

Dissertation zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat)

STRUCTURE-BASED PARTITIONING

OF SEMANTIC WEB ONTOLOGIES

eingereicht am Fachbereich Mathematik und Informatik

der Freien Universität Berlin von

Gökhan Coşkun

Tag der Disputation: 1. Oktober 2014

1. Gutachter: Prof. Dr. Robert Tolksdorf
2. Gutachter: Prof. Dr. Heiner Stuckenschmidt

Yesterday I was clever, so I wanted to change the world.

Today I am wise, so I am changing myself.

Jalal ad-Dīn Muhammad Rumi

 i

ABSTRACT

Component-based development of large and complex software systems by small well
defined building blocks improves the comprehension as well as the management and
leads to reusable software modules and a scalable overall system. Accordingly,
designing ontologies in a modular way is intuitively promising in order to benefit from
the same advantages. However, the status quo is that the most publicly available
ontologies are monolithic. For that reason the number as well as the size of available
ontologies has increased with the growing utilization during the last years. In order to
improve the efficient usage (e.g. through distributed and scoped reasoning for
reasoners), to simplify the maintenance (e.g. through refactoring support) and to allow
reusable components (e.g. through increased human understandability) there is a need
to partition large ontologies into well-sized building blocks in a (semi-) automatic way.
Especially from the viewpoint of the Semantic Web reusability is a crucial issue because
an agreed common semantic model allows easy data integration and interoperability.

Considering ontologies as networks of concepts connected through properties,
utilizing network analysis techniques is a promising approach to analyze and partition
ontologies. As a very well established discipline in science there are a lot of
sophisticated methods, algorithms and tools for network analysis available. This work is
driven by the belief that these methods can be modified and applied to ontologies, so
that the ontology structure can be used to analyze the content and to identify regions,
which can be seen as network "communities" representing subdomains of the ontology.
Furthermore, the analysis of the structure enables a first evaluation of the usability by
allowing different views, so that existing ontologies can be easier comprehended by
ontology engineers. This is very important because refactoring and reusing existing
models assume that these models are understood.

In this regard, an adaptable structure-based ontology partitioning framework has
been designed and implemented that utilizes community detection algorithms from the
field of social network analysis. According to the motivation of the partitioning, the
framework provides different configurable parameters. By this means the optimal
solution for a certain motivation can be achieved. The proposed framework has been
evaluated with a gold-standard approach for two concrete ontology partitioning cases.
On the one hand, it was analyzed how term chunks from ontology documentation pages
of thirteen ontologies can be reconstructed. On the other hand, it was investigated how
the modules of four selected modular built ontologies can be reidentified.

For both cases, 480 different combinations of configurations have been applied on
each ontology. The performance of the framework has been measured with F-Measure
similarity function applied on the reference model and the produced partitions. This
resulted in very good as well as very bad results. For that reason, the next problem was
to define a strategy to select the best configuration for the partitioning process based

ii

on the structure of the ontology and the motivation for partitioning. Two different
approaches have been used in this regard. Firstly, the results with all ontologies and all
configurations have been analyzed statistically. The values for the different parameters,
which led to the best results, have been selected. Secondly, assuming that similar
ontologies should be partitioned alike, each new ontology that should be partitioned
has been compared to already partitioned ontologies with a distance metrics based on
structural metrics. After the most similar ontology was identified, the configuration
leading to the best results for the already known ontology has been applied on the new
ontology.

With both approaches similar tools could be outperformed significantly, whereas the
similarity based approach led to minimally better results than the statistic approach. The
overall result is that for both reconstructing term chunks as well as modular ontologies
the reference models could be reproduced up to sixty percent. Even though this value is
twice as good as the performance of the similar tools, this does not justify a fully
automatic approach for ontology partitioning. However, it could be demonstrated that
with the proposed framework at least a semi-automatic approach for ontology
partitioning can be realized, that creates an acceptable first result that should be refined
manually.

 iii

iv

 v

ACKNOWLEDGMENTS

After years of work on this doctoral thesis, it is now time to come to an end. Pursuing
a doctoral degree is really a tough endeavor. Therefore, I am deeply moved to write this
section and express my sincere gratitude to all the people surrounded and supported
me during this long run.

 First of all, I am grateful to Prof. Dr. Robert Tolksdorf and Prof. Dr. Adrian Paschke
for giving me the opportunity to be part of their team. Together with Prof. Dr. Heiner
Stuckenschmidt, they motivated, challenged, and supported me in scientific discussions.
Through their guidance and constructive critics, I felt impelled to keep on track, to work
focused, to follow scientific rigor, and - last but not least - to become creative.

I also want to thank my former colleagues Mario Rothe, Markus Luczak-Rösch, Ralf
Heese, Radoslaw Oldakowski, Olga Streibel, Ralph Schäfermeier, Sascha Todor, and Kia
Teymourian for building a constructive and harmonic working environment and having a
great time. Working with you for almost five years was really a gift and an honor.

Furthermore, I want to express a profound gratitude to my lovely family. I am
grateful for having parents, who taught me to have deep respect for education and
supported the natural curiosity that at the end caused me to become a scientist. I also
thank my parents in law, my brother and his family as well as my brothers in law for
making life uncomplicated and worth living.

Finally, I want to emphasize that I feel appreciation and gratitude more than I can
articulate and even words can express for being married with my lovely wife Ebru and
having two healthy and cute children, my son Yakub Emir and my daughter Sevde Yaren.
You really make me happy and fill my life with joy!

vi

 vii

TABLE OF CONTENTS

1 Introduction .. 1

1.1 Approach and Contribution .. 3

1.2 Methodology and Thesis Outline .. 7

2 Fundamentals ... 11

2.1 Ontologies in Semantic Web .. 12

2.1.1 Need for Ontologies ... 13

2.1.2 Linked Data .. 14

2.1.3 Definitions .. 16

2.2 Ontology Engineering ... 17

2.2.1 METHONTOLOGY ... 19

2.2.2 On-To-Knowledge ... 21

2.2.3 Diligent ... 22

2.2.4 NeOn Methodology .. 24

2.2.5 Just Enough Ontology Engineering .. 25

2.2.6 Corporate Ontology Lifecycle Methodology .. 27

2.3 Chapter Summary .. 28

3 Ontology Partitioning .. 31

3.1 Aspects of Ontologies .. 32

3.2 Size and Complexity ... 33

3.3 Partitioning for Ontology Reuse ... 36

3.3.1 Reuse Support through Ontology Documentation 37

3.3.2 Term Chunks in Existing Documentations ... 39

3.3.3 Properties of Existing Term Chunks .. 49

3.4 Partitioning for Ontology Maintenance .. 51

3.4.1 Existing Modular Ontologies ... 52

viii

3.4.2 Properties of Modular Ontologies .. 56

3.5 Chapter Summary .. 57

4 Related Work .. 61

4.1 Structural Representation and Metrics... 62

4.2 Module Extraction.. 65

4.2.1 GALEN Segmentation.. 66

4.2.2 Extraction for Reuse ... 66

4.2.3 Extraction for knowledge selection ... 67

4.2.4 Traversal View Extraction ... 67

4.2.5 Logic-Based Modularization .. 68

4.3 Ontology Partitioning ... 68

4.3.1 Structure-based Partitioning ... 69

4.3.2 Partitioning Using ϵ Connections .. 70

4.4 Chapter Summary .. 70

5 Adaptable Ontology Partitioning Framework ... 75

5.1 Conceptual Model .. 76

5.2 From Description Logics to Structural Representation .. 77

5.2.1 The RDF Graph ... 78

5.2.2 Class-centric Graph ... 78

5.3 Structural Metrics .. 80

5.3.1 Size Metrics .. 81

5.3.2 Hierarchy-based Metrics... 86

5.3.3 Complex Metrics... 90

5.4 Community Detection Algorithms .. 95

5.4.1 Modularity Metric .. 95

5.4.2 Partitioning Algorithms ... 97

5.5 Weighting Semantic Relations .. 99

 ix

5.6 Parametric Partitioning .. 105

5.7 Chapter Summary .. 107

6 Parameter Analysis ... 109

6.1 Analysis Methodology .. 110

6.2 Similarity with F-Measure .. 111

6.3 Configuration of the Framework .. 112

6.4 Reconstructing Term Chunks .. 114

6.4.1 The Role of the Modularity Function for Term Chunks 122

6.5 Reconstructing Modular Ontologies ... 124

6.5.1 The Role of the Modularity Function for Reconstructing Modular

Design .. 128

6.6 Chapter Summary .. 129

7 Experimental Performance Analysis ... 131

7.1 Setup for the Experimental Evaluation ... 132

7.2 Comparison for Reconstructing Term Chunks... 133

7.3 Comparison for Reconstructing Modular Ontologies .. 136

7.4 Chapter Summary .. 139

8 Discussion and Outlook ... 141

Bibiliography ... 147

Terminology .. 159

List of Figures .. 163

List of tables .. 167

Abbreviations.. 169

Zusammenfassung .. 173

x

1 INTRODUCTION

Component-based development of large and complex software systems from small
well-defined building blocks improves comprehension as well as management and leads
to reusable software modules and a scalable overall system (Sametinger, 1997).
Accordingly, designing ontologies in a modular way is expected to benefit from the same
advantages (Stuckenschmidt & Klein, 2004). However, the status quo is that most
publicly available ontologies are monolithic. For that reason, there are plenty of large
and complex ontologies online available. Table 1-1 shows some size properties of
popular ontologies.

Name Number of
classes

Number of
properties

File size Lines of code

FOAF1 19 67 44 KB 605

SIOC2 17 86 50.2 KB 851

DBPedia3 394 1,748 747.6 KB 4237

NCI Cancer4 27,652 70 34.4 MB 932,712

Gene Ontology5 52,904 41 103.9 MB 2,009,934

Table 1-1: Popular ontologies along with some size properties. (The number of classes and
the number of properties have been extracted with Protege6.)

The constantly growing number of online available ontologies for various domains
(d’Aquin, Baldassarre, et al., 2007; Ding & Finin, 2006) increases the probability that
reusable ontologies with acceptable quality are available. Since reusability is a crucial
issue for the success of ontologies and especially for the Semantic Web, this is a highly
desired trend. In fact, it is broadly accepted that efficient and effective reuse promises
many benefits. Primarily, it enables saving necessary investment costs by avoiding the
reconstruction of already existing ontologies. In order to understand the complexity of

1 http://xmlns.com/foaf/spec/ last access April 25th 2012
2 http://rdfs.org/sioc/spec/ last access April 25th 2012
3 http://wiki.dbpedia.org/Downloads37 last access April 25th 2012
4 http://www.mindswap.org/2003/CancerOntology/nciOncology.owl last access April 25th 2012
5 http://www.geneontology.org/GO.downloads.ontology.shtml last access October 10th 2013
6 http://protege.stanford.edu/ last access April 25th 2012

http://www.geneontology.org/GO.downloads.ontology.shtml

Introduction

2

ontology development and to assess the possible benefit of ontology reuse, it is
essential to know that the importance of ontologies lies in the deep problem and
domain analysis during the development process. According to Chandrasekaran et al., a
"good" analysis clarifies the structure of the domain knowledge (Chandrasekaran,
Josephson, & Benjamins, 1999). However, a good analysis, which is only one part of the
overall ontology creation process, is a very cumbersome and time-consuming activity.
Apart from saving investment costs, ontology reuse is expected to ensure a certain level
of quality. The reason for this is that the longer an ontology exists and is reused, the
more review processes it has gone through. Furthermore, in the context of the Semantic
Web ontologies are considered the shared knowledge of distributed information
systems (Bontas, Mochol, & Tolksdorf, 2005; Bontas & Mochol, 2005). In this regard,
ontology reuse is also expected to support interoperability and system integration.

Due to these important advantages, ontology reuse is recommended in most
ontology engineering methodologies. However, the initially described issue of
monolithically created large and complex ontologies leads to substantial problems
exacerbating ontology reuse. Even though most ontology engineering methodologies
mention the reuse of existing ontologies as a possible starting point, none of them
provide detailed descriptions about the reuse process. Especially the analysis of
discovered candidate ontologies and the decision if and to which extend they can be
reused are still open research questions. Since decision making is always a matter of
knowledge, the main question is how candidate ontologies can be comprehended fully.
For that reason, appropriate size and complexity reduction methods and techniques
become crucial. This especially holds for large and complex ontologies, whose
development requires high effort. Therefore, their reuse would lead to much more
benefit than the reuse of simple and easy to create ontologies.

In order to support perception and to accelerate comprehension, it is important to
visualize an ontology in an appropriate way (Dzbor & Motta, 2008). For ontologies with
hundreds and thousands of concepts, it is impossible for the human mind to
comprehend the whole content. In this regard, suitable support systems lower the
burden to understand complex ontologies through reduction and projection techniques
(Dzbor & Motta, 2008), e.g. by highlighting only relevant concepts or by reducing the
complexity through partitioning. The latter is of particular interest because even the
specification document of the Friend of a Friend (foaf) (Brickley & Miller, 2010)
vocabulary, which is in comparison to the ontologies listed in Table 1-1 rather small,
contains a grouping of the concepts (illustrated in Figure 1-1). Such a grouping is
treated as a particular application for ontology partitioning. Similar term chunks have
been used in the documentations of other ontologies like the Music Ontology (Raimond
et al., 2012), the Atom Activity Streams Ontology (Minno & Palmisano, 2010), and the
Semantic Web Conference Ontology (Möller, Bechhofer, & Heath, 2009). Since they are

Approach and Contribution

3

all about the same size like FOAF, they emphasize how fast increasing size and
complexity exceeds the cognitive abilities of humans and important an appropriate
presentation is.

Figure 1-1: Term chunks of the FOAF vocabulary in the specification.

In addition to ontology reuse, processes like interlinking, refactoring, maintenance
and management are also depending on comprehension and would benefit from size
and complexity reduction as well. It must be kept in mind that each one of these
processes has different demands, e.g. regarding the size and the number of partitions to
be created. Thus, this work’s objective is the realization of size and complexity reduction
through an adaptable ontology partitioning framework. The targeted outcome is a
support system that accelerates interlinking and reuse (e.g. through ontology
documentation support) and simplifies maintenance (e.g. through refactoring and
modularization support).

1.1 Approach and Contribution

A partitioning process to create building blocks from monolithic ontologies has to
meet different requirements than a partitioning process for grouping of concepts into
subdomains as in Figure 1-1. Apparently, different motivations for partitioning have
different demands regarding the created partitions. Therefore, an ontology partitioning
system must be either optimized only for one motivation or has to be adaptable. Since
the former can be realized as a fixed configuration of the latter, this work tackles the

Introduction

4

development of an adaptable ontology partitioning framework that can be configured
for different use cases.

For the realization of such a framework, a structure-based approach and the
utilization of network partitioning techniques have been chosen. The main rationale for
this decision was the fact that there are various sophisticated methods and tools for
network partitioning available. In this regard, considering ontologies as networks of
concepts connected through properties, the adoption of network measures and
network analysis techniques is a promising approach to analyze and partition
ontologies. The assumption driving this work is that these techniques can be modified
and applied on the structure of ontologies to create partitions.

During the realization of the framework, basic research questions have been tackled
in depth. In the following, these questions are formulated along with brief descriptions
of the provided solutions:

1. Which goals do ontology partitioning processes have and what are the
expectations of different goals on the partitioning process?
This question is discussed in Chapter 3 in depth, while the focus is primarily on
two goals. Firstly, partitioning for grouping the concepts of an ontology for the
documentation page. Secondly, partitioning to improve the maintainability.

2. What is the structure of an ontology and how can it be represented as a graph?

In Section 5.2, the structure and its representation are discussed and two
different possible graph-representations are described. The first one is the
standard RDF graph and the second one is a more class-centric representation
similar to entity-relationship-diagrams.

3. How can community algorithms be applied on these graph representations of the

structure and which parameters are possible to allow configuring the partitioning
process?
In fact, the core contribution of this work is the answer to this question. The
whole Chapter 4 describes the proposed framework. The basic notion for
communities in social network is the Modularity function which is described in
Section 5.4.1. In order to allow configurable partitioning, two approaches have
been proposed which are novelties in the field of ontology partitioning. The first
one is a weighting function based on the properties. It is described in Section 5.5.
By this means, the semantic is taken into account during the partitioning
process. The second one is an extension of the Modularity function with the size
and the number of the created partitions. This is described in Section 5.6.

Approach and Contribution

5

4. How are the results of a partitioning process evaluated?
The evaluation of ontology partitioning is an ongoing research field. Even though
there are some proposals, it will be an open issue for a while because even the
field of ontology evaluation - without taking modularity into account - is still an
open research question. (It is broadly accepted that the quality of an ontology
depends on its application field. That means that ontology evaluation has to be
done in the context of a concrete application.) Since the addressed problems in
this work are neither ontology evaluation nor the evaluation of ontology
partitioning, they have been bypassed by utilizing existing reference partitionings
which are created by humans (mostly by the authors of the ontology).
Considering these reference partitionings as gold standards, the problem of the
evaluation has been solved by reducing it to the calculation of the similarity
between the reference models and the framework's outcome. This is presented
in detail in Section 6.1 and in Section 6.2.

The contribution of this work is an adaptable ontology partitioning framework that

utilizes community detection algorithms from the field of social networks analysis.
According to the goal of the partitioning, the framework provides different configurable
parameters. During the work on this thesis, some parts of the contributions have been
presented at workshops and conferences and have been published within the
proceedings of those events. In the following these papers are listed:

 Coskun, G. 2008. Ontologiemodularisierung im Unternehmenskontext Einleitung
Anforderungen an Ontologieentwicklung im Unternehmenskontext Ontologie-
modularisierung im Unternehmenskontext. (Berlin, 2008).

 Coskun, G. 2010. Structure-based Analysis and Modularization of Ontologies.
Doctoral Consortium of the Future Internet Symposium 2010 (Berlin, 2010).

 Coskun, G., Heese, R., Luczak-Rösch, M., Oldakowski, R., Paschke, A.,
Schäfermeier, R. and Streibel, O. 2009. Corporate Semantic Web Towards
Deployment of Semantic Technologies in Enterprises. The Second Canadian
Semantic Web Working Symposium (CSWWS 2009) (Kellowna, BC, Canada,
2009).

 Coskun, G., Heese, R., Luczak-Rösch, M., Oldakowski, R., Paschke, A.,
Schäfermeier, R. and Streibel, O. 2009. Towards a Corporate Semantic Web.

Introduction

6

International Conference on Semantic Systems (I-SEMANTICS ’09) (Graz, Austria,
2009).

 Coskun, G., Luczak-Rösch, M., Heese, R. and Paschke, A. 2009. Applying Ontology
Modularization for Corporate Ontology Engineering. International Conference on
Semantic Systems (I-SEMANTICS ’09) (Graz, Austria, 2009).

 Coskun, G., Luczak-Rösch, M., Heese, R. and Paschke, A. 2009. Survey of
Ontology Modularization for Corporate Ontology Engineering. The Second
Canadian Semantic Web Working Symposium (Kellowna, BC, Canada, 2009).

 Coskun, G., Rothe, M. and Paschke, A. 2012. Ontology Content "At A Glance". 7th
International Conference on Formal Ontology in Information Systems (Graz,
Austria, 2012), 147–159.

 Coskun, G., Rothe, M., Teymourian, K. and Paschke, A. 2011. Applying
Community Detection Algorithms on Ontologies for Indentifying Concept
Groups. 5th International Workshop on Modular Ontologies (Ljubljana, Slovenia,
2011).

 Heese, R., Coskun, G., Luczak-Rösch, M., Oldakowski, R., Paschke, A.,
Schäfermeier, R. and Streibel, O. 2010. Corporate Semantic Web – Semantische
Technologien in Unternehmen. Datenbank-Spektrum. 10, 2 (Aug. 2010), 73–79.

 Paschke, A., Coskun, G., Heese, R., Luczak-Rösch, M., Oldakowski, R.,
Schäfermeier, R. and Streibel, O. 2010. Corporate Semantic Web: Towards the
Deployment of Semantic Technologies in Enterprises. Canadian Semantic Web -
Technologies and Applications. W. Du and F. Ensan, eds. Springer US. 105–131.

 Teymourian, K., Coskun, G. and Paschke, A. 2010. Modular Upper-Level
Ontologies for Semantic Complex Event Processing. Proceeding of the 2010
conference on Modular Ontologies Proceedings of the Fourth International
Workshop WoMO 2010 (2010), 81–93.

Methodology and Thesis Outline

7

1.2 Methodology and Thesis Outline

Research in Information Systems can be categorized into two paradigms (Hevner,
March, Park, & Ram, 2004). The first one is called Behavioral Science Paradigm and
corresponds to research in natural sciences, which means that it comprises knowledge-
producing activities (March & Smith, 1995).

"It seeks to develop and justify theories (i.e., principles and laws) that explain
or predict organizational and human phenomena surrounding the analysis,
design, implementation, management, and use of information systems.”
(Hevner et al., 2004).

The second one is called Design Science Paradigm and corresponds to an engineering

approach (Hevner et al., 2004). It comprises knowledge-using activities to solve
problems and to improve information systems (March & Smith, 1995). Thus, it is
sometimes referred to as Improvement Research. The Design Science Paradigm is
accepted to be the best suitable paradigm for this work. It was used to structure the
main research activities and narratives of this thesis. Takeda et al. propose a design
cycle, which describes the different steps of a design processes (Takeda, Veerkamp,
Tomiyama, & Yoshikawam, 1990). It is illustrated in Figure 1-2.

The first step is the decision on a concrete problem from a set of problems that is to
be solved. From the knowledge about the problem, a solution is inferred through
abduction and a suggestion is defined. In the next step, the suggested solution is
developed. During the development phase, different new problems might occur, which
then cause the creation of new cycles. Within the evaluation phase the performance of
the developed solution is measured and the achieved improvement is quantified.
Finally, in the conclusion phase the insights are analyzed and new problems as well as
further investigations are discussed.

The structure of this thesis is based on this design cycle. The first four chapters
enable the reader to understand the general motivation of this work (Chapter 1), the
fundamentals of the problem area (Chapter 2), the problem details in depth (Chapter 3),
and finally existing solution attempts (Chapter 4). The suggestion and the development
are then presented in Chapter 5, where low-level problems which came up during the
development phase and are caused by the approach are discussed. In Chapter 6 the
analysis of the framework’s performance is presented with respect to the
aforementioned concrete motivations for partitioning ontologies. The main focus is on
the influence of the different parameters and the role of the Modularity function. The
comparison of the proposed framework with existing solutions is described in Chapter 7.

Introduction

8

Figure 1-2: Design cycle for structuring the research activities according to the Design
Science Paradigm. It has been applied in this research and used to structure the
narratives of this document.

Through this comparison, the contribution of this work to the problem area becomes
clear. Finally, a summary and an outlook are presented in Chapter 8.

For the sake of convenience for the reader and to offer the highest possible clarity
about the structure of this document, each chapter starts with a brief abstract and
closes with a short chapter summary. The former clarifies the structure as well as the
motivation of the chapter whereas the latter repeats the most important chapter
insights. Due to their general view, the first and last chapters do not follow this
structure.

2 FUNDAMENTALS

In this chapter the fundamentals of this work will be presented. Only with a clear
understanding about the fundamentals it is possible to follow the ideas and understand
the outcome. In this regard, Section 2.1 starts with an in-depth analysis of the term
ontologies and its understanding in Semantic Web. In contrast to the field of Artificial
Intelligence (AI), where the term ontology was firstly adopted, Semantic Web brought
new challenges. While the focus in AI was mainly on the expressivity and support for
sophisticated reasoning processes, the Web environment demands more agility,
scalability, and collaborative methods due to its open, large-scale, volatile, and
participatory nature.

In Section 2.2 Ontology Engineering is introduced, which is the main research area
this work pursues to contribute. The most important methodologies from this field are
described focusing on ontology reuse and maintenance. Thereby, the trend from heavy-
weight methodologies towards more agile methodologies allowing collaboration and
flexibility is discussed.

A summary about the content of this chapter is provided in Section 2.3. Finally, as a
completion for the fundamentals and for the sake of clarity, a terminology section has
been added to the appendix of this document that can be seen as a part of this chapter.
It provides an overview about the most important concepts of this thesis with their
definitions.

Fundamentals

12

2.1 Ontologies in Semantic Web

The vision of Semantic Web is to extend the World Wide Web by bringing structure
to the meaningful content, so that it allows computers and people to better work in
cooperation. The basic technologies for this vision, which are illustrated as a layer stack
in Figure 2-1, are the Extensible Markup Language (XML), Resource Description
Framework (RDF) and Ontologies. XML is an easy to understand and human-legible
language which is used for bringing structure to documents by enabling users to create
their own tags. RDF allows expressing meaning through triples following the form of
subject-predicate-object statements. By using Uniform Resource Identifiers (URI) RDF
makes sure that used concepts are tied to unique definitions accessible on the Web.
Finally, an ontology - defined as a specification of a representational vocabulary for a
shared domain of discourse (Gruber, 1993) - is a formal definition of concepts and their
relations. Comprising taxonomy and inference rules, well designed ontologies enable
powerful knowledge expression in a machine readable way, which in turn is the main
goal of the Semantic Web vision. In this regard the success of Semantic Web depends
significantly on the success of ontologies.

Figure 2-1: Visualizing of the layers of the Semantic Web.(The picture was taken from 7)

7 http://www.semanticgroup.org/ last access October 11th 2013

http://www.semanticgroup.org/

Ontologies in Semantic Web

13

In contrast to XML and RDF the concept ontology is a very abstract one. The term
ontology has its origin in philosophy, where it is defined as the systematic study of being
as such, that means each entity in the universe. Its goal is to describe the terms of entity
classification. Due to its descriptive nature, computer scientists in the field of Artificial
Intelligence (AI) adopted this term. They used it to refer to the basic models of their
software systems, which form an abstract description of a part of the world. (These
models are mostly referred to as the knowledge base of the software system.) However,
while the philosophical understanding of this term is widely acknowledged, there are
different views on ontologies in computer science. According to the online summit
"Ontology, Taxonomy, Folksonomy: Understanding the Distinctions" from 2007 the
spectrum of artifacts that are called "ontologies" covers folksonomies, taxonomies,
thesauri, conceptual models, and formal logic-based models. A clarification of the
different views on the term ontology is necessary.

Poli and Obrst distinguish between the philosophical perspective and the computer
science perspective (Poli & Obrst, 2010). While the former is called ontology as
categorical analysis, the latter is called ontology as technology. In contrast, the ontology
community distinguishes between lightweight ontologies, which are mainly taxonomies,
from heavyweight ontologies, which model the domain in a deeper way and provide
more restrictions on domain semantics (Gomez-Perez, Fernandez-Lopez, & Corcho,
2004). Initially, basic logic formalisms were considered for modeling heavyweight
ontologies with powerful expressivity. In AI first-order logic languages as Ontolingua
(Gruber, 1993) and description logic languages as KL-ONE (Brachman & Schmolze, 1985)
and Loom8 were developed. During the Semantic Web initiative different mark-up
languages were defined for representing and expressing ontologies. While the Web
Ontology Language (OWL) and the RDF Schema (RDFS) are broadly accepted by the
Semantic Web community as ontology representation languages, methodologies how to
create and maintain ontologies are still objects of investigation.

2.1.1 Need for Ontologies

The content of the Web is growing continuously since its invention. Through a
significant shift of its perception, which is called Web 2.0, this growth got accelerated
even more. This shift made every Web user to a potential content producer by using
tools like blogs, wikis, social networks, multimedia sharing platforms etc. The apparent
ubiquity of the Web, which nowadays gets an additional boost by modern mobile
devices, made it an important part of everyday life. Companies as well as government
departments understood how important the Web is to get in touch with the customers.

8 http://www.isi.edu/isd/LOOM/ last access July 16th 2012

Fundamentals

14

Online product catalogues, product comparison sites, online encyclopedias and much
more Web-based services demonstrated the importance of public data and its simple
accessibility.

The experience with the success of freely accessible data leads to high expectations
of appropriate combination and integration of this data. The Web provides numerous
data sources from very different domains (e.g. health care, movie database,
geolocations, and weather information). To gain added value from these information
sources, appropriate integration techniques are the key factor of success. In this regard,
ontologies have become necessary to support the integration and management of
Information Systems, which become large and complex (Di Maio, 2009). One essential
benefit is the support of knowledge reuse and communication. Even very small
ontologies - when well-formed and properly grounded - can be reused, linked to,
referenced, and incorporated or at least intersected into larger ontologies (Di Maio,
2009).

2.1.2 Linked Data

The vision of the Semantic Web (Berners-Lee, Hendler, & Lassila, 2001) published in
2001 depicted the future of the World Wide Web. Being a vision, it described potential
benefits of existing technologies on an abstract level. After short time, it was clear that
it was necessary to define a first step for the progress towards the vision. A new
paradigm came up called Linked Data which is a collection of best practices to publish
data and enable the first step of the Semantic Web from document-oriented web of to
the Web of Data. This paradigm consists mainly of the following four principles (Berners-
Lee, 2006):

1. Use URIs as names for things.
2. Use HTTP URIs so that people can look up those names.
3. When someone looks up a URI, provide useful information, using the

standards (RDF, RDFS, SPARQL)
4. Include links to other URIs so that they can discover more things.

The most important and at the same time the most difficult principle to implement is
the fourth one (Auer, Lehmann, & Ngonga Ngomo, 2011). In order to interlink a data
source with another data source it is necessary to discover a suitable candidate data
source which contains similar content and to understand its structure. While the first
part of this process is supported by online ontology libraries as Ontolingua and
OntoSelect and search engines as Swoogle9, Watson10 and Ontosearch11 the second part

9 http://swoogle.umbc.edu last access July 16th 2012

Ontologies in Semantic Web

15

is still a critical open issue. (There are more than 26 billion of triples in the Linked Open
Data cloud, which is illustrated in Figure 2-2, but the interlinking is still less than 5\% 12.)
Recent research activities in this field are mainly focused on automatic linking of entities
in different knowledge bases. That means that individuals in different sources are
analyzed and links between them are discovered (Volz, Bizer, Gaedke, & Kobilarov,
2009).

Figure 2-2: Visualization of the Linked Open Data cloud13 as of September 2011.

The pragmatic approach of Linked Data leads to a more Web-centric view on

ontologies than a semantic-centric view. That means that ontologies are no longer
expected to be semantically enriched and expressive models. In Linked Data ontologies
are considered as published schemas represented in RDF, RDFS or OWL. That does not

10 http://watson.kmi.open.ac.uk/WatsonWUI last access July 16th 2012
11 http://www.ontosearch.org last access July 16th 2012
12 http://lod-cloud.net last access July 16th 2012
13 Figure taken from http://lod-cloud.net/ (last access February 28th 2013)

http://lod-cloud.net/

Fundamentals

16

mean, that heavyweight semantics is now allowed, but it is not a requirement. This is a
contrast to the understanding of ontologies in the initial vision of the Semantic Web.
This main rationale for this is the commonly accepted consensus that semantic
technologies are not mature enough at this stage to be really useful in productive
settings (Roberta, Alexandre, Vincent, & Carlo, 2007). Therefore, Linked Data focuses on
the publishing of raw data on the global Web by postponing the semantic aspect to the
future.

2.1.3 Definitions

Due to different understandings of the term ontology within the Computer Science
community, it is important to clarify the meaning of this term in the context of this
work. This is necessary to avoid misunderstandings and ambiguity in the rest of this
document.

According to Di Maio ontologies are conceptual and semantic models devised to
support various intelligent functions including information representation, processing
and retrieval in network-supported and Web-based environments (Di Maio, 2009). Since
this work is done in the broader field of the Semantic Web research activities and
especially with the pragmatic view of the Linked Data initiative, the understanding of
the term ontology is as follows:

Each publicly available vocabulary represented in RDF,
RDFS or OWL is in this work treated as an ontology.

However, as this definition comprises a broader spectrum, some distinctions are

necessary to classify the different types of ontologies. One distinction is based on the
expressivity level. Ontologies which comprise just concepts, concept taxonomies,
relations between concepts and properties are called light-weight ontologies. On the
other hand heavy-weight ontologies comprise axioms and constraints in addition to the
aforementioned aspects. Furthermore, a second classification can be done based on the
scope of the ontology. (Gomez-Perez et al., 2004) organizes ontologies into the
following categories:

 Top Level / Upper Level Ontologies are generic models and applicable in various
domains. They define general concepts and relationships between them and are
standardized by international standardization committees (e.g. Suggested Upper

Ontology Engineering

17

Merged Ontology 14 (SUMO) by the IEEE Standard Upper Ontology Working
Group15).

 Domain Ontologies are domain-specific models, which describe the knowledge
of a particular domain (e.g. electronic, life science, financial) and are being
developed by communities of domain experts (e.g. the Gene Ontology by the
Gene Ontology Consortium16).

 Task Ontologies in contrast to domain ontologies, task ontologies are models
which focus on a particular task like scheduling. They define concepts and
relations describing tasks needed for solving concrete problems.

 Domain-Task Ontologies are task ontologies which are made for one domain and
are only applicable in this domain.

 Method Ontologies are specifying concepts and relations about methods which
are necessary to do a task.

 Application Ontologies are concrete and application-dependent models which
are made for a particular application to solve concrete problems.

Figure 2-3 illustrates an aspect of the categorization of ontologies by comparing

scope and abstraction based on three selected categories. It shows that the number of
ontologies within an abstraction level increases with getting more concrete. This is
caused by the generality of abstract ontologies, which make them applicable across
several domains and lead to more reusability.

2.2 Ontology Engineering

In order to provide some structural guidance for the ontology creation process some
Ontology Engineering (OE) methodologies have been proposed. Ontology Engineering or
sometime referred to as Ontological Engineering "refers to the set of activities that

14 http://suo.ieee.org/SUO/SUMO/index.html last access April 29th 2012
15 http://suo.ieee.org last access April 29th 2012
16 http://www.geneontology.org last access April 29th 2012

Fundamentals

18

Figure 2-3: Comparison of the abstraction and the scope of ontologies. The more
abstract an ontology is, the less alternatives it has.

concern the ontology development process, the ontology life cycle, the methods and
methodologies for building ontologies, and the tool suites and languages that support
them" (Gomez-Perez et al., 2004). A methodology is defined as "a comprehensive,
integrated series of techniques or methods creating a general systems theory of how a
class of thought-intensive work ought to be performed”. There are already a lot of
existing methodologies in literature. According to Di Maio “the main purpose and goal
of adopting such structured approaches to systems development are

 to make the development process of complex systems more manageable and to
increase the effectiveness of the communication between analysis, designers,
and programmers (which is supposed to reduce the risk of errors an flaws)

 to maximize the chances that the system under development actually meets the
business requirements by providing a means of mapping and translating
requirements directly into systems functionality.'' (Di Maio, 2011)

In this regard ontology engineering "is a specialized set of activities requiring depth
and breadth of understanding, knowledge, and skills" (Di Maio, 2011). The overall
ontology development process consists of three different activity groups (Gomez-Perez
et al., 2004). To the first kind of activities belong management activities like scheduling
of tasks to be performed, control of planed actions, and quality assurance. The second
kind of activities is development oriented activities, which in turn can be divided into
three subgroups: pre-development activities like environment and feasibility study;

Ontology Engineering

19

development activities like specification, conceptualization, formalization, and
implementations; post-development activities like maintenance and (re)use. Finally,
support activities are the third kind of activities which are knowledge acquisition,
evaluation, integration, documentation, merging, alignment, and configuration
management.

The range of ontology engineering methodologies widened during the last years
mostly inspired by the knowledge engineering and software engineering disciplines and
often evolved from each other. Therefore approaches differ in their relationship to
software engineering and knowledge engineering, in details referring to the composition
of ontology engineering and application development, the range of users interacting in
ontology engineering tasks, and the degree of lifecycle support.

One important difference between the existing methodologies is the degree of
details regarding the specification. Some lightweight methodologies can be seen as an
outline, while heavyweight methodologies range from the knowledge level to the
representation formalism used. As this work has its scope on treating the complexity
regarding ontology reuse and maintenance, this section presents only a selected part of
the state-of-the-art in ontology engineering methodologies ranging from two heavy-
weight methodologies (METHONTOLOGY and On-To-Knowledge) to two collaborative
methodologies (DILIGENT and the NeOn Methodology) and two light-weight
methodologies (COLM and "Just Enough Ontology Engineering"). The selection is
supposed to demonstrate the relevance of maintenance and reuse for the whole
spectrum of ontology engineering methodologies. For an exhaustive description and
comparison refer to (Gomez-Perez et al., 2004)}.

2.2.1 METHONTOLOGY

METHONTOLOGY (Fernandez, Gomez-Perez, & Juristo, 1997) can be considered as
the most comprehensive Ontology Engineering methodology in literature. In fact, the
aforementioned distinction of the overall ontology development process into three
activity groups is based on METHONTOLOGY. Having its root in intelligent agent
technologies, it has an AI perspective on ontologies. Therefore, it targets the
construction of ontologies at the knowledge level. It is an approach to build ontologies
from scratch, reuse or re-engineer existing ones. The central structure of its processes
have been adopted from the IEEE standard for Software Engineering, which was
assumed to be more mature than any new developed process for this special purpose.
That yields to the lifecycle illustrated in Figure 2-4. It comprises three central activities
of management (scheduling / planing, control and quality assurance), five activities of
development (specification, conceptualization, formalization, implementation, and
maintenance), and five activities of support (knowledge acquisition, integration,

Fundamentals

20

evaluation, documentation, and configuration management). These activities underrun
a cyclic lifecycle which allows for the iterative release of evolving ontology prototypes.

Figure 2-4: The development process of METHONTOLOGY comprises three central
activities of management, five activities of development, and five activities of support
(Corcho, Fernández-López, Gómez-Pérez, & López-Cima, 2003).

Regarding documentation METHONTOLOGY proposes to create a requirements
specification document after specification, a knowledge acquisition document after
knowledge acquisition, a conceptual model document after conceptualization, a
formalization document after formalization, an integration document after integration,
an implementation document after implementation, and finally an evaluation document
after evaluation. But it is not described how these documents should be created and
how they should look like.

The reuse process is divided into the following four steps:

1. find candidate ontologies
2. the content and the granularity
3. select the ontologies to be reused
4. evaluate the selected ontologies

Ontology Engineering

21

As mentioned before, METHONTOLOGY does not have its roots in Semantic Web, but
in Agent Technologies. For that reason, it addresses knowledge workers and
experienced ontology engineers and it assumes the developers to be familiar with
ontologies in general. Therefore, it is not described in detail how these steps (for this
work especially steps 2. and 3. are very relevant) should be executed. Additionally, it is
not described how the proposed documents should support the reuse and re-
engineering processes.

2.2.2 On-To-Knowledge

The On-To-Knowledge Methodology (OTKM) proposes a more application-oriented
ontology development process than METHONTOLOGY (Staab, Studer, Schnurr, & Sure,
2001). Its overall goal is to build a knowledge management system for enterprise
systems^, which enables the integration of knowledge from different knowledge
sources. Ontologies are considered to be the means to switch from a document-
oriented view to a knowledge-oriented view. In this regard, the ontology development
process is seen as a part of an "overarching methodology for introducing knowledge
management systems" (Staab et al., 2001). Figure 2-5 illustrates the proposed process.

In OTKM the actual development of the ontology begins in the kickoff phase, when
the outcome of the feasibility study justifies it. In the kickoff phase, it is mentioned that
ontologies might be reused, but it is not described in detail how this should be done. In
the following phase, the refinement phase, it is mentioned that appropriate
visualization of the ontology content (e.g. as a mindmap) might be helpful for the
ontology engineer. Furthermore, it is stated that during the refinement each step should
be documented without explaining how to do it.

Fundamentals

22

Figure 2-5: Abstract overview of the On-To-Knowledge Process (Sure, Staab, &
Studer, 2009)

2.2.3 Diligent

METHONTOLOGY as well as OTKM are heavyweight methodologies for creating
ontologies for knowledge-based systems in a centralized manner. With the Semantic
Web vision and the Linked Data initiative ontologies became an enabler for information
integration in large-scale and highly distributed environments like the World Wide Web.
Additionally, the Web 2.0 trend eliminated the separation between the role of the
information producer and the role of the information consumers towards a more
participatory and collaborative Web.

Thus, the demands on a methodology for the development of ontologies in the sense
of Semantic Web and Linked Data were different. This led to a new methodology called
DILIGENT (Pinto, Staab, & Tempich, 2004) which stands for DIstributed, Loosely-
controlled and evolvInG Engineering of oNTologies. Figure 2-6 illustrates the interactions
of different participants in DILIGENT, which respects the large distribution of ontology

Ontology Engineering

23

engineering in Web-scaled settings and the totally disparate skill level of process
stakeholders.

Figure 2-6: The DILIGENT setting of roles and functions (Pinto et al., 2004)

An ontology consensus is reached by an argumentation-based approach following a
dedicated argumentation model (the DILIGENT argumentation ontology). Every
individual is free in adapting the central ontology consensus locally and modify this
adaption for its own purposes. A so-called control board analyzes the local modifications
and adapts the shared central ontologies accordingly. The evolution of the consensual
model is depending on these local adaptions. A lifecycle is underrun in DILIGENT, which
enables an iterative evolution of the central consensual ontology while the detailed
process phases (build, local adaption, analysis, revision, and local update) concentrate
on reaching this human-centered consensus by argumentation about concept.

The focus in DILIGENT is the argumentation-based coordination of the evolution of
the ontology. By assuming a simple core ontology at the beginning of the process
created by a small group it implicitly mentions modularity (core ontology and its
extensions) without providing any further details. It is also not described how the
control board is supposed to do the analysis of the local modifications and how to
maintain the ontology according the outcome from the analysis.

Fundamentals

24

2.2.4 NeOn Methodology

One of the most comprehensive and promising methodologies is the so-called NeOn
methodology (Suárez-Figueroa et al., 2008). It was created within the context of a
research project with 14 European contributors which run for several years. It was
driven by the assumption that former methodologies provide detailed process
description but lack the appropriate “style and granularity” as it is known from software
engineering methodologies. The NeOn methodology attends to facilitate guidelines for
building individual ontologies by reuse and re-engineering of other domain ontologies or
knowledge resources and for plugging in continuously evolving ontologies. The following
nine approaches for ontology creation are described, which are called scenarios:

1. Building ontology networks from scratch without reusing existing knowledge
resources.

2. Building ontology networks by reusing and reengineering non ontological
resources.

3. Building ontology networks by reusing ontological resources.
4. Building ontology networks by reusing and reengineering ontological resources.
5. Building ontology networks by reusing and merging ontological resources.
6. Building ontology networks by reusing, merging and reengineering ontological

resources.
7. Building ontology networks by reusing ontology design patterns.
8. Building ontology networks by restructuring ontological resources.
9. Building ontology networks by localizing ontological resources.

Figure 2-7 illustrates these different approaches in association with processes and
activities. The addressed target groups of the NeOn methodology are software
developers as well as ontology practitioners which should be enabled to build ontology
networks by use of ontology building platforms (e.g. NeOn Toolkit, Protege, or TopBraid
Composer). The definition of process phases and activities is accompanied by a
description of purposes, inputs and outputs, involved actors, methods, techniques, and
tools used for their execution.

Obviously, the NeOn methodology has a strong focus on reuse. Six different criteria
for reuse are defined, which mainly consist of the estimation of the necessary effort.
However, this demands for a first analysis of different aspects of the ontology.
Therefore, it becomes clear that the focus is mainly on very large ontologies, since it is
implicitly assumed that there are enough resources to do the necessary analysis and the
mentioned estimation.

Ontology Engineering

25

Figure 2-7: Ontology development processes in the NeOn methodology (Suárez-Figueroa
et al., 2008)

2.2.5 Just Enough Ontology Engineering

The “Just Enough” approach was introduced by Ed Yourdon in (Yourdon, 2006),which
he commented as follows:

“Today, we’re too busy to spend much time thinking about anything, and
we’re also far too busy to read more than a couple hundred pages of the bare
essentials on any topic. What we want is just enough – enough to give us the
basic idea, enough to get us started, enough to give us a grounding in the
fundamentals.”17

17 http://yourdon.com/publications/ last access on July 19th 2012

Fundamentals

26

This inspired Di Maio to adapt the “just enough” approach to Ontology Engineering.
The Just Enough Ontology Engineering (JEOE) methodology (Di Maio, 2009) describes
the essential activities for Ontology Engineering without describing in detail a sequence
to perform. The following activities are discussed

1. Identifying Stakeholders
2. Defining the Purpose / Goal of the Ontology
3. Outlining Requirements
4. Identifying and Surveying Existing Knowledge Sources
5. Scoping the Ontology
6. Evaluation and Testing
7. Definition
8. Implementation
9. Deploying
10. Testing and Validation
11. Publishing
12. Maintenance and Reuse

In most of these aspects (especially in 4. and 12) ontology reuse and interlinking is
mentioned as an important feature of ontologies. Di Maio states in (Di Maio, 2009)

“Although it may not always be possible to reuse an existing ontology, it
should always be possible to reuse at least some parts of it - at least the
parts of it that are public, declared, explicit, or easily acquired. Other
ontologies, even when substantially different from the one we are trying to
develop, should always be acknowledged and referenced, at least for
completeness.”

At some parts Di Maio mentions an ontology specification document but does not get

clear how this should be created and structured. Such a document is an essential
requirement for efficient reuse, understandability and continuous refinement of the
ontology. While understandability is one top level requirements for the accessibility if
ontologies by different stakeholders, continuous refinement is an important claim of
JEOE, because it assumes an ongoing incremental development method to adapt the
ontology to the changing reality or the view it is based on.

Ontology Engineering

27

2.2.6 Corporate Ontology Lifecycle Methodology

The Corporate Ontology Lifecycle Methodology (COLM) illustrated in Figure 2-8 is an
innovative lifecycle model for continuously evolving ontologies in corporate contexts
(Luczak-Rösch & Heese, 2008). The main intention is to provide an intuitive
understanding of raising costs per iteration and of the duration and effort spent in each
process phase.

Figure 2-8: Corporate Ontology Lifecycle Methodology

The seven phases of the two-part cycle refer either to the outer cycle as
selection/development/integration, validation, evaluation, or to the inner circle as
deployment, population, feedback tracking, and reporting. The outer cycle represents
pure engineering tasks, which is an expert-oriented environmental process. The inner
constitutes the ontology usage, which is a human-centered concurrent process.

Starting the process at selection/development/integration means to start the
knowledge acquisition and conceptualization, to re-use or re-engineer existing
ontologies, or to commission a contractor to develop an ontology. The result of this
phase is an ontology, which is validated against the objectives. At the intersection point
between the engineering and the usage cycles the ontology engineers and the domain
experts decide whether the ontology suites the requirements or not. If this is approved
the ontology is deployed and in use by applications. Then the ontology is populated,
which means that a process for instance generation from structured, semi-structured

Fundamentals

28

and unstructured data runs up. Throughout the whole feedback tracking phase, formal
statements about users’ feedback and behavior are recorded. A reporting of this
feedback log is performed at the end of the usage cycle. That means that all feedback
information, which was collected until a decisive point, is analyzed respecting internal
inconsistencies and their effects to the currently used ontology version. The usage cycle
is left and the knowledge engineers evaluate the weaknesses of the current ontology
with respect to the feedback log. This point may also be reached, when the validation
shows that the new ontology is inappropriate to the specification. The lifecycle starts
again with the implementation of the results of the evaluation.

2.3 Chapter Summary

The importance of the World Wide Web for everyday life as a ubiquitous information
source is increasing continuously. Likewise, the importance of ontologies (with its roots
in the field of artificial intelligence) for the future of the WWW rises. This trend caused
different ontology engineering methodologies to come up within a short period of time.
They have different requirements and expectations and therefore differ in various
aspects like their relationship to knowledge engineering or software engineering, their
level of detail, their application dependency etc. However, presently, there is not a
methodology which gains broader acceptance. Stakeholders, especially corporations,
have a well-founded caution by the decision to use ontologies and to apply one
methodology, because "undertaking an OE project can be a bigger risk than other IT
projects simply because the complexities and uncertainties are higher." (Di Maio, 2009).

Existing OE methodologies lack of a sound balance between the pragmatics of cost-
effective processes as demanded by corporations and the sophisticated theoretical basis
for academics. It is important to focus on common aspects of various Ontology
Engineering methodologies and to exhaustively work on basic processes and concrete
techniques with keeping the mentioned pragmatics in view. This work is doing so by
concentrating on modularity and documentation of ontologies for reuse and
maintenance from a complexity reduction perspective. The targeted contribution is
expected to be applicable within each OE methodology and provide techniques fulfilling
the demands of corporate settings.

3 ONTOLOGY PARTITIONING

In this chapter the problem of structure-based partitioning ontologies is analyzed.
Different aspects and dimensions of the research problem are discussed. Its main goal is
to provide insights into the low level problems this work is faced with and to understand
the requirements the targeted framework needs to fulfill.

Ontologies are complex information models possessing different aspects.
Understanding ontologies completely means understanding all aspects of them and the
relations among them. Therefore, it is analyzed which aspects ontologies have before it
is analyzed how ontologies can be decomposed into different partitions with respect to
these aspects. For that reason this chapter starts in Section 3.1 with a brief overview of
the aspects of an ontology and how partitioning can be understood according to each
aspect. Keeping these aspects in mind, the terms size and complexity are discussed in
Section 3.2, because partitioning is a decomposition process for reducing both. It is
emphasized that in order to quantify the performance of a partitioning process measures
are required for both.

The next question to clarify is how concrete partitioning should be done. Two different
motivations for partitioning namely reuse and maintenance are then discussed in the
Sections 3.3 and 3.4, respectively. Both motivations demand different levels of
knowledge about the ontologies and therefore have different requirements on the
involved users, the used tools, the partitioning process as well as the identified
partitions. After these sections, it becomes clear that a one-fits-all solution for ontology
partitioning is not possible. Rather an adaptable framework is necessary which adapts
towards the need of different motivations in terms of configurable parameters.
Therefore, it is investigated which properties can be derived from existing examples,
which can be potentially used as parameters in the adaptable partitioning framework.
Finally this chapter is closed with a summary in Section 3.5.

Ontology Partitioning

32

3.1 Aspects of Ontologies

According to Vrandecic ontologies have six different aspects, namely the vocabulary,
syntax, structure, semantic, representation, and context (Vrandecic, 2010). The meaning
of the term ontology partitioning depends on the considered aspect. The following
discussion should provide a brief insight how partitioning could be understood with
respect to each aspect.

Vocabulary

The vocabulary is a glossary of terms, which are names representing different concepts,
properties and instances of the domain to be modeled. Within the Semantic Web names
are mostly URI references (e.g. http://xmlns.com/foaf/0.1/Person) and, which consist
of a namespace (http://xmlns.com/foaf/0.1/) and a local name (Person). Through URIs
these names are globally unique and can be looked up through HTTP. Partitioning a
vocabulary would for example mean to create different glossaries, which in fact is a
simple list of terms.

Syntax

The syntax represents the ontology in a serialized form, which enables saving it in a
document. In Semantic Web the mostly used syntax is RDF/XML. Possible other
syntactical representations are the N3 notation (Berners-Lee, 2005) and Turtle (Beckett
& Berners-Lee, 2008). A partitioning of the syntactical representation can be considered
as splitting up a file into different pieces (e.g. line-based).

Structure

The structure of ontologies is mainly made up of the relations between the terms of the
vocabulary, which can be hierarchical relations or property relations. Partitioning the
structure is a research problem, which is the primary focus of this work.

Semantic

Ontologies contain axioms and reasoning rules to express semantics. This is the
distinguished aspect of ontologies, because this feature separates ontologies from data
and information models. It allows for inference that makes implicit information explicit.
Thus, ontologies are useful means to represent knowledge. In this regard, partitioning of
the semantics can be considered as dividing the knowledge into different knowledge
bases.

Size and Complexity

33

Representation

The representation of ontologies is defined as the relation between the semantics and
the structure of ontologies (Vrandecic, 2010). There are different methods how the
semantics can be represented structurally. This important issue is tackled in this work
deeply in Section 5.2.

Context

The context is the setting in which the ontology was created and is used. This ranges
from the ontology engineering methodology used to the concrete application
environment in which the ontology is utilized. Therefore, it can be divided into different
aspects like organizational aspects, methodological aspects, technological aspects, etc.

3.2 Size and Complexity

The terms size and complexity are not trivial in the context of ontologies. For each
one of the mentioned ontology aspects different size and complexity measures are
possible. Size can be e.g. defined as the amount of terms in the vocabulary, the number
of lines of code in the syntactical representation, the diameter in the ontology structure,
the number of axioms of the semantics. Although there are different possible definitions
for size, most of them are simple to calculate and easy to understand.

Complexity, on the contrary, is not that easy to define as a measure. In (IEEE, 1990)
complexity is defined as follows:

"The degree to which a system or component has a design or
implementation that is difficult to understand and verify."

Accordingly, a complexity measure needs to be able to calculate the mentioned

degree. As size has an influence on the comprehensibility it can also be seen as an
indirect complexity measure. However, there are other properties regarding the
mentioned aspects, which have an influence on the comprehensibility of ontologies.
Figure 3-1 exemplifies this by illustrating three different syntactical representations of a
small ontology. Although each of them contains the same semantic content they
provide different levels of readability and hence different levels of comprehensibility.

In terms of lines of code and the amount of symbols in a document, the N3 notation
(part b) of Figure 3-1) could be identified as the "shortest" representation and therefore
the best understandable one. But the prefix definition could confuse readers, who are
not familiar with it. Furthermore, a “good” graphical visualization simplifies the

Ontology Partitioning

34

comprehension, because with mental images memorizing is easier than memorizing just
syntactical representations (Barclay, 1973). Therefore, many readers could agree on the
graphical visualization (third part of Figure 3-1) as the best comprehensible presentation
of the ontology. However, long URIs enlarge the illustration and exacerbate the visual
perception.

Well-defined size and complexity measures are necessary to compare the ontology at
the beginning with the generated partitions after the partitioning process. For that
reason, they are essential to measure the quality of partitioning processes. Additionally,
these measures can be used to optimize the partitioning process with respect to them, if
the expected partitions can be described in terms of size and complexity. Concrete
measures on this are introduced and discussed in Section 5.3.

For the sake of clarity, it is important to mention at this point that in the field of
computer science the term complexity is mainly used in the context of computational
complexity which seeks to classify computational problems in terms of required
resources (e.g. time and memory space) for the computation process. The definition of
the complexity is based on properties of the input parameters (e.g. number of elements
in case of a list). In this regard, size and complexity of ontologies have an effect on the
computational processes applied on ontologies. That’s why in OWL 2 three different
profiles are defined, namely OWL 2 EL, OWL 2 QL, and OWL 2 RL.

"Each profile is defined as a syntactic restriction of the OWL 2 Structural
Specification, i.e., as a subset of the structural elements that can be used in a
conforming ontology, and each is more restrictive than OWL DL. Each of the
profiles trades off different aspects of OWL's expressive power in return for
different computational and/or implementational benefits. OWL 2 EL enables
polynomial time algorithms for all the standard reasoning tasks; it is
particularly suitable for applications where very large ontologies are needed,
and where expressive power can be traded for performance guarantees.
OWL 2 QL enables conjunctive queries to be answered in LogSpace (more
precisely, AC0) using standard relational database technology; it is
particularly suitable for applications where relatively lightweight ontologies
are used to organize large numbers of individuals and where it is useful or
necessary to access the data directly via relational queries (e.g., SQL). OWL 2
RL enables the implementation of polynomial time reasoning algorithms
using rule-extended database technologies operating directly on RDF triples;
it is particularly suitable for applications where relatively lightweight
ontologies are used to organize large numbers of individuals and where it is
useful or necessary to operate directly on data in the form of RDF triples."
(Hitzler, Krötzsch, Parsia, Patel-Schneider, & Rudolph, 2009)

Size and Complexity

35

Figure 3-1: Different approaches to serialize an ontology, a) RDF/XML b) N3 Notation c)
RDF Graph

Ontology Partitioning

36

However, as mentioned above this categorization is based on syntactic restrictions
and therefore very simple to do by checking the used constructs within an ontology.
This type of complexity is not suitable for the envisioned partitioning system.

3.3 Partitioning for Ontology Reuse

Development strategy in IT seeks for abstraction, encapsulation and reusability in
various levels. This caused different paradigms like Object-oriented Programming,
Agent-oriented Software Engineering, Aspect-oriented Programming and different
technologies like middleware and application containers. The distinction between the
program logic and the information model is suggested throughout these approaches.
The reason for this is twofold. The first one is avoiding dependency between the model
and the programming logic. The second one is to allow for reusable components. Based
on the initially understanding of ontologies as semantically enriched information models
of knowledge-based systems, reusability is an inherent feature of ontologies. According
to (Dzbor & Motta, 2008) “the reuse of existing, possibly imperfect, ontologies becomes
the key engineering task.”

Different abstraction levels for ontologies lead to the usability-reusability tradeoff
problem, which was described in (Klinker, Bhola, Dallemagne, Marques, & McDermott,
1991). Increasing usability leads to reduced reusability, while increasing reusability
causes reduced usability. Applied to ontologies, this means, that the more abstract
ontologies are the more reusable but less usable they become. This is illustrated in
Figure 3-2.

A survey of different case studies regarding ontology reuse is provided and analyzed
by Simperl along with two additional case studies described in detail (Simperl, 2009). An
important insight is that in the surveyed case studies ontology reuse is considered as a
manual process. However, a consensus on the need for tools supporting this process
was also observable. It is important to mention that from the usability point of view
such tools must not be designed for high skilled users with extensive ontology
engineering experience, but need to keep "normal" users in view (Dzbor & Motta,
2008). In fact, most existing domain ontologies seem to be created by developers with
no experience in formal knowledge representation (Dzbor & Motta, 2008).

The mentioned survey provides an analysis of the applied methodologies in the case
studies (Simperl, 2009). It is said that “activities such as ontology assessment,
integration, translation, and customization seem to be relevant across case studies”. The
reuse process commonly starts with the intention to utilize ontologies in an envisioned
IT system. That means that the developer has an application and a domain in mind.

Partitioning for Ontology Reuse

37

Figure 3-2: The usability-reusability tradeoff problem. The more abstract
ontologies are the more reusable but less usable they become.

Based on this the developer starts searching for candidate ontologies, which might be
reused. Different search engines (d’Aquin, Sabou, et al., 2007) and ontology libraries
(D’Aquin & Noy, 2012) are available to support this discovery process.

Having obtained a list of potential candidate ontologies an analysis and decision
taking step has to be done. The coverage and level of detail of each candidate has to be
analyzed, in order to answer the question, if an ontology is reusable for the targeted
system. If it is, the second question is, to which extend it can be reused and whether it
needs to be customized. Reuse can range from an inspiring input up to the complete
adoption without any customization. It is also possible that a candidate is reused
partially, which would assume some modularization step to be taken. It is very
important that these decisions are taken quickly and correctly. If the analysis process
cannot be done efficiently or the decision is made wrong, the reuse effort would lead to
waste of time and resources, although its primary motivation was to save both.

3.3.1 Reuse Support through Ontology Documentation

Careful documentation of the development process and the created artifact is
broadly accepted as an important means to support reuse. It is frequently used in the
field of Software Engineering, where tools like JavaDoc are very popular. Whereas, in
the field of Ontology Engineering the lack of good documentation makes reuse difficult,
because the decision on the applicability of candidate ontologies becomes a time-
consuming process. On the other hand, the process of documentation is an additional

Ontology Partitioning

38

effort for the ontology developer which still lacks of an appropriate support system to
create documentations automatically or semi-automatically.

However, there are some simple or premature tools available, which support the
documentation process. Inspired by the success of JavaDoc for code written in Java,
OWLDoc18 is a tool that generates frame-based HTML pages with three areas. An
example is visualized in Figure 3-3.

Figure 3-3: An example of a documentation page created with OWLDoc

It allows for navigating quickly to a specific resource and for obtaining information
about it like comments, labels, type etc. When a class is chosen the main frame shows
information such as superclasses and disjoint classes, while in case of properties
information as superproperty, domain and range are shown. This kind of representation
is useful to get detailed information about a single concept and its connections to other

18 http://www.co-ode.org/downloads/owldoc last access on August 14th 2012

Partitioning for Ontology Reuse

39

concepts. However, it does not provide an overview about the ontology and its
structure as a whole.

More recent documentation tools such as Neologism (Basca, Corlosquet, Cyganiak,
Fernández, & Schandl, 2008), SpecGen19 and VocDoc20 create one HTML page containing
detailed information about the classes and the properties. Additionally, these HTML
pages also contain meta-information like version information, changelog, authors,
namespaces, license information, and referenced external ontologies. This kind of
information is either at the beginning of the document or at the end. The details about
the ontology and its concepts are at the main part of the document. Before the main
part begins, there is a brief section with an alphabetically sorted list of classes and
properties, which is called "overview" or "at a glance". Neologism extends this section
with a graphical visualization (illustrated in Figure 3-4), which is very useful in case of
very small ontologies. Since the whole ontology is visualized without any reduction,
even though the ontology is large, the visualization gets confusing very quickly.

In the documentations of FOAF e.g. the "at a glance" section is extended with a
manually created grouping of concepts (called summarization in (Jannink et al., 1999)),
which is actually a partitioning of the vocabulary. (This grouping was depicted in Figure
1-1). It is a good introduction so the reader can understand, what the ontology is about
and can decide very quickly, if the content covers relevant concepts for her or his
purpose. Therefore, this illustration addresses most likely users who are looking for a
reusable ontology and want to decide quickly, if a closer look makes sense. In
consideration of the fact that the documentation of FOAF comprises about 40 printed
pages, it becomes clear how important such a support is and how much time it can save.
Additionally, it emphasizes that even in case of rather small ontologies there is a need
for breaking down the complexity for documentation purposes, where chunking terms is
one promising means to do this. But in case of large ontologies the partitioning of the
vocabulary has to be extended with a reduction step limiting the number of groups as
well as the size. This is very important because chunking terms for documentation
purposes need to take cognitive capabilities of humans into consideration.

3.3.2 Term Chunks in Existing Documentations

For the understanding how such term chunks should be created and to derive - if
possible – parameters for the envisioned partitioning framework, existing examples
have been searched for. After an exhaustive search for online available ontology

19 https://bitbucket.org/wikier/specgen/wiki/Home last access on August 14th 2012
20 http://kantenwerk.org/vocdoc last access on August 14th 2012

Ontology Partitioning

40

Figure 3-4: "At a glance" section of Neologism

Alphabetical
 list

Tree view
of the
class and
property
hierarchies

Graphical
visualization
of the
ontology
structure

Partitioning for Ontology Reuse

41

Documentations, where concepts have been grouped to support the understanding,
thirteen ontologies were found. In the following these ontologies are briefly described
along with some noticeable aspects of their history and the groups.

Atom Activity Streams

The Atom Activity Streams ontology (aair) is the RDF representation of the Atom
Syndication Format (Nottingham & Sayre, 2005). The ontology was created by two
responsible authors and a contributor within an EU research project. The initial version
was proposed in December 24th in 2009 and the last update was in March 3rd 2010. The
documentation of the ontology (Minno & Palmisano, 2010) contains four groups, which
have the same style as the groups illustrated in Figure 1-1. They contain only classes and
are alphabetically sorted. The four groups are primarily the subtrees of the four root
classes "Actor", "Object", "Verb", and "Context". The groups are named according to
these classes. However, there is also a class within a group that is not the subclass of
one of the four mentioned classes.

Biographical Ontology

The Biographical Ontology (bio) contains terms to describe events that are part of a
person’s life. It was created by two authors initially proposed in March 7th 2003. The last
update was in June 14th 2011 which was the 15th version. The documentation (Davis &
Galbraith, 2010) contains five groups of concepts. These groups are comma separated
lists of concepts as illustrated in Figure 3-5. One group comprises classes only and the
other four groups consist only of properties. One group contains the properties of the
class "Person", whereas one group contains only the properties of the class "Event". The
other two property groups contain properties relating an event to an agent or an event
to an event respectively.

Collaborative User Resource Interaction Ontology

In the Collaborative User Resource Interaction Ontology (curio) classes and properties
are defined to describe discussions on collaboration platforms. It allows the
management of user-generated content on these platforms. The ontology was created
within an EU research project by a single author. The initial version was created in
September 14th 2009 and the last update was in February 1st 2011, which was the sixth
revision. The documentation of curio (Burel, 2011) contains four groups of concepts,
which have the same style as the groups illustrated in Figure 1-1. The groups comprise
classes as well as properties. The class names are alphabetically sorted while the
properties of a class are listed directly after the class name. The first group contains
general classes and the groups "Annotation", "Documents", and "Events" represent

Ontology Partitioning

42

Figure 3-5: Term chunks of the Biographical Ontology in the documentation page

mainly subtrees of the class hierarchy refining classes of the first group. While the
"Documents" group contains the class "Document" and the group "Events" contains the
class "Event" there is not a class named "Annotation".

Enterprise Competence Organization Schema

The Enterprise Competence Organization Schema (ecos) defines terms to describe the
competences of organizations within a global market. It was created by two authors as a
part of a PhD thesis. The initial version was proposed in September 1st 2009 and was not
further developed. Within the documentation page (Khilwani & Harding, 2009) the
classes and properties are grouped into four different groups, which have the same style
as the groups illustrated in Figure 1-1. The groups are representing the subtrees of the
concepts "General", "Business", "Specific", and "Record" while these classes themselves
are not listed in the group. The classes are at the beginning of the list and the properties
are at the end. The properties are in the same group where the corresponding domain
class is. Some properties have several domain classes which are in different groups. In
this case these properties are mentioned several times.

Partitioning for Ontology Reuse

43

Friend of a Friend Vocabulary

The Friend of a Friend vocabulary (foaf) is a very popular and broadly used ontology to
publish personal profile information and links to friends in a social network manner. The
initial version was created in 2000 and it was updated frequently. The last update was in
August 9th 2010. It was created by two authors. The documentation of version 0.97
(Brickley & Miller, 2010) contains five term chunks (Figure 1-1) while four groups
contain properties as well as classes and one group contains properties only. The groups
do not represent subtrees of the ontology nor are the properties in the same group as
their domain classes. In fact, the most properties belong to the classes "Agent" and
"Person" but they are distributed over all groups. Three groups are named according to
the classes they contain ("Online Accounts", "Project and Groups", "Documents and
Images"). The group "FOAF Basics" seems to contain the most relevant terms for this
ontology and the group "Personal Info" contains mainly properties of the class "Person".

Although the successor version of the documentation has only two groups, it is
ignored in this work. Because on the one hand one group is still divided into three
subgroups and on the other hand the newer grouping does not match to the motivation
of dividing the concepts according to subdomains.

GI2MO Types Taxonomy

The GI2MO Types Taxonomy (gi2mo) contains terms to annotate ideas in an idea
management system. It has one author, who created it in the context of a Spanish
research project. The initial version was proposed in May 30th 2011. This version was
revised only once and the latest version is from June 10th 2011. The documentation
page (Westerski, 2011) contains four groups comprising properties as well as classes.
The terms are organized in a tree structure as illustrated in Figure 3-6. However, it is not
clear in the visualization if a child node is a subclass or a property.

Music Ontology

The Music Ontology (music) was created to allow the description of music in a broader
sense. The initial version was created in December 21st 2006. About seven authors
worked on this ontology and updated it several times. The last version is from August
12th 2012, which is the 15th version. The documentation page (Raimond et al., 2012)
contains 23 groups with the same visualization style like in Figure 1-1. There are groups
comprising classes only and properties only as well as groups that comprise both. The
property only groups contain properties of only one particular class while in most cases
these groups are named according to the particular domain class. In some cases this
class itself is also listed in the group.

Ontology Partitioning

44

Figure 3-6: Term chunks of the GI2MO ontology in a tree structure

W3C Prov Ontology
The W3C Prov Ontology (provo) defines the concepts of the Prov Data Model21 of the
W3C in OWL that aims at the description of provenance information about entities,
activities, and authors involved in the creation of data. The initial version was created in
December 13th 2011 by three authors within the context of the work done by the W3C
PROV Working Group. It was updated six times. The latest version is from April 30th
2013. The documentation page (Lebo, Sahoo, & McGuinness, 2013) contains three
groups of concepts which are sown in Figure 3-7. Each one of these groups contains two
subgroups, one group for the classes and one group for the properties. The first group is
named “Starting Point classes and properties”, the second group “Expanded classes and
properties” and the third group is “Qualified classes and properties”. The order of the
classes does not show any rule, whereas the properties show a noticeable order. The
first properties in each properties’ subgroup are properties of the classes of the very

21 http://www.w3.org/TR/2013/REC-prov-dm-20130430/ last access 22nd August 2013

http://www.w3.org/TR/2013/REC-prov-dm-20130430/

Partitioning for Ontology Reuse

45

first classes’ subgroup. These properties are followed by the properties of the classes of
the same group. Along with the naming of the groups this indicates a grouping
according to the importance of the different classes and properties.

Figure 3-7: Term chunks of the provo ontology

Online Presence Ontology

The Online Presence Ontology (opo) defines classes and properties to describe the
online presence of users. The initial version was created in 2008 by one author and was
updated several times. The latest version is from July 1st 2010 and has the version
number 0.52. The documentation page (Stankovic, 2010) contains two groups with
properties, one group with classes and instances, and one group with classes, properties
and instances which are marked as such. The property groups contain only properties
belonging to one particular domain class. The terms are alphabetically sorted. The
groups are visualized as simple HTML lists as illustrated in Figure 3-8.

Ontology Partitioning

46

Figure 3-8: Term chunks of the Online Presence Ontology

Partitioning for Ontology Reuse

47

Provenance Vocabulary Core Ontology

The Provenance Vocabulary (pvc) provides classes and properties for the description of
provenance information for the particular case of Web data. It is an extension of provo.
The first version was created in August 25th 2009 by two authors and was updated six
times. The latest version is from March 14th 2012. The documentation page (Hartig &
Zhao, 2012) provides a graphical illustration of the ontology structure as shown in Figure
3-9. The whole ontology is divided into three parts, which are considered as three term
chunks. Since this is a graphical representation, there is no sorting of the classes or
properties possible.

Figure 3-9: Term chunks of the pvc ontology

Premis

The Premis OWL Ontology22 (premis) is a provenance metadata ontology. It is based on
the OASIS reference model PREMIS – Data Dictionary for Preservation Metadata
(Guenther et al., 2011). The initial version was created in 2011 and the latest version is
from September 2012, which is named as version 2.2 and declared as draft. In the
documentation page23 five UML-like diagrams are shown. Four diagrams are

22 http://premisontologypublic.pbworks.com/w/page/45987067/FrontPag last access 22nd August 2013
23 http://premisontologypublic.pbworks.com/w/page/46121028/Diagrams last access 22nd August 2013

http://premisontologypublic.pbworks.com/w/page/45987067/FrontPag
http://premisontologypublic.pbworks.com/w/page/46121028/Diagrams

Ontology Partitioning

48

representing subdomains and one diagram is depicting the relatedness of the other four
diagrams. Hence, the latter group is considered as an artificial group and therefore
ignored in this work.

Represent Rights Data Ontology

The Represent Rights Data Ontology (rrdonto) provides classes and properties
definitions for describing the intellectual property value chain. The first version was
created in October 4th 2006 by three authors. The latest version has the version number
6.3 and was created in July 15th 2007. Within the documentation page there are four
groups for classes only and one group for all properties, as illustrated in Figure 3-10
(Gauvin, Delgado, & Rodríguez, 2007). The first group contains classes, whose subtrees
are represented in the other groups.

Figure 3-10: Term chunks of the Represent Rights Data Ontology

Semantic Web Conference Ontology

The Semantic Web Conference Ontology (swco) defines concepts to describe academic
conferences, focusing on the particular conferences the European Semantic Web
Conference and the International Semantic Web Conference. It was first created in May
31st 2007 by three authors. It was updated several times. The latest version is numbered
895. It is dated to May 11th 2009. In the documentation page (Möller et al., 2009) there
are five term chunks in the documentation with classes only which have the same style
as the groups shown in Figure 1-1. The groups are primarily representing subtrees and
are named according to the particular root class. The latter itself is in some cases within
the group. The classes are alphabetically sorted.

Partitioning for Ontology Reuse

49

3.3.3 Properties of Existing Term Chunks

The brief descriptions of the different term chunks unveil that there is no unique
understanding how a term chunk should look like. While in some cases only classes are
grouped in other cases properties are also included in the groups. In some cases the
groups correspond to subtrees of the class hierarchy and in other cases the groups are
horizontal cuts of the hierarchy. In some cases class names are used as titles for the
group while the class itself is not included in the group. In other cases these classes are
also part of the group. There is also no unique style how to represent the term chunks.
In some cases the concepts are grouped in html lists and in some cases the concepts are
grouped as textual lists or as graphical representations. Table 3-1 shows some relevant
properties of the different term chunks.

Ontology Number of

groups in
docu

Mean
group size

Groups
alphabetically
sorted

Properties
in groups

Property
only
groups

Mixed
Groups

aair 4 9.75 - - -

bio 5 12.8 - 4 -

curio 4 12.5 -

ecos 4 11.75 - -

foaf 5 12.6 - 1

gi2mo 4 21.25 - -

music 23 6.52 - 10

opo 4 6.5 2

provo 3 13.66 -

pvc 3 9.33 na -

premis 4 14.5 na -

rrdonto 5 8.4 - 1 -

swco 5 5.8 - - -

Table 3-1: Overview of some important properties from the existing term chunks in the
documentations.

However, besides the differences there are also noticeable aspects which indicate
some kind of consensus. First of all, the ontologies are all about the same size. Even
though they can be considered as rather small ontologies, they all contain the

Ontology Partitioning

50

aforementioned term chunks within their documentation pages. That points to the fact
that all authors agree on the usefulness of such a grouping even at that size. Secondly,
in most cases the groups contain classes and properties, while in almost every case the
names of the classes start with capital letters and the names of the properties start with
small letters. This helps to distinguish between them even though they are in the same
group.

In order to understand, how partitioning should be done to create term chunks the
previously described documentations have been analyzed in terms of partition size and
count. Figure 3-11 visualizes the distribution of the group size.

Figure 3-11: Distribution of the number of elements per term chunks

The arithmetic means of the group size is 11.18 with a standard deviation of 3.19
(28% of the arithmetic means). This leads to an optimal group size of about 8 to 14
elements. However, the number of analyzed documentations is not statistically
significant. It is important to double check this value with other findings. Since term
chunks are created to support the comprehension, cognitive science has been identified
as the most appropriate research area to look for additional information.

In order to understand the content of a group, it is important to memorize its
elements for a short term of period. According to Miller this is done in the immediate
memory which has a capacity of about seven (Miller, 1956). A later work by Baddeley

Partitioning for Ontology Maintenance

51

showed that this capacity is increased to 15 if the elements to memorize are related
(Baddeley, 2003). Since these values do not contradict - they even correlate - with the
calculated range, an interval of 8 to 14 elements per group is accepted to be very
appropriate. This is especially justified, if one considers that elements of one group are
expected to be more related to each other than to elements from other groups.

The arithmetic means of the number of groups for the thirteen ontologies is 5.6 with
a standard deviation of 2.6. This would mean that 3 to 9 groups per documentation is a
good guidance interval. But after removing the value for music from this analysis
because of its significant difference, the arithmetic means of the number of groups is
4.16 with a much lower deviation of about 0.56 (13.5% of the arithmetic means). This
value is considered to be acceptable due to two arguments. On the one hand this value
does not contradict with the aforementioned finding from cognitive science. Because
term chunks have a higher complexity than the elements of the groups and they are less
related to each other than the elements of one term chunk. Therefore memorizing them
requires more mental capacities. On the other hand the quite small deviation indicates a
strong consensus and can be accepted as a best practice. So the guidance value for the
number of groups per documentation is three to five. This is considered to be
acceptable.

3.4 Partitioning for Ontology Maintenance

In traditional development methods of knowledge-based systems, creating
ontologies are heavyweight processes, including detailed domain and application
analysis. Before the ontology is deployed, it passes through different tests until it
achieves a satisfying maturity level. Maintenance in this case might be a rather small
issue, as it is very unlikely that further refinement apart from small corrections is
necessary, while the ontology is in use. However, in the context of agile ontology
engineering methodologies, maintenance needs special attention, because in agile
processes the ontology is permanently within a refinement process. In this case,
maintenance can be considered as equal to forward engineering forming the overall
evolution process. In this regard, maintenance does not include only low-level activities
like adding new elements, updating, refining, merging, and removing existing elements
it also comprises the complete refactoring (Gasevic et al., 2011).

The overall goal of maintenance is to improve the quality of an ontology or to adapt
it to new requirements. The higher the complexity as well as the size of an ontology is,
the more difficult is the maintenance process. So an ontology has a maintainability
characteristic, which depends on its size and complexity. Regarding software quality,
there is an ISO standard for Systems and Software Quality Requirements and Evaluation

Ontology Partitioning

52

called SQuaRE (Internation Organization for Standardization, 2011) which defines the
maintainability of a software product as a combination of the following five
subcharacteristics: modularity, reusability, analyzability, modifiability, and testability.
This approach was adapted by Duque-Ramos et al. to ontologies in OQuaRE, where the
maintainability is defined as:

"The capability of ontologies to be modified for changes in environments, in
requirements or in functional specifications. Some subcharacteristics are
modularity, reusability, analyzability, changeability, modification stability
and testability." (Duque-Ramos, Fernández-Breis, Stevens, & Aussenac-
Gilles, 2011)

In SQuaRE as well as in OQuaRE modularity is mentioned as the first subcharacteristic

and is, therefore, accepted as the most important one. In fact, the other
subcharacteristics seem to depend to some degree on the modularity. At least for
reusability and analyzability, this dependency has been shown in the previous section.
However, in contrast to a user, who seeks for a reusable ontology, the maintenance task
demands a user who is already familiar with the ontology. It is not sufficient for the
maintainer to understand merely the ontology completely, but it is mandatory to
understand the modeled domain and the application context. Moreover, it is essential
to understand the effect of the change on the whole ontology and on the application
which makes use of it. This difference demands for distinguishing between partitioning
for accelerating ontology reuse and partitioning for simplifying ontology maintenance.
Therefore, previously elaborated properties of term chunks do not hold for ontology
modules. This notion is additionally supported by the fact that having experience with
an object improves the capacity to recognize meaningful structures about it
(Shneiderman, 1977). That means that the cognitive limits for the number of partitions
as well as the size of them are different than the limits mentioned in the previous
section. This makes clear that partitioning, aiming at the improvement of the
maintenance task, has different requirements and has to be tackled on its own.

3.4.1 Existing Modular Ontologies

Obviously, modularity is one important quality aspect for artifacts. Well done
modularity is expected to increase flexibility and to simplify maintainability. Therefore,
different ontology engineering methodologies mention or address modular design of
ontologies. However, most online available ontologies were not built following
methodologies at all or at least strictly and are therefore mostly monolithic (Luczak-
Rösch, 2011). With an appropriate partitioning tool, such ontologies can be modularized

Partitioning for Ontology Maintenance

53

afterwards. In order to understand, how this can be done and do derive requirements,
analyzing the structural properties of existing modular ontologies is accepted to be a
reasonable strategy. Four ontologies have selected for this analysis, which are briefly
described along with some noticeable properties as follows.

Collaborative User Resource Interaction Ontology

The aforementioned ontology curio has three extensions, which are all created by the
same author and are importing the core ontology with the "owl:imports" concept. The
CURIO Annotations Vocabulary24 defines 16 terms. The revision number of the latest
version is 0.4 dated to February 1st 2011. The CURIO Documents Vocabulary25 defines
four terms and CURIO General Resources Vocabulary26 defines eight terms. The latest
versions of both have the revision number 0.2b. In the previous analysis only the core
ontology (which defines 22 terms and has the revision number 0.5 dated to February 1st
2011) has been used, because it was the only one that had a term chunk in the
documentation. Its initial version was proposed September 14th 2009. Merging all
modules (curioMerged) leads to an ontology with 30 classes and 20 properties.

Semantically-Interlinked Online Communities

The Semantically-Interlinked Online Communities27 (sioc) ontology provides definitions
of classes and properties for the integration of online social communities. The
documentation page lists 13 author names and two editor names from different
organizations. The current version has the revision number 1.35 and is dated to March
25th 2010. The change log lists 29 entries starting from April 7th 2005. The core ontology
which contains 91 terms is extended by the following three modules:

1. SIOC Access Module28 with four terms
2. SIOC Types Module29 with 38 terms, and the
3. SIOC Services Module30 with eight terms.

None of the three modules contain additional version information. These module
import the core ontology with the "owl:imports" concept. The merged ontology
(siocMerged) comprises 53 classes and 88 properties.

24 http://purl.org/net/curio/annotations# last access 26

th
 September 2013

25 http://purl.org/net/curio/documents# last access 26th September 2013
26 http://purl.org/net/curio/resources# last access 26th September 2013
27 http://sioc-project.org/ last access 27th September 2013
28 http://rdfs.org/sioc/access last access 27

th
 September 2013

29 http://rdfs.org/sioc/types last access 27th September 2013
30 http://rdfs.org/sioc/services last access 27th September 2013

http://purl.org/net/curio/annotations
http://purl.org/net/curio/documents
http://purl.org/net/curio/resources
http://sioc-project.org/
http://rdfs.org/sioc/access
http://rdfs.org/sioc/types
http://rdfs.org/sioc/services

Ontology Partitioning

54

SPICE Mobile Ontology

The SPICE Mobile Ontology31 (spice) describes the mobile communications domain. It
was created in the context of an EU research project by a consortium comprising nine
academic as well as industry partners. The core ontology, in which 19 terms are defined,
is extended by the following eight extensions32:

1. Services with 92 terms
2. Service Context with 30 terms
3. Profile with 30 terms
4. Presence with 63 terms
5. Context with 55 terms
6. Distributed Communication Sphere with 209 terms
7. Content with 67 terms, and
8. Privacy with 23 terms.

Apart from the Services and the Content extensions, all extensions import the core
ontology with the "owl:imports" concept. The Privacy extension additionally imports the
Profile extension as well. The merged ontology (spiceMerged) contains 354 classes and
234 properties.

Financial Industry Business Ontology

The Financial Industry Business Ontology33 (fibo) is defined by the Object Management
Group34 (OMG) and the Enterprise Data Management (EDM) Council35. It contains
definitions for financial terms, in order to provide terminological support that allows
transparency in the global financial system. The draft version from June 1st 201336 of the
foundations ontology comprises 23 modules. These modules are strongly connected to
each other through the "owl:imports" concept. They create a dense dependency graph
which is illustrated in Figure 3-12. The number of terms defined by the different
modules is shown in Table 1-1 with an additional distinction between classes (c) and
properties (p). The merged ontology (fiboMerged) contains 84 classes and 109
properties.

31 http://ontology.ist-spice.org/ last access 27th September 2013
32 http://ontology.ist-spice.org/spice_ontologies_files.htm last access 27th September 2013
33 http://www.omg.org/hot-topics/fibo.htm last access 27th September 2013
34 http://omg.org/ last access 27

th
 September 2013

35 http://www.edmcouncil.org/ last access November 13th 2013
36 http://www.omgwiki.org/OMG-FDTF/doku.php last access 27th September 2013

http://ontology.ist-spice.org/
http://ontology.ist-spice.org/spice_ontologies_files.htm
http://www.omg.org/hot-topics/fibo.htm
http://omg.org/
http://www.omgwiki.org/OMG-FDTF/doku.php

Partitioning for Ontology Maintenance

55

Figure 3-12: Dependency graph of the modules of fibo

Module C P S Module C P S

People 7 11 18 FormalOrganization 3 0 3

Agents 1 0 1 Objectives 1 1 2

CurrencyAmount 6 6 12 Goals 1 1 2

AccountEquity 8 1 9 Roles 2 1 3

Ownership 3 2 5 PartyRoles 2 1 3

Control 3 0 3 Aggreements 1 0 1

AnnotationVocabulary 0 10 10 Contracts 17 10 27

Relations 0 44 44 Parties 1 1 2

BusinessTypes 0 14 14 LegalCore 5 0 5

LegitimateOrganization 5 0 5 LegalCapacity 8 2 10

Addresses 2 2 4 Juristdiction 7 1 8

Organitzation 1 1 2 Sum 84 109 193

Table 3-2: Size properties of the fibo modules (C: number of classes, P: number of properties, S: sum)

Ontology Partitioning

56

3.4.2 Properties of Modular Ontologies

In contrast to the analysis of existing term chunks, the small number as well as the
diversity of the four ontologies do not allow to extract common aspects of modularity.
Nonetheless, some relevant and interesting insights can be drawn. Firstly, the different
revision numbers of the curio modules proof that modularity allows independent
development and is, therefore, an important aspect for maintenance support. This
supports the aforementioned SQuaRE and OQuaRE approaches which defined
modularity as one subcharacteristic of maintainability. Secondly, the dependency
between the modules are defined by using the "owl:import" construct. An important
insight regarding the dependency is that it seems to be common practice to have one
very abstract "core" module. All other modules or at least most of them import this core
module but are not connected between each other. This holds for curio, spice and sioc,
where the dependency between the modules can be described as a star-like structure.
However, fibo's dependency graph on the contrary can be rather seen as a tree-like
structure with several abstraction levels. Apparently, the overall structure of the
dependency graph seems to be mainly formed by the domain it represents and the
relation between the modeled level of detail and the spectrum of content. Thirdly, the
number of modules and the number of terms per module differ stronger than in the
case of term chunks. Table 3-3 shows the average module size, the standard deviation
of the module size and the number of modules for the mentioned four ontologies. The
small number of analyzed ontologies along with the strong deviation do not justify
further discussion regarding the number and the size of modules as it was done in
Section 3.3.3.

Ontology Average Module Size Standard Deviation Number of modules

curio 12.5 6.5 4

sioc 35.25 29.25 4

spice 65.33 38.22 9

fibo 8.39 6.68 23

Table 3-3: Properties of the modularization for the analyzed ontologies

Chapter Summary

57

3.5 Chapter Summary

In this chapter the problem of ontology partitioning has been tackled in depth on a
conceptual level. After clarifying aspects of ontologies, the concepts size and
complexity, whose growth is mentioned as the main problem demanding for
appropriate partitioning techniques, have been discussed in detail. It becomes clear that
concrete definitions for both are difficult. The mentioned definition for complexity
clarifies that the issue with increasing size and complexity depends on the limits of
perception and comprehension.

Furthermore, partitioning to support ontology reuse and partitioning to support
ontology maintenance were discussed thoroughly. And again, the essential insight was
that comprehensibility and the cognitive limits play a crucial role in the overall process
of partitioning.

The overall insights of this chapter can be summarized as follows.

 Ontologies can be partitioned in terms of different aspects, while the
structure that is in the focus of this work is one of these aspects. For that
reason there might be other partitioning approaches targeting at other
aspects.

 Size and complexity are difficult to define. Since partitioning is a
decomposition process to overcome problems caused by the growth of both,
it is essential to provide well-defined metrics to measure the quality of the
outcome and to compare it with the original ontology. Keeping the initial
sentence in mind, such metrics can only be some indications, but not formal
and mathematical definitions for them.

 Partitioning an ontology is a goal-oriented process. Various tasks in the
lifecycle of an ontology like reuse, maintenance, interlinking, and processing
depend significantly on knowledge and demand for different levels of
expertise about the ontology at hand. Therefore, the partitioning process
depends on the motivation and needs to be done according the requirements
of the concrete goal.

 Numerical properties of existing term chunks are quite similar. The number of
groups as well as the number of elements per group within all analyzed
documentation pages unveil that there is some kind of a common
understanding. Double checked with values from cognitive science regarding

Ontology Partitioning

58

working memory, three to five groups per documentation seem to very
appropriate, whereas the groups should have about eight to 14 elements.

 The number of partitions as well as the size of ontology modules depend
strongly on the concrete ontology. In contrast to term chunks, modular built
ontologies show a strong deviation in the number of modules as well as the
size of modules. Therefore, ontology modularization seems to be very
ontology dependent regarding structural properties.

4 RELATED WORK

After the research problem has been understood in depth, related work is now
analyzed. It is investigated, how the mentioned problems and requirements were tackled
by other researchers. This enables to understand existing approaches, proposals and
outcomes of research efforts. Furthermore, the clarification of the state-of-the-art
reveals benefits and limitations of existing solutions. It, additionally, depicts open
problems and research questions.

Since this work applies a structure-based approach for partitioning, this chapter starts
in Section 4.1 with a brief literature survey discussing how the structure of an ontology is
defined in related work and which structural metrics are used for which purposes.

In Section 4.2 relevant works from the research field of module extraction are
presented. The rationale behind this is twofold. On the one hand, this section should
clarify the relation and emphasize the difference to ontology partitioning. On the other
hand, it is important to see, how the structure of an ontology is defined and used for
module extraction.

In Section 4.3 existing ontology partitioning efforts are presented, while the closest
related work is discussed in Section 4.3.1 which uses the same approach for the same
goal as this work does. In this regard, this work can be seen as an extension of them.
Section 4.3.2 provides a brief description of a logic-based approach to ontology
partitioning.

The summary in Section 4.4 underlines the most important insights from this chapter
and provides a comparative view on the different understanding of ontology structure.
Additionally, it positions this work within the environment of the mentioned related
work.

Related Work

62

4.1 Structural Representation and Metrics

Structural representation of ontologies and structural metrics are used in several
ontology analysis techniques. The motivations of these techniques range from detecting
central concepts to deriving patterns for synthetic creation of artificial ontology
structures. In order to understand, how structural representations of ontologies are
created and which structural metrics are used in which context, a detailed literature
work has been conducted. In the following, a survey is provided, which describes
existing work that utilizes some kind of a structural representation of ontologies and
structural metrics. (Note: concrete mathematical definitions of the metrics are not
provided in this section as most of them will be discussed in detail in Section 5.3.)

Structural Pattern
Theoharis et al. state that there is a need to benchmark repositories and query language
implementations (Theoharis, Tzitzikas, Kotzinos, & Christophides, 2008). This work is
driven by the idea that the success of the Semantic Web depends on the existence of
ontologies for advanced querying and reasoning services. The realization of benchmark
requires means to create synthetic ontologies comprising schemas as well as data. For
that reason, the authors analyzed the structure of 83 selected ontology schemas with
more than 100 classes for structural patterns. The focus was primarily on power-law
degree distribution. They distinguished between the property graph and the
subsumption graph of the schema. In both cases, the classes and literals were
represented as nodes and the properties as edges. The outcome of this analysis is that
the most of the analyzed schemas approximate a power-law for degree distributions in
the property graph and also in the subsumption graph. This indicates the existence of
central concepts forming a core.

Node Importance
In the following papers different notions of structural centralities have been used. The
assumption in these works is that important concepts are in the core of the ontology
and have, therefore, high centrality values. Graves et al. make use of the RDF graph as
an undirected labeled graph to represent the ontology (Graves, Adalı, & Hendler, 2008).
No differentiating is made between schema and instances. For ranking the nodes the
closeness centrality values are used. This method is called Node Centrality Ordering
(noc-order).

AKTiveRank is a system which is motivated to facilitate reusing existing ontologies
(Alani & Brewster, 2006). It aims at improving search engines by ranking ontologies
based on structural properties of the search terms within the whole ontology. Four
different measures are defined, which are calculated separately by ignoring the

Structural Representation and Metrics

63

instances. These are namely "class match measure", "density measure", "semantic
similarity measure" and "betweenness measure". Apart from the first one, they are all
structural measures.

Hoser et al. introduce "Semantic Network Analysis" (SemNA) to analyze ontologies
for the purpose of reuse and re-engineering (Hoser, Hotho, Jäschke, Schmitz, &
Stumme, 2006). Different notions of node centrality are used, namely degree centrality,
betweenness centrality and eigenvector centrality. The named entities of an ontology
were represented as nodes in the graph. For an RDF statement this means that each
subject, each predicate, and each object becomes a node, where the edges were
directed from subject to predicate and from predicate to object. Experiments with the
Semantic Web for Research Communities37 ontology and the Suggested Upper Merged
Ontology38 (SUMO) are presented and the results are discussed.

Measuring Complexity
Apart from finding particular elements within an ontologies, structural metrics are also
proposed to measure properties of the whole ontology. Yang et al. propose ten metrics
to measure the complexity of ontologies (Yang, Zhang, & Ye, 2006). The main purpose is
to analyze the evolution of ontologies and extract patterns from their changes. Through
these patterns the future maintenance should be supported. This work uses the
subsumption hierarchy and ignores other properties. The proposed metrics are divided
into the categories "primitive metrics" and "complexity metrics". The first category
consists of the "Total number of concepts", "Total number of relations", and the "Total
number of paths" as well as "the longest path length for concept ci", "the average path
length for concept ci", "the max path length of an ontology", and "the average path
length of an ontology". The second category consists of "the average relation per
concept", "the average paths per concept" and finally "the ratio of max path length to
average path length of an ontology". After calculating these metrics for different
versions of three ontologies, the authors detected some similarities between the
changes of values for different ontologies. However, the term complexity is used
completely different than it was defined in Section 3.2 because understandability and
perception of humans are not considered at all.

In contrast, Zhang et al. make use of the term complexity in the same sense as it is
used in this work (Zhang, Li, & Tan, 2010). It is advocated that increasing complexity has
a negative impact on the quality of ontologies due to cognitive limits of maintainers. For
measuring this complexity eight metrics are proposed. They are categorized in
"ontology-level metrics" and "class-level metrics". The first category comprises the
following metrics: "size of vocabulary", "edge node ratio", "entropy of graph." The

37 http://ontoware.org/swrc/ last access April 12th 2014
38 http://www.ontologyportal.org/ last access April 12th 2014

Related Work

64

second category consists of the following metrics: "number of children of a class",
"depth of inheritance of a class", "in-degree for a class", "out-degree for a class". The
underlying structural representation of an ontology is formally described with graph-
transformation rules and corresponds the RDF graph representation. Applied on
different ontologies, it has been shown that these metrics allow good differentiation.
However, apart from the motivation, the relation between cognitive limits and
proposed complexity metrics is not investigated deeper. This work lacks of concrete
threshold values for the different metrics based the cognitive capabilities, even though
this expectation is raised.

Ontology Evaluation
Ontology evaluation is the process of determining the quality of an ontology. As
mentioned previously, it is broadly accepted that ontology evaluation can be done only
in context of a concrete application. However, several ontology evaluation approaches
make use of a structure-based approach.

Ning and Shihan propose such an approach and define the following six structural
metrics: "concept quantitiy", "property's expectation", "property's standard deviation",
"tree balance", "concept connectivity", and "key concept quantity" (Ning & Shihan,
2006). On the one hand, for the "tree balance" metric the subsumption hierarchy is
used. On the other hand, for the "concept connectivity" a proprietary graph is created
which is not clearly described. Only the following sentence is provided: "If a concept has
an object property whose value is an instance of another concept, an edge will be drawn
between these two concepts." Regarding the metric "key concept quantity", an edge
weight function is proposed which depends on the number of subclasses and relations
of a concept. The concepts are then assigned the sum of the values of their relations.
The concepts are then ranked accordingly and a previously defined proportion is then
considered as key concepts. Furthermore, the authors obviously assume that there is
some knowledge about the abstract structure of a domain of interest. This becomes
clear, when they advocate that the representation of a domain should have a structure,
which satisfies the structure of the domain. Additionally, the evaluation that is provided
in the paper is a kind of discussion by the authors based on the values of the proposed
metrics.

Based on a similar approach (Tartir, Arpinar, Moore, Sheth, & Aleman-meza, 2005)
propose two categories of metrics to assess the quality of an ontology. Firstly, the
schema metrics contain the following three metrics: "relationship richness", "attribute
richness", and "inheritance richness". Secondly, they propose nine instance metrics:
"class richness", "average population", "cohesion", "importance", "fullness",
"inheritance richness", "relationship richness", "connectivity", "readability". This work
has a strong focus on the instances of an ontology. It does not provide any scale to

Module Extraction

65

categorize an ontology based on the values of the different metrics. That means that the
user has to decide on its own, if a concrete value for a metrics indicates a good quality
or a bad quality. Closing the paper with a similar discussion as in the previously
mentioned paper (Ning & Shihan, 2006) makes clear that the proposed metrics are
some kind of a support for a user. The user has to look at the values of the different
metrics and has to build up his or her own mind.

Ontology Modularity
Within software modularity the terms cohesion and coupling are broadly accepted as
good indicators for the quality of modularization. Cohesion refers to the degree of
interconnections between elements of one module. Coupling on the contrary, is a
metric that indicates the degree of connections between different modules. Due to the
broad acceptance of these metrics in software engineering, attempts have been made
to adopt them in the field of ontology engineering.

Yao et al propose three metrics to measure the cohesion of an ontology module (Yao,
Orme, & Etzkorn, 2005). Based on the hierarchy tree, the proposed metrics are "number
of root classes", "number of leaf classes", and "average depth of inheritance tree of leaf
classes". In a follow-up paper, the authors proposed additional metrics to measure
coupling, namely "number of external classes", "reference to external classes", and
"referenced includes" (Orme, Yao, & Etzkorn, 2006). In both cases the metrics are simple
counts without taking the overall size or the complexity of the ontology into account.
The authors did comparisons with the ratings of eighteen human evaluators for 33
example ontologies. A correlation could be detected which indicates appropriateness of
the proposed metrics.

Analyzing the network structure of an ontology as a basis for partitioning the class
hierarchy into disjoint and covering set of concepts is presented by Stuckenschmidt
(Stuckenschmidt, 2006). Its main goal is to support distributed maintenance, selective
reuse and efficient reasoning. The ontology is preprocessed in the same way as in
SemNA(Hoser et al., 2006).

4.2 Module Extraction

Module extraction refers to the activity to extract only a part of an ontology. The
original ontology is reduced to a focused part. This presumes that there is a definition
which part - which concepts and properties - is relevant and have to be extracted. In
most cases the module is created by traversal. That means that a small module with the
given concepts is created and extended step by step. The outcome is a new ontology
document, which can exist in parallel to the original one.

Related Work

66

4.2.1 GALEN Segmentation

Web ontology segmentation proposed by Seidenberg and Rector is a method which
was developed for the GALEN ontology of medical terms (Seidenberg & Rector, 2006).
Its primary goal is to create classifiable segments in order to enable reasoners to work
properly even with large ontologies. In this regard, segments are targeted, which are as
small and focused as possible, but also containing enough information on the same
time. This method is optimized for densely connected and large ontologies with more
than 1000 concepts. These ontologies should have at least (on average) one restriction
asserted per concept.

A pre-requirement for this method is a normalized ontology that is an ontology in
which primitive classes do not have more than one primitive superclass. The basic
principle followed by this algorithm is that any concept and property participating
directly or indirectly to the definition has to be included. The segmentation algorithm
starts with one or more concepts, given by the user. The extraction is created by
traversal around the given and related concepts. All classes upwards and downwards,
superclasses and subclasses respectively, are taken into the extraction, without merging
superclases for avoiding destruction of semantic accuracy. Only properties which are
used in the class hierarchy are traversed together with their superproperties. Properties
which are not used in the class hierarchy or are not a direct superproperty of such a
property as well as sibling concepts are not included in the extraction. In the following
steps all superclasses of already included concepts are also traversed and included in
the extraction.

4.2.2 Extraction for Reuse

The technique presented in by Doran et al. aims at achieving an efficient way for
reuse of large ontologies (Doran, Tamma, & Iannone, 2007). Having an ontology
engineering perspective, the modularization process allows the ontology engineer some
control in order to identify which part of the ontology to separate. A definition for
ontology module is given as following: "An ontology module is a reusable component of
a larger or more complex ontology, which is self-contained but bears a definite
association to other ontology modules, including the original ontology." Three
requirements of ontology modules are given. The first requirement is self-containment.
That is, each module should be transitively closed with respect to an arbitrary given set
of relations. Being concept centered is the second requirement of an ontology module.
A module is supposed to describe a given start concept with enough information. The
last requirement is that a produced module should be consistent. This approach
exploits abstract graph models instead of logical formalism based representation, which

Module Extraction

67

makes it language independent. It reduces extraction of an ontology module to traversal
of a graph starting at a given point. It follows the idea that elements should be included
which make a reference to the initial element, no matter directly or indirectly, explicitly
or implicitly.

4.2.3 Extraction for knowledge selection

A modularization technique is proposed by d’Aquin et al. which is part of a process
called knowledge selection (d’Aquin, Sabou, & Motta, 2006). This process refers to the
integration of ontology selection with modularization in order to retrieve relevant
ontology modules. Being strongly tight to a particular application the modularization
technique is derived by following four previously determined application requirements.

The first requirement states that the criteria for modularization should reflect the
criteria of selection. In other words, the module which is to be produced should be the
smallest part of the original ontology which covers all terms used during the ontology
selection. The second requirement aims at maximizing the number of potentially
utilizable candidates. For that reason it demands that no assumption in respect of the
ontology should be made, neither language nor quality. Minimal user interaction is the
third requirement. This is of high importance for the examined semantic web browsing
scenario. The user just wants to brows and does not care anything about the ontology
selection and module extraction mechanism. Due to the semantic nature of ontologies
the last requirement states that the extracted module should also include implicit
information which can be inferred from the original ontology should be contained in the
extracted module.

The module extraction algorithm is given by inclusion criteria for concepts,
properties, individuals and assertions. In general, the algorithm works by including
upwards. In order to keep the module size small, not all superclasses are included only
the most specific common superclasses. Using inference during the modularization
process allows for including implicit knowledge.

4.2.4 Traversal View Extraction

Although the mechanism presented by Noy and Musen is called view extraction, it
can be seen as another approach for module extraction (Noy & Musen, 2004). Inspired
by database views, the notion of ontology view is introduced which is a specific portion
of an ontology. In contrary to the previously presented methods, traversal view
extraction is strongly interactive. The user has to define a starter concept, a list of

Related Work

68

relationships that are relevant and should be traversed and the maximum distance per
relation.

The connection between the created view and the original ontology is kept by the so
called boundary. Excluded concepts which are referenced by included concepts are part
of the boundary. This allows the user to extend the view interactively and iteratively by
choosing concepts to include from the boundary.

4.2.5 Logic-Based Modularization

As mentioned in Section 3.1, an ontology has different aspects. Semantics is one of
these aspects. It is utilized in by Grau et al. for extracting modules (Grau, Horrocks,
Kazakov, & Sattler, 2008). This logic-based approach targets at supporting the reuse of a
subvocabulary 𝒮𝒱, which is part of a candidate ontology 𝒪. A module 𝒪ℳ is that part
of the ontology 𝒪 (𝒪ℳ ⊆) which extends a second ontology 𝒫 (𝒪ℳ ∪ 𝒫) regarding a
subvocabulary 𝒮𝒱 as if the whole candidate ontology would be added to 𝒫 (𝒪 ∪ 𝒫). In
this regard, ℳ added to 𝒫 has to have the same meaning regarding 𝒮𝒱 as if the whole
ontology 𝒪 is added to 𝒫. This relation is called deductive conservative extension. 𝒪
added to 𝒫 is a conservative deductive extension of 𝒪ℳ added to 𝒫 regarding 𝒮𝒱
because it does not add any entailment regarding 𝒮𝒱. It is shown that computing a
module as defined is undecidable. Two different approximation methods are proposed
which are based on the concept of locality. The experiments with existing large
ontologies illustrate that this approach might lead to modules, which are very
unbalanced in terms of size. This is the case when this approach is applied to ontologies
which contain strong semantic dependencies.

4.3 Ontology Partitioning

Following the idea that any system has the property of near-complete
decomposability, ontology partitioning presumes that it is possible to find groups of
objects within a given ontology which have a closer relationship to each other than to
the other objects. In contrast to module extraction, ontology partitioning assumes that
every necessary piece of information for partitioning is in the ontology itself. Therefore,
it considers the ontology as a whole and partitions it completely without having any
additional input like important concepts etc. However, as elaborated in Section 3,
different motivations of partitioning have different expectations regarding the outcome.
For that reason, configurations like expected number of partitions or the expected
number of elements per partition are essential. Ontology partitioning tries to keep the

Ontology Partitioning

69

original semantic as complete as possible and produces new subontologies, which
optimally should be interrelated somehow. Ideally, the original ontology should be
reconstructible through merging the partitions.

4.3.1 Structure-based Partitioning

Structure-based partitioning is a partitioning method for large light-weight
ontologies, that is ontologies mainly consisting of a class hierarchy (Stuckenschmidt &
Klein, 2004). It aims at enabling easier browsing and exploring the hierarchy by dividing
the class hierarchy into disjoint and covering sets of concepts. The basic assumption
which is made by this method is that the structure of an ontology allows the derivation
of the dependencies among concepts. The authors state that their method is not able to
capture important dependencies that could be found by analyzing the names of classes
and the logical definitions of concepts. Nevertheless, they advocate that for scalability
issue such a simple approach is important. The partitioning method consists of five
different phases. In the first phase a dependency graph is created. Dependencies
corresponding to the subclass hierarchy or domain and range restrictions in property
definitions are used in this regard. Based on the constructed graph the strength of the
dependencies are determined in the second phase. Metrics from social network theory
are used to compute and assign strength values to the network. In the third phase the
mentioned strength value are used for determining modules. The fourth phase is
necessary because some single nodes can be left over during the third phase. To assign
leftover nodes to existing modules, the relation between a leftover node and a
neighboring node, which is already assigned to a module, is taken into account. Finally,
in the last phase created modules are merged manually.

This basic algorithm was extended and refined towards more flexibility (Schlicht &
Stuckenschmidt, 2006). The connectedness of modules, size as well as number of
modules and redundancy were defined as structural criteria for modularized ontologies
which allow for estimating efficiency, robustness and maintainability. In a later work a
sixth step called Axiom Duplication was added, which allows for overlapping modules
(Schlicht & Stuckenschmidt, 2007). The intention behind this extension is to reduce the
connectedness between modules. Finally, a method was presented that is used to
automatically select optimal parameters in order to maximize the quality of the result
(Schlicht & Stuckenschmidt, 2008a). This technique is implemented in a freely accessible
tool called PATO.39 Experiments with existing ontologies showed promising results to
support reasoning and visualization of ontologies. The former was evaluated by

39 http://web.informatik.uni-mannheim.de/anne/Modularization/pato.html last access 24th December

2012

http://web.informatik.uni-mannheim.de/anne/Modularization/pato.html

Related Work

70

calculating the communication cost between the partitions for a distributed resolution
process (Schlicht & Stuckenschmidt, 2008b). The latter is evaluated through some kind
of anecdotal evidence and was not supported with findings from cognitive science, even
though it is about perception.

4.3.2 Partitioning Using ϵ Connections

Grau et al. propose a method for automatic partitioning of OWL ontologies is (Grau,
Parsia, Sirin, & Kalyanpur, 2005a), which is based on ϵ -Connections (Kutz, Lutz, Wolter,
& Zakharyaschev, 2004). In a previous work the authors propose an abstract syntax
extension of OWL following the ϵ Connections formalism which allows to express a new
kind of properties (Grau, Parsia, & Sirin, 2004). These so called link properties enable to
create a link between entities of two different ontologies. The partitioning is done by
transforming an OWL knowledge into ϵ Connections so that relevant subdomains of the
ontology are represented in different components. These components are formally
proven to contain the minimal set of atomic axioms necessary in order to maintain
crucial entailments. Even though the algorithm is formally sound, tests have shown that
it suffers from scalability issues (Grau, Parsia, Sirin, & Kalyanpur, 2005b). Ontologies
containing a top ontology could not be partitioned properly. Similar to the logic-based
approach for module extraction described in Section 4.2.5, this technique tends to
create one very large partition and few very small partitions. This technique is
implemented in an ontology editing tool called SWOOP40.

4.4 Chapter Summary

This chapter provides an overview about existing related work in the research area
this thesis pursues to contribute. It clarifies earlier scientific efforts and their outcome
addressing the same basic research questions. The insights from this chapter can be
summarized as follows.

Obviously, focusing on the structure of ontologies is broadly accepted as a good
approach for various problems in Ontology Engineering. These problems range from
finding central concepts to the overall quality assessment of ontologies. However, the
conducted literature work unveil that each work is based on its own notion of structure
and metrics. In most cases there are open questions like: Are the metrics based on the
inheritance tree only? Is it assumed that the artificial upper concept "Thing" exists? Are

40 http://code.google.com/p/swoop/ last access 24th December 2012

http://code.google.com/p/swoop/

Chapter Summary

71

instances, reasoning and the import mechanism of OWL taken into account?
Furthermore, the wording that is used is ambiguous or even confusing, as in some
papers object type properties are called "relations" or "properties" and data type
properties are called "attributes", whereas in other works object type properties are
called "relations" and data type properties are called just "properties". In some cases, it
is even unclear how the structure and the metrics are defined. Table 4-1 provides an
overview about the different structural approaches in literature.

Section 4.2 clarifies the difference between module extraction and ontology
partitioning. The descriptions of existing work depicted that most techniques utilize a
traversal approach. In doing so, the focus is primarily on the hierarchical relations.
Furthermore, the process of module extraction requires additional inputs by the user
like number of hierarchical levels and types of relations to traverse. Therefore, the
process of module extraction is rather interactive and demands more time and effort
from the user than ontology partitioning as targeted in this thesis.

The logic based approaches for module extraction and ontology partitioning
presented in Section 4.2.5 and Section 4.3.2 respectively underpin the relevance and
importance of the structure-based approach of this work. Both examples led to modules
and partitions respectively, which were very unbalanced in terms of size. This in turn is
not acceptable, if reuse and maintainability support is envisioned and the focus is on
perception and cognition instead of reasoning. Moreover, the work presented in Section
4.3.1 shows that even reasoning can be improved with structure-based partitioning and
does not necessarily demand for logic-based approach.

Finally, the closest related work that has been presented in Section 4.3.1 applies a
structure-based approach for ontology partitioning. The main motivations are improving
reasoning and supporting the maintenance process through suitable visualization. The
evaluation of the former is more sophisticated than the evaluation of the latter, which is
some kind of a discussion. Therefore, it becomes apparent that the former has a higher
priority for the authors. Furthermore, visualization of ontologies is about perception the
ontology content. This in turn demands the consideration of cognitive capabilities of
users, which is totally omitted. In fact, this issue is tackled in this thesis extensively.
Thus, this work can be considered as an extension of the related work presented in
Section 4.3.1.

Related Work

72

 Goal Graph Structure

(Theoharis et
al., 2008)

Derive common structural features of
schema graphs enabling the
creation of synthetic ontology
schemata for benchmark tests

Classes and literals are nodes,
properties are edges. Additional
distinction between subsumption
graph and property graph

(Graves et al.,
2008)

Find central node in RDF graph. RDF graph

(Alani &
Brewster,
2006)

Rank ontologies for search engines
based on search terms.

RDF graph

(Hoser et al.,
2006)

Analyzing ontology structure for reuse
and re-engineering

Named entities as nodes. Edges
between class and superclass,
property and superproperty, property
and domain class as well as between
property and range class.

(Yang et al.,
2006)

Extracting structural patterns from the
evolution in order to support further
maintenance

The subsumption hierarchy is
primarily used as the structure of an
ontology

(Zhang et al.,
2010)

Measuring the complexity of an
ontology from a cognitive perspective

RDF graph

(Ning &
Shihan, 2006)

Measuring different structural
properties which can be used in
manual evaluation

Distinction between the subsumption
hierarchy and the property graph. The
latter is not concretely described

(Tartir et al.,
2005)

Measuring different structural
properties with focus on the
population. The values are used in a
manual evaluation process

This work does not propose any
graph-based metrics.

(Yao et al.,
2005).

Adopting the notion of cohesion on
ontologies

Only the subsumption hierarchy is
used

(Orme et al.,
2006)

Adopting the notion of coupling on
ontology modules

Only count metrics are proposed,
therefore not graph representation is
used

(Stuckenschmi
dt, 2006)

Analyzing the network structure of an
ontology as a basis for partitioning the
class hierarchy

Named entities as nodes. Edges
between "related" concepts

Table 4-1: Ontology structure in literature

5 ADAPTABLE ONTOLOGY

PARTITIONING FRAMEWORK

This chapter represents the core of this thesis. It describes the main contribution,
which is an adaptable framework for partitioning ontologies in a structure-based
manner. The conceptual model of the proposed framework is introduced in Section 5.1.
The functionality of each component and their interdependencies are described from a
high level perspective. The following sections present the concrete solutions elaborated
for low level research questions.

Section 5.2 clarifies what is understood by the structure of ontologies and describes
concrete techniques to create a structural representation. Section 5.3 provides
definitions of structural metrics like size and complexity, which are necessary for the
partitioning and evaluation process. Section 5.4 describes community detection
algorithms from the social network analysis field and how they can be used to create
ontology partitions. In this regard, the algorithms which have been integrated into the
framework are introduced in detail.

In Section 5.5, it is described how this framework takes the inherent semantics of
ontologies into consideration. This is done by the introduction of a weight function which
assigns weights to the edges of the structural representation based on the meaning of
the edges.

As discussed in Chapter 3, different motivations for partitioning have different
requirements on the created partitions. Section 5.6 describes how this framework
considers the number as well as the size of partitions during the partitioning process and
becomes an adaptable partitioning framework. Finally, this chapter is closed with a
chapter summary describing briefly the main aspects of this chapter.

Adaptable Ontology Partitioning Framework

76

5.1 Conceptual Model

The adaptable ontology partitioning framework contains different functional
components which interact with each other. Figure 5-1 illustrates the conceptual model
of the framework.

Figure 5-1: Conceptual model of the adaptable ontology partitioning framework. (Dashed
arrows represent passing of configuration information. The continuous lines represent passing of
user input or an intermediate result.)

Being adaptable for different goals, the ontology partitioning framework requires
two input parameters: the ontology and the goal. The Input Handler provides a user
interface and allows for uploading the ontology and setting the goal of the partitioning
by selecting between "partitioning for creating term chunks" and "partitioning for
creating a modular ontology". The Input handler forwards the ontology to the Ontology
Analyzer and to the Graph Creator and the goal to the Configurator. The Ontology
Analyzer analyses the ontology and passes a map of structural metric values to the
Configurator. Based on the goal and the ontology category the Configurator tells the
Graph Creator the Graph Variant to use, the Evaluator the evaluation metrics to apply,
and the Partitioner the partitioning algorithms to run. The Graph Creator extracts a
graph representation and forwards it to the Partitioner, which then partitions the
ontology. The partitions are sent to the Evaluator which calculates an overall score for

From Description Logics to Structural Representation

77

the partitioning process. The output is a set of partitions or term chunks together with a
score. Figure 5-2 illustrates the partitioning process in a step-by-step manner.

Figure 5-2: Presentation of the overall partitioning process in a step-by-step maner

5.2 From Description Logics to Structural Representation

Although the basic logics of ontologies are clearly defined and OWL is established as
the de facto standard, the structure of ontologies is defined differently in various
existing works (Section 4.1). In a broad sense, the structure of an ontology can be
defined as "a set of ontology properties which are not part of the semantic content".
Thus, two ontologies describing two different domains might have a similar structure,
even though their semantic content is very different. On the other hand, two ontologies
describing the same domain might have very different structures, depending on the
level of detail, the scope, the perspective of the author etc.

The mostly used language for representing ontologies from a logic-based perspective
is Description Logics (DL). OWL and its successor OWL 2 are mainly based on DL. An

ontology 𝒪, as a DL knowledge base, is defined as 𝒪 = <𝒯, 𝒜>, where 𝒯 is the schema

(TBox), and 𝒜 the set of individuals (ABox). The set C of all class (concept) names in
conjunction with the set P of all property (role) names create the signature Sig(𝒪) of 𝒪.
Based on this it is possible to distinguish among the TBox structure and the ABox
structure and to define basic structural properties like the overall number of elements
they contain and the number of elements belonging to different types like classes and
properties etc. Moreover, complex structural properties can be extracted from the
different relationships like hierarchical and domain-range-relationships which exist
between these elements. In fact, the structural representation of these interrelations is
essential to detect closeness and dependency between the elements and to group them
into partitions.

Adaptable Ontology Partitioning Framework

78

5.2.1 The RDF Graph

The primary data model of the Semantic Web is RDF. As a directed and labeled
multigraph, RDF can be considered as one way to represent the structure of an
ontology. It enables representing information as triples following the form <subject,
predicate, object>. The graph syntax of RDF maps triples to graphs where the subjects
and the objects are nodes and the predicates are directed edges (from subject to
object). Any ontology expressed in OWL can be translated to an RDF graph and this RDF
graph again can be translated to the original OWL ontology (Patel-Schneider & Horrocks,
2004). However, that does not mean that an RDF graph has the same expressivity as an
OWL ontology. In fact, an RDF graph can be parsed to an OWL ontology only, if it
satisfies the restrictions, which are defined for representing OWL ontologies as RDF
graphs. Primarily, this means that the concepts which are defined in OWL have to be
used.

The plain RDF graph representation of an OWL ontology makes no distinction
between the ABox and the TBox nor between classes, properties, and individuals. It is
also not possible to distinguish between local elements and external elements which are
defined in other ontologies. The latter issue can be overcome with the assumption that
the URIs of local elements belong to the namespace of the ontology, whereas external
elements belong to other namespaces.

5.2.2 Class-centric Graph

A second way to represent an ontology structure is the creation of a class-centric
graph. In this graph only classes are represented as nodes connected by properties,
where the edge direction is from the domain class of the property to the range class of
the property. This representation is similar to classic entity-relationship-diagrams. As
such it is not lossless. That means, it is not always possible to recreate the original
ontology from the class-centric graph representation. However, the main rationale for
this representation is that classes are the major objects of an ontology, while the
properties can be seen as extensions of those classes relating them with each other. By
representing properties as edges and ignoring individuals completely, the class-centric
graph is a focused representation enabling better detection of the interdependencies
between classes.

As illustrated in Figure 5-3 the class-centric graph is much smaller and therefore less
complex than the RDF graph. In this case the set of classes equals the set of nodes, while
the set of properties equals the set of edges.

From Description Logics to Structural Representation

79

Figure 5-3: Two different structural representation of the Friend-of-a-Friend ontology
visualized as graphs. In a) the plain RDF graph is visualized, whereas in b) the class-centric
graph is shown.

a)

b)

Adaptable Ontology Partitioning Framework

80

5.3 Structural Metrics

An adaptable structure-based framework needs metrics to measure the structural
properties of an ontology in order to adapt according to them. For the actual
partitioning process such metrics are also required for measuring the strength of the
connections between the elements and to identify partitions. Furthermore, structural
metrics are also necessary to calculate an evaluation score for the partitioning process.
That means that metrics are necessary to measure the difference between the original
ontology and the outcome of the partitioning process. As described in Section 4.1,
numerous metrics are already introduced and used. Each work, however, is based on its
own understanding of ontology structure. In most cases there are open questions like:
Are the metrics based on the inheritance tree only? Is it assumed that the artificial
upper concept "Thing" exists? Are instances, reasoning and the import mechanism of
OWL taken into account? Furthermore, the wording that is used is confusing, as in some
papers object type properties are called "relations" or "properties" and data type
properties are called "attributes", whereas in other works object type properties are
called "relations" and data type properties are called just "properties".

In order to avoid ambiguity, formal definition for the metrics to measure the
structural features of an ontology are provided in this section. The formulas are based
on the basic notation used in Section 5.2. Some metrics have been proposed before.
However, there is also a set of new metrics, which are introduced in this work. For the
description, the wording which is commonly used in the documentation of OWL is
applied. The metrics are classified into the following categories:

 Size Metrics are used to count the number of different elements of an
ontology.

 Hierarchy-based Metrics are used to measure features of the inheritance tree
like depth and paths.

 Complex Metrics give insights into numerical relations between different
types of elements and the hierarchical properties. These metrics unveil the
overall complexity of the ontology

The only assumption for these metrics is the existence of the artificial upper class
"Thing". This class should be inserted if the ontology does not already contain it. It is
inserted as the superclass of all classes, which do not have an explicitly defined
superclass. Apart from that assumption, it is important to keep in mind that depending
on the loading strategy one metric might have different values for the same ontology.
The loading strategy has three important properties. The first one is how imports within

Structural Metrics

81

an ontology are treated. That means, if only the explicitly formulated content of an
ontology file is loaded or if imported ontologies are loaded as well. Secondly, it is part of
the loading strategy, if a reasoner is applied on the loaded ontology, which materializes
the ontology. If this is the case, it needs to be clarified what kind of reasoner is applied
and which expressivity level or inference rules have been used. Finally, the third
property is how individuals are treated. For the analysis of the ontology schema
individuals might be irrelevant and could be ignored.

In order to have a quick overview about the metrics, Table 5-1 lists all defined metrics
at the end of this section. It provides information about metrics which have been
introduced in previous work along with the local names or abbreviations. It enables to
see which metrics were already used and which have been introduced in this work.

5.3.1 Size Metrics

In various works in literature on ontology structure, size is a common structural
property. Schlicht and Stuckenschmidt as well as d’Aquin et al. propose size as one
structural criteria for evaluating ontology modularization techniques (d’Aquin, Schlicht,
Stuckenschmidt, & Sabou, 2009; Schlicht & Stuckenschmidt, 2006). Oh et al. it is stated
that

“size is an important metric, because it has a strong influence on the
maintainability, robustness, and evolution of the application relying on it.”
(Oh, Yeom, & Ahn, 2010)

On the one hand, large modules tend to lose flexibility regarding their evolution and

exploitation (d’Aquin et al., 2009). On the other hand, too many and too small modules
are not appropriate as well. Because they would not cover one domain sufficiently and
would demand even more management effort in order to keep all modules
synchronized and consistent.

Although size seems to be a very trivial property at the first glance, due to the
complexity of ontologies there is a set of different properties which can be regarded as
a dimension of the ontology size. Zhang et al. define for example the size of a
vocabulary as the number of named entities (Zhang et al., 2010), whereas d’Aquin et al.
define size as the number of all elements without a restriction, if they are named or not
(d’Aquin et al., 2009). For the sake of clarity, a set of definitions for different size metrics
are provided in the following. These metrics are mainly based on the different types of
elements which are illustrated in Figure 5-4.

Adaptable Ontology Partitioning Framework

82

Figure 5-4: UML class diagram representing the entities defined in OWL. (Picture is
taken from (Motik, Patel-Schneider, & Horrocks, 2008))

Number of named classes

Classes are the basic elements of ontologies. Thus, they are mostly defined at the very
beginning of the ontology creation process (e.g. called glossary in METHONTOLOGY; see
Section 2.2.1). The number of named classes (NoNC) defined in an ontology indicates
the level of detail or the spectrum of an ontology. This metric is also used in (YANG et al.
2006; Ning & Shihan 2006a) and is defined as

 | | (1)

Number of anonymous classes

Classes which do not have a label are called anonymous classes and are represented as
blank nodes in RDF. Indicating that something exists without assigning a label for it they
are mainly used for representing complex concepts. Thus, they have an important
impact on the complexity of ontologies. The comprehension of anonymous classes
within the ontology is not easy, because they have no own meaning but get a meaning
through the combination of other classes. That means that anonymous classes add

Structural Metrics

83

semantics to the ontology by linking other elements of the ontology. The number of
anonymous classes (NoAC) is an important metric to measure the size and is defined as

 | | (2)

Number of classes

The sum of the number of anonymous classes and the number of named classes is the
overall number of classes (NoC) that are defined within an ontology.

 (3)

Number of external classes

Classes which are defined in an external ontology but are used to define classes and
properties within an ontology are external classes. The number of external classes
(NoEC) indicates the dependency of an ontology from other ontologies. The higher the
number of external classes the more complex the ontology is, because external classes
might demand for understanding of additional ontologies. Usually, the elements of an
ontology have the same namespace. Therefore elements with a namespace other than
the defined one are considered as external elements. This metric is also used in (Orme
et al., 2006) and is defined as

 | | (4)

Number of data type properties

Data type properties extend classes with well-defined data types like xsd:string. This
allows to add literals to individuals of those classes. The higher the number of defined
data type properties the more detailed an ontology is and the more knowledge it
contains. The number of data type properties (NoDP) which are defined within an
ontology is defined as

 | | (5)

Number of object type properties

Object type properties are class extensions which are connecting two classes with each
other. On the individuals level this means that individuals of one class might be

Adaptable Ontology Partitioning Framework

84

connected with corresponding individuals from the other class. A high number of object
type properties defined within an ontology might be an indication for dense
connectivity between the classes and high cohesion for the overall ontology. The
number of object type properties (NoOP) which are defined within an ontology is
defined as

 | | (6)

Number of properties

The sum of the number of data type properties and the number of object type
properties which are defined within an ontology is the number of properties (NoP).
Considering properties as extensions of classes the number of properties may indicate
the level of detail for the classes, the complexity of the classes, and the complexity of
the domain. This metric is defined as

 (7)

Number of annotation properties

Annotation properties allow to add meta-information to an ontology to support the user
for better understanding the ontology or to understand its relation to other ontologies.
Because annotation properties do not have semantics they are ignored in any reasoning
processes. Therefore annotation properties are not taken into account in the calculation
of the overall number of properties (NoP). The number of defined annotation properties
(NoAP) is defined as

 | | (8)

Number of annotations

By using annotation properties meta-information are added to ontologies. Standard
annotation properties like rdfs:comment and rdfs:label are used to improve the
readability of an ontology. A similar metric is also used in (Tartir et al., 2005) which is
called "Readability" and considers only rdf:comment and rdfs:label properties. The
number of used annotation (NoA) is defined as

 | | (9)

Structural Metrics

85

Number of individuals

Classes and properties of ontologies can be instantiated by concrete individuals. The
number of individuals (NoI) within an ontology indicates the number of concrete entities
within a domain of interest. Hence, this metric can be considered as an overall size
metric for the ABox and as such for the whole domain. This metric is defined as

 | | (10)

Number of named entities

The named entities of an ontology are those elements which have concrete labels. It is
the sum of the number of named classes, the number of properties, and the number of
individuals. The number of named entities (NoNE) was already used in (H. Zhang et al.
2010) where it was considered as the overall the size of the ontology vocabulary. It is
defined as

 (11)

Number of references to external classes

In contrast to NoEC, the number of references to external classes (NoREC) is not
counting the number of distinct used external classes but the number of the references
to those. The more references to external classes exist the higher is the connection
density among local and external elements and the stronger is the dependency of the
ontology on external classes. Therefore this metric measures the degree of coupling. It
is also used in (Orme et al., 2006) and is defined as

 |
|

 (12)

Number of Imported Ontologies

OWL defines an import mechanism which allows to incorporate external ontologies
completely into a new ontology. The number of imported ontologies (NoIO) is the
number of explicitly included ontologies at the beginning of the description of the new
ontology. Because the external ontologies are imported completely any increase in this
metric might have a huge impact on the overall size and complexity of an ontology.
Together with NoEC and NoREC this metric is an additional coupling metric that is also
used in (Orme et al., 2006) and is defined as

Adaptable Ontology Partitioning Framework

86

 | | (13)

5.3.2 Hierarchy-based Metrics

Hierarchical properties are a specific kind of transitive object type properties which
are connecting two classes with each other. This kind of properties is expressing
inheritance relation between two classes. The set of individuals of a class is a subset of
the individuals of the corresponding superclass. Since a cyclic inheritance relation
would lead to an equivalence relation the inheritance structure within an ontology
should avoid cycles and should build a tree structure. Within the inheritance tree each
class has a unique position. Utilizing the position as well as generic properties of trees
such as depth and path the following hierarchy-based structural metrics are defined:

Number of root classes

Classes which do not have an explicitly defined superclass are subclasses of the Thing-
class. They are the roots of the different branches of the inheritance tree. Hence the
number of root classes (NoRC) indicates the spectrum of an ontology. This metric is also
used in (Yao et al. 2005) and is defined as

 | | (14)

Number of leaf classes

Classes which do not have an explicitly defined subclass are leafs of the inheritance tree.
Classes which neither have an explicitly defined superclass nor a subclass can be
considered as leaf classes and root classes at the same time. Therefore there might be
an intersection between the set of root classes and the set of leaf classes. The number
of leaf classes (NoLC) is an indication for the level of detail. It is also used in (Yao et al.
2005) and is defined as

 | | (15)

Number of inheritance paths per class

The path in an inheritance tree is the sequence of inheritance relationships between a
class and one corresponding superclass. Since in OWL a class may have more than one
direct superclass (multiple inheritance) each class may have more than one root classes
and therefore several paths to its corresponding root class(es). The amount of different

Structural Metrics

87

paths from a class to its corresponding root classes is the number of inheritance paths
per class (NoIPi). If a class has more than one path it inherits from different branches of
the tree. That in turn exacerbates the comprehension of the class. Therefore this metric
is a measure for the complexity of a class. It is also used in (Yang et al., 2006) and is
defined as

 | (
)|

 (16)

Average depth of a class

The number of inheritance relationships between two classes is the length of a path.
(The path length between a class and its direct superclass is 1.) The sum of the length of
different paths from a class to its corresponding root classes divided by the number of
paths is called the average depth of the class (ADoCi). A high value for this metric means
that a class has many superclasses from which it inherits. For that reason a high value
for this metric indicates high complexity. This metric is also used in (Yang et al., 2006)
and is defined as

∑ (

)

 (17)

Maximum depth of a class

The longest path from a class to its corresponding root classes is the maximum depth of
a class (MDoCi). The higher the value for this metric the more interdependent
superclasses a class has. That means a high value indicates a complex inheritance chain
which increases the complexity of the class. This metric is also used in (Yang et al.,
2006) and is defined as

 ((
))

 (18)

Number of inheritance paths

The sum of the amount of different paths from all classes to their corresponding root
classes is called the number of inheritance paths (NoIP). The more inheritance paths an
ontology contains the more independent inheritance chains exist. A high value for this
metric indicates increased complexity of the ontology. It is defined as

Adaptable Ontology Partitioning Framework

88

 ∑

 (19)

Average path per class

The number of inheritance paths divided by the number of classes is the average path
per class. If an ontology contains single inheritance only the value for this metric will be
1. As mentioned before multiple inheritance is more difficult to comprehend. Therefore
an increased value for this metric indicates higher complexity of the ontology. This
metric is also used in (Yang et al., 2006) and is defined as

 (20)

Depth of an ontology

The longest inheritance path within the inheritance tree of an ontology is the depth of
the inheritance tree (DoO). The value for this metric represents the highest leaf-root
distance within an ontology. It might indicate the level of detail of an ontology, because
the longer this distance is the finer is the modeling granularity between the leaf class
and its corresponding root class. This metric is also used in (Yang et al., 2006) and in
(Duque-Ramos et al., 2011). It is defined as

 (21)

Average depth of leaf classes

The sum of the length of different paths from each leaf class to their corresponding root
classes divided by the number of paths is called the average depth of an ontology
(ADoLC). This metric was introduced in (Yao et al., 2005) and was used in (Duque-Ramos
et al., 2011) where the artificial root class THING (was used. However,

this modification just increases the value by one. ADoLC is defined as

∑ ()

 (22)

Number of children

The number of direct subclasses of a class is called number of children (NoCi). The more
subclasses a class has the higher is its importance, because it has a connecting function

Structural Metrics

89

between more elements and a change on this class will affect all its subclasses. This
metric is also used in (Zhang et al., 2010) and is defined as

 | | (23)

Number of subclass relations

All explicitly defined subclass relations within an ontology is called the total number of
subclass relations (NoSC). Since all edges in the inheritance tree are subclass relations
this metric measures the number of edges in the tree. For that reason it can be seen as
a size metric for the inheritance tree. It is also used in (Yang et al., 2006) and is defined
as

 ∑ | |

 (24)

Average number of subclass relations

The average number of explicitly defined direct subclasses per class is the average
number of subclasses (AoSC). In the inheritance tree this corresponds to the edge to
node ratio. A high value indicates high fan-out of the inheritance tree. That means a
high number of different branches. This metric is also used in (Tartir et al., 2005), in
(Yang et al., 2006) and in (Duque-Ramos et al., 2011). It is defined as

 (25)

Average number of subclasses per class

The average number of subclasses within a subclass-tree of a class is the average
number of subclasses per class (AoSCi). This metric measures the centrality and the
importance of a class in the inheritance tree. The higher the value the more branches
the subtree will have. This metric indicates the level of abstraction of a class. It also used
in (Tartir et al., 2005) and is defined as

 (26)

Tree Impurity

Single inheritance relations lead to a tree structure. In contrary, multiple inheritance
causes a graph structure. Because a tree with n nodes has n-1 edges the value for this

Adaptable Ontology Partitioning Framework

90

metric measures the number of multiple inheritance relations which differentiate the
inheritance structure from a tree. Since single inheritance leads to a linear inheritance
direction it is easier to comprehend than multiple inheritance which demands for
following the inheritance from parallel point of views. Hence the higher the value for
this metric is the more compact but at the same time more complex the inheritance
structure becomes. This metric is also used in (Zhang et al., 2010) and is defined as

 (27)

5.3.3 Complex Metrics

Combinations of the aforementioned basic and hierarchical metrics lead to more
complex metrics which give a deeper insight into the overall structure of ontologies.
These combinations can be considered as normalized metrics which do not depend on
the value of one metric but are measuring the relation between different metrics.

Object type property distribution

The object type property distribution (OTPD) is the average number of object type
properties per class. Since object type properties are connecting two classes with each
other, a high value is an indication for dense connectivity between the classes of an
ontology and might be an indication for high cohesion. Dense connectivity between
classes increases the complexity of an ontology, because it necessitates to comprehend
the relationships between the different classes. This metric is also used in (Li, Motta, &
D’Aquin, 2010) and in (Duque-Ramos et al., 2011). It is defined as

 (28)

Object type propertys’ standard deviation

The object type property standard deviation (OTPSD) is the average deviation of the
number of properties of a class different from the OTPD. It indicates how the
distribution of the properties over the classes are. A high value of OTPSD is a strong
indication for an unbalanced distribution of the data type properties over the classes.
This means, that most of the data type properties belong to few classes which can be
considered as central and important classes. If the object type properties are distributed
equally over the classes the value will be 0. This metric is defined as

Structural Metrics

91

 √
∑

 (29)

Data type property distribution

The datatype property distribution (DTPD) is defined as the average number of data
type properties per class. The higher the number of data type per classes is the more
detail is known about that class. For that reason, this metric can be seen as an indication
for the level of detail of an ontology and hence the amount of included knowledge
described. It is also used in (Tartir et al., 2005) and in (Duque-Ramos et al., 2011). It is
defined as

 (30)

Data type propertys’ standard deviation

This metric is similar to OTPSD but belonging to data type properties and not to object
type properties. It measures the distribution of the defined data type properties over
the classes. If few classes have many data type properties while the most classes have
less or none data type properties, the value of for this metric will be high. In this case,
the classes with the most data type properties can be considered as the most detailed
classes and therefore as the most important classes in the ontology. This metric is
defined as

 √
∑

 (31)

Properties distribution

Data type properties and object type properties increase the level of detail of an
ontology. The more properties an ontology contain the more powerful is its semantic
expressivity. That means that the ontology is able to represent more knowledge which
leads to more complex ontologies. The distribution of the properties over the classes of
the ontology (PD) measures the average property per class within an ontology.
Therefore it can be seen as a measure for the complexity of an ontology. This metric is
also used in (Duque-Ramos et al., 2011) and is defined as

Adaptable Ontology Partitioning Framework

92

 (32)

Properties’ standard deviation

The properties’ standard deviation (PSD) measures how the number of property per
class differs from the average number of properties per class. A high value for this
metrics indicates an unbalanced distribution of the properties over the classes. If this is
the case few classes will have the most properties which can then be considered as the
most important and central classes of an ontology. This metric is defined as

 √
∑

 (33)

Datatype to objecttype property ratio

Object type properties connect two different classes which each other while data type
properties are extensions of a class of simple types. The ratio between the number of
defined data type properties and the number of defined object type properties (DOR)
reveals the authors’ preferred way of adding details to classes. A high value might
indicate a domain comprising mainly objects with simple attributes and low
interdependency between the elements. This metric is defined as

 (34)

Annotation distribution

The distribution of the annotations within an ontology (AD) indicates the richness of an
ontology with respect to meta-information. A high value for this metric might indicate a
complex domain as well as a complex ontology which is difficult to understand. On the
other hand the annotations might be helpful in understanding the content of the
ontology. This metric is also used in (Duque-Ramos et al., 2011) and is defined as

 (35)

Property richness

The property richness (PR) was introduced in (Tartir et al., 2005) and is defined as the
ratio between the defined properties connecting classes and data types and the subclass

Structural Metrics

93

relations between classes. If most connection between classes are subclass relation the
overall structure of the ontology will be more tree like, whereas a high number of
properties will lead to a higher value for this metric indicating a more complex graph
structure of the ontology. This metric is defined as

 (36)

Adaptable Ontology Partitioning Framework

94

Metric (Yao et al., 2005) (Tartir et al.,
2005)

(Yang et al.,
2006)

(Orme et
al., 2006)

(Ning &
Shihan,
2006)

(Zhang et al.,
2010)

(Duque-Ramos
et al., 2011)

NoNC TNOC Concept
Quantity

NoAC

NoC

NoEC NEC

NoDP

NoOP

NoP

NoAP Rd

NoI

NoNE SOV

NoREC REC

NoIO RI

NoRC NOR

NoLC NOL

 TNOP

 ̅

 DIT

NOIP

APpC ρ

DoO Λ DITOnto

ADoLC ADIT-LN LCOMOnto

 NoC_c

NoSC TNOR

AoSC IR_s μ NOC/CBOOnto

 IR_c

TIP TIP

OTPD PE INROnto

OTPSD PSD

DTPD AR NOMOnto

DTPSD

PD WMCOnto

PSD

DOR

AD ANOnto

PR RR

Table 5-1: Overview of the mapping of the metrics to related work

Community Detection Algorithms

95

5.4 Community Detection Algorithms

People and their interrelations like friendship and colleague are so called social
networks. These networks can be represented by graphs, where people are nodes and
the relations are edges (Newman, 2003). A group of people who have more
interrelations between each other than to other people are called communities. Within
the graph representation such communities built subgraphs which have a higher density
than the overall graph. Therefore, detecting communities in social networks
corresponds to the problem of finding subgraphs which are internally densely
connected but have fewer connections between each other. A straightforward way to
find those subgraphs would be to calculate each possible partitioning and to measure to
what extend they comply with being a community. The partitioning with the best result
would then be chosen. However, this approach leads to two different problems.

5.4.1 Modularity Metric

Firstly, a metric has to be defined which measures the community degree of a graph
partitioning. The requirements for this measure are perfectly described by Reichardt
and Bornholdt as follows:

“[…] communities are understood as groups of densely interconnected
nodes that are only sparsely connected with the rest of the network. Any
quality function for an assignment of nodes into communities should
therefore follow the simple principle: group together what is linked, keep
apart what is not. From this, we find four requirements of such a quality
function: it should (i) reward internal edges between nodes of the same
group (in the same spin state) and (ii) penalize missing edges (nonlinks)
between nodes in the same group. Further, it should (iii) penalize existing
edges between different groups (nodes in different spin state), and (iv)
reward nonlinks between different groups.” (Reichardt & Bornholdt, 2006)

Since a community is defined as a set of nodes with high density the metric has to be

based on the distribution of the density over the graph. In this regard Newman and
Girvan define a so called modularity metric for simple graphs in the following way: is
an adjacency matrix representing a simple graph where equals 1 if the nodev and
the node w are connected and equals 0 if v and w are not connected (Newman &
Girvan, 2004). With indicating that v belongs to and = 1 if v and w belong
to the same community (means) and = 0 if v and w belong to

Adaptable Ontology Partitioning Framework

96

different communities the following equation is the ratio between the in-community
edges and the overall number of edges (ICER)

∑

∑

 ∑ (37)

Since this would equal 1 in case of only one community comprising the whole graph it

is not an accurate metric yet. It is necessary to set this metric in relation to the
distribution of the edges in case of random networks. In random networks the
probability that an edge exists between the nodes v and w equals ⁄ with
 ∑ being the number of incident edges upon v. This leads to the following
metric for modularity (MOD):

 ∑ [

] (38)

This metric measures how the ratio of in-community edges over the overall number

of edges differs from the edge distribution within a random edge distribution. A higher
density is represented by a positive number while a lower density stands for a lower
density. In case of MOD = 0 the edge distribution corresponds to a random edge
distribution. A value above 0.3 is considered to indicate significant community structure
(Clauset, Newman, & Moore, 2004). With some modification the equation can be
simplified to the following form (Clauset et al., 2004):

 ∑ (
) ‖ ‖ (39)

In the formula is a symmetric k x k matrix representing the connections between k

subgraphs of a graph. eij corresponds to the ratio of edges between the subgraphs i and
j over the overall number of edges. The expected connectivity between the subgraphs

in a comparable random network is
 so that

 corresponds to the deviation
of fraction of edges within the subgraph i from the expected value. Furthermore, ‖ ‖ is
the sum of all elements of the matrix and the Trace ∑ corresponds to the
fraction of edges that are within subgraphs.

Newman shows that this metric is also applicable on weighted graphs by
transforming the graph into a multigraph and introducing a unit r to handle non-integer
values (Newman, 2004a). However, in case of directed graphs this metrics needs a
modification that is shown in (Leicht & Newman, 2008). The metric needs to reflect that
 is not valid in a directed network and that the probability ⁄ has to

Community Detection Algorithms

97

be changed to

 ⁄ . Applied on the modularity metric from (39) this leads to the
following modularity metric for directed networks (MODd):

 ∑ [

] (40)

5.4.2 Partitioning Algorithms

The second main problem is that calculating each possible partition for a graph is
computationally a very complex task, because it means to find all possible subsets for
the set of nodes and then to find all possible subsets for the set of edges for each of the
subsets of nodes. Even the complexity of finding all possible subsets for a set with n
elements is 2n. Brandes et al. show that maximizing the modularity is computationally
an NP-complete problem (Brandes et al., 2007). Therefore, there have been different
proposals seeking to find the best solution without calculating every possible
partitioning.

In classic graph partitioning approaches the targeted number of partitions is known
and the main goal is to divide the original graph into this number of partitions. Thereby
the main focus is on minimizing the connections between the modules and if possible to
obtain similar sized partitions. An example is the division of a computational problem
for parallel computing in a computer cluster. In this regard partitioning is a kind of a
preprocessing for the actual goal.

On the contrary, in the social network analysis approach the goal is to detect the
intrinsic partitioning that is supposed to exist in a social network naturally (Newman &
Girvan, 2004). These approaches are called hierarchical clustering techniques because
they create a hierarchical structure (Xu & Wunsch, 2005). This is mostly represented by
a specific tree representation called dendrogram. An example is shown in Figure 5-5.
The leaf nodes are representing the nodes of the graph and the intermediate nodes are
representing join-points where the elements (nodes or communities) from lower levels
are merged together to build increasingly larger communities. That means that each
level represents an intermediate partitioning result. Hierarchical techniques can be
divided into two different categories.

Firstly, agglomerative approaches start with creating partitions which contain just
one node. These clusters are then merged to bigger clusters. Regarding the visualization
in Figure 5-5 an agglomerative algorithm would progress from the right part of the tree
to the left part. The challenge is to find in each step the next two elements or clusters to
merge. For that purpose metrics are necessary which measure the relatedness between
them so that the next “meaningful” merge is detected.

Adaptable Ontology Partitioning Framework

98

Secondly, divisive approaches are working in the opposite direction, namely from the
left part to the right part of the Figure 5-5. That means that divisive approaches create
one big cluster at the beginning containing all elements. In every step each cluster from
the previous step is divided into two new clusters. Therefore, in each step the challenge
is to find two subgraphs which have low interrelations.

Figure 5-5: Graphical illustration of community detection algorithms. In a) an example for a
network with community structure is visualized. Part b) visualized a dendrogram representing
a hierarchical clustering for the visualized graph. Finally, c) shows the modularity function for
the dendrogam is shown. The maximum of MOD is achieved at the level with two partitions.
(This figure is taken from (Pons & Latapy, 2006) with minor modifications.)

There are various agglomerative and divisive techniques which partition a graph
based on different metrics. A comprehensive description can be found in (Fortunato,
2010). For this work the following simple algorithms have been chosen which are
described briefly:

Weighting Semantic Relations

99

Edge Betweenness Community

The Edge Betweenness Community (ebc) algorithm introduced by Newman and Girvan
is a divisive hierarchical clustering algorithm which focuses on the edges (Newman &
Girvan, 2004). Its basic idea is that a network comprises densely connected communities
which in turn are sparsely connected. By calculating the shortest paths between each
node pair the edge with the highest betweenness, which is likely to be connecting two
communities, can be identified and removed. In each step of this algorithm the
betweenness of each edge is calculated and only the one with the highest betweenness
is removed.

Fast Greedy Community

The Fast Greedy Community (fgc) algorithm was initially introduced by Newman
(Newman, 2004b). It is an agglomerative hierarchical algorithm that actually is an
optimizing algorithm which uses the modularity function as a fitness function. In each
step the next best merge is chosen by taking only connected nodes into consideration.
This focus leads to an efficient algorithm. The performance was even improved by
Clauset et al., which makes use of a more efficient data structure, because the matrix is
reduced after each step (Clauset et al., 2004).

Walktrap Community

Pons and Latapy are proposing an algorithm, which is based on the idea that "random
walks on a graph tend to get trapped into densely connected parts corresponding to
communities" (Pons & Latapy 2006). For that reason, this algorithm is called Walktrap
Community (wtc). Based on the degree of the nodes a probability function for random
walk routes is calculated. These routes are then used to define a distance measure
between nodes. This algorithm is an agglomerative hierarchical clustering algorithm.

5.5 Weighting Semantic Relations

Even though relations between people might be of different types like friend or
colleague, in classic graph representations of social networks the edges have no type. In
contrast, the edges between nodes in an ontology are of different types which stand for
different semantic relations. That means that each edge has a meaning. This additional
information is worth to be taken into consideration within the partitioning process.
Because the main goal is to divide an ontology into subdomains so that the concepts
within a partition are stronger related semantically to each other than to concepts from
other partitions. E.g. an "equivalentClass" relation between two classes A and B

Adaptable Ontology Partitioning Framework

100

expresses semantic equivalence. Therefore, it is a strong indication that A and B belong
to the same subdomain and should not be separated in the partitioning process.

In order to insert this additional information into the partitioning process,
quantification is necessary which measures the strength or weakness of a relation
between classes. For that purpose it is proposed to introduce a weight function that
assigns weights to edges based on their semantics. These weights are then taken into
account within the partitioning algorithm or in the modularity function or in both.

For the definition of a weight function the first question to clarify is the following:
Which properties should be taken into consideration? Instead of defining a weight for
each possible property of RDFS and OWL, it is decided to select the most used
properties. For that purpose, all statements of LOD ontologies have been extracted and
the predicates have been analyzed. Table 5-2 shows the results of this analysis.

Property Used in % of all statements Used in # of ontologies

rdf:type 17.2 301

rdfs:label 11.1 283

rdfs:rest 6.6 108

rdfs:first 6.6 108

rdfs:isDefinedBy 6.6 166

rdfs:comment 5.5 282

rdfs:range 5.3 264

rdfs:domain 5.1 257

owl:class 4.6 236

rdfs:subClassOf 3.2 242

Table 5-2: Usage analysis of the RDFS and OWL properties. The first column shows, in how
many of the overall number of statements the corresponding property has been used. The
second column shows, in how many ontologies the corresponding property occurs.

The most used properties are rdfs:type (used in 17.2% of all statements) for instance
definition and rdfs:label (used in 11.1% of all statements) for adding labels to defined
resources. Both properties are used in most of the analyzed ontologies. The properties
rdfs:rest, rdfs:first and rdfs:isDefinedBy are each used in 6.6 % of all statements.
However, these properties are used in only one third to one half of all ontologies. This
indicates that a large number of ontologies do not contain these properties at all,
whereas in other ontologies they appear extensively. The annotation property

Weighting Semantic Relations

101

rdfs:comment is used in 5.5% of all statements and appears in 282 ontologies. The
rdfs:range and the rdfs:domain properties which are used for defining properties are
used in 5.3% and 5.1 of all statements and appear in 264 and 257 ontologies,
respectively. The definition of a class with owl:class is used in 4.6% of all statements and
appears in 236 ontologies, while the definition of a subclass with the rdfs:subclassOf
property is used in 3.2% of all statements and appears in 242 ontologies.

For the weighting function the annotation properties rdfs:label and rdfs:comment
have been ignored, because they are used for human readers and do not add semantics
to the ontology. The properties rdf:type, rdfs:isDefinedBy and owl:Class are ignored
because they do not play any role in the schema of an ontology. The properties rdfs:first
and rdfs:rest have been also ignored. On the one hand they are not used in about two
third of all ontologies and would not have any effect in most cases. On the other hand
they do not really add significant semantics to the schema, apart from bringing order to
a sequence of resources. The left three properties are used for the definition of the
proposed weighting function which contains three different categories for weights.

Non-hierarchical relations

The first category of properties are those properties which are - based on the previous
analysis - accepted to have the most impact, namely rdf:range and rdf:domain. Despite
the fact that the owl:equivalentClass is not one of the most used properties and was
consequently not listed in Table 5-2, it is also considered within this category. This has
been done because the equivalence between two classes is considered as a very strong
relation indicating that two classes having this relation should be part of the same
partition.

Due to the equivalence it represents, the owl:equivalentClass property is weighted
with the highest possible value, which is 100 in the proposed system. The rdf:domain
property creates a connection between a property and the class, which possesses this
property. On the contrary, the rdf:range property defines the possible range of values
for the property. For that reason, the former property is accepted to be a stronger
relation than the latter.

As a concrete quantification of the weight of both relations two third of the
maximum value for rdf:domain and one third for rdf:range have been selected
arbitrarily. The rationale behind this is twofold. Firstly, the difference between the
weights should be great enough. Secondly, the values should be defined without
investing too much effort to have a first result for the partitioning with the weighting
functions quickly. However, it should be mentioned, that numerical relations between
the weights do not claim to be statements about the semantic similarity. An rdf:domain
property is not semantically twice as strong as an rdf:range property.

Adaptable Ontology Partitioning Framework

102

Property Description Weight

owl:equivalentClass This relation indicates the equivalence between two
classes and is therefore assigned with highest possible
value for the weight. (This corresponds to the idea that the
similarity between a leaf class in a hierarchy and its
superclass is almost a equivalence and is therefore
assigned with the highest possible weight, too.)

100

rdfs:domain The domain of a property is the class the property belongs
to. That means that properties are mainly elements of
their domain classes and depend on them. Therefore the
weight for a domain edge is quite high and is defined as
two third of the maximum possible weight.

66

rdfs:range The range of datatype properties are basic data types like
string. These are ignored because they do not relate
different classes of one ontology. The range relation
between an object type property and the range-class is
considered as less important than the domain relation.
Therefore the half of the weight of domain relation is
assigned to range relations.

33

Table 5-3: Weights for non-hierarchical properties. The maximum possible value for a weight
is 100 which is assigned to the owl:equivalentClass property. The other properties are
assigned with two third and one third of the maximum value, respectively.

Inheritance relations

The second category is the inheritance relation which is defined as subClassOf in RDF-
Schema. Even though this relation has always the same meaning its impact on the
semantics of an ontology depends on the particular position in the subsumption
hierarchy. An inheritance relation between the THING class and another class does in
fact add no semantics to an ontology. In contrast, an inheritance relation between a leaf
class and its parent class connects the leaf class to all its ancestor classes in the
hierarchy. By inheriting all the properties of the ancestor classes the leaf class is also
connected to all properties of the ancestor classes. Therefore, an inheritance relation at
the top of the subsumption hierarchy is less important for the semantics of an ontology
than an inheritance relation at the bottom.

The subsumption hierarchy in an ontology can be considered as a category system in
the classic sense. In a very early work (Rosch, 1978) it has been shown that in a category
hierarchy a so called basic level exists where the most basic category cuts can be made.

Weighting Semantic Relations

103

People tend to prefer categories at that level like car or chair instead of more abstract
ones like furniture or vehicle or more concrete ones like sports car or kitchen chair. The
categories at the basic level are considered as a kind of natural categorization where the
increase of the similarity between the elements of a category reaches its maximum.
More abstract categories are classified as superordinate categories with elements which
share just a few properties. More concrete categories are called subordinate categories
with very similar elements which have more common properties than distinctive ones
and might be combined.

In Figure 5-6 the similarity between the elements of a category tree is illustrated in
relation to the hierarchy level. The derivative of the similarity function shows that the
highest gradient is reached at the basic level.

Figure 5-6: Illustration of the basic level in a category tree. The dashed line illustrates the
location of the basic level within the tree and the graphs.

Since there are no databases of basic level concepts a weight function is proposed
which considers the basic level as a function of the height of an element within the
subsumption hierarchy. Additionally, since ontologies can be of different categories as
described in Section 2.1.3 and illustrated in Figure 2-3, the basic level can be at different
depth of the taxonomy hierarchy. For example in case of abstract top level ontologies
the basic level might be closer to leaf classes, whereas in case of more concrete domain
ontologies the basic level might be closer to the upper classes. Therefore, different
functions are proposed to weight the subClassOf as illustrated in Figure 5-7. In case of
the function Base3 the basic level is expected to be exactly at the middle of the

Adaptable Ontology Partitioning Framework

104

taxonomy hierarchy. In case of Base1 and Base2 the basic level is expected to be at
higher levels and in case of Base4 and Base5 at lower levels of the taxonomy hierarchy.
For comparison reasons the Linear and Static functions are defined additionally.

Figure 5-7: Various functions for weighting the subClassOf relation which assume different
locations of the basic level within the subsumption hierarchy

Defined properties

The properties which are defined in an ontology are represented as edges in the class-
centric representation of an ontology. This holds for the instantiations of the properties
in the ABox even in the plain RDF graph representation. As these edges are somehow
representing a domain as well as a range relation they are weighted with the mean
value of both of them. This means that these edges are weighted with the half of the
maximum weight, which is 50.

Parametric Partitioning

105

5.6 Parametric Partitioning

As discussed in Section 3 the optimal number and size of partitions depend on the
goal of the partitioning. Community detection algorithms, however, do not take
parameters for the envisioned number of communities or their size into account some.
Since this framework provides partitioning in a goal oriented manner and there are
obviously cases, in which the number and the size of partitions matter, this framework
needs to allow these values as inputs for the overall partitioning process. These values
are used as parameters for the partitioning process and the score value for selecting the
best partitioning is extended. That means, that besides the modularity value for a
partitioning the number and size of partitions are taken into consideration during the
process of finding the community structure. This is done by an extension of the score
function that is used to select the best partitioning. For that purpose the following
function is defined for calculating the score of a concrete partitioning

 (41)

Where is the average value for the score values that are assigned to the

partitions and is the score value for the number of partitions in a partitioning. These

functions are defined as follows

 (42)

∑

| |

| |
 (43)

 (44)

The Figure 5-8 shows the shape of the used basic function for both score functions. If
the size of a group equals the optimal size of a group given by the user the value of

the group is the maximum value 1. If the difference between the actual partition size
and the given partition size equals the allowed variance the assigned score is about 60%
of the allowed maximum value. If the difference is greater the score value decreases
rapidly.

Adaptable Ontology Partitioning Framework

106

Figure 5-8: Illustration of the score function for the modified Modularity function. It is
used to assign scores based on the number of group and based on the size of a group
respectivly. (ov is the optimal value, δ is the allowed variance)

Since the function for is defined with the same basic function, the behavior of it

corresponds to the behavior of the function.

The overall score for a partitioning is the weighted sum of the three different score
functions as shown in the Equation (43). Through the ability to set the values for the
weights , , and as well as for the optimal number of partitions and optimal
size for a partition the user is able to configure the partitioning process to obtain better
results according to the needs of the user.

sc
o

re

number of partitions / size of a partition

ov ov - δ ov + δ

Chapter Summary

107

5.7 Chapter Summary

In this chapter the proposed adaptable partitioning framework has been described in
detail. This artifact, in fact, is the core contribution of this thesis which follows the
design science paradigm. For the sake of clarity and to avoid ambiguity it has been
discussed in detail what the structure of an ontology is and how metrics based on that
structure can be defined. This lead to a comprehensive list of possible metrics allowing
insight into the structure of an ontology. Furthermore, community detection algorithms
from the field of social network analysis and the modularity function have been
presented. Being the means of partitioning an ontology, it is substantial to understand
how they work and how they can be modified for the realization of an adaptable
partitioning framework.

An analysis of the most used predicates in LOD ontologies' statements unveiled that
the most used properties which add semantics to an ontology and are broadly used are
the subClassOf and the domain-range relations. Based on this, a semantic-based weight
function has been proposed, which is a novelty in the field of ontology partitioning and
modularization. In fact, this weight function is of essential importance for the
framework. Therefore, it is treated as one major contribution of this thesis.

Finally, an extension of the modularity function has been described that takes the
number as well as the size of partitions into account. This is driven by the insight that
the motivation for partitioning leads to different expectations regarding the number of
partitions and the size of partitions as discovered in Section 3.

6 PARAMETER ANALYSIS

The proposed adaptable ontology partitioning framework comprises different
parameters which can be configured. To achieve the best possible partitioning for an
ontology regarding a concrete goal, it is important to find the best configuration of the
framework. For that purpose, the performance of the framework with respect to the
different parameters is analyzed in this chapter. On the one, hand the framework has
been used with various configurations to reconstruct existing term chunks from ontology
documentations. On the other hand, the framework has been used to reconstruct
modularization of modular built ontologies. The method for the analysis is presented in
Section 6.1. In fact, the created partitions are evaluated through a gold standard
approach. The similarity between the reference models and the produced partitions are
calculated with the F-Measure metric which is describe in Section 6.2

In order to analyze the impact of the different parameters, the ontologies have been
partitioned with 480 different configurations for each ontology. The selected
combinations are presented in Section 6.3. Section 6.4 and Section 6.5 present the results
for reconstructing term chunks and for reconstructing modular ontologies, respectively.
It is analyzed in detail, how the different algorithms and parameters influence the results
for the different ontologies. Finally, this chapter is closed with a chapter summary in
Section 6.6.

Parameter Analysis

110

6.1 Analysis Methodology

The basic assumption that has driven the proposed framework is the notion that the
partitioning process depends significantly on the goal. Hence, the quality of a
partitioning has to be evaluated with respect to that goal. In other words, a concrete
partitioning for a particular ontology might be very good for improving the
maintainability, whereas it might be very bad with respect to the task of supporting the
decision process about the reusability of an existing ontology. Thus, the proposed
framework has to be analyzed and evaluated for different partitioning goals separately.
However, this leads to the question of which different motivations are possible for a
partitioning process and how a partitioning for a particular goal can be evaluated.
Without claiming to be exhaustive, the main goals of partitioning considered in this
work are partitioning to improve maintainability and partitioning to create term chunks
for ontology documentations, as discussed in Section 3.3 and Section 3.4.

Even though there are different approaches in literature for the evaluation of
ontology partitioning (some metrics have been described in Section 4.1), there are still
no established methods. This especially holds for the evaluation of a partitioning in a
goal-oriented manner. For that reason, the evaluation method that is chosen for this
work is, to find manually created existing ontology partitionings. Thereby, it is of
essential importance that the goal is obvious and to try to reconstruct them. The
rationale for this is the assumption that manmade partitioning for particular goals can
be considered as the optimal solution and as reliable reference models for the particular
goal. The creators’ expertise and experience with the proposed ontology is regarded as
the justification for the quality of the partitioning.

This assumption leads to the following evaluation methodology for ontology
partitioning. First of all, a set of existing ontology partitionings which have been created
with the mentioned motivations have been looked for. (Found ontologies are described
in Section 6.4 and Section 6.5). Secondly, these ontologies have been partitioned with
various configurations, which are considered to be significantly different to understand
the framework’s behavior with respect to different configurations. (These configurations
are described in Section 6.2.) Thirdly, the results of the partitioning process have been
compared to the reference models and a similarity score has been calculated. (The
function to calculate the similarity is described in Section 6.3.) Finally, the overall results
have been analyzed with respect to different parameters of the configuration, the
properties of the ontologies, and the properties of the different reference models. (This
is done for reconstructing term chunks and for reconstructing modular ontologies in
Section 6.4.2 and in Section 6.5.2 respectively.)

It is important to understand that this method’s critical drawback is its dependency
on the reference models. For being expressive, it is important to have enough reference

Similarity with F-Measure

111

models which are representative and which allow to derive more general statements
about the partitioning framework. The lack of enough partitioned ontologies for term
chunks or for maintenance purpose, however, is a strong indication for the lack of good
support for partitioning. This in fact advocates the necessity of such a framework and
justifies this work.

6.2 Similarity with F-Measure

In order to calculate the similarity between the reference model and the constructed
partitioning, a metric called F-Measure that has already been used in this context by
Stuckenschmidt has been applied (Stuckenschmidt, 2006). This measure is a pair-based
metric based on the widely applied precision and recall functions. Precision in this work
is defined as follows:

 (45)

It indicates the fraction of the generated pairs that are correct with respect to the

reference model. And recall is defined as follows:

 (46)

Recall indicates the fraction of all correct pairs that have been correctly

reconstructed by the partitioning process. These functions are combined in the F-
Measure function as follows:

 (47)

In fact, being the harmonic means of the precision and the recall function the F-

Measure is an average value for both mentioned fractions.

Parameter Analysis

112

6.3 Configuration of the Framework

As described in Chapter 5, the proposed framework has different configurable
parameters: two graph representations, three algorithms, and eight weight functions.
(Besides the seven weight functions presented in Section 5.5 it is also possible to run the
partitioning without any edge weight, which means equal weight for all edges.)
Furthermore, through defining values for the variables described in Section 5.6, the size
as well as the number of partitions can be considered for calculating the modularity
score. For the analysis of the framework’s performance, five different values for the
variables described in Equation (42) have been chosen as shown in Table 5. The
rationale for the defined values is to see, how increasing weight of the modularity
function (influences the overall result. The higher this value is the less important
are the number of partitions and their average size. Therefore, this exposes the
importance of the modularity function in comparison with the size and number of
partitions.

Variable s1 s2 s3 s4 sNone

 2 5 10 50 1

 1 1 1 1 0

 1 1 1 1 0

Table 6-1: Configurations for the size related parameters of the framework

Besides the concrete configurations of the partitioning process, there are also
different properties regarding the loading mechanism of an ontology. The import of
external ontologies adds some kind of uncertainty due to possible availability problems
and different version problems of the external ontologies. Therefore, during the
performance analysis all imports of external ontologies have been ignored. Only the
content of the ontology file at hand has been used. Regarding the applied inference
mechanism during the loading process, the decision is to run each possible configuration
twice per ontology. In the first case, no inference is executed, which means that only
explicit formulated content of the ontology has been taken into consideration. In the
second case, an OWL Full reasoner has been applied on the loaded content and the
ontologies have been materialized. Together with the mentioned parameters this leads
to 480 possible configurations of the partitioning process.

As elaborated in Section 3.3.3 and in Section 3.4.2, the expected number of partitions
and their sizes depend on the motivation of the partitioning process. Therefore, the four

Reconstructing Term Chunks

113

variables "expected group size" and "allowed variance" in Equation (43) and "expected
number of partitions" and "allowed variance" in Equation (45) depend on the goal of
the partitioning. Since this work focuses on term chunks for ontology documentations
on the one hand and modular ontologies on the other hand, the mentioned variables
have to be set differently.

Firstly, the framework's performance with respect to the creation of term chunks is
analyzed. In this regard, the guidance values elaborated in Section 3.3.3 are used. The
variable “ ” in equation (43) is set to eleven and the
“ ” is set to three. That leads to the interval of eight to 14.
Furthermore, the “ ” in Equation (45) is set to four and
the “ ” is set to one. It is worth mentioning that in case of different
ontologies with a higher variance in size, a normalization of these values based on the
overall size of the ontologies should be done by keeping the mentioned cognitive limits
in view. However, in case of the ontologies at hand this is not necessary, because the
used ontologies are about the same size in terms of classes and properties.

Secondly, it is analyzed how the framework performs for creating modular
ontologies. Again, previously elaborated findings from Section 3.4.2 are used for the
configuration. In contrast to the previous analysis, the small number of use cases as well
as their diversity regarding size and number of partitions do not allow to extract one
common value to be used with all of them. In fact, in case of partitioning for
constructing modular ontologies, the optimal number as well as the size of partitions
seem to be domain and ontology dependent. Therefore, these values are expected as
input values for a partitioning defined by the user. Since the maintainer is expected to
be familiar with the ontology, such an approach is considered to be acceptable and not
an unrealistic expectation. Finding accurate values for the “ x c d numb f
 a n ” and the “all w d va anc ” in Equation (45) like in the first analysis, is not
possible. Therefore, the actual number of modules is selected for the first variable. The
second variable is defined arbitrarily as one fifth of the first parameter. This leads to the
following intervals for the number of partitions to be created by the algorithms and the
following values for the variables

 curio: 3 - 5 (“ x c d numb f a n ” = 4, "all w d va anc ” = 1)

 sioc: 3 - 5 (“ x c d numb f a n ” = 4, "all w d va anc ” = 1)

 spice: 7 - 11 (“ x c d numb f a n ” = 9, "all w d va anc ” = 2)

 fibo: 19 - 27 (“ x c d numb f a n ” = 23, "all w d va anc ” = 4)

Parameter Analysis

114

6.4 Reconstructing Term Chunks

In Section 3.3.2 thirteen ontologies have been described which have documentation
pages containing term chunks. In order to understand, how well the proposed
framework is able to create term chunks, it was analyzed to which extend the system is
able to recreate those existing groups. For the performance analysis, each one of the
thirteen ontologies has been partitioned with 480 different combinations of the
parameters. The resulting partitions have been compared with the existing term chunks
with the F-Measure similarity function presented in Section 6.2. The overall
performance of the proposed system aggregated for all ontologies with all possible
configurations is shown in Figure 6-1.

Figure 6-1: Distribution of the overall results for reconstructing term chunks. The results
for all ontologies with all possible configurations are aggregated.

The shape of the distribution looks like a Gaussian normal distribution. The peek at
0.8 might be caused because of the low number of ontologies and reference models.

Reconstructing Term Chunks

115

There is no reasonable argument that causes this peek. However, this distribution does
not allow further insights about the framework, besides that it produces very well as
well as very bad results and that it produces in most cases results between 0.3 and 0.7
with an average of 0.496.

Since the basic idea of organizing the concepts in groups differs from use case to use
case as discussed in Section 6.4, the next question is how the different configurations
perform depending on the different ontologies. Therefore, the performance of the
framework has been analyzed for each ontology separately. The result of this analysis is
shown in Figure 6-2.

Figure 6-2: Distribution of the results for the different ontologies. Each box of this box-and-
whisker plot represents the range of the F-Measure values of the partitionings of one concrete
ontology with 480 different configurations. The concrete ontology is named at the x-axis. (E.g.
the first box in this figure shows that the F-Measure values for the different partitions created
out of aair with 480 configurations range from about 0.3 to 0.9 with an average of 0.7.)

Parameter Analysis

116

It becomes clear that the partitioning performance depends significantly on the
ontology and the reference model. While there are ontologies, which have very good
results for each possible configuration as in case of swco, there are other ontologies,
which lead to very bad results with all possible configurations as in case of music.
Furthermore, the difference in the width of the spectrum for the F-Measure values
indicates that communities are detected, which differ significantly. A wide spectrum
indicates that there are more possible partitionings, while a narrow spectrum indicates
less possible partitionings of an ontology. Accordingly, curio, ecos, foaf, and swco seem
to allow a low number of different partitionings.

The main question in this chapter is how the different parameters influence the
results. Therefore, the performance was analyzed with one fixed parameter whereas all
other parameters have been changed. Figure 6-3 shows the overall results for the
different configurations. Each box of this box-and-whisker plot stands for the range of
the F-Measure values with a fixed parameter, which is shown at the x-axis, whereas the
other parameters have been changed.

Figure 6-3: Distribution of the results for different fixed parameters. Each box of this box-
and-whisker plot represents the range of the F-Measure values of the partitionings
created with one fixed parameter for all ontologies. (E.g. the first box represents the range
of the F-Measure values for the partitionings created with the weight function wBase1,
whereas all other configurations have been changed and applied on all ontologies.)

Reconstructing Term Chunks

117

The distributions of the results for the different parameters are rather similar. This
means, that there is no concrete parameter that performs better than the other
configurations. Obviously, each parameter is equally important for the quality of the
partitioning process. They all lead to very good as well as very bad results with average
values between 0.4 and 0.5. Since this analysis did not expose any well-performing
parameter it was also analyzed how these parameters influence the best results. For
that purpose, the best ten results for each ontology have been selected. Figure 6-4
shows the share of the different parameters on the aggregation of the best ten results
for each ontology.

Figure 6-4: Share of the different concrete parameter values on the best ten results for all
ontology. This figure provides an overview of the different configurations that lead to the best
ten results for each ontology . a) shows the fraction of the different graph variants, b) shows
the fraction of the different algorithms, c) shows the fraction of different weight functions,
and d) shows the fraction of the different size functions.

Parameter Analysis

118

Regarding the different graph representation variants as shown in Figure 6-4 a), there
is a considerable difference visible. On the one hand, the RDF-based graph
representations (1 and 1inf) lead to about two third of the best results and therefore
perform better than the class-centric graphs (2 and 2inf). On the other hand, inference
improves the results for the RDF-based graph (1inf) whereas it leads to worse results for
the class-centric graph (2inf).

The share of the different size functions on the best ten results as shown in Figure
6-4 d) are quite similar. The size function s2 has the highest share, but each function
leads to approximately one fifth of the best results. That means that in case of a random
selection of a size function the probability to find the best value for this parameter is
about 0.2.

The difference between the weight functions, on the contrary, is bigger. As shown in
Figure 6-4 c), assigning no weights to the edges (wNone) leads to one quarter of the
best results. The weight functions wBase1, wBase2, wBase3, wBase5 and wStatic have
similar shares on the best ten results (11%-15%), whereas the weight functions wLinear
and wBase4 lead in only one of 20 cases to results which are within the top ten.

The share of the different algorithms on the best ten results is even more significant
(Figure 6-4 b). Approximately one half of the best results have been produced with the
wtc algorithm. The ebc algorithm leads to about one third, whereas the fgc algorithm
leads to about one quarter of the best results.

In a probability-based selection of the properties, the best choice would be to use the
graph variant 1inf, the weight function wNone, the wtc algorithm, and the size function
s2, because these values provide the highest probability to lead to the best possible
result. However, the significant difference between the algorithms - especially the high
share of the wtc algorithm - justifies a closer look on their performance for each
ontology separately. Therefore, Figure 6-5 provides one diagram for each ontology and
allows comparing the behavior of each algorithm.

Reconstructing Term Chunks

119

Parameter Analysis

120

Reconstructing Term Chunks

121

Figure 6-5: Distribution of the results for all three algorithms for each ontology and for all
ontologies aggregated.

As already seen in Figure 6-3, the spectrums of the different algorithms are about the

same size. That means that each algorithm creates very good as well as very bad results.
The peaks, however, are obviously at different points within the graph and have
different heights. Therefore, this analysis emphasizes again that the performances of
the different algorithms depend significantly on the ontology. Obviously, the structural
properties of ontologies play a significant role in the performance of the different
algorithms. An indication of this is the following. Apart from the probability based
selection of the parameters as described previously, a more sophisticated method
would be to select the parameters based on the structural properties of the ontology. In
this regard, known ontologies would be seen as a training set and every ontology, that is
to be partitioned, would be compared to the training set. The best configuration of the
most similar ontology from the training set would be selected. In order to determine the
similarity between the ontology at hand and the ontologies from the training set, the
structural metrics, which were presented in Section 5.3, could be used.

Parameter Analysis

122

6.4.1 The Role of the Modularity Function for Term Chunks

As described in Section 5.4.1, community detection algorithms are approximation
functions seeking to optimize the modularity function. The application of these
algorithms in this work is based on the assumption that the relation of subdomains of an
ontology to the whole ontology is similar to the relation of communities to the whole
social network. That means that the density within a partition is higher than the overall
density. If this is the case, a partitioning with a high modularity value should lead to high
F-Measures values. In order to analyze if this assumption can be proofed, the relation of
the F-Measure score is compared to the modularity score. Figure 6-6 shows plots of the
F-Measure results with respect to the modularity score for each ontology and one for
the aggregation of all results.

The following observations are possible for the relation between the F-Measure
results and the Modularity score.

 The diversity between the different ontologies is again too high to make
general statements. While there seems to be a linear relation between the F-
Measure and the Modularity for opo and swco, which indicates increasing F-
Measure values for higher modularity values, for bio the relation seems to be
the opposite. In case of bio, the highest values for F-Measure are at the
lowest values for the Modularity value.

 In most cases, the highest F-Measure values are at the higher Modularity
values (aair, curio, foaf, gi2mo, music, opo, provo, rrdonto, swco). That means
that the constructed partitionings, which have the highest similarity
compared to the reference models, have mostly high Modularity values.
However, since there are other partitionings with high Modularity scores
which have very low F-Measures it is not possible to state that the Modularity
function is a good indication for good partitioning. However, it is possible to
say that partitionings with bad Modularity scores are probably not good.

Reconstructing Term Chunks

123

Figure 6-6: F-Measure values above the modularity values for each ontology and for the
aggregation of all results.

Parameter Analysis

124

6.5 Reconstructing Modular Ontologies

The performance in reconstructing merged modular ontologies is accepted to be an
indication for the overall performance of the proposed framework with respect to
ontology partitioning for creating modular ontologies. Therefore, four modular built
ontologies, which were presented in Section 3.4.1, were used to analyze the parameters
of the proposed framework. The analysis has been done similar to the previous analysis
described in Section 6.4. The overall performance for each ontology can be seen in
Figure 6-7.

Figure 6-7: Distribution of the F-Measure values for the different ontologies. Each box of this
box-and-whisker plot represents the range of the F-Measure values of the partitionings of one
concrete ontology with 480 different configurations. The concrete ontology is named at the x-
axis. (E.g. the first box in this figure shows that the F-Measure values for the different
partitions created out of curio with 480 configurations.)

The overall average value is 0.424 and the average values for the four ontologies are
quite similar between 0.35 and 0.45. In contrast, the spectrum differs stronger. For
curioMerged and siocMerged the most results are within a narrow interval, namely
between 0.35 and 0.43 and between 0.33 and 0.4 respectively. This indicates that the
structure of both ontologies allow just a small number of different partitionings.
Whereas, the most results for fiboMerged and spiceMerged are between a broader
interval, 0.3 to 0.6 for fiboMerged and 0.37 to 0.6 for spice.

Reconstructing Modular Ontologies

125

Since this analysis' main goal is to understand how the different parameters influence
the performance of the proposed framework, it was analyzed to which results concrete
values of the parameters lead. Figure 6-8 provides the results of this analysis.

Figure 6-8: Distribution of the results for different fixed parameters. Each box of this box-and-
whisker plot represents the range of the F-Measure values of the partitionings created with
one fixed parameter for all ontologies. (E.g. the first box represents the range of the F-
Measure values for the partitionings created with the weight function wBase1 whereas all
other configurations have been changed and applied on all ontologies.)

The different parameters do not lead to similar results as in the previous analysis, but
the difference is not significant. The only obvious observation is that the size function s1
leads to better results on average than the other size functions. In order to gain more
insights about the influence of the parameters, the top ten results for each ontology
have been analyzed regarding the fraction of the parameters. The results of this analysis
are shown in Figure 6-9.

Parameter Analysis

126

Figure 6-9 Share of the different properties on the top ten results of the partitioning
processes

Using the plain RDF graph to represent the structure of the ontologies leads to 62%
of the top ten results, as shown in Figure 6-9 a). The graph representations 2inf and 1inf
lead to about one fifth of the top ten results, whereas the graph variant 2 has no share
on the top ten results, at all. In Figure 6-9 b) the share of the different algorithms on the
top ten results is shown. The fgc algorithm leads to 70% of all top ten results, while the
ebc algorithm leads to one fifth and the wtc algorithm leads to one tenth of the top ten
results. Regarding the weight function, as shown in Figure 6-9 c), the functions wBase4
and wBase5 have the highest share on the top ten results with 32% and 28%,
respectively. Finally, the size function s1 leads to about the half of the top ten results,
while the s2 and s3 function have a share about one fifth.

In case of a probability-based selection of the framework's properties the plain RDF
representation of the ontology structure, the fgc algorithm, the wBase4 weighting
function and the s1 size function should be selected. This configuration provides the
highest probability to lead to good results. However, as in the previous analysis the
highest difference is again between the different algorithms. Thus, Figure 6-10 provides
one diagram for each ontology and allows comparing the behavior of each algorithm.

Reconstructing Modular Ontologies

127

Figure 6-10: Performance of the algorithms for each ontology

It becomes clear that the performance in reconstructing modular ontologies depend
on the ontologies as in the previous analysis. In case of curioMerged the spectrum of
the different algorithm is similar while in case of fiboMerged the peaks are similar. In
case of siocMerged and spiceMerged, on the contrary, neither the spectrum nor the
peaks are simiar. For the selection of the framework's parameter the structure of the
ontology should have the highest influence.

Parameter Analysis

128

6.5.1 The Role of the Modularity Function for Reconstructing Modular Design

For understanding the role of the modularity function in context of reconstructing
modular design the relation between its values and the values of F-Measure are
compared as shown in Figure 6-11.

Figure 6-11: F-Measure values above the modularity values

The different values are quite equally distributed over the whole area of the diagram.
Hence, it is obvious that there is no relation between the F-Measure values and the
Modularity values. On the one hand, high Modularity values lead to high as well as low
F-Measure values. On the other hand, low Modularity values lead again to high as well
as low F-Measure values. This means that the assumption that community detection
algorithms, which seek to optimize the Modularity function, are a good means to create
modular ontologies, cannot be proofed.

Chapter Summary

129

6.6 Chapter Summary

In this chapter the parameters of the proposed framework have been analyzed. For
that purpose each one of the ontologies that have been presented in Section 3.3 and
Section 3.4 has been partitioned with 480 different configurations. The created
partitions have been compared with the term chunks in the documentations and with
the partitions of modular ontologies, respectively. The main insights gained by this
analysis are twofold.

Firstly, from a probabilistic point of view, there are values for the parameters which
provide a higher probability to lead to good results. If the goal of partitioning is to create
term chunks, the best configuration is to use the graph variant 1inf, the weight function
wNone, the wtc algorithm, and the size function s2. If the goal of partitioning is to
create modular ontologies, the best configuration is to use the plain RDF representation
of the ontology structure, the fgc algorithm, the wBase4 weighting function and the s1
size function.

Secondly, the analysis uncovers that the most important factor of the framework's
performance is the ontology that is to be partitioned. Therefore, the structural
properties of the ontology should be taken into consideration during the selection of the
values for the different parameters. The metrics which have been described in Section
5.3 provide a good basis to compare the structure of two ontologies and to calculate a
similarity value.

Another important insight of this chapter is that high modularity values for partitions
do not indicate good score values in terms of F-Measure values. However, with respect
to term chunks it is possible to say that partitionings with bad Modularity scores are
probably not good in terms of similarity to the reference models.

7 EXPERIMENTAL PERFORMANCE

ANALYSIS

Aiming at the creation of a support system that partitions ontologies for different
purposes, this work proposes an adaptable ontology partitioning framework. This
framework has been described in detail in Chapter 5. The different parameters that
enable this frameworks adaptability has been analyzed exhaustively in Chapter 6. In this
chapter it is now analyzed, how well this framework actually performs. An experimental
evaluation is applied, which is based on the findings of the parameter analysis. The
evaluation method that is presented in Section 7.1. This method is then used to measure
the performance for creating term chunks which is presented in Section 7.2. In Section
7.3 the proposed framework's performance regarding the creation of modular
ontologies is then presented, again by the application of the mentioned methodology.
Finally, this Chapter is concluded in Section 7.4 with a chapter summary.

Experimental Performance Analysis

132

7.1 Setup for the Experimental Evaluation

The proposed adaptable ontology partitioning framework is not the first artifact that
is able to partition ontologies. Existing solutions have been discussed in Section 4.3. In
this regard, this work can be considered as an extension of the outcomes in this field. In
order to measure the progress achieved with this endeavor, the most appropriate
approach is a direct comparison of the performances. For that purpose, the ontologies
presented in Section 3.3.2 and in Section 3.4.1 have been partitioned with the
aforementioned tools SWOOP, Pato and with the proposed framework as well.

SWOOP does not provide any configuration of the partitioning process. Pato, on the
contrary, allows configuring the partitioning process with several parameters. For the
creation of the network the inclusion of subclass relations, property links, and definition
links have been activated. The weight for each has been set to one. The value for
"Threshold" has been kept at the default value 0.5. The options "Assign unclustered
vertices" and "Merge clusters" have been left activated as it is the default setting.
According to the finding of the Section 3.3.3, the maximum island size is set to 14 in case
of creating term chunks. For creating modular ontologies the island size is set to the
concrete number of modules as shown in Table 3-3.

As seen in the previous chapter, there are 480 different possible configurations for
the proposed framework. For a direct comparison with the other tools it necessary to
define an approach for the selection of the parameters. Based on the insights from the
last chapter, the following two approaches have been used.

Firstly, the parameters have been configured from a pure probabilistic view without
considering the actual ontology to partition. Thus, this configuration is called
"predefined". The concrete configuration is as follows: for creating term chunks the
graph variant 1inf, the weight function wNone, the wtc algorithm, and the size function
s2 have been used. Furthermore, for creating modular ontologies the plain RDF
representation of the ontology structure, the fgc algorithm, the wBase4 weighting
function and the s1 size function have been used.

Secondly, the parameters have been selected based on the performance of the
framework for other ontologies. This can be considered as a training set for the
framework. Thus, before an ontology is partitioned, its structural properties are
analyzed with the metrics described in Section 5.3. Based on the complex metrics
described in Section 5.3.3 the Euclidean distance between already partitioned
ontologies and the ontology to partition is calculated. The configuration which led to the
best results for the nearest ontology from the training set is then selected. The
approach is called "distance-based" property determination.

Comparison for Reconstructing Term Chunks

133

7.2 Comparison for Reconstructing Term Chunks

The performance analysis with respect to the creation of term chunks has been done
with the ontologies presented in Section 3.3.2. For each ontology in this set, the most
similar ontology according to the Euclidean distance with the complex metrics from
Section 5.3.3 has been chosen. From the exhaustive experiments presented in Chapter
6, the parameters leading to the best results are chosen. If this led to a set of
configuration performing equally, the "predefined" approach has been applied to
complete the parameter selection. Furthermore, if the most similar ontology is the
inferred version of an ontology, than the ontology to partition was also loaded with
activated inference. Table 6-1 provides an overview of the selected configurations for
the performance analysis.

Ontology
to partition

Nearest
ontology

Graph
representation

Algorithm Weight
function

Size
function

aair ecos 2 fgc wNone s2

bio curio (inf) 2Inf fgc wBase5 s2

curio swco 1 wtc wBase2 s4

ecos aair 2 wtc wBase2 s2

foaf aair 2 wtc wBasw2 s2

gi2mo bio (inf) 1Inf wtc wBase3 s2

music premis 2 wtc wNone s2

opo foaf 1 wtc wBase2 s2

premis pvc 2 ebc wNone s2

provo ecos 2 fgc wNone s2

pvc provo 1Inf wtc wNone s2

rrdonto provo (inf) 1Inf wtc wNone s2

swco curio 1 fgc wNone s2

Table 7-1: Overview of the selected configurations for term chunks based on the Euclidean
distance.The column nearest ontologies shows the ontology that has the smallest Euclidean
distance to the ontology in the first column and is therefore regarded as the most similar ontology.

Figure 7-1 presents the performance of the construction of term chunks with
SWOOP, PATO and the mentioned two configuration approaches for the proposed
framework, namely "distance-based" configuration and "predefined" configuration.

Experimental Performance Analysis

134

Figure 7-1: Performance for reconstructing term chunks with Pato, SWOOP, and the
proposed framework with two different configurations: predefined parameter selection and
distance-based parameter selection

In each case the proposed framework performs better than the other tools. The
distance-based configuration leads to the best results for seven ontologies (aair with
0.871, curio with 0.377, ecos with 0.648, opo with 0.769, premis with 0.656, pvc with
0.587, and swco with 0.882), whereas the predefined configuration leads in four cases
to the best results (bio with 0.829, foaf with 0.376, music with 0.191 and provo with
0.752). In case of gi2mo (0.77) and rrdonto (0.594) both approaches perform equally.
Table 7-2 provides an overview of the average performance of the different partitioning
techniques along with the standard deviations.

Partitioning technique Average Score Standard Deviation

Distance-based 0.593 0.178

Predefined 0.545 0.214

Pato 0.171 0.108

Swoop 0.317 0.189

Table 7-2: Average score values and standard deviation for the different partitioning techniques

Comparison for Reconstructing Term Chunks

135

The parameter analysis in Section 6.4 showed that the average value for all
ontologies with all possible configurations led to an average value of 0.496. Comparing
this value with the values from Table 7-2 makes clear that both configuration selection
approaches perform better than a random selection would do. Furthermore, these
values demonstrate that even a random selection of the configuration would perform
better than SWOOP and Pato. Both are outperformed by the average value of all 480
configurations as well as with the two configuration selection approaches by far.

In order to evaluate the performance of the two configurations selection approaches
"predefined" and "distance-based" with respect to the best possible configuration, their
performances have been compared with the configurations leading to the best F-
Measure values and the average score of the 480 different possible configurations. The
result of this comparison is presented in Figure 7-2.

Figure 7-2: Performance of two possible configuration approaches of the proposed
framework in comparison to the best possible result and the average performance

In eleven of thirteen ontologies (aair, bio, curio, ecos, foaf, music, opo, premis, pvc,
rrdonto, and swco) both configuration approaches perform worse than the possible best
solution. That means that both approaches are not able to identify the best possible
configuration. In case of gi2mo the best possible configuration is found by both
approaches, whereas in case of provo the predefined approach leads to the possible
configuration. For six ontologies (aair, bio, gi2mo, opo, rrdonto, and swco) both
configurations are leading to better scores than the average score for the 480 possible
configurations. In two cases (curio and music) both configurations produce worse values

Experimental Performance Analysis

136

than the average value of the 480 configuration. That means that a random selection of
the parameters would probably lead to better scores than both approaches.

On average, the distance-based approach leads to scores which are about 0.14 less
than the highest possible values and 0.09 greater than the average score for all possible
configurations. Similarly, the predefined approach leads on average to scores which are
about 0.19 less than the highest possible value and 0.05 greater than the average score
for all possible configurations.

7.3 Comparison for Reconstructing Modular Ontologies

The performance of the proposed framework with respect to the creation of modular
ontologies out of monolithically created ontologies has been evaluated similar to the
previous described evaluation. Modular built ontologies, which were presented in
Section 3.4.1, have been merged and partitioned with SWOOP, Pato and the proposed
framework with the mentioned two approaches to select the configuration. For the
distance-based selection of the configuration the Euclidean distances between the
ontologies have been calculated. Table 7-3 shows the result of this distance calculation
and the selected configuration for each ontology.

Ontology to
partition

Nearest
ontology

Graph
representation

Algorithm Weight
function

Size
function

curioMerged sioc 1 ebc wBase4 s1

fiboMerged curioMerged 1Inf wtc wLinear s1

siocMerged curioMerged 1 fgc wNone s1

spiceMerged fiboMerged 1Inf wtc wBase4 sNone

Table 7-3: Overview of the selected configurations for modular ontologies based on the Euclidean
distance.The column nearest ontologies shows the ontology that has the smallest Euclidean
distance to the ontology in the first column and is therefore regarded as the most similar ontology.

Figure 7-3 shows how SWOOP, Pato and the proposed framework with the two
configuration selection approached performed in creating modular ontologies out of
monolithically created one.

Comparison for Reconstructing Modular Ontologies

137

Figure 7-3: Performance for reconstructing modular ontologies with Pato, SWOOP, and
the proposed framework with two different configurations

In three of four cases the distance-based configuration selection approach of the
proposed framework leads to the best results (curioMerged with 0.491, fiboMerged
with 0.578, and spiceMerged 0.563). In case of siocMerged the best result is produced
by SWOOP with an F-Measure value of 0.452. Additionally, it is interesting to observe
that in all cases the second best result is produced by the predefined configuration
selection approach, whereas Pato produces the worst results for all ontologies. The
overall performance is presented in Table 7-4.

Partitioning technique Average Score Standard Deviation

Distance-based 0.511 0.059

Predefined 0.472 0.092

Pato 0.113 0.101

Swoop 0.354 0.149

Table 7-4: Overall results for all merged ontologies with PATO, SWOOP and the proposed framework

Comparing these values with the average value of the 480 configuration as presented
in Section 6.5 which is about 0.424 allows following conclusions: both configuration
selection approaches perform better than a random selection of the configuration
would do. Similar to the previous analysis, the best results on average are produced by
the distance-based configuration selection approach. Even with a random configuration
selection approach, the proposed framework outperforms the other tools by far.

Experimental Performance Analysis

138

The next analysis evaluates the performance of the configuration selection
approaches. For that reason, both approaches are compared with configuration leading
to the best results as observed in the parameter analysis in Section 6.5 and with the
average performance of all possible 480 configurations. Figure 7-4 shows the results of
this analysis.

Figure 7-4: Performance of two possible configuration approaches of the proposed
framework in comparison with the best possible result and the average performance

Obviously, both configuration selection approaches are not able to identify the best

possible configuration in any case. However, apart from the predefined approach in
case of curioMerged, they lead to configurations which perform better than the average
value of the 480 possible configurations. That means that both approaches are on
average better than a random selection approach of the configuration. The distance-
based approach leads results which are 0.162 worse than the best possible results and
0.088 better than the average result. The predefined approach leads to results which
are 0.203 worse than the best results and 0.048 better than the average result.

Chapter Summary

139

7.4 Chapter Summary

In this chapter the outcome of this thesis which is an adaptable ontology partitioning
framework was evaluated experimentally. For that purpose its performance regarding
partitioning ontologies to create term chunks and partitioning ontologies to create
modular ontologies out of monolithic ontologies was compared with two existing
solutions. The results of the experiments demonstrated that the proposed framework
outperforms the other solutions by far. From a probability view, even a random
selection of the configuration would lead to better results than the other proposed
ontology partitioning solutions.

Furthermore, the experiments illustrated obviously that both configuration selection
approaches perform better than a random selection would, whereas the distance-based
approach has produced slightly better results. This is an indication that similarly
structured ontologies should be partitioned similarly. Additionally, this indicates that a
larger training set – more ontologies with reference partitions – would improve the
performance of the distance-based configuration selection approach.

8 DISCUSSION AND OUTLOOK

This doctoral thesis pursued the goal of creating an adaptable and structure-based
ontology partitioning framework. The main focus is on ontologies within the area of the
Semantic Web and Linked Data. The strongly dynamic and highly distributed nature of
the Web demands for sophisticated integration techniques and rapid adaptability to the
changing environment. Thus, existing ontologies in this field are known to be created
with agile methodological approaches of ontology engineering – if at all - and are of low
expressivity. While the latter justifies the structure-based approach, the former
emphasizes the need for partitioning tools supporting the ontology engineer.

Since the targeted outcome is an artifact, namely a piece of software, the Design
Science approach has been chosen as the basic methodology to structure the overall
process (Hevner et al., 2004). Accordingly, at the very beginning the broader context of
the research area was captured (Chapter 2), the problem of ontology partitioning in
general was investigated in depth (Chapter 3), and existing attempts to solve the
problem have been discussed (Chapter 4). By this means, a knowledge base was built,
which is essential to comprehend the dimensions of the research area as well as the
state-of-the-art and to achieve the necessary awareness for the problem at hand. The
main insights of this phase can be summarized as follows:

 Due to the challenges of the Web, ontology engineering methodologies tend to
become more and more agile, lightweight and collaborative. Automatic and
semi-automatic techniques supporting different phases of the overall ontology
lifecycle gain in importance.

 Increasing size and complexity of ontologies exacerbate reusability and
maintainability. This is a crucial issue, as these aspects of ontologies are
especially in the context of Semantic Web and Linked Data of essential
importance and critical success factors. For that reason, techniques for breaking
down the size and the complexity to an appropriate level are necessary. It turned
out that this level depends on the concrete context of the user.

 Ontologies are complex artifacts comprising different aspects. Defining size and
complexity is not trivial. Thus, a considerable large number of existing proposals
are present to measure different aspects of ontologies. However, each one is
based on its specific application context and on its own notion of size and
complexity.

Discussion and Outlook

142

 In order to improve the reusability, documentation pages for potential reusers
are created by the authors of the ontologies. These pages provide information at
different levels of detail. Grouping concepts is one application for partitioning
ontologies, which is an appropriate technique to break down the complexity. It
allows the user better readability, enables faster comprehension and accelerates
making decisions about reusability. The analysis of existing term chunks unveil
that the values regarding the number and size of groups correlates to some
degree. This is reasonable, as these groups are all created for humans and take
only cognition into consideration. Moreover, these values correlate with findings
from cognitive science with respect to the capacity of the working memory.

 Ontologies, which are expected to be rather complex, are created in a modular
way, if the time and expected quality constraints provide the necessary
conditions. As mentioned before, this is rarely the case. The reason for this is
twofold. On the one hand, the Web environment does not allow for heavyweight
ontology creation processes. On the other hand, if an ontology is created with
high time and financial investments, it becomes a valuable resource for the
authors. This in turn is a counter-argument to share the ontology for free in the
Web.

 The size and number of modules of modular created ontologies show significant
differences. Correlations like with term chunks cannot be identified. This is
reasonable, because ontology modularity does not primarily target the cognition
of the author, but the inherent modularity of the domain of discourse.

With these insights an adaptable and structure-based ontology partitioning
framework has been designed and implemented. During this endeavor research
questions, which are listed in Section 1.1, have been tackled. The main contributions,
which have been elaborated, are as follow:

 Besides the RDF graph of an ontology an additional class-centric representation
has been proposed, that is similar to classic entity-relationship-diagrams.

 Weight functions for the edges in the structural representation have been
developed. On the one hand, these functions take the mostly used RDFS and
OWL properties into consideration. On the other hand, they make use of the so-
called base level originated in linguistic.

 The Modularity function for communities in social networks has been extended
to take the number as well as the average size of partitions into consideration,
according to configurable weights.

 For the evaluation of the partitioning process, term chunks from documentation
pages and modular created ontologies have been regarded as reference
partitionings. The performance in the reconstruction of those partitions has been

Discussion and Outlook

143

accepted as a performance measure to assess the quality of ontology
partitioning.

 In order to understand how the framework performs depending on the structure
of the ontology to partition, a comprehensive set of metrics have been defined.
Those metrics measure different size properties, various complexity dimensions
and the hierarchical structure of an ontology.

 One basic assumption of this work is that similarly structured ontologies should
be partitioned alike. To calculate this similarity, the set of complex metrics were
used along with the Euclidean distance. Before starting to partition an ontology,
it is compared with already partitioned ontologies, for which the best performing
configuration is known. That means that already partitioned ontologies are taken
as a training set. If the mentioned assumption is true, the proposed system will
improve with each new ontology.

 An additional approach to find the potentially best configuration for the
proposed framework was to partition all known ontologies with reference
models. 480 different configuration have been defined, which are accepted to
sufficiently cover the parameter space of the framework. Configurations, which
lead to the best results on average, are then selected without taking the
ontology to partition and its structure into account.

The assessment of the quality for the proposed ontology partitioning framework was
done by an experimental evaluation. Thirteen ontologies with term chunks in the
documentation pages and four modular built ontologies were identified. Those were
partitioned with the proposed framework in competition with PATO and SWOOP. These
experiments revealed that the proposed framework outperforms the competitors by far
for both the creation of term chunks and the creation of modular ontologies. The
distance-based configuration selection approach led to the best results on average with
F-Measure values of 0.593 for creating term chunks and 0.511 for creating modular
ontologies. Even though both values are at an acceptable level, they do not justify a fully
automatic partitioning. Therefore, the proposed framework should be primarily used in
a semi-automatic manner as a support system, whereas the outcome should be refined
manually. However, the experimental results allow drawing the following conclusions
for the structure-based approach with community detection algorithms and ontology
partition in general.

 For the analyzed two motivations of ontology partitioning, the application of
community detection algorithms with semantic-based weighting of properties and
the modified Modularity function seems to be more appropriate than the logic
based approach of SWOOP and the simple structure-based approach of Pato.

Discussion and Outlook

144

 The experiments with 480 different configurations for each ontology revealed that
very high F-Measure values are possible in most cases. That indicates that the
parameters of the proposed framework provide good adaptability and flexibility. It
is able to create very good term chunks and modular ontologies with certain
configurations. This in turn makes clear that the most important challenge is to
find the best performing configuration.

 The fact that the distance-based configuration selection approach leads to the
best results, indicates that the assumption that similarly structured ontologies
should be partitioned alike, is correct.

For the assessment of this work's quality and to gain idea about its possible impact
on the research area, it is important to shed light on some critical aspects. The major
critical aspect is the number of ontologies which have been used for the parameter and
the performance analysis. Thirteen ontologies for term chunks and four ontologies for
modular ontologies are statistically not significant. Therefore, the results of this work
depend strongly on the concrete set of ontologies. It is possible that exactly these
ontologies are not representative and lead to a distortion. However, the rare existence
of partitioned ontologies emphasizes the need for supporting ontology partitioning and
justifies research in this area. Besides, the possibility to extend the training set provides
flexibility and enables sustainability.

Furthermore, the proposed framework was analyzed and optimized with already
partitioned ontologies in terms of term chunks and modules. This might raise the
question, if exactly these ontologies were created by authors who have a special focus
on modularity, which in turn led to certain structural properties. On the other hand, if
this is the case, those ontologies can be further analyzed to derive some best practices
and design patterns. This can be done by making use of the defined structural metrics.

In fact, this work leaves room for various extensions. Regarding the framework itself,
the weight functions as well as the modified Modularity function can be extended for
other properties. Additionally, it is possible to use other community detection
algorithms. With respect to the analysis of the framework and its optimization, the most
obvious future work would be to make more experiments with other ontologies. In this
regard, authors of ontologies could be asked to create partitions for different purposes,
which then can be used for further analyzing and optimizing the framework. Otherwise,
partitions for different ontologies could be created and the authors could be asked with
a questionnaire to evaluate the outcome. If a significant set of ontologies are available
more general analysis of the different algorithms depending on the structural properties
can be done.

BIBILIOGRAPHY

Alani, H., & Brewster, C. (2006). Metrics for Ranking Ontologies. In Proceedings of the
4th International Workshop on Evaluation of Ontologies for the Web (EON2006) at
the 15th International World Wide Web Conference (WWW 2006) (pp. 24–30).
Edinburgh, Scotland.

Auer, S., Lehmann, J., & Ngonga Ngomo, A. C. (2011). Introduction to linked data and its
lifecycle on the web. In Reasoning Web Semantic Technologies for the Web of Data
(Vol. 6848, pp. 1–75). Springer.

Baddeley, A. (2003). Working memory : looking back and looking forward. Nature
Reviews Neuroscience, 4(10), 829–839.

Barclay, J. R. (1973). The Role of Comprehension in Remembering. Cognitive Psychology,
4(2), 229–254.

Basca, C., Corlosquet, S., Cyganiak, R., Fernández, S., & Schandl, T. (2008). Neologism:
Easy Vocabulary Publishing. In Proceedings of the Workshop on Scripting for the
Semantic Web, in conjunction with ESWC 2008.

Beckett, D., & Berners-Lee, T. (2008). Turtle - Terse RDF Triple Language. W3C Team
Submission. Chapman and Hall.

Berners-Lee, T. (2005). Notation3 (N3) A readable RDF syntax. Design Issues. W3C.
Accessed March 11, 2014, from http://www.w3.org/DesignIssues/Notation3

Berners-Lee, T. (2006). Linked Data. Design Issues. W3C. ACM Press. Accessed March 11,
2014, from http://www.w3.org/DesignIssues/LinkedData.html

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic Web. Scientific American,
284(5), 34–43.

Bontas, E. P., & Mochol, M. (2005). Towards a reuse-oriented methodology for ontology
engineering. In Proceedings of the 7th International Conference on Terminology and
Knowledge Engineering (TKE 2005) (pp. 1–12).

Bibiliography

148

Bontas, E. P., Mochol, M., & Tolksdorf, R. (2005). Case Studies on Ontology Reuse. In
Proceedings of the 5th International Conference on Knowledge Management (I-
Know’05) (pp. 345–353). Graz, Austria.

Brachman, R. J., & Schmolze, J. G. (1985). An Overview of the KL-ONE knowledge
representation system. Cognitive Science, 9(2), 171–216.

Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., & Wagner, D.
(2007). On Finding Graph Clusterings with Maximum Modularity. In Proceedings of
the 33rd international conference on Graph-theoretic concepts in computer science
(pp. 121–132). Berlin, Heidelberg: Springer-Verlag.

Brickley, D., & Miller, L. (2010). FOAF Vocabulary Specification 0.97. Accessed January
01, 2014, from http://xmlns.com/foaf/spec/20100101.html

Burel, G. (2011). CURIO Core Vocabulary Specification v0.5. Accessed August 22, 2012,
from http://socsem.open.ac.uk/ontologies/curio/

Chandrasekaran, B., Josephson, J. R., & Benjamins, V. R. (1999). What are ontologies,
and why do we need them? IEEE Intelligent Systems, 14(1), 20–26.

Clauset, A., Newman, M. E. J., & Moore, C. (2004). Finding community structure in very
large networks. Physical Review E, 70(6), 661111–661116.

Corcho, Ó., Fernández-López, M., Gómez-Pérez, A., & López-Cima, A. (2003). Building
Legal Ontologies with METHONTOLOGY and WebODE. In Law and the Semantic
Web (Vol. 3369, pp. 142–157).

d’Aquin, M., Baldassarre, C., Gridinoc, L., Angeletou, S., Sabou, M., & Motta, E. (2007).
Characterizing Knowledge on the Semantic Web with Watson. In Evaluation of
Ontologies and Ontology-Based Tools: 5th International EON Workshop (Vol. 329,
pp. 1–10). CEUR-WS.org.

D’Aquin, M., & Noy, N. F. (2012). Where to Publish and Find Ontologies? A Survey of
Ontology Libraries. Web semantics: Science, Services and Agents on the World Wide
Web, 11(August), 96–111.

d’Aquin, M., Sabou, M., Dzbor, M., Baldassarre, C., Angeletou, S., & Motta, E. (2007).
WATSON : A Gateway for the Semantic Web. In The 4th Annual European Semantic
Web Conference (ESWC 2007). Innsbruck, Austria.

Bibiliography

149

d’Aquin, M., Sabou, M., & Motta, E. (2006). Modularization: a Key for the Dynamic
Selection of Relevant Knowledge Components. In P. Haase, V. Honavar, O. Kutz, Y.
Sure, & A. Tamilin (Eds.), WoMO (Vol. 232). CEUR-WS.org.

d’Aquin, M., Schlicht, A., Stuckenschmidt, H., & Sabou, M. (2009). Criteria and
Evaluation for Ontology Modularization Techniques. In H. Stuckenschmidt, C.
Parent, & S. Spaccapietra (Eds.), Modular Ontologies (pp. 59–79). Berlin,
Heidelberg: Springer-Verlag.

Davis, I., & Galbraith, D. (2010). BIO: A vocabulary for biographical information.
Accessed August 22, 2013, from http://vocab.org/bio/0.1/.html

Di Maio, P. (2009). Toward Just Enough Ontology Engineeering. Business Intelligence,
Vol. 9, No, 1–18.

Di Maio, P. (2011). “Just enough” ontology engineering. Proceedings of the International
Conference on Web Intelligence, Mining and Semantics - WIMS ’11, 1.

Ding, L., & Finin, T. (2006). Characterizing the Semantic Web on the web. In Proceedings
of the 5th International Semantic Web Conference (ISWC 2006) (pp. 242–257).
Athens, GA, USA: Springer.

Doran, P., Tamma, V., & Iannone, L. (2007). Ontology Module Extraction for Ontology
Reuse : An Ontology Engineering Perspective. In CIKM ’07: Proceedings of the
Sixteenth ACM conference on Conference on information and knowledge
management (pp. 61–70). New York, NY, USA: ACM.

Duque-Ramos, A., Fernández-Breis, J. T., Stevens, R., & Aussenac-Gilles, N. (2011).
OQuaRE : A SQuaRE-based Approach for Evaluating the Quality of Ontologies.
Journal of Research and Practice in Information Technology, 43(2), 159–176.

Dzbor, M., & Motta, E. (2008). Engineering and Customizing Ontologies. In Ontology
Management, Semantic Web, Semantic Web Services, and Business Applications
(Vol. 7, pp. 25–57). Springer US.

Fernandez, M., Gomez-Perez, A., & Juristo, N. (1997). METHONTOLOGY: from
Ontological Art towards Ontological Engineering. In Proceedings of the AAAI97
Spring Symposium Series on Ontological Engineering (pp. 33–40). Stanford, USA.

Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3-5), 75–174.

Bibiliography

150

Gasevic, D., Zouaq, A., Torniai, C., Jovanovic, J., Hatala, M., Ga, D., & Jovanovi, J. (2011).
An Approach to Folksonomy-Based Ontology Maintenance for Learning
Environments. IEEE Transactions on Learning Technologies, 4(4), 301–314.

Gauvin, M., Delgado, J., & Rodríguez, V. (2007). Represent Rights Data Ontology
(RRDOnto). Accessed August 22, 2013, from
http://dmag.ac.upc.edu/ontologies/rrdonto/index.html

Gomez-Perez, A., Fernandez-Lopez, M., & Corcho, O. (2004). Ontological Engineering.
Young (p. 403). London: Springer Verlag.

Grau, B. C., Horrocks, I., Kazakov, Y., & Sattler, U. (2008). Modular Reuse of Ontologies:
Theory and Practice. J. of Artificial Intelligence Research (JAIR), 31, 273–318.

Grau, B. C., Parsia, B., & Sirin, E. (2004). Working with Multiple Ontologies on the
Semantic Web. In S. A. McIlraith, D. Plexousakis, & F. van Harmelen (Eds.),
International Semantic Web Conference (Vol. 3298, pp. 620–634). Springer.

Grau, B. C., Parsia, B., Sirin, E., & Kalyanpur, A. (2005a). Automatic Partitioning of OWL
Ontologies Using E-Connections. In Proceedings of the 2005 International
Workshop on Description Logics (Vol. 147). Edinburgh, Scotland, UK: CEUR-WS.org.

Grau, B. C., Parsia, B., Sirin, E., & Kalyanpur, A. (2005b). Modularizing OWL Ontologies. In
Proceedings of the KCAP 2005 Workshop on Ontology Management. Banff, Canada,
October 2005 (pp. 1–15). Banff, Canada.

Graves, A., Adalı, S., & Hendler, J. (2008). A Method to Rank Nodes in an RDF Graph. In
The 7th International Semantic Web Conference (Poster Session) (Vol. 401).
Karlsruhe, Germany: CEUR-WS.org.

Gruber, T. R. (1993). A Translation Approach to Portable Ontology Specifications.
Knowledge Acquisition, 5(2), 199–220.

Guenther, R., Brama, Y., Bredenberg, K., Caplan, P., Dappert, A., Di Iorio, A., … Zwaard, K.
(2011). PREMIS Data Dictionary for Preservation Metadata v.2.1 (p. 223).

Hartig, O., & Zhao, J. (2012). Provenance Vocabulary Core Ontology Specification.
Accessed August 22, 2013, from http://trdf.sourceforge.net/provenance/ns.html

Bibiliography

151

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in Information
Systems Research. MIS Quarterly, 28(1), 75–105.

Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P. F., & Rudolph, S. (2009). OWL 2
Web Ontology Language: Primer. OWL 2 Web Ontology Language Primer. World
Wide Web Consortium (W3C). Accessed March 11, 2014, from
http://www.w3.org/TR/owl2-primer/

Hoser, B., Hotho, A., Jäschke, R., Schmitz, C., & Stumme, G. (2006). Semantic Network
Analysis of Ontologies. In Proceedings of the 3rd European Semantic Web
Conference (pp. 514–529). Budva, Montenegro: Springer.

IEEE. (1990). IEEE Standard Glossary of Software Engineering Terminology/IEEE Std
610.12-1990. IEEE Std 610121990. Institute of Electrical & Electronics Enginee.

Internation Organization for Standardization. (2011). Systems and software engineering
-- Systems and software Quality Requirements and Evaluation (SQuaRE) -- System
and software quality models. ISO. International Organization for Standardization.

Jannink, J., Mitra, P., Neuhold, E., Pichai, S., Studer, R., & Wiederhold, G. (1999). An
algebra for semantic interoperation of semistructured data. In Workshop on
Knowledge and Data Engineering Exchange KDEX99 (pp. 77–84). Chicago, Illinois,
USA: IEEE Computer Society.

Khilwani, N., & Harding, J. (2009). Enterprise Competence Organization Schema.
Accessed August 22, 2013, from http://kmm.lboro.ac.uk/ontologies/ecos/

Klinker, G., Bhola, C., Dallemagne, G., Marques, D., & McDermott, J. (1991). Usable and
reusable programming constructs. Knowledge Acquisition, 3(2), 117–135.

Kutz, O., Lutz, C., Wolter, F., & Zakharyaschev, M. (2004). E-connections of abstract
description systems. Artificial Intelligence, 156(1), 1–73.

Lebo, T., Sahoo, S., & McGuinness, D. (2013). PROV-O: The PROV Ontology. Accessed
August 22, 2013, from http://www.w3.org/TR/prov-o/

Leicht, E. A., & Newman, M. E. J. (2008). Community structure in directed networks.
PHYSICAL REVIEW LETTERS, 100, 118703.

Bibiliography

152

Li, N., Motta, E., & D’Aquin, M. (2010). Ontology summarization: an analysis and an
evaluation. In The International Workshop on Evaluation of Semantic Technologies
(IWEST 2010) (pp. 1439–1446).

Luczak-Rösch, M. (2011). How are People Engineering Linked Data ? A Survey Snapshot
about the Engineering Efforts Spent by Dataset Publishers (p. 9). Berlin: Freie
Universität Berlin.

Luczak-Rösch, M., & Heese, R. (2008). Managing Ontology Lifecycles in Corporate
Settings. In International Conference on Semantic Systems (I-SEMANTICS) (pp. 150–
157). Graz, Austria.

March, S. T., & Smith, G. F. (1995). Design and natural science research on information
technology. Decision Support Systems, 15(4), 251–266.

Miller, G. (1956). The Magical Number Seven, Plus or Minus Two: Some Limits on Our
Capacity for Processing Information. Psychological Review, 63(2), 81–97.

Minno, M., & Palmisano, D. (2010). Atom Activity Streams RDF mapping. Accessed
March 19, 2012, from http://xmlns.notu.be/aair/

Möller, K., Bechhofer, S., & Heath, T. (2009). Semantic Web Conference Ontology.
Accessed March 19, 2012, from http://data.semanticweb.org/ns/swc/swc_2009-
05-09.html

Motik, B., Patel-Schneider, P. F., & Horrocks, I. (2008). OWL 2 Web Ontology Language:
Structural Specification and Functional-Style Syntax. W3C. Accessed May 15, 2013,
from http://www.w3.org/TR/2008/WD-owl2-syntax-20080411/

Newman, M. E. J. (2003). The Structure and Function of Complex Networks. SIAM
Review, 45(2), 167.

Newman, M. E. J. (2004a). Analysis of weighted networks. Physical Review E, 70(5),
0561311–0561319.

Newman, M. E. J. (2004b). Fast algorithm for detecting community structure in
networks. Physical Review E, 69(6), 0661331–0661335.

Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in
networks. Physical Review E, 69(2), 0261131–02611315.

Bibiliography

153

Ning, H., & Shihan, D. (2006). Structure-Based Ontology Evaluation. In e-Business
Engineering, 2006. ICEBE ’06. IEEE International Conference on (pp. 132–137).

Nottingham, M., & Sayre, R. (2005). The Atom Syndication Format. Request for
Comments 4287. IETF.

Noy, N. F., & Musen, M. A. (2004). Specifying Ontology Views by Traversal. In
International Semantic Web Conference (Vol. 3298, pp. 713–725). Springer.

Oh, S., Yeom, H. Y., & Ahn, J. (2010). Evaluating ontology modularization approaches. In
Proceedings of the 8th International Conference on Frontiers of Information
Technology (pp. 1–6). New York, NY, USA: ACM.

Orme, A. M., Yao, H., & Etzkorn, L. (2006). Coupling Metrics for Ontology-Based Systems.
IEEE Software, 23(2), 102–108.

Paslaru-Bontas, E. (2007). A contextual approach to ontology reuse: methodology,
methods and tools for the Semantic Web. Freie Universität Berlin, Berlin.

Patel-Schneider, P. F., & Horrocks, I. (2004). OWL Web Ontology Language Semantics
and Abstract Syntax Section 4. Mapping to RDF Graphs. W3C. Accessed April 04,
2013, from http://www.w3.org/TR/owl-semantics/mapping.html

Pinto, H. S., Staab, S., & Tempich, C. (2004). DILIGENT: Towards a fine-grained
methodology for DIstributed, Loosely-controlled and evolvInG Engineering of
oNTologies. In Proceedings of the 16th European Conference on Artificial
Intelligence (ECAI 2004) (pp. 393–397). Valencia, Spain: IOS Press.

Poli, R., & Obrst, L. (2010). The Interplay Between Ontology as Categorial Analysis and
Ontology as Technology. In Theory and Applications of Ontology: Computer
Applications (pp. 1–26). Springer Netherlands.

Pons, P., & Latapy, M. (2006). Computing Communities in Large Networks Using Random
Walks. Journal of Graph Algorithms and Applications, 10(2), 191–218.

Raimond, Y., Giasson, F., Jacobson, K., Fazekas, G., Gängler, T., Reinhardt, S., & Passant,
A. (2012). Music Ontology Specification. Accessed March 19, 2012, from
http://musicontology.com/

Bibiliography

154

Reichardt, J., & Bornholdt, S. (2006). Statistical mechanics of community detection.
Physical Review E, 74(1), 0161101–01611014.

Roberta, C., Alexandre, D., Vincent, L., & Carlo, R. (2007). The Technology Roadmap of
the Semantic Web. Business (p. 51). Knowledge Web.

Rosch, E. (1978). Principles of Categorization. In Cognition and Categorization (pp. 27–
48). Lawrence Erlbaum Associates.

Sametinger, J. (1997). Software Engineering with Reusable Components (p. 275).
Springer-Verlag.

Schlicht, A., & Stuckenschmidt, H. (2006). Towards Structural Criteria for Ontology
Modularization. In WoMO (Vol. 232). CEUR-WS.org.

Schlicht, A., & Stuckenschmidt, H. (2007). Criteria-based partitioning of large ontologies.
In Proceedings of the 4th international conference on Knowledge capture - K-CAP
’07 (pp. 171–172). New York, New York, USA: ACM Press.

Schlicht, A., & Stuckenschmidt, H. (2008a). A Flexible Partitioning Tool for Large
Ontologies. 2008 IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology, 1, 482–488.

Schlicht, A., & Stuckenschmidt, H. (2008b). Distributed Resolution for ALC. In
Proceedings of the 21st International Workshop on Description Logics (DL2008) (pp.
1–11). http://ceur-ws.org.

Seidenberg, J., & Rector, A. (2006). Web ontology segmentation: analysis, classification
and use. In WWW ’06: Proceedings of the 15th international conference on World
Wide Web (pp. 13–22). New York, NY, USA: ACM Press.

Shneiderman, B. (1977). Measuring computer program quality and comprehension.
Information Systems Journal, 9(4), 465–478.

Simperl, E. (2009). Reusing ontologies on the Semantic Web: A feasibility study. Data &
Knowledge Engineering, 68(10), 905–925.

Staab, S., Studer, R., Schnurr, H.-P., & Sure, Y. (2001). Knowledge Processes and
Ontologies. IEEE Intelligent Systems, 16(1), 26–34.

Bibiliography

155

Stankovic, M. (2010). OPO - Online Presence Ontology Specification. Accessed August
22, 2013, from http://online-presence.net/opo/spec/

Stuckenschmidt, H. (2006). Network Analysis as a Basis for Partitioning Class Hierarchies.
In Workshop on Semantic Network Analysis, ISWC (pp. 43–54).

Stuckenschmidt, H., & Klein, M. (2004). Structure-based partitioning of large concept
hierarchies. In Proceedings of the 3rd International Semantic Web Conference (pp.
289–303).

Suárez-Figueroa, M. C., de Cea, G. A., Buil, C., Dellschaft, K., Fernández-López, M.,
García, A., … Yufei, Z. (2008). D5.4.1. NeOn Methodology for Building
Contextualized Ontology Networks (p. 150).

Sure, Y., Staab, S., & Studer, R. (2009). Ontology Engineering Methodology. In Handbook
on Ontologies (pp. 135–152). Springer Berlin Heidelberg.

Takeda, H., Veerkamp, P., Tomiyama, T., & Yoshikawam, H. (1990). Modeling Design
Processes. AI Magazine, 11(4), 37–48.

Tartir, S., Arpinar, I. B., Moore, M., Sheth, A. P., & Aleman-meza, B. (2005). OntoQA :
Metric-Based Ontology Quality Analysis. In IEEE ICDM 2005 Workshop on
Knowledge Acquisition from Distributed, Autonomous, Semantically Heterogeneous
Data and Knowledge Sources.

Theoharis, Y., Tzitzikas, Y., Kotzinos, D., & Christophides, V. (2008). On Graph Features of
Semantic Web Schemas. IEEE Transactions on Knowledge and Data Engineering,
20(5), 692–702.

Volz, J., Bizer, C., Gaedke, M., & Kobilarov, G. (2009). Silk – A Link Discovery Framework
for the Web of Data. In Proceedings of the 2nd Workshop on Linked Data on the
Web (LODW2009).

Vrandecic, D. (2010). Ontology Evaluation. Karlsruher Institut für Technologies.

Westerski, A. (2011). Gi2MO Types Taxonomy Specification. Accessed August 22, 2013,
from http://www.gi2mo.org/taxonomy/

Xu, R., & Wunsch, D. (2005). Survey of clustering algorithms. IEEE transactions on neural
networks / a publication of the IEEE Neural Networks Council, 16(3), 645–678.

Bibiliography

156

Yang, Z., Zhang, D., & Ye, C. (2006). Evaluation Metrics for Ontology Complexity and
Evolution Analysis. In E-Business Engineering, IEEE International Conference on (Vol.
0, pp. 162–170). Los Alamitos, CA, USA: IEEE Computer Society.

Yao, H., Orme, A. M., & Etzkorn, L. (2005). Cohesion Metrics for Ontology Design and
Application. Journal of Computer Science, 1(1), 107–113.

Yourdon, E. (2006). Just Enough Structured Anylsis. This is an update, condensation, and
pragmatic revision of Yourdon’s book \textit{Modern Structured
Analysis}(Prentince Hall 1989).

Zhang, H., Li, Y.-F., & Tan, H. B. K. (2010). Measuring design complexity of semantic web
ontologies. Journal of Systems and Software, 83(5), 803–814.

TERMINOLOGY

Cognition: Cognition is the process of knowing and understanding.

Cognitive: Cognitive means relating to the mental process involved in knowing, learning,
and understanding things.

Complexity: Complexity is the degree to which a system or component has a design or
implementation that is difficult to understand and verify.

Conceptualization: Conceptualization is the creation of an ontological model describing
a domain of interest independently of any particular implementation language. When
referring to a general "model" the meaning of the term is similar to that of
"conceptualization” or “conceptual model". These will be used interchangeably within
this thesis.

Comprehension: Comprehension is the ability to understand the meaning or
importance of something (or the knowledge acquired as a result);

Cognitive Capacity / Cognitive Limit: Cognitive capacity or the cognitive limit is the total
amount of information the brain is capable of retaining at any particular moment.

Evaluation: Evaluation is the process of assessing the general-purpose or application-
oriented quality.

Modular: Modular describes the property of being composed of discrete parts.

Modular Decomposition / Modularization: Modular decomposition is the process of
breaking a system into components to facilitate design and development.

Module: (1) A module is a program unit that is discrete and identifiable with respect to
compiling, combining with other units, and loading; for example, the input to, or output
from, an assembler, compiler, linkage editor, or executive routine. (2) A module is a
logically separable part of a program. Note: The terms "module," "component," and
"unit" are often used interchangeably or defined to be sub-elements of one another in

Terminology

160

different ways depending upon the context. The relationship of these terms is not yet
standardized.

Modularity: Modularity is the degree to which a system or computer program is
composed of discrete components such that a change to one component has minimal
impact on other components.

Maintainability: (1) Maintainability is the ease with which a software system or
component can be modified to correct faults, improve performance or other attributes,
or adapt to a changed environment. (2) Maintainability is the ease with which a
hardware system or component can be retained in, or restored to, a state in which it can
perform its required functions.

Maintenance: (1) Maintenance is the process of modifying a software system or
component after delivery to correct faults, improve performance or other attributes, or
adapt to a changed environment. (2) Maintenance is the process of retaining a
hardware system or component in, or restoring it to, a state in which it can perform its
required functions.

Measurement Standard: A measurement standard is a standard that describes the
characteristics of evaluating a process of product.

Method: A method is a codified series of steps taken to develop a product or to perform
a service. In computer science its meaning is similar to that of the terms "technique",
"algorithm", "function" or "procedure", which will be used alternatively in this thesis.

Methodology: Methodology is defined as "a comprehensive, integrated series of
techniques or methods creating a general systems theory of how a class of thought-
intensive work ought to be performed."

Metric: A metric is a quantitative measure of the degree to which a system, component,
or process possesses a given attribute.

Ontology: An ontology is a problem-relevant, shared, and formal specification of a
conceptualization.

Ontology engineering: Ontology Engineering or sometime referred to as "Ontological
Engineering refers to the set of activities that concern the ontology development

Terminology

161

process, the ontology life cycle, the methods and methodologies for building ontologies,
and the tool suites and languages that support them" (Gomez-Perez et al., 2004).

Ontology Reuse: Ontology reuse is the process in which existing ontological knowledge
is used as input to generate new ontologies (Paslaru-Bontas, 2007)

Process: (1) A process is a sequence of steps performed for a given purpose; for
example, the software development process. (2) A process is an executable unit
managed by an operating system scheduler.

Partitioning: Partitioning is the act or process of dividing something into parts. These
parts can be mutually exclusive or overlapping.

Quality: Quality is the degree to which a system, component, or process meets specified
requirements.

Reusability: Reusability is "the degree to which a software module or other work
product can be used in more than one computing program or software system". In a
specific context the term is similar to "usability" or "utility".

LIST OF FIGURES

Number Page

Figure 1-1: Term chunks of the FOAF vocabulary in the specification. 3

Figure 1-2: Design cycle for structuring the research activities according to the

Design Science Paradigm. ... 8

Figure 2-1: Visualizing of the layers of the Semantic Web. ... 12

Figure 2-2: Visualization of the Linked Open Data cloud .. 15

Figure 2-3: Comparison of the abstraction and the scope of ontologies. 18

Figure 2-4: The development process of METHONTOLOGY .. 20

Figure 2-5: Abstract overview of the On-To-Knowledge Process 22

Figure 2-6: The DILIGENT setting of roles and functions ... 23

Figure 2-7: Ontology development processes in the NeOn methodology 25

Figure 2-8: Corporate Ontology Lifecycle Methodology ... 27

Figure 3-1: Different approaches to serialize an ontology, ... 35

Figure 3-2: The usability-reusability tradeoff problem. .. 37

Figure 3-3: An example of a documentation page created with OWLDoc 38

Figure 3-4: "At a glance" section of Neologism .. 40

Figure 3-5: Term chunks of the Biographical Ontology in the documentation page........ 42

Figure 3-6: Term chunks of the GI2MO ontology in a tree structure 44

Figure 3-7: Term chunks of the provo ontology ... 45

Figure 3-8: Term chunks of the Online Presence Ontology ... 46

Figure 3-9: Term chunks of the pvc ontology ... 47

Figure 3-10: Term chunks of the Represent Rights Data Ontology 48

Figure 3-11: Distribution of the number of elements per term chunks........................... 50

164

Figure 3-12: Dependency graph of the modules of fibo ... 55

Figure 5-1: Conceptual model of the adaptable ontology partitioning framework. 76

Figure 5-2: Presentation of the overall partitioning process in a step-by-step maner 77

Figure 5-3: Two different structural representation of the Friend-of-a-Friend

ontology visualized as graphs. .. 79

Figure 5-4: UML class diagram representing the entities defined in OWL....................... 82

Figure 5-5: Graphical illustration of community detection algorithms. 98

Figure 5-6: Illustration of the basic level in a category tree. ... 103

Figure 5-7: Various functions for weighting the subClassOf relation 104

Figure 5-8: Illustration of the score function for the modified Modularity function. 106

Figure 6-1: Distribution of the overall results for reconstructing term chunks. 114

Figure 6-2: Distribution of the results for the different ontologies. 115

Figure 6-3: Distribution of the results for different fixed parameters. 116

Figure 6-4: Share of the different concrete parameter values on the best ten results

for all ontology. .. 117

Figure 6-5: Distribution of the results for all three algorithms for each ontology and

for all ontologies aggregated. ... 121

Figure 6-6: F-Measure values above the modularity values for each ontology and for

the aggregation of all results. ... 123

Figure 6-7: Distribution of the F-Measure values for the different ontologies. 124

Figure 6-8: Distribution of the results for different fixed parameters. 125

Figure 6-9 Share of the different properties on the top ten results of the partitioning

processes ... 126

Figure 6-10: Performance of the algorithms for each ontology 127

Figure 6-11: F-Measure values above the modularity values .. 128

165

Figure 7-1: Performance for reconstructing term chunks with Pato, SWOOP, and the

proposed framework with two different configurations: predefined

parameter selection and distance-based parameter selection.................... 134

Figure 7-2: Performance of two possible configuration approaches of the proposed

framework ... 135

Figure 7-3: Performance for reconstructing modular ontologies 137

Figure 7-4: Performance of two possible configuration approaches of the proposed

framework ... 138

LIST OF TABLES

Table Page

Table 1-1: Popular ontologies along with some size properties. 1

Table 3-1: Overview of some important properties from the existing term chunks in

the documentations. .. 49

Table 3-2: Size properties of the fibo modules ... 55

Table 3-3: Properties of the modularization for the analyzed ontologies 56

Table 4-1: Ontology structure in literature ... 72

Table 5-1: Overview of the mapping of the metrics to related work 94

Table 5-2: Usage analysis of the RDFS and OWL properties. ... 100

Table 5-3: Weights for non-hierarchical properties. ... 102

Table 6-1: Configurations for the size related parameters of the framework 112

Table 7-1: Overview of the selected configurations for term chunks based on the

Euclidean distance. ... 133

Table 7-2: Average score values and standard deviation for the different partitioning

techniques ... 134

Table 7-3: Overview of the selected configurations for modular ontologies based on

the Euclidean distance.. 136

Table 7-4: Overall results for all merged ontologies with PATO, SWOOP and the

proposed framework .. 137

ABBREVIATIONS

aair: Atom Activity Streams Ontology 41

ABox: Assertional Box 77

AI: Artificial Intelligence 11

bio: Biographical Ontology 41

COLM: Corporate Ontology Lifecycle Methodology 27

curio: Collaborative User Resource Interaction Ontology 41

DL: Description Logics 77

ebc: Edge Betweenness Community 99

ecos: Enterprise Competence Organization Schema 42

EDM: Enterprise Data Management 54

fgc: Fast Greedy Community 99

fibo: Financial Industry Business Ontology 54

foaf: Friend of a Friend Vocabulary 2

gi2mo: GI2MO Types Taxonomy 43

JEOE: Just Enough Ontology Engineering 26

LOD: Linked Open Data 100

music: Music Ontology 43

OMG: Object Management Group 54

opo: Online Presence Ontology 45

OTKM: On-To-Knowledge Methodology 21

OWL: Web Ontology Language 13

premis: Premis 47

provo: W3C Prov Ontology 44

170

pvc: Provenance Vocabulary Core 47

RDF: Resource Description Framework 12

RDFS: RDF Schema 13

rrdonto: Represent Rights Data Ontology 48

SemNA: Semantic Network Analysis 63

sioc: Semantically-Interlinked Online Communities 53

spice: SPICE Mobile Ontology 54

SQuaRE: Software Quality Requirements and Evaluation 52

SUMO: Suggested Upper Merged Ontology 17

swco: Semantic Web Conference Ontology 48

TBox: Terminological Box 77

URI: Uniform Resource Identifie 12

W3C: Word Wide Web Consortium 44

wtc: Walktrap Community 99

XML: Extensible Markup Language 12

ZUSAMMENFASSUNG

Komponentenbasierte Entwicklung von komplexen Softwaresystemen verbessert die
Wartbarkeit und führt zu wiederverwendbaren Softwaremodulen. Ausgehend von
dieser Erfahrung wird angenommen, dass die komponentenbasierte Entwicklung von
Ontologien ähnliche Vorteile bringt. Allerdings sind die meisten Ontologien monolithisch
aufgebaut, so dass mit der steigenden Anzahl online verfügbarere Ontologien auch die
Größe und Komplexität mit angestiegen ist. Für die effiziente Nutzung, die einfache
Wartbarkeit und die Möglichkeit wiederverwendbarer Komponenten bedarf es daher
geeigneter Partitionierungstechniken. Insbesondere im Kontext von Semantic Web ist
die Wiederverwendung von Ontologien von essentieller Bedeutung, da diese die
webübergreifende Datenintegration und Interoperabilität heterogener Systeme
ermöglichen.

In dieser Arbeit wird ein strukturbasierter Ansatz zu Partitionierung von Ontologien
verfolgt, in dem Ontologien als Netzwerke repräsentiert werden. Diesen wird eine
Kantengewichtung hinzugefügt, welches die semantischen Beziehungen innerhalb der
Ontologien berücksichtig. Darauf aufbauend wird ein konfigurierbarer Ansatz zur
Partitionierung von Ontologien mit Hilfe von Community Detection Algorithmen aus
dem Bereich der sozialen Netzwerke erarbeitet. Dabei liegt das Hauptaugenmerk auf
zwei konkreten Anwendungsfällen für die Partitionierung, nämlich der Modularisierung
von existierenden komplexen Ontologien zur Vereinfachung der Wartbarkeit und der
Erzeugung von Begriffsgruppierungen für die Dokumentationsseiten zur Unterstützung
der Wiederverwendbarkeit. Anforderungen für beide Fälle werden aus existierenden
Lösungen extrahiert, welche im späteren Prozess in einem Goldstandardansatz als
Referenzmodell auch zur Evaluation verwendet werden.

In experimentellen Analysen des vorgeschlagenen Ansatzes werden die besten
Parameterwerte für die jeweiligen Anwendungsfälle ermittelt. Mit diesen wird das
System dann mit den bereits existierenden Werkzeugen zur Ontologiepartitionierung
SWOOP und Pato verglichen. In diesem direkten Vergleich kann gezeigt werden, dass
der hier erarbeitete Ansatz signifikant bessere Ergebnisse als die beiden Konkurrenten
liefern kann. Allerdings sind die Ergebnisse nicht so gut, dass davon ausgegangen
werden kann, dass ein vollständisch automatischer Prozess für die Partitionierung
möglich ist. Der strukturbasierte Ansatz zur Partitionierung kann nur für eine
semiautomatische Partitionierung verwendet werden, so dass die Nutzer die Ergebnisse
manuell nachbessern müssen.

174

Curriculum Vitae

(Der Lebenslauf ist in der Online-Version aus Datenschutzgründen nicht enthalten.)

177

Erklärung

Hiermit erkläre ich, dass alle Hilfsmittel und Hilfen angegeben sind und versichere, auf

dieser Grundlage die vorliegende Arbeit selbstständig verfasst zu haben. Diese Arbeit

wurde bisher noch nicht in einem früheren Promotionsverfahren eingereicht.

Berlin, 18.03.2014 Gökhan Coskun

