The first step is the decision on a concrete problem from a set of problems that is to 
be solved. From the knowledge about the problem, a solution is inferred through 
abduction and a suggestion is defined. In the next step, the suggested solution is 
developed. During the development phase, different new problems might occur, which 
then cause the creation of new cycles. Within the evaluation phase the performance of 
the developed solution is measured and the achieved improvement is quantified. 
Finally, in the conclusion phase the insights are analyzed and new problems as well as 
further investigations are discussed. 

The structure of this thesis is based on this design cycle. The first four chapters 
enable the reader to understand the general motivation of this work (Chapter 1), the 
fundamentals of the problem area (Chapter 2), the problem details in depth (Chapter 3), 
and finally existing solution attempts (Chapter 4). The suggestion and the development 
are then presented in Chapter 5, where low-level problems which came up during the 
development phase and are caused by the approach are discussed. In Chapter 6 the 
analysis of the framework’s performance is presented with respect to the 
aforementioned concrete motivations for partitioning ontologies. The main focus is on 
the influence of the different parameters and the role of the Modularity function. The 
comparison of the proposed framework with existing solutions is described in Chapter 7.  
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Figure 1-2: Design cycle for structuring the research activities according to the Design 
Science Paradigm. It has been applied in this research and used to structure the 
narratives of this document. 

 
Through this comparison, the contribution of this work to the problem area becomes 
clear. Finally, a summary and an outlook are presented in Chapter 8. 

For the sake of convenience for the reader and to offer the highest possible clarity 
about the structure of this document, each chapter starts with a brief abstract and 
closes with a short chapter summary. The former clarifies the structure as well as the 
motivation of the chapter whereas the latter repeats the most important chapter 
insights. Due to their general view, the first and last chapters do not follow this 
structure.  

 
 



 



 



 

2 FUNDAMENTALS 

In this chapter the fundamentals of this work will be presented. Only with a clear 
understanding about the fundamentals it is possible to follow the ideas and understand 
the outcome. In this regard, Section 2.1 starts with an in-depth analysis of the term 
ontologies and its understanding in Semantic Web. In contrast to the field of Artificial 
Intelligence (AI), where the term ontology was firstly adopted, Semantic Web brought 
new challenges. While the focus in AI was mainly on the expressivity and support for 
sophisticated reasoning processes, the Web environment demands more agility, 
scalability, and collaborative methods due to its open, large-scale, volatile, and 
participatory nature. 

In Section 2.2 Ontology Engineering is introduced, which is the main research area 
this work pursues to contribute. The most important methodologies from this field are 
described focusing on ontology reuse and maintenance. Thereby, the trend from heavy-
weight methodologies towards more agile methodologies allowing collaboration and 
flexibility is discussed.  

A summary about the content of this chapter is provided in Section 2.3. Finally, as a 
completion for the fundamentals and for the sake of clarity, a terminology section has 
been added to the appendix of this document that can be seen as a part of this chapter. 
It provides an overview about the most important concepts of this thesis with their 
definitions. 
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2.1 Ontologies in Semantic Web 

The vision of Semantic Web is to extend the World Wide Web by bringing structure 
to the meaningful content, so that it allows computers and people to better work in 
cooperation. The basic technologies for this vision, which are illustrated as a layer stack 
in Figure 2-1, are the Extensible Markup Language (XML), Resource Description 
Framework (RDF) and Ontologies. XML is an easy to understand and human-legible 
language which is used for bringing structure to documents by enabling users to create 
their own tags. RDF allows expressing meaning through triples following the form of 
subject-predicate-object statements. By using Uniform Resource Identifiers (URI) RDF 
makes sure that used concepts are tied to unique definitions accessible on the Web. 
Finally, an ontology - defined as a specification of a representational vocabulary for a 
shared domain of discourse (Gruber, 1993) - is a formal definition of concepts and their 
relations. Comprising taxonomy and inference rules, well designed ontologies enable 
powerful knowledge expression in a machine readable way, which in turn is the main 
goal of the Semantic Web vision. In this regard the success of Semantic Web depends 
significantly on the success of ontologies.  

 

 

Figure 2-1: Visualizing of the layers of the Semantic Web.(The picture was taken from 7) 

 

                                                        
7 http://www.semanticgroup.org/ last access October 11th 2013 

http://www.semanticgroup.org/
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In contrast to XML and RDF the concept ontology is a very abstract one. The term 
ontology has its origin in philosophy, where it is defined as the systematic study of being 
as such, that means each entity in the universe. Its goal is to describe the terms of entity 
classification. Due to its descriptive nature, computer scientists in the field of Artificial 
Intelligence (AI) adopted this term. They used it to refer to the basic models of their 
software systems, which form an abstract description of a part of the world. (These 
models are mostly referred to as the knowledge base of the software system.) However, 
while the philosophical understanding of this term is widely acknowledged, there are 
different views on ontologies in computer science. According to the online summit 
"Ontology, Taxonomy, Folksonomy: Understanding the Distinctions" from 2007 the 
spectrum of artifacts that are called "ontologies" covers folksonomies, taxonomies, 
thesauri, conceptual models, and formal logic-based models. A clarification of the 
different views on the term ontology is necessary.  

Poli and Obrst distinguish between the philosophical perspective and the computer 
science perspective (Poli & Obrst, 2010). While the former is called ontology as 
categorical analysis, the latter is called ontology as technology. In contrast, the ontology 
community distinguishes between lightweight ontologies, which are mainly taxonomies, 
from heavyweight ontologies, which model the domain in a deeper way and provide 
more restrictions on domain semantics (Gomez-Perez, Fernandez-Lopez, & Corcho, 
2004). Initially, basic logic formalisms were considered for modeling heavyweight 
ontologies with powerful expressivity. In AI first-order logic languages as Ontolingua 
(Gruber, 1993) and description logic languages as KL-ONE (Brachman & Schmolze, 1985) 
and Loom8 were developed. During the Semantic Web initiative different mark-up 
languages were defined for representing and expressing ontologies. While the Web 
Ontology Language (OWL) and the RDF Schema (RDFS) are broadly accepted by the 
Semantic Web community as ontology representation languages, methodologies how to 
create and maintain ontologies are still objects of investigation.  

2.1.1 Need for Ontologies 

The content of the Web is growing continuously since its invention. Through a 
significant shift of its perception, which is called Web 2.0, this growth got accelerated 
even more. This shift made every Web user to a potential content producer by using 
tools like blogs, wikis, social networks, multimedia sharing platforms etc. The apparent 
ubiquity of the Web, which nowadays gets an additional boost by modern mobile 
devices, made it an important part of everyday life. Companies as well as government 
departments understood how important the Web is to get in touch with the customers. 

                                                        
8 http://www.isi.edu/isd/LOOM/ last access July 16th 2012 
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Online product catalogues, product comparison sites, online encyclopedias and much 
more Web-based services demonstrated the importance of public data and its simple 
accessibility.  

The experience with the success of freely accessible data leads to high expectations 
of appropriate combination and integration of this data. The Web provides numerous 
data sources from very different domains (e.g. health care, movie database, 
geolocations, and weather information). To gain added value from these information 
sources, appropriate integration techniques are the key factor of success. In this regard, 
ontologies have become necessary to support the integration and management of 
Information Systems, which become large and complex (Di Maio, 2009). One essential 
benefit is the support of knowledge reuse and communication. Even very small 
ontologies - when well-formed and properly grounded - can be reused, linked to, 
referenced, and incorporated or at least intersected into larger ontologies (Di Maio, 
2009).  

2.1.2 Linked Data 

The vision of the Semantic Web (Berners-Lee, Hendler, & Lassila, 2001) published in 
2001 depicted the future of the World Wide Web. Being a vision, it described potential 
benefits of existing technologies on an abstract level. After short time, it was clear that 
it was necessary to define a first step for the progress towards the vision. A new 
paradigm came up called Linked Data which is a collection of best practices to publish 
data and enable the first step of the Semantic Web from document-oriented web of to 
the Web of Data. This paradigm consists mainly of the following four principles (Berners-
Lee, 2006):  

1. Use URIs as names for things. 
2. Use HTTP URIs so that people can look up those names. 
3. When someone looks up a URI, provide useful information, using the 

standards (RDF, RDFS, SPARQL) 
4. Include links to other URIs so that they can discover more things.   

The most important and at the same time the most difficult principle to implement is 
the fourth one (Auer, Lehmann, & Ngonga Ngomo, 2011). In order to interlink a data 
source with another data source it is necessary to discover a suitable candidate data 
source which contains similar content and to understand its structure. While the first 
part of this process is supported by online ontology libraries as Ontolingua and 
OntoSelect and search engines as Swoogle9, Watson10 and Ontosearch11 the second part 

                                                        
9 http://swoogle.umbc.edu last access July 16th 2012 
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is still a critical open issue. (There are more than 26 billion of triples in the Linked Open 
Data cloud, which is illustrated in Figure 2-2, but the interlinking is still less than 5\% 12.) 
Recent research activities in this field are mainly focused on automatic linking of entities 
in different knowledge bases. That means that individuals in different sources are 
analyzed and links between them are discovered (Volz, Bizer, Gaedke, & Kobilarov, 
2009).  

 
 

 

Figure 2-2: Visualization of the Linked Open Data cloud13 as of September 2011.  

 
The pragmatic approach of Linked Data leads to a more Web-centric view on 

ontologies than a semantic-centric view. That means that ontologies are no longer 
expected to be semantically enriched and expressive models. In Linked Data ontologies 
are considered as published schemas represented in RDF, RDFS or OWL. That does not 

                                                                                                                                                                     
10 http://watson.kmi.open.ac.uk/WatsonWUI last access July 16th 2012 
11 http://www.ontosearch.org last access July 16th 2012 
12 http://lod-cloud.net last access July 16th 2012 
13  Figure taken from http://lod-cloud.net/ (last access February 28th 2013) 

http://lod-cloud.net/
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mean, that heavyweight semantics is now allowed, but it is not a requirement. This is a 
contrast to the understanding of ontologies in the initial vision of the Semantic Web. 
This main rationale for this is the commonly accepted consensus that semantic 
technologies are not mature enough at this stage to be really useful in productive 
settings (Roberta, Alexandre, Vincent, & Carlo, 2007). Therefore, Linked Data focuses on 
the publishing of raw data on the global Web by postponing the semantic aspect to the 
future.  

2.1.3 Definitions 

Due to different understandings of the term ontology within the Computer Science 
community, it is important to clarify the meaning of this term in the context of this 
work. This is necessary to avoid misunderstandings and ambiguity in the rest of this 
document.   

According to Di Maio ontologies are conceptual and semantic models devised to 
support various intelligent functions including information representation, processing 
and retrieval in network-supported and Web-based environments (Di Maio, 2009). Since 
this work is done in the broader field of the Semantic Web research activities and 
especially with the pragmatic view of the Linked Data initiative, the understanding of 
the term ontology is as follows:  

 
Each publicly available vocabulary represented in RDF,  
RDFS or OWL is in this work treated as an ontology. 

 
However, as this definition comprises a broader spectrum, some distinctions are 

necessary to classify the different types of ontologies. One distinction is based on the 
expressivity level. Ontologies which comprise just concepts, concept taxonomies, 
relations between concepts and properties are called light-weight ontologies. On the 
other hand heavy-weight ontologies comprise axioms and constraints in addition to the 
aforementioned aspects. Furthermore, a second classification can be done based on the 
scope of the ontology. (Gomez-Perez et al., 2004) organizes ontologies into the 
following categories:  

 

 Top Level / Upper Level Ontologies are generic models and applicable in various 
domains.  They define general concepts and   relationships between them and are 
standardized by international   standardization committees (e.g. Suggested Upper 
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Merged   Ontology 14 (SUMO) by the IEEE Standard Upper Ontology Working   
Group15). 
 

 Domain Ontologies are domain-specific models, which describe   the knowledge 
of a particular domain (e.g. electronic, life science,   financial) and are being 
developed by communities of domain experts (e.g. the   Gene Ontology by the 
Gene Ontology Consortium16).  
 

 Task Ontologies in contrast to domain ontologies, task ontologies are models   
which focus on a particular task like scheduling. They define concepts and   
relations describing tasks needed for solving concrete problems.   
 

 Domain-Task Ontologies are task ontologies which are made for one domain and 
are only applicable in this domain. 
 

 Method Ontologies are specifying concepts and relations about methods which 
are necessary to do a task.  
 

 Application Ontologies are concrete and application-dependent models which 
are made for a particular application to solve concrete problems. 

 
Figure 2-3 illustrates an aspect of the categorization of ontologies by comparing 

scope and abstraction based on three selected categories. It shows that the number of 
ontologies within an abstraction level increases with getting more concrete. This is 
caused by the generality of abstract ontologies, which make them applicable across 
several domains and lead to more reusability.  

2.2 Ontology Engineering 

In order to provide some structural guidance for the ontology creation process some 
Ontology Engineering (OE) methodologies have been proposed. Ontology Engineering or 
sometime referred to as Ontological Engineering "refers to the set of activities that  
 

                                                        
14 http://suo.ieee.org/SUO/SUMO/index.html last access April 29th 2012 
15 http://suo.ieee.org last access April 29th 2012 
16 http://www.geneontology.org last access April 29th 2012 
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Figure 2-3: Comparison of the abstraction and the scope of ontologies. The more 
abstract an ontology is, the less alternatives it has.  

concern the ontology development process, the ontology life cycle, the methods and 
methodologies for building ontologies, and the tool suites and languages that support 
them" (Gomez-Perez et al., 2004). A methodology is defined as "a comprehensive, 
integrated series of techniques or methods creating a general systems theory of how a 
class of thought-intensive work ought to be performed”. There are already a lot of 
existing methodologies in literature. According to Di Maio “the main purpose and goal 
of adopting such structured approaches to systems development are 

 to make the development process of complex systems more manageable and to 
increase the effectiveness of the communication between analysis, designers, 
and programmers (which is supposed to reduce the risk of errors an flaws) 
 

 to maximize the chances that the system under development actually meets the 
business requirements by providing a means of mapping and translating 
requirements directly into systems functionality.'' (Di Maio, 2011) 

In this regard ontology engineering "is a specialized set of activities requiring depth 
and breadth of understanding, knowledge, and skills" (Di Maio, 2011). The overall 
ontology development process consists of three different activity groups (Gomez-Perez 
et al., 2004). To the first kind of activities belong management activities like scheduling 
of tasks to be performed, control of planed actions, and quality assurance. The second 
kind of activities is development oriented activities, which in turn can be divided into 
three subgroups: pre-development activities like environment and feasibility study; 
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development activities like specification, conceptualization, formalization, and 
implementations; post-development activities like maintenance and (re)use. Finally, 
support activities are the third kind of activities which are knowledge acquisition, 
evaluation, integration, documentation, merging, alignment, and configuration 
management.  

The range of ontology engineering methodologies widened during the last years 
mostly inspired by the knowledge engineering and software engineering disciplines and 
often evolved from each other. Therefore approaches differ in their relationship to 
software engineering and knowledge engineering, in details referring to the composition 
of ontology engineering and application development, the range of users interacting in 
ontology engineering tasks, and the degree of lifecycle support.   

One important difference between the existing methodologies is the degree of 
details regarding the specification. Some lightweight methodologies can be seen as an 
outline, while heavyweight methodologies range from the knowledge level to the 
representation formalism used. As this work has its scope on treating the complexity 
regarding ontology reuse and maintenance, this section presents only a selected part of 
the state-of-the-art in ontology engineering methodologies ranging from two heavy-
weight methodologies (METHONTOLOGY and On-To-Knowledge) to two collaborative 
methodologies (DILIGENT and the NeOn Methodology) and two light-weight 
methodologies (COLM and "Just Enough Ontology Engineering"). The selection is 
supposed to demonstrate the relevance of maintenance and reuse for the whole 
spectrum of ontology engineering methodologies. For an exhaustive description and 
comparison refer to (Gomez-Perez et al., 2004)}.  

2.2.1 METHONTOLOGY 

METHONTOLOGY (Fernandez, Gomez-Perez, & Juristo, 1997) can be considered as 
the most comprehensive Ontology Engineering methodology in literature. In fact, the 
aforementioned distinction of the overall ontology development process into three 
activity groups is based on METHONTOLOGY. Having its root in intelligent agent 
technologies, it has an AI perspective on ontologies. Therefore, it targets the 
construction of ontologies at the knowledge level. It is an approach to build ontologies 
from scratch, reuse or re-engineer existing ones. The central structure of its processes 
have been adopted from the IEEE standard for Software Engineering, which was 
assumed to be more mature than any new developed process for this special purpose. 
That yields to the lifecycle illustrated in Figure 2-4. It comprises three central activities 
of management (scheduling / planing, control and quality assurance), five activities of 
development (specification, conceptualization, formalization, implementation, and 
maintenance), and five activities of support (knowledge acquisition, integration, 
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evaluation, documentation, and configuration management). These activities underrun 
a cyclic lifecycle which allows for the iterative release of evolving ontology prototypes.  

 
 

 

Figure 2-4: The development process of METHONTOLOGY comprises three central 
activities of management, five activities of development, and five activities of support 
(Corcho, Fernández-López, Gómez-Pérez, & López-Cima, 2003). 

Regarding documentation METHONTOLOGY proposes to create a requirements 
specification document after specification, a knowledge acquisition document after 
knowledge acquisition, a conceptual model document after conceptualization, a 
formalization document after formalization, an integration document after integration, 
an implementation document after implementation, and finally an evaluation document 
after evaluation. But it is not described how these documents should be created and 
how they should look like.  

The reuse process is divided into the following four steps:  

1. find candidate ontologies 
2. the content and the granularity 
3. select the ontologies to be reused 
4. evaluate the selected ontologies 
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As mentioned before, METHONTOLOGY does not have its roots in Semantic Web, but 
in Agent Technologies. For that reason, it addresses knowledge workers and 
experienced ontology engineers and it assumes the developers to be familiar with 
ontologies in general. Therefore, it is not described in detail how these steps (for this 
work especially steps 2. and 3. are very relevant) should be executed. Additionally, it is 
not described how the proposed documents should support the reuse and re-
engineering processes. 

2.2.2 On-To-Knowledge 

The On-To-Knowledge Methodology (OTKM) proposes a more application-oriented 
ontology development process than METHONTOLOGY (Staab, Studer, Schnurr, & Sure, 
2001). Its overall goal is to build a knowledge management system for enterprise 
systems^, which enables the integration of knowledge from different knowledge 
sources. Ontologies are considered to be the means to switch from a document-
oriented view to a knowledge-oriented view. In this regard, the ontology development 
process is seen as a part of an "overarching methodology for introducing knowledge 
management systems" (Staab et al., 2001). Figure 2-5 illustrates the proposed process.  

In OTKM the actual development of the ontology begins in the kickoff phase, when 
the outcome of the feasibility study justifies it. In the kickoff phase, it is mentioned that 
ontologies might be reused, but it is not described in detail how this should be done. In 
the following phase, the refinement phase, it is mentioned that appropriate 
visualization of the ontology content (e.g. as a mindmap) might be helpful for the 
ontology engineer. Furthermore, it is stated that during the refinement each step should 
be documented without explaining how to do it.  
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Figure 2-5: Abstract overview of the On-To-Knowledge Process (Sure, Staab, & 
Studer, 2009) 

2.2.3 Diligent 

METHONTOLOGY as well as OTKM are heavyweight methodologies for creating 
ontologies for knowledge-based systems in a centralized manner. With the Semantic 
Web vision and the Linked Data initiative ontologies became an enabler for information 
integration in large-scale and highly distributed environments like the World Wide Web. 
Additionally, the Web 2.0 trend eliminated the separation between the role of the 
information producer and the role of the information consumers towards a more 
participatory and collaborative Web.   

Thus, the demands on a methodology for the development of ontologies in the sense 
of Semantic Web and Linked Data were different. This led to a new methodology called 
DILIGENT (Pinto, Staab, & Tempich, 2004) which stands for DIstributed, Loosely-
controlled and evolvInG Engineering of oNTologies. Figure 2-6 illustrates the interactions 
of different participants in DILIGENT, which respects the large distribution of ontology 
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engineering in Web-scaled settings and the totally disparate skill level of process 
stakeholders.  

 
 

 

Figure 2-6: The DILIGENT setting of roles and functions (Pinto et al., 2004) 

An ontology consensus is reached by an argumentation-based approach following a 
dedicated argumentation model (the DILIGENT argumentation ontology). Every 
individual is free in adapting the central ontology consensus locally and modify this 
adaption for its own purposes. A so-called control board analyzes the local modifications 
and adapts the shared central ontologies accordingly. The evolution of the consensual 
model is depending on these local adaptions. A lifecycle is underrun in DILIGENT, which 
enables an iterative evolution of the central consensual ontology while the detailed 
process phases (build, local adaption, analysis, revision, and local update) concentrate 
on reaching this human-centered consensus by argumentation about concept. 

The focus in DILIGENT is the argumentation-based coordination of the evolution of 
the ontology. By assuming a simple core ontology at the beginning of the process 
created by a small group it implicitly mentions modularity (core ontology and its 
extensions) without providing any further details. It is also not described how the 
control board is supposed to do the analysis of the local modifications and how to 
maintain the ontology according the outcome from the analysis. 
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2.2.4 NeOn Methodology 

One of the most comprehensive and promising methodologies is the so-called NeOn 
methodology (Suárez-Figueroa et al., 2008). It was created within the context of a 
research project with 14 European contributors which run for several years. It was 
driven by the assumption that former methodologies provide detailed process 
description but lack the appropriate “style and granularity” as it is known from software 
engineering methodologies. The NeOn methodology attends to facilitate guidelines for 
building individual ontologies by reuse and re-engineering of other domain ontologies or 
knowledge resources and for plugging in continuously evolving ontologies. The following 
nine approaches for ontology creation are described, which are called scenarios: 

1. Building ontology networks from scratch without reusing existing knowledge 
resources. 

2. Building ontology networks by reusing and reengineering non ontological 
resources. 

3. Building ontology networks by reusing ontological resources. 
4. Building ontology networks by reusing and reengineering ontological resources. 
5. Building ontology networks by reusing and merging ontological resources. 
6. Building ontology networks by reusing, merging and reengineering ontological 

resources. 
7. Building ontology networks by reusing ontology design patterns. 
8. Building ontology networks by restructuring ontological resources. 
9. Building ontology networks by localizing ontological resources. 

Figure 2-7 illustrates these different approaches in association with processes and 
activities. The addressed target groups of the NeOn methodology are software 
developers as well as ontology practitioners which should be enabled to build ontology 
networks by use of ontology building platforms (e.g. NeOn Toolkit, Protege, or TopBraid 
Composer). The definition of process phases and activities is accompanied by a 
description of purposes, inputs and outputs, involved actors, methods, techniques, and 
tools used for their execution.  

Obviously, the NeOn methodology has a strong focus on reuse. Six different criteria 
for reuse are defined, which mainly consist of the estimation of the necessary effort. 
However, this demands for a first analysis of different aspects of the ontology. 
Therefore, it becomes clear that the focus is mainly on very large ontologies, since it is 
implicitly assumed that there are enough resources to do the necessary analysis and the 
mentioned estimation.  
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Figure 2-7: Ontology development processes in the NeOn methodology (Suárez-Figueroa 
et al., 2008) 

2.2.5 Just Enough Ontology Engineering 

The “Just Enough” approach was introduced by Ed Yourdon in (Yourdon, 2006),which 
he commented as follows: 

 
“Today, we’re too busy to spend much time thinking about anything, and 
we’re also far too busy to read more than a couple hundred pages of the bare 
essentials on any topic. What we want is just enough – enough to give us the 
basic idea, enough to get us started, enough to give us a grounding in the 
fundamentals.”17  
 

                                                        
17 http://yourdon.com/publications/ last access on July 19th 2012 
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This inspired Di Maio to adapt the “just enough” approach to Ontology Engineering. 
The Just Enough Ontology Engineering (JEOE) methodology (Di Maio, 2009)  describes 
the essential activities for Ontology Engineering without describing in detail a sequence 
to perform. The following activities are discussed   

1. Identifying Stakeholders 
2. Defining the Purpose / Goal of the Ontology 
3. Outlining Requirements 
4. Identifying and Surveying Existing Knowledge Sources 
5. Scoping the Ontology 
6. Evaluation and Testing 
7. Definition 
8. Implementation 
9. Deploying 
10. Testing and Validation 
11. Publishing 
12. Maintenance and Reuse 

In most of these aspects (especially in 4. and 12) ontology reuse and interlinking is 
mentioned as an important feature of ontologies. Di Maio states in (Di Maio, 2009)   

 
“Although it may not always be possible to reuse an existing ontology, it 
should always be possible to reuse at least some parts of it - at least the 
parts of it that are public, declared, explicit, or easily acquired. Other 
ontologies, even when substantially different from the one we are trying to 
develop, should always be acknowledged and referenced, at least for 
completeness.” 
 
At some parts Di Maio mentions an ontology specification document but does not get 

clear how this should be created and structured. Such a document is an essential 
requirement for efficient reuse, understandability and continuous refinement of the 
ontology. While understandability is one top level requirements for the accessibility if 
ontologies by different stakeholders, continuous refinement is an important claim of 
JEOE, because it assumes an ongoing incremental development method to adapt the 
ontology to the changing reality or the view it is based on. 
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2.2.6 Corporate Ontology Lifecycle Methodology 

The Corporate Ontology Lifecycle Methodology (COLM)  illustrated in Figure 2-8 is an 
innovative lifecycle model for continuously evolving ontologies in corporate contexts 
(Luczak-Rösch & Heese, 2008). The main intention is to provide an intuitive 
understanding of raising costs per iteration and of the duration and effort spent in each 
process phase.  

 

  

Figure 2-8: Corporate Ontology Lifecycle Methodology 

The seven phases of the two-part cycle refer either to the outer cycle as 
selection/development/integration, validation, evaluation, or to the inner circle as 
deployment, population, feedback tracking, and reporting. The outer cycle represents 
pure engineering tasks, which is an expert-oriented environmental process. The inner 
constitutes the ontology usage, which is a human-centered concurrent process. 

Starting the process at selection/development/integration means to start the 
knowledge acquisition and conceptualization, to re-use or re-engineer existing 
ontologies, or to commission a contractor to develop an ontology. The result of this 
phase is an ontology, which is validated against the objectives. At the intersection point 
between the engineering and the usage cycles the ontology engineers and the domain 
experts decide whether the ontology suites the requirements or not. If this is approved 
the ontology is deployed and in use by applications. Then the ontology is populated, 
which means that a process for instance generation from structured, semi-structured 
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and unstructured data runs up. Throughout the whole feedback tracking phase, formal 
statements about users’ feedback and behavior are recorded. A reporting of this 
feedback log is performed at the end of the usage cycle. That means that all feedback 
information, which was collected until a decisive point, is analyzed respecting internal 
inconsistencies and their effects to the currently used ontology version. The usage cycle 
is left and the knowledge engineers evaluate the weaknesses of the current ontology 
with respect to the feedback log. This point may also be reached, when the validation 
shows that the new ontology is inappropriate to the specification. The lifecycle starts 
again with the implementation of the results of the evaluation. 

2.3 Chapter Summary 

The importance of the World Wide Web for everyday life as a ubiquitous information 
source is increasing continuously. Likewise, the importance of ontologies (with its roots 
in the field of artificial intelligence) for the future of the WWW rises. This trend caused 
different ontology engineering methodologies to come up within a short period of time. 
They have different requirements and expectations and therefore differ in various 
aspects like their relationship to knowledge engineering or software engineering, their 
level of detail, their application dependency etc. However, presently, there is not a 
methodology which gains broader acceptance. Stakeholders, especially corporations, 
have a well-founded caution by the decision to use ontologies and to apply one 
methodology, because "undertaking an OE project can be a bigger risk than other IT 
projects simply because the complexities and uncertainties are higher." (Di Maio, 2009). 

Existing OE methodologies lack of a sound balance between the pragmatics of cost-
effective processes as demanded by corporations and the sophisticated theoretical basis 
for academics. It is important to focus on common aspects of various Ontology 
Engineering methodologies and to exhaustively work on basic processes and concrete 
techniques with keeping the mentioned pragmatics in view. This work is doing so by 
concentrating on modularity and documentation of ontologies for reuse and 
maintenance from a complexity reduction perspective. The targeted contribution is 
expected to be applicable within each OE methodology and provide techniques fulfilling 
the demands of corporate settings.  



 

 



 



 

3 ONTOLOGY PARTITIONING 

In this chapter the problem of structure-based partitioning ontologies is analyzed. 
Different aspects and dimensions of the research problem are discussed. Its main goal is 
to provide insights into the low level problems this work is faced with and to understand 
the requirements the targeted framework needs to fulfill.  

Ontologies are complex information models possessing different aspects. 
Understanding ontologies completely means understanding all aspects of them and the 
relations among them. Therefore, it is analyzed which aspects ontologies have before it 
is analyzed how ontologies can be decomposed into different partitions with respect to 
these aspects. For that reason this chapter starts in Section 3.1 with a brief overview of 
the aspects of an ontology and how partitioning can be understood according to each 
aspect. Keeping these aspects in mind, the terms size and complexity are discussed in 
Section 3.2, because partitioning is a decomposition process for reducing both. It is 
emphasized that in order to quantify the performance of a partitioning process measures 
are required for both. 

The next question to clarify is how concrete partitioning should be done. Two different 
motivations for partitioning namely reuse and maintenance are then discussed in the 
Sections 3.3 and 3.4, respectively. Both motivations demand different levels of 
knowledge about the ontologies and therefore have different requirements on the 
involved users, the used tools, the partitioning process as well as the identified 
partitions. After these sections, it becomes clear that a one-fits-all solution for ontology 
partitioning is not possible. Rather an adaptable framework is necessary which adapts 
towards the need of different motivations in terms of configurable parameters. 
Therefore, it is investigated which properties can be derived from existing examples, 
which can be potentially used as parameters in the adaptable partitioning framework. 
Finally this chapter is closed with a summary in Section 3.5. 
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3.1 Aspects of Ontologies 

According to Vrandecic ontologies have six different aspects, namely the vocabulary, 
syntax, structure, semantic, representation, and context (Vrandecic, 2010). The meaning 
of the term ontology partitioning depends on the considered aspect. The following 
discussion should provide a brief insight how partitioning could be understood with 
respect to each aspect. 

Vocabulary 

The vocabulary is a glossary of terms, which are names representing different concepts, 
properties and instances of the domain to be modeled. Within the Semantic Web names 
are mostly URI references (e.g.  http://xmlns.com/foaf/0.1/Person) and, which consist 
of a namespace (http://xmlns.com/foaf/0.1/) and a local name (Person). Through URIs 
these names are globally unique and can be looked up through HTTP. Partitioning a 
vocabulary would for example mean to create different glossaries, which in fact is a 
simple list of terms.  

Syntax 

The syntax represents the ontology in a serialized form, which enables saving it in a 
document. In Semantic Web the mostly used syntax is RDF/XML. Possible other 
syntactical representations are the N3 notation (Berners-Lee, 2005) and Turtle (Beckett 
& Berners-Lee, 2008). A partitioning of the syntactical representation can be considered 
as splitting up a file into different pieces (e.g. line-based).  

Structure 

The structure of ontologies is mainly made up of the relations between the terms of the 
vocabulary, which can be hierarchical relations or property relations. Partitioning the 
structure is a research problem, which is the primary focus of this work. 

Semantic 

Ontologies contain axioms and reasoning rules to express semantics. This is the 
distinguished aspect of ontologies, because this feature separates ontologies from data 
and information models. It allows for inference that makes implicit information explicit. 
Thus, ontologies are useful means to represent knowledge. In this regard, partitioning of 
the semantics can be considered as dividing the knowledge into different knowledge 
bases. 
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Representation 

The representation of ontologies is defined as the relation between the semantics and 
the structure of ontologies (Vrandecic, 2010). There are different methods how the 
semantics can be represented structurally. This important issue is tackled in this work 
deeply in Section 5.2. 

Context 

The context is the setting in which the ontology was created and is used. This ranges 
from the ontology engineering methodology used to the concrete application 
environment in which the ontology is utilized. Therefore, it can be divided into different 
aspects like organizational aspects, methodological aspects, technological aspects, etc.  

3.2 Size and Complexity 

The terms size and complexity are not trivial in the context of ontologies. For each 
one of the mentioned ontology aspects different size and complexity measures are 
possible. Size can be e.g. defined as the amount of terms in the vocabulary, the number 
of lines of code in the syntactical representation, the diameter in the ontology structure, 
the number of axioms of the semantics. Although there are different possible definitions 
for size, most of them are simple to calculate and easy to understand.  

Complexity, on the contrary, is not that easy to define as a measure. In (IEEE, 1990) 
complexity is defined as follows: 

 
"The degree to which a system or component has a design or  
implementation that is difficult to understand and verify." 

 
Accordingly, a complexity measure needs to be able to calculate the mentioned 

degree. As size has an influence on the comprehensibility it can also be seen as an 
indirect complexity measure. However, there are other properties regarding the 
mentioned aspects, which have an influence on the comprehensibility of ontologies. 
Figure 3-1 exemplifies this by illustrating three different syntactical representations of a 
small ontology. Although each of them contains the same semantic content they 
provide different levels of readability and hence different levels of comprehensibility. 

In terms of lines of code and the amount of symbols in a document, the N3 notation 
(part b) of Figure 3-1) could be identified as the "shortest" representation and therefore 
the best understandable one. But the prefix definition could confuse readers, who are 
not familiar with it. Furthermore, a “good” graphical visualization simplifies the 
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comprehension, because with mental images memorizing is easier than memorizing just 
syntactical representations (Barclay, 1973). Therefore, many readers could agree on the 
graphical visualization (third part of Figure 3-1) as the best comprehensible presentation 
of the ontology. However, long URIs enlarge the illustration and exacerbate the visual 
perception.  

Well-defined size and complexity measures are necessary to compare the ontology at 
the beginning with the generated partitions after the partitioning process. For that 
reason, they are essential to measure the quality of partitioning processes. Additionally, 
these measures can be used to optimize the partitioning process with respect to them, if 
the expected partitions can be described in terms of size and complexity. Concrete 
measures on this are introduced and discussed in Section 5.3. 

For the sake of clarity, it is important to mention at this point that in the field of 
computer science the term complexity is mainly used in the context of computational 
complexity which seeks to classify computational problems in terms of required 
resources (e.g. time and memory space) for the computation process. The definition of 
the complexity is based on properties of the input parameters (e.g. number of elements 
in case of a list). In this regard, size and complexity of ontologies have an effect on the 
computational processes applied on ontologies. That’s why in OWL 2 three different 
profiles are defined, namely OWL 2 EL, OWL 2 QL, and OWL 2 RL.  

 
"Each profile is defined as a syntactic restriction of the OWL 2 Structural 
Specification, i.e., as a subset of the structural elements that can be used in a 
conforming ontology, and each is more restrictive than OWL DL. Each of the 
profiles trades off different aspects of OWL's expressive power in return for 
different computational and/or implementational benefits. OWL 2 EL enables 
polynomial time algorithms for all the standard reasoning tasks; it is 
particularly suitable for applications where very large ontologies are needed, 
and where expressive power can be traded for performance guarantees. 
OWL 2 QL enables conjunctive queries to be answered in LogSpace (more 
precisely, AC0) using standard relational database technology; it is 
particularly suitable for applications where relatively lightweight ontologies 
are used to organize large numbers of individuals and where it is useful or 
necessary to access the data directly via relational queries (e.g., SQL). OWL 2 
RL enables the implementation of polynomial time reasoning algorithms 
using rule-extended database technologies operating directly on RDF triples; 
it is particularly suitable for applications where relatively lightweight 
ontologies are used to organize large numbers of individuals and where it is 
useful or necessary to operate directly on data in the form of RDF triples." 
(Hitzler, Krötzsch, Parsia, Patel-Schneider, & Rudolph, 2009) 



Size and Complexity 

 

35 
 

 

Figure 3-1: Different approaches to serialize an ontology, a) RDF/XML b) N3 Notation c) 
RDF Graph 
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However, as mentioned above this categorization is based on syntactic restrictions 
and therefore very simple to do by checking the used constructs within an ontology. 
This type of complexity is not suitable for the envisioned partitioning system.  

3.3 Partitioning for Ontology Reuse 

Development strategy in IT seeks for abstraction, encapsulation and reusability in 
various levels. This caused different paradigms like Object-oriented Programming, 
Agent-oriented Software Engineering, Aspect-oriented Programming and different 
technologies like middleware and application containers. The distinction between the 
program logic and the information model is suggested throughout these approaches. 
The reason for this is twofold. The first one is avoiding dependency between the model 
and the programming logic. The second one is to allow for reusable components. Based 
on the initially understanding of ontologies as semantically enriched information models 
of knowledge-based systems, reusability is an inherent feature of ontologies. According 
to (Dzbor & Motta, 2008) “the reuse of existing, possibly imperfect, ontologies becomes 
the key engineering task.” 

Different abstraction levels for ontologies lead to the usability-reusability tradeoff 
problem, which was described in (Klinker, Bhola, Dallemagne, Marques, & McDermott, 
1991). Increasing usability leads to reduced reusability, while increasing reusability 
causes reduced usability. Applied to ontologies, this means, that the more abstract 
ontologies are the more reusable but less usable they become. This is illustrated in 
Figure 3-2. 

A survey of different case studies regarding ontology reuse is provided and analyzed 
by Simperl along with two additional case studies described in detail (Simperl, 2009). An 
important insight is that in the surveyed case studies ontology reuse is considered as a 
manual process. However, a consensus on the need for tools supporting this process 
was also observable. It is important to mention that from the usability point of view 
such tools must not be designed for high skilled users with extensive ontology 
engineering experience, but need to keep "normal" users in view  (Dzbor & Motta, 
2008). In fact, most existing domain ontologies seem to be created by developers with 
no experience in formal knowledge representation (Dzbor & Motta, 2008). 

The mentioned survey provides an analysis of the applied methodologies in the case 
studies (Simperl, 2009). It is said that “activities such as ontology assessment, 
integration, translation, and customization seem to be relevant across case studies”. The 
reuse process commonly starts with the intention to utilize ontologies in an envisioned 
IT system. That means that the developer has an application and a domain in mind. 
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Figure 3-2: The usability-reusability tradeoff problem. The more abstract 
ontologies are the more reusable but less usable they become. 

Based on this the developer starts searching for candidate ontologies, which might be 
reused. Different search engines (d’Aquin, Sabou, et al., 2007) and ontology libraries 
(D’Aquin & Noy, 2012) are available to support this discovery process. 

Having obtained a list of potential candidate ontologies an analysis and decision 
taking step has to be done. The coverage and level of detail of each candidate has to be 
analyzed, in order to answer the question, if an ontology is reusable for the targeted 
system. If it is, the second question is, to which extend it can be reused and whether it 
needs to be customized. Reuse can range from an inspiring input up to the complete 
adoption without any customization. It is also possible that a candidate is reused 
partially, which would assume some modularization step to be taken.  It is very 
important that these decisions are taken quickly and correctly. If the analysis process 
cannot be done efficiently or the decision is made wrong, the reuse effort would lead to 
waste of time and resources, although its primary motivation was to save both. 

3.3.1 Reuse Support through Ontology Documentation 

Careful documentation of the development process and the created artifact is 
broadly accepted as an important means to support reuse. It is frequently used in the 
field of Software Engineering, where tools like JavaDoc are very popular. Whereas, in 
the field of Ontology Engineering the lack of good documentation makes reuse difficult, 
because the decision on the applicability of candidate ontologies becomes a time-
consuming process. On the other hand, the process of documentation is an additional 
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effort for the ontology developer which still lacks of an appropriate support system to 
create documentations automatically or semi-automatically. 

However, there are some simple or premature tools available, which support the 
documentation process. Inspired by the success of JavaDoc for code written in Java, 
OWLDoc18 is a tool that generates frame-based HTML pages with three areas. An 
example is visualized in Figure 3-3.  

 
 

 

Figure 3-3: An example of a documentation page created with OWLDoc 

It allows for navigating quickly to a specific resource and for obtaining information 
about it like comments, labels, type etc. When a class is chosen the main frame shows 
information such as superclasses and disjoint classes, while in case of properties 
information as superproperty, domain and range are shown. This kind of representation 
is useful to get detailed information about a single concept and its connections to other 

                                                        
18 http://www.co-ode.org/downloads/owldoc  last access on August 14th 2012 
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concepts. However, it does not provide an overview about the ontology and its 
structure as a whole.  

More recent documentation tools such as Neologism (Basca, Corlosquet, Cyganiak, 
Fernández, & Schandl, 2008), SpecGen19 and VocDoc20 create one HTML page containing 
detailed information about the classes and the properties. Additionally, these HTML 
pages also contain meta-information like version information, changelog, authors, 
namespaces, license information, and referenced external ontologies. This kind of 
information is either at the beginning of the document or at the end. The details about 
the ontology and its concepts are at the main part of the document. Before the main 
part begins, there is a brief section with an alphabetically sorted list of classes and 
properties, which is called "overview" or "at a glance". Neologism extends this section 
with a graphical visualization (illustrated in Figure 3-4), which is very useful in case of 
very small ontologies. Since the whole ontology is visualized without any reduction, 
even though the ontology is large, the visualization gets confusing very quickly.  

In the documentations of FOAF e.g. the "at a glance" section is extended with a 
manually created grouping of concepts (called summarization in (Jannink et al., 1999)), 
which is actually a partitioning of the vocabulary. (This grouping was depicted in Figure 
1-1). It is a good introduction so the reader can understand, what the ontology is about 
and can decide very quickly, if the content covers relevant concepts for her or his 
purpose. Therefore, this illustration addresses most likely users who are looking for a 
reusable ontology and want to decide quickly, if a closer look makes sense. In 
consideration of the fact that the documentation of FOAF comprises about 40 printed 
pages, it becomes clear how important such a support is and how much time it can save. 
Additionally, it emphasizes that even in case of rather small ontologies there is a need 
for breaking down the complexity for documentation purposes, where chunking terms is 
one promising means to do this. But in case of large ontologies the partitioning of the 
vocabulary has to be extended with a reduction step limiting the number of groups as 
well as the size. This is very important because chunking terms for documentation 
purposes need to take cognitive capabilities of humans into consideration.  

3.3.2 Term Chunks in Existing Documentations 

For the understanding how such term chunks should be created and to derive - if 
possible – parameters for the envisioned partitioning framework, existing examples 
have been searched for. After an exhaustive search for online available ontology  
 

                                                        
19 https://bitbucket.org/wikier/specgen/wiki/Home last access on August 14th 2012 
20 http://kantenwerk.org/vocdoc last access on August 14th 2012 
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Figure 3-4: "At a glance" section of Neologism 
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Documentations, where concepts have been grouped to support the understanding, 
thirteen ontologies were found. In the following these ontologies are briefly described 
along with some noticeable aspects of their history and the groups. 

Atom Activity Streams 

The Atom Activity Streams ontology (aair) is the RDF representation of the Atom 
Syndication Format (Nottingham & Sayre, 2005). The ontology was created by two 
responsible authors and a contributor within an EU research project. The initial version 
was proposed in December 24th in 2009 and the last update was in March 3rd 2010. The 
documentation of the ontology (Minno & Palmisano, 2010) contains four groups, which 
have the same style as the groups illustrated in Figure 1-1. They contain only classes and 
are alphabetically sorted. The four groups are primarily the subtrees of the four root 
classes "Actor", "Object", "Verb", and "Context". The groups are named according to 
these classes. However, there is also a class within a group that is not the subclass of 
one of the four mentioned classes.  

Biographical Ontology 

The Biographical Ontology (bio) contains terms to describe events that are part of a 
person’s life. It was created by two authors initially proposed in March 7th 2003. The last 
update was in June 14th 2011 which was the 15th version. The documentation (Davis & 
Galbraith, 2010) contains five groups of concepts. These groups are comma separated 
lists of concepts as illustrated in Figure 3-5. One group comprises classes only and the 
other four groups consist only of properties. One group contains the properties of the 
class "Person", whereas one group contains only the properties of the class "Event". The 
other two property groups contain properties relating an event to an agent or an event 
to an event respectively.  

Collaborative User Resource Interaction Ontology 

In the Collaborative User Resource Interaction Ontology (curio) classes and properties 
are defined to describe discussions on collaboration platforms. It allows the 
management of user-generated content on these platforms. The ontology was created 
within an EU research project by a single author. The initial version was created in 
September 14th 2009 and the last update was in February 1st 2011, which was the sixth 
revision. The documentation of curio (Burel, 2011) contains four groups of concepts, 
which have the same style as the groups illustrated in Figure 1-1. The groups comprise 
classes as well as properties. The class names are alphabetically sorted while the 
properties of a class are listed directly after the class name. The first group contains 
general classes and the groups "Annotation", "Documents", and "Events" represent  
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Figure 3-5: Term chunks of the Biographical Ontology in the documentation page 

 
 
mainly subtrees of the class hierarchy refining classes of the first group. While the 
"Documents" group contains the class "Document" and the group "Events" contains the 
class "Event" there is not a class named "Annotation". 

Enterprise Competence Organization Schema  

The Enterprise Competence Organization Schema (ecos) defines terms to describe the 
competences of organizations within a global market. It was created by two authors as a 
part of a PhD thesis. The initial version was proposed in September 1st 2009 and was not 
further developed. Within the documentation page (Khilwani & Harding, 2009) the 
classes and properties are grouped into four different groups, which have the same style 
as the groups illustrated in Figure 1-1. The groups are representing the subtrees of the 
concepts "General", "Business", "Specific", and "Record" while these classes themselves 
are not listed in the group. The classes are at the beginning of the list and the properties 
are at the end. The properties are in the same group where the corresponding domain 
class is. Some properties have several domain classes which are in different groups. In 
this case these properties are mentioned several times.  
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Friend of a Friend Vocabulary  

The Friend of a Friend vocabulary (foaf) is a very popular and broadly used ontology to 
publish personal profile information and links to friends in a social network manner. The 
initial version was created in 2000 and it was updated frequently. The last update was in 
August 9th 2010. It was created by two authors. The documentation of version 0.97 
(Brickley & Miller, 2010) contains five term chunks (Figure 1-1) while four groups 
contain properties as well as classes and one group contains properties only. The groups 
do not represent subtrees of the ontology nor are the properties in the same group as 
their domain classes. In fact, the most properties belong to the classes "Agent" and 
"Person" but they are distributed over all groups. Three groups are named according to 
the classes they contain ("Online Accounts", "Project and Groups", "Documents and 
Images"). The group "FOAF Basics" seems to contain the most relevant terms for this 
ontology and the group "Personal Info" contains mainly properties of the class "Person".  

Although the successor version of the documentation has only two groups, it is 
ignored in this work. Because on the one hand one group is still divided into three 
subgroups and on the other hand the newer grouping does not match to the motivation 
of dividing the concepts according to subdomains.  

GI2MO Types Taxonomy 

The GI2MO Types Taxonomy (gi2mo) contains terms to annotate ideas in an idea 
management system. It has one author, who created it in the context of a Spanish 
research project. The initial version was proposed in May 30th 2011. This version was 
revised only once and the latest version is from June 10th 2011. The documentation 
page (Westerski, 2011) contains four groups comprising properties as well as classes. 
The terms are organized in a tree structure as illustrated in Figure 3-6. However, it is not 
clear in the visualization if a child node is a subclass or a property. 
 

Music Ontology 

The Music Ontology (music) was created to allow the description of music in a broader 
sense. The initial version was created in December 21st 2006. About seven authors 
worked on this ontology and updated it several times. The last version is from August 
12th 2012, which is the 15th version. The documentation page (Raimond et al., 2012) 
contains 23 groups with the same visualization style like in Figure 1-1. There are groups 
comprising classes only and properties only as well as groups that comprise both. The 
property only groups contain properties of only one particular class while in most cases 
these groups are named according to the particular domain class. In some cases this 
class itself is also listed in the group. 
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Figure 3-6: Term chunks of the GI2MO ontology in a tree structure 

W3C Prov Ontology  
The W3C Prov Ontology (provo) defines the concepts of the Prov Data Model21 of the 
W3C in OWL that aims at the description of provenance information about entities, 
activities, and authors involved in the creation of data. The initial version was created in 
December 13th 2011 by three authors within the context of the work done by the W3C 
PROV Working Group. It was updated six times. The latest version is from April 30th 
2013. The documentation page (Lebo, Sahoo, & McGuinness, 2013) contains three 
groups of concepts which are sown in Figure 3-7. Each one of these groups contains two 
subgroups, one group for the classes and one group for the properties. The first group is 
named “Starting Point classes and properties”, the second group “Expanded classes and 
properties” and the third group is “Qualified classes and properties”. The order of the 
classes does not show any rule, whereas the properties show a noticeable order. The 
first properties in each properties’ subgroup are properties of the classes of the very 

                                                        
21 http://www.w3.org/TR/2013/REC-prov-dm-20130430/ last access 22nd August 2013 

http://www.w3.org/TR/2013/REC-prov-dm-20130430/
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first classes’ subgroup. These properties are followed by the properties of the classes of 
the same group. Along with the naming of the groups this indicates a grouping 
according to the importance of the different classes and properties.   
 
 

 

Figure 3-7: Term chunks of the provo ontology 

Online Presence Ontology 

The Online Presence Ontology (opo) defines classes and properties to describe the 
online presence of users. The initial version was created in 2008 by one author and was 
updated several times. The latest version is from July 1st 2010 and has the version 
number 0.52. The documentation page (Stankovic, 2010) contains two groups with 
properties, one group with classes and instances, and one group with classes, properties 
and instances which are marked as such. The property groups contain only properties 
belonging to one particular domain class. The terms are alphabetically sorted. The 
groups are visualized as simple HTML lists as illustrated in Figure 3-8.  
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Figure 3-8: Term chunks of the Online Presence Ontology 
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Provenance Vocabulary Core Ontology  

The Provenance Vocabulary (pvc) provides classes and properties for the description of 
provenance information for the particular case of Web data. It is an extension of provo. 
The first version was created in August 25th 2009 by two authors and was updated six 
times. The latest version is from March 14th 2012. The documentation page (Hartig & 
Zhao, 2012) provides a graphical illustration of the ontology structure as shown in Figure 
3-9. The whole ontology is divided into three parts, which are considered as three term 
chunks. Since this is a graphical representation, there is no sorting of the classes or 
properties possible. 
 

 

Figure 3-9: Term chunks of the pvc ontology 

Premis 

The Premis OWL Ontology22 (premis) is a provenance metadata ontology. It is based on 
the OASIS reference model PREMIS – Data Dictionary for Preservation Metadata 
(Guenther et al., 2011). The initial version was created in 2011 and the latest version is 
from September 2012, which is named as version 2.2 and declared as draft. In the 
documentation page23 five UML-like diagrams are shown. Four diagrams are 

                                                        
22 http://premisontologypublic.pbworks.com/w/page/45987067/FrontPag last access 22nd August 2013 
23 http://premisontologypublic.pbworks.com/w/page/46121028/Diagrams last access 22nd August 2013 

http://premisontologypublic.pbworks.com/w/page/45987067/FrontPag
http://premisontologypublic.pbworks.com/w/page/46121028/Diagrams
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representing subdomains and one diagram is depicting the relatedness of the other four 
diagrams. Hence, the latter group is considered as an artificial group and therefore 
ignored in this work. 

Represent Rights Data Ontology 

The Represent Rights Data Ontology (rrdonto) provides classes and properties 
definitions for describing the intellectual property value chain. The first version was 
created in October 4th 2006 by three authors. The latest version has the version number 
6.3 and was created in July 15th 2007. Within the documentation page  there are four 
groups for classes only and one group for all properties, as illustrated in Figure 3-10 
(Gauvin, Delgado, & Rodríguez, 2007). The first group contains classes, whose subtrees 
are represented in the other groups.   
 
 

 

Figure 3-10: Term chunks of the Represent Rights Data Ontology 

Semantic Web Conference Ontology 

The Semantic Web Conference Ontology (swco) defines concepts to describe academic 
conferences, focusing on the particular conferences the European Semantic Web 
Conference and the International Semantic Web Conference. It was first created in May 
31st 2007 by three authors. It was updated several times. The latest version is numbered 
895. It is dated to May 11th 2009. In the documentation page (Möller et al., 2009) there 
are five term chunks in the documentation with classes only which have the same style 
as the groups shown in Figure 1-1. The groups are primarily representing subtrees and 
are named according to the particular root class. The latter itself is in some cases within 
the group. The classes are alphabetically sorted. 
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3.3.3 Properties of Existing Term Chunks 

The brief descriptions of the different term chunks unveil that there is no unique 
understanding how a term chunk should look like. While in some cases only classes are 
grouped in other cases properties are also included in the groups. In some cases the 
groups correspond to subtrees of the class hierarchy and in other cases the groups are 
horizontal cuts of the hierarchy. In some cases class names are used as titles for the 
group while the class itself is not included in the group. In other cases these classes are 
also part of the group. There is also no unique style how to represent the term chunks. 
In some cases the concepts are grouped in html lists and in some cases the concepts are 
grouped as textual lists or as graphical representations. Table 3-1 shows some relevant 
properties of the different term chunks.  

 
 
Ontology Number of 

groups in 
docu 

Mean 
group size 

Groups 
alphabetically 
sorted 

Properties 
in groups 

Property 
only 
groups 

Mixed 
Groups 

aair 4 9.75  - - - 

bio 5 12.8 -  4 - 

curio 4 12.5   -  

ecos 4 11.75 -  -  

foaf 5 12.6 -  1  

gi2mo 4 21.25 -  -  

music 23 6.52 -  10  

opo 4 6.5   2  

provo 3 13.66   -  

pvc 3 9.33 na  -  

premis 4 14.5 na  -  

rrdonto 5 8.4 -  1 - 

swco 5 5.8  - - - 

Table 3-1: Overview of some important properties from the existing term chunks in the 
documentations. 

However, besides the differences there are also noticeable aspects which indicate 
some kind of consensus. First of all, the ontologies are all about the same size. Even 
though they can be considered as rather small ontologies, they all contain the 
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aforementioned term chunks within their documentation pages. That points to the fact 
that all authors agree on the usefulness of such a grouping even at that size. Secondly, 
in most cases the groups contain classes and properties, while in almost every case the 
names of the classes start with capital letters and the names of the properties start with 
small letters. This helps to distinguish between them even though they are in the same 
group.   

In order to understand, how partitioning should be done to create term chunks the 
previously described documentations have been analyzed in terms of partition size and 
count. Figure 3-11 visualizes the distribution of the group size.  

 
 

 

Figure 3-11: Distribution of the number of elements per term chunks 

The arithmetic means of the group size is 11.18 with a standard deviation of 3.19 
(28% of the arithmetic means). This leads to an optimal group size of about 8 to 14 
elements. However, the number of analyzed documentations is not statistically 
significant. It is important to double check this value with other findings. Since term 
chunks are created to support the comprehension, cognitive science has been identified 
as the most appropriate research area to look for additional information.  

In order to understand the content of a group, it is important to memorize its 
elements for a short term of period. According to Miller this is done in the immediate 
memory which has a capacity of about seven (Miller, 1956). A later work by Baddeley 
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showed that this capacity is increased to 15 if the elements to memorize are related 
(Baddeley, 2003). Since these values do not contradict - they even correlate - with the 
calculated range, an interval of 8 to 14 elements per group is accepted to be very 
appropriate. This is especially justified, if one considers that elements of one group are 
expected to be more related to each other than to elements from other groups. 

The arithmetic means of the number of groups for the thirteen ontologies is 5.6 with 
a standard deviation of 2.6. This would mean that 3 to 9 groups per documentation is a 
good guidance interval. But after removing the value for music from this analysis 
because of its significant difference, the arithmetic means of the number of groups is 
4.16 with a much lower deviation of about 0.56 (13.5% of the arithmetic means). This 
value is considered to be acceptable due to two arguments. On the one hand this value 
does not contradict with the aforementioned finding from cognitive science.  Because 
term chunks have a higher complexity than the elements of the groups and they are less 
related to each other than the elements of one term chunk. Therefore memorizing them 
requires more mental capacities. On the other hand the quite small deviation indicates a 
strong consensus and can be accepted as a best practice. So the guidance value for the 
number of groups per documentation is three to five. This is considered to be 
acceptable.  

3.4 Partitioning for Ontology Maintenance 

In traditional development methods of knowledge-based systems, creating 
ontologies are heavyweight processes, including detailed domain and application 
analysis. Before the ontology is deployed, it passes through different tests until it 
achieves a satisfying maturity level. Maintenance in this case might be a rather small 
issue, as it is very unlikely that further refinement apart from small corrections is 
necessary, while the ontology is in use. However, in the context of agile ontology 
engineering methodologies, maintenance needs special attention, because in agile 
processes the ontology is permanently within a refinement process. In this case, 
maintenance can be considered as equal to forward engineering forming the overall 
evolution process. In this regard, maintenance does not include only low-level activities 
like adding new elements, updating, refining, merging, and removing existing elements  
it also comprises the complete refactoring (Gasevic et al., 2011).  

The overall goal of maintenance is to improve the quality of an ontology or to adapt 
it to new requirements. The higher the complexity as well as the size of an ontology is, 
the more difficult is the maintenance process. So an ontology has a maintainability 
characteristic, which depends on its size and complexity. Regarding software quality, 
there is an ISO standard for Systems and Software Quality Requirements and Evaluation 
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called SQuaRE (Internation Organization for Standardization, 2011) which defines the 
maintainability of a software product as a combination of the following five 
subcharacteristics: modularity, reusability, analyzability, modifiability, and testability. 
This approach was adapted by Duque-Ramos et al. to ontologies in OQuaRE, where the 
maintainability is defined as: 

 
"The capability of ontologies to be modified for changes in environments, in 
requirements or in functional specifications. Some subcharacteristics are 
modularity, reusability, analyzability, changeability, modification stability 
and testability." (Duque-Ramos, Fernández-Breis, Stevens, & Aussenac-
Gilles, 2011) 

 
In SQuaRE as well as in OQuaRE modularity is mentioned as the first subcharacteristic 

and is, therefore, accepted as the most important one. In fact, the other 
subcharacteristics seem to depend to some degree on the modularity. At least for 
reusability and analyzability, this dependency has been shown in the previous section. 
However, in contrast to a user, who seeks for a reusable ontology, the maintenance task 
demands a user who is already familiar with the ontology. It is not sufficient for the 
maintainer to understand merely the ontology completely, but it is mandatory to 
understand the modeled domain and the application context. Moreover, it is essential 
to understand the effect of the change on the whole ontology and on the application 
which makes use of it. This difference demands for distinguishing between partitioning 
for accelerating ontology reuse and partitioning for simplifying ontology maintenance. 
Therefore, previously elaborated properties of term chunks do not hold for ontology 
modules. This notion is additionally supported by the fact that having experience with 
an object improves the capacity to recognize meaningful structures about it 
(Shneiderman, 1977). That means that the cognitive limits for the number of partitions 
as well as the size of them are different than the limits mentioned in the previous 
section. This makes clear that partitioning, aiming at the improvement of the 
maintenance task, has different requirements and has to be tackled on its own. 

3.4.1 Existing Modular Ontologies 

Obviously, modularity is one important quality aspect for artifacts. Well done 
modularity is expected to increase flexibility and to simplify maintainability. Therefore, 
different ontology engineering methodologies mention or address modular design of 
ontologies. However, most online available ontologies were not built following 
methodologies at all or at least strictly and are therefore mostly monolithic  (Luczak-
Rösch, 2011). With an appropriate partitioning tool, such ontologies can be modularized 
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afterwards. In order to understand, how this can be done and do derive requirements, 
analyzing the structural properties of existing modular ontologies is accepted to be a 
reasonable strategy. Four ontologies have selected for this analysis, which are briefly 
described along with some noticeable properties as follows.  

Collaborative User Resource Interaction Ontology 

The aforementioned ontology curio has three extensions, which are all created by the 
same author and are importing the core ontology with the "owl:imports" concept. The 
CURIO Annotations Vocabulary24 defines 16 terms. The revision number of the latest 
version is 0.4 dated to February 1st 2011. The CURIO Documents Vocabulary25 defines 
four terms and CURIO General Resources Vocabulary26 defines eight terms. The latest 
versions of both have the revision number 0.2b. In the previous analysis only the core 
ontology (which defines 22 terms and has the revision number 0.5 dated to February 1st 
2011) has been used, because it was the only one that had a term chunk in the 
documentation. Its initial version was proposed September 14th 2009. Merging all 
modules (curioMerged) leads to an ontology with 30 classes and 20 properties.  

Semantically-Interlinked Online Communities 

The Semantically-Interlinked Online Communities27 (sioc) ontology provides definitions 
of classes and properties for the integration of online social communities. The 
documentation page lists 13 author names and two editor names from different 
organizations. The current version has the revision number 1.35 and is dated to March 
25th 2010. The change log lists 29 entries starting from April 7th 2005. The core ontology 
which contains 91 terms is extended by the following three modules: 

1. SIOC Access Module28 with four terms 
2. SIOC Types Module29 with 38 terms, and the  
3. SIOC Services Module30 with eight terms.  

None of the three modules contain additional version information. These module 
import the core ontology with the "owl:imports" concept. The merged ontology 
(siocMerged) comprises 53 classes and 88 properties. 

                                                        
24 http://purl.org/net/curio/annotations# last access 26

th
 September 2013 

25 http://purl.org/net/curio/documents# last access 26th September 2013 
26 http://purl.org/net/curio/resources# last access 26th September 2013 
27 http://sioc-project.org/ last access 27th September 2013 
28 http://rdfs.org/sioc/access last access 27

th
 September 2013 

29 http://rdfs.org/sioc/types last access 27th September 2013 
30 http://rdfs.org/sioc/services last access 27th September 2013 

http://purl.org/net/curio/annotations
http://purl.org/net/curio/documents
http://purl.org/net/curio/resources
http://sioc-project.org/
http://rdfs.org/sioc/access
http://rdfs.org/sioc/types
http://rdfs.org/sioc/services
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SPICE Mobile Ontology 

The SPICE Mobile Ontology31 (spice) describes the mobile communications domain. It 
was created in the context of an EU research project by a consortium comprising nine 
academic as well as industry partners. The core ontology, in which 19 terms are defined, 
is extended by the following eight extensions32:  

1. Services with 92 terms  
2. Service Context with 30 terms 
3. Profile with 30 terms 
4. Presence with 63 terms 
5. Context with 55 terms 
6. Distributed Communication Sphere with 209 terms 
7. Content with 67 terms, and  
8. Privacy with 23 terms.  

Apart from the Services and the Content extensions, all extensions import the core 
ontology with the "owl:imports" concept. The Privacy extension additionally imports the 
Profile extension as well. The merged ontology (spiceMerged) contains 354 classes and 
234 properties.  

Financial Industry Business Ontology 

The Financial Industry Business Ontology33 (fibo) is defined by the Object Management 
Group34 (OMG) and the Enterprise Data Management (EDM) Council35. It contains 
definitions for financial terms, in order to provide terminological support that allows 
transparency in the global financial system. The draft version from June 1st 201336 of the 
foundations ontology comprises 23 modules. These modules are strongly connected to 
each other through the "owl:imports" concept. They create a dense dependency graph 
which is illustrated in Figure 3-12.  The number of terms defined by the different 
modules is shown in Table 1-1 with an additional distinction between classes (c) and 
properties (p). The merged ontology (fiboMerged) contains 84 classes and 109 
properties. 
 

                                                        
31 http://ontology.ist-spice.org/ last access 27th September 2013 
32 http://ontology.ist-spice.org/spice_ontologies_files.htm last access 27th September 2013 
33 http://www.omg.org/hot-topics/fibo.htm last access 27th September 2013 
34 http://omg.org/ last access 27

th
 September 2013 

35 http://www.edmcouncil.org/ last access November 13th 2013 
36 http://www.omgwiki.org/OMG-FDTF/doku.php last access 27th September 2013 

http://ontology.ist-spice.org/
http://ontology.ist-spice.org/spice_ontologies_files.htm
http://www.omg.org/hot-topics/fibo.htm
http://omg.org/
http://www.omgwiki.org/OMG-FDTF/doku.php
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Figure 3-12: Dependency graph of the modules of fibo 

Module C P S  Module C P S 

People 7 11 18  FormalOrganization 3 0 3 

Agents 1 0 1  Objectives 1 1 2 

CurrencyAmount 6 6 12  Goals 1 1 2 

AccountEquity 8 1 9  Roles 2 1 3 

Ownership 3 2 5  PartyRoles 2 1 3 

Control 3 0 3  Aggreements 1 0 1 

AnnotationVocabulary 0 10 10  Contracts 17 10 27 

Relations 0 44 44  Parties 1 1 2 

BusinessTypes 0 14 14  LegalCore 5 0 5 

LegitimateOrganization 5 0 5  LegalCapacity 8 2 10 

Addresses 2 2 4  Juristdiction 7 1 8 

Organitzation 1 1 2  Sum 84 109 193 

Table 3-2: Size properties of the fibo modules (C: number of classes, P: number of properties, S: sum) 
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3.4.2 Properties of Modular Ontologies 

In contrast to the analysis of existing term chunks, the small number as well as the 
diversity of the four ontologies do not allow to extract common aspects of modularity. 
Nonetheless, some relevant and interesting insights can be drawn. Firstly, the different 
revision numbers of the curio modules proof that modularity allows independent 
development and is, therefore, an important aspect for maintenance support. This 
supports the aforementioned SQuaRE and OQuaRE approaches which defined 
modularity as one subcharacteristic of maintainability. Secondly, the dependency 
between the modules are defined by using the "owl:import" construct. An important 
insight regarding the dependency is that it seems to be common practice to have one 
very abstract "core" module. All other modules or at least most of them import this core 
module but are not connected between each other. This holds for curio, spice and sioc, 
where the dependency between the modules can be described as a star-like structure.  
However, fibo's dependency graph on the contrary can be rather seen as a tree-like 
structure with several abstraction levels. Apparently, the overall structure of the 
dependency graph seems to be mainly formed by the domain it represents and the 
relation between the modeled level of detail and the spectrum of content. Thirdly, the 
number of modules and the number of terms per module differ stronger than in the 
case of term chunks. Table 3-3 shows the average module size, the standard deviation 
of the module size and the number of modules for the mentioned four ontologies. The 
small number of analyzed ontologies along with the strong deviation do not justify 
further discussion regarding the number and the size of modules as it was done in 
Section 3.3.3. 

 
 

Ontology Average Module Size Standard Deviation Number of modules 

curio 12.5 6.5 4 

sioc 35.25 29.25 4 

spice 65.33 38.22 9 

fibo 8.39 6.68 23 

Table 3-3: Properties of the modularization for the analyzed ontologies 
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3.5 Chapter Summary 

In this chapter the problem of ontology partitioning has been tackled in depth on a 
conceptual level. After clarifying aspects of ontologies, the concepts size and 
complexity, whose growth is mentioned as the main problem demanding for 
appropriate partitioning techniques, have been discussed in detail. It becomes clear that 
concrete definitions for both are difficult. The mentioned definition for complexity 
clarifies that the issue with increasing size and complexity depends on the limits of 
perception and comprehension. 

Furthermore, partitioning to support ontology reuse and partitioning to support 
ontology maintenance were discussed thoroughly. And again, the essential insight was 
that comprehensibility and the cognitive limits play a crucial role in the overall process 
of partitioning.   

 
The overall insights of this chapter can be summarized as follows. 

 Ontologies can be partitioned in terms of different aspects, while the 
structure that is in the focus of this work is one of these aspects. For that 
reason there might be other partitioning approaches targeting at other 
aspects. 
 

 Size and complexity are difficult to define. Since partitioning is a 
decomposition process to overcome problems caused by the growth of both, 
it is essential to provide well-defined metrics to measure the quality of the 
outcome and to compare it with the original ontology. Keeping the initial 
sentence in mind, such metrics can only be some indications, but not formal 
and mathematical definitions for them. 
 

 Partitioning an ontology is a goal-oriented process. Various tasks in the 
lifecycle of an ontology like reuse, maintenance, interlinking, and processing 
depend significantly on knowledge and demand for different levels of 
expertise about the ontology at hand. Therefore, the partitioning process 
depends on the motivation and needs to be done according the requirements 
of the concrete goal.  
 

 Numerical properties of existing term chunks are quite similar. The number of 
groups as well as the number of elements per group within all analyzed 
documentation pages unveil that there is some kind of a common 
understanding. Double checked with values from cognitive science regarding 
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working memory,  three to five groups per documentation seem to very 
appropriate, whereas the groups should have about eight to 14 elements.  
 

 The number of partitions as well as the size of ontology modules depend 
strongly on the concrete ontology. In contrast to term chunks, modular built 
ontologies show a strong deviation in the number of modules as well as the 
size of modules. Therefore, ontology modularization seems to be very 
ontology dependent regarding structural properties. 



 

 
 



 

 
 



 

4 RELATED WORK 

After the research problem has been understood in depth, related work is now 
analyzed. It is investigated, how the mentioned problems and requirements were tackled 
by other researchers. This enables to understand existing approaches, proposals and 
outcomes of research efforts. Furthermore, the clarification of the state-of-the-art 
reveals benefits and limitations of existing solutions. It, additionally, depicts open 
problems and research questions. 

Since this work applies a structure-based approach for partitioning, this chapter starts 
in Section 4.1 with a brief literature survey discussing how the structure of an ontology is 
defined in related work and which structural metrics are used for which purposes. 

In Section 4.2 relevant works from the research field of module extraction are 
presented. The rationale behind this is twofold. On the one hand, this section should 
clarify the relation and emphasize the difference to ontology partitioning. On the other 
hand, it is important to see, how the structure of an ontology is defined and used for 
module extraction. 

In Section 4.3 existing ontology partitioning efforts are presented, while the closest 
related work is discussed in Section 4.3.1 which uses the same approach for the same 
goal as this work does. In this regard, this work can be seen as an extension of them. 
Section 4.3.2 provides a brief description of a logic-based approach to ontology 
partitioning.  

The summary in Section 4.4 underlines the most important insights from this chapter 
and provides a comparative view on the different understanding of ontology structure. 
Additionally, it positions this work within the environment of the mentioned related 
work. 
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4.1 Structural Representation and Metrics 

Structural representation of ontologies and structural metrics are used in several 
ontology analysis techniques. The motivations of these techniques range from detecting 
central concepts to deriving patterns for synthetic creation of artificial ontology 
structures. In order to understand, how structural representations of ontologies are 
created and which structural metrics are used in which context, a detailed literature 
work has been conducted. In the following, a survey is provided, which describes 
existing work that utilizes some kind of a structural representation of ontologies and 
structural metrics. (Note: concrete mathematical definitions of the metrics are not 
provided in this section as most of them will be discussed in detail in Section 5.3.) 

Structural Pattern 
Theoharis et al. state that there is a need to benchmark repositories and query language 
implementations (Theoharis, Tzitzikas, Kotzinos, & Christophides, 2008). This work is 
driven by the idea that the success of the Semantic Web depends on the existence of 
ontologies for advanced querying and reasoning services. The realization of benchmark 
requires means to create synthetic ontologies comprising schemas as well as data. For 
that reason, the authors analyzed the structure of 83 selected ontology schemas with 
more than 100 classes for structural patterns. The focus was primarily on power-law 
degree distribution. They distinguished between the property graph and the 
subsumption graph of the schema. In both cases, the classes and literals were 
represented as nodes and the properties as edges. The outcome of this analysis is that 
the most of the analyzed schemas approximate a power-law for degree distributions in 
the property graph and also in the subsumption graph. This indicates the existence of 
central concepts forming a core.  

Node Importance 
In the following papers different notions of structural centralities have been used. The 
assumption in these works is that important concepts are in the core of the ontology 
and have, therefore, high centrality values. Graves et al. make use of the RDF graph as 
an undirected labeled graph to represent the ontology (Graves, Adalı, & Hendler, 2008). 
No differentiating is made between schema and instances. For ranking the nodes the 
closeness centrality values are used. This method is called Node Centrality Ordering 
(noc-order). 

AKTiveRank is a system which is motivated to facilitate reusing existing ontologies 
(Alani & Brewster, 2006). It aims at improving search engines by ranking ontologies 
based on structural properties of the search terms within the whole ontology. Four 
different measures are defined, which are calculated separately by ignoring the 
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instances. These are namely "class match measure", "density measure", "semantic 
similarity measure" and "betweenness measure". Apart from the first one, they are all 
structural measures.  

Hoser et al. introduce "Semantic Network Analysis" (SemNA) to analyze ontologies 
for the purpose of reuse and re-engineering (Hoser, Hotho, Jäschke, Schmitz, & 
Stumme, 2006). Different notions of node centrality are used, namely degree centrality, 
betweenness centrality and eigenvector centrality. The named entities of an ontology 
were represented as nodes in the graph. For an RDF statement this means that each 
subject, each predicate, and each object becomes a node, where the edges were 
directed from subject to predicate and from predicate to object. Experiments with the 
Semantic Web for Research Communities37 ontology and the Suggested Upper Merged 
Ontology38 (SUMO) are presented and the results are discussed.  

Measuring Complexity 
Apart from finding particular elements within an ontologies, structural metrics are also 
proposed to measure properties of the whole ontology. Yang et al. propose ten metrics 
to measure the complexity of ontologies (Yang, Zhang, & Ye, 2006). The main purpose is 
to analyze the evolution of ontologies and extract patterns from their changes. Through 
these patterns the future maintenance should be supported. This work uses the 
subsumption hierarchy and ignores other properties. The proposed metrics are divided 
into the categories "primitive metrics" and "complexity metrics". The first category 
consists of the "Total number of concepts", "Total number of relations", and the "Total 
number of paths" as well as "the longest path length for concept ci", "the average path 
length for concept ci", "the max path length of an ontology", and "the average path 
length of an ontology". The second category consists of "the average relation per 
concept", "the average paths per concept" and finally "the ratio of max path length to 
average path length of an ontology". After calculating these metrics for different 
versions of three ontologies, the authors detected some similarities between the 
changes of values for different ontologies. However, the term complexity is used 
completely different than it was defined in Section 3.2 because understandability and 
perception of humans are not considered at all. 

In contrast, Zhang et al. make use of the term complexity in the same sense as it is 
used in this work (Zhang, Li, & Tan, 2010). It is advocated that increasing complexity has 
a negative impact on the quality of ontologies due to cognitive limits of maintainers. For 
measuring this complexity eight metrics are proposed. They are categorized in 
"ontology-level metrics" and "class-level metrics". The first category comprises the 
following metrics: "size of vocabulary", "edge node ratio", "entropy of graph." The 

                                                        
37 http://ontoware.org/swrc/ last access April 12th 2014 
38 http://www.ontologyportal.org/ last access April 12th 2014 
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second category consists of the following metrics: "number of children of a class", 
"depth of inheritance of a class", "in-degree for a class", "out-degree for a class". The 
underlying structural representation of an ontology is formally described with graph-
transformation rules and corresponds the RDF graph representation. Applied on 
different ontologies, it has been shown that these metrics allow good differentiation. 
However, apart from the motivation, the relation between cognitive limits and 
proposed complexity metrics is not investigated deeper. This work lacks of concrete 
threshold values for the different metrics based the cognitive capabilities, even though 
this expectation is raised. 

Ontology Evaluation 
Ontology evaluation is the process of determining the quality of an ontology. As 
mentioned previously, it is broadly accepted that ontology evaluation can be done only 
in context of a concrete application. However, several ontology evaluation approaches 
make use of a structure-based approach.  

Ning and Shihan propose such an approach and define the following six structural 
metrics: "concept quantitiy", "property's expectation", "property's standard deviation", 
"tree balance", "concept connectivity", and "key concept quantity" (Ning & Shihan, 
2006). On the one hand, for the "tree balance" metric the subsumption hierarchy is 
used. On the other hand, for the "concept connectivity" a proprietary graph is created 
which is not clearly described. Only the following sentence is provided: "If a concept has 
an object property whose value is an instance of another concept, an edge will be drawn 
between these two concepts." Regarding the metric "key concept quantity", an edge 
weight function is proposed which depends on the number of subclasses and relations 
of a concept. The concepts are then assigned the sum of the values of their relations. 
The concepts are then ranked accordingly and a previously defined proportion is then 
considered as key concepts. Furthermore, the authors obviously assume that there is 
some knowledge about the abstract structure of a domain of interest. This becomes 
clear, when they advocate that the representation of a domain should have a structure, 
which satisfies the structure of the domain. Additionally, the evaluation that is provided 
in the paper is a kind of discussion by the authors based on the values of the proposed 
metrics. 

Based on a similar approach (Tartir, Arpinar, Moore, Sheth, & Aleman-meza, 2005) 
propose two categories of metrics to assess the quality of an ontology. Firstly, the 
schema metrics contain the following three metrics: "relationship richness", "attribute 
richness", and "inheritance richness". Secondly, they propose nine instance metrics: 
"class richness", "average population", "cohesion", "importance", "fullness", 
"inheritance richness", "relationship richness", "connectivity", "readability". This work 
has a strong focus on the instances of an ontology. It does not provide any scale to 
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categorize an ontology based on the values of the different metrics. That means that the 
user has to decide on its own, if a concrete value for a metrics indicates a good quality 
or a bad quality. Closing the paper with a similar discussion as in the previously 
mentioned paper (Ning & Shihan, 2006) makes clear that the proposed metrics are 
some kind of a support for a user. The user has to look at the values of the different 
metrics and has to build up his or her own mind. 

Ontology Modularity 
Within software modularity the terms cohesion and coupling are broadly accepted as 
good indicators for the quality of modularization. Cohesion refers to the degree of 
interconnections between elements of one module. Coupling on the contrary, is a 
metric that indicates the degree of connections between different modules. Due to the 
broad acceptance of these metrics in software engineering, attempts have been made 
to adopt them in the field of ontology engineering.  

Yao et al propose three metrics to measure the cohesion of an ontology module (Yao, 
Orme, & Etzkorn, 2005). Based on the hierarchy tree, the proposed metrics are "number 
of root classes", "number of leaf classes", and "average depth of inheritance tree of leaf 
classes". In a follow-up paper, the authors proposed additional metrics to measure 
coupling, namely "number of external classes", "reference to external classes", and 
"referenced includes" (Orme, Yao, & Etzkorn, 2006). In both cases the metrics are simple 
counts without taking the overall size or the complexity of the ontology into account. 
The authors did comparisons with the ratings of eighteen human evaluators for 33 
example ontologies. A correlation could be detected which indicates appropriateness of 
the proposed metrics. 

Analyzing the network structure of an ontology as a basis for partitioning the class 
hierarchy into disjoint and covering set of concepts is presented by Stuckenschmidt 
(Stuckenschmidt, 2006). Its main goal is to support distributed maintenance, selective 
reuse and efficient reasoning. The ontology is preprocessed in the same way as in 
SemNA(Hoser et al., 2006).  

4.2 Module Extraction 

Module extraction refers to the activity to extract only a part of an ontology. The 
original ontology is reduced to a focused part. This presumes that there is a definition 
which part - which concepts and properties - is relevant and have to be extracted. In 
most cases the module is created by traversal. That means that a small module with the 
given concepts is created and extended step by step. The outcome is a new ontology 
document, which can exist in parallel to the original one.  
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4.2.1 GALEN Segmentation 

Web ontology segmentation proposed by Seidenberg and Rector is a method which 
was developed for the GALEN ontology of medical terms (Seidenberg & Rector, 2006). 
Its primary goal is to create classifiable segments in order to enable reasoners to work 
properly even with large ontologies. In this regard, segments are targeted, which are as 
small and focused as possible, but also containing enough information on the same 
time. This method is optimized for densely connected and large ontologies with more 
than 1000 concepts. These ontologies should have at least (on average) one restriction 
asserted per concept.  

A pre-requirement for this method is a normalized ontology that is an ontology in 
which primitive classes do not have more than one primitive superclass. The basic 
principle followed by this algorithm is that any concept and property participating 
directly or indirectly to the definition has to be included. The segmentation algorithm 
starts with one or more concepts, given by the user. The extraction is created by 
traversal around the given and related concepts. All classes upwards and downwards, 
superclasses and subclasses respectively, are taken into the extraction, without merging 
superclases for avoiding destruction of semantic accuracy. Only properties which are 
used in the class hierarchy are traversed together with their superproperties. Properties 
which are not used in the class hierarchy or are not a direct superproperty of such a 
property as well as sibling concepts are not included in the extraction. In the following 
steps all superclasses of already included concepts are also traversed and included in 
the extraction.  

4.2.2 Extraction for Reuse 

The technique presented in by Doran et al. aims at achieving an efficient way for 
reuse of large ontologies (Doran, Tamma, & Iannone, 2007). Having an ontology 
engineering perspective, the modularization process allows the ontology engineer some 
control in order to identify which part of the ontology to separate. A definition for 
ontology module is given as following: "An ontology module is a reusable component of 
a larger or more complex ontology, which is self-contained but bears a definite 
association to other ontology modules, including the original ontology." Three 
requirements of ontology modules are given. The first requirement is self-containment. 
That is, each module should be transitively closed with respect to an arbitrary given set 
of relations. Being concept centered is the second requirement of an ontology module. 
A module is supposed to describe a given start concept with enough information. The 
last requirement is that a produced module should be consistent.  This approach 
exploits abstract graph models instead of logical formalism based representation, which 
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makes it language independent. It reduces extraction of an ontology module to traversal 
of a graph starting at a given point. It follows the idea that elements should be included 
which make a reference to the initial element, no matter directly or indirectly, explicitly 
or implicitly.  

4.2.3 Extraction for knowledge selection 

A modularization technique is proposed by d’Aquin et al. which is part of a process 
called knowledge selection (d’Aquin, Sabou, & Motta, 2006). This process refers to the 
integration of ontology selection with modularization in order to retrieve relevant 
ontology modules. Being strongly tight to a particular application the modularization 
technique is derived by following four previously determined application requirements.  

The first requirement states that the criteria for modularization should reflect the 
criteria of selection. In other words, the module which is to be produced should be the 
smallest part of the original ontology which covers all terms used during the ontology 
selection. The second requirement aims at maximizing the number of potentially 
utilizable candidates. For that reason it demands that no assumption in respect of the 
ontology should be made, neither language nor quality. Minimal user interaction is the 
third requirement. This is of high importance for the examined semantic web browsing 
scenario. The user just wants to brows and does not care anything about the ontology 
selection and module extraction mechanism. Due to the semantic nature of ontologies 
the last requirement states that the extracted module should also include implicit 
information which can be inferred from the original ontology should be contained in the 
extracted module. 

The module extraction algorithm is given by inclusion criteria for concepts, 
properties, individuals and assertions. In general, the algorithm works by including 
upwards. In order to keep the module size small, not all superclasses are included only 
the most specific common superclasses. Using inference during the modularization 
process allows for including implicit knowledge. 

4.2.4 Traversal View Extraction 

Although the mechanism presented by Noy and Musen is called view extraction, it 
can be seen as another approach for module extraction  (Noy & Musen, 2004). Inspired 
by database views, the notion of ontology view is introduced which is a specific portion 
of an ontology. In contrary to the previously presented methods, traversal view 
extraction is strongly interactive. The user has to define a starter concept, a list of 
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relationships that are relevant and should be traversed and the maximum distance per 
relation.  

The connection between the created view and the original ontology is kept by the so 
called boundary. Excluded concepts which are referenced by included concepts are part 
of the boundary. This allows the user to extend the view interactively and iteratively by 
choosing concepts to include from the boundary.  

4.2.5 Logic-Based Modularization 

As mentioned in Section 3.1, an ontology has different aspects. Semantics is one of 
these aspects. It is utilized in by Grau et al. for extracting modules (Grau, Horrocks, 
Kazakov, & Sattler, 2008). This logic-based approach targets at supporting the reuse of a 
subvocabulary 𝒮𝒱, which is part of a candidate ontology 𝒪. A module 𝒪ℳ is that part 
of the ontology 𝒪 (𝒪ℳ ⊆  ) which extends a second ontology 𝒫 (𝒪ℳ ∪ 𝒫) regarding a 
subvocabulary 𝒮𝒱 as if the whole candidate ontology would be added to 𝒫 (𝒪 ∪ 𝒫). In 
this regard, ℳ added to 𝒫 has to have the same meaning regarding 𝒮𝒱 as if the whole 
ontology 𝒪 is added to 𝒫. This relation is called deductive conservative extension. 𝒪 
added to 𝒫 is a conservative deductive extension of 𝒪ℳ added to 𝒫 regarding 𝒮𝒱 
because it does not add any entailment regarding 𝒮𝒱. It is shown that computing a 
module as defined is undecidable. Two different approximation methods are proposed 
which are based on the concept of locality. The experiments with existing large 
ontologies illustrate that this approach might lead to modules, which are very 
unbalanced in terms of size. This is the case when this approach is applied to ontologies 
which contain strong semantic dependencies.  

4.3 Ontology Partitioning 

Following the idea that any system has the property of near-complete 
decomposability, ontology partitioning presumes that it is possible to find groups of 
objects within a given ontology which have a closer relationship to each other than to 
the other objects. In contrast to module extraction, ontology partitioning assumes that 
every necessary piece of information for partitioning is in the ontology itself. Therefore, 
it considers the ontology as a whole and partitions it completely without having any 
additional input like important concepts etc. However, as elaborated in Section 3, 
different motivations of partitioning have different expectations regarding the outcome. 
For that reason, configurations like expected number of partitions or the expected 
number of elements per partition are essential. Ontology partitioning tries to keep the 
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original semantic as complete as possible and produces new subontologies, which 
optimally should be interrelated somehow. Ideally, the original ontology should be 
reconstructible through merging the partitions. 

4.3.1 Structure-based Partitioning 

Structure-based partitioning is a partitioning method for large light-weight 
ontologies, that is ontologies mainly consisting of a class hierarchy  (Stuckenschmidt & 
Klein, 2004). It aims at enabling easier browsing and exploring the hierarchy by dividing 
the class hierarchy into disjoint and covering sets of concepts.  The basic assumption 
which is made by this method is that the structure of an ontology allows the derivation 
of the dependencies among concepts. The authors state that their method is not able to 
capture important dependencies that could be found by analyzing the names of classes 
and the logical definitions of concepts. Nevertheless, they advocate that for scalability 
issue such a simple approach is important. The partitioning method consists of five 
different phases. In the first phase a dependency graph is created. Dependencies 
corresponding to the subclass hierarchy or domain and range restrictions in property 
definitions are used in this regard. Based on the constructed graph the strength of the 
dependencies are determined in the second phase. Metrics from social network theory 
are used to compute and assign strength values to the network. In the third phase the 
mentioned strength value are used for determining modules. The fourth phase is 
necessary because some single nodes can be left over during the third phase. To assign 
leftover nodes to existing modules, the relation between a leftover node and a 
neighboring node, which is already assigned to a module, is taken into account. Finally, 
in the last phase created modules are merged manually.  

This basic algorithm was extended and refined towards more flexibility (Schlicht & 
Stuckenschmidt, 2006). The connectedness of modules, size as well as number of 
modules and redundancy were defined as structural criteria for modularized ontologies 
which allow for estimating efficiency, robustness and maintainability. In a later work a 
sixth step called Axiom Duplication was added, which allows for overlapping modules  
(Schlicht & Stuckenschmidt, 2007). The intention behind this extension is to reduce the 
connectedness between modules. Finally, a method was presented that is used to 
automatically select optimal parameters in order to maximize the quality of the result 
(Schlicht & Stuckenschmidt, 2008a). This technique is implemented in a freely accessible 
tool called PATO.39 Experiments with existing ontologies showed promising results to 
support reasoning and visualization of ontologies. The former was evaluated by 

                                                        
39 http://web.informatik.uni-mannheim.de/anne/Modularization/pato.html last access 24th December 

2012 

http://web.informatik.uni-mannheim.de/anne/Modularization/pato.html
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calculating the communication cost between the partitions for a distributed resolution 
process (Schlicht & Stuckenschmidt, 2008b). The latter is evaluated through some kind 
of anecdotal evidence and was not supported with findings from cognitive science, even 
though it is about perception.  

4.3.2 Partitioning Using ϵ Connections 

Grau et al. propose a method for automatic partitioning of OWL ontologies is (Grau, 
Parsia, Sirin, & Kalyanpur, 2005a), which is based on ϵ -Connections (Kutz, Lutz, Wolter, 
& Zakharyaschev, 2004). In a previous work the authors propose an abstract syntax 
extension of OWL following the ϵ Connections formalism which allows to express a new 
kind of properties (Grau, Parsia, & Sirin, 2004). These so called link properties enable to 
create a link between entities of two different ontologies. The partitioning is done by 
transforming an OWL knowledge into ϵ Connections so that relevant subdomains of the 
ontology are represented in different components. These components are formally 
proven to contain the minimal set of atomic axioms necessary in order to maintain 
crucial entailments. Even though the algorithm is formally sound, tests have shown that 
it suffers from scalability issues (Grau, Parsia, Sirin, & Kalyanpur, 2005b). Ontologies 
containing a top ontology could not be partitioned properly. Similar to the logic-based 
approach for module extraction described in Section 4.2.5, this technique tends to 
create one very large partition and few very small partitions. This technique is 
implemented in an ontology editing tool called SWOOP40. 

4.4 Chapter Summary 

This chapter provides an overview about existing related work in the research area 
this thesis pursues to contribute. It clarifies earlier scientific efforts and their outcome 
addressing the same basic research questions. The insights from this chapter can be 
summarized as follows.  

Obviously, focusing on the structure of ontologies is broadly accepted as a good 
approach for various problems in Ontology Engineering. These problems range from 
finding central concepts to the overall quality assessment of ontologies. However, the 
conducted literature work unveil that each work is based on its own notion of structure 
and metrics. In most cases there are open questions like:  Are the metrics based on the 
inheritance tree only? Is it assumed that the artificial upper concept "Thing" exists? Are 

                                                        
40 http://code.google.com/p/swoop/ last access 24th December 2012 

http://code.google.com/p/swoop/
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instances, reasoning and the import mechanism of OWL taken into account? 
Furthermore, the wording that is used is ambiguous or even confusing, as in some 
papers object type properties are called "relations" or "properties" and data type 
properties are called "attributes", whereas in other works object type properties are 
called "relations" and data type properties are called just "properties". In some cases, it 
is even unclear how the structure and the metrics are defined. Table 4-1 provides an 
overview about the different structural approaches in literature.  

Section 4.2 clarifies the difference between module extraction and ontology 
partitioning. The descriptions of existing work depicted that most techniques utilize a 
traversal approach. In doing so, the focus is primarily on the hierarchical relations. 
Furthermore, the process of module extraction requires additional inputs by the user 
like number of hierarchical levels and types of relations to traverse. Therefore, the 
process of module extraction is rather interactive and demands more time and effort 
from the user than ontology partitioning as targeted in this thesis. 

The logic based approaches for module extraction and ontology partitioning 
presented in Section 4.2.5 and Section 4.3.2 respectively underpin the relevance and 
importance of the structure-based approach of this work. Both examples led to modules 
and partitions respectively, which were very unbalanced in terms of size. This in turn is 
not acceptable, if reuse and maintainability support is envisioned and the focus is on 
perception and cognition instead of reasoning. Moreover, the work presented in Section 
4.3.1 shows that even reasoning can be improved with structure-based partitioning and 
does not necessarily demand for logic-based approach.  

Finally, the closest related work that has been presented in Section 4.3.1 applies a 
structure-based approach for ontology partitioning. The main motivations are improving 
reasoning and supporting the maintenance process through suitable visualization. The 
evaluation of the former is more sophisticated than the evaluation of the latter, which is 
some kind of a discussion. Therefore, it becomes apparent that the former has a higher 
priority for the authors. Furthermore, visualization of ontologies is about perception the 
ontology content. This in turn demands the consideration of cognitive capabilities of 
users, which is totally omitted. In fact, this issue is tackled in this thesis extensively. 
Thus, this work can be considered as an extension of the related work presented in 
Section 4.3.1. 
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 Goal Graph Structure 

(Theoharis et 
al., 2008) 

Derive common structural features of 
schema graphs     enabling the 
creation of synthetic ontology 
schemata for benchmark tests 

Classes and literals are nodes, 
properties are edges. Additional 
distinction between subsumption 
graph and property graph 

(Graves et al., 
2008) 

Find central node in RDF graph. RDF graph 

(Alani & 
Brewster, 
2006) 

Rank ontologies for search engines 
based on search terms. 

RDF graph 
 

(Hoser et al., 
2006) 

Analyzing ontology structure for reuse 
and  re-engineering 

Named entities as nodes. Edges 
between class and superclass, 
property and superproperty, property 
and domain class as well as    between 
property and range class. 

(Yang et al., 
2006) 

Extracting structural patterns from the 
evolution in order to support further 
maintenance 

The subsumption hierarchy is 
primarily used as the structure of an 
ontology 

(Zhang et al., 
2010) 

Measuring the complexity of an 
ontology from a cognitive perspective 

RDF graph 

(Ning & 
Shihan, 2006) 

Measuring different structural 
properties which can be used in 
manual evaluation 

Distinction between the subsumption 
hierarchy and the property graph. The 
latter is not concretely described 

(Tartir et al., 
2005) 

Measuring different structural 
properties with focus on the 
population. The values are used in a 
manual evaluation process 

This work does not propose any 
graph-based metrics.  

(Yao et al., 
2005). 

Adopting the notion of cohesion on 
ontologies 

Only the subsumption hierarchy is 
used 

(Orme et al., 
2006) 

Adopting the notion of coupling on 
ontology modules 

Only count metrics are proposed, 
therefore not graph representation is 
used 

(Stuckenschmi
dt, 2006) 

Analyzing the network structure of an 
ontology as a basis for partitioning the 
class hierarchy 

Named entities as nodes. Edges 
between "related" concepts 

Table 4-1: Ontology structure in literature 

 



 

 



 

 



 

5 ADAPTABLE ONTOLOGY 

PARTITIONING FRAMEWORK 

This chapter represents the core of this thesis. It describes the main contribution, 
which is an adaptable framework for partitioning ontologies in a structure-based 
manner. The conceptual model of the proposed framework is introduced in Section 5.1. 
The functionality of each component and their interdependencies are described from a 
high level perspective. The following sections present the concrete solutions elaborated 
for low level research questions. 

Section 5.2 clarifies what is understood by the structure of ontologies and describes 
concrete techniques to create a structural representation. Section 5.3 provides 
definitions of structural metrics like size and complexity, which are necessary for the 
partitioning and evaluation process. Section 5.4 describes community detection 
algorithms from the social network analysis field and how they can be used to create 
ontology partitions. In this regard, the algorithms which have been integrated into the 
framework are introduced in detail.  

In Section 5.5, it is described how this framework takes the inherent semantics of 
ontologies into consideration. This is done by the introduction of a weight function which 
assigns weights to the edges of the structural representation based on the meaning of 
the edges. 

As discussed in Chapter 3, different motivations for partitioning have different 
requirements on the created partitions. Section 5.6 describes how this framework 
considers the number as well as the size of partitions during the partitioning process and 
becomes an adaptable partitioning framework. Finally, this chapter is closed with a 
chapter summary describing briefly the main aspects of this chapter. 
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5.1 Conceptual Model 

The adaptable ontology partitioning framework contains different functional 
components which interact with each other. Figure 5-1 illustrates the conceptual model 
of the framework.  

 
 

 

Figure 5-1: Conceptual model of the adaptable ontology partitioning framework. (Dashed 
arrows represent passing of configuration information. The continuous lines represent passing of 
user input or an intermediate result.) 

Being adaptable for different goals, the ontology partitioning framework requires 
two input parameters: the ontology and the goal. The Input Handler provides a user 
interface and allows for uploading the ontology and setting the goal of the partitioning 
by selecting between "partitioning for creating term chunks" and "partitioning for 
creating a modular ontology". The Input handler forwards the ontology to the Ontology 
Analyzer and to the Graph Creator and the goal to the Configurator. The Ontology 
Analyzer analyses the ontology and passes a map of structural metric values to the 
Configurator. Based on the goal and the ontology category the Configurator tells the 
Graph Creator the Graph Variant to use, the Evaluator the evaluation metrics to apply, 
and the Partitioner the partitioning algorithms to run. The Graph Creator extracts a 
graph representation and forwards it to the Partitioner, which then partitions the 
ontology. The partitions are sent to the Evaluator which calculates an overall score for 
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the partitioning process. The output is a set of partitions or term chunks together with a 
score. Figure 5-2 illustrates the partitioning process in a step-by-step manner.  

 
 

 

Figure 5-2: Presentation of the overall partitioning process in a step-by-step maner 

5.2 From Description Logics to Structural Representation 

Although the basic logics of ontologies are clearly defined and OWL is established as 
the de facto standard, the structure of ontologies is defined differently in various 
existing works (Section 4.1). In a broad sense, the structure of an ontology can be 
defined as "a set of ontology properties which are not part of the semantic content". 
Thus, two ontologies describing two different domains might have a similar structure, 
even though their semantic content is very different. On the other hand, two ontologies 
describing the same domain might have very different structures, depending on the 
level of detail, the scope, the perspective of the author etc.  

The mostly used language for representing ontologies from a logic-based perspective 
is Description Logics (DL). OWL and its successor OWL 2 are mainly based on DL. An 

ontology 𝒪, as a DL knowledge base, is defined as 𝒪 = <𝒯, 𝒜>, where 𝒯 is the schema 

(TBox), and 𝒜 the set of individuals (ABox). The set C of all class (concept) names in 
conjunction with the set P of all property (role) names create the signature Sig(𝒪) of 𝒪. 
Based on this it is possible to distinguish among the TBox structure and the ABox 
structure and to define basic structural properties like the overall number of elements 
they contain and the number of elements belonging to different types like classes and 
properties etc. Moreover, complex structural properties can be extracted from the 
different relationships like hierarchical and domain-range-relationships which exist 
between these elements. In fact, the structural representation of these interrelations is 
essential to detect closeness and dependency between the elements and to group them 
into partitions. 
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5.2.1 The RDF Graph 

The primary data model of the Semantic Web is RDF. As a directed and labeled 
multigraph, RDF can be considered as one way to represent the structure of an 
ontology. It enables representing information as triples following the form <subject, 
predicate, object>. The graph syntax of RDF maps triples to graphs where the subjects 
and the objects are nodes and the predicates are directed edges (from subject to 
object). Any ontology expressed in OWL can be translated to an RDF graph and this RDF 
graph again can be translated to the original OWL ontology (Patel-Schneider & Horrocks, 
2004). However, that does not mean that an RDF graph has the same expressivity as an 
OWL ontology. In fact, an RDF graph can be parsed to an OWL ontology only, if it 
satisfies the restrictions, which are defined for representing OWL ontologies as RDF 
graphs. Primarily, this means that the concepts which are defined in OWL have to be 
used.  

The plain RDF graph representation of an OWL ontology makes no distinction 
between the ABox and the TBox nor between classes, properties, and individuals. It is 
also not possible to distinguish between local elements and external elements which are 
defined in other ontologies. The latter issue can be overcome with the assumption that 
the URIs of local elements belong to the namespace of the ontology, whereas external 
elements belong to other namespaces. 

5.2.2 Class-centric Graph 

A second way to represent an ontology structure is the creation of a class-centric 
graph. In this graph only classes are represented as nodes connected by properties, 
where the edge direction is from the domain class of the property to the range class of 
the property. This representation is similar to classic entity-relationship-diagrams. As 
such it is not lossless. That means, it is not always possible to recreate the original 
ontology from the class-centric graph representation. However, the main rationale for 
this representation is that classes are the major objects of an ontology, while the 
properties can be seen as extensions of those classes relating them with each other.  By 
representing properties as edges and ignoring individuals completely, the class-centric 
graph is a focused representation enabling better detection of the interdependencies 
between classes. 

As illustrated in Figure 5-3 the class-centric graph is much smaller and therefore less 
complex than the RDF graph. In this case the set of classes equals the set of nodes, while 
the set of properties equals the set of edges.  
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Figure 5-3: Two different structural representation of the Friend-of-a-Friend ontology 
visualized as graphs. In a) the plain RDF graph is visualized, whereas in b) the class-centric 
graph is shown. 

a) 

b) 
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5.3 Structural Metrics 

An adaptable structure-based framework needs metrics to measure the structural 
properties of an ontology in order to adapt according to them. For the actual 
partitioning process such metrics are also required for measuring the strength of the 
connections between the elements and to identify partitions. Furthermore, structural 
metrics are also necessary to calculate an evaluation score for the partitioning process. 
That means that metrics are necessary to measure the difference between the original 
ontology and the outcome of the partitioning process. As described in Section 4.1, 
numerous metrics are already introduced and used. Each work, however, is based on its 
own understanding of ontology structure. In most cases there are open questions like:  
Are the metrics based on the inheritance tree only? Is it assumed that the artificial 
upper concept "Thing" exists? Are instances, reasoning and the import mechanism of 
OWL taken into account? Furthermore, the wording that is used is confusing, as in some 
papers object type properties are called "relations" or "properties" and data type 
properties are called "attributes", whereas in other works object type properties are 
called "relations" and data type properties are called just "properties".  

In order to avoid ambiguity, formal definition for the metrics to measure the 
structural features of an ontology are provided in this section. The formulas are based 
on the basic notation used in Section 5.2. Some metrics have been proposed before. 
However, there is also a set of new metrics, which are introduced in this work. For the 
description, the wording which is commonly used in the documentation of OWL is 
applied. The metrics are classified into the following categories:  

 Size Metrics are used to count the number of different elements of an 
ontology.  
 

 Hierarchy-based Metrics are used to measure features of the inheritance tree 
like depth and paths. 
 

 Complex Metrics give insights into numerical relations between different 
types of elements and the hierarchical properties. These metrics unveil the 
overall complexity of the ontology 

The only assumption for these metrics is the existence of the artificial upper class 
"Thing". This class should be inserted if the ontology does not already contain it. It is 
inserted as the superclass of all classes, which do not have an explicitly defined 
superclass. Apart from that assumption, it is important to keep in mind that depending 
on the loading strategy one metric might have different values for the same ontology. 
The loading strategy has three important properties. The first one is how imports within 
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an ontology are treated. That means, if only the explicitly formulated content of an 
ontology file is loaded or if imported ontologies are loaded as well. Secondly, it is part of 
the loading strategy, if a reasoner is applied on the loaded ontology, which materializes 
the ontology. If this is the case, it needs to be clarified what kind of reasoner is applied 
and which expressivity level or inference rules have been used. Finally, the third 
property is how individuals are treated. For the analysis of the ontology schema 
individuals might be irrelevant and could be ignored. 

In order to have a quick overview about the metrics, Table 5-1 lists all defined metrics 
at the end of this section. It provides information about metrics which have been 
introduced in previous work along with the local names or abbreviations. It enables to 
see which metrics were already used and which have been introduced in this work. 

5.3.1 Size Metrics 

In various works in literature on ontology structure, size is a common structural 
property. Schlicht and Stuckenschmidt as well as d’Aquin et al. propose size as one 
structural criteria for evaluating ontology modularization techniques (d’Aquin, Schlicht, 
Stuckenschmidt, & Sabou, 2009; Schlicht & Stuckenschmidt, 2006). Oh et al. it is stated 
that  

 
“size is an important metric, because it has a strong influence on the 
maintainability, robustness, and evolution of the application relying on it.” 
(Oh, Yeom, & Ahn, 2010) 

 
On the one hand, large modules tend to lose flexibility regarding their evolution and 

exploitation (d’Aquin et al., 2009). On the other hand, too many and too small modules 
are not appropriate as well. Because they would not cover one domain sufficiently and 
would demand even more management effort in order to keep all modules 
synchronized and consistent. 

Although size seems to be a very trivial property at the first glance, due to the 
complexity of ontologies there is a set of different properties which can be regarded as 
a dimension of the ontology size. Zhang et al. define for example the size of a 
vocabulary as the number of named entities (Zhang et al., 2010), whereas d’Aquin et al. 
define size as the number of all elements without a restriction, if they are named or not 
(d’Aquin et al., 2009). For the sake of clarity, a set of definitions for different size metrics 
are provided in the following. These metrics are mainly based on the different types of 
elements which are illustrated in Figure 5-4.  
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Figure 5-4: UML class diagram representing the entities defined in OWL.  (Picture is 
taken from (Motik, Patel-Schneider, & Horrocks, 2008)) 

Number of named classes 

Classes are the basic elements of ontologies. Thus, they are mostly defined at the very 
beginning of the ontology creation process (e.g. called glossary in METHONTOLOGY; see 
Section 2.2.1). The number of named classes (NoNC) defined in an ontology indicates 
the level of detail or the spectrum of an ontology. This metric is also used in (YANG et al. 
2006; Ning & Shihan 2006a) and is defined as 
 

     |    |                                                         ( 1 ) 

 

Number of anonymous classes 

Classes which do not have a label are called anonymous classes and are represented as 
blank nodes in RDF.  Indicating that something exists without assigning a label for it they 
are mainly used for representing complex concepts. Thus, they have an important 
impact on the complexity of ontologies. The comprehension of anonymous classes 
within the ontology is not easy, because they have no own meaning but get a meaning 
through the combination of other classes. That means that anonymous classes add 
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semantics to the ontology by linking other elements of the ontology. The number of 
anonymous classes (NoAC) is an important metric to measure the size and is defined as  

 
     |      |                                              ( 2 ) 

 

Number of classes 

The sum of the number of anonymous classes and the number of named classes is the 
overall number of classes (NoC) that are defined within an ontology.  
 

               ( 3 ) 

 

Number of external classes 

Classes which are defined in an external ontology but are used to define classes and 
properties within an ontology are external classes. The number of external classes 
(NoEC) indicates the dependency of an ontology from other ontologies. The higher the 
number of external classes the more complex the ontology is, because external classes 
might demand for understanding of additional ontologies. Usually, the elements of an 
ontology have the same namespace. Therefore elements with a namespace other than 
the defined one are considered as external elements. This metric is also used in (Orme 
et al., 2006) and is defined as 

 
     |   |                                       ( 4 ) 

 

Number of data type properties 

Data type properties extend classes with well-defined data types like xsd:string. This 
allows to add literals to individuals of those classes. The higher the number of defined 
data type properties the more detailed an ontology is and the more knowledge it 
contains. The number of data type properties (NoDP) which are defined within an 
ontology is defined as  
 

     |     |                                                     ( 5 ) 
 

Number of object type properties 

Object type properties are class extensions which are connecting two classes with each 
other. On the individuals level this means that individuals of one class might be 
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connected with corresponding individuals from the other class. A high number of object 
type properties defined within an ontology might be an indication for dense 
connectivity between the classes and high cohesion for the overall ontology. The 
number of object type properties (NoOP) which are defined within an ontology is 
defined as 

 
     |     |                                                        ( 6 ) 

 

Number of properties 

The sum of the number of data type properties and the number of object type 
properties which are defined within an ontology is the number of properties (NoP). 
Considering properties as extensions of classes the number of properties may indicate 
the level of detail for the classes, the complexity of the classes, and the complexity of 
the domain. This metric is defined as  

 
              ( 7 ) 

  

Number of annotation properties 

Annotation properties allow to add meta-information to an ontology to support the user 
for better understanding the ontology or to understand its relation to other ontologies.  
Because annotation properties do not have semantics they are ignored in any reasoning 
processes. Therefore annotation properties are not taken into account in the calculation 
of the overall number of properties (NoP). The number of defined annotation properties 
(NoAP) is defined as 
 

     |     |                                                       ( 8 ) 
 

Number of annotations  

By using annotation properties meta-information are added to ontologies. Standard 
annotation properties like rdfs:comment and rdfs:label are used to improve the 
readability of an ontology. A similar metric is also used in (Tartir et al., 2005) which is 
called "Readability" and considers only rdf:comment and rdfs:label properties. The 
number of used annotation (NoA) is defined as  
 

    |     |                                             ( 9 ) 
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Number of individuals 

Classes and properties of ontologies can be instantiated by concrete individuals. The 
number of individuals (NoI) within an ontology indicates the number of concrete entities 
within a domain of interest. Hence, this metric can be considered as an overall size 
metric for the ABox and as such for the whole domain. This metric is defined as 

 
    |   |                                             ( 10 ) 

 

Number of named entities 

The named entities of an ontology are those elements which have concrete labels. It is 
the sum of the number of named classes, the number of properties, and the number of 
individuals. The number of named entities (NoNE) was already used in (H. Zhang et al. 
2010) where it was considered as the overall the size of the ontology vocabulary. It is 
defined as 

 
                   ( 11 ) 

 

Number of references to external classes 

In contrast to NoEC, the number of references to external classes (NoREC) is not 
counting the number of distinct used external classes but the number of the references 
to those. The more references to external classes exist the higher is the connection 
density among local and external elements and the stronger is the dependency of the 
ontology on external classes. Therefore this metric measures the degree of coupling. It 
is also used in (Orme et al., 2006) and is defined as 
 

      |    
|       

                                               ( 12 ) 

 

Number of Imported Ontologies 

OWL defines an import mechanism which allows to incorporate external ontologies 
completely into a new ontology. The number of imported ontologies (NoIO) is the 
number of explicitly included ontologies at the beginning of the description of the new 
ontology. Because the external ontologies are imported completely any increase in this 
metric might have a huge impact on the overall size and complexity of an ontology. 
Together with NoEC and NoREC this metric is an additional coupling metric that is also 
used in (Orme et al., 2006) and is defined as 
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     |    |                                          ( 13 ) 
 

5.3.2 Hierarchy-based Metrics 

Hierarchical properties are a specific kind of transitive object type properties which 
are connecting two classes with each other. This kind of properties is expressing 
inheritance relation between two classes. The set of individuals of a class is a subset of 
the individuals of the corresponding superclass.  Since a cyclic inheritance relation 
would lead to an equivalence relation the inheritance structure within an ontology 
should avoid cycles and should build a tree structure.  Within the inheritance tree each 
class has a unique position. Utilizing the position as well as generic properties of trees 
such as depth and path the following hierarchy-based structural metrics are defined: 

Number of root classes 

Classes which do not have an explicitly defined superclass are subclasses of the Thing-
class. They are the roots of the different branches of the inheritance tree. Hence the 
number of root classes (NoRC) indicates the spectrum of an ontology. This metric is also 
used in (Yao et al. 2005) and is defined as  

 
     |      |                                         ( 14 ) 

 

Number of leaf classes 

Classes which do not have an explicitly defined subclass are leafs of the inheritance tree. 
Classes which neither have an explicitly defined superclass nor a subclass can be 
considered as leaf classes and root classes at the same time. Therefore there might be 
an intersection between the set of root classes and the set of leaf classes. The number 
of leaf classes (NoLC) is an indication for the level of detail. It is also used in (Yao et al. 
2005) and is defined as 

 
     |      |                                             ( 15 ) 

 

Number of inheritance paths per class 

The path in an inheritance tree is the sequence of inheritance relationships between a 
class and one corresponding superclass. Since in OWL a class may have more than one 
direct superclass (multiple inheritance) each class may have more than one root classes 
and therefore several paths to its corresponding root class(es). The amount of different 
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paths from a class to its corresponding root classes is the number of inheritance paths 
per class (NoIPi). If a class has more than one path it inherits from different branches of 
the tree. That in turn exacerbates the comprehension of the class. Therefore this metric 
is a measure for the complexity of a class. It is also used in (Yang et al., 2006) and is 
defined as  

 

      |      (       
)|         

                                  ( 16 ) 

 

Average depth of a class 

The number of inheritance relationships between two classes is the length of a path. 
(The path length between a class and its direct superclass is 1.) The sum of the length of 
different paths from a class to its corresponding root classes divided by the number of 
paths is called the average depth of the class (ADoCi).  A high value for this metric means 
that a class has many superclasses from which it inherits. For that reason a high value 
for this metric indicates high complexity. This metric is also used in (Yang et al., 2006) 
and is defined as  

 

      
∑               (       

)  

     
                

             ( 17 ) 

 

Maximum depth of a class 

The longest path from a class to its corresponding root classes is the maximum depth of 
a class (MDoCi). The higher the value for this metric the more interdependent 
superclasses a class has. That means a high value indicates a complex inheritance chain 
which increases the complexity of the class.  This metric is also used in (Yang et al., 
2006) and is defined as  

 

          (     (       
))           

             ( 18 ) 

 

Number of inheritance paths 

The sum of the amount of different paths from all classes to their corresponding root 
classes is called the number of inheritance paths (NoIP). The more inheritance paths an 
ontology contains the more independent inheritance chains exist. A high value for this 
metric indicates increased complexity of the ontology. It is defined as 
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      ∑      
   
  ( 19 ) 

 

Average path per class 

The number of inheritance paths divided by the number of classes is the average path 
per class. If an ontology contains single inheritance only the value for this metric will be 
1. As mentioned before multiple inheritance is more difficult to comprehend. Therefore 
an increased value for this metric indicates higher complexity of the ontology. This 
metric is also used in (Yang et al., 2006) and is defined as  

 

      
    

   
 ( 20 ) 

 

Depth of an ontology 

The longest inheritance path within the inheritance tree of an ontology is the depth of 
the inheritance tree (DoO). The value for this metric represents the highest leaf-root 
distance within an ontology. It might indicate the level of detail of an ontology, because 
the longer this distance is the finer is the modeling granularity between the leaf class 
and its corresponding root class. This metric is also used in (Yang et al., 2006) and in 
(Duque-Ramos et al., 2011). It is defined as  

 
                ( 21 ) 

 

Average depth of leaf classes 

The sum of the length of different paths from each leaf class to their corresponding root 
classes divided by the number of paths is called the average depth of an ontology 
(ADoLC). This metric was introduced in (Yao et al., 2005) and was used in (Duque-Ramos 
et al., 2011) where the artificial root class THING (            was used. However, 

this modification just increases the value by one. ADoLC is defined as 
 

      
∑                (         )  

    
 ( 22 ) 

 

Number of children 

The number of direct subclasses of a class is called number of children (NoCi). The more 
subclasses a class has the higher is its importance, because it has a connecting function 
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between more elements and a change on this class will affect all its subclasses. This 
metric is also used in (Zhang et al., 2010) and is defined as  

 
       |            |    ( 23 ) 

 

Number of subclass relations 

All explicitly defined subclass relations within an ontology is called the total number of 
subclass relations (NoSC). Since all edges in the inheritance tree are subclass relations 
this metric measures the number of edges in the tree. For that reason it can be seen as 
a size metric for the inheritance tree. It is also used in (Yang et al., 2006) and is defined 
as  

 
      ∑  |             |

   
  ( 24 ) 

 

Average number of subclass relations 

The average number of explicitly defined direct subclasses per class is the average 
number of subclasses (AoSC). In the inheritance tree this corresponds to the edge to 
node ratio. A high value indicates high fan-out of the inheritance tree. That means a 
high number of different branches. This metric is also used in (Tartir et al., 2005), in 
(Yang et al., 2006) and in (Duque-Ramos et al., 2011). It is defined as 

 

      
     

   
 ( 25 ) 

 

Average number of subclasses per class 

The average number of subclasses within a subclass-tree of a class is the average 
number of subclasses per class (AoSCi). This metric measures the centrality and the 
importance of a class in the inheritance tree. The higher the value the more branches 
the subtree will have. This metric indicates the level of abstraction of a class. It also used 
in (Tartir et al., 2005) and is defined as 

 
                         ( 26 ) 

 

Tree Impurity 

Single inheritance relations lead to a tree structure. In contrary, multiple inheritance 
causes a graph structure. Because a tree with n nodes has n-1 edges the value for this 
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metric measures the number of multiple inheritance relations which differentiate the 
inheritance structure from a tree. Since single inheritance leads to a linear inheritance 
direction it is easier to comprehend than multiple inheritance which demands for 
following the inheritance from parallel point of views. Hence the higher the value for 
this metric is the more compact but at the same time more complex the inheritance 
structure becomes. This metric is also used in (Zhang et al., 2010) and is defined as  

 
                 ( 27 ) 

 

5.3.3 Complex Metrics  

Combinations of the aforementioned basic and hierarchical metrics lead to more 
complex metrics which give a deeper insight into the overall structure of ontologies. 
These combinations can be considered as normalized metrics which do not depend on 
the value of one metric but are measuring the relation between different metrics.  

Object type property distribution 

The object type property distribution (OTPD) is the average number of object type 
properties per class. Since object type properties are connecting two classes with each 
other, a high value is an indication for dense connectivity between the classes of an 
ontology and might be an indication for high cohesion. Dense connectivity between 
classes increases the complexity of an ontology, because it necessitates to comprehend 
the relationships between the different classes. This metric is also used in (Li, Motta, & 
D’Aquin, 2010) and in (Duque-Ramos et al., 2011). It is defined as  
 

      
    

   
    ( 28 ) 

 

Object type propertys’ standard deviation 

The object type property standard deviation (OTPSD) is the average deviation of the 
number of properties of a class different from the OTPD. It indicates how the 
distribution of the properties over the classes are. A high value of OTPSD is a strong 
indication for an unbalanced distribution of the data type properties over the classes. 
This means, that most of the data type properties belong to few classes which can be 
considered as central and important classes. If the object type properties are distributed 
equally over the classes the value will be 0. This metric is defined as 
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      √
∑       

         
 

   
    ( 29 ) 

 

Data type property distribution 

The datatype property distribution (DTPD) is defined as the average number of data 
type properties per class.  The higher the number of data type per classes is the more 
detail is known about that class. For that reason, this metric can be seen as an indication 
for the level of detail of an ontology and hence the amount of included knowledge 
described. It is also used in (Tartir et al., 2005) and in (Duque-Ramos et al., 2011). It is 
defined as 

 

      
    

   
  ( 30 ) 

 

Data type propertys’ standard deviation 

This metric is similar to OTPSD but belonging to data type properties and not to object 
type properties. It measures the distribution of the defined data type properties over 
the classes. If few classes have many data type properties while the most classes have 
less or none data type properties, the value of for this metric will be high. In this case, 
the classes with the most data type properties can be considered as the most detailed 
classes and therefore as the most important classes in the ontology. This metric is 
defined as 

 

      √
∑       

         
 

   
    ( 31 ) 

 

Properties distribution 

Data type properties and object type properties increase the level of detail of an 
ontology. The more properties an ontology contain the more powerful is its semantic 
expressivity. That means that the ontology is able to represent more knowledge which 
leads to more complex ontologies. The distribution of the properties over the classes of 
the ontology (PD) measures the average property per class within an ontology. 
Therefore it can be seen as a measure for the complexity of an ontology.  This metric is 
also used in (Duque-Ramos et al., 2011) and is defined as 
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    ( 32 ) 

 

Properties’ standard deviation 

The properties’ standard deviation (PSD) measures how the number of property per 
class differs from the average number of properties per class. A high value for this 
metrics indicates an unbalanced distribution of the properties over the classes. If this is 
the case few classes will have the most properties which can then be considered as the 
most important and central classes of an ontology. This metric is defined as 
 

    √
∑     

       
 

   
    ( 33 ) 

 

Datatype to objecttype property ratio 

Object type properties connect two different classes which each other while data type 
properties are extensions of a class of simple types. The ratio between the number of 
defined data type properties and the number of defined object type properties (DOR) 
reveals the authors’ preferred way of adding details to classes. A high value might 
indicate a domain comprising mainly objects with simple attributes and low 
interdependency between the elements. This metric is defined as  

 

     
    

    
    ( 34 ) 

 

Annotation distribution 

The distribution of the annotations within an ontology (AD) indicates the richness of an 
ontology with respect to meta-information. A high value for this metric might indicate a 
complex domain as well as a complex ontology which is difficult to understand. On the 
other hand the annotations might be helpful in understanding the content of the 
ontology. This metric is also used in (Duque-Ramos et al., 2011) and is defined as 

 

    
    

   
    ( 35 ) 

 

Property richness 

The property richness (PR) was introduced in (Tartir et al., 2005) and is defined as the 
ratio between the defined properties connecting classes and data types and the subclass 
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relations between classes. If most connection between classes are subclass relation the 
overall structure of the ontology will be more tree like, whereas a high number of 
properties will lead to a higher value for this metric indicating a more complex graph 
structure of the ontology. This metric is defined as  

 

    
   

        
 ( 36 ) 
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Metric (Yao et al., 2005) (Tartir et al., 
2005) 

(Yang et al., 
2006) 

(Orme et 
al., 2006) 

(Ning & 
Shihan, 
2006) 

(Zhang et al., 
2010) 

(Duque-Ramos 
et al., 2011) 

NoNC     TNOC   Concept 
Quantity 

    

NoAC               

NoC               

NoEC       NEC       

NoDP               

NoOP               

NoP               

NoAP   Rd           

NoI               

NoNE           SOV   

NoREC       REC       

NoIO       RI       

NoRC NOR             

NoLC NOL             

        TNOP     

         ̅      

             DIT  

       
        

NOIP               

APpC     ρ         

DoO     Λ       DITOnto 

ADoLC ADIT-LN      LCOMOnto 

               NoC_c   

NoSC     TNOR         

AoSC   IR_s μ       NOC/CBOOnto 

        IR_c           

TIP           TIP   

OTPD         PE   INROnto 

OTPSD         PSD     

DTPD   AR         NOMOnto 

DTPSD               

PD             WMCOnto 

PSD               

DOR               

AD             ANOnto 

PR   RR           

Table 5-1: Overview of the mapping of the metrics to related work 
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5.4 Community Detection Algorithms 

People and their interrelations like friendship and colleague are so called social 
networks. These networks can be represented by graphs, where people are nodes and 
the relations are edges (Newman, 2003). A group of people who have more 
interrelations between each other than to other people are called communities. Within 
the graph representation such communities built subgraphs which have a higher density 
than the overall graph. Therefore, detecting communities in social networks 
corresponds to the problem of finding subgraphs which are internally densely 
connected but have fewer connections between each other. A straightforward way to 
find those subgraphs would be to calculate each possible partitioning and to measure to 
what extend they comply with being a community. The partitioning with the best result 
would then be chosen. However, this approach leads to two different problems.  

5.4.1 Modularity Metric 

Firstly, a metric has to be defined which measures the community degree of a graph 
partitioning. The requirements for this measure are perfectly described by Reichardt 
and Bornholdt as follows:  

 
“[…] communities are understood as groups of densely interconnected 
nodes that are only sparsely connected with the rest of the network. Any 
quality function for an assignment of nodes into communities should 
therefore follow the simple principle: group together what is linked, keep 
apart what is not. From this, we find four requirements of such a quality 
function: it should (i) reward internal edges between nodes of the same 
group (in the same spin state) and (ii) penalize missing edges (nonlinks) 
between nodes in the same group. Further, it should (iii) penalize existing 
edges between different groups (nodes in different spin state), and (iv) 
reward nonlinks between different groups.” (Reichardt & Bornholdt, 2006) 

 
Since a community is defined as a set of nodes with high density the metric has to be 

based on the distribution of the density over the graph. In this regard Newman and 
Girvan define a so called modularity metric for simple graphs in the following way:   is 
an adjacency matrix representing a simple graph where    equals 1 if the nodev and 
the node w are connected and     equals 0 if v and w are not connected (Newman & 
Girvan, 2004). With    indicating that v belongs to    and          = 1 if v and w belong 
to the same community (means      ) and          = 0 if v and w belong to 
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different communities the following equation is the ratio between the in-community 
edges and the overall number of edges (ICER) 

 

        
∑               

∑      
    

 

  
 ∑                ( 37 ) 

 
Since this would equal 1 in case of only one community comprising the whole graph it 

is not an accurate metric yet. It is necessary to set this metric in relation to the 
distribution of the edges in case of random networks. In random networks the 
probability that an edge exists between the nodes v and w equals       ⁄  with 
    ∑      being the number of incident edges upon v. This leads to the following 
metric for modularity (MOD): 
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]            ( 38 ) 

 
This metric measures how the ratio of in-community edges over the overall number 

of edges differs from the edge distribution within a random edge distribution. A higher 
density is represented by a positive number while a lower density stands for a lower 
density. In case of MOD = 0 the edge distribution corresponds to a random edge 
distribution. A value above 0.3 is considered to indicate significant community structure 
(Clauset, Newman, & Moore, 2004). With some modification the equation can be 
simplified to the following form (Clauset et al., 2004):  

 

     ∑ (       
 )         ‖  ‖ ( 39 ) 

 
In the formula   is a symmetric k x k matrix representing the connections between k 

subgraphs of a graph. eij corresponds to the ratio of edges between the subgraphs i and 
j over the overall number of edges.  The expected connectivity between the subgraphs 

in a comparable random network is   
  so that         

   corresponds to the deviation 
of fraction of edges within the subgraph i from the expected value. Furthermore, ‖ ‖ is 
the sum of all elements of the matrix   and the Trace       ∑      corresponds to the 
fraction of edges that are within subgraphs.  

Newman shows that this metric is also applicable on weighted graphs by 
transforming the graph into a multigraph and introducing a unit r to handle non-integer 
values (Newman, 2004a). However, in case of directed graphs this metrics needs a 
modification that is shown in (Leicht & Newman, 2008). The metric needs to reflect that 
         is not valid in a directed network and that the probability       ⁄  has to 
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be changed to   
    

    ⁄ . Applied on the modularity metric from (39) this leads to the 
following modularity metric for directed networks (MODd): 

 

      
 

 
 ∑ [     

  
    

   

 
]            ( 40 ) 

 

5.4.2 Partitioning Algorithms 

The second main problem is that calculating each possible partition for a graph is 
computationally a very complex task, because it means to find all possible subsets for 
the set of nodes and then to find all possible subsets for the set of edges for each of the 
subsets of nodes. Even the complexity of finding all possible subsets for a set with n 
elements is 2n. Brandes et al. show that maximizing the modularity is computationally 
an NP-complete problem (Brandes et al., 2007). Therefore, there have been different 
proposals seeking to find the best solution without calculating every possible 
partitioning.  

In classic graph partitioning approaches the targeted number of partitions is known 
and the main goal is to divide the original graph into this number of partitions. Thereby 
the main focus is on minimizing the connections between the modules and if possible to 
obtain similar sized partitions. An example is the division of a computational problem 
for parallel computing in a computer cluster. In this regard partitioning is a kind of a 
preprocessing for the actual goal.  

On the contrary, in the social network analysis approach the goal is to detect the 
intrinsic partitioning that is supposed to exist in a social network naturally (Newman & 
Girvan, 2004). These approaches are called hierarchical clustering techniques because 
they create a hierarchical structure (Xu & Wunsch, 2005). This is mostly represented by 
a specific tree representation called dendrogram. An example is shown in Figure 5-5. 
The leaf nodes are representing the nodes of the graph and the intermediate nodes are 
representing join-points where the elements (nodes or communities) from lower levels 
are merged together to build increasingly larger communities. That means that each 
level represents an intermediate partitioning result. Hierarchical techniques can be 
divided into two different categories.  

Firstly, agglomerative approaches start with creating partitions which contain just 
one node. These clusters are then merged to bigger clusters. Regarding the visualization 
in Figure 5-5 an agglomerative algorithm would progress from the right part of the tree 
to the left part. The challenge is to find in each step the next two elements or clusters to 
merge. For that purpose metrics are necessary which measure the relatedness between 
them so that the next “meaningful” merge is detected. 
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Secondly, divisive approaches are working in the opposite direction, namely from the 
left part to the right part of the Figure 5-5. That means that divisive approaches create 
one big cluster at the beginning containing all elements. In every step each cluster from 
the previous step is divided into two new clusters. Therefore, in each step the challenge 
is to find two subgraphs which have low interrelations.  

 
 

 

Figure 5-5: Graphical illustration of community detection algorithms. In a) an example for a 
network with community structure is visualized. Part b) visualized a dendrogram representing 
a hierarchical clustering for the visualized graph. Finally, c) shows the modularity function for 
the dendrogam is shown. The maximum of MOD is achieved at the level with two partitions. 
(This figure is taken from (Pons & Latapy, 2006) with minor modifications.) 

There are various agglomerative and divisive techniques which partition a graph 
based on different metrics. A comprehensive description can be found in (Fortunato, 
2010). For this work the following simple algorithms have been chosen which are 
described briefly:  



Weighting Semantic Relations 

 

99 
 

Edge Betweenness Community 

The Edge Betweenness Community (ebc) algorithm introduced by Newman and Girvan 
is a divisive hierarchical clustering algorithm which focuses on the edges  (Newman & 
Girvan, 2004). Its basic idea is that a network comprises densely connected communities 
which in turn are sparsely connected. By calculating the shortest paths between each 
node pair the edge with the highest betweenness, which is likely to be connecting two 
communities, can be identified and removed. In each step of this algorithm the 
betweenness of each edge is calculated and only the one with the highest betweenness 
is removed. 

Fast Greedy Community 

The Fast Greedy Community (fgc) algorithm was initially introduced by Newman 
(Newman, 2004b). It is an agglomerative hierarchical algorithm that actually is an 
optimizing algorithm which uses the modularity function as a fitness function. In each 
step the next best merge is chosen by taking only connected nodes into consideration. 
This focus leads to an efficient algorithm. The performance was even improved by 
Clauset et al., which makes use of a more efficient data structure, because the matrix is 
reduced after each step (Clauset et al., 2004).  

Walktrap Community 

Pons and Latapy are proposing an algorithm, which is based on the idea that "random 
walks on a graph tend to get trapped into densely connected parts corresponding to 
communities" (Pons & Latapy 2006). For that reason, this algorithm is called Walktrap 
Community (wtc). Based on the degree of the nodes a probability function for random 
walk routes is calculated. These routes are then used to define a distance measure 
between nodes. This algorithm is an agglomerative hierarchical clustering algorithm. 

5.5 Weighting Semantic Relations 

Even though relations between people might be of different types like friend or 
colleague, in classic graph representations of social networks the edges have no type. In 
contrast, the edges between nodes in an ontology are of different types which stand for 
different semantic relations. That means that each edge has a meaning. This additional 
information is worth to be taken into consideration within the partitioning process. 
Because the main goal is to divide an ontology into subdomains so that the concepts 
within a partition are stronger related semantically to each other than to concepts from 
other partitions. E.g. an "equivalentClass" relation between two classes A and B 
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expresses semantic equivalence. Therefore, it is a strong indication that A and B belong 
to the same subdomain and should not be separated in the partitioning process. 

In order to insert this additional information into the partitioning process, 
quantification is necessary which measures the strength or weakness of a relation 
between classes. For that purpose it is proposed to introduce a weight function that 
assigns weights to edges based on their semantics. These weights are then taken into 
account within the partitioning algorithm or in the modularity function or in both.  

For the definition of a weight function the first question to clarify is the following: 
Which properties should be taken into consideration? Instead of defining a weight for 
each possible property of RDFS and OWL, it is decided to select the most used 
properties. For that purpose, all statements of LOD ontologies have been extracted and 
the predicates have been analyzed. Table 5-2 shows the results of this analysis. 

 
 

Property Used in % of all statements Used in # of ontologies 

rdf:type 17.2 301 

rdfs:label 11.1 283 

rdfs:rest 6.6 108 

rdfs:first 6.6 108 

rdfs:isDefinedBy 6.6 166 

rdfs:comment 5.5 282 

rdfs:range 5.3 264 

rdfs:domain 5.1 257 

owl:class 4.6 236 

rdfs:subClassOf 3.2 242 

Table 5-2: Usage analysis of the RDFS and OWL properties. The first column shows, in how 
many of the overall number of statements the corresponding property has been used. The 
second column shows, in how many ontologies the corresponding property occurs. 

The most used properties are rdfs:type (used in 17.2% of all statements) for instance 
definition and rdfs:label (used in 11.1% of all statements) for adding labels to defined 
resources. Both properties are used in most of the analyzed ontologies. The properties 
rdfs:rest, rdfs:first and rdfs:isDefinedBy are each used in  6.6 % of all statements. 
However, these properties are used in only one third to one half of all ontologies. This 
indicates that a large number of ontologies do not contain these properties at all, 
whereas in other ontologies they appear extensively. The annotation property 
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rdfs:comment is used in 5.5% of all statements and appears in 282 ontologies. The 
rdfs:range and the rdfs:domain properties which are used for defining properties are 
used in 5.3% and 5.1 of all statements and appear in 264 and 257 ontologies, 
respectively. The definition of a class with owl:class is used in 4.6% of all statements and 
appears in 236 ontologies, while the definition of a subclass with the rdfs:subclassOf 
property is used in 3.2% of all statements and appears in 242 ontologies.  

For the weighting function the annotation properties rdfs:label and rdfs:comment 
have been ignored, because they are used for human readers and do not add semantics 
to the ontology. The properties rdf:type, rdfs:isDefinedBy and owl:Class are ignored 
because they do not play any role in the schema of an ontology. The properties rdfs:first 
and rdfs:rest have been also ignored. On the one hand they are not used in about two 
third of all ontologies and would not have any effect in most cases. On the other hand 
they do not really add significant semantics to the schema, apart from bringing order to 
a sequence of resources. The left three properties are used for the definition of the 
proposed weighting function which contains three different categories for weights. 

Non-hierarchical relations 

The first category of properties are those properties which are - based on the previous 
analysis - accepted to have the most impact, namely rdf:range and rdf:domain. Despite 
the fact that the owl:equivalentClass is not one of the most used properties and was 
consequently not listed in Table 5-2, it is also considered within this category. This has 
been done because the equivalence between two classes is considered as a very strong 
relation indicating that two classes having this relation should be part of the same 
partition. 

Due to the equivalence it represents, the owl:equivalentClass property is weighted 
with the highest possible value, which is 100 in the proposed system. The rdf:domain 
property creates a connection between a property and the class, which possesses this 
property. On the contrary, the rdf:range property defines the possible range of values 
for the property. For that reason, the former property is accepted to be a stronger 
relation than the latter. 

As a concrete quantification of the weight of both relations two third of the 
maximum value for rdf:domain and one third for rdf:range have been selected 
arbitrarily. The rationale behind this is twofold. Firstly, the difference between the 
weights should be great enough. Secondly, the values should be defined without 
investing too much effort to have a first result for the partitioning with the weighting 
functions quickly. However, it should be mentioned, that numerical relations between 
the weights do not claim to be statements about the semantic similarity. An rdf:domain 
property is not semantically twice as strong as an rdf:range property. 
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Property Description Weight 

owl:equivalentClass This relation indicates the equivalence between two 
classes and is therefore assigned with highest possible 
value for the weight. (This corresponds to the idea that the 
similarity between a leaf class in a hierarchy and its 
superclass is almost a equivalence and is therefore 
assigned with the highest possible weight, too.) 

100 

rdfs:domain The domain of a property is the class the property belongs 
to. That means that properties are mainly elements of 
their domain classes and depend on them. Therefore the 
weight for a domain edge is quite high and is defined as 
two third of the maximum possible weight. 

66 

rdfs:range The range of datatype properties are basic data types like 
string. These are ignored because they do not relate 
different classes of one ontology. The range relation 
between an object type property and the range-class is 
considered as less important than the domain relation. 
Therefore the half of the weight of domain relation is 
assigned to range relations. 

33 

Table 5-3: Weights for non-hierarchical properties. The maximum possible value for a weight 
is 100 which is assigned to the owl:equivalentClass property. The other properties are 
assigned with two third and one third of the maximum value, respectively. 

Inheritance relations 

The second category is the inheritance relation which is defined as subClassOf in RDF-
Schema. Even though this relation has always the same meaning its impact on the 
semantics of an ontology depends on the particular position in the subsumption 
hierarchy. An inheritance relation between the THING class and another class does in 
fact add no semantics to an ontology. In contrast, an inheritance relation between a leaf 
class and its parent class connects the leaf class to all its ancestor classes in the 
hierarchy. By inheriting all the properties of the ancestor classes the leaf class is also 
connected to all properties of the ancestor classes. Therefore, an inheritance relation at 
the top of the subsumption hierarchy is less important for the semantics of an ontology 
than an inheritance relation at the bottom. 

The subsumption hierarchy in an ontology can be considered as a category system in 
the classic sense. In a very early work (Rosch, 1978) it has been shown that in a category 
hierarchy a so called basic level exists where the most basic category cuts can be made.  
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People tend to prefer categories at that level like car or chair instead of more abstract 
ones like furniture or vehicle or more concrete ones like sports car or kitchen chair. The 
categories at the basic level are considered as a kind of natural categorization where the 
increase of the similarity between the elements of a category reaches its maximum. 
More abstract categories are classified as superordinate categories with elements which 
share just a few properties. More concrete categories are called subordinate categories 
with very similar elements which have more common properties than distinctive ones 
and might be combined.  

In Figure 5-6 the similarity between the elements of a category tree is illustrated in 
relation to the hierarchy level. The derivative of the similarity function shows that the 
highest gradient is reached at the basic level.  

 

 

Figure 5-6: Illustration of the basic level in a category tree. The dashed line illustrates the 
location of the basic level within the tree and the graphs.   

Since there are no databases of basic level concepts a weight function is proposed 
which considers the basic level as a function of the height of an element within the 
subsumption hierarchy. Additionally, since ontologies can be of different categories as 
described in Section 2.1.3 and illustrated in Figure 2-3, the basic level can be at different 
depth of the taxonomy hierarchy. For example in case of abstract top level ontologies 
the basic level might be closer to leaf classes, whereas in case of more concrete domain 
ontologies the basic level might be closer to the upper classes. Therefore, different 
functions are proposed to weight the subClassOf as illustrated in Figure 5-7. In case of 
the function Base3 the basic level is expected to be exactly at the middle of the 
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taxonomy hierarchy. In case of Base1 and Base2 the basic level is expected to be at 
higher levels and in case of Base4 and Base5 at lower levels of the taxonomy hierarchy. 
For comparison reasons the Linear and Static functions are defined additionally. 

 
 

 

 

Figure 5-7: Various functions for weighting the subClassOf relation which assume different 
locations of the basic level within the subsumption hierarchy 

Defined properties 

The properties which are defined in an ontology are represented as edges in the class-
centric representation of an ontology. This holds for the instantiations of the properties 
in the ABox even in the plain RDF graph representation.  As these edges are somehow 
representing a domain as well as a range relation they are weighted with the mean 
value of both of them. This means that these edges are weighted with the half of the 
maximum weight, which is 50. 
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5.6 Parametric Partitioning 

As discussed in Section 3 the optimal number and size of partitions depend on the 
goal of the partitioning. Community detection algorithms, however, do not take 
parameters for the envisioned number of communities or their size into account some. 
Since this framework provides partitioning in a goal oriented manner and there are 
obviously cases, in which the number and the size of partitions matter, this framework 
needs to allow these values as inputs for the overall partitioning process. These values 
are used as parameters for the partitioning process and the score value for selecting the 
best partitioning is extended. That means, that besides the modularity value for a 
partitioning the number and size of partitions are taken into consideration during the 
process of finding the community structure. This is done by an extension of the score 
function that is used to select the best partitioning. For that purpose the following 
function is defined for calculating the score of a concrete partitioning   
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Where     is the average value for the score values      that are assigned to the 

partitions and    is the score value for the number of partitions in a partitioning. These 

functions are defined as follows 
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The Figure 5-8 shows the shape of the used basic function for both score functions. If 
the size of a group equals the optimal size of a group given by the user the      value of 

the group is the maximum value 1. If the difference between the actual partition size 
and the given partition size equals the allowed variance the assigned score is about 60% 
of the allowed maximum value. If the difference is greater the score value decreases 
rapidly. 
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Figure 5-8: Illustration of the score function for the modified Modularity function. It is 
used to assign scores based on the number of group and based on the size of a group 
respectivly. (ov is the optimal value, δ is the allowed variance) 

 
Since the function for     is defined with the same basic function, the behavior of it 

corresponds to the behavior of the      function.  

The overall score for a partitioning is the weighted sum of the three different score 
functions as shown in the Equation ( 43 ). Through the ability to set the values for the 
weights     ,    , and     as well as for the optimal number of partitions and optimal 
size for a partition the user is able to configure the partitioning process to obtain better 
results according to the needs of the user.  

sc
o
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number of partitions / size of a partition 

ov ov - δ  ov + δ  



Chapter Summary 

 

107 
 

5.7 Chapter Summary 

In this chapter the proposed adaptable partitioning framework has been described in 
detail. This artifact, in fact, is the core contribution of this thesis which follows the 
design science paradigm. For the sake of clarity and to avoid ambiguity it has been 
discussed in detail what the structure of an ontology is and how metrics based on that 
structure can be defined. This lead to a comprehensive list of possible metrics allowing 
insight into the structure of an ontology. Furthermore, community detection algorithms 
from the field of social network analysis and the modularity function have been 
presented. Being the means of partitioning an ontology, it is substantial to understand 
how they work and how they can be modified for the realization of an adaptable 
partitioning framework.  

An analysis of the most used predicates in LOD ontologies' statements unveiled that 
the most used properties which add semantics to an ontology and are broadly used are 
the subClassOf and the domain-range relations. Based on this, a semantic-based weight 
function has been proposed, which is a novelty in the field of ontology partitioning and 
modularization. In fact, this weight function is of essential importance for the 
framework. Therefore, it is treated as one major contribution of this thesis.  

Finally, an extension of the modularity function has been described that takes the 
number as well as the size of partitions into account. This is driven by the insight that 
the motivation for partitioning leads to different expectations regarding the number of 
partitions and the size of partitions as discovered in Section 3. 



 

 



 

 

6 PARAMETER ANALYSIS 

The proposed adaptable ontology partitioning framework comprises different 
parameters which can be configured. To achieve the best possible partitioning for an 
ontology regarding a concrete goal, it is important to find the best configuration of the 
framework. For that purpose, the performance of the framework with respect to the 
different parameters is analyzed in this chapter. On the one, hand the framework has 
been used with various configurations to reconstruct existing term chunks from ontology 
documentations. On the other hand, the framework has been used to reconstruct 
modularization of modular built ontologies. The method for the analysis is presented in 
Section 6.1. In fact, the created partitions are evaluated through a gold standard 
approach. The similarity between the reference models and the produced partitions are 
calculated with the F-Measure metric which is describe in Section 6.2 

In order to analyze the impact of the different parameters, the ontologies have been 
partitioned with 480 different configurations for each ontology. The selected 
combinations are presented in Section 6.3. Section 6.4 and Section 6.5 present the results 
for reconstructing term chunks and for reconstructing modular ontologies, respectively. 
It is analyzed in detail, how the different algorithms and parameters influence the results 
for the different ontologies. Finally, this chapter is closed with a chapter summary in 
Section 6.6. 
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6.1 Analysis Methodology 

The basic assumption that has driven the proposed framework is the notion that the 
partitioning process depends significantly on the goal. Hence, the quality of a 
partitioning has to be evaluated with respect to that goal. In other words, a concrete 
partitioning for a particular ontology might be very good for improving the 
maintainability, whereas it might be very bad with respect to the task of supporting the 
decision process about the reusability of an existing ontology. Thus, the proposed 
framework has to be analyzed and evaluated for different partitioning goals separately. 
However, this leads to the question of which different motivations are possible for a 
partitioning process and how a partitioning for a particular goal can be evaluated. 
Without claiming to be exhaustive, the main goals of partitioning considered in this 
work are partitioning to improve maintainability and partitioning to create term chunks 
for ontology documentations, as discussed in Section 3.3 and Section 3.4. 

Even though there are different approaches in literature for the evaluation of 
ontology partitioning (some metrics have been described in Section 4.1), there are still 
no established methods. This especially holds for the evaluation of a partitioning in a 
goal-oriented manner. For that reason, the evaluation method that is chosen for this 
work is, to find manually created existing ontology partitionings. Thereby, it is of 
essential importance that the goal is obvious and to try to reconstruct them. The 
rationale for this is the assumption that manmade partitioning for particular goals can 
be considered as the optimal solution and as reliable reference models for the particular 
goal. The creators’ expertise and experience with the proposed ontology is regarded as 
the justification for the quality of the partitioning.  

This assumption leads to the following evaluation methodology for ontology 
partitioning. First of all, a set of existing ontology partitionings which have been created 
with the mentioned motivations have been looked for. (Found ontologies are described 
in Section 6.4 and Section 6.5). Secondly, these ontologies have been partitioned with 
various configurations, which are considered to be significantly different to understand 
the framework’s behavior with respect to different configurations. (These configurations 
are described in Section 6.2.) Thirdly, the results of the partitioning process have been 
compared to the reference models and a similarity score has been calculated. (The 
function to calculate the similarity is described in Section 6.3.) Finally, the overall results 
have been analyzed with respect to different parameters of the configuration, the 
properties of the ontologies, and the properties of the different reference models. (This 
is done for reconstructing term chunks and for reconstructing modular ontologies in 
Section 6.4.2 and in Section 6.5.2 respectively.)   

It is important to understand that this method’s critical drawback is its dependency 
on the reference models. For being expressive, it is important to have enough reference 
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models which are representative and which allow to derive more general statements 
about the partitioning framework. The lack of enough partitioned ontologies for term 
chunks or for maintenance purpose, however, is a strong indication for the lack of good 
support for partitioning. This in fact advocates the necessity of such a framework and 
justifies this work. 

6.2 Similarity with F-Measure 

In order to calculate the similarity between the reference model and the constructed 
partitioning, a metric called F-Measure that has already been used in this context by 
Stuckenschmidt has been applied (Stuckenschmidt, 2006). This measure is a pair-based 
metric based on the widely applied precision and recall functions. Precision in this work 
is defined as follows: 

 

           
                                          

                             
  ( 45 ) 

 
 
It indicates the fraction of the generated pairs that are correct with respect to the 

reference model.  And recall is defined as follows: 
 
 

        
                                          

                           
    ( 46 ) 

 
Recall indicates the fraction of all correct pairs that have been correctly 

reconstructed by the partitioning process. These functions are combined in the F-
Measure function as follows: 

 

           
                  

               
  ( 47 ) 

 
In fact, being the harmonic means of the precision and the recall function the F-

Measure is an average value for both mentioned fractions. 
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6.3 Configuration of the Framework 

As described in Chapter 5, the proposed framework has different configurable 
parameters: two graph representations, three algorithms, and eight weight functions. 
(Besides the seven weight functions presented in Section 5.5 it is also possible to run the 
partitioning without any edge weight, which means equal weight for all edges.) 
Furthermore, through defining values for the variables described in Section 5.6, the size 
as well as the number of partitions can be considered for calculating the modularity 
score. For the analysis of the framework’s performance, five different values for the 
variables described in Equation ( 42 ) have been chosen as shown in Table 5. The 
rationale for the defined values is to see, how increasing weight of the modularity 
function (       influences the overall result. The higher this value is the less important 
are the number of partitions and their average size. Therefore, this exposes the 
importance of the modularity function in comparison with the size and number of 
partitions. 

 
 

Variable s1 s2 s3 s4 sNone 

     2 5 10 50 1 

    1 1 1 1 0 

    1 1 1 1 0 

Table 6-1: Configurations for the size related parameters of the framework 

Besides the concrete configurations of the partitioning process, there are also 
different properties regarding the loading mechanism of an ontology. The import of 
external ontologies adds some kind of uncertainty due to possible availability problems 
and different version problems of the external ontologies. Therefore, during the 
performance analysis all imports of external ontologies have been ignored. Only the 
content of the ontology file at hand has been used. Regarding the applied inference 
mechanism during the loading process, the decision is to run each possible configuration 
twice per ontology. In the first case, no inference is executed, which means that only 
explicit formulated content of the ontology has been taken into consideration. In the 
second case, an OWL Full reasoner has been applied on the loaded content and the 
ontologies have been materialized. Together with the mentioned parameters this leads 
to 480 possible configurations of the partitioning process. 

As elaborated in Section 3.3.3 and in Section 3.4.2, the expected number of partitions 
and their sizes depend on the motivation of the partitioning process. Therefore, the four 
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variables "expected group size" and "allowed variance" in Equation ( 43 ) and "expected 
number of partitions" and "allowed variance" in Equation ( 45 ) depend on the goal of 
the partitioning. Since this work focuses on term chunks for ontology documentations 
on the one hand and modular ontologies on the other hand, the mentioned variables 
have to be set differently.  

Firstly, the framework's performance with respect to the creation of term chunks is 
analyzed. In this regard, the guidance values elaborated in Section 3.3.3 are used. The 
variable “                   ” in equation (43) is set to eleven and the 
“                ” is set to three. That leads to the interval of eight to 14.  
Furthermore, the “                             ” in Equation (45) is set to four and 
the “                ” is set to one. It is worth mentioning that in case of different 
ontologies with a higher variance in size, a normalization of these values based on the 
overall size of the ontologies should be done by keeping the mentioned cognitive limits 
in view. However, in case of the ontologies at hand this is not necessary, because the 
used ontologies are about the same size in terms of classes and properties. 

Secondly, it is analyzed how the framework performs for creating modular 
ontologies. Again, previously elaborated findings from Section 3.4.2 are used for the 
configuration. In contrast to the previous analysis, the small number of use cases as well 
as their diversity regarding size and number of partitions do not allow to extract one 
common value to be used with all of them. In fact, in case of partitioning for 
constructing modular ontologies, the optimal number as well as the size of partitions 
seem to be domain and ontology dependent. Therefore, these values are expected as 
input values for a partitioning defined by the user. Since the maintainer is expected to 
be familiar with the ontology, such an approach is considered to be acceptable and not 
an unrealistic expectation. Finding accurate values for the “ x  c  d numb    f 
 a      n ” and the “all w d va  anc ” in Equation (45) like in the first analysis, is not 
possible. Therefore, the actual number of modules is selected for the first variable. The 
second variable is defined arbitrarily as one fifth of the first parameter. This leads to the 
following intervals for the number of partitions to be created by the algorithms and the 
following values for the variables 

 curio: 3 - 5 (“ x  c  d numb    f  a      n ”  = 4, "all w d va  anc ” = 1) 

 sioc: 3 - 5 (“ x  c  d numb    f  a      n ”  = 4, "all w d va  anc ” = 1) 

 spice: 7 - 11 (“ x  c  d numb    f  a      n ”  = 9, "all w d va  anc ” = 2) 

 fibo: 19 - 27 (“ x  c  d numb    f  a      n ”  = 23, "all w d va  anc ” = 4) 
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6.4 Reconstructing Term Chunks 

In Section 3.3.2 thirteen ontologies have been described which have documentation 
pages containing term chunks. In order to understand, how well the proposed 
framework is able to create term chunks, it was analyzed to which extend the system is 
able to recreate those existing groups. For the performance analysis, each one of the 
thirteen ontologies has been partitioned with 480 different combinations of the 
parameters. The resulting partitions have been compared with the existing term chunks 
with the F-Measure similarity function presented in Section 6.2. The overall 
performance of the proposed system aggregated for all ontologies with all possible 
configurations is shown in Figure 6-1.  

 

Figure 6-1: Distribution of the overall results for reconstructing term chunks. The results 
for all ontologies with all possible configurations are aggregated. 

The shape of the distribution looks like a Gaussian normal distribution. The peek at 
0.8 might be caused because of the low number of ontologies and reference models. 
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There is no reasonable argument that causes this peek. However, this distribution does 
not allow further insights about the framework, besides that it produces very well as 
well as very bad results and that it produces in most cases results between 0.3 and 0.7 
with an average of 0.496.  

Since the basic idea of organizing the concepts in groups differs from use case to use 
case as discussed in Section 6.4, the next question is how the different configurations 
perform depending on the different ontologies. Therefore, the performance of the 
framework has been analyzed for each ontology separately. The result of this analysis is 
shown in Figure 6-2.  

 
 

 

Figure 6-2: Distribution of the results for the different ontologies. Each box of this box-and-
whisker plot represents the range of the F-Measure values of the partitionings of one concrete 
ontology with 480 different configurations. The concrete ontology is named at the x-axis. (E.g. 
the first box in this figure shows that the F-Measure values for the different partitions created 
out of aair with 480 configurations range from about 0.3 to 0.9 with an average of 0.7.) 
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It becomes clear that the partitioning performance depends significantly on the 
ontology and the reference model. While there are ontologies, which have very good 
results for each possible configuration as in case of swco, there are other ontologies, 
which lead to very bad results with all possible configurations as in case of music. 
Furthermore, the difference in the width of the spectrum for the F-Measure values 
indicates that communities are detected, which differ significantly. A wide spectrum 
indicates that there are more possible partitionings, while a narrow spectrum indicates 
less possible partitionings of an ontology. Accordingly, curio, ecos, foaf, and swco seem 
to allow a low number of different partitionings.   

The main question in this chapter is how the different parameters influence the 
results. Therefore, the performance was analyzed with one fixed parameter whereas all 
other parameters have been changed. Figure 6-3 shows the overall results for the 
different configurations. Each box of this box-and-whisker plot stands for the range of 
the F-Measure values with a fixed parameter, which is shown at the x-axis, whereas the 
other parameters have been changed. 

 

 
 

Figure 6-3: Distribution of the results for different fixed parameters. Each box of this box-
and-whisker plot represents the range of the F-Measure values of the partitionings 
created with one fixed parameter for all ontologies. (E.g. the first box represents the range 
of the F-Measure values for the partitionings created with the weight function wBase1, 
whereas all other configurations have been changed and applied on all ontologies.) 
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The distributions of the results for the different parameters are rather similar. This 
means, that there is no concrete parameter that performs better than the other 
configurations. Obviously, each parameter is equally important for the quality of the 
partitioning process. They all lead to very good as well as very bad results with average 
values between 0.4 and 0.5. Since this analysis did not expose any well-performing 
parameter it was also analyzed how these parameters influence the best results. For 
that purpose, the best ten results for each ontology have been selected. Figure 6-4 
shows the share of the different parameters on the aggregation of the best ten results 
for each ontology.  

 
 

 

Figure 6-4: Share of the different concrete parameter values on the best ten results for all 
ontology. This figure provides an overview of the different configurations that lead to the best 
ten results for each ontology . a) shows the fraction of the different graph variants, b) shows 
the fraction of the different algorithms, c) shows the fraction of different weight functions, 
and d) shows the fraction of the different size functions. 
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Regarding the different graph representation variants as shown in Figure 6-4 a), there 
is a considerable difference visible. On the one hand, the RDF-based graph 
representations (1 and 1inf) lead to about two third of the best results and therefore 
perform better than the class-centric graphs (2 and 2inf). On the other hand, inference 
improves the results for the RDF-based graph (1inf) whereas it leads to worse results for 
the class-centric graph (2inf).  

The share of the different size functions on the best ten results as shown in Figure 
6-4 d) are quite similar. The size function s2 has the highest share, but each function 
leads to approximately one fifth of the best results. That means that in case of a random 
selection of a size function the probability to find the best value for this parameter is 
about 0.2.  

The difference between the weight functions, on the contrary, is bigger. As shown in 
Figure 6-4 c), assigning no weights to the edges (wNone) leads to one quarter of the 
best results. The weight functions wBase1, wBase2, wBase3, wBase5 and wStatic have 
similar shares on the best ten results (11%-15%), whereas the weight functions wLinear 
and wBase4 lead in only one of 20 cases to results which are within the top ten. 

The share of the different algorithms on the best ten results is even more significant 
(Figure 6-4 b). Approximately one half of the best results have been produced with the 
wtc algorithm. The ebc algorithm leads to about one third, whereas the fgc algorithm 
leads to about one quarter of the best results.  

In a probability-based selection of the properties, the best choice would be to use the 
graph variant 1inf, the weight function wNone, the wtc algorithm, and the size function 
s2, because these values provide the highest probability to lead to the best possible 
result. However, the significant difference between the algorithms - especially the high 
share of the wtc algorithm - justifies a closer look on their performance for each 
ontology separately. Therefore, Figure 6-5 provides one diagram for each ontology and 
allows comparing the behavior of each algorithm. 
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Figure 6-5: Distribution of the results for all three algorithms for each ontology and for all 
ontologies aggregated. 

 
As already seen in Figure 6-3, the spectrums of the different algorithms are about the 

same size. That means that each algorithm creates very good as well as very bad results. 
The peaks, however, are obviously at different points within the graph and have 
different heights. Therefore, this analysis emphasizes again that the performances of 
the different algorithms depend significantly on the ontology. Obviously, the structural 
properties of ontologies play a significant role in the performance of the different 
algorithms. An indication of this is the following. Apart from the probability based 
selection of the parameters as described previously, a more sophisticated method 
would be to select the parameters based on the structural properties of the ontology. In 
this regard, known ontologies would be seen as a training set and every ontology, that is 
to be partitioned, would be compared to the training set. The best configuration of the 
most similar ontology from the training set would be selected. In order to determine the 
similarity between the ontology at hand and the ontologies from the training set, the 
structural metrics, which were presented in Section 5.3, could be used.  
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6.4.1 The Role of the Modularity Function for Term Chunks 

As described in Section 5.4.1, community detection algorithms are approximation 
functions seeking to optimize the modularity function. The application of these 
algorithms in this work is based on the assumption that the relation of subdomains of an 
ontology to the whole ontology is similar to the relation of communities to the whole 
social network. That means that the density within a partition is higher than the overall 
density. If this is the case, a partitioning with a high modularity value should lead to high 
F-Measures values. In order to analyze if this assumption can be proofed, the relation of 
the F-Measure score is compared to the modularity score. Figure 6-6 shows plots of the 
F-Measure results with respect to the modularity score for each ontology and one for 
the aggregation of all results. 

The following observations are possible for the relation between the F-Measure 
results and the Modularity score. 

 The diversity between the different ontologies is again too high to make 
general statements. While there seems to be a linear relation between the F-
Measure and the Modularity for opo and swco, which indicates increasing F-
Measure values for higher modularity values, for bio the relation seems to be 
the opposite. In case of bio, the highest values for F-Measure are at the 
lowest values for the Modularity value. 
 

 In most cases, the highest F-Measure values are at the higher Modularity 
values (aair, curio, foaf, gi2mo, music, opo, provo, rrdonto, swco). That means 
that the constructed partitionings, which have the highest similarity 
compared to the reference models, have mostly high Modularity values. 
However, since there are other partitionings with high Modularity scores 
which have very low F-Measures it is not possible to state that the Modularity 
function is a good indication for good partitioning. However, it is possible to 
say that partitionings with bad Modularity scores are probably not good.  
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Figure 6-6: F-Measure values above the modularity values for each ontology and for the 
aggregation of all results. 
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6.5 Reconstructing Modular Ontologies 

The performance in reconstructing merged modular ontologies is accepted to be an 
indication for the overall performance of the proposed framework with respect to 
ontology partitioning for creating modular ontologies. Therefore, four modular built 
ontologies, which were presented in Section 3.4.1, were used to analyze the parameters 
of the proposed framework. The analysis has been done similar to the previous analysis 
described in Section 6.4. The overall performance for each ontology can be seen in 
Figure 6-7.  

 
 

 

Figure 6-7: Distribution of the F-Measure values for the different ontologies. Each box of this 
box-and-whisker plot represents the range of the F-Measure values of the partitionings of one 
concrete ontology with 480 different configurations. The concrete ontology is named at the x-
axis. (E.g. the first box in this figure shows that the F-Measure values for the different 
partitions created out of curio with 480 configurations.) 

The overall average value is 0.424 and the average values for the four ontologies are 
quite similar between 0.35 and 0.45. In contrast, the spectrum differs stronger. For 
curioMerged and siocMerged the most results are within a narrow interval, namely 
between 0.35 and 0.43 and between 0.33 and 0.4 respectively. This indicates that the 
structure of both ontologies allow just a small number of different partitionings. 
Whereas, the most results for fiboMerged and spiceMerged are between a broader 
interval, 0.3 to 0.6 for fiboMerged and 0.37 to 0.6 for spice. 
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Since this analysis' main goal is to understand how the different parameters influence 
the performance of the proposed framework, it was analyzed to which results concrete 
values of the parameters lead. Figure 6-8 provides the results of this analysis.  

 

 

 

Figure 6-8: Distribution of the results for different fixed parameters. Each box of this box-and-
whisker plot represents the range of the F-Measure values of the partitionings created with 
one fixed parameter for all ontologies. (E.g. the first box represents the range of the F-
Measure values for the partitionings created with the weight function wBase1 whereas all 
other configurations have been changed and applied on all ontologies.) 

The different parameters do not lead to similar results as in the previous analysis, but 
the difference is not significant. The only obvious observation is that the size function s1 
leads to better results on average than the other size functions. In order to gain more 
insights about the influence of the parameters, the top ten results for each ontology 
have been analyzed regarding the fraction of the parameters. The results of this analysis 
are shown in Figure 6-9.  
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Figure 6-9 Share of the different properties on the top ten results of the partitioning 
processes 

Using the plain RDF graph to represent the structure of the ontologies leads to 62% 
of the top ten results, as shown in Figure 6-9 a). The graph representations 2inf and 1inf 
lead to about one fifth of the top ten results, whereas the graph variant 2 has no share 
on the top ten results, at all. In Figure 6-9 b) the share of the different algorithms on the 
top ten results is shown. The fgc algorithm leads to 70% of all top ten results, while the 
ebc algorithm leads to one fifth and the wtc algorithm leads to one tenth of the top ten 
results. Regarding the weight function, as shown in Figure 6-9 c), the functions wBase4 
and wBase5 have the highest share on the top ten results with 32% and 28%, 
respectively. Finally, the size function s1 leads to about the half of the top ten results, 
while the s2 and s3 function have a share about one fifth.  

In case of a probability-based selection of the framework's properties the plain RDF 
representation of the ontology structure, the fgc algorithm, the wBase4 weighting 
function and the s1 size function should be selected. This configuration provides the 
highest probability to lead to good results. However, as in the previous analysis the 
highest difference is again between the different algorithms. Thus, Figure 6-10 provides 
one diagram for each ontology and allows comparing the behavior of each algorithm. 
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Figure 6-10: Performance of the algorithms for each ontology 

It becomes clear that the performance in reconstructing modular ontologies depend 
on the ontologies as in the previous analysis. In case of curioMerged the spectrum of 
the different algorithm is similar while in case of fiboMerged the peaks are similar. In 
case of siocMerged and spiceMerged, on the contrary, neither the spectrum nor the 
peaks are simiar. For the selection of the framework's parameter the structure of the 
ontology should have the highest influence.  
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6.5.1 The Role of the Modularity Function for Reconstructing Modular Design 

For understanding the role of the modularity function in context of reconstructing 
modular design the relation between its values and the values of F-Measure are 
compared as shown in Figure 6-11.  

 

 

Figure 6-11: F-Measure values above the modularity values 

The different values are quite equally distributed over the whole area of the diagram. 
Hence, it is obvious that there is no relation between the F-Measure values and the 
Modularity values. On the one hand, high Modularity values lead to high as well as low 
F-Measure values. On the other hand, low Modularity values lead again to high as well 
as low F-Measure values. This means that the assumption that community detection 
algorithms, which seek to optimize the Modularity function, are a good means to create 
modular ontologies, cannot be proofed.  
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6.6 Chapter Summary 

In this chapter the parameters of the proposed framework have been analyzed. For 
that purpose each one of the ontologies that have been presented in Section 3.3 and 
Section 3.4 has been partitioned with 480 different configurations. The created 
partitions have been compared with the term chunks in the documentations and with 
the partitions of modular ontologies, respectively. The main insights gained by this 
analysis are twofold.  

Firstly, from a probabilistic point of view, there are values for the parameters which 
provide a higher probability to lead to good results. If the goal of partitioning is to create 
term chunks, the best configuration is to use the graph variant 1inf, the weight function 
wNone, the wtc algorithm, and the size function s2. If the goal of partitioning is to 
create modular ontologies, the best configuration is to use the plain RDF representation 
of the ontology structure, the fgc algorithm, the wBase4 weighting function and the s1 
size function.  

Secondly, the analysis uncovers that the most important factor of the framework's 
performance is the ontology that is to be partitioned. Therefore, the structural 
properties of the ontology should be taken into consideration during the selection of the 
values for the different parameters. The metrics which have been described in Section 
5.3 provide a good basis to compare the structure of two ontologies and to calculate a 
similarity value.  

Another important insight of this chapter is that high modularity values for partitions 
do not indicate good score values in terms of F-Measure values. However, with respect 
to term chunks it is possible to say that partitionings with bad Modularity scores are 
probably not good in terms of similarity to the reference models.  

 



 

 



 

 

7 EXPERIMENTAL PERFORMANCE 

ANALYSIS 

Aiming at the creation of a support system that partitions ontologies for different 
purposes, this work proposes an adaptable ontology partitioning framework. This 
framework has been described in detail in Chapter 5. The different parameters that 
enable this frameworks adaptability has been analyzed exhaustively in Chapter 6. In this 
chapter it is now analyzed, how well this framework actually performs. An experimental 
evaluation is applied, which is based on the findings of the parameter analysis. The 
evaluation method that is presented in Section 7.1. This method is then used to measure 
the performance for creating term chunks which is presented in Section 7.2. In Section 
7.3 the proposed framework's performance regarding the creation of modular 
ontologies is then presented, again by the application of the mentioned methodology. 
Finally, this Chapter is concluded in Section 7.4 with a chapter summary.  
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7.1 Setup for the Experimental Evaluation 

The proposed adaptable ontology partitioning framework is not the first artifact that 
is able to partition ontologies. Existing solutions have been discussed in Section 4.3. In 
this regard, this work can be considered as an extension of the outcomes in this field. In 
order to measure the progress achieved with this endeavor, the most appropriate 
approach is a direct comparison of the performances. For that purpose, the ontologies 
presented in Section 3.3.2 and in Section 3.4.1 have been partitioned with the 
aforementioned tools SWOOP, Pato and with the proposed framework as well.  

SWOOP does not provide any configuration of the partitioning process. Pato, on the 
contrary, allows configuring the partitioning process with several parameters. For the 
creation of the network the inclusion of subclass relations, property links, and definition 
links have been activated. The weight for each has been set to one. The value for 
"Threshold" has been kept at the default value 0.5. The options "Assign unclustered 
vertices" and "Merge clusters" have been left activated as it is the default setting. 
According to the finding of the Section 3.3.3, the maximum island size is set to 14 in case 
of creating term chunks. For creating modular ontologies the island size is set to the 
concrete number of modules as shown in Table 3-3. 

As seen in the previous chapter, there are 480 different possible configurations for 
the proposed framework. For a direct comparison with the other tools it necessary to 
define an approach for the selection of the parameters. Based on the insights from the 
last chapter, the following two approaches have been used. 

Firstly, the parameters have been configured from a pure probabilistic view without 
considering the actual ontology to partition. Thus, this configuration is called 
"predefined". The concrete configuration is as follows: for creating term chunks the 
graph variant 1inf, the weight function wNone, the wtc algorithm, and the size function 
s2 have been used. Furthermore, for creating modular ontologies the plain RDF 
representation of the ontology structure, the fgc algorithm, the wBase4 weighting 
function and the s1 size function have been used.  

Secondly, the parameters have been selected based on the performance of the 
framework for other ontologies. This can be considered as a training set for the 
framework. Thus, before an ontology is partitioned, its structural properties are 
analyzed with the metrics described in Section 5.3. Based on the complex metrics 
described in Section 5.3.3 the Euclidean distance between already partitioned 
ontologies and the ontology to partition is calculated. The configuration which led to the 
best results for the nearest ontology from the training set is then selected. The 
approach is called "distance-based" property determination.  
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7.2 Comparison for Reconstructing Term Chunks 

The performance analysis with respect to the creation of term chunks has been done 
with the ontologies presented in Section 3.3.2. For each ontology in this set, the most 
similar ontology according to the Euclidean distance with the complex metrics from 
Section 5.3.3 has been chosen. From the exhaustive experiments presented in Chapter 
6, the parameters leading to the best results are chosen. If this led to a set of 
configuration performing equally, the "predefined" approach has been applied to 
complete the parameter selection. Furthermore, if the most similar ontology is the 
inferred version of an ontology, than the ontology to partition was also loaded with 
activated inference. Table 6-1 provides an overview of the selected configurations for 
the performance analysis. 

 
 

Ontology 
to partition 

Nearest 
ontology 

Graph 
representation 

Algorithm Weight 
function 

Size 
function 

aair ecos 2 fgc wNone s2 

bio curio (inf) 2Inf fgc wBase5 s2 

curio swco 1 wtc wBase2 s4 

ecos aair 2 wtc wBase2 s2 

foaf aair 2 wtc wBasw2 s2 

gi2mo bio (inf) 1Inf wtc wBase3 s2 

music premis 2 wtc wNone s2 

opo foaf 1 wtc wBase2 s2 

premis pvc 2 ebc wNone s2 

provo ecos 2 fgc wNone s2 

pvc provo 1Inf wtc wNone s2 

rrdonto provo (inf) 1Inf wtc wNone s2 

swco curio 1 fgc wNone s2 

Table 7-1: Overview of the selected configurations for term chunks based on the Euclidean 
distance.The column nearest ontologies shows the ontology that has the smallest Euclidean 
distance to the ontology in the first column and is therefore regarded as the most similar ontology.  

Figure 7-1 presents the performance of the construction of term chunks with 
SWOOP, PATO and the mentioned two configuration approaches for the proposed 
framework, namely "distance-based" configuration and "predefined" configuration.  
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Figure 7-1: Performance for reconstructing term chunks with Pato, SWOOP, and the 
proposed framework with two different configurations: predefined parameter selection and 
distance-based parameter selection 

In each case the proposed framework performs better than the other tools. The 
distance-based configuration leads to the best results for seven ontologies (aair with 
0.871, curio with 0.377, ecos with 0.648, opo with 0.769, premis with 0.656, pvc with 
0.587, and swco with 0.882), whereas the predefined configuration leads in four cases 
to the best results (bio with 0.829, foaf with 0.376, music with 0.191 and provo with 
0.752). In case of gi2mo (0.77) and rrdonto (0.594) both approaches perform equally. 
Table 7-2 provides an overview of the average performance of the different partitioning 
techniques along with the standard deviations. 

 
 

Partitioning technique Average Score Standard Deviation 

Distance-based 0.593 0.178 

Predefined 0.545 0.214 

Pato 0.171 0.108 

Swoop 0.317 0.189 

Table 7-2: Average score values and standard deviation for the different partitioning techniques 
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The parameter analysis in Section 6.4 showed that the average value for all 
ontologies with all possible configurations led to an average value of 0.496. Comparing 
this value with the values from Table 7-2 makes clear that both configuration selection 
approaches perform better than a random selection would do. Furthermore, these 
values demonstrate that even a random selection of the configuration would perform 
better than SWOOP and Pato. Both are outperformed by the average value of all 480 
configurations as well as with the two configuration selection approaches by far.  

In order to evaluate the performance of the two configurations selection approaches 
"predefined" and "distance-based" with respect to the best possible configuration, their 
performances have been compared with the configurations leading to the best F-
Measure values and the average score of the 480 different possible configurations. The 
result of this comparison is presented in Figure 7-2. 

 
 

 

Figure 7-2: Performance of two possible configuration approaches of the proposed 
framework in comparison to the best possible result and the average performance 

In eleven of thirteen ontologies (aair, bio, curio, ecos, foaf, music, opo, premis, pvc, 
rrdonto, and swco) both configuration approaches perform worse than the possible best 
solution. That means that both approaches are not able to identify the best possible 
configuration. In case of gi2mo the best possible configuration is found by both 
approaches, whereas in case of provo the predefined approach leads to the possible 
configuration. For six ontologies (aair, bio, gi2mo, opo, rrdonto, and swco) both 
configurations are leading to better scores than the average score for the 480 possible 
configurations. In two cases (curio and music) both configurations produce worse values 
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than the average value of the 480 configuration. That means that a random selection of 
the parameters would probably lead to better scores than both approaches. 

On average, the distance-based approach leads to scores which are about 0.14 less 
than the highest possible values and 0.09 greater than the average score for all possible 
configurations. Similarly, the predefined approach leads on average to scores which are 
about 0.19 less than the highest possible value and 0.05 greater than the average score 
for all possible configurations.   

7.3 Comparison for Reconstructing Modular Ontologies 

The performance of the proposed framework with respect to the creation of modular 
ontologies out of monolithically created ontologies has been evaluated similar to the 
previous described evaluation. Modular built ontologies, which were presented in 
Section 3.4.1, have been merged and partitioned with SWOOP, Pato and the proposed 
framework with the mentioned two approaches to select the configuration. For the 
distance-based selection of the configuration the Euclidean distances between the 
ontologies have been calculated. Table 7-3 shows the result of this distance calculation 
and the selected configuration for each ontology. 

 
 

Ontology to 
partition 

Nearest 
ontology 

Graph 
representation 

Algorithm Weight 
function 

Size 
function 

curioMerged sioc 1 ebc wBase4 s1 

fiboMerged curioMerged 1Inf wtc wLinear s1 

siocMerged curioMerged 1 fgc wNone s1 

spiceMerged fiboMerged 1Inf wtc wBase4 sNone 

Table 7-3: Overview of the selected configurations for modular ontologies based on the Euclidean 
distance.The column nearest ontologies shows the ontology that has the smallest Euclidean 
distance to the ontology in the first column and is therefore regarded as the most similar ontology.  

Figure 7-3 shows how SWOOP, Pato and the proposed framework with the two 
configuration selection approached performed in creating modular ontologies out of 
monolithically created one.  
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Figure 7-3: Performance for reconstructing modular ontologies with Pato, SWOOP, and 
the proposed framework with two different configurations 

In three of four cases the distance-based configuration selection approach of the 
proposed framework leads to the best results (curioMerged with 0.491, fiboMerged 
with 0.578, and spiceMerged 0.563). In case of siocMerged the best result is produced 
by SWOOP with an F-Measure value of 0.452. Additionally, it is interesting to observe 
that in all cases the second best result is produced by the predefined configuration 
selection approach, whereas Pato produces the worst results for all ontologies. The 
overall performance is presented in Table 7-4.  

 
 

Partitioning technique Average Score Standard Deviation 

Distance-based 0.511 0.059 

Predefined 0.472 0.092 

Pato 0.113 0.101 

Swoop 0.354 0.149 

Table 7-4: Overall results for all merged ontologies with PATO, SWOOP and the proposed framework 

Comparing these values with the average value of the 480 configuration as presented 
in Section 6.5 which is about 0.424 allows following conclusions: both configuration 
selection approaches perform better than a random selection of the configuration 
would do. Similar to the previous analysis, the best results on average are produced by 
the distance-based configuration selection approach. Even with a random configuration 
selection approach, the proposed framework outperforms the other tools by far.  
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The next analysis evaluates the performance of the configuration selection 
approaches. For that reason, both approaches are compared with configuration leading 
to the best results as observed in the parameter analysis in Section 6.5 and with the 
average performance of all possible 480 configurations. Figure 7-4 shows the results of 
this analysis. 

 
 

 

Figure 7-4: Performance of two possible configuration approaches of the proposed 
framework in comparison with the best possible result and the average performance 

 
Obviously, both configuration selection approaches are not able to identify the best 

possible configuration in any case. However, apart from the predefined approach in 
case of curioMerged, they lead to configurations which perform better than the average 
value of the 480 possible configurations. That means that both approaches are on 
average better than a random selection approach of the configuration. The distance-
based approach leads results which are 0.162 worse than the best possible results and 
0.088 better than the average result. The predefined approach leads to results which 
are 0.203 worse than the best results and 0.048 better than the average result.  
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7.4 Chapter Summary 

In this chapter the outcome of this thesis which is an adaptable ontology partitioning 
framework was evaluated experimentally. For that purpose its performance regarding 
partitioning ontologies to create term chunks and partitioning ontologies to create 
modular ontologies out of monolithic ontologies was compared with two existing 
solutions. The results of the experiments demonstrated that the proposed framework 
outperforms the other solutions by far. From a probability view, even a random 
selection of the configuration would lead to better results than the other proposed 
ontology partitioning solutions.  

Furthermore, the experiments illustrated obviously that both configuration selection 
approaches perform better than a random selection would, whereas the distance-based 
approach has produced slightly better results. This is an indication that similarly 
structured ontologies should be partitioned similarly. Additionally, this indicates that a 
larger training set – more ontologies with reference partitions – would improve the 
performance of the distance-based configuration selection approach. 
 
 



 

 



 

 

8 DISCUSSION AND OUTLOOK 

This doctoral thesis pursued the goal of creating an adaptable and structure-based 
ontology partitioning framework. The main focus is on ontologies within the area of the 
Semantic Web and Linked Data. The strongly dynamic and highly distributed nature of 
the Web demands for sophisticated integration techniques and rapid adaptability to the 
changing environment. Thus, existing ontologies in this field are known to be created 
with agile methodological approaches of ontology engineering – if at all - and are of low 
expressivity. While the latter justifies the structure-based approach, the former 
emphasizes the need for partitioning tools supporting the ontology engineer. 

Since the targeted outcome is an artifact, namely a piece of software, the Design 
Science approach has been chosen as the basic methodology to structure the overall 
process (Hevner et al., 2004). Accordingly, at the very beginning the broader context of 
the research area was captured (Chapter 2), the problem of ontology partitioning in 
general was investigated in depth (Chapter 3), and existing attempts to solve the 
problem have been discussed (Chapter 4). By this means, a knowledge base was built, 
which is essential to comprehend the dimensions of the research area as well as the 
state-of-the-art and to achieve the necessary awareness for the problem at hand. The 
main insights of this phase can be summarized as follows:  

 Due to the challenges of the Web, ontology engineering methodologies tend to 
become more and more agile, lightweight and collaborative. Automatic and 
semi-automatic techniques supporting different phases of the overall ontology 
lifecycle gain in importance.  

 Increasing size and complexity of ontologies exacerbate reusability and 
maintainability. This is a crucial issue, as these aspects of ontologies are 
especially in the context of Semantic Web and Linked Data of essential 
importance and critical success factors. For that reason, techniques for breaking 
down the size and the complexity to an appropriate level are necessary. It turned 
out that this level depends on the concrete context of the user.  

 Ontologies are complex artifacts comprising different aspects. Defining size and 
complexity is not trivial. Thus, a considerable large number of existing proposals 
are present to measure different aspects of ontologies. However, each one is 
based on its specific application context and on its own notion of size and 
complexity.  
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 In order to improve the reusability, documentation pages for potential reusers 
are created by the authors of the ontologies. These pages provide information at 
different levels of detail. Grouping concepts is one application for partitioning 
ontologies, which is an appropriate technique to break down the complexity. It 
allows the user better readability, enables faster comprehension and accelerates 
making decisions about reusability. The analysis of existing term chunks unveil 
that the values regarding the number and size of groups correlates to some 
degree. This is reasonable, as these groups are all created for humans and take 
only cognition into consideration. Moreover, these values correlate with findings 
from cognitive science with respect to the capacity of the working memory.  

 Ontologies, which are expected to be rather complex, are created in a modular 
way, if the time and expected quality constraints provide the necessary 
conditions. As mentioned before, this is rarely the case. The reason for this is 
twofold. On the one hand, the Web environment does not allow for heavyweight 
ontology creation processes. On the other hand, if an ontology is created with 
high time and financial investments, it becomes a valuable resource for the 
authors. This in turn is a counter-argument to share the ontology for free in the 
Web.  

 The size and number of modules of modular created ontologies show significant 
differences. Correlations like with term chunks cannot be identified. This is 
reasonable, because ontology modularity does not primarily target the cognition 
of the author, but the inherent modularity of the domain of discourse.  

With these insights an adaptable and structure-based ontology partitioning 
framework has been designed and implemented. During this endeavor research 
questions, which are listed in Section 1.1, have been tackled. The main contributions, 
which have been elaborated, are as follow: 

 Besides the RDF graph of an ontology an additional class-centric representation 
has been proposed, that is similar to classic entity-relationship-diagrams.  

 Weight functions for the edges in the structural representation have been 
developed. On the one hand, these functions take the mostly used RDFS and 
OWL properties into consideration. On the other hand, they make use of the so-
called base level originated in linguistic. 

 The Modularity function for communities in social networks has been extended 
to take the number as well as the average size of partitions into consideration, 
according to configurable weights.   

 For the evaluation of the partitioning process, term chunks from documentation 
pages and modular created ontologies have been regarded as reference 
partitionings. The performance in the reconstruction of those partitions has been 
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accepted as a performance measure to assess the quality of ontology 
partitioning.  

 In order to understand how the framework performs depending on the structure 
of the ontology to partition, a comprehensive set of metrics have been defined. 
Those metrics measure different size properties, various complexity dimensions 
and the hierarchical structure of an ontology.  

 One basic assumption of this work is that similarly structured ontologies should 
be partitioned alike. To calculate this similarity, the set of complex metrics were 
used along with the Euclidean distance. Before starting to partition an ontology, 
it is compared with already partitioned ontologies, for which the best performing 
configuration is known. That means that already partitioned ontologies are taken 
as a training set. If the mentioned assumption is true, the proposed system will 
improve with each new ontology. 

 An additional approach to find the potentially best configuration for the 
proposed framework was to partition all known ontologies with reference 
models. 480 different configuration have been defined, which are accepted to 
sufficiently cover the parameter space of the framework. Configurations, which 
lead to the best results on average, are then selected without taking the 
ontology to partition and its structure into account. 

The assessment of the quality for the proposed ontology partitioning framework was 
done by an experimental evaluation. Thirteen ontologies with term chunks in the 
documentation pages and four modular built ontologies were identified. Those were 
partitioned with the proposed framework in competition with PATO and SWOOP. These 
experiments revealed that the proposed framework outperforms the competitors by far 
for both the creation of term chunks and the creation of modular ontologies. The 
distance-based configuration selection approach led to the best results on average with 
F-Measure values of 0.593 for creating term chunks and 0.511 for creating modular 
ontologies. Even though both values are at an acceptable level, they do not justify a fully 
automatic partitioning. Therefore, the proposed framework should be primarily used in 
a semi-automatic manner as a support system, whereas the outcome should be refined 
manually.  However, the experimental results allow drawing the following conclusions 
for the structure-based approach with community detection algorithms and ontology 
partition in general.  

 For the analyzed two motivations of ontology partitioning, the application of 
community detection algorithms with semantic-based weighting of properties and 
the modified Modularity function seems to be more appropriate than the logic 
based approach of SWOOP and the simple structure-based approach of Pato.  
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 The experiments with 480 different configurations for each ontology revealed that 
very high F-Measure values are possible in most cases. That indicates that the 
parameters of the proposed framework provide good adaptability and flexibility. It 
is able to create very good term chunks and modular ontologies with certain 
configurations. This in turn makes clear that the most important challenge is to 
find the best performing configuration.  

 The fact that the distance-based configuration selection approach leads to the 
best results, indicates that the assumption that similarly structured ontologies 
should be partitioned alike, is correct.  

For the assessment of this work's quality and to gain idea about its possible impact 
on the research area, it is important to shed light on some critical aspects. The major 
critical aspect is the number of ontologies which have been used for the parameter and 
the performance analysis. Thirteen ontologies for term chunks and four ontologies for 
modular ontologies are statistically not significant. Therefore, the results of this work 
depend strongly on the concrete set of ontologies. It is possible that exactly these 
ontologies are not representative and lead to a distortion. However, the rare existence 
of partitioned ontologies emphasizes the need for supporting ontology partitioning and 
justifies research in this area. Besides, the possibility to extend the training set provides 
flexibility and enables sustainability.  

Furthermore, the proposed framework was analyzed and optimized with already 
partitioned ontologies in terms of term chunks and modules. This might raise the 
question, if exactly these ontologies were created by authors who have a special focus 
on modularity, which in turn led to certain structural properties. On the other hand, if 
this is the case, those ontologies can be further analyzed to derive some best practices 
and design patterns. This can be done by making use of the defined structural metrics.  

In fact, this work leaves room for various extensions. Regarding the framework itself, 
the weight functions as well as the modified Modularity function can be extended for 
other properties. Additionally, it is possible to use other community detection 
algorithms. With respect to the analysis of the framework and its optimization, the most 
obvious future work would be to make more experiments with other ontologies. In this 
regard, authors of ontologies could be asked to create partitions for different purposes, 
which then can be used for further analyzing and optimizing the framework.  Otherwise, 
partitions for different ontologies could be created and the authors could be asked with 
a questionnaire to evaluate the outcome. If a significant set of ontologies are available 
more general analysis of the different algorithms depending on the structural properties 
can be done.  
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TERMINOLOGY 

Cognition: Cognition is the process of knowing and understanding. 
 
Cognitive: Cognitive means relating to the mental process involved in knowing, learning, 
and understanding things.   
 
Complexity: Complexity is the degree to which a system or component has a design or 
implementation that is difficult to understand and verify. 
 
Conceptualization: Conceptualization is the creation of an ontological model describing 
a domain of interest independently of any particular implementation language. When 
referring to a general "model" the meaning of the term is similar to that of 
"conceptualization” or “conceptual model". These will be used interchangeably within 
this thesis. 
 
Comprehension: Comprehension is the ability to understand the meaning or 
importance of something (or the knowledge acquired as a result); 
 
Cognitive Capacity / Cognitive Limit: Cognitive capacity or the cognitive limit is the total 
amount of information the brain is capable of retaining at any particular moment. 
 
Evaluation: Evaluation is the process of assessing the general-purpose or application-
oriented quality. 
 
Modular: Modular describes the property of being composed of discrete parts.  
 
Modular Decomposition / Modularization: Modular decomposition is the process of 
breaking a system into components to facilitate design and development. 
 
Module: (1) A module is a program unit that is discrete and identifiable with respect to 
compiling, combining with other units, and loading;  for example, the input to, or output 
from, an  assembler, compiler, linkage editor, or executive routine. (2) A module is a 
logically separable part of a program. Note: The terms "module," "component," and 
"unit" are often used interchangeably or defined to be sub-elements of one another in 
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different ways depending upon the context. The relationship of these terms is not yet 
standardized.  
 
Modularity: Modularity is the degree to which a system or computer program is 
composed of discrete components such that a change to one component has minimal 
impact on other components.  
 
Maintainability: (1) Maintainability is the ease with which a software system or 
component can be modified to correct faults, improve performance or other attributes, 
or adapt to a changed environment. (2) Maintainability is the ease with which a 
hardware system or component can be retained in, or restored to, a state in which it can 
perform its required functions.  
 
Maintenance: (1) Maintenance is the process of modifying a software system or 
component after delivery to correct faults, improve performance or other attributes, or 
adapt to a changed environment. (2) Maintenance is the process of retaining a 
hardware system or component in, or restoring it to, a state in which it can perform its 
required functions.  
 
Measurement Standard: A measurement standard is a standard that describes the 
characteristics of evaluating a process of product. 
 
Method: A method is a codified series of steps taken to develop a product or to perform 
a service. In computer science its meaning is similar to that of the terms "technique", 
"algorithm", "function" or "procedure", which will be used alternatively in this thesis.  
 
Methodology: Methodology is defined as "a comprehensive, integrated series of 
techniques or methods creating a general systems theory of how a class of thought-
intensive work ought to be performed." 
 
Metric: A metric is a quantitative measure of the degree to which a system, component, 
or process possesses a given attribute. 
 
Ontology: An ontology is a problem-relevant, shared, and formal specification of a 
conceptualization. 
 
Ontology engineering: Ontology Engineering or sometime referred to as "Ontological 
Engineering refers to the set of activities that concern the ontology development 
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process, the ontology life cycle, the methods and methodologies for building ontologies, 
and the tool suites and languages that support them" (Gomez-Perez et al., 2004). 
 
Ontology Reuse: Ontology reuse is the process in which existing ontological knowledge 
is used as input to generate new ontologies (Paslaru-Bontas, 2007) 
 
Process: (1) A process is a sequence of steps performed for a given purpose; for 
example, the software development process. (2) A process is an executable unit 
managed by an operating system scheduler.  
 
Partitioning: Partitioning is the act or process of dividing something into parts. These 
parts can be mutually exclusive or overlapping.  
 
Quality: Quality is the degree to which a system, component, or process meets specified 
requirements. 
 
Reusability: Reusability is "the degree to which a software module or other work 
product can be used in more than one computing program or software system". In a 
specific context the term is similar to "usability" or "utility". 
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ZUSAMMENFASSUNG 

Komponentenbasierte Entwicklung von komplexen Softwaresystemen verbessert die 
Wartbarkeit und führt zu wiederverwendbaren Softwaremodulen. Ausgehend von 
dieser Erfahrung wird angenommen, dass die komponentenbasierte Entwicklung von 
Ontologien ähnliche Vorteile bringt. Allerdings sind die meisten Ontologien monolithisch 
aufgebaut, so dass mit der steigenden Anzahl online verfügbarere Ontologien auch die 
Größe und Komplexität mit angestiegen ist. Für die effiziente Nutzung, die einfache 
Wartbarkeit und die Möglichkeit wiederverwendbarer Komponenten bedarf es daher 
geeigneter Partitionierungstechniken. Insbesondere im Kontext von Semantic Web ist 
die Wiederverwendung von Ontologien von essentieller Bedeutung, da diese die 
webübergreifende Datenintegration und Interoperabilität heterogener Systeme 
ermöglichen.  

In dieser Arbeit wird ein strukturbasierter Ansatz zu Partitionierung von Ontologien 
verfolgt, in dem Ontologien als Netzwerke repräsentiert werden. Diesen wird eine 
Kantengewichtung hinzugefügt, welches die semantischen Beziehungen innerhalb der 
Ontologien berücksichtig. Darauf aufbauend wird ein konfigurierbarer Ansatz zur 
Partitionierung von Ontologien mit Hilfe von Community Detection Algorithmen aus 
dem Bereich der sozialen Netzwerke erarbeitet. Dabei liegt das Hauptaugenmerk auf 
zwei konkreten Anwendungsfällen für die Partitionierung, nämlich der Modularisierung 
von existierenden komplexen Ontologien zur Vereinfachung der Wartbarkeit und der 
Erzeugung von Begriffsgruppierungen für die Dokumentationsseiten zur Unterstützung 
der Wiederverwendbarkeit. Anforderungen für beide Fälle werden aus existierenden 
Lösungen extrahiert, welche im späteren Prozess in einem Goldstandardansatz als 
Referenzmodell auch zur Evaluation verwendet werden.  

In experimentellen Analysen des vorgeschlagenen Ansatzes werden die besten 
Parameterwerte für die jeweiligen Anwendungsfälle ermittelt. Mit diesen wird das 
System dann mit den bereits existierenden Werkzeugen zur Ontologiepartitionierung 
SWOOP und Pato verglichen. In diesem direkten Vergleich kann gezeigt werden, dass 
der hier erarbeitete Ansatz signifikant bessere Ergebnisse als die beiden Konkurrenten 
liefern kann. Allerdings sind die Ergebnisse nicht so gut, dass davon ausgegangen 
werden kann, dass ein vollständisch automatischer Prozess für die Partitionierung 
möglich ist. Der strukturbasierte Ansatz zur Partitionierung kann nur für eine 
semiautomatische Partitionierung verwendet werden, so dass die Nutzer die Ergebnisse 
manuell nachbessern müssen.  
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