Chapter 3

Dirichlet Problems for Homogeneous PDEs

In this chapter, we mainly consider some Dirichlet boundary value problems
for polyharmonic functions and poly-analytic-harmonic functions in the unit disc.
As a preliminary, we begin with the classic result of the Dirichlet problem for

analytic functions.

3.1 Dirichlet Problem for Analytic Functions

In the theory of BVPs for analytic functions, the Dirichlet boundary value

problem is one of the classical BVPs. It is expressed as follows.

Dirichlet boundary value problem Find a function w € H; (D) such that
w =~y on 0D,

where v € C'(D) is a given complex function.

The following theorem is well-known and can be found in many places [4,

22, 26]. The proof here is due to Begehr [4] with some modification.

Theorem E. The Dirichlet problem is solvable if and only if for |z| < 1,

1 ( z dr
— 7- —
2mi 3@7 T—ZT

—0. (3.1)

Then the solution is uniquely given by the Cauchy integral

_ 10,
w(z) /a dr, z € D. (3.2)

2w Jop T — 2
Proof. For (3.1) to be necessary, suppose that w is the solution of the Dirichlet
problem. Then w can be expressed as (3.2) which is analytic in D and has

continuous boundary values

lim  w(z) =~(7) (3.3)

z—T,|2|<1
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for all 7 € 9D.
Define

g
/N
[ =
——
|

|
‘H
ﬂ
N~—
|
|CL

therefore

or-u(l) = [ )

So from the above equality and the properties of the Poisson kernel, for 7 € 9D,

lim  [w(z) —w*(2)] = 7(7) (3.4)

z—T,|2|<1

follows. (3.3) and (3.4) show that lim, ., ..«;w*(2) = 0. By the maximum

principle for analytic functions, w*(z) = 0 for all |z| < 1. Therefore

1 z dr <1
2w
Z

271 aDvT?—ET > w() 12

For the sufficiency, by (3.1) and (3.2),
1 T Z \dr
we) = [ ()T (3:5)

1 8D7(7)< L —1)d—T, (3.6)

~omi

T—2 T—2Z T
therefore
lim  w(z) =~(7)
z—T,|2|<1
follows from the properties of the Poisson kernel. ]

Remark 9. From the above proof, we find that the existence lim,_.; |.j<1 w(z)

z

implies the existence of lim,_,; |.j<1 w*(z). Since w(z) = [w*]*(z) = w*<1>, |z| >

1, then the existence lim, ., |.j<; w(z) implies the existence of lim._.; |.js1 w(%).
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For antianalytic functions, we similarly consider the following Dirichlet bound-

ary value problem.

Associated Dirichlet boundary value problem Find a function w € H; (D)
such that
w =y on OD,

where v € C(dD) is a given complex function.

By the above theorem, we have

Corollary 6. The associated Dirichlet problem is solvable if and only if for |z| <

I,
1 z dr

. =0.
21t Jap T—2T

Then the solution is uniquely given by

z:—L m?z
w(z) /a dr, z € D.

Proof. Since 0,w = 07w, then w € H,(D) implies w € H,(D). So it easily follows
from Theorem E. O

3.2 Dirichlet Problem for Polyharmonic Functions

In the present section, we considered a Dirichlet problem for polyharmonic
functions which is also called polyharmonic Dirichlet problem (PHD problem) as
follows.

Polyharmonic Dirichlet Problem Find a function w € HarS(D) satisfying
the Dirichlet type boundary conditions

[(0,02)w]T(t) = ;(t), t € D, 0 < j < n, (3.7)

where v; € C(0D) which denotes the set of all complex continuous functions on
dD for 0 < j < n.

With the higher order Poisson kernels, the above PHD problem is uniquely
solvable. To do so, we need the following lemmas, one of which is about another

property of the higher order Poisson kernels.
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Lemma 7. Let ; be a domain and 2y be a compact set in the complex plane,
NQy =0, g(z,€) is a continuous function defined in Qy x Qo such that g(z,§) €
Hi($4) as a function of z with fized & € Qy. For any fized zy € Sy, take D,y g =
{z:0< |z — 2| < R} CQy and define

9(275) B 9(2075)

F.(20,6) = po—— , £€ (3.8)
and
G(20,¢) = 9(2’2:2%@, £e (3.9)

with fixed z € D, gsa. Then F.(20,-), G.(20,-) € L(Q9).

Proof. Since g(z,£) € Hy(€;) with respect to z for fixed £ € 5, by Cauchy
integral formula, for fixed £ € €),,

. 1 I
9(%0, ) /< ¢

N 2m —zo|=R C — 20
d
PN T e gen €2

Thus X (C’ g)

_ L 9(¢,

Fu20.) = o /IC T2 —m)

So

_ RS 9(¢,€)

oo = [ [ [ s aduwe

1 19(Q)]  d¢
= oni /.UOZR =2 ¢ 2

_ 2550l

- R
where v is the Lebegue measure on Qy, §(¢) = [, |9(¢,&)|dv(€) is bounded on
{C:|¢ — 20| = R} since g(z,&) € C(y x Q) and €2y is compact. That is to say
F.(z0,) € L(£22). Note that

GZ(ZO7§> - f_fon<Zo,§),

zZ — 20

therefore G, (2o, -) € L(s). O
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Lemma 8 (Differentiability of Integral). Let { g,(z,7)}°°, be the sequence of
higher order Poisson kernels, then for any v € C(9D),
dr

(0-02) [% /aDy(T)gn(z,T)dﬂ - %/(9@7(7)9,11(2,7)?, n=2,3....
(3.10)

Proof. For any fixed z € D, arbitrarily choose a sequence {z} such that z # z
for any [ and 2z; — z as [ — oo. Define

gn<zlv7-) _gn(sz)
2] — %

ZZ(Z> 7_) =
for fixed [. Obviously, Z;(z,7) € C(0D) C L(D) with respect to 7 and

lim Z,(z,7) = 0,gn(2, 7).

l—o0
In addition, by the decomposition (2.18) of g,(z,7) and the last lemma with
2, =D and 2y = JD, it is easy to see that Z;(z,-) € L(0D). Note the continuity
of 0,9,(z,7), by the dominated convergence theorem,

1 [1 dr 1 dr

1i — n\~ )7 T 5. nAT _]
lircl;lo 2 — 2 L2mi /aDPY(T)g (z:7) T 211 3DW(T)9 (z.7) T

1 —
— lim _/ ’Y(T)gn(Zl’T) gn(zaT)d_T
oD

l—o00 2771 2] — 2 T

1 dr

= lim — 7 —

i g |, 7070
1 dr

:% oD V(T)azgn@’ T) 7

Because of the arbitrariness of {z;}, therefore in view of the Heine principle

1 dr 1 dr
0[50 [ 1O T] =5 [ AT
Further, similarly define

8zgn(2la T) - azgn('z7 T)
ZI—Z

Hl(Z,T) =

)

again by (2.18), Lemma 7, the dominated convergence theorem and the Heine
principle,

1 dr 1 dr

0 [5r; | 100005 T] = 5 [ A(noefoug )T

oD T JoD T

27 T
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So (3.10) follows from the last two equalities and the induction property of the

higher order Poisson kernels. O]

Lemma 9. If p € Hi(D) and g—f € O(D), then ¢ € C(D).

Proof. 1t immediately follows from

“0
oz = | (0~ (0), z€D. s

Theorem 10. The PHD problem (3.7) is solvable and its unique solution is

dr

w(z) = Z QLm/amyk_l(T)gk(z,T) — 2 € D, (3.11)

where gi(z,7) (1 < k < n) is the kth order Poisson kernel given by (2.39).

Proof. At first, we show that (3.11) is a solution. By Lemma 8 and the induction
property of the higher order Poisson kernels, using the operators (9.05)7, j =
1,2,...,n — 1 to act on two sides of (3.11), we get
, 1 dr
82(% J = P — —3\% -
@00 = 30 5 [ a0

k=j+1

(3.12)

Thus
[0.0=)w]T(t) =~;(t), teD,0<j<n

follows from (3.12) and the other properties of the higher order Poisson kernels,

i.e., (3.11) is a solution.

Next, we turn to the uniqueness of (3.11). To do so, we must show that
(3.7) only has zero as its solution when all 7, = 0 on dD. It is enough to consider
w € Har,(D) for this case. Since w € Har, (D), by Theorem B, there exist some
functions w; € Hf’O(D), j=0,1,...,n — 1 such that

w(z) = 29%{ zﬂ'wj(z)}, 2 eD. (3.13)



Applying the operators (9.9:)7, j = 1,2,...,n — 1 to both sides of (3.13), we

have

.07 u() = (X

By (3.14), Lemma 9 and the boundary value conditions of (3.7) with ~; = 0,

Ek’jagwk(z)}, z € D. (3.14)

R[OIw;(t)] =0, tedD, 0<j<n-—1.
So it is easy to get w; € H{,O(]D) from the last equality and then w = 0. O

Remark 10. In [9], Begehr, Du and Wang only considered the PHD problem
(3.7) with Holder continuous boundary conditions not continuous boundary con-
ditions. So it happens since they solve the problem by reflection method which
transfers the problem to the classical Riemann jump problems for analytic func-
tions. However, the Holder continuity is necessary for the latter considering the
singular integrals on the unit circle. In [14], to solve the same problem when
n = 3, Begehr and Wang used a new approach which transfers the problem to
the classical Schwarz problem for analytic functions in the unit disc. So the
Holder continuity is weaken to the condition of continuity. In fact, in view of the
above proof, with continuous boundary conditions discussed in the last theorem,
the unique solvability of PHD problem (3.7) obviously follows from the properties

of the higher order Poisson kernels g,(z,7) by induction.

3.3 Dirichlet Problems for Poly-analytic-harmonic

Functions

In this section, three kinds of Dirichlet type boundary value problems for
poly-analytic-harmonic functions in M,, ,, (D) are given.
One of which is of the form: find a function L(z) € M,,,(D)(m > n)

satisfying the boundary conditions

[(0.0-)0 L] (t) = v;(t), 0<j <n and [07TFO2LT(t) = on(t), 0 <k <m —n,
(3.15)
where t € ID, v;,0, € C(OD) for 0 < j <n, 0 <k <m —n.

By the harmonic decomposition theorem, we have
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Theorem 11. Set

n (n+1)lt --- (n(ﬁﬁ);)!tm—na (ngi)l!)!tmfnfl
0 (n+1)! .- —(n(ln_?i)é)!tm_"_g’ (n(ﬁ;i);)!tm—n—Q
Alt)=| : : : : . (3.16)
(m —2)! (m — )t
0 (m — 1)‘
O'0<t)
g1 (t)
aft) = 3 : (3.17)
Jm—n—2(t)
Jm—n—l(t)
1 1 det(A
Ei(2) = Py / det(A(7)) l(T))dT, (3.18)
n-(n—i—l)!---(m—l)!Zm op T —Z%

and

z  rCp-1 ¢1
Fi(z) = /O /0 /0 S(O)ACAC - dCoy + m(2), (3.19)

where t € 0D, m; € 11,1, the matriz A)(t) is given by replacing the lth column
of A(t) by a(t), 0 <l <m—n—1. Then

< (n+1)! ntl—k+1 A1 =7\ dr
B Z (n+l—k+1)!T %=l T

+ 2" _2: 231(2) (3.20)

are all solutions of the problem (3.15) if and only if

1 det A d
L[ et AT o e o<i<m-n-—1, (3.21)
21t Jop T — 2 T

where gi(z,7) (1 < k < n) are the former n higher order Poisson kernels.
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Proof. By Theorem C, since L € M,, (D) (m > n), then

—_

n—

—

n— m—n—1

L(z) = 2@)%{ 2kg0k(z)} + me{ Ek@k(z)} +20 Y 5, zeD,

0

B

Il
B
Il

0 1=0
where ¢k, @ € Hf((D) and & € Hi(D). So

m—n—1

(O oz)L(z) = )

=k

I
Eyjkglzlka?%('z% 2eD, 0<k<m-—n-—L

Note that from (3.15), by Lemma 9, it follows that [0 (¢) exists for all
0<7<n,0<l<m-—n-—1,te€JdD. Therefore,

m—n—1

I
> E?jlgitl‘k[aﬁ@ﬁ(t) — (1), tedD, 0<k<m—-n—1.  (3.22)
=k ’
Set
(020 T (¢) oo(t)
[02@1]*(t) o1 (t)
X(t) = : , at) = :
[0 Gr—n—2| () Om-n—2(t)
(02 im—n—1]T(?) Omn—1(t)
and
n! (n+ ) - —(émnz)%)!tm—"” (,,ﬂmni’l;),tm—n—l
0 (n + 1)' cee (w(;i;_)é)!tmfnf:S (Ti”_?;_)é)!tmfan
Aty=|: - |
(m —2)! (m— 1)t
0 0 (m —1)!

then (3.22) becomes

By Cramer rule, we get

02070 = o +d(i;!(1.4.l.( 2,)1 1 (3.23)
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where the matrix A;(t) is given by replacing the [th column of A(t) by a(t),
0<I<m-—n—1. Let

=) = 1 1 AD%KéﬁD&3

nl(n+ 1) (m— 1)1 2i T—z

then ) X
A= [ [ Eds a6+ ),

o Jo 0

where m; € II,,_1, 0 <[ <m—n— 1.

Let

then L — L € Har®(D) and

m—n—1

Q2P L-DI () =)= 3 2t OTE (D, te D 0= <n,

So, from the last section,

n

L) =50 =Y 5 [ o))

1
m—n—1

(n+1)! -k 1A= 4T
T -k e

where gx(z,7) (1 < k < n) are the higher order Poisson kernels. Therefore,

L(z) :Zi: 2%” /BD g(2,7) [%—1(7)

m—n—1

dr -~

(n + l)' Tn+l—k+1W] ? + L(Z) (324)

(n+1—k+ 1)

(]

1=0
Note that by (3.23) and Theorem E, we know that (3.24) are all solutions of
(3.15) if and only if

1 det Ay(7) d
L[zt A dr o g<i<mon 1. 0
2t Jop T — 2 T
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The second Dirichlet problem is to find a function R(z) € M,, (D) (m < n)

satisfying the boundary conditions

[(0.0-)R|*(t) = p;(t), 0<j<m and [07OZTFR)™(t) = ox(t), 0 <k < n—m,

(3.25)
where t € ID, p;, 0, € C(OD) for 0 < j<m, 0 <k <n—m.
Similarly, by the harmonic decomposition theorem, we have
Theorem 12. Set
- n—2)! —m—2 n—1)! -n—m-—1
m! (m+ 1)l (n(_m?;)!t (n(_ml_)'l),t
n—2) n—m-—3 n—1) n—m-—2
0 (m + 1)' e (n(fma)S)!t (n(fmlf)2)!t
At)=| : : : . (3.26)
(n—2)! (n—1)%
0 (n—1)!
00(t)
o1(t)
a(t) = : : (3.27)
men72<t)
menfl<t)
1 1 det(Aj(1))
—/ l
= = — —=d 3.28
1(2) m!(m+ 1) (n—1)! 2mi /8]]) T2 (3:28)

and
. 2z Cm—1 ¢1
z) = / / / SHOACAG - dGoy + (), (3.20)

where t € D, ©r] € 11,,,_1, the matriz Aj(t) is given by replacing the lth column
of A'(t) by d'(t), 0 <1l <n—m-—1. Then

m ! ~
Z (m+1)! .Fm+lfk+1alchlwl(7_) dT_T
+zm Zhiy(2) (3.30)
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are all solutions of the problem (38.25) if and only if

1 det A7(7) d
L[ 2@ dr e o<i<n—m—1, (3.31)

2mt Jop T —2 T

where gi(z,7) (1 < k < m) are the former m higher order Poisson kernels.

Proof. By Theorem C, since R € M,, (D) (m < n), then

-1 -1 n—m—1

R(z )_29’%{ ZFy, (z)}+2m{ zksz(z)}+zm i 24y (z), z €D,

0 =0

3
3

e
I
o
>
Il

where 1y, U € Hf (D) and U, € Hy(D). So

n—m-— 1
!
(Omom TR R Z m—l—k 7 kamwl( ), z€D, 0<k<n-—-m-—1.

=k

Note that from (3.25), by Lemma 9, it follows that [0J¢]*(¢) exists for all
0<j<m,0<Il<n—m-—1,tedD. Therefore,

n—m—1

Z m—i—kl (9"%;] (t)=ok(t), tedD, 0<k<n-—m-—1. (3.32)
=k '
Set B
[a;n ¢0]+(t) Qo(t)
[@n%]Jr(t) 01 (t)
X'(t) = : , d(t) = :
[8?@Zn—m—2]+(t) Qn—m—Q(t)
[8gl¢n—m—1]+(t) Qn—m—l(t)
and
s (n—2)! zn—m—2 (n—1)! n—m—1
" <m+ 1)!t (n(—m2—)'2)!f —m—3 (n(_ml_)ll)!f —m—2
0 (m + 1>‘ T (nfmfé)!t (nfmf.Z)!t
Alt) = : : ,
(n —2)! (n—1)l
0 (n—1)!

then (3.32) becomes



By Cramer rule, we get

OB = det(A4;(t))

ml(m+ 1) (n—1)

(3.33)

where the matrix Aj(¢) is given by replacing the {th column of A'(t) by d'(t),
0<i<n—m—1. Let

2102 1 1 /6D det(A](r)) ;-

ml(m+ 1) (n— 1)1 2mi T—2z
then s ‘
/ [ [ =00 g+ i),
where m € II,,1, 0 <1 <n—m—1.
Let

i m +1)! et L~ dr
-2 (m+(1—k:)+ " O ()|

Y

Zm:2m/ )[/)k 1(7)

—m—1

where gx(z,7) (1 < k < m) are the higher order Poisson kernels. Therefore,
1

(m+D" k61T d_T ~
CE ] T 05y (1) + R(2). (3.34)

M

1=0
Note that by (3.33) and Theorem E, we know that (3.34) are all solutions of
(3.25) if and only if

1 AT
. zdet Aj(r) dr —0,2eD,0<I<n—m—1. 0
2t Jop T — 2 T
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The third Dirichlet problem is to find a function N(z) € M,, (D) which
fulfills the boundary conditions

[(OmILN]F(t) = x;(1), 0<j<n and [OFOZN]T(t) = M(t), 0 <k < m,

(3.35)
where t € 9D, x;, A\, € C(OD) for 0 < j<n, 0 <k <m.
By the canonical decomposition theorem, we have
Theorem 13. Set
7 P —n—1
01 2f (n—1)""?
Bt)y=1:: - : : : (3.36)
m—2)! (n—1)%
0 0 (n—1)!
t t2 tmfl
01 2t (m —1)tm2
City=1: : . : : , (3.37)
(m—=2)!  (m-—1)
0o --- 0 (m—1)!
Xo(?) Ao(t)
t A (t
o= | || MY 33%)
Xn—l(t) /\m—l(t)
wnd 1 I [ detB(r)
et T
e = — —7d 3.39
S o T Py T /aD E— (3:39)
1 1 det Cy(7)
A = — —2L7d A4
o) = T D)2 /aD — (3.40)
as well as

wie) = [ f R / " 0,040 - dGy + Ryle) (3.41)
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/ /Cn o ) A (Q)dCdG -+ - dGu—1 + &4 (2),

(3.42)

where t € ID, k, € 11,1, §, € Hn—l; the matrices B,(t), Cy(t) are respectively

given by replacing the pth, qth column by b(t), ¢(t), 0 <p<n—1,0<¢g<m-—1.

Then
n—1 m—1
N() = 3 2m(2) + 2, (2)
p=0 q=0

are all solutions of the problem (3.35) if and only if

L/ zdeth(T)d_T:07 0<p<n_1
oD

271 T—2z T

and

1 det dr
. zdet Cy(r) dr =0,0<qg<m-—1,
2t Jop T—2 T

in which z € D.

Proof. By Theorem D, we have the canonical decomposition

n—1 m—1
NG =S 2m(2) + Y 2 (2),
p=0 q=0

(3.43)

(3.44)

(3.45)

where p,,v, € Hi(D), 0 <p <n, 0 <q < m. Note that by (3.35), we have

ﬁjﬂwﬂ() Xi(t), 0<j<n
and )
(q 3!k>!tq_k[aqu]+(t) =M(t), 0 <k <m.
Set
XO(t) Ao(t)
vy = | YO = | MY
Xn l(t) )\m 1(t)

95
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(3.47)



and

[0 1] (1) [0 v0](2)
v | e || P
[0 1] (2) (07 V1] *(t)
as well as o, o
t
01 2 (n—1)""
B(t) =
(n—2)! (n—1)%
0 0 (n—1)!
and
1t tmt
0 1 2t (m — 1)tm—2
C(t) =

So

 det Cy(t)
12l (m = 1)

_det By(t)
12l (= 1)

(07" ] * (£) (02w (1)

where B,(t), C,(t) have the same meanings as A;(t) in (3.23).

bet 1 | [ detB,(r)d
et B,(7)dr
(%) = 1131 _ |_'/ R
2 (n—=10127i Jop 7—2 7
and
1 1 det Cy(7) dr
MO = T - e
1m0 m—=10)12ni Jop 7—2 7T
then

wie) = [ f T / " 0,(04CG Ay + ip(2),
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z Cn—1 1
valz) = / / [ MO 6, 350)

where k, € II,,,_1, , € II,,_1. Note that by (3.48) and Theorem E, substituting
(3.49) and (3.50) into (3.43), we get all solutions (3.43) of the boundary value
problem (3.35) if and only if

1 zdet B, (1) dr

— ——=0,0<p<n-1
2m Jogp T —2 T

and

L. Zdeth(T)d—T:()’OSqu—l,
2t Jop T—2 T

in which z € D. O]
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