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Chapter 1

Introduction

This thesis is about the variational approach to conformational dynamics (VAC), a
method to extract essential information about stationary and kinetic properties
from simulations of high-dimensional stochastic dynamics. We will develop
the theory for ergodic and reversible Markov processes, and we will use mo-
lecular dynamics (MD) simulations of biological macromolecules as the guid-
ing application, but the method can be applied in a much broader context.

Molecular dynamics is a family of powerful simulation protocols to ex-
plore the thermodynamics and kinetics of biological macromolecules, such as
protein or enzymes [1, 2]. Here, one or a few macromolecules of interest are
simulated at atomistic resolution, that is, each atom is represented as a point
particle. Often, the molecule is placed into a simulation box filled with wa-
ter molecules which are also represented at atomistic resolution. The system’s
time evolution is modeled by a stochastic dynamical system, typically some
Itô stochastic differential equation like Langevin dynamics, where the drift is
determined by the gradient of an empirical potential energy [3]. The details
vary for each individual application, but the important point is that MD simu-
lations sample from a continuous time Markov process in a high-dimensional
space. The dimension equals the total number of atomic coordinates and pos-
sibly momenta, which can be on the order of ten thousands or even hundred
thousands degrees of freedom.

A key feature of molecular simulation data is metastability. The integration
time step in MD simulations is limited to only a few femtoseconds (the stan-
dard value is two femtoseconds), which reflects the timescales of fastest vibra-
tions within the molecule. However, it can often be observed that the overall
geometrical shape of the molecule is preserved for long times in the simula-
tion, during which the dynamics only samples small scale fluctuations. Only
rarely, a major transition into a different geometrical shape can be observed.
These long-lived geometrical shapes are called metastable conformations, and
the process of exchanging between them is called conformational dynamics
[4]. Metastable transitions often correspond directly to biologically relevant
events, like protein folding or binding / unbinding of a ligand. The timescales
of transitions between metastable conformations frequently exceed the inte-
gration time step by many orders of magnitude, and can be on the orders of
microseconds or milliseconds or even beyond.

Two challenges arise from this observation. Firstly, MD simulations pro-
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duce huge amounts of highly redundant data. Automatic analysis methods
that can extract the essential information from the data are needed to make use
of the simulations. Such a method should be able to detect metastable states,
the timescales of transitions in between them, and provide a low-dimensional
representation of the data that captures the essential dynamics. Secondly, sta-
tistically reliable sampling of all relevant metastable states and transitions by
a single long equilibrium simulation is infeasible for large and complex bio-
logical systems, even with modern supercomputers. Therefore, methods are
needed that can extract the essential information from a large ensemble of
fairly short simulations, that can be produced efficiently on parallel or dis-
tributed computer architectures, but must be expected to sample from a non-
equilibrium distribution.

Going back to the pioneering works of Davies [5, 6] as well as Dellnitz
and Junge [7], it is known that metastability in Markov processes gives rise
to eigenvalues of the associated transfer operator which are close to the Perron
root λ1 = 1. While these eigenvalues provide information about characteristic
transition timescales between metastable states, the corresponding eigenfunc-
tions can be used to identify metastable states in space. The eigenfunctions
can be expected to be almost constant within each metastable state, but display
changes of sign across the transition regions in between [8]. Dominant eigen-
functions of the transfer operator thus provide an optimal low-dimensional
representation of the essential dynamics.

Over the past 15 years, Markov state models (MSMs) [9, 10, 11] have become
a standard tool for the analysis of molecular dynamics simulation data. An
MSM provides a simplified model of the original Markov process by a dis-
crete time Markov chain on finitely many states. These states are defined by
partitioning the continuous state space into finitely many disjoint sets. Time is
discretized by choosing a discrete time step, called the lag time, and the full pro-
cess is replaced by a snapshot process that only keeps track of the discrete state
visited at the discrete time steps. Any time information in between and any
spatial information within the discrete sets is discarded. This Markov chain
is fully described by a stochastic transition matrix. MSMs provide an approx-
imation to the transfer operator and its dominant eigenfunctions in terms of
piecewise constant functions on the set partitioning [12], and therefore agree
with what is known as Ulam’s method in the study of dynamical systems [13].
MSMs are easily estimated; basically, only the number of transitions between
all pairs of discrete states must be counted over all available simulation data.
More advanced estimators have also been developed [14, 15], while extensive
analysis tools can detect metastable states [16, 17], transition paths [18], un-
certainties of derived quantities [19, 20, 15] and relations to experimental data
[21, 22]. Moreover, it is often possible to estimate an MSM from an ensemble
of many short trajectories [23], although we will discuss this in more detail
in chapter 6. Recalling the challenges introduced above, MSMs are a power-
ful tool for the analysis of molecular simulation data. It is no surprise then
that Markov state models have been successfully applied in numerous studies
[24, 25, 14, 23, 26, 27].

One of the main difficulties for the construction of MSMs is the determi-
nation of a suitable state space partitioning. A widely used procedure is to
first apply basic dimensionality reduction methods, like time-lagged indepen-
dent component analysis (TICA) [28, 29, 30], to project the data onto a smaller
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number of informative coordinates. In the second step, geometric cluster-
ing algorithms, such as kmeans, are used to cluster the projected data and
thus determine the discrete states. The result is a Voronoi partition in high-
dimensional space that often lacks a physical interpretation. Moreover, it is
generally unclear how a clustering of the simulation data can be found that
separates metastable states well. If we recall that an MSM approximates the
dominant eigenfunctions from a basis of piecewise constant functions, we see
that it is particularly important to separate metastable states and to resolve
transition regions well by means of the discretization [12].

In this thesis, we present a general method that extracts the essential infor-
mation from molecular simulation data by approximating the dominant eigen-
functions from a pre-selected library of basis functions. These basis functions
can be chosen to carry a physical meaning. They can, for instance, encode basic
configurational changes along simple molecular coordinates, like distances or
angles, thus allowing for an interpretation of the results. We start by review-
ing the theory of Markov processes and their associated transfer operators in
chapter 2, as well as the relation between metastability and dominant spec-
tral components. Next, in chapter 3, we introduce the variational theorem 3.1
from Ref. [31] and explain how it gives rise to the generalized eigenvalue prob-
lem Eq. (3.1.7) that must be solved in order to approximate dominant spectral
components from a given subspace of basis functions. This problem is the cen-
terpiece of our study. We show how the matrices appearing in Eq. (3.1.7) can
be estimated from simulation data, and we also explain how both MSMs and
TICA arise as special cases. In chapter 4, we illustrate the method using toy
systems and small molecular systems, and provide the proof of concept that
physically interpretable basis sets can indeed be advantageous compared to
set discretizations. In chapter 5, we go on to discuss how basis functions de-
fined on elementary molecular coordinates (we will call them one-coordinate
functions) can be used to model complex dynamical processes, that must be
expected to be non-linear functions of the molecular coordinates. We suggest
to use tensor products of one-coordinate functions as a basis set. This formu-
lation allows to use a large and very general library of basis functions, and
thus removes the dependence of the method on pre-processing steps or a pri-
ori knowledge of the system under investigation. However, the tensor product
formulation leads to an explosion of the basis set size - the curse of dimension-
ality. Consequently, we investigate the use of a low-rank tensor representation,
the tensor-train-(TT)-format [32, 33], and its learning algorithm alternating linear
scheme (ALS) [34], in order to circumvent the dimensionality problem. We for-
mulate a new optimization problem that helps to apply the existing algorithm
in our setting, and provide two benchmark applications as a proof of concept.
In the final chapter 6, we discuss the use of short non-equilibrium simulations
in order to address the second challenge mentioned above. Markov state mod-
els can often be constructed from such data [23]. The intuitive argument is
that only conditional transition probabilities need to be estimated to build the
transition matrix. It follows that only a local equilibrium within each state
is required in order to obtain an unbiased estimate of transition probabilities
[35, 36, 37, 38]. However, this local equilibrium can only be approximately
achieved in practical simulations, and it has remained an open question how
to verify the approximate local equilibrium in practice, or how to deal with de-
viations in an optimal way. We systematically study the error due to deviations
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from equilibrium, and show how it depends on the initial conditions, the lag
time, and the state definition. We proceed to explain how the framework of ob-
servable operator models (OOMs) [39, 40, 41] can be used to obtain unbiased esti-
mates of transition probabilities from non-equilibrium simulations. The OOM
formulation only relies on a finite-rank assumption on the transfer operator,
that can often be assumed to be approximately fulfilled in practice. OOM es-
timation methods can also provide exact estimates of the slowest eigenvalues
of the transfer operator, thus enabling us to assess the approximation quality
of an MSM. We discuss several algorithmic details and present applications to
model systems. Although we focus on MSMs in chapter 6, we conclude by
explaining how the OOM-based estimation method can be generalized to ar-
bitrary basis functions in the VAC. Application of this formulation will be the
subject of future work.
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Chapter 2

Markov Processes and
Transfer Operators

In this chapter, we review some of the theory of Markov processes, transfer
operators and their dominant spectrum.

2.1 Markov Processes

We are concerned with Markov processes Xt in continuous time and space. A
Markov process is a random process where the future behaviour is only de-
pendent on the present state. In order to introduce such a process formally,
we start with a general stochastic process. We assume there is a state space S,
which is the set of all possible states the process can visit. In this work, we will
think of S being a subset of Euclidean space R

n, but the theory remains valid
in much more general situations. Let us denote the Borel σ-algebra on S by
S, and let (Ω, Σ, P) be a probability space. A stochastic process is a family of
random variables Xt , defined for each t in some index set I, that map Ω into S:

ω ∈ Ω → Xt(ω) ∈ S. (2.1.1)

We will restrict ourselves to the situation where the index set is the non-negative
real line, I = R≥0, such that the index t can be interpreted as time. In view of
this, we call the map

t → Xt(ω), (2.1.2)

for fixed ω, a path, a trajectory or a realization of the process Xt. The probabil-
ity space Ω can be chosen to be the space of trajectories SI , i.e. the space of
mappings ω : R≥0 → S, and the random variables Xt are the projections of a
trajectory ω onto its value at time t. In this scenario, the probability measure P

determines the probabilities of complete realizations.
Stochastic processes can be specified by their finite-dimensional distributions.

Let J = {t1, . . . , tl} ⊂ I, t1 ≤ . . . ≤ tl denote any finite collection of time
indices. Assume that for every collection J, P J is a probability measure on the
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2.1. MARKOV PROCESSES

σ-algebra generated by sets of the form A1 × A2 × . . . × Al , where the Ai are
sets in S. Then, under mild conditions on the P J , the consistency theorem of
Kolmogorov and Daniell [42, Cor. 35.4] guarantees the existence of a stochastic
process with probability measure P, such that

P J(A1 × . . . × Al) = P(Xt1 ∈ A1, . . . Xtl
∈ Al). (2.1.3)

Thus, a stochastic process is determined by the probabilities of all finite obser-
vation sequences as on the right hand side of Eq. (2.1.3).

A Markov process is a stochastic process that does not remember its past,
only its present state. This can be formalized by requiring that for all choices
of s1 < . . . < sl < t, we have

P(Xt ∈ A|Xs1 , . . . , Xsl
) = P(Xt ∈ A|Xsl

), (2.1.4)

see [42, Lem. 42.4]. Strictly speaking, the conditional probabilities in Eq. (2.1.4)
are conditional expectations. The centerpiece for the definition of a Markov
process is a stochastic transition kernel:

Definition 2.1. A family of maps (pt)t≥0, pt : S ×S → [0, 1] is called a semi-
group of stochastic transition kernels, or a Markov semigroup, if

1. For each x ∈ S, the map pt(x, ·) is a probability measure on S.

2. For each A ∈ S, the map pt(·, A) is S-measurable.

3. The Chapman-Kolmogorov equation is fulfilled for all s, t ≥ 0:

ps+t(x, A) =
∫

S
ps(x, dy)pt(y, A). (2.1.5)

4. For t = 0, the measure p0(x, ·) is the Dirac measure concentrated at x for
all x.

The family of stochastic transition kernels and an initial distribution determine
a Markov process:

Definition 2.2. For a Markov semigroup pt and a probability measure ν0 on S,
define a stochastic process via the finite-dimensional distributions

P J(A) :=
∫

S
. . .

∫

S
χA(x1, . . . , xl)ptl−tl−1

(xl−1, dxl) . . . pt1(x0, dx1)ν0(dx0),

(2.1.6)

where J is the collection of time indices t1 < . . . < tl , χ denotes the indicator
function of a set, and A = A1 × . . . × Al , Ai ∈ S.

Theorem 2.3. The finite-dimensional distributions Eq. (2.1.6) define a stochastic pro-
cess Xt which fulfills the Markov property Eq. (2.1.4).
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2.2. TRANSFER OPERATORS

For a proof of this theorem, see [42, Thm. 36.4 and Thm. 42.3]. In order
to emphasize that the probability measure P of the resulting stochastic process
was generated by choosing the initial distribution ν0, it can also be denoted by
Pν0 . If we consider the space Ω∆t of discrete trajectories (Xk∆t)

∞
k=0, generated

by sampling continuous time trajectories Xt at discrete time intervals k∆t, ∆t >
0, then the measure P induces a probability measure P∆t on the corresponding
σ-algebra Σ∆t by restricting the finite-dimensional distributions:

P∆t(Xk1∆t ∈ A1, . . . , Xkl∆t ∈ Al) = P(Xk1∆t ∈ A1, . . . , Xkl ∆t ∈ Al).

(2.1.7)

2.2 Transfer Operators

Usually, one is interested in the dynamics of an ensemble of realizations, not
of a single trajectory. If a large (ideally infinite) ensemble of trajectories is ini-
tially distributed according to ν0, Equation (2.1.6) provides an expression for
the distribution νt at time t > 0:

νt(A) =
∫

A

∫

S
pt(x0, dxt)ν0(dx0) (2.2.1)

=
∫

S
pt(x0, A)ν0(dx0). (2.2.2)

We restrict our attention to initial distributions which are absolutely continu-
ous w.r.t. some fixed measure µ on the state space S, that is, there is a density
function ρ0 such that

ν0(A) =
∫

A
ρ0(x)µ(dx). (2.2.3)

In this case, Eq. (2.2.2) transforms into

νt(A) =
∫

S
pt(x0, A)ρ0(x0)µ(dx0). (2.2.4)

If the distribution νt also possesses a density ρt w.r.t. µ, then Eq. (2.2.4) reads:

∫

A
ρt(x)µ(dx) =

∫

S
pt(x, A)ρ0(x)µ(dx), ∀A ∈ S. (2.2.5)

Under mild conditions, such a density can be proven to exist. In fact, Eq. (2.2.5)
determines a linear operator which can be extended from densities to functions
of the space L1

µ, that is, the space of absolutely integrable functions w.r.t. the
measure µ. The proof mainly relies on the Radon-Nikodym-Theorem, see Ref.
[43, Chap. 3.2.] for details:

Theorem 2.4. If the transition kernel pt satisfies that whenever µ(A) = 0 for some
A ∈ S, it follows that pt(x, A) = 0 µ-a.e. in x, there is a linear operator Tt : L1

µ →
L1

µ, satisfying for all A ∈ S:
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2.3. INVARIANT MEASURES AND REVERSIBILITY

∫

A
[Tt f ] (x)µ(dx) =

∫

S
pt(x, A) f (x)µ(dx). (2.2.6)

There are different names for the hypothesis of Theorem 2.4, following Ref.
[43], we will call it non-singularity of the transition kernel w.r.t. µ. The linear
operator Tt is called the transfer operator, and it is a key ingredient for all that
follows. We list some important properties [43]:

Proposition 2.5. (i) The transfer operator is a Markov operator, that is, Tt f ≥ 0 if
f ≥ 0, and ‖Tt f‖1 = ‖ f‖1 if f ≥ 0.

(ii) The transfer operators for different time indices form a semigroup of operators,
i.e.

Ts+t = TtTs, s, t ≥ 0. (2.2.7)

In particular, T0 equals the identity operator.

Before proceeding, we introduce a closely related operator that also carries
an intuitive meaning [43].

Definition 2.6. The adjoint operator Kt : L∞
µ → L∞

µ of the transfer operator is
called the Koopman operator.

Proposition 2.7. The Koopman operator acts on functions g ∈ L∞
µ by

Ktg(x) =
∫

S
pt(x, dy)g(y) (2.2.8)

= Ex [g(Xt)] . (2.2.9)

where Ex denotes expectation with respect to the measure Px generated by the initial
distribution δx, i.e. the process is started deterministically at X0 = x.

2.3 Invariant Measures and Reversibility

Invariant measures are of particular importance in the study of Markov pro-
cesses. A measure ν is called invariant if it is unchanged under the dynamics,
that is, if the initial probability distribution ν0 equals ν, the measure νt in Eq.
(2.2.2) is also equal to ν. If ν is absolutely continuous w.r.t. the measure µ
defining the transfer operator Tt, invariance can be formulated in terms of Tt:

Lemma 2.8. Let ρ be the density function of an invariant measure which is absolutely
continuous w.r.t. µ. Then ρ satisfies

Ttρ = ρ. (2.3.1)

Proof. This follows directly from Eqs. (2.2.5-2.2.6).

8



2.3. INVARIANT MEASURES AND REVERSIBILITY

Henceforth, we will assume that there is a unique invariant measure of the
process Xt. In molecular applications, this assumption is usually satisfied, and
the invariant measure is defined by the Boltzmann distribution. We will also
assume that the transfer operator is defined in terms of the unique invariant
measure, i.e. µ is invariant from now on. It is easy to show that invariant
measures are non-singular, and Lemma 2.8 implies that in this case, we have
Tt1 = 1, where 1 is the constant function on S. In many cases, the invariant
measure possesses a density with respect to the Lebesgue measure. We will
always call this density π. We also use the notation

〈 f , g〉µ =
∫

S
f (x)g(x)µ(dx) (2.3.2)

for the duality bracket between f ∈ L
p
µ, g ∈ L

q
µ, 1

p + 1
q = 1, or

〈 f , g〉π =
∫

S
f (x)g(x)π(x)dx, (2.3.3)

if the invariant measure possesses a density π.

The transfer operators based on invariant measures are well-defined on all

Lebesgue spaces L
p
µ, 1 ≤ p ≤ ∞. As the proof of this statement can be hard to

find in the literature, we repeat it appendix C.1, see also Ref. [44]. The restric-
tion of the transfer operator to other Lebesgue spaces is particularly useful for
reversible systems:

Definition 2.9. The transition kernel pt is called reversible with respect to the
measure µ if for all A, B ∈ S:

∫

A
pt(x, B)µ(dx) =

∫

B
pt(x, A)µ(dx). (2.3.4)

Pµ(X0 ∈ A, Xt ∈ B) = Pµ(X0 ∈ B, Xt ∈ A). (2.3.5)

The second formulation of reversibility in Eq. (2.3.5) shows that there is
no preferred pathway or direction in the system. For molecular systems, re-
versibility reflects that the system is in thermodynamic equilibrium. Choosing
B = Ω in Eq. (2.3.5) implies that µ is automatically invariant if pt is reversible
w.r.t. µ. The following can be proven using Eq. (2.3.4) [45, Prop. 1.1.]:

Proposition 2.10. The transition kernel pt is reversible w.r.t. µ if and only if, for all
f , g ∈ L2

µ,

〈Tt f , g〉µ = 〈 f , Ttg〉µ. (2.3.6)

For a reversible system, the transfer operator can be studied as a self-adjoint
operator on the Hilbert space L2

µ.
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2.4. SPECTRAL PROPERTIES OF TRANSFER OPERATORS

2.4 Spectral Properties of Transfer Operators

We focus on the transfer operator at some specific time step τ > 0, called the
lag time. Many interesting properties of transfer operators are directly linked
to its spectrum, especially to its dominant spectrum, i.e. to eigenvalues close
to one. The following two assumptions on the spectrum are typically made
[45, 31]. Ref. [45] also provides conditions to guarantee these assumptions are
satisfied.

1. The eigenvalue λ = 1 is simple, i.e. of multiplicity one, and dominant,
that is, it is the only eigenvalue on the complex unit circle.

2. The essential spectral radius of the transfer operator is smaller than one,
i.e. there is a ball of radius r < 1 such that any element of the spectrum
outside this ball is a discrete eigenvalue.

For a reversible transfer operator on L2
µ, assumptions 1 and 2 imply that the

spectrum is composed of a number of discrete eigenvalues 1 = λ1 > λ2 ≥
. . . ≥ λM, and the remaining spectrum is contained in an interval [0, r], r < λM

[31]:

σ(T τ) ⊂ [0, r] ∪ {λM, . . . , λ2, 1} . (2.4.1)

If we wish to emphasize the lag time dependence of the eigenvalues, we also
write λm(τ). By self-adjointness of Tτ, the eigenvalues λ1, . . . , λM come along
with mutually orthonormal eigenfunctions ψ1, . . . ψM, where ψ1 ≡ 1 is the con-
stant function on S. If there is a stationary density π, we will sometimes also
refer to weighted eigenfunctions

ϕm(x) = π(x)ψm(x). (2.4.2)

In analogy to reversible Markov chains, the functions ϕm are sometimes called
left eigenfunctions while ψm are called right eigenfunctions.

The first assumption expresses that there is a unique invariant measure and
that every initial density converges to the invariant density by the action of the
transfer operator. It is shown in Ref. [45, Cor. 4.22.] that assumption 1 is
equivalent to

‖Tnτρ − 1‖1 ≤ Mqn, (2.4.3)

for some constants M > 0, q < 1 and any density ρ ∈ L1
µ .

The spectrum close to one is related to the concept of metastability, which
is a key feature of Markov processes arising in molecular simulation. As out-
lined in the introduction, we expect to find regions of the state space such that
transitions between two such regions over lag time τ are rare-events unless τ
is very large. Introducing the transition probability from set A to B (A, B ∈ S)
over time τ,

pτ(A, B) :=
1

µ(A)

∫

A
p(x, B)µ(dx) (2.4.4)

10



2.4. SPECTRAL PROPERTIES OF TRANSFER OPERATORS

=
〈TτχA, χB〉µ

〈χA, χA〉µ
, (2.4.5)

a set A is called metastable (on the timescale τ) if pτ(A, A) ≈ 1. Following
Ref. [31], the metastability of a decomposition of state space S into M non-

overlapping sets S1, . . . , SM, S =
⋃M

m=1 Sm, is defined as the sum of conditional
self-transition probabilities:

M

∑
m=1

pτ(Sm, Sm) =
M

∑
m=1

〈TτχSm , χSm〉µ

〈χSm , χSm〉µ
. (2.4.6)

The relation of metastability to eigenvalues close to one goes back to the work
of Davies [5, 6]. It was studied in the context of dynamical systems by Dell-
nitz and Junge [7] and in the context of molecular dynamics by Deuflhard and
Schütte [4, 8]. The following upper and lower bounds for the metastability of
a decomposition have been established by [31, Cor. 3]:

Theorem 2.11. For a reversible transfer operator Tτ such that assumptions 1 and 2 are
satisfied, i.e. the spectrum satisfies Eq. (2.4.1), the metastability of any decomposition
S1, . . . , SM is bounded from above and from below by

M

∑
m=1

cmλm ≤
M

∑
m=1

pτ(Sm, Sm) (2.4.7)

≤
M

∑
m=1

λm, (2.4.8)

where 0 ≤ cm ≤ 1 are given by

cm =
M

∑
i=1

〈ψm, χSi
〉2

µ

〈χSi
, χSi

〉µ
. (2.4.9)

If there exist M sets Sm which are metastable on the timescale τ, then

pτ(Sm, Sm) ≈ 1 (2.4.10)

for all m, and by the upper bound, there must be M eigenvalues close to one.
The lower bound reflects another important observation: the lower bound gets
sharper if all projections cm are close to one. For a metastable decomposition,
we can expect the eigenfunctions ψm to be almost constant on each of the sets
Sm, see again Refs. [6, 8].
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Chapter 3

The Variational Formulation

We have seen that in order to analyze the stationary and slow dynamical prop-
erties of reversible Markov processes, we need to approximate its dominant
eigenvalues and eigenfunctions. In this chapter, we introduce a variational
formulation for the leading eigenvalues of the transfer operator and derive an
approximation procedure from a finite dimensional space of basis functions.
We also show how the matrices arising in this approximation method can be
estimated from simulations of the process. The results we state were originally
presented in Ref. [46].

3.1 The Variational Theorem

In order to approximate the dominant eigenfunctions ψm and eigenvalues λm

of the transfer operator Tτ numerically, we follow one of the standard ap-
proaches in numerical mathematics by fixing some finite dimensional sub-
space D ⊂ L2

µ, and try to approximate the eigenfunctions optimally within the
subspace. The following result shows what optimality means in this context
[47, 31]:

Theorem 3.1. Let 1 = λ1 > λ2 ≥ . . . ≥ λM be the dominant eigenvalues of the
reversible transfer operator on L2

µ. Then

M

∑
m=1

λm = sup
M

∑
m=1

〈Tτ fm, fm〉µ, (3.1.1)

〈 fm, fm′〉µ = δm,m′. (3.1.2)

The sum of the first M eigenvalues maximizes the Rayleigh trace, which is the sum on
the right hand side of Eq. (3.1.1) over all selections of M orthonormal functions fm.
The maximum is attained for the first M eigenfunctions ψ1, . . . , ψM.

Proof. The M-dimensional space D spanned by the functions fm must contain
an element gM which is orthonormal to the first M − 1 eigenfunctions ψj, i.e.
〈gM, ψj〉µ = 0, j = 1, . . . , M − 1. By the standard Rayleigh principle for self-
adjoint operators [48]

12



3.1. THE VARIATIONAL THEOREM

〈TτgM, gM〉µ ≤ λM. (3.1.3)

Next, determine a normalized element gM−1 of the orthogonal complement of
gM in D, s.t. 〈gM−1, ψj〉µ = 0, j = 1, . . . , M − 2. Again, we can invoke the
Rayleigh principle to find

〈TτgM−1, gM−1〉µ ≤ λM−1. (3.1.4)

Repeating this argument another M − 2 times provides an orthonormal basis
g1, . . . , gM of the space D such that

M

∑
m=1

〈Tτgm, gm〉µ ≤
M

∑
m=1

λm. (3.1.5)

As the Rayleigh trace is independent of the choice of orthonormal basis for the
subspace D, and the space itself was arbitrary, this proves Eqs. (3.1.1-3.1.2).
Clearly the maximum is attained for the first M eigenfunctions.

In order to find the optimal approximations from within a given N-dimen-
sional subspace D, where N ≥ M, we restrict the Rayleigh trace to the space
D. We need to find M orthonormal linear combinations from the subspace
D such that the Rayleigh trace is maximal. If the space D is spanned by N
linearly independent functions f1, . . . , fN , and a ∈ R

N is the coefficient vector
of a function in D, we will call this function fa:

fa =
N

∑
i=1

a(i) fi. (3.1.6)

The restricted optimization problem is solved as described by the following
proposition, see e.g. [49]:

Proposition 3.2. Let D be a space of N linearly independent ansatz functions fi, i =
1, . . . , N. The set of M ≤ N mutually orthonormal functions fam , m = 1, . . . , M
which maximize the Rayleigh trace restricted to D, is given by the first M eigenvectors
of the generalized eigenvalue problem

Cτam = λ̂mC0am, (3.1.7)

where the matrices Cτ, C0 are given by

Cτ(i, j) = 〈Tτ fi, f j〉µ (3.1.8)

C0(i, j) = 〈 fi, f j〉µ. (3.1.9)

13



3.1. THE VARIATIONAL THEOREM

Proof. First, note that for any functions fa and fb, we have that

〈Tτ fa, fb〉µ = aTCτb, (3.1.10)

〈 fa, fb〉µ = aTC0b. (3.1.11)

Let us assume that the ansatz functions are mutually orthonormal, i.e. C0 = Id.
Then, maximization of the Rayleigh trace is equivalent to finding M vectors am,
such that aT

mam′ = δm,m′ and

M

∑
m=1

aT
mCτam =

M

∑
m=1

〈Cτam, am〉RN (3.1.12)

is maximal (the expression on the right hand side is the Euclidean scalar prod-
uct on R

N). By Theorem 3.1 applied to the operator Cτ on R
N , the optimal

vectors am are given by the first M eigenvectors of the symmetric matrix Cτ. In
the general case, transform the basis functions into a set of mutually orthonor-
mal functions f̃i via

f̃i =
N

∑
j=1

(

C0
)−1/2

(j, i) f j. (3.1.13)

The square root of the matrix C0 is guaranteed to exist because the basis func-
tions were assumed to be linearly independent. For the transformed basis, we
need to compute the eigenvectors ãm of

(

C0
)−1/2

Cτ
(

C0
)−1/2

ãm = λ̂m ãm. (3.1.14)

This is equivalent to the generalized eigenvalue problem Eq. (3.1.7), the rela-
tion between the eigenvectors is given by

am =
(

C0
)−1/2

ãm. (3.1.15)

The generalized eigenvalue problem Eq. (3.1.7) is the cornerstone of this
thesis. It allows us to compute an approximation to the leading transfer oper-
ator eigenfunctions from any finite-dimensional subspace D. Approximations
from different subspaces can be compared based on the Rayleigh trace, which
is easily computable from the solution [49]:

Lemma 3.3. Let fam , m = 1, . . . , M denote the solutions of the generalized eigen-
value problem Eq. (3.1.7). The functions fam are mutually orthonormal in L2

µ and the
associated Rayleigh trace is given by

M

∑
m=1

〈Tτ fam , fam〉µ =
M

∑
m=1

λ̂m. (3.1.16)
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3.1. THE VARIATIONAL THEOREM

Also, each individual eigenvalue λ̂m underestimates the true eigenvalue λm,

λ̂m = 〈Tτ fam , fam〉µ (3.1.17)

≤ λm. (3.1.18)

Proof. The orthonormality of solutions follows from the orthonormality of gen-
eralized eigenvectors with respect to the inner product on R

N induced by the
symmetric positive-definite matrix C0:

δm,m′ = aT
mC0am′ (3.1.19)

= 〈 fam , fam′ 〉µ. (3.1.20)

The second equality follows from Eq. (3.1.11). Likewise, the statement about
the Rayleigh trace follows from Eq. (3.1.10) via

〈Tτ fam , fam〉µ = aT
mCτam (3.1.21)

= λ̂maT
mC0am (3.1.22)

= λ̂m. (3.1.23)

It remains to prove inequality (3.1.18). First, we note that repeating the calcu-
lation in Eqs. (3.1.21-3.1.23) using functions fam , fam′ , it follows that

〈Tτ fam , fam′ 〉µ = λ̂m′δm,m′ . (3.1.24)

Now, let Dm denote the space spanned by the first m solutions of Eq. (3.1.7), i.e.
Dm = span { far , r = 1, . . . m}. For any normalized function f = ∑

m
r=1 cr far ∈

Dm, we conclude from the normalization and from Eq. (3.1.24):

1 = 〈 f , f 〉µ (3.1.25)

=
m

∑
r=1

c2
r , (3.1.26)

〈Tτ f , f 〉µ =
m

∑
r=1

λ̂rc2
r . (3.1.27)

The last expression is bounded from below by λ̂m. Moreover, we can find a nor-
malized function g ∈ Dm such that g is orthogonal to the first m − 1 solutions
fa1 , . . . , fam−1. Using the Rayleigh variational principle again, we conclude that

λ̂m ≤ 〈Tτ g, g〉µ (3.1.28)

≤ λm. (3.1.29)
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3.2 Estimation from Data

The generalized eigenvalue problem Eq. (3.1.7) requires the computation of
the matrices Cτ, C0, the elements of which contain overlap integrals between
basis functions (and operators) on the state space S. The computation of these
integrals cannot be performed by standard quadrature methods for realistic
systems, because of the high-dimensionality of S, and because of the lack of a
closed-form expression for the transfer operator Tτ or its transition kernel pτ.
However, the matrix entries also correspond to spatial correlations that can be
estimated from a sufficiently long realization of the process. Using the space
Ω∆t with measure P∆t from Eq. (2.1.7), it can be shown that (see appendix C.2
and Ref. [50, appendix B]):

Theorem 3.4. Let τ = L∆t be an integer multiple of the discrete time step. If the
Markov process is initially distributed according to the unique invariant measure µ,
then for P∆t-a.s. all trajectories (Xk∆t)

∞
k=0, we have:

Cτ(i, j) = lim
K→∞

1

K − L

K−L−1

∑
k=0

fi(Xk∆t) f j(X(k+L)∆t), (3.2.1)

C0(i, j) = lim
K→∞

1

K − L

K−L−1

∑
k=0

fi(Xk∆t) f j(Xk∆t). (3.2.2)

Theorem 3.4 is the real strength of the variational formulation from the
previous chapter. The matrices required to solve the eigenvalue problem Eq.
(3.1.7) can be approximated by computing matrices of instantaneous and time-
lagged correlations between the basis functions from a long equilibrium simu-
lation of the process.

3.3 Special Cases: Markov State Models and TICA

We would like to highlight two special cases of the approximation procedure
from Prop. 3.2. The first is obtained by partitioning the state space S into N
disjoint sets Si, i = 1, . . . , N, and choosing the space D as the span of the sets’
indicator functions fi = χSi

. In this case, we find

C0(i, j) =
∫

S
χSi

(x)χSj
(x)µ(dx) (3.3.1)

= δijP(X0 ∈ Si), (3.3.2)

Cτ(i, j) =
∫

Si

p(x, Sj)µ(dx) (3.3.3)

= P(X0 ∈ Si, Xτ ∈ Sj). (3.3.4)

The matrix C0 is a diagonal matrix of the stationary probabilities of all sets Si,
while the matrix Cτ contains the joint probabilities of observing the process in
Si first and in Sj after a time step τ. Multiplying the generalized eigenvalue

problem Eq. (3.1.7) by the inverse of C0 from the left, and recalling Eq. (2.4.5),
we end up with a standard eigenvalue problem of the form
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Tτam = λ̂mam, (3.3.5)

Tτ(i, j) = pτ(Si, Sj). (3.3.6)

The matrix Tτ contains conditional jump probabilities between the sets Si and
is therefore called a transition matrix, the resulting model is called a Markov state
model (MSM) [9, 10, 11]. MSMs have many appealing properties and have been
used very successfully in recent years.

The second special case is obtained as follows: assume that x1, . . . xN are
the coordinates of the state space S or of some subspace of S. Then, choose the
basis functions as the mean-free coordinates, i.e.

fi = xi − 〈xi〉µ (3.3.7)

= xi −
∫

S
xiµ(dx). (3.3.8)

In this case, the generalized eigenvalue problem Eq. (3.1.7) is equivalent to
time-lagged independent component analysis (TICA), which has been known for a
long time in statistics [28] under various names, and has been introduced in
molecular dynamics by Refs. [29, 30].

3.4 Implied Timescales

In many cases, the semigroup property from Prop. 2.5 (ii) implies that dynami-
cal eigenvalues λm(τ), m > 1 decay exponentially as a function of the lag time.
More precisely, the infinitesimal generator of the semigroup of transfer operators
Tτ is defined by

A f = lim
t→0

Tt f − f

t
. (3.4.1)

The operator A is defined for all functions f s.t. the limit in Eq. (3.4.1) exists.
Typically, these functions only form a subspace of the transfer operator’s do-
main, and the resulting generator is unbounded. For a reversible process, the
generator is self-adjoint and possesses real eigenvalues. Under the additional
assumption of strong continuity, which is fulfilled for many types of stochastic
differential equations [51], the following connection between the spectra of A
and Tτ can be made [51, Thm. 2.2.4]:

Theorem 3.5. Let the semigroup of transfer operators Tτ be strongly continuous, that
is

lim
t→0

Tt f − f = 0 (3.4.2)

holds for all f in the domain of Tτ . Let A be the infinitesimal generator. Then, the
spectra of A and Tτ are connected via
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eτσp(A) ⊂ σp(Tτ) ⊂ eτσp(A) ∪ {0} , (3.4.3)

where σp denotes the point spectrum of an operator. The corresponding eigenfunctions
of the generator and transfer operator are identical.

It follows that eigenvalues κm of the generator are non-positive, and the
largest eigenvalue κ1 = 0 is non-degenerate. The corresponding eigenfunction
is ψ1 ≡ 1 and corresponds to the stationary process. For every negative eigen-
value κm, m > 1 of the generator, the corresponding eigenvalue λm(τ) decays
exponentially with rate κm:

λm(τ) = eκmτ . (3.4.4)

In what follows, we will refer to the eigenvalues of the generator as rates.
Metastability of the transfer operator is then reflected in the presence of rates
close to zero.

Based on the exponential decay of dynamical eigenvalues, so-called implied
timescales have become an important concept. For m > 1, the m-th implied
timescale is defined as the negative inverse rate:

tm = − 1

κm
(3.4.5)

= − τ

log(λm(τ))
. (3.4.6)

The implied timescales are characteristic quantities of the system. If λm(τ) cor-
responds to a metastable transition, then for lag times much larger than tm,
λm(τ) has practically decayed to zero, thus the relaxation process between
the corresponding metastable sets has equilibrated. It follows that implied
timescales can be connected to experimentally observed relaxation timescales.
Moreover, if the eigenvalues λm(τ) are known or can be estimated without er-
ror, the right hand side of Eq. (3.4.6) does not depend on the lag time τ. If, how-
ever, they are estimated from an approximation λ̂m(τ) using Eq. (3.4.6), it fol-
lows from the variational principle Thm. 3.1 that the timescales are underesti-
mated. It has been shown in Ref. [52] that the estimation error |λ̂m(τ)− λm(τ)|
decays to zero with increasing lag time. Therefore, it can be expected that
timescale estimates based on Eq. (3.4.6) become constant for large enough τ.
This convergence is at least a necessary condition for a good approximation of
the eigenvalues λm(τ). The following implied timescale test has become a stan-
dard validation procedure in Markov model construction [9]: For a series of lag
times τ1 < . . . < τl, a model is estimated at each lag time τi. The leading im-
plied timescales are estimated using Eq. (3.4.6) and these estimates are plotted
as a function of the lag time. By visual inspection of the plot, a lag time τ∗ is se-
lected such that all relevant timescales are approximately constant for τ ≥ τ∗,
and the model at τ∗ is analysed further. If such a model cannot be determined,
it is recommended to modify the model inputs, like the discretization or the
data. We will also use the implied timescale test as a model validation tool in
the ensuing numerical examples.
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3.5 Alternative Derivation

Only recently, it has been found [53] that the algorithm of the VAC is identical
to extended dynamic mode decomposition (EDMD) [54] for reversible dynamics,
although the theoretical derivation of EDMD is different. In the limit of infi-
nite sampling, EDMD converges to a Galerkin approximation of the Koopman
operator, even for non-reversible dynamics. As a consequence, the VAC algo-
rithm can also be used to obtain approximate eigenfunctions of the Koopman
operator for non-reversible dynamics. It should be noted that the interpreta-
tion of these eigenfunctions may be different in this case.
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Chapter 4

Model Applications

In this chapter, we apply the VAC to four model systems: Two one-dimensional
toy systems, and two standard examples of small molecular systems. We con-
firm that these systems can be analyzed by smaller basis sets compared to stan-
dard MSM protocols if physically motivated basis functions are used. Let us
introduce a new notation which we will use frequently in the remainder of the
text. If am are the solutions of the generalized eigenvalue problem Eq. (3.1.7),
the corresponding functions fam (see Eq. (3.1.6)) serve as approximations to the
true eigenfunctions ψm. Therefore, we also denote them by ψ̂m now:

ψ̂m =
N

∑
i=1

am(i) fi. (4.0.1)

The text is adapted from Ref. [55].

4.1 Systems and Models

4.1.1 One-dimensional Diffusion Models

Simulations. We first consider two examples of one-dimensional diffusion
processes Xt governed by Brownian dynamics. The process is then described
by the stochastic differential equation

dXt = −∇v(Xt)dt +
√

2D dBt (4.1.1)

where v is the reduced potential energy (measured in units of kBT, where kB is
the Boltzmann constant and T is the temperature), D is the diffusion constant,
and dBt denotes the differential of Brownian motion. For simplicity, we set
all of the above constants equal to one. The potential function is given by the
harmonic potential

v(x) = 0.5x2, x ∈ R (4.1.2)

in the first case, and by the periodic double-well potential

v(x) = 1 + cos(2x), x ∈ [−π, π), (4.1.3)
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in the second case. In order to apply our method, we first produced finite
simulation trajectories for both potentials. To this end, we picked an (also arti-
ficial) time step ∆t = 10−3, and then used the Euler-Maruyama method, where
position xk+1 is computed from position xk as

xk+1 = xk − ∆t∇v(xk) +
√

2D∆tyt (4.1.4)

yt ∼ N (0, 1). (4.1.5)

In this way, we produced simulations of 5 · 106 time steps for the harmonic
potential and 107 time steps for the double-well potential.

Gaussian model. We apply our method with Gaussian basis functions to
both problems. To this end, N = 2, 3, . . . , 10 centers are chosen at uniform
distance between x = −4 and x = 4 for the harmonic potential and between
x = −π and x = π for the double-well potential. In the latter case, the basis
functions are modified to be periodic on [−π, π). Subsequently, an "optimal"
width of the Gaussians is picked by simply trying out several choices for the
standard deviations between 0.4 and 1.0 and using the one which yields the
highest second eigenvalue. From this choice, the matrices Cτ and C0 are esti-
mated and the eigenvalues, -functions and implied timescales are computed.

Markov models. As a reference for our methods, we also compute Markov
state models for both processes. To this end, the simulation data is clustered
into N = 2, 3, . . . , 10 disjoint clusters using the kmeans algorithm. Subse-
quently, the EMMA software package [56] is used to estimate the MSM transi-
tion matrices and to compute eigenvalues and timescales.

4.1.2 Alanine Dipeptide

MD simulations. We performed 20 simulations of 200 ns of all-atom explicit
solvent molecular dynamics of alanine dipeptide using the AMBER ff-99SB-
ILDN force field [57]. The detailed simulation setup is found in appendix A.1.

Gaussian model. Similar to the previous example, we use periodic Gaussian
functions which only depend on one of the two significant dihedral angles of
the system (see sec. 4.2.2) to apply our method. For both dihedrals, we sep-
arately perform a pre-selection of the Gaussian trial functions. To this end,
we first project the data onto the dihedral, then we solve the projected gen-
eralized eigenvalue problem Eq. (3.1.7) for all possible choices of centers and
widths, and then pick the ones yielding the highest eigenvalues. In every step
of the optimization, we select three out of four equidistributed centers between
−π and π, and one of eleven standard deviations between 0.04π and 0.4π. In
this way, we obtain three Gaussian trial functions per coordinate, resulting in
a full basis set of six functions. Having determined the parameters for both
angles, we use the resulting trial functions to apply our method as before. A
bootstrapping procedure is used to estimate the statistical uncertainty of the
implied timescales.

Note that the variations of basis functions described here to find a “good”
basis set could be conducted once for each amino acid (or short sequences of
amino acids) for a given force field, and then be reused.
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Figure 4.1: Illustration of the method with two one-dimensional potentials, the
harmonic potential in the left half and a periodic double-well potential in the
right half of the figure. Panel A shows the potential v together with its invari-
ant distribution π (shaded) next to two possible choices of basis functions: A
three-element crisp basis and a set of three Gaussian functions. Panel B shows
the exact right and left second eigenfunctions, ψ2 and ϕ2. In Panel C, the ap-
proximation results for these second eigenfunctions obtained from the basis
sets shown above are displayed. This figure has been re-used with permission
from Nüske, Keller et al., J. Chem. Theory Comput. 10(4), 1739-1752 (2014)
[Fig. 2]. Copyright 2014 American Chemical Society.

Markov models. This time, we cluster the data into N = 5, 6, 10, 15, 20, 30, 50
clusters, again using the kmeans algorithm. From these clustercenters, we
build Markov models and estimate the eigenvalues and eigenvectors using the
EMMA software.

4.1.3 Deca Alanine.

MD simulations. We performed six 500 ns all-atom explicit solvent molecu-
lar dynamics simulations of deca alanine using the Amber03 force field, see
appendix A.3 for the detailed simulation setup.

Gaussian model. As before, we use Gaussian basis functions which depend
on the backbone dihedral angles of the peptide, which means that we now
have a total of 18 internal coordinates. A pre-selection of the trial functions is
performed for every coordinate independently, similar to the alanine dipeptide
example. In order to keep the number of basis functions acceptably small, we
select two trial functions per coordinate. As before, their centers are chosen
from four equidistributed centers along the coordinate, and their standard de-
viations are chosen from eleven different values between 0.04π and 0.4π. We
also build a second Gaussian model using five functions per coordinate, with
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equidistributed centers and standard deviations optimized from the same val-
ues as in the first model. Having determined the trial functions, we estimate
the matrices Cτ and C0 and compute the eigenvalues and eigenvectors, and
again use bootstrapping to estimate uncertainties.

Markov models. We construct two different Markov models from the dihe-
dral angle data. The first is built using kmeans clustering with 1000 cluster-
centers on the full data set, whereas for the second, we divide the φ − ψ plane
of every dihedral pair along the chain into three regions corresponding to the
α-helix, β-sheet and left-handed α-helix conformation, see section 4.2.2. Thus,
we have three discretization boxes for all dihedral pairs, which yields a total of
83 discrete states to which the trajectory points are assigned.

4.2 Results

We now turn to the results obtained for the four systems presented in the pre-
vious section.

4.2.1 One-dimensional Potentials

The two one-dimensional systems are toy examples where all important prop-
erties are either analytically known or can be computed arbitrarily well from
approximations. For the harmonic potential, the stationary distribution is just
a Gaussian function

π(x) =
1√
2π

exp(− x2

2
). (4.2.1)

The exact eigenvalues λm(τ), as a function of τ, are given by

λm(τ) = exp(−(m − 1)τ), (4.2.2)

and the associated right eigenfunction ψm is given by the (m − 1)-th normal-
ized Hermite polynomial

ψm(x) = Hm−1(x) ∼ (−1)m−1 exp(
x2

2
)

dm−1

dxm−1
exp(− x2

2
). (4.2.3)

The left halves of Figs. 4.1A and 4.1B show the harmonic potential and its sta-
tionary distribution, as well as the second right and left eigenfunction. The sign
change of ϕ2 indicates the oscillation around the potential minimum, which is
the slowest equilibration process. Note, however, that there is no energy bar-
rier in the system, i.e. this process is not metastable. On the right hand sides
of Figs. 4.1A and 4.1B, we see the same for the periodic double-well poten-
tial. The invariant density is equal to the Boltzmann distribution, where the
normalization constant was computed numerically. The second eigenfunction
was computed by a very fine finite-element approximation of the correspond-
ing Fokker-Planck equation, using 1000 linear elements. The slowest transition
in the system is the crossing of the barrier between the left and right minimum.
This is reflected in the characteristic sign change of the second eigenfunction.
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Figures 4.1A and 4.1B also show two choices of basis sets which can be used
to approximate these eigenfunctions: A three element Gaussian basis set and
a three state crisp set. The resulting estimates of the right and left eigenfunc-
tions are displayed in Fig. 4.1C. Already with these small basis sets, a good
approximation is achieved.

Let us analyze the approximation quality of both methods in more detail.
To this end, we first compute the L2

µ-approximation error between the esti-

mated second eigenfunction ψ̂2 and the exact solution ψ2, i.e. the integral

δ =
∫

S
(ψ2(x)− ψ̂2(x))2π(x)dx. (4.2.4)

We expect this error to decay if the basis sets grow. Indeed, this is the case,
as can be seen in the upper graphics of Figs. 4.2A and 4.2B, but the error pro-
duced by the Gaussian basis sets decays faster. Even for the ten state MSM,
we still have a significant approximation error. Another important indicator
is the implied timescale tm. It was defined in sec. 3.4 and corresponds to the
equilibration time of the associated slow transition. The exact value of tm is
independent of the lag time τ. But if we estimate the timescale from the ap-
proximate eigenvalues, the estimate will be too small due to the variational
principle. However, with increasing lag time, the error is expected to decay,
as the approximation error also decays with the lag time. The faster this de-
cay occurs, the better the approximation will be. In the lower graphics of Figs.
4.2A and 4.2B, we see the lag time dependence of the second timescale t2 for
growing crisp and Gaussian basis sets. We observe that it takes only four to
five Gaussian basis functions to achieve much faster convergence compared
even to a ten state Markov model. For 7 or more Gaussian basis functions,
we achieve precise estimates even for very short lag times, which cannot be
achieved with Markov models with a reasonable number of states.

4.2.2 Alanine Dipeptide

Alanine dipeptide (Ac-Ala-NHMe, i.e. an alanine linked at either end to a pro-
tection group) is designed to mimic the dynamics of the amino acid alanine in a
peptide chain. Unlike the previous examples, the eigenfunctions and eigenval-
ues of alanine dipeptide cannot be calculated directly from its potential energy
function, but have to be estimated from simulations of its conformational dy-
namics. However, alanine dipeptide is a thoroughly studied system, many im-
portant properties are well-known, though their estimated values depend on
the precise potential energy function (force field) used in the simulations. Most
importantly, it is known that the dynamical behaviour can be essentially under-
stood in terms of the two backbone dihedral angles φ and ψ: Fig. 4.3A shows
the free energy landscape obtained from population inversion of the simula-
tion, where white regions correspond to non-populated states. We find the
three characteristic minima in the upper left, central left, and central right part
of the plane, which correspond to the β-sheet, α-helix and left-handed α-helix
conformation of the amino acid. The two slowest transitions occur between
the left half and the left handed α-helix, and from β-sheet to α-helix within the
main well on the left, respectively.
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Figure 4.2: Analysis of the discretization error for both 1D-potentials. In the
upper figure of both panels, we show the L2

µ-approximation error of the second
eigenfunction from both crisp basis functions and Gaussian basis functions,
dependent on the size of the basis set. The lower figures show the convergence
of the second implied timescale t2 dependent on the lag time τ. Dotted lines
represent the crips basis sets and solid lines the Gaussian basis sets. The colours
indicate the size of the basis. This figure has been re-used with permission from
Nüske, Keller et al., J. Chem. Theory Comput. 10(4), 1739-1752 (2014) [Fig. 3].
Copyright 2014 American Chemical Society.

Figure 4.3B shows the weighted second and third eigenfunctions. They are
obtained by applying our method with a total of six basis functions (3 for each
dihedral), and from an MSM constructed from 30 clustercenters. The resulting
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estimates of ψ2 and ψ3 are then weighted with the population estimated from
the trajectory, in order to emphasize the regions of phase space which are re-
lated to the structural transitions. Almost identical results are achieved, and
the sign pattern of both approximations clearly indicates the aforementioned
processes.

Lastly, in Fig. 4.3C, we again investigate the convergence of the slowest
implied timescales. Different MSMs with a growing number of crisp basis
functions (clustercenters) were used and compared to the six basis function
Gaussian model. The colors indicate the number of basis functions used, the
thinner lines correspond to the Markov models, whereas the thick solid line is
obtained from the Gaussian model. In agreement with the previous results, we
find that thirty or more crisp basis functions are needed to reproduce a similar
approximation quality like a six-Gaussian basis set.

4.2.3 Deca Alanine

As a third and last example, we study deca alanine, a small peptide which
is about five times the size of alanine dipeptide. A sketch of the peptide is
displayed in Fig. 4.4A.

The slow structural processes of deca alanine are less obvious compared to
alanine dipeptide. The Amber03 force field used in our simulation produces
a relatively fast transition between the elongated and the helical state of the
system, with an associated timescale of 5 to 10 nanoseconds. As we can see
in Fig. 4.4B, we are able to recover this slowest timescale with our method,
t2 converges to roughly 6.5 ns for both models. Comparing this to the two
Markov models constructed from the same simulation data, we see that both
yield slightly higher timescales: The kmeans based MSM returns a value of
about 8 ns and the finely discretized one ends up with 8.5 ns. Note that the
underestimate of the present Gaussian basis set is systematic, and likely due to
the fact that all basis functions were constructed as a function of single dihedral
angles only, thereby neglecting the coupling between multiple dihedrals.

Despite this approximation, we are able to determine the correct structural
transition. In order to analyse this, we evaluate the second eigenfunction ψ̂2,
obtained from the smaller model, for all trajectory points, and plot a histogram
of these values as displayed in Fig. 4.4C. We then select all frames which are
within close distance of the peaks of that histogram, and produce overlays of
these frames as shown underneath. Clearly, large negative values of the second
eigenfunction indicate that the peptide is elongated, whereas large positive
values indicate that the helical conformation is attained. This is in accord with a
similar analysis of the second right Markov model eigenvector: In Fig. 4.4D, we
show overlays of structures taken from states with the most negative and most
positive values of the second eigenvector, and we find that the same transition
is indicated, although the most negative values correspond to a slightly more
bent arrangement of the system.

In summary, it is possible to use a comparatively small basis of 36 Gaussian
functions to achieve results about the slowest structural transition which are
comparable to those of MSMs constructed from about 1000 and 6500 discrete
states, respectively. However, the differences in the timescales point to a weak-
ness of the method: The fact that increasing the number of basis functions does
not alter the computed timescale indicates that coordinate correlation cannot
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be appropriately captured using sums of one-coordinate basis functions. In
order to use the method for larger systems, we will have to study ways to
overcome this problem.

27



4.2. RESULTS

Figure 4.3: Illustration of the method for alanine dipeptide data. A) Free energy
landscape from histogramming φ − ψ dihedral data. B1 and B2) Contour plots
of approximate models for the eigenfunctions ψ2 and ψ3 from a Gaussian basis
set with six functions, weighted by the estimated stationary distribution from
A). C1 and C2) The same if ψ2 and ψ3 are approximated by a Markov state
model with 30 clustercenters. D1 and D2) Convergence of implied timescales
tm (in picoseconds) corresponding to the second and third eigenfunction, as
obtained from Markov models using N = 5, 6, 10, 15, 20, 30, 50 clustercenters
(thin lines), compared to the timescales obtained from the Gaussian model with
a total of six basis functions (thick green line). Thin vertical bars indicate the
error estimated by a bootstrapping procedure. This figure has been re-used
with permission from Nüske, Keller et al., J. Chem. Theory Comput. 10(4),
1739-1752 (2014) [Fig. 4]. Copyright 2014 American Chemical Society.
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Figure 4.4: Illustration of the method using dihedral angle coordinates of the
deca alanine molecule. A) Graphical representation of the system. B) Conver-
gence of the estimated second implied timescale (in nanoseconds) depending
on the lag time. We show the results of both Gaussian models and of both
the kmeans based MSM and the adapted MSM. Thin vertical bars indicate the
error estimated by a bootstrapping procedure. C) Assignment of representa-
tive structures for the second slowest process: The histogram shows how the
values of the second estimated eigenfunction ψ̂2 of the smaller model are dis-
tributed over all simulation trajectories. Underneath, we show an overlay of
structures taken at random from the vicinity of the peaks at −2.7, −1.6, 0.7 and
1.3. D) Overlays of structures corresponding to the most negative (left) and
most positive (right) values of the second Markov model eigenvector, taken
from the kmeans MSM. This figure has been re-used with permission from
Nüske, Keller et al., J. Chem. Theory Comput. 10(4), 1739-1752 (2014) [Fig. 5].
Copyright 2014 American Chemical Society.
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Chapter 5

Tensor Approach

Motivated by the last example in the preceding chapter, we now study the ap-
plication of the VAC in conjunction with a basis set comprised of tensor prod-
ucts of one-coordinate basis functions. The text is adapted from Ref. [58].

5.1 Tensor Product Bases

In order to correctly model the dynamics of large systems where coordinates
are coupled, we should use basis functions that are products of one-coordinate
basis functions. Let us assume there are d input coordinates labeled

x1, x2, . . . , xd, (5.1.1)

and for each coordinate xp we have n one-coordinate basis functions f
p
ip
(xp)

(p = 1, . . . , d and ip = 1, . . . n), only dependent on xp. All of the following
remains valid if n varies with p, but for simplicity of notation we assume a
constant n here. For practical reasons, we assume that the first one-coordinate

basis function is the constant, f
p
1 (xp) ≡ 1, although this is not needed for most

of the theory. Then we try to approximate each eigenfunction ψm, m = 1, 2, . . .

by a function ψ̂m that is a linear combination of all possible products of the f
p
ip

:

ψ̂m(x1, . . . , xd) = ∑
i1,...,id

Am(i1, . . . , id) f 1
i1
(x1) . . . f d

id
(xd). (5.1.2)

The basis functions for the variational approach are the products

fi1,...,id
(x1, . . . , xd) = f 1

i1
(x1) . . . f d

id
(xd), (5.1.3)

and Am is a d-dimensional array (tensor) containing the expansion coefficients
of all these products. The tensor Am corresponds to the vector am from Eq.
(3.1.7), but due to the product structure of the basis Eq. (5.1.3), we can treat
it as a d-dimensional object here. As we can immediately see, the number of
basis functions used in Eq. (5.1.2) is nd. This number becomes impossible to
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cope with even for small n and moderate d, not to mention the evaluation of
the correlation matrices in Eqs. (3.2.1-3.2.2) using long trajectories. However,
our experience and the high degree of redundancy contained in intramolecular
coordinates suggest that a small selection of these product functions should be
sufficient to produce essentially the same results. Let us illustrate this by an-
other example, a capped dimer of the two amino acids valine and alanine (Ac-
Val-Ala-NHMe). Here, we have two pairs of dihedral angles, the dimension
thus becomes d = 4. Since the coordinates are periodic angles, we used the real
Fourier basis of sine and cosine functions. Setting n = 5, the full product ba-
sis comprises 54 = 625 functions. In Figure 5.1A, we check the accuracy of the
model by comparing the two slowest implied timescales t2, t3 to those obtained
from a reference Markov model. This model is obtained by discretizing the di-
hedral plane of every residue into three states which were chosen according
to known dynamics of the monomers, resulting in a total of 32 = 9 states, see
Ref. [59]. Both models perform comparably well. Clearly the Markov model
is much more efficient, but its construction requires a priori knowledge of the
peptide dynamics that is not easily transferred to larger systems. Figure 5.1B)
shows the cumulative sum of the squared coefficients of the estimated second
eigenfunction ψ̂2 from the product basis. The coefficients were computed after
transforming the product basis into an orthonormal basis with respect to the
π-weighted inner product Eq. (2.3.3). We observe that only a small part of the
625 basis functions contribute with a high coefficient compared to all others.
We conclude that it should be possible to find a much smaller subspace of the
full product space and end up with essentially the same result. The efficient
search for this subspace is the topic of the next section.

5.2 Tensor Product Approximations

5.2.1 Tensor-Train-Format

The problem of finding a computationally feasible approximation to a high-
dimensional representation like Eq. (5.1.2) occurs across many fields, and sig-
nificant progress has been made in recent years. Out of all the different ap-
proaches that have been suggested, we choose to present and use the tensor-
train-format (TT-format), which has been introduced in [32, 33].
A function in TT-format still possesses a high-dimensional representation like
Eq. (5.1.2), but the coefficient array Am has a special structure as in Eq. (5.2.2)
below [33]:

ψ̂m = ∑
i1,...,id

Am(i1, . . . , id) f 1
i1
(x1) . . . f d

id
(xd) (5.2.1)

= ∑
i1,...,id





r1

∑
k1=1

. . .
rd−1

∑
kd−1=1

U1(i1, k1)U2(k1, i2, k2) . . . Ud(kd−1, id)



 ·

f 1
i1
(x1) . . . f d

id
(xd). (5.2.2)

Here, U1 ∈ R
n×r1 , Ud ∈ R

rd−1×n are matrices and Up ∈ R
rp−1×n×rp , p =
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TimescalesA CoefficientsB

Figure 5.1: Illustration of low-dimensional subspaces carrying the relevant in-
formation for the dimer Ac-Val-Ala-NHMe: Panel A shows the two slowest
implied timescales t2, t3, in red and blue, estimated by two different models:
A reference MSM (dashed line, 9 states) and the full product expansion Eq.
(5.1.2) (solid line, n = 5, 625 basis functions). Both models perform compara-
bly well. In panel B, we present a cumulative plot of the squared expansion
coefficients of the second eigenfunction ψ̂2, as estimated by the full product
approach, expressed in an orthonormal basis w.r.t. the weighted inner prod-
uct Eq. (2.3.3). It takes about 90 basis functions to reproduce 95 percent of
the norm, as indicated by the black vertical line. This figure has been re-used
with permission from Nüske et al., J. Chem. Phys. 144, 054105 (2016) [Fig. 2].
Copyright 2016 AIP Publishing LLC.

2, . . . , d − 1, are three-dimensional arrays. Consequently, for every choice of
i1, . . . , id, the arrays U1 and Ud turn into vectors U1(i1), Ud(id), whereas all
other arrays U2, . . . , Ud−1 become matrices U2(i2), . . . , Ud−1(id−1), and the co-
efficient Am(i1, . . . , id) can be computed by a repeated matrix-vector multipli-
cation:

Am(i1, . . . , id) = U1(i1)U2(i2) . . . Ud(id). (5.2.3)

Thus, only the arrays U1, . . . , Ud need to be stored, and the number of param-
eters in these arrays is linear in the dimension d, see again Ref. [33].
The intuition behind this representation is that only limited information is
passed on from one variable to the next in the sequence x1, . . . , xd. To see this,
consider the case d = 4, and re-order Eq. (5.2.2) as follows:

ψ̂m = ∑
k1,i2,k2

U2(k
∗
1 , i2, k∗2) f 2

i2
(x2) · (5.2.4)

[

∑
i1

U1(i1, k∗1) f 1
i1
(x1)

]

·
[

∑
i3,i4

∑
k3

U3(k
∗
2, i3, k3)U4(k3, i4) f 3

i3
(x3) · f 4

i4
(x4)

]

= ∑
k1,i2,k2

U2(k
∗
1 , i2, k∗2) f 2

i2
(x2) · g2

k∗1
(x1) · h2

k∗2
(x3, x4). (5.2.5)
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The expressions shown in brackets in Eq. (5.2.4) contain exactly one free index
k1 and k2, respectively, indicated by the stars (these are not complex conjugates,
they only serve to highlight the corresponding indices). Thus, it makes sense
to define functions g2

k1
, h2

k2
by these expressions, which leads us to the repre-

sentation in Eq. (5.2.5). The meaning of Eq. (5.2.5) is that the function ψ̂m is
represented by a linear combination of basis functions which can be separated
into three parts: each basis function is a product of a function f 2

i2
depending

on the variable x2, a function g2
k1

which depends on all variables up to x2, and

another function h2
k2

which depends on all unknowns following x2. Thus, the

information about all coordinates up to x2 is encoded into a limited number
of functions, and so is the information about all coordinates following x2. The
representation in Eq. (5.2.4) corresponds to panel B in Fig. 5.2. However, this
is not the only way to re-order Eq. (5.2.2), as there are d equivalent ways to
do so. All of these different re-orderings for the case d = 4 are displayed in
the remaining parts of Fig. 5.2. In the general case, the re-ordering centered
around coordinate xp is given by

ψ̂m = ∑
kp−1,ip,kp

Up(k
∗
p−1, ip,k

∗
p) f

p
ip
(xp) · (5.2.6)



 ∑
i1,...,ip−1

∑
k1,...,kp−2

U1(i1, k1) . . . Up−1(kp−2, ip−1, k∗p−1)

f 1
i1
(x1) . . . f

p−1
ip−1

(xp−1)
]

·


 ∑
ip+1,...,id

∑
kp+1,...,kd−1

Up+1(k
∗
p, ip+1, kp+1) . . . Ud(kd−1, id)

f
p+1
ip+1

(xp+1) . . . f d
id
(xd)

]

= ∑
kp−1,ip,kp

Up(k
∗
p−1, ip,k

∗
p) (5.2.7)

f
p
ip
(xp) · g

p
k∗p−1

(x1, . . . , xp−1) · h
p
k∗p
(xp+1, . . . , xd).

The underlying principle is the same: The information about the variables

x1, . . . , xp−1 is encoded into rp−1 functions g
p
kp−1

, which we call the left inter-

faces at position p. Also, the information about the variables xp+1, . . . , xd is con-

tained in rp functions h
p
kp

, called right interfaces at p. The numbers r1, . . . , rd−1

are called the ranks of the tensor-train. Furthermore, we note for later use that
the interfaces satisfy the recursive relations

g
p+1
kp

= ∑
kp−1,ip

Up(kp−1, ip, kp)g
p
kp−1

f
p
ip

, (5.2.8)

h
p−1
kp−1

= ∑
ip,kp

Up(kp−1, ip, kp) f
p
ip

h
p
kp

. (5.2.9)
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A B

C D

1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4

Figure 5.2: Illustration of a function ψ̂m of d = 4 variables in tensor-train-
format. The solid dots at the bottom represent the sets of one-coordinate basis

functions f
p
ip

. Dots with the tensor product symbol ⊗ contain all products of the

incoming bases, indicated by the arrows. The arrays denoted by Up[rp] select
rp linear combinations of the products, to form a new basis. We see that there
are d equivalent representations of the function as a linear combination of a re-
duced and structured basis. If we center the representation around coordinate
xp, then the arrays U1, . . . , Up−1 encode the information about the variables
x1, . . . , xp−1 into rp−1 functions. This process is shown in the green part of each
panel. The arrays Up+1, . . . , Ud encode the information about the variables
xp+1, . . . , xd into rp functions, which is shown in the red part of each panel.

Both basis sets are combined with the one-coordinate functions f
p
ip

(shown in

blue), and a linear combination of these products is selected by Up, which is

the final representation of ψ̂m. This figure has been re-used with permission
from Nüske et al., J. Chem. Phys. 144, 054105 (2016) [Fig. 3]. Copyright 2016
AIP Publishing LLC.

5.2.2 Alternating Linear Scheme

In order to make use of the tensor-train-format in practice, we need a method
to determine the optimal components Up, and a way to parametrize multiple

eigenfunctions ψ̂m. To this end, we build on two major developments in the
field of tensor-trains: first, the alternating linear scheme (ALS), which is an
iterative learning algorithm that arises naturally from the TT-format, see Ref.
[34]. Second, the block-TT-format from Refs. [60, 61], which is a modification
of tensor-trains allowing for the simultaneous approximation of multiple func-
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tions using almost the same number of parameters. These concepts have led us
to the algorithm outlined below. We present our optimization procedure as we
have used it in the applications, and comment on its relation to the standard
methods in the literature in Appendix B.1.
The idea of alternating optimization is that in each iteration step, we attempt
to update one component Up while keeping all others fixed. Starting from
some initial guess for all Up, the method will first update U1 while U2, . . . , Ud

are fixed, then it will update U2 with U1, U3, . . . , Ud fixed, and so on, until
Ud is optimized. After completing this so called forward sweep, it will proceed
backwards along the sequence of variables, which is called the backward sweep.
This can be repeated until some convergence criterion is satisfied.
As outlined in the previous section, the component Up can be read in two dif-
ferent ways: Either it is meant to optimally encode the information about all

coordinates up to position p into rp left interfaces g
p+1
kp

, or to encode the in-

formation about all coordinates xp, . . . , xd into rp−1 right interfaces h
p−1
kp−1

. We

will focus on the first reading during the forward sweep of the optimization,
and on the second during the backward sweep. Consider the forward sweep
case and assume that we attempt to optimize component Up while all others
are fixed. By Thm. 3.1 and recalling the recursive definition Eq. (5.2.8), the

optimal left interfaces g
p+1
kp

would be the linear combinations

g
p+1
kp

(Up) = ∑
kp−1,ip

Up(kp−1, ip, kp)g
p
kp−1

f
p
ip

, (5.2.10)

that maximize the eigenvalue sum

Lp(Up) =
M

∑
m=1

λ̂m(Up) (5.2.11)

resulting from the generalized eigenvalue problem Eq. (3.1.7) for the basis

g
p+1
kp

(Up) f
p+1
ip+1

f
p+2
ip+2

. . . f d
id

, (5.2.12)

as it combines limited information about the first p coordinates with all possi-
ble basis functions of the remaining ones. As this problem is not tractable, we
use the information we have already computed, and determine the interfaces

g
p+1
kp

which maximize the sum Eq. (5.2.11) for the reduced basis

g
p+1
kp

(Up) f
p+1
ip+1

h
p+1
kp+1

, (5.2.13)

see Fig. 5.3 for an illustration. This trick is inspired by the MALS [34] and the
original DMRG algorithm.
Let us touch on the most important points of this optimization problem. First,
we can set up a numerical optimization method for Eq. (5.2.11) if rp is fixed,
please see App. B.2 for an explanation. Therefore, we sequentially determine
the optimal component Up for increasing values of the rank rp , and accept Up

as the solution if the eigenvalue sum Lp(Up) matches a reference value Lref

up to a tolerance ǫrank. If accepted, Up becomes the new p-th component, the

functions g
p+1
kp

(Up) become the new left interfaces at position p + 1 and rp is

the new rank. Otherwise, rp is increased by one and the above optimization is
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Algorithm 5.1 Summary of optimization algorithm.

1: q = 0
2: repeat
3: q+ = 1
4: for p=1,. . . ,d-2 do
5: Solve Eq. (3.1.7) for the four-fold basis Eq. (5.2.14).

6: Obtain eigenvalues λ̂
p,p+1
m .

7: Update reference eigenvalue sum Lref.
8: for rp = 1, . . . do
9: Optimize coefficients Up(kp−1, ip, kp) s.t. Lp(Up) = max.

10: if Lp(Up) ≥ ǫrank · Lref then

11: Update Up, g
p+1
kp

, rp.

12: break
13: end if
14: end for
15: end for
16: Repeat this in backward direction for p = d, . . . , 3

17: until |Lq
p(Up)− L

q−1
p (Up)| < ǫiter ∀p

repeated. The reference Lref is obtained as follows: As a first step, we always
evaluate a four-fold product basis defined by the functions

g
p
kp−1

f
p
ip

f
p+1
ip+1

h
p+1
kp+1

, (5.2.14)

and solve the generalized eigenvalue problem Eq. (3.1.7) for this basis. We
compute the dominant eigenvalue sum resulting from this problem,

Lp =
M

∑
m=1

λ̂
p,p+1
m . (5.2.15)

The variational principle Theorem 3.1 implies that for any Up, the eigenvalue
sum Lp(Up) is bounded from above by Lp. Thus, we keep track of the max-
imal value obtained for Lp during the entire optimization process, and store
this maximum as the reference Lref. Second, we enforce the first interface func-

tion g
p+1
1 to be the constant function. This constraint ensures that the largest

eigenvalue λ̂1(Up) is always equal to one, which turned out to be an impor-
tant stabilization of the method. Third, the full optimization is considered con-
verged if all of the objective functions Lp(Up) from two subsequent forward
and backward sweeps do not differ by more than a tolerance ǫiter. A summary
of the complete method is given in Algorithm 5.1.

5.3 Results

In this section, we present two examples for the approximation of dominant
eigenfunctions of molecular systems in the tensor-train-format. The first is
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Gen. Eigenvalue Problem

p p+1

Figure 5.3: Schematic representation of the optimization problem for the com-

ponent Up. This array selects rp linear combinations of the products g
p
kp−1

· f
p
ip

(see Eq. (5.2.8)) to form a new basis g
p+1
kp

(Up) in an optimal way. Optimality

is defined as follows: We combine the basis g
p+1
kp

(Up) with the one-coordinate

functions f
p+1
ip+1

and with the right interfaces h
p+1
kp+1

at position p + 1, to form the

basis Eq. (5.2.13). For this basis, we solve the generalized eigenvalue problem
Eq. (3.1.7) to obtain dominant eigenvalues λ̂m(Up). Optimality of the Up is de-

fined by maximizing the sum Eq. (5.2.11) of the λ̂m(Up). This figure has been
re-used with permission from Nüske et al., J. Chem. Phys. 144, 054105 (2016)
[Fig. 4]. Copyright 2016 AIP Publishing LLC.

the ten residue peptide deca-alanine (Ala10), the second is the 58 residue pro-
tein BPTI. Equilibrium trajectories that are orders of magnitude longer than the
slowest relaxation timescales are available for both of these systems.

The ALS-optimization is initialized as being completely uninformed, we set all
ranks rp = 1 and prepare the components Up to parametrize just the constant
function. We choose the rank acceptance threshold as ǫrank = 0.995 and the
overall stopping criterion as ǫiter = 0.01. Both of these choices are based on
our experience with the method so far, and a more systematic or automatic
choice of parameters will be subject of further research. The setting for ǫrank

ensures that no important information is lost along the course of the iteration.
The setting for ǫiter reflects the general level of accuracy that we can achieve for
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the eigenvalues obtained from the analysis of MD data, based on the general
experience we have.
Our analysis of the examples consists of four steps. First, we monitor the slow-
est implied timescale t2 over the course of the optimization and compare it
to reference values. Second, we analyse the structural transition encoded in
the slowest eigenfunction ψ̂2. To this end, we evaluate the eigenfunction at all
frames and histogram the resulting time series. Following the theory in section
2.4, we expect to find peaks of the population corresponding to the most neg-
ative and most positive values attained by the eigenfunction. As these peaks
should correspond to metastable states, we extract representative structures
for each of them in order to determine the structural transition described by
the eigenfunction. Third, we attempt to identify coordinates which are rele-
vant for the slow dynamics. To this end, we solve the following problem after
every iteration step (we illustrate the problem for the forward sweep again, it
works analogously for the backward sweep): after the new interface functions

g
p+1
kp

have been determined, we compute the best approximation to these func-

tions in the least squares sense from the previous interfaces g
p
kp−1

only, leaving

out the one-coordinate basis for coordinate p. We record the average approx-
imation error E(p) for all of the new interface functions as a measure for the
information contained in the basis at position p, see appendix B.3 for the de-
tails. Once the main iteration is completed, we re-run the ALS-iteration using
only those coordinates p which satisfy that E(p) is greater than a certain cutoff,
and repeat this for various choices of the cutoff. By this procedure, we attempt
to find a reduced set of coordinates which allows us to build an equally good
model as the full one.

5.3.1 Deca Alanine

We return to the deca alanine example from section 4.2.3. The input coordi-
nates used for this system are d = 16 backbone dihedral angles from the eight
internal residues of the chain. This time, we left out the two outermost residues
as the chain was not capped in the simulation, increasing the flexibility of the
outer residues. Our set of one-coordinate basis function used for each dihedral
consisted of the first n = 7 real Fourier (sine and cosine) waves. The lag time
used for our analysis was τ = 2 ns. We can compare our results to the adapted
reference Markov model from section 4.1.3, using 83 = 6561 states. Recall from
section 4.2.3 that the slowest dynamical process in the system is the formation
of a helix and occurs at an implied timescale t2 ≈ 7.5-8ns.
Fig. 5.4A shows that the implied timescale t2 as estimated by our model reaches
the correct regime over the first forward sweep, then corrects slightly along the
backward sweep, and remains more or less constant afterwards. Panel B dis-
plays the relative histogram of the second estimated eigenfunction ψ̂2 over all
data points of the MD trajectory. We can identify a number of peaks of the
population, of which we select the two outermost ones (around −1.3± 0.3 and
1.6 ± 0.2) to analyse the slow transition. An overlay of 200 random structures
from each of these peaks confirms that the eigenfunction ψ̂2 encodes the transi-
tion from an extended structure to a helix, as expected. The final values of the
least squares approximation error E(p) (thus resulting from the final backward
sweep) are shown in panel C. It can be observed that five interior ψ-angles
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from the chain display the largest least squares error, indicating that these co-
ordinates are important. This is consistent with the slowest process being the
formation of a helix, and is strengthened further by the analysis shown in panel
D. Here, we find that these five coordinates allow us to build a model which
equals the quality of the full model.
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Figure 5.4: Results for deca alanine peptide. A: Second implied timescale t2

in ns along the three forward and backward sweeps of the ALS-iteration. B:
Relative histogram of the simulation data along the ψ̂2-coordinate. We iden-
tify two peaks of the population corresponding to the most negative (around
−1.3± 0.3) and the most positive values (1.6± 0.2) of the coordinate. Extracting
200 random frames from each of these peaks and superimposing their molec-
ular structures shows that the ψ̂2-coordinate encodes the transition from an
elongated conformation to the helix. C: Average approximation error E(p) for
the newly determined interface functions at position p, normalized by the max-
imum error over all coordinates p. D: Second implied timescale t2 estimated
by ALS using only the coordinates satisfying that E(p) is greater than the cut-
off given on the horizontal axis. The small numbers next to the data points
indicate the number of coordinates used in each model. This figure has been
re-used with permission from Nüske et al., J. Chem. Phys. 144, 054105 (2016)
[Fig. 5]. Copyright 2016 AIP Publishing LLC.
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5.3.2 BPTI

We also study the 1.05 ms folded-state simulation of the 58-residue protein
BPTI produced on the Anton supercomputer and provided by D.E. Shaw re-
search [62]. This large dataset has become a benchmark system used in numer-
ous studies in recent years. The slowest structural transition included in the
Cα dynamics has been identified by other kinetic models to be on a timescale
t2 ≈ 40 µs, see Ref. [63, 64] for details.

The coordinates used in order to apply our method are the distances between
all Cα atoms in the system which are at least three residues apart. For each dis-
tance, we construct a minimal basis set consisting of only n = 2 functions: The
first is the constant, while the second is a smooth switching function indicating
whether a contact between two Cα atoms has formed or not:

f
p
2 (xp) =

1 − (

xp/r0

)64

1 − (

xp/r0

)96
, (5.3.1)

where xp is the Cα distance under consideration and r0 = 0.7 nm is an empiri-
cally obtained cutoff distance. The function is mostly equal to one for xp < r0,
indicating that a contact between the two atoms has formed, while it is mostly
zero for xp > r0, thus indicating that the contact is broken. The function
smoothly transitions between one and zero in a small neighborhood of r0. With
this basis, it is easy to reduce the number of input coordinates by checking if
a contact has at least once transitioned from the formed to the broken state or
vice versa, and only using those contacts while leaving out all others. For the
given data set, this preprocessing reduces the number of contacts from initially
around 1500 to d = 258. Still, this system is a lot larger than the previous one.
We conduct our analysis at lag time τ = 5 µs.

Figure 5.5A shows that again, the second implied timescale t2 rises to the ap-
propriate regime over the course of the first forward sweep, improves further
during the first backward sweep, and changes only slightly afterwards. The
histogram of the data over the estimated second eigenfunction ψ̂2 displays
two clearly distinguishable peaks at its extremal values (around −0.2 ± 0.5
and 6.5 ± 1.0). A set of 200 molecular structures extracted from these peaks
confirm that ψ̂2 encodes the structural transition as it was determined previ-
ously, namely a re-folding of the loop on the N-terminal side of the backbone
[63, 64]. The results of the least squares approximations are not as clear as in
the previous example. It is apparent from Fig. 5.5C that more than 100 of the
coordinates at the end of the sequence are identified as completely unimpor-
tant, with E(p) ≈ 0. This finding is in agreement with the fact that the part
of the chain near the C-terminus is not involved in the slow transition. For
the remaining 140 coordinates, E(p) varies between 100 and 10−6, but there is
no obvious gap or cutoff which separates the important from the unimportant
coordinates. However, such a cutoff can be determined by building various
reduced models. We can conclude from Fig. 5.5D that choosing the cutoff as
E(p) ≥ 10−3, we can determine a set of 58 coordinates which are sufficient to
build a reduced model of the same quality as the full model, while using an
even higher cutoff entails loss of information.

40



5.4. CONCLUSIONS

p

p log(cutoff)

lo
g
(r

e
l.
 f

re
q
u
e
n
c
y
)

A

C

B

D

Timescales Histogram

Least Squares Error Reduced Models

133 118 82 58

42 36
28

22

Figure 5.5: Results for BPTI. A: Second implied timescale t2 in µs along the
three forward and backward sweeps of the ALS-iteration. B: Relative his-
togram of the simulation data along the ψ̂2-coordinate. We identify two peaks
of the population. Extracting 200 random frames from each of these peaks
and superimposing their molecular structures shows that the ψ̂2-coordinate
encodes the structural transition observed previously in the literature. C: Av-
erage approximation error E(p) for the newly determined interface functions
at position p, normalized by the maximum error over all coordinates p. D:
Second implied timescale t2 estimated by ALS using only the coordinates sat-
isfying that E(p) is greater than the cutoff given on the horizontal axis. The
small numbers next to the data points indicate the number of coordinates used
in each model. This figure has been re-used with permission from Nüske et
al., J. Chem. Phys. 144, 054105 (2016) [Fig. 6]. Copyright 2016 AIP Publishing
LLC.

5.4 Conclusions

The results of this chapter suggest that the TT-approach is suitable for selecting
a low-rank tensor product representation to approximate the high-dimensional
eigenfunctions of molecular conformation spaces. As the resulting eigenfunc-
tion approximations are directly related to the molecular coordinates, they can
be interpreted via post-processing methods, and may serve as a way to select
the most relevant molecular features that are good reaction coordinates. In the
two examples presented, specific coordinates could be recognized as relevant
for the slow kinetics or as irrelevant.
Future work will have to address the question of how stably this method can
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perform for significantly larger systems. The success of our iterative scheme
depends on the ranks rp, as the computational effort grows with increasing
ranks. It will be important to see how these ranks can be controlled for large
systems. Also, we expect the ordering of input coordinates to play an impor-
tant role in the future. Apart from that, we were able to use equilibrium tra-
jectories in the examples presented so far. For large systems, it is usually im-
possible to provide equilibrium data because of the sampling problem. In the
next chapter, we discuss the use of non-equilibrium simulations in the context
of Markov state model construction. The results will serve as a basis to apply
the general VAC to non-equilibrium data.
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Chapter 6

MSM Estimation from Short
Simulations

In this chapter, we focus on the special case of Markov state models (MSMs)
from section 3.3, but we will explain in the end how the techniques from this
chapter generalize to the case of an arbitrary basis set. We will discuss how
Markov models can be estimated from ensembles of relatively short non-equilib-
rium simulations. The text is adapted from Ref. [65].

One of the strengths of Markov models is that the simulations used to con-
struct them do not necessarily need to sample from the global equilibrium dis-
tribution, as only conditional transition probabilities between the states are re-
quired [4]. In particular, at least in principle, these transition probabilities can
be obtained without bias from simulations started out of local equilibrium in
each state which only run for the length of a single lag time step. However,
it is much more practical to produce simulations that are longer than one lag
time and estimate MSMs by counting transitions along these trajectories. Even
if the simulations are started out of local equilibrium, the distribution deviates
from local equilibrium over time until global equilibrium is restored. The esti-
mation of transition probabilities is therefore subjected to a bias [9]. In order to
keep the bias small, it must be assumed that local equilibrium is approximately
restored after every time step.

The effect of the initial distribution onto the MSM quality or even the justi-
fication of using an MSM for data analysis has been controversially discussed,
and this issue has not been resolved yet. At least three ideas have been dis-
cussed [66]:

1. This effect exists [9], but may be small and can be ignored in practice.

2. We can reduce the effect of non-equilibrium starting points by discarding
the first bit of simulation trajectories, enough to reach local equilibrium
[23].

3. We can avoid this problem by preparing local equilibrium distributions
in the starting states using biased simulations and then shooting trajecto-
ries out of them [35, 36, 37, 38].

Here we qualify and quantify these ideas by systematically analyzing the effect
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of non-equilibrium starting conditions onto MSM quality, and we suggest ef-
fective correction mechanisms. Throughout the chapter, we use the term “non-
equilibrium” to describe the problem that simulations are started from a dis-
tribution which is not in global equilibrium, and their simulation time is too
short to reach that global equilibrium. Briefly, our main results are:

1. We provide an expression for the error between unbiased transition prob-
abilities and the expected estimate from many simulations running for
multiple discrete time steps, see section 6.1. We find that there is no fun-
damental advantage of starting simulations in local equilibrium. Rather,
the estimation error depends on the discretization, the simulation length
and the lag time. In the limit of long lag times and fine discretization,
MSMs are estimated without bias even when non-equilibrium starting
points are used. However, for a given discretization the lag time required
to practically achieve a small estimation bias might be large.

2. We derive an unbiased MSM estimator that corrects the error due to
non-equilibrium starting conditions at short lag times, by exploiting the
framework of observable operator models (OOMs) - see sec. 6.2. OOMs
are powerful finite-dimensional models that provide unbiased estimates
of stationary and kinetic properties of stochastic processes under fairly
mild assumptions, see [39, 40, 41]. Most importantly, OOMs can be es-
timated from non-equilibrium simulations [41] and are not limited to a
local equilibrium assumption.

3. We utilize the fact that exact relaxation timescales that are not contami-
nated by the MSM projection error (i.e. quality of the coordinates and the
clustering used) can be estimated using the OOM framework. The dif-
ference between the unbiased estimate and the uncorrected or corrected
MSM estimate is very insightful as it provides an indicator of the quality
of the MSM discretization. If this difference is too large, it is suggested to
rather improve the coordinate selection or discretization used for MSM
construction and re-analyze. Note that while OOMs offer the more gen-
eral theory, they are not as easy to interpret and their estimation from
finite data is not as stable and mature as MSM estimation.

We also provide a meaningful strategy to select the model rank of an OOM
which is required in order to obtain practically useful estimates, by using a
statistical analysis of singular values of the count matrix (sec. 6.2.4).

Sec. 6.3, demonstrates the usefulness of the OOM framework for two model
systems and MD simulation data of alanine dipeptide. We show that accurate
estimates of spectral and stationary properties can be obtained from short non-
equilibrium simulations, even for short lag times or poor discretizations. We
explain how the discretization quality is revealed by the difference between
spectral estimates of MSM and OOM. We also show that the rank selection
strategy helps to choose a suitable model rank even for small lag times, when
no apparent timescale separation can be utilized.

As an illustration, consider the one-dimensional model system governed by
the potential shown in Fig. 6.1 A, see sec. 6.3.1 for details. We study the estima-
tion of a Markov model using the two state discretization indicated in panel A
of Fig. 6.1. For various lag times, we investigate the expected transition matrix
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if 90 per cent of the simulations are started from local equilibrium within state
1, while the other 10 per cent are started from local equilibrium within state 2.
Note that we do not use any simulation data here, we only compute expected
values over an ensemble of trajectories, with the trajectory length set to 2000
steps, which is shorter than the slowest relaxation timescale.

For short lag times, the standard MSM provides a strongly biased estimate
of the equilibrium population of the two wells (Fig. 6.1C, green curve). For
longer lag times, the MSM converges towards the correct equilibrium popu-
lation, but the bias only disappears when the lag time approaches the longest
relaxation timescale of the system, so if the initial distribution is far from equi-
librium this can entail a significant error at practically feasible lag times. In
contrast, the corrected MSM estimate proposed in this chapter achieves the cor-
rect estimate of equilibrium populations even at short lag times (Fig. 6.1C, red
curve). The standard MSM relaxation timescales are underestimated at short
lag times, consistent with previous variational results (Thm. 3.1 and Ref. [52]),
but they can be improved by using the unbiased MSM estimator proposed
here (Fig. 6.1E). The OOM can provide a model-free estimate of the relaxation
timescale that is unbiased at a relatively short lag time (Fig. 6.1E, blue line).
The difference between the OOM and the corrected MSM estimate (blue ver-
sus red lines in Fig. 6.1E) is an indicator of the MSM model error due to the
state space discretization. Please note that all MSM results in this figure can
be dramatically improved if a finer clustering is used. For example, if the five
state partitioning from Fig. 6.1B is used instead, the estimation of stationary
properties converges much faster (Fig. 6.1D), and there is hardly a difference
between the timescales estimated by a direct and an unbiased MSM (Fig. 6.1F).

6.1 MSM Estimation from Simulations with Arbi-

trary Starting Points

6.1.1 Count Matrix and Transition Matrix

In this chapter, we assume that the transfer operator is of rank M at lag time τ,
and that the transition kernel possesses a density which can then be written as

p(x, y; τ) =
M

∑
m=1

λm(τ) ψm(x) π(y) ψm(y). (6.1.1)

Note that exact equality in Eq. (6.1.1) is an assumption, but often it is satisfied
approximately for a large range of lag times τ. Throughout the chapter, we
will consider decompositions of state space into disjoint sets S1, ..., SN, where
S =

⋃

i Si, as in sec. 3.3. The indicator function of set Si is denoted in brief by
χi. For a simulation of the continuous dynamics which samples positions at
discrete time steps (k − 1)∆t, k = 1, . . . , K, we will denote the position at the
k-th time step simply by Xk, k = 1, . . . , K, s.t. K is the total number of time
steps in the simulation. We use the symbol Y as a shorthand notation for an
entire simulation. If multiple different simulations need to be distinguished,
we will denote them by Yq, q = 1, . . . , Q, i.e. Q is the total number of available
simulations.
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Figure 6.1: A: One-dimensional potential function and discretization into two
states. B: The same potential with a five state discretization. C, D: Estimates
for the equilibrium probability of state 1 from the direct MSM (green) and the
unbiased MSM (red), reference in black. E, F: Estimates for the slowest relax-
ation timescale t2 from a direct MSM (green), c.f. Eq. (6.1.16), the unbiased
MSM (red), c.f. Eqs. (6.2.5-6.2.6), and the spectral OOM estimation (blue), Eqs.
(6.2.29-6.2.30). The black dashed line corresponds to the reference value. This
figure has been re-used with permission from Ref. [65], Nüske et al., J. Chem.
Phys. (2017, in press) [Fig. 1]. Copyright 2017 AIP Publishing.

For a trajectory as above, we define the empirical histograms and correla-
tions (also called state-to-state time-correlations) as follows:

s(i) :=
1

K − 2τ

K−2τ

∑
k=1

χi(Xk), (6.1.2)

Sτ(i, j) :=
1

K − 2τ

K−2τ

∑
k=1

χi(Xk)χj(Xk+τ), (6.1.3)

S2τ
r (i, j) :=

1

K − 2τ

K−2τ

∑
k=1

χi(Xk)χr(Xk+τ)χj(Xk+2τ). (6.1.4)
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Apart from the pre-factor, Eq. (6.1.3) agrees with Eq. (3.2.1) for the basis set
χi, i = 1, . . . , N. Up to the normalization, the matrix Sτ ∈ R

N×N is a count
matrix because it simply counts the number of transitions from state Si to Sj

over a time window τ that have occurred in the simulation, while the vector
s ∈ R

N counts the total visits to state Si and corresponds to the i-th row sum of
Sτ . For each set Sr , the matrix S2τ

r ∈ R
N×N is proportional to a two-step count

matrix counting subsequent transitions from state Si to Sr and on to state Sj.
At first sight, it may seem confusing that Sτ and s only count transitions and
visits up to time K − 2τ, but further below, we will use all three matrices in
conjunction which requires estimating all of them over the same part of the
data. We will continue to refer to these matrices as count matrix, count vector
and two-step count matrix in what follows. Also note that in the literature,
the count matrix and vector are often denoted by Cτ, c, but we will use these
symbols differently in what follows. Let us note at this point that s, Sτ, S2τ

r can
be seen as random variables that map a (stochastic) trajectory Y of discrete time
steps to the values given in Eqs. (6.1.2-6.1.4). To emphasize this dependence,
we will also write s(Y), Sτ(Y), S2τ

r (Y) if appropriate.
We are concerned with the estimation of a transition probability matrix be-

tween the sets Si of a given discretization of state space. If the process is in
equilibrium, the conditional transition probabilities can be expressed as

Tτ
Eq(i, j) =

P
(

Xt ∈ Si, Xt+τ ∈ Sj

)

P(Xt ∈ Si)
(6.1.5)

=

∫

Si
dx

∫

Sj
dy π(x) p(x, y; τ)

∫

Si
dx π(x)

(6.1.6)

=
Cτ

Eq(i, j)

πi
. (6.1.7)

Here, we have defined the equilibrium correlation between sets Si and Sj by the
nominator of Eq. (6.1.6) and denoted it by Cτ

Eq(i, j). Also, we have adopted the

usual notation πi =
∫

Si
dx π(x) for the equilibrium probabilities of the discrete

states. From a long simulation Xk, k = 1, . . . , K that samples points from the
stationary density π, the matrix Tτ

Eq can be estimated by the formula

Tτ
Eq(i, j) ≈ Sτ(i, j)

s(i)
. (6.1.8)

6.1.2 Starting from local Equilibrium

In practice, producing simulation data that samples from the global equilib-
rium density π is often not tractable. One of the strengths of Markov models is
the fact that the transition matrix can also be expressed in terms of local equi-
librium densities

πSi
(x) =

1

πi
χi(x)π(x). (6.1.9)

The density πSi
is the normalized restriction of π to state Si. A Markov model

transition matrix can also be estimated by preparing an ensemble of trajecto-
ries in such a way that, within each state, the distribution of starting points
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equals the local density Eq. (6.1.9). These trajectories are simulated until time
τ, and the fraction of trajectories starting in Si and ending up in Sj provides an
estimate for the transition matrix entry Tτ

Eq(i, j) [67, 35]. To see this, note that

in the setting just described, the initial distribution is a convex combination ρL

of the local densities π
Si

:

ρL =
N

∑
i=1

aiπSi
, (6.1.10)

N

∑
i=1

ai = 1. (6.1.11)

Here, ai is the probability to start in state Si. Upon replacing π by ρL in Eq.
(6.1.6), it follows that

Tτ
Eq(i, j) =

∫

Si
dx

∫

Sj
dy ρL(x)p(x, y; τ)

∫

Si
dx ρL(x)

. (6.1.12)

Only very short trajectories and knowledge of the local densities are needed for
the application of this method. However, this method suffers from three major
disadvantages: first, the intermediate data points of the simulations cannot
be used. Second, estimation of the local densities requires the use of biased
sampling methods, which is a significant extra effort and entails additional
difficulties. Third, changing the discretization requires to redo the simulations,
which is not acceptable if a suitable discretization is not easy to find.

6.1.3 Multiple-Step Estimator

A common way to construct MSMs in practice is by conducting a large set of
distributed simulations Yq, q = 1, . . . , Q of lengths that are shorter than the
largest relaxation timescales of the system, but are longer than the lag time τ.
For our theoretical investigation we will assume that each of these trajectories
has the same length of K stored simulation steps, but for the estimators we will
be deriving later uniform length is not a requirement, see appendix C.4.

The simulations are started from some arbitrary initial distribution at time
k = 1. The transition probability matrix is estimated by replacing S(i, j) and
s(i) by their empirical mean values over all simulations Yq. These are defined
by the following equations, where we include the corresponding definition for
S2τ

r for later use:

s =
1

Q

Q

∑
q=1

s(Yq), (6.1.13)

S
τ

=
1

Q

Q

∑
q=1

Sτ(Yq), (6.1.14)

S
2τ
r =

1

Q

Q

∑
q=1

S2τ
r (Yq). (6.1.15)
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In analogy to Eq. (6.1.8), the transition matrix is then estimated by

T
τ
(i, j) =

S
τ
(i, j)

s(i)
. (6.1.16)

Additional constraints can be incorporated in order to obtain more specific
estimators than Eq. (6.1.16), such as estimators obeying detailed balance [14, 9,
15].

The argument from Sec. 6.1.2 cannot be transferred directly to a multiple
step estimator like Eqs. (6.1.13-6.1.14): Even if the simulations are started from
local equilibrium, this property is lost after the first simulation step, and the
resulting estimates are no longer unbiased. A detailed illustration of this phe-
nomenon has been provided by Ref. [9, Fig. 4], and we repeat it here in Figure
6.2. It can be argued that if the discretization is chosen well enough such that
the dynamics equilibrates to an approximate local equilibrium within all states
over a single time step, the bias can be expected to be very small. This assump-
tion is difficult to check or quantify in practice. In the next section, we analyze
the bias introduced by the multiple step estimator, as well as its dependence
on the lag time and simulation length.

6.1.4 Estimation Error from Non-Equilibrium Simulations

Now we study the effect of using an initial distribution of simulation data that
is not in local equilibrium when the transitions are counted. This deviation
from local equilibrium could come either from the fact that we start trajectories
in an arbitrary initial condition, or that our trajectories exceed the lag time τ
such that an initially prepared local equilibrium is lost for all transition counts
harvested after the first one (sec. 6.1.3).

Let ρ denote the empirical distribution sampled by the simulations. We
need to study the error between the equilibrium transition matrix Tτ

Eq and the

asymptotic limit of Eq. (6.1.16). To this end, we study the asymptotic limits of

S
τ
(i, j) and s(i) in the limit of infinitely many simulations, Q → ∞, but each

having finite lengths:

Cτ
ρ(i, j) := E (Sτ(i, j)) , (6.1.17)

cρ(i) := E (s(i)) , (6.1.18)

Tτ
ρ(i, j) :=

Cτ
ρ(i, j)

cρ(i)
. (6.1.19)

Thus, we use the symbols Cτ
ρ , cρ for the expected count matrix and vector of

total counts associated with the empirical distribution ρ. Using the spectral
decomposition Eq. (6.1.1), the expected count matrix can be expressed in terms
of the spectral components of the dynamics:

Cτ
ρ(i, j) =

M

∑
m=1

λm(τ)〈χi, ψm〉ρ〈χj, ψm〉π, (6.1.20)

〈χi, ψm〉ρ =
∫

S
dx χi(x)ψm(x)ρ(x), (6.1.21)
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Figure 6.2: Loss of local equilibrium property illustrated by comparing the dy-
namics of the diffusion in a double-well potential (a,e) at time steps 0 (b), 250
(c), 500 (d) with the predictions of a Markov model parameterized at lag time
τ = 250 at the same times 0 (f), 250 (g), 500 (h). Please refer to the supplemen-
tary material of Ref. [9] for details of the system. (b, c, d) show the true dis-
tribution of the system (solid black line) and the probabilities associated with
the two discrete states left and right of the dashed line. The numbers in (f, g, h)
are the discrete state probabilities pi(kτ), i = 1, 2, k = 0, 1, 2, predicted by the
Markov model. The solid black lines shows the hypothetical density pi(kτ)πSi

that is inherently assumed when estimating a Markov model by counting tran-
sitions over multiple steps. This figure has been re-used with permission from
Prinz et al., J. Chem. Phys. 134, 174105 (2011) [Fig. 4]. Copyright 2011 Ameri-
can Institute of Physics.

〈χi, ψm〉π =
∫

S
dx χi(x)ψm(x)π(x). (6.1.22)

In matrix form, Eq. (6.1.20) can be written as

Cτ
ρ = QρΛ(τ)QT

π, (6.1.23)

Qρ(i, m) = 〈χi, ψm〉ρ, (6.1.24)

Qπ(j, m) = 〈χj, ψm〉π. (6.1.25)
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These matrices contain the MSM projections of the true eigenfunctions, i.e.
their approximations by step functions, that is extensively discussed in [12, 9].
Let us emphasize that Eq. (6.1.20) also holds for arbitrary basis functions, i.e. χi

is not required to be a basis of indicator functions. Thus, it is the most general
expression for a correlation matrix from Markovian dynamics.

Summation over j shows that

cρ(i) = 〈χi〉ρ. (6.1.26)

It follows from Eq. (6.1.20) that the spectral expansion of Cτ
Eq is given by

Cτ
Eq(i, j) =

M

∑
m=1

λm(τ)〈χi, ψm〉π〈χj, ψm〉π, (6.1.27)

using the fact that for trajectories started from global equilibrium we have ρ =
π. Combining Eqs. (6.1.20), (6.1.26) and (6.1.27), we obtain an expression for
the estimation error Eτ := Tτ

ρ − Tτ
Eq:

Eτ(i, j) =
Cτ

ρ(i, j)

cρ(i)
−

Cτ
Eq(i, j)

πi
(6.1.28)

=
M

∑
m=2

λm(τ)〈χj, ψm〉π

[ 〈χi, ψm〉ρ

〈χi〉ρ
− 〈χi, ψm〉π

〈χi〉π

]

(6.1.29)

=
M

∑
m=2

λm(τ)〈χj, ψm〉π

[ 〈χi, ψm − qimψ1〉ρ

〈χi〉ρ

]

, (6.1.30)

where qim = 〈χi,ψm〉π

〈χi〉π
, and we were able to drop the m = 1 terms on both sides

as they are equal. Inspecting this expression leads to a number of insights that
are practically important for analyzing simulation data with MSMs:

1. MSM estimation from long trajectories: In the limit that our trajectories
are longer than the timescale of the slowest process, the empirical dis-
tribution ρ converges to the equilibrium distribution π, and the bias be-
comes zero. This offers an explanation why MSMs built from ultra-long
simulations [62, 68] are quite well-behaved and have been extensively
used for benchmarking and method validation.

2. MSM estimation from short trajectories: Even if the trajectories are not
long enough to reach global equilibrium, because of Eq. (3.4.4), the bias
decays multi-exponentially with the lag time τ. This is an important
insight, because MSMs are in practice constructed in the limit of long
enough lag times in which the timescale estimates converge [69, 9], and
the above equation shows that this limit is meaningful as it approaches
an unbiased estimate.

3. Dependence of bias on the discretization error: The above formula re-
flects the well-known insight that Markov models are free of bias if the
discretization perfectly approximates the dominant eigenfunctions, mean-
ing that the eigenfunctions are constant on the states Si [69, 9].
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4. Consequences for adaptive sampling: Previous adaptive sampling ap-
proaches have suggested to prepare an initial local equilibrium distribu-
tion in order to shoot trajectories out of selected states [35]. The above
analysis shows that this strategy is effective if we only count a single
transition out of the state, but is ineffective when longer trajectories are
shot. In the latter case, it is simpler to ignore the initial distribution and
to reduce the effect of bias by extending the lag time τ, see again Fig. 6.1
and also the next example.

6.1.5 Example

Before proceeding, we illustrate these findings by re-visiting the one-dimen-
sional model system presented above. We study the same two different dis-
cretizations, the two state model from panel A of Fig. 6.3 and the five state dis-
cretization shown in Fig. 6.3 B. Again, simulations are initiated from local equi-
librium in states 1 and 2 of the coarse discretization, with a1 = 0.9, a2 = 0.1.
We study the expected estimate of the equilibrium probability of state 1, which
equals the equilibrium probability of states I and II for the finer state defini-
tion. Panels C and D of Fig. 6.3 show the respective estimates for the coarse
and fine discretization as a function of the lag time, for simulation lengths
K = 1000, 2000, 5000, 10000, 50000. Indeed, the estimates improve if the lag
time is increased, if the simulation length is increased, or if the discretization is
improved. From the coarse partitioning example, we conclude that relaxation
to global equilibrium can be required in order to obtain unbiased estimates
from simulations initiated out of local equilibrium.

6.2 Correction of Estimation Bias using Observable

Operator Models

In this section, we show how to go beyond just using a longer lag time τ and
suggest correction mechanisms to obtain the correct equilibrium transition ma-
trix Tτ

Eq (Eqs. (6.1.5-6.1.7)) from an ensemble of short simulations. This can be

accomplished regardless of the starting distribution being in global equilib-
rium, in local equilibrium, or far from any equilibrium.

As discussed above, limitations of MSMs include the assumption of Marko-
vianity, sensitivity to projection error, and sensitivity to the distribution of tra-
jectory starting points. All of these limitations can be overcome by realizing
that molecular dynamics that is observed in a chosen set of variables, reaction
coordinates or order parameters at a certain lag time τ can be exactly described
by projected Markov models (PMMs) [63]. This insight allows us to employ es-
timators that are not affected by the MSM limitations, such as hidden Markov
models (HMMs) [63] or observable operator models (OOMs) [39, 40, 41], that
operate on the discretized state space.

Here, we employ OOMs in order to get improved MSM estimators that are
not subject to the bias caused by a non-equilibrium distribution of the trajec-
tories used. In a nutshell, OOMs are spectral estimators able to provide unbi-
ased estimates of stationary and dynamical quantities for dynamical systems
that can be well described by a finite number of dynamical components. Here
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Figure 6.3: A, B: One-dimensional potential function with two different dis-
cretizations into two states and five states, resp. C: Expected estimate of the
equilibrium probability of state 1 as a function of the lag time, for simulation
lengths K = 1000, 2000, 5000, 10000, 50000, and using the discretization from
panel A. The simulations are initiated in local equilibrium in both states 1 and
2, but predominantly in state 1 (a1 = 0.9, a2 = 0.1). D: The same for the five
state discretization from panel B. This figure has been re-used with permission
from Ref. [65], Nüske et al., J. Chem. Phys. (2017, in press) [Fig. 3]. Copyright
2017 AIP Publishing.

we only summarize a few aspects of OOMs that are relevant to the present
paper and present an algorithm that can be used to estimate MSMs without
bias from the initial trajectory distribution. To fully understand the theoretical
background and derivation, please refer to [39, 40, 41].

6.2.1 Observable Operator Models

Observable operator models (OOMs) provide a framework that completely cap-
tures the dynamics of a stochastic dynamical system by a finite-dimensional
algebraic system if only a finite number M of relaxation processes contribute
in Eq. (6.1.1), see Refs. [39, 40]. For molecular dynamics, this property is
achieved if we observe and model the dynamics at a finite lag time τ. The
full-state observable operator ΞS is an M × M matrix which contains the scalar
products between the eigenfunctions:

ΞS(m, m′) = λm(τ)
∫

S
dx ψm(x)ψm′(x)π(x). (6.2.1)

In statistical terms, ΞS is the expectation value of the covariance matrix be-
tween eigenfunctions. As eigenfunctions are orthogonal with respect to the
equilibrium distribution π, or in other words, statistically uncorrelated, ΞS is
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just a diagonal matrix of the eigenvalues:

ΞS = Λ. (6.2.2)

If we do not integrate over the full state space S in Eq. (6.2.1), but only over a
subset A ⊂ S, we can define a matrix ΞA of size M× M, called the set-observable
operator for set A. All set-observable operators and two vectors ω, σ ∈ R

M are
the key ingredients of OOM theory. The vectors ω, σ equal the first canonical

unit vector e1, i.e. ω = σ = e1 = (1, 0, . . . , 0)T , and they are called information
state and evaluator, respectively. If the finite-rank assumption Eq. (6.1.1) holds,
these components form an algebraic system that allows to compute equilib-
rium probabilities of finite observation sequences. Let A1, . . . , Al be arbitrary
subsets of S that do not need to form a partition of the state space. If Eq. (6.1.1)
is satisfied, we can compute the probability that a trajectory in equilibrium vis-
its set A1 at time τ, set A2 at time 2τ, ..., and set Al at time lτ by the following
matrix-vector product:

P(Xτ ∈ A1, X2τ ∈ A2, . . . , Xlτ ∈ Al) = ω
T

ΞA1
. . . ΞAl

σ. (6.2.3)

The proof can be found in Ref. [40], we also repeat it in appendix C.3. Note
that, in case that A1, . . . , Al form a partition of state space, the probability of
such an observation sequence cannot be computed from a Markov model tran-
sition matrix between the sets A1, . . . , Al , unless the dynamics is Markovian on
these sets. This clearly distinguishes an OOM from a Markov model: An OOM
can correctly describe arbitrary projected dynamics as long as Eq. (6.1.1) holds.

As a Markov process is determined entirely by finite observation probabil-
ities like Eq. (6.2.3), it follows that we can compute several key equilibrium,
kinetic and mechanistic quantities in an unbiased fashion if we can somehow
estimate the OOM components. For a fixed decomposition of state space into
sets Sr , r = 1, . . . , N as before, let us denote the set-observable operators of sets
Sr by Ξr , which implies that

ΞS =
N

∑
r=1

Ξr. (6.2.4)

It follows from Eq. (6.2.3) that we can compute the unbiased equilibrium
correlation matrix and the stationary probabilities by the formulas

Cτ
Eq(i, j) = ω

T
ΞiΞjσ, (6.2.5)

πi = ω
T

Ξiσ. (6.2.6)

In practice we cannot directly estimate Ξr but only a similar operator Ξ̂r.
However, it follows directly from Eqs. (6.2.5-6.2.6) that if an unknown similar-
ity transform R ∈ R

M×M affects all OOM quantities via

Ξ̂r = RΞrR−1, (6.2.7)

ω̂
T = ω

TR−1, (6.2.8)

σ̂ = Rσ, (6.2.9)
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then Eqs. (6.2.5-6.2.6) remain exactly valid using ω̂, Ξ̂r, σ̂. In other words,
all OOMs that can be constructed by choosing some transformation matrix R
form a family of equivalent OOMs. A specific member of this family can be es-
timated directly from simulation data, and thus we can use it in order to obtain
unbiased estimates of Eqs. (6.2.5-6.2.6) even from a large ensemble of trajecto-
ries that do not need to sample from global equilibrium. It has been shown in
Ref. [41] that Eqs. (6.2.14-6.2.15) and (6.2.16-6.2.17) in the next subsection in-
deed provide the components of an equivalent OOM, i.e. there is an invertible
matrix R s.t. Eqs. (6.2.7-6.2.9) are satisfied in the absence of statistical noise.

6.2.2 Unbiased Estimation of Markov State Models

To construct an exact unbiased estimator we need three ingredients: (i) the ex-
pectation values of the empirical count matrix Cτ

ρ , (ii) the vector of total counts
cρ from Eqs. (6.1.17-6.1.18), and additionally (iii) the two-step count matrices

C2τ
ρ,r := E

(

S2τ
r

)

. (6.2.10)

As a reminder, expectation values here denote the expectation over a tra-
jectory ensemble sampling from the empirical (non-equilibrium) distribution
ρ. In practice, only finitely many simulations are available, and we thus re-

place cρ, Cτ
ρ and C2τ

ρ,r by count vectors and matrices s, S
τ

and S
2τ
r (Eqs. (6.1.13-

6.1.15)), which are asymptotically unbiased estimators. The unbiased estima-
tion algorithm can be summarized as follows:

1. Obtain the empirical mean s, count matrix S
τ

and two-step count matri-

ces S
2τ
r from simulation data using Eqs. (6.1.13-6.1.15).

2. Decompose the count matrix S
τ

by singular value decomposition (SVD)

S
τ

= VΣWT , (6.2.11)

and compute weighted projections onto the leading M left and right sin-
gular vectors by

F1 = VMΣ−1/2
M , (6.2.12)

F2 = WMΣ−1/2
M . (6.2.13)

We have used the symbols VM, WM, ΣM to denote the restriction of these
matrices to their first M columns.

3. Use F1, F2 to obtain the set-observable operators Ξ̂r and the evaluation
state vector σ̂ of an equivalent OOM via

Ξ̂r = FT
1 S

2τ
r F2, (6.2.14)

σ̂ = FT
1 s. (6.2.15)

Compute the full-state observable operator Ξ̂S = ∑
N
r=1 Ξ̂r and obtain the

information state vector ω̂ as the solution to the eigenvalue problem:

ω̂
T

Ξ̂S = ω̂
T, (6.2.16)
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ω̂
T

σ̂ = 1. (6.2.17)

The normalization Eq. (6.2.17) can be achieved by dividing the arbitrarily
scaled solution ω̂

T by ω̂
T

σ̂.

4. Compute the unbiased equilibrium correlation matrix and unbiased equi-
librium distribution by

Cτ
Eq(i, j) = ω̂

T
Ξ̂iΞ̂jσ̂, (6.2.18)

πi = ω̂
T

Ξ̂iσ̂ (6.2.19)

=
N

∑
j=1

Cτ
Eq(i, j). (6.2.20)

and then obtain the unbiased MSM transition matrix Tτ
Eq either using the

nonreversible estimator

Tτ
Eq(i, j) =

Cτ
Eq(i, j)

πi
, (6.2.21)

or the reversible estimator

Tτ
Eq(i, j) =

Cτ
Eq(i, j) + Cτ

Eq(j, i)

∑
N
j=1 Cτ

Eq(i, j) + ∑
N
j=1 Cτ

Eq(j, i)
. (6.2.22)

Let us briefly comment on the central idea behind this algorithm, which is the
estimation of an equivalent OOM in the third step, particularly in Eq. (6.2.14).
Using the path probability formula Eq. (6.2.3), it can be shown that the ex-
pected two-step count matrix is given by

C2τ
ρ,r = QρΞrΛ(τ)QT

π, (6.2.23)

where the matrices Qρ, Qπ are the same as in Eqs. (6.1.24-6.1.25). Thus, by the
intermediate step, the set-observable operator is introduced into the decom-
position of the two-step count matrix. Now, the idea is to find two matrices
F1, F2 ∈ R

N×M, such that R1 := FT
1 Qρ and R2 := Λ(τ)QT

πF2 are inverse to
each other, because this implies that

FT
1 C2τ

ρ,rF2 = R1ΞrR2 (6.2.24)

= RΞrR−1 (6.2.25)

is the r-th component of an equivalent OOM. The properties of SVD and the
decomposition Eq. (6.1.23) guarantee that the choice of F1, F2 in the second
step above achieves this goal:

Id = FT
1 Cτ

ρF2 (6.2.26)

=
(

FT
1 Qρ

) (

Λ(τ)QT
πF2

)

(6.2.27)

= R1R2. (6.2.28)

Similar arguments can be used to justify the equations for ω, σ. We also note
that different choices of F1, F2 in step 2 are possible. For detailed explanations
and proofs, please refer to the previous publications [39, 40, 41].
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6.2.3 Recovery of Exact Relaxation Timescales

A remarkable by-product of the procedure described above is that the trans-
formed full-state two-step count matrix Ξ̂S is similar to a diagonal matrix of
the system eigenvalues λm(τ) without any MSM projection error. This has been
shown for equilibrium data in Ref. [70] and also applies to non-equilibrium
data [40]:

Ξ̂S = RΞSR−1 (6.2.29)

= RΛ(τ)R−1. (6.2.30)

Thus, diagonalization of Ξ̂S provides an estimate of the leading system eigen-
values, and consequently also of the relaxation rates or timescales, that is not
distorted by the fact that we coarse-grain the dynamics to a Markov chain be-
tween coarse sets in state space. These eigenvalue and timescale estimates are
only subject to statistical error, but not to any MSM model error. It is impossi-
ble to directly build an MSM that produces these timescales - when an MSM is
desired, the timescales can only be approximated, and they will only be correct
in the limit of long lag times and good discretization.

However, the fact that we can get a model-free estimate of the eigenvalues
and relaxation timescales can be used to assess the discretization quality: Ac-
cording to Thm. 3.1, the exact system eigenvalues provide an upper bound
to the eigenvalues of the equilibrium transition matrix Tτ

Eq. By comparing the

eigenvalues of Tτ
Eq to those from Eqs. (6.2.29-6.2.30), the MSM discretization

error theoretically studied in [12, 9, 52] can be practically quantified.

6.2.4 Selection of Model Rank

The above method is theoretically guaranteed to work whenever the number
of MSM states N is at least equal to the number M of relaxation processes in Eq.
(6.1.1), and the count matrix Cτ

ρ is of rank M. In the absence of statistical noise,
the model rank M can then be determined by the number of non-zero singular

values of Cτ
ρ . For finite data, the numerical rank of S

τ
is not necessarily equal

to M, as the singular values can be perturbed by noise. Classical matrix pertur-
bation theory predicts that small singular values will be particularly affected
by noise, see, e.g., Ref. [71], and also Fig. 6.4 A. Including noisy and small
singular values can severely affect the accuracy of the method, most likely due
to the presence of the matrix of inverse singular values in Eqs. (6.2.12-6.2.13).
Also, we expect small singular values to have little impact on the dominant
spectral and stationary properties of the final OOM, but this will be backed up
by further theoretical investigation.

Consequently, it seems appropriate to cut off small and statistically unreli-
able singular values and select a smaller model rank M̂ < M in Eqs. (6.2.12-
6.2.13). In order to determine the uncertainties of the singular values, we use
the bootstrapping procedure, and we discard all singular values with a signal-
to-noise ratio of less than 10. This has proven to be a useful choice in all ap-
plications presented further below. Figure 6.4 B illustrates this procedure for a
simple model system.
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Figure 6.4: Analysis of statistical uncertainties for singular values of the count
matrix. We use the one-dimensional model system and seven state discretiza-
tion as in Sec. 6.3.1, the sample consists of Q = 5000 trajectories of length
K = 2000. A: For each of the seven singular values (distinguished in descend-
ing order by the colors black, blue, cyan, green, magenta, red and yellow), we
show the ratio of the true singular value σr(Cτ

ρ), r = 1, . . . , 7 of the expected

count matrix Cτ
ρ to the corresponding singular value σr(S

τ
) of the empirical

count matrix S
τ
, as a function of the lag time. As the small singular values de-

cay quickly with the lag time, they are dominated by the noise even for small
lag times. Including these noisy singular values would ruin the results. B: Ratio
between mean value and uncertainty (signal-to-noise ratio) from the bootstrap-
ping for the seven singular values as a function of the lag time. The thin black
dashed line indicates the cut-off we have used in applications. Only singu-
lar values above this line are included in the estimation, the number of points
above this line corresponds to the OOM model rank, see Fig. 6.5 H. This figure
has been re-used with permission from Ref. [65], Nüske et al., J. Chem. Phys.
(2017, in press) [Fig. 4]. Copyright 2017 AIP Publishing.
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6.2.5 Algorithmic Details, and Analysis of Computational Ef-
fort

We close this section by pointing out a few more details of practical importance.
First, while it was convenient for the theoretical analysis to assume that all tra-
jectories sample the same number of simulation steps K, this is not required
(see appendix C.4). Moreover, we also argue in appendix C.4 that all normal-
izations in Eqs. (6.1.2-6.1.4) and (6.1.13-6.1.15) can be dropped in practice. All

of the matrices s, S
τ
, S

2τ
r used in the estimation algorithm can be replaced by

integer valued matrices that simply count the number of visits, transitions and
two-step transitions.

Secondly, we have suggested to use the bootstrapping procedure in order to
estimate uncertainties for the singular values of the count matrix. One way to
realize this is to re-draw trajectories with replacement from the set of all avail-
able simulations, and to re-estimate the count matrix from this modified set of
simulations. As individual simulations are statistically independent, this pro-
cedure is theoretically justified and can also be used to estimate uncertainties
of further derived quantities, like timescales and stationary probabilities. We
used the trajectory-based bootstrapping in all examples shown below. How-
ever, if only a small number of rather long simulations is available, it may be
more practical to re-draw individual transitions from the set of all available
transitions in the data set. Let T denote the total number of data points, which
equals T = KQ for uniform trajectory length, and Eq. (C.4.1) otherwise. If
the transitions were statistically independent, one could simply re-sample T
transition pairs from the set of all N2 possible pairs, where the probability of

drawing the pair (i, j) is given by S
τ
(i, j). In fact, transitions are not statistically

independent. Therefore, we suggest to replace the count matrix S
τ

by the effec-
tive count matrix described in [72], but it should be noted that this procedure
relies on several approximations and must be improved in the future.

Thirdly, we present an overview of the computational cost of each step in
the estimation algorithm in Table 6.1 below, assuming that dense matrix alge-
bra is used in every step. It is expressed in terms of the total number of data
points T, the number of MSM states N, the OOM model rank M, and the num-
ber of bootstrapping samples nb.

Operation Cost

Count Matrix Estimation ∝ T

Bootstrapping ∝ nbTN3

SVD of S
τ

∝ N3

Computation of OOM components σ̂ : MN + N2

Ξ̂ : N
(

N2M + NM2
)

ω̂ : ∝ M3 + NM2

Transition Matrix Tτ
Eq N

(

2M2 + M
)

Table 6.1: Analysis of computational effort required by the OOM-based esti-
mation algorithm, if all operations are performed in dense matrix algebra.

The first step requires an effort which is linear in the data size and can be
performed efficiently. In most cases, we can also assume the count matrices
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S
τ
, S

2τ
r to be sparse, and the model rank M to be small. In this case, the cubic

term appearing for the calculation of Ξ̂ becomes quadratic, while the contribu-
tions of the model rank are small. The only real bottleneck is the singular value

decomposition of S
τ
, accounting for the factor N3 in the second and third step.

As we generally require all singular values of the count matrix, this step must
be performed using dense matrix algebra, which can be time-consuming. Fu-
ture research may provide a method that only requires the computation of the
leading singular values, thus allowing for sparse algebra to be employed.

6.3 Examples

For each of the following examples, we use the trajectory-based bootstrapping
strategy to determine the OOM model rank. Mean values and standard errors
for the singular values are estimated from nb = 10000 re-samplings, singular
values with a signal-to-noise ratio of at least 10.0 are accepted. We also gen-
erate error estimates for all quantities derived from the OOM-based Markov
model by trajectory bootstrapping, using 1000 re-samplings. In addition, we
compute a conventional Markov model without OOM-based correction as a
comparison.

6.3.1 One-dimensional Toy Potential

As a first example, we study in more detail the one-dimensional system used
in the introduction. The system is defined by the double-well potential func-
tion shown in Fig. 6.5 A. The dynamics here is a finite state space Markov
chain with 100 microstates distributed along the x-axis, where transitions can
occur between neighboring states based on a Metropolis criterion. The system
is kinetically two-state, as the slowest relaxation timescale of the system, cor-
responding to the transition process between the two wells, is t2 = 3708 steps
and clearly dominates all others (Fig. 6.5B).

We investigate the estimation of a seven state Markov model (N = 7) using
the discretization indicated by dashed lines in Fig. 6.5 A. Using seven states in-
stead of two accelerates the convergence of OOM estimates. Still, the seven
state discretization is a poor one - note that state 4 contains large parts of
the transition region as well as parts of the right minimum. This choice was
made deliberately in order to test the robustness of our method with respect
to poor MSM clusterings. We produced two different data sets, each compris-
ing Q = 5000 simulations. The first set contains short simulations of length
K = 250, while the simulations of the second set are K = 2000 steps long. For
the analysis of the smaller data set, we can use lag times up to τ = 30, while
we can go to up to τ = 200 for the larger data set. Panels C, E, G of Fig. 6.5 dis-
play the results for the short simulations, while the corresponding results for
the larger data set are shown in panels D, F, H. All simulations were initiated
from a non-equilibrium starting distribution, where the probabilities to start in
each of the seven states are given by the vector

ρ1 =
[

0.3 0.3 0.3 0 0.05 0.05 0
]

, (6.3.1)

that is, 90 per cent of the simulations were started in the left three states, while
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only 10 per cent were initialized in the deeper minimum on the right. Within
each state, the actual microstate was selected from a uniform distribution.

Fig. 6.5C, D compare estimates of stationary probabilities from direct MSMs
based on Eq. (6.1.16) and corrected MSMs with transition matrix given by
Eq. (6.2.22). Due to the non-equilibrium initial distribution, the simulations
visit the left minimum much more frequently than a simulation in equilibrium
would do. While the MSM estimates of the stationary distribution converge to
the true equilibrium distribution at long lag times, they are surprisingly inaccu-
rate at short times, where the effect of the non-equilibrium starting distribution
still has a strong effect. Even at the largest lag time τ = 200, the bias is still vis-
ible. In contrast, the corrected MSM provides an excellent and stable estimate
at lag times of 15 steps or longer.

In Fig. 6.5E, F, we compare estimates of the slowest implied relaxation
timescale t2 from three different estimators: A direct Markov model based on
Eq. (6.1.16), the corrected Markov model based on Eq. (6.2.22), and the OOM-
based spectral estimation Eqs. (6.2.29-6.2.30). First, we notice that the direct
and corrected MSMs provide different estimates because of the combination of
non-equilibrium starting points and the poor discretization quality. The cor-
rected MSM timescales converge faster to the true timescales than the uncor-
rected ones. Second, the OOM-based direct estimation of relaxation timescales
by Eq. (6.2.30) provides accurate results already at lag time τ = 15, which is
a regime where the number of relevant relaxation processes cannot be easily
determined by a timescale separation, see again panel B of Fig. 6.5. The OOM
timescale estimates become very accurate for larger lag times if more data can
be used. Third, the large deviation between the corrected MSM and the OOM
timescales are indicative of the poor discretization quality employed here.

Finally, in Fig. 6.5G, H we show the model rank selected by the bootstrap-
ping procedure as a function of the lag time. We can observe how our criterion
based on statistical uncertainties helps to select an appropriate model rank for
each lag time, even when it is not obvious from the timescale plot. As expected,
the system becomes effectively of rank 2 for lag times τ ≥ 80.

6.3.2 Molecular Dynamics Simulations of Alanine Dipeptide

Our second example is, again, molecular dynamics simulation data of ala-
nine dipeptide (Ac-A-NHMe) in explicit water. Figure 6.6A shows the equi-
librium probability distribution in the space of dihedral angles φ, ψ with its
three metastable minima in the upper left, central left and central right part
of the plane. The slow dynamics consists of exchanges between the left and
right part (t2 ≈ 1400 ps) and between the two minima on the left (t3 ≈ 70 ps).
We study the estimation of a Markov model using the discretization also in-
dicated in panel A of Fig. 6.6. It was generated by kmeans clustering of the
data set described below using N = 40 clustercenters. We produced an ensem-
ble of roughly 11000 very short simulations of length 20 ps each. Simulations
were initiated from eight different starting structures labelled by the numbers
1-8 in Fig. 6.6B, see appendix A.2 for details. It can be seen that the resulting
empirical distribution does not even reach local equilibrium within the three
metastable regions.

Like in the previous example, we find that it is possible to obtain precise
estimates of stationary probabilities as soon as convergence of the OOM-based
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Figure 6.5: A) One-dimensional potential function and discretization of the
landscape into seven states. B) Decadic logarithm of the first nine implied
timescales of the model system. C, D) Estimates of the stationary probability of
states 1-3 from the direct MSM (green) and the corrected MSM (red), compared
to the reference (black dashed line). E, F) Estimates of the slowest relaxation
timescale t2 from a direct MSM (green), the corrected MSM (red) and the OOM-
based spectral estimation (blue), compared to the reference (black dashed line).
G, H) Model rank selected by the bootstrapping procedure. For all quantities
derived from the OOM, the dashed lines indicate the estimated values using
the complete data set, whereas the bullets and errorbars correspond to mean
and standard error from the bootstrapping procedure. Note that errorbars are
hardly visible in panels D and F. This figure has been re-used with permission
from Ref. [65], Nüske et al., J. Chem. Phys. (2017, in press) [Fig. 5]. Copyright
2017 AIP Publishing.
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timescales is achieved. In panel C of Fig. 6.6, we compare results for the equi-
librium probability of all states in the right part of the plane, from a direct MSM
and the corrected MSM. For lag times τ ≥ 500 fs, we are able to correct the bias
introduced by strong non-equilibrium sampling.

In panels D and F of Fig. 6.6, we present estimates of the two slowest
timescales t2, t3 produced by the same estimators as before (OOM in blue, di-
rect MSM in green and corrected MSM in red). Additionally, the cyan lines
correspond to the timescale estimates of an MSM using equilibrium simula-
tions and the same discretization (see appendix A.2). We find that the OOM-
based spectral estimation provides accurate timescale estimates for short lag
times starting at τ = 500 fs. Moreover, we notice that for lag times as small as
these, MSM timescales are clearly lower than the true timescales, although a
decent discretization is employed. The difference between OOM and MSM es-
timates indicates that an even finer discretization would be required to match
the references at these lag times. The direct estimates, the reference equilibrium
timescales, and our OOM-based estimates of equilibrium timescales, are nearly
identical. Only the mean values extracted from bootstrapping for t2 seem to be
a bit low. This will be investigated further.

Finally, the selected model ranks shown in Fig. 6.6E confirm that our frame-
work can work in situations where low-rank descriptions of the dynamics us-
ing only a few processes are not adequate.

6.3.3 Two-dimensional model system with poor discretization

Our final example is another finite state space Markov chain in the two-dimen-
sional energy landscape shown in Fig. 6.7A, defined by 40 × 40 microstates.
Here we show the behavior of different estimators in an extreme case, where
the discretization is so poor that MSM estimates fail completely. Transitions
between neighboring states are now possible in both x- and y-direction, again
based on a Metropolis criterion. We study the estimation of a Markov model
using a discretization into 16 MSM states, also shown in Fig. 6.7A. As can be
seen in Fig. 6.7B, there are two dominant timescales, t2 ≈ 144000 steps and
t3 ≈ 17000 steps. The next timescale is clearly separated from the first two,
after that, there is no more apparent timescale separation. This time, we fix the
simulation length at K = 5000 steps, i.e. the trajectories are approximately 30
times shorter than the slowest timescale. The simulations are started from a
uniform distribution over all microstates. In panels C-H of Fig. 6.7, we display
the results if the number of simulations is set to Q = 2000 (C, E, G) and Q =
10000 (D, F, H).

In Fig. 6.7C, D„ we show the estimation results for the equilibrium proba-
bility of the states labeled 13, 14 and 15. We expect it to be difficult to estimate
this probability, as the states are blending different metastable regions and tran-
sition regions. It can be observed that the estimation of stationary probabilities
is more sensitive to noise, see the results for Q = 2000. This observation is
not surprising, as the stationary probabilities require accurate estimation of
the two-step count matrices Eq. (6.1.4) from the data, which can be more diffi-
cult for rarely visited states. Still, for Q = 10000, a reliable estimate is achieved
and the biased estimate of the direct MSM can be corrected. Another compari-
son we make is between the estimates from the corrected MSM and those from
long equilibrium simulations that use the same number of total data points,
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Figure 6.6: Results for alanine dipeptide. A) Equilibrium distribution (loga-
rithmic scale) in the space of backbone dihedral angles φ, ψ and clustercenters
of a fourty state kmeans discretization used to analyze the data. B) Empirical
distribution (logarithmic scale) sampled by the data initiated from eight start-
ing structures indicated by the numbers 1-8. C) Equilibrium probability of all
states in the right part of the plane estimated from the direct MSM (green) and
the corrected MSM (red). Reference in black. D) Estimates for the slowest relax-
ation timescale t2 from a direct MSM (green), the corrected MSM (red) and the
OOM-based estimation (blue). Reference values from equilibrium simulations
are displayed in black. We also show the expected timescale estimate using
the same fourty state discretization if equilibrium data was used (cyan line).
E) Model rank used for the OOM estimation as determined by the bootstrap-
ping. F) The same as D) for the second slowest timescales t3. For all quantities
derived from the OOM, the dashed lines indicate the estimated values using
the complete data set, whereas the bullets and errorbars correspond to mean
and standard error from the bootstrapping procedure. Note that errorbars are
hardly visible in panels C and F. This figure has been re-used with permission
from Ref. [65], Nüske et al., J. Chem. Phys. (2017, in press) [Fig. 6]. Copyright
2017 AIP Publishing.
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i.e. K = 2000 · 5000 = 107 for Q = 2000 and K = 10000 · 5000 = 5 · 107 for
Q = 10000. We show mean values and standard errors from roughly 900 long
simulations for Q = 2000, and roughly 400 simulations for Q = 10000. In both
cases, the estimates from long equilibrium trajectories provide more accurate
estimates. In practice, however, one needs to strike a balance between long
trajectories that are more beneficial for the analysis, and short trajectories that
can be more efficient for sampling and state exploration [73, 74, 75].

Again, we also compare the estimates for the slowest timescales t2 (E-F) and
t3 (G-H) from a direct MSM, the corrected MSM and the OOM-based spectral
estimation. In both cases, correct estimates of both timescales can be obtained
from the OOM, while both the direct and corrected MSMs estimate timescales
one order of magnitude too small. This suggests that for a bad enough dis-
cretization, correcting for the effect of the non-equilibrium starting distribution
will not be sufficient to achieve convergence in the timescales. However, the
poor discretization quality is revealed by a large error between the OOM-based
estimate and the corrected MSM, and this observation can be exploited in order
to improve the discretization and repeat the analysis.

6.4 Conclusions

We have investigated the quality of Markov state models when estimated from
many simulations of short length, initiated from non-equilibrium starting con-
ditions. We have derived an expression for the error between unbiased MSM
transition probabilities and the expected estimate from many short simula-
tions. This error is shown to depend on the simulation length, the lag time and
the state discretization. If ultra-long trajectories are employed, i.e. trajectories
that are long compared to the slowest relaxation timescales, then the effect of
the initial distribution is negligible and no further correction is needed. For
ensembles of short trajectories, the situation is more complex. Preparing sim-
ulation trajectories in such a way that they emerge from a local equilibrium
distribution does not appear to be of much practical use: this would only cor-
rect the first transition count of every trajectory while the subsequent trajectory
segments are still biased. The local equilibrium will be lost for intermediate
times along the trajectory as the trajectory ensemble is not in global equilib-
rium. In a similar sense discarding initial simulation fragments can reduce
the bias, but cannot systematically remove it. In particular, since the effect of
the bias disappears with the slowest relaxation times of the system, discarding
pieces of simulation trajectories appears more harmful in terms of reducing the
statistics than it is useful to reduce the bias. With the standard MSM estima-
tor, the most effective and simplest method to reduce the bias from the initial
trajectory distribution in fact seems to be using a longer lag time or a better
state space discretization. These are already the usual objectives of MSM con-
struction. However, if the discretization is poor, the estimation bias due to a
non-equilibrium distribution can be dramatic at practically usable lag times.

The main result of this chapter is an improved estimator of the MSM tran-
sition matrix which is not biased by the initial distribution. This new estimator
is based on theory of observable operator models. In contrast to the standard
MSM estimator, the corrected MSM estimator does not only use the number of
transitions observed between pairs of states at lag time τ, but also the number
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Figure 6.7: A) Two-dimensional potential function with discretization into 16
MSM states indicated by dashed lines. B) Leading nine implied timescales tm

of the system. C, D) Estimates of equilibrium probability of states 13, 14 and
15 from direct MSM (green) and the corrected MSM (red), compared to the ref-
erence (black line) and estimates from 900 (C) / 400 (D) different equilibrium
simulations, shown by the cyan lines. E, F) Estimates of slowest relaxation
timescale t2 from a direct MSM (green), the corrected MSM (red) and the OOM-
based spectral estimation (blue), compared to the reference (black dashed line).
G, H) The same for t3. For all quantities derived from the OOM, the dashed
lines indicate the estimated values using the complete data set, whereas the
bullets and errorbars correspond to mean and standard error from the boot-
strapping procedure. Note that errorbars are hardly visible in panels F and H.
This figure has been re-used with permission from Ref. [65], Nüske et al., J.
Chem. Phys. (2017, in press) [Fig. 7]. Copyright 2017 AIP Publishing.
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of transitions at lag time 2τ. These statistics are combined to get a transition
matrix estimate at lag time τ that is unbiased by the initial trajectory distribu-
tion. While it may seem that having to estimate statistics at 2τ is a deficiency
compared to standard MSM estimation when only short simulation trajecto-
ries are available, please note that the corrected MSM estimator can get signif-
icantly better estimates at short lag times, so in practice the lag times needed
for a converged MSM will be smaller than for the standard estimator.

Finally, we report a result from the OOM framework that shows how the
model-free relaxation timescales can be computed from the same statistics used
for the corrected MSM estimator (i.e. transition matrices at lag times τ and 2τ).
These estimates are only impaired by statistical error, but are not affected by
systematic MSM error as no MSM is used in the process of obtaining them. The
difference between the corrected MSM timescales and the OOM timescales can
be used in order to assess the discretization quality, as this difference goes to
zero in the limit of good discretization.

6.5 Outlook: OOM Estimation for General Basis Sets

We close this study by pointing out how the OOM-based estimation can be
extended to the case of arbitrary basis functions. The first step is to replace
the indicator functions χi, χj in Eqs. (6.1.2-6.1.4) by the general basis functions
fi, f j. The second modification is that we need to compute a two-step correla-
tion matrix for every intermediate data point in the simulations. Let (y1, y2, y3)
denote triples of two subsequent transitions over lag time τ in the data, and call
their total number T. Then, for every intermediate data point x2, we compute

S
2τ
x2
(i, j) =

1

T ∑
(y1,y2,y3)

fi(y1)δx2(y2) f j(y3). (6.5.1)

The estimation of F1, F2, σ, ω is similar to what was done before, and we es-

timate a set-observable operator for every x2 by Ξ̂x2 = FT
1 S

2τ
x2

F2. Finally, we
re-compute the instantaneous and time-lagged correlation matrix over all the
data, but the data points are re-weighted. In the computation of C0, every
data point x is weighted by ω̂Ξ̂xσ̂, while for Cτ, every transition pair (x, x′)
is weighted by ω̂Ξ̂xΞ̂x′σ̂. It was shown in Ref. [41] that these estimators con-
verge to the equilibrium correlation matrices C0

Eq, Cτ
Eq in the limit of infinite

sampling.
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Chapter 7

Summary

In this thesis, we have presented the variational approach to conformational
dynamics (VAC), a method to extract the essential information from simula-
tions of high-dimensional stochastic dynamics. We have focussed on molecu-
lar dynamics simulations of biological macromolecules, but the methods pre-
sented are applicable to any reversible and ergodic Markov process, and prob-
ably even to more general stochastic processes. The basic idea is to approxi-
mate the dominant eigenfunctions and eigenvalues of the associated transfer
operator from a pre-selected library of basis functions. The approximate eigen-
functions serve as a low-dimensional representation of the essential dynamics.
We have explained that a generalized eigenvalue problem must be solved in
order to obtain these approximations, and shown that the required matrices
can be estimated from equilibrium simulation data. After presenting applica-
tions of the method to model systems, it was suggested to use tensor products
of one-dimensional functions defined on elementary coordinates in order to
model the dynamics of complex systems. In order to circumvent the result-
ing dimensionality problem, we have discussed the tensor-train-format as a
suitable low-rank representation. An adapted learning algorithm was formu-
lated and promising applications were presented. Finally, we have discussed
the use of short non-equilibrium simulations in conjunction with the VAC, by
focussing on the special case of Markov state models. We have derived an ex-
pression for the error between the MSM transition matrix in equilibrium and
the expected transition matrix from non-equilibrium sampling. Subsequently,
it was explained how the framework of observable operator models can be
used to estimate the equilibrium transition matrix from short simulations. Al-
gorithmic details were discussed and successful applications to model systems
were presented. We have also outlined how the OOM-based estimation can be
applied to the VAC using a general basis set.
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Appendix A

Simulation Setups

A.1 Alanine Dipeptide (Long Simulations)

We performed all-atom molecular dynamics simulations of alanine dipeptide
(Ac-Ala-NHMe), in explicit water using the GROMACS 4.5.5 [76] simulation
package, the AMBER ff-99SB-ILDN force field [57], and the TIP3P water model
[77]. The simulations were performed in the canonical ensemble at a tem-
perature of 300 K. The energy-minimized starting structure of Ac-Ala-NHMe
was solvated into a cubic box with a minimum distance between solvent and
box wall of 1 nm, corresponding to a box volume of 2.72 nm3 and 651 water
molecules. After an initial equilibration of 100 ps, 20 production runs of 200
ns each were performed, yielding a total simulation time of 4 µs. Covalent
bonds to hydrogen atoms were constrained using the LINCS algorithm [78]
(lincs_iter = 1, lincs_order = 4), allowing for an integration time step of 2 fs.
The leap-frog integrator was used. The temperature was maintained by the
velocity-rescale thermostat [79] with a time constant of 0.01 ps. Lennard-Jones
interactions were cut off at 1 nm. Electrostatic interactions were treated by the
Particle-Mesh Ewald (PME) algorithm [80] with a real space cutoff of 1 nm, a
grid spacing of 0.15 nm, and an interpolation order of 4. Periodic boundary
conditions were applied in the x, y, and z-direction. The trajectory data was
stored every 1 ps.

A.2 Alanine Dipeptide (Short Simulations)

Molecular dynamics simulations of alanine dipeptide in explicit water at tem-
perature 300 K were generated with AceMD [81] software using the AMBER
ff-99SB-ILDN force field [82] and an integration time step of 2 fs. The pep-
tide was simulated inside a cubic box of volume (2.7222 nm)3 containing 651
TIP3P water molecules. The Langevin thermostat was used. The electrostat-
ics were computed every two time steps by the particle-mesh Ewald (PME)
method [83], using real-space cutoff 0.9 nm and grid spacing 0.1 nm. All bonds
between hydrogens and heavy atoms were constrained.

We have produced 11388 ultra short simulations of length 20 ps each, with
50 fs saving interval. The simulations were initiated from eight different struc-
tures, their projections into φ − ψ-space are indicated by the number 1-8 in
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Fig. 6.6 B. The probabilities to start in each of these structures are given by the
vector

ρ1 =
[

0.05 0.05 0.2 0.2 0.2 0.1 0.1 0.1
]

. (A.2.1)

These simulations were used to perform the analyses described in Sec. 6.3.2.
Using the same setup, we produced 2363 long runs of 1 ns simulation time
each, with 1 ps saving interval. We estimated a Markov model on the 40-state
kmeans discretization at lag time τ = 100 ps using this data set, and extracted
the reference timescales and equilibrium probabilities shown as black lines in
Fig. 6.6. Also, we used the stationary probabilities estimated from this model to
initialize 203 short equilibrium runs of 500 ps simulation time each, with 100 fs
saving interval. This data set was used to compute the equilibrium timescales
of the kmeans discretization shown as cyan lines in Fig. 6.6 D, F.

A.3 Deca Alanine

We performed all-atom molecular-dynamics simulations of deca alanine, which
is protonated at the amino terminus and deprotonated at the carboxy terminus,
using the GROMACS 4.5.5 simulation package, the Amber03 force field [84]
and the TIP3P water model. A completely elongated conformation was chosen
as an initial structure.
The structure was solvated in a cubic box of volume V = 232.6 nm3, with 7647
pre-equilibrated TIP3P water molecules. First, an equilibration run of 500 ps
in the NVT ensemble with full position restraints, using the velocity-rescale
thermostat, was carried out. This was followed by a 500ps NPT equilibration
run. The temperature was set to T = 300 K. The equilibration run was followed
by a 500 ns production run, again at T = 300 K. Two temperature coupling
groups were used with a velocity-rescale thermostat and a time constant of
0.01 ps. Periodic boundary conditions were applied in the x, y and z direction.
For the long range electrostatic interaction PME was used with a PME-order of
4 and a Fourier grid spacing of 0.15 nm. Covalent bonds to hydrogen bonds
were constrained using the LINCS algorithm, allowing for a 2 fs time step.
The leap frog integrator was used. Data was saved every 1 ps, resulting in
5 · 105 data frames. Six independent simulations from the same equilibrated
configuration were carried out resulting in 3 µs total data.

70



Appendix B

Optimization in
Tensor-Train-Format

B.1 Relation to the Block-TT-Format

Our optimization method shown in Alg. 5.1 is built on the modification of the
ALS (Ref. [34]) for the block-TT-format, see Refs. [60, 61]. The block-TT-format
allows for the simultaneous parametrization of a number M > 1 functions
using only a few additional parameters. A tensor is in block-p-format if there
is exactly one component Up which carries an additional index m, enumerating
the different functions, while all remaining components retain their structure
as before. Eqs. (5.2.2) and (5.2.6) then turn into

ψ̂m = ∑
i1,...,id





r1

∑
k1=1

. . .
rd−1

∑
kd−1=1

U1(i1, k1) . . . Up(kp−1, ip, kp, m) . . . (B.1.1)

Ud(kd−1, id)] f 1
i1
(x1) . . . f d

id
(xd),

ψ̂m = ∑
kp−1,ip,kp

Up(kp−1, ip,kp, m) f
p
ip
(xp) · (B.1.2)

g
p
kp−1

(x1, . . . , xp−1) · h
p
kp
(xp+1, . . . , xd),

where we have highlighted the additional index in bold-face letters. The ALS-
optimization of multiple eigenfunctions proceeds as follows: suppose we are
on the forward sweep, the tensor is in block-p-format and we seek to update
component Up while all others are fixed. We observe that we can solve the
eigenvalue problem Eq. (3.1.7) for the three-fold product basis in Eq. (B.1.2),
and we can update every slice Up(:, :, :, m) by the m-th eigenvector thus ob-
tained. In order to proceed to the optimization of the next component Up+1,
however, the index m needs to be moved into Up+1 first. Otherwise, Up would
parametrize different left interfaces for every value of m, which violates the
idea of the TT-format. In the literature, it is suggested to perform the index
move as follows.
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B.2. OPTIMIZATION PROBLEM FOR THE COMPONENTS UP

• Re-shape the component Up into a matrix in R
rp−1·n×rp·M and compute a

low-rank decomposition, e.g. by SVD or QR-decomposition:

Up(kp−1, ip, kp, m) =

r′p

∑
k′p=1

Vp(kp−1, ip, k′p)Wp(k
′
p, kp, m). (B.1.3)

• Contract the arrays Wp and Up+1 by summing over kp:

Ũp+1(k
′
p, ip+1, kp+1, m) =

rp

∑
kp=1

Wp(k
′
p, kp, m)Up+1(kp, ip+1, kp+1).

(B.1.4)

After this, the p-th component can be updated by Vp, which carries no more

than three indices, while the p + 1-st component can be updated by Ũp+1,
which now enumerates the index m. Furthermore, the p-th rank has changed
to r′p, thus allowing for rank-adaptivity during the iteration. Also note that the
decomposition Eq. (B.1.3) needs to be truncated, otherwise the ranks rp can
easily blow up.
Initially, we attempted to apply ALS using the above method, but the trunca-
tion step turned out to be problematic. The main obstacle was that decomposi-
tions like SVD do not respect the underlying structure of the problem, namely
that the solutions ψ̂m need to be orthogonal with respect to the weighted inner
product Eq. (2.3.3). Even for large ranks r′p, yielding close approximations to

the full matrix Up, the resulting functions ψ̂m often failed to fulfill the orthogo-
nality constraints. Consequently, we were facing either intolerably large ranks,
or meaningless results.
Still, the optimization algorithm described in this work produces a tensor in
the block-TT-format. Recall that the optimization of component Up provides

a new left interface g
p+1
kp

(Up). The eigenvectors of the generalized eigenvalue

problem Eq. (3.1.7) parametrize M eigenfunctions in terms of the reduced basis

Eq. (5.2.13), yielding a component Up+1 ∈ R
rp×n×rp+1×M. Thus, the tensor is

in block-p + 1-format after the optimization. However, this component is not
used, as it is updated immediately afterwards by the next optimization step.

B.2 Optimization Problem for the Components Up

Here, we formulate the optimization problem which needs to be solved for
increasing ranks rp in every iteration step of Alg. 5.1. We seek to determine

the optimal component Up ∈ R
rp−1×n×rp , s.t. the eigenvalue sum Eq. (5.2.11)

for the reduced basis Eq. (5.2.13) is maximal. This is an unconstrained op-
timization problem which can be solved numerically by a conjugate gradient
method if we can provide the derivatives of the eigenvalues λ̂m(Up) w.r.t. the
entries of Up. These derivatives can be obtained as follows: The eigenvalues

λ̂m(Up) solve the generalized eigenvalue problem Eq. (3.1.7) using the reduced

correlation matrices Cτ(Up), C0(Up) between the basis functions Eq. (5.2.13).
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These correlation matrices can be computed from the larger correlation matri-
ces Cτ

p,p+1, C0
p,p+1 of the four-fold product basis Eq. (5.2.14):

Cτ
p,p+1 = 〈Tτ g

p−1
kp−1

f
p
ip

f
p+1
ip+1

h
p+1
kp+1

, g
p−1
lp−1

f
p
jp

f
p+1
jp+1

h
p+1
lp+1

〉π, (B.2.1)

C0
p,p+1 = 〈g

p−1
kp−1

f
p
ip

f
p+1
ip+1

h
p+1
kp+1

, g
p−1
lp−1

f
p
jp

f
p+1
jp+1

h
p+1
lp+1

〉π, (B.2.2)

by the formulas

[

Cτ(Up)
]kp,ip+1,kp+1

lp,jp+1,lp+1
= ∑

kp−1,ip,lp−1,jp

Up(kp−1, ip, kp) · (B.2.3)

[

Cτ
p,p+1

]kp−1,ip,ip+1,kp+1

lp−1,jp,jp+1,lp+1

Up(lp−1, jp, lp),

[

C0(Up)
]kp,ip+1,kp+1

lp,jp+1,lp+1

= ∑
kp−1,ip,lp−1,jp

Up(kp−1, ip, kp) · (B.2.4)

[

C0
p,p+1

]kp−1,ip,ip+1,kp+1

lp−1,jp,jp+1,lp+1

Up(lp−1, jp, lp).

Using these formulas, we can differentiate the matrix entries of Cτ(Up) and

C0(Up) w.r.t. the variables Up:

∂
[

Cτ(Up)
]kp,ip+1,kp+1

lp,jp+1,lp+1

∂Up(k′p−1, i′p, k′p)
= ∑

lp−1,jp

[

Cτ
p,p+1

]k′p−1,i′p,ip+1,kp+1

lp−1,jp,jp+1,kp+1

Up(lp−1, jp, lp)δkp,k′p

+ ∑
kp−1,ip

[

Cτ
p,p+1

]kp−1,ip,ip+1,kp+1

k′p−1,i′p,jp+1,kp+1

Up(kp−1, ip, kp)δlp,k′p ,

(B.2.5)

∂
[

C0(Up)
]kp,ip+1,kp+1

lp,jp+1,lp+1

∂Up(k′p−1, i′p, k′p)
= ∑

lp−1,jp

[

C0
p,p+1

]k′p−1,i′p,ip+1,kp+1

lp−1,jp,jp+1,kp+1

Up(lp−1, jp, lp)δkp,k′p

+ ∑
kp−1,ip

[

C0
p,p+1

]kp−1,ip,ip+1,kp+1

k′p−1,i′p,jp+1,kp+1

Up(kp−1, ip, kp)δlp,k′p .

(B.2.6)

What remains is to compute derivatives of the eigenvalues λ̂m(Up) w.r.t. the

matrix entries of Cτ(Up), C0(Up). For isolated eigenvalues λ̂m(Up) and posi-

tive definite C0(Up), matrix perturbation theory yields the results:

∂λ̂m(Up)

∂Cτ(Up)(i, j)
= am(i)am(j)

(

2 − δij

)

(B.2.7)

∂λ̂m(Up)

∂C0(Up)(i, j)
= −λ̂m(Up)am(i)am(j)

(

2 − δij

)

, (B.2.8)

where am is the m-th eigenvector corresponding to λ̂m(Up). Combining Eqs.

(B.2.7-B.2.8) and (B.2.5-B.2.6), we find the derivatives of λ̂m(Up) w.r.t. the vari-
ables Up. Equations (B.2.7-B.2.8) can be obtained from perturbation theory.

Consider an analytic perturbation of Cτ = Cτ(Up) and C0 = C0(Up):
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C̃τ = Cτ + ǫCτ
1 + . . . (B.2.9)

C̃0 = C0 + ǫC0
1 + . . . (B.2.10)

Then, the proof of [85, Theorem 1] can be imitated for the positive definite
generalized eigenvalue problem to show that also the eigenvalue λ̃m of C̃τ, C̃0

can be computed by a series expansion in a small neighborhood of Cτ , C0:

λ̃m = λ̂m(Up) + ǫλ̂1
m + . . . (B.2.11)

Moreover, the proof of this theorem also provides an expression for the first
order correction λ̂1

m. For the positive definite generalized eigenvalue problem,
the correction becomes

λ̂1
m = (am)

T
(

Cτ
1 − λ̂m(Up)C

0
1

)

am. (B.2.12)

Equations (B.2.7-B.2.8) now follow if we use the perturbations Cτ
1 = C0

1 = Eij,

where Eij is a matrix whose elements (i, j) and (j, i) are equal to one while all
others are zero. Note that the factor 2 − δij accounts for the symmetry of the

matrices Cτ(Up), C0(Up).

B.3 Least Squares Approximation of Interfaces

In order to evaluate the contribution of the one-coordinate basis f
p
ip

to the full

solution, we suggest the following simple method. As before, we explain the

method in the context of the forward iteration. The interface functions g
p+1
kp

en-

code the relevant information about coordinates x1, . . . , xp into a limited num-
ber rp of functions. If coordinate xp was relevant for the slow dynamics, these
interfaces should differ from the ones computed previously, i.e. from the func-

tions g
p
kp−1

. Therefore, after the interfaces g
p+1
kp

have been optimized, we ap-

proximate these functions in the least squares sense from the basis of previous

interfaces g
p
kp−1

. The expansion coefficient vector ukp of the best approximation

for the interface g
p+1
kp

,

fkp
= ∑

lp−1

ukp(lp−1)g
p
lp−1

, (B.3.1)

is found as the solution of the linear system

Apukp = bkp (B.3.2)

Ap(kp−1, lp−1) = 〈g
p
kp−1

, g
p
lp−1

〉π (B.3.3)

bkp(kp−1) = 〈g
p
kp−1

, g
p+1
kp

〉π. (B.3.4)

These quantities can be obtained from the correlation matrix C0
p,p+1 in Eq.

(B.2.2). The matrix Ap is just a submatrix of C0
p,p+1, whereas the vector bkp

can be computed via
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bkp(kp−1) = ∑
lp−1,jp

Up(lp−1, jp, kp)〈g
p−1
kp−1

, g
p−1
lp−1

f
p
jp
〉π, (B.3.5)

where we have used the recursion formula Eq. (5.2.8). Next, we can compute

the approximation error for g
p+1
kp

via

(

E(p)kp

)2
= 〈g

p+1
kp

− fkp
, g

p+1
kp

− fkp
〉π (B.3.6)

= 1 − 2〈g
p+1
kp

, fkp
〉π + 〈 fkp

, fkp
〉π (B.3.7)

= 1 − 2
(

bkp

)T
ukp +

(

ukp

)T
Apukp . (B.3.8)

Finally, we compute the average approximation error E(p) = 1
rp

∑
rp

kp=1 E(p)kp

and use it as a measure of the importance of coordinate xp.
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Appendix C

Proofs

C.1 Definition of Transfer Operator on all Lebesgue

Spaces

Proposition C.1. If µ is an invariant measure, then Tt is well-defined on all spaces
L

p
µ, 1 ≤ p ≤ ∞.

Proof. As µ is a probability measure, we have that L
p
µ ⊂ L1

µ for all 1 < p ≤ ∞,
thus Tt can be defined on all these spaces by restriction. Moreover, an applica-
tion of Jensen’s inequality shows that the Koopman operator can be extended

to all spaces L
p
µ, 1 ≤ p ≤ ∞ [86, Lem. 1]. We show that for 1

p + 1
q = 1, the

adjoint operator of Kt, as an operator on L
q
µ, is the restriction of Tt to L

p
µ, as this

implies that Tt is not only defined on L
p
µ, but also maps functions from that

space back into L
p
µ. To this end, denote the extension of Kt to L

q
µ by Kq

t . If we

choose g = χA ∈ L∞
µ ⊂ L

q
µ, we find for all f ∈ L

p
µ:

∫

A

(

Kq
t

)∗
f (x)µ(dx) = 〈

(

Kq
t

)∗
f , g〉µ (C.1.1)

= 〈 f ,Kq
t g〉µ (C.1.2)

= 〈 f ,Ktg〉µ (C.1.3)

= 〈Tt f , g〉µ (C.1.4)

=
∫

A
Tt f (x)µ(dx). (C.1.5)

As A ∈ S was arbitrary, we have that
(

Kq
t

)∗
f = Tt f µ-a.e. in S. Therefore,

Tt =
(

Kq
t

)∗
.

C.2 Ergodic Behaviour of Time-Lagged Correlations

The proof of Theorem 3.4 relies on the Birkhoff ergodic theorem [43, Thm.
4.2.4]. For simplicity, we assume L = 1 , all of the following arguments work
out equally well for L > 1. We briefly write (Ω, Σ, P) instead of Ω∆t, Σ∆t, P∆t
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and ω = (Xk)
∞
k=0 instead of ω = (Xk∆t)

∞
k=0 for a discrete trajectory ω. On the

space Ω of discrete trajectories, we define the transformation G : Ω → Ω that
shifts a trajectory ω one step forward:

G [ω] = (Xk+1)
∞
k=0 , (C.2.1)

and call this map the shift. As P is generated by the unique invariant measure
µ, it follows from the Kolmogorov-Daniell Theorem that P is invariant under
the shift, that is

P(G−1(A)) = P(A) (C.2.2)

for all A ∈ Σ. Moreover, it can be shown that P is ergodic with respect to the
shift, that is, any set A ∈ Σ that is unchanged under the shift, i.e.

G−1(A) = A, (C.2.3)

is either of P-measure zero or one. The details can be found in the lecture
notes [87, sec. 5], but the key point is to show that if P is not ergodic, the
state space S can be decomposed into two dynamically disconnected sets. As a
result, the invariant measure can be expressed as a convex combination of two
measures that are also invariant, contradicting the uniqueness of the stationary
measure. Then, because of the shift invariance and ergodicity of the measure P,
the Birkhoff ergodic theorem implies that for the following functions, defined
on a discrete trajectory ω:

F0
ij(ω) = fi(X0) f j(X0), (C.2.4)

F1
ij(ω) = fi(X0) f j(X1), (C.2.5)

we find:

1

K − 1

K−2

∑
k=0

fi(Xk) f j(Xk) =
1

K − 1

K−2

∑
k=0

F0
ij(Gk(ω)) (C.2.6)

→
∫

Ω
F0

ij(ω) dP(ω) (C.2.7)

=
∫

S
fi(x) f j(x) µ(dx). (C.2.8)

1

K − 1

K−2

∑
k=0

fi(Xk) f j(Xk+1) =
1

K − 1

K−2

∑
k=0

F1
ij(Gk(ω)) (C.2.9)

→
∫

Ω
F1

ij(ω) dP(ω) (C.2.10)

=
∫

S

∫

S
fi(x) f j(y) µ(dx)p1(x, dy).(C.2.11)
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C.3 OOM Probability of Observation Sequence

Here, we show the derivation of the path probability formula Eq. (6.2.3), that
can also be found in Ref. [40]. In general, the left-hand side of Eq. (6.2.3) can
be expressed by repeated integrals over the transition kernel:

P(Xτ ∈ A1, . . . , Xlτ ∈ Al) =
∫

Ω

∫

A1

. . .
∫

Al

dx0 . . . dxl π(x0)p(x0, x1; τ) . . .

p(xl−1, xl ; τ). (C.3.1)

Note that π appears in the first integral as we assumed that the dynamics is in
equilibrium, i.e. the initial distribution equals π. Next, we replace all transition
kernels by the expansion in Eq. (6.1.1):

P(Xτ ∈ A1, . . . , Xlτ ∈ Al) =
M

∑
m0=1

M

∑
m1=1

. . .
M

∑
ml−1=1

[

∫

Ω
dx0 π(x0)ψm0(x0)

]

λm0(τ)

[

∫

A1

dx1 ψm0(x1)π(x1)ψm1(x1)

]

. . .

λml−1
(τ)

[

∫

Al

dxl ψml−1
(xl)π(xl)

]

(C.3.2)

=
M

∑
m0=1

M

∑
m1=1

. . .
M

∑
ml−1=1

δ1,m0
ΞA1

(m0, m1) . . .

ΞAl
(ml−1, 1). (C.3.3)

In the second equation, we have used the π-orthogonality of the eigenfunctions
ψm0 and the fact that ψ1 ≡ 1 in order to replace the x0-integral by δ1,m0

. For the
last integral, we have also used that ψ1 ≡ 1. This is a sequence of matrix-
vector products. It remains to use δ1,m0

= ω(m0) and that ΞAl
(ml−1, 1) =

[

ΞAl
σ

]

(ml−1). In matrix notation, Eq. (6.2.3) follows:

P(Xτ ∈ A1, . . . , Xlτ ∈ Al) = ω
T

ΞA1
. . . ΞAl

σ. (C.3.4)

Finally, note that this derivation also works if the dynamics is not in equilib-
rium. In this case, the vector ω is given by ω(m0) =

∫

Ω
dx0 ρ0(x0)ψm0(x0),

where ρ0 is the non-equilibrium initial condition.

C.4 Variable Simulation Length

Here, we verify that the estimation algorithm from Sec. 6.2.2 can be applied
to data sets comprised of simulations of non-uniform length. We assume that
for j = 1, . . . , J, there is an ensemble of Qj simulations of length Kj + 2τ, i.e.
Kj transition pairs / triples will be used from each of these trajectories. We
assume that Qj → ∞ for all j, s.t. every sub-ensemble samples from an em-
pirical distribution ρj. Define the number of data points generated by the j-th
ensemble as Tj = QjKj, and the total number of data points by
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T :=
J

∑
j=1

QjKj. (C.4.1)

Moreover, we assume that
Tj

T → αj, i.e. the fraction of data points gen-
erated by the j-th ensemble approaches a constant for all j. Let us define the
distribution

ρ =
J

∑
j=1

αjρj. (C.4.2)

Trajectories of length Kj + 2τ are enumerated by qj and labelled Yqj
. Fur-

ther, let sKj
(Yqj

) be any of the estimators from Eqs. (6.1.2-6.1.4), where the

subscript Kj indicates that K − 2τ in Eqs. (6.1.2-6.1.4) must be replaced by Kj.
In addition, denote by s(Yqj

) the same estimator, but without the normaliza-

tion. Also, let cρ j
denote the corresponding correlation from Eqs. (6.1.17-6.1.18)

and (6.2.10) w.r.t. the density ρj. It follows that

sT :=
1

T





Q1

∑
q1=1

s(Yq1 ) + . . . +
QJ

∑
qJ=1

s(YqJ )



 (C.4.3)

=
T1

T

[

1

T1

Q1

∑
q1=1

s(Yq1 )

]

+ . . . +
TJ

T





1

TJ

QJ

∑
qJ=1

s(YqJ )



 (C.4.4)

=
T1

T

[

1

Q1

Q1

∑
q1=1

sK1
(Yq1)

]

+ . . . +
TJ

T





1

Q J

QJ

∑
qJ=1

sKJ
(YqJ )



 (C.4.5)

→ α1E
(

sK1

)

+ . . . + αJE

(

sKJ

)

(C.4.6)

= α1cρ1 + . . . + αJcρ J (C.4.7)

= cρ. (C.4.8)

The convergence in Eq. (C.4.6) is convergence in probability. Thus, if we sum
up all visits / transitions / two-step transitions, and divide by the total number
of data points in the end, we arrive at an asymptotically correct estimator of the
correlations w.r.t. the density ρ. As the OOM estimation algorithm only relies
on consistent estimators for correlations w.r.t. some empirical density ρ, it can

still be applied in this setting. Finally, the normalization by 1
T can be omitted

in practice, because it cancels out in Eqs. (6.2.14-6.2.19).
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Zusammenfassung

Die vorliegende Arbeit beschreibt eine Methode, genannt variational approach
to conformational dynamics (VAC), zur Analyse von Simulationsdaten von hoch-
dimensionalen stochastischen Prozessen. Dabei liegt der Fokus auf reversiblen
Markov-Prozessen und auf der Anwendung im Bereich von Molekulardyna-
mik Simulationen. Die grundlegende Idee ist es, die führenden Eigenfunktio-
nen des mit dem Markov-Prozess assoziierten Transferoperators aus einer vor-
ab gewählten Menge von Basisfunktionen zu approximieren. Die auf diese Art
approximierten Eigenfunktionen können zur niedrig-dimensionalen Darstel-
lung des Prozesses verwendet werden. Zur Bestimmung der Approximation
muss ein generalisiertes Eigenwertproblem gelöst werden, wobei die dafür be-
nötigten Matrizen aus langen Simulationen berechnet werden können. In der
Arbeit wurde die Verwendung von Tensorprodukt Darstellungen diskutiert,
damit die Methode mit einer möglichst großen und dennoch interpretierbaren
Basis verwendet werden kann. Um den dabei auftretenden “Fluch der Dimen-
sion” zu vermeiden, wurde ein Niedrigrang-Format, das tensor-train-format,
verwendet. Die zugehörigen Algorithmen wurden an die Problemstellung an-
gepasst und erfolgreich auf Beispielsysteme angewandt. Im letzten Teil der Ar-
beit wurde untersucht, wie die Methode auch mit Hilfe von vielen Kurzzeit-
Simulationen verwendet werden kann. Diese Frage wurde zunächst für Mar-
kov state models (MSM) untersucht, die einen Spezialfall des VAC darstellen.
Wir haben einen Ausdruck für den Fehler bei der MSM Schätzung aus zu kur-
zen Simulationen hergeleitet. Anschließend wurde erklärt, wie sich der Fehler
mit Hilfe von observable operator models (OOM) korrigieren lässt. Die Diskus-
sion algorithmischer Details und die Anwendung auf Beispielsysteme bilden
den Abschluss der Arbeit.
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