Chapter 2

Decompositions of Functions

In this chapter, we introduce the theory of polyanalytic, polyharmonic as
well as poly-analytic-harmonic functions and are mainly concerned with the de-
compositions for them. The excellent book of Balk [3] contains the detailed
theory of polyanalytic and of polyharmonic functions of one complex variable.
Another book [1] due to Aronszajn, Cresse and Lipkin is an eminent one for

polyharmonic functions of several complex variables.

2.1 Polyanalytic Functions

It is well known that analytic functions are the main object of classical com-
plex analysis. They have three kinds of definitions respectively due to Cauchy,
Riemann and Weierstrasse which are derivative definition, differential equation
definition and series definition. All of them are equivalent. To extend analytic
functions of one variable, many generalized analogues are yielded such as gen-
eralized analytic functions, polyanalytic functions and metaanalytic functions
etc. [3, 29]. In another direction, the generalization for several variables yielded
the analytic functions of several complex variables which are not related to the
research object of this dissertation although several complex variables is an im-

portant branch of modern complex analysis.

2.1.1 Definition

One definition of analytic functions is in terms of Cauchy-Riemann operator
=32+ ia%)' That is, if a continuously differentiable function f satisfies

0=f = 0 in some domain of the complex plane, then f is analytic in the domain.

This is the differential equation definition due to Riemann. A natural extension



of this definition is to iterate the Cauchy-Riemann operator. In this way, the

generalized analogues are the so-called polyanalytic functions.

For simplicity, in what follows, we always suppose that €2 is a simply con-
nected (bounded or unbounded) domain in the complex plane with smooth
boundary 0f).

Definition 1. If f € C™(2) satisfies the equation 02 f = 0 in 2, then f is called

an n-analytic function in €2, concisely, a polyanalytic function.

The set of polyanalytic functions of order n in €2 is simply denoted by H,, ().
Especially, H;(2) is the set of all analytic functions in 2. However, H(2) denotes

the set of all Holder continuous functions in §2.

2.1.2 Decomposition

Polyanalytic functions are closely related to usual analytic functions. Any
polyanalytic function can be decomposed to a direct sum of some analytic func-

tions with certain coefficients.

Theorem A. Let Q2 be a simply connected (bounded or unbounded) domain in
the complex plane with smooth boundary 0S2. If f € H,(Q2), then for any zy € €2,
there uniquely exist functions f; € H1(Q2), j =0,1,...,n —1 such that

n—1

z € (2.1)

=0

.

Proof. First, we verify the existence by induction. For n = 1, let fy(z) =
f(2), z € Q, then (2.1) is obvious. Suppose that (2.1) holds as n = m, if
f € Hpia(Q), then 0z f € H,,,(Q). So there exist g; € H1(2), j=0,1,...,m—1
such that

m—1
(Z —Zo) z e Q.
7=0
Therefore,
m—1
O [f(2) = > (Z—2)"g(2)] =0,
j=0



that is to say f — Y7 (7 = Z0) gy € Hi(). Let fo=f — Y70 (Z =2} g,
and fj11 = gj, then (2.1) also holds for n = m+ 1. By induction, (2.1) also holds
for any n € N.

Next, we go to the uniqueness. Let

n—1

Z(E — %)’ fi(2) =0,

using operators 02 (j = 1,2,...,n — 1) to act on both sides of the last equality,
it is easy to get that f;(2) =0,2€Q,7=0,1,...,n— 1. ]

Remark 1. In [17], Du and Wang established the above theorem with a different
form whereas it is implicitly included in the book [3] of Balk. Let H™(Q2) =
{(fol2), fi(2),. .., faa(2)) = f; € H1(R2), 2z € Q2,5 =0,1,...,n — 1}, from the
above theorem, we know that H,(2) and H™(2) are isomorphic as complex vec-
tor spaces. So we call f; in (2.1) the analytic jth decomposition component of
the polyanalytic function f. We also call H"(2) n-analytic space or the decom-

position space for polyanalytic functions.

Let H,(€2) denotes the set of all functions satisfying 07 f(z) = 0, z € .

Since 0, f = 0z f, similarly or directly following from the above theorem, we also

get

Corollary 1. Let f € H,(Q), then for any z, € Q,

—_

n—

f(z) = } (z — zo)jfj(z), z €9, (2.2)

<
Il
<)

where f; € Hi (), j=0,1,...,n— 1. The decomposition (2.2) is unique.

2.2 Polyharmonic Functions

It is well known that harmonic functions are intimately related to analytic
functions. Any real harmonic function can be decomposed as a sum of an ana-
lytic function and its conjugate function which is antianalytic. That is, any real

harmonic function can be the real part of some analytic function. In this section,



this idea of decomposition is also valid for the generalized analogues of harmonic
functions which are called polyharmonic functions. Any polyharmonic function

can be decomposed into a sum of some polyanalytic function and its conjugate.

2.2.1 Definition

The definition given here is different from the usual manner (see [1, 3]). In
what follows, we always use polyharmonic operators (0.0z)" (n > 1) to define

polyharmonic functions, in particular, 9,05 is the harmonic operator.

Definition 2. If a real valued function f € C?"(Q) satisfies the equation (9,05)" f =
0 in €, then f is called an n-harmonic function in {2, concisely, a polyharmonic

function.

The set of polyharmonic functions of order n in  is simply denoted by
Har, (). Especially, Har () is the set of all harmonic functions in 2. Some-
times we need consider Harl5(Q) = {f +1ig : f,g € Har,(Q)} consisting of all
complex polyharmonic functions of order n in €2.

In addition, we introduce the function spaces H? . (Q) = {p € Hy(Q) :

17Z0

©®)(20) =0, 20 €Q, 0< k< j} and H{,ZO(Q) ={ic(z —2) :c€R, 2,2 €
Q }, where R denotes the set of all real numbers and j = 0, 1,2, .... Obviously, for
j>1, Hl _ (Q) is the set of all analytic functions which have at least jth order

1,20

zero at zy € Q whereas HY, (Q) = H1(Q). Of course, I (Q) c H_ (Q) C

1,20 1,20
Hi(Q). If p,p € Hf7ZO(Q) and p — p € H{’ZO(Q), then we say that ¢ and ¢ are
equivalent and write that ¢ ~; . Moreover, define ~= U, ~;, that is, f ~ g if
f ~; g for some j € N. Especially, for example, 0 ~; ic(z — 2zg)’ for any nonzero

c € R.

2.2.2 Decomposition

With the above preliminaries, the following decomposition fact for polyhar-

monic functions holds.

Theorem B. Let Q2 be a simply connected (bounded or unbounded) domain in the
complex plane with smooth boundary 2. If f € Har,(Q2), then for any zy € Q,
there exist functions f; € HI (Q), 7=0,1,...,n— 1 such that

1,20
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n—1

flz) = 23%{ Y- zo)jfj@)}, 2eQ, (2.3)
j=0
where R denotes the real part. The above decomposition expression of f is unique
in the sense of the equivalence relation ~, more precisely, ~; for f;. That is,
if (2.3) also holds for f; € HlZO(Q), j=0,1,...,n—1, then f; ~; f;, j =
0,1,...,n—1.

Proof. Write f = f,, where n denotes the order of the polyharmonic function
f € Har,(2). We will prove (2.3) by induction.
As a basic fact of real harmonic function, (2.3) is obvious for n = 1.
Suppose that (2.3) holds for n — 1 (n > 2), i.e., for any f,1 € Har,_1(Q)
and zg € €,

l\')

n—

Far(2) = 2R{ Y (F = F) ()}, €0

.
I
o

where f,_1; € HJ 2(8), 7 =0,1,...,n — 2. Therefore, for any f, € Har,(Q)
and zy € ), since (0,0%)f, € Har,_1(£2),

n—2

(9.0- - 23%{

M

(Z— %) gn—l,j(z)}, z€Q
7=0

holds for some g,,_,; € H] ), 7=0,1,...,n—2.
For 1 < j <n—1, define
fnj(2) = jl/ Gn-1,j-1(2)dz, z €.
20
One shall find that the above definition is reasonable since g,_1 ;-1 € H;(£2) and
2 is simply connected. Thus 0, f,; = j’lgn_m_l. Further, set

ﬁL(Z) = 2%{ i(?— Eg)jfn,j(z)}, z € 0.

By straight calculation, we have (0.05)(f, — ﬁ) = 0, that is, f,, — ﬁ is a usual
harmonic function. So there exists an analytic function f, o such that f,, — f;l =
2R{ f..0}. Hence, (2.3) also holds for n and then for any n € N by induction.

9



For the uniqueness, set

—_

n—

2%{ (z — %) fj<z)} — 0,

J

Il
=)

taking operators (9.05)7 (j = 1,2,...,n — 1) acting on its both sides, we get
R[9If,] = 0.
So &’ f; = icj, ¢; is some real constant. Therefore, f; ~; 0,7 =0,1,...,n—1. O

Remark 2. Tf we set F(2) = 370 (Z — Zo) f;(2), then F € H,(Q) and (2.3) can

j=0
be rewritten as follows

f(z)=F(2)+F(z), z€Q. (2.4)

So (2.4) is certainly a natural extension of decomposition from harmonic functions
to polyharmonic functions at least in this form, and is also the exact version of
the weak decomposition theorem appeared in [9]. However, (2.3) is the exact

version of the decomposition theorem there.

Remark 3. For any zy € §, let Har™(£2, zg) denote the n dimensional real vector
space { (fo(2), fi(2),..., fuc1(2)) : f; € HiZO(Q), 2€Q,0<j<n-—1}and
Har™(Q)) = {Har™(2, 2z0) : 20 € Q}. Thus Theorem B shows that Har,(2)
and Har™(€, zy) are isomorphic as real vector spaces. In this sense, we call

fi(e Hi

{2, (£2) ) the analytic jth decomposition component of the polyharmonic

function f at zp. And we also call Har"(£2, zy) the decomposition space for
polyharmonic functions at zy or (n, zp)-harmonic space and Har™(£2) n-harmonic

space cluster, respectively.

Remark 4. If we write f;(z) = (z — 20)'h;(2), h; € H1(Q), then

f(z) = 23%{ nz_f 2 — 2’0|2jhj(z)}, 2 eQ (2.5)

is just a result of Balk [3] although its analogue may have appeared earlier [15, 28].
So we call (2.3) Goursat decomposition form whereas (2.5) Balk decomposition
form. One will find that the Goursat decomposition form plays an important
role in the calculation of higher order Poisson kernel functions, see Corollary 2

below.

10



Corollary 2. Let the sequence of functions {f,} defined in Q satisfy
1. f11is a harmonic function in Q, i.e., fi € Har1(Q);

2. (0.09)fn = fno1 inQ forn > 1.

Then f, € Har,(2) forn > 1, and

azfn,j = jilfnfl,jfla 1 S] <n-— 17 (26)

where f, ; 1s the analytic jth decomposition component of the n-harmonic function
fn- It must be noted that (2.6) holds in the sense of the equivalence relation ~.

More precisely, ~; for f,;j and ~;_q for fn_1;-1,3=1,2,...,n—1.

Remark 5. Corollary 2 provides a fundament to our calculation in what follows

about kernel functions (i.e., higher order Poisson kernels) appeared in [9].

2.3 Poly-analytic-harmonic Functions

In this section, we define a new class of functions which are called poly-
analytic-harmonic functions. All and the same, we also consider their decompo-

sitions in terms of analytic functions.

2.3.1 Definition

As in the last two sections, polyanalytic functions and polyharmonic func-
tions are respectively defined by the partial differential operators 92 and (9.05)",
we use the mixed partial differential operators 07'02 (m # n) to define a class of
functions which will play an important role in solving some Dirichlet boundary

value problems in Chapter 3 and 4.

Definition 3. If f € C™"(Q) satisfies the equation (07°02)f =0 (m # n) in Q,

then f is called a poly-analytic-harmonic function in (2.

Let Mpyn(Q) = {f € C"™™(Q) : (07'02)f(2) = 0, z € Q}, especially,
My, (Q2) = H,(2) and M,,o(Q2) = HH(Q) as well as M, ,(Q) = HarS(Q).

11



2.3.2 Decomposition

By the decompositions of polyanalytic functions and polyharmonic func-
tions, we get two kinds of decompositions for poly-analytic-harmonic functions
as follows.

To do so, let II,, denote the set of all complex polynomials of degree at most

n. We define another equivalence relation «, as follows:
If f—gell, for f,g € Hi(Q), then f «, g.

In addition, we set «x~= U,, v, that is, f « g if f «, ¢ for some n € N.

Theorem C (Harmonic Decomposition). If f € M, (), where m,n > 1 and
m # n, then for any zy € €2,
1. as m >n,

&) =2 Y -2 eul2) | + 2 Y2 - 20" Bul2) |

3
—
3
—

i
o
i
o

m—n—1 l'

+ (2 — 2)" _Z CEm (z — 20)'&(2), z€Q, (2.7)

where i, o) € HY () and ¢, € H,(2);

1,20

2. asm <n,

—_

3

1) =20{ (2 2 u() } + 2] Yo (2 = 70)u(2)}

S

3

Il
o
Il
S

S

n 1

+(EZ-Z)" i (mit)!(z—zo)wz), zeq, (2.8)

t=0

where 1, 1, € H, () and Uy € Hi(Q). (2.7) and (2.8) are unique in the sense
of equivalence relations ~ and «, more precisely, ~y for i, Pr and ~4 for 1, 125

whereas «~,_1 for all ¢; and «~,_1 for all @Zt.

Proof. We only prove (2.7). Similarly (2.8) follows. Asm > n, from (07"02) f(z) =
0, z € Q, we know that (9.0;)"f € H,,_»(2). So by Corollary 1,

0.0 f(:) = 3 (== ) &), z€Q,

=0

12



where ¢, € H1(€2). Let

//Cﬁ1 ya ¢i1(¢)d¢dGy -+ - dGuy, 2z €Q

and
m—n—1
! =
= — (2= Q 2.
J2(2) ; T l)!(z 20)'¢i(z), z€Q, (2.9)
obviously, 07¢;(z) = ¢i(z), z € Q. Furthermore,
m—n—1
(az&) [(z_ZO n.f2 Z Z—Zo (bl , z €.
1=0

Therefore, f — (z — 20)" fo € HarS(Q). Thus

[y

—_
3

F(2) = (2 = 20)" fal2) = 2R 32 = 20) i) | + 2] Y2 (7 = 20) () |

0

3

i
[e)
i

2 fi(2), z €, (2.10)

where @i, @ € Hf, (Q). So (2.7) follows from (2.9) and (2.10).

Now we turn to the uniqueness. If

fi(z) + (2 = 20)" fo(2) = 0, 2 € Q,

where f; is given by (2.10) and f» is given by (2.9), then, applying the operators
orton (1=10,1,...,m —n — 1) to the last equality, we get

dlpi(2) = u(2) =0, 2 € Q

for 0 <l <m-—n-—1. So ¢ € II,,_1 [q which denotes the set of all complex
polynomials of degree at most n restricted to €2, that is, ¢; «,_1 0. This is just
the uniqueness of ¢; in the sense of equivalence relation «,_;. Thus fa(z) =0
and then fi(z) = 0 follows, in which z € Q. So the equivalence uniqueness of

©r, Or, are given by Theorem B. 0

Only using Theorem A and Corollary 1, we also get

13



Theorem D (Canonical Decomposition). If f € M,,,(2), where m,n > 1 and
m # n, then for any zy € €,

[y

f(z) =) (Z =20 m(2) + D _(2 = 20)w,(2) (2.11)

3
L
3

Il
=)

where p,, v, € H1(Q). (2.11) is unique in the sense of equivalence relation
for p, and v,. More precisely, «y,_1(vn—1) for u, while v,(u,) is unique, p =
0,1,....,.n—1,¢q=0,1,...,m — 1.

Proof. Using Theorem A and Corollary 1, the proof is similar to the one of
Theorem C. L

Remark 6. If we set

=2 Y-} 2 Y E -2,
n—m—1 " B
A= Y G RO
B = S - 2 (), foz) = S - 20) (),

where fi(z), f2(2) are given by (2.10) and (2.9). Obviously, fi(z), f3(z) are
complex polyharmonic functions, fo(2), fs(z) are anti-polyanalytic functions and
fa(2), f5(z) are polyanalytic functions. So we call the decompositions (2.7) and
(2.8) harmonic decompositions whereas the decomposition (2.11) is canonical

decomposition.

14



Remark 7. As in [19], all above theorems can be simplified as follows

n—1

Har, () = 2@)%{ Y @z -z) (H/H){ZO(Q)}, (2.12)

=0

where (H /H){ZO(Q) denotes the set of all equivalence classes about ~;, j =

0,1,...,n—1 and Z;:Ol ®a; :=ayBay B--- D a,—; which denotes the direct

sum of ag, ar,...,a,_1.
n—1 '
H,(Q) = @ (Z —Zo) Hi(Q). (2.13)
j=0
H,(Q) = @ (z — z0) H1(Q). (2.14)
j=0

My n(Q) = HarS(Q) @ (2 — 20)" Hppn(Q) (m > n). (2.15)
M,y () = HarS(Q) @ (2 — 20) " Hp 1 (Q) (m < n). (2.16)
My o(Q) = H,(Q) @ H,, (). (2.17)

All the decompositions (2.12)-(2.17) are understood in the sense of the equiva-

lence relations ~ and - .

2.4 Higher Order Poisson Kernels

From now on, let 2 = D which is the unit disc in the complex plane, D is

its boundary, i.e., the unit circle in the complex plane.

In [9], Begehr, Du and Wang considered the Dirichlet problem for polyhar-
monic functions (PHD problem) in Chapter 3. They have found that the PHD
problem is uniquely solvable and its unique solution is connected with a sequence
{gn(z,7) }52, of real valued functions of two variables defined on D x 9D which

are called kernel functions of the solution (simply, kernel functions).

By induction, they guessed and stated that the kernel functions have the
following properties:
1. (0,0:)g1(z,7) =0 and (0.05)gn(2,T) = gn-1(2,7) for n > 1;

15



2. My =1, 12<1 555 Jop V(T)91(2, 7)) = ~(t) for any v € C(OD);
30 Hmag =1, 2)<1 505 fany(T)gg(z,T)% = 0 for any v € C'(9D);
4. lim, ¢ =1, |z/<1 9n(2, 7) = O uniformly holds for 7 € D, n > 2.

So their final work is looking for some method to calculate the kernel func-
tions. Though the kernel functions satisfy some certain induction relation (see
property 1), the method used in [9] is complicated. All calculations are done up
to gs(z, 7). In the present section, we will develop a method to calculate all the

kernel functions on the basis of Corollary 2.

Unfortunately, only from the above properties 1-4, the kernel functions are
not uniquely defined. There is another property of the kernel functions, namely,
5. gn(z,7) € C?"(D) as a function of z with fixed 7 € 9D and g,(z,7),
0:9n(2,7), Ozgn(2,7) € C(D x ID), n =1,2,....

In one moment, we will find that the kernel functions with the above proper-

ties are related to the classical Poisson kernel. So we give the following definition.

Definition 4. If a sequence { g,(z,7) }22, of real valued functions of two vari-
ables defined on D x 0D satisfies the above properties 1-5, then { g, (z,7) }°°,
is called a sequence of higher order Poisson kernels, more precisely, g,(z,7) is

called the nth order Poisson kernel.

By Theorem B and Corollary 2, we have

Theorem 3. If { g,(z,7) }5°, is a sequence of higher order Poisson kernels de-
fined on D x 9D | i.e., {gn(z,7) }22, fulfills the above properties 1-5, then, for
n > 1, there exist functions gno(2,7), gn1(2,T)s - s Gnn—1(2,T) defined on Dx 0D
such that

n—1

gn(z,7) = 23’1‘,{ Z?gn,j(z,ﬂ}, zeD, 7€ oD (2.18)
=0
with
0-9nj(2,7) = gn-15-1(2,7) (2.19)
for1<j<n-—1and
9rgn;(0,7) =0 (2.20)

16



for 0 < k < j—1 with respect to T € D as well as

n—1
Gno(z,7) = — Z 2 g (2, 7). (2.21)
j=1

However,
(z,7) = ! + L -1 (2.22)
2,T) = .
gz 1—27 1-7%7

is the Poisson kernel. Such { g,(z,7) }22, is unique. Moreover, the decomposition
components g, ;(z,7) € C(D x D) satisfy gn;(-,7) € H{O(D) for fized T € OD
and 0,9,,;(2,7) € C(Dx0dD), n=1,2,...,7=0,1,...,n— 1.

Proof. At first, we consider the existence of the sequence. By the classical the-
ory of harmonic functions [27], the Poisson kernel satisfies the properties which

g1(z,7) fulfills. So we can set

1 1

nlzm)=1—=+7—= L

From the properties 1 and 5, g,(z,7) € Har,(D) as a function of z with fixed
7. Noting the properties 3-4, by Theorem B and Corollary 2, we get ¢,(z,7) in
view of (2.18)-(2.21) by induction.

Next, we consider the uniqueness of the sequence. To do so, we need a
fact: if some sequence { g, (z,7) }52, of real functions defined on D x I satisfies
the properties 1,3-5 and 2. lim,_; 5—=1,}z<1 ﬁfaﬂm 7(7)@](@7)‘% = 0 for any
v € C(OD), then g,(z,7)=0,n=1,2....

In fact, since g1(z,7) is harmonic as a function of z € D with fixed 7 € 9D,

for any v € C'(0D),
1 dr

he) = 5 | 0T
is also a harmonic function in D by the property 5 and a simple consequence of
Lemma 7 in Chapter 3 and can be continuously extended to D with vanishing
boundary values by the above property 2’. By the property 1 and the maximal

module principle of harmonic functions, h(z) =0, z € D.

For any fixed z € D, set

(91):(7) = 61(2,7),

17



then (g1), is a function of 7 on dD. From the property 5, we know that (g1), €
C(0D). Thus

i [ #enT = on [ @.0nEnT 20 e,
Note that gi(z,7) is real, so g1(z,7) = 0, z € D, 7 € dD. Then, from the
properties 1, 3-4, for any n > 2, g,(z, 7) is harmonic as a function of z € D with
fixed 7 € 9D and
1 ~ dr
z—>t,|tl|iirll,|z|<1 2i QDV(T)Q"(Z’ 7)7 =0

for any v € C(9D), i.e., the property 2" is valid for g,(z,7) while n > 2. Since
gn(z,T) are real, repeating the proof for g;(z,7), we get g,(z,7) = 0 for n > 2.
Hence, the uniqueness of the sequence { g, (z,7) }°°, follows from the above fact.

Finally, it is easy to know that the properties of g, ;(z, 7) follow from Corol-

lary 2 and the same properties of g, o(z,7) as well as (2.19)-(2.21). O

By Theorem 3, now we will calculate the higher order Poisson kernels by

induction. To do so, set

1 | |
= — == T4 = 2.2
gro(z7) = o=~ 5= > () + 3. (2.23)

therefore

= Z () 4+ zr)F 1) + 1. (2.24)

By (2.19)-(2.20),

= 1 k=k—1 1



By (2.21),

[e.9]

920(2,7) = —[Z

k=2

(27)F 1 4 %]

T =

1 1
= —log(l — 27 —.
2T og( ZT)+2

Substituting (2.25)-(2.26) into (2.18) , we get

ga(z) = —(1 — ) 0 () + @) +1]

1 1
=—(1—|21%)|=log(l — 27) + — log(1 — % 1.
( || )[ﬁ og( ZT)—FET og( ZT) + ]

Similarly,

SO

Again,

(2.26)

(2.27)

(2.28)



t k=2
1 z
94,2(277') :E/ 931( 77')dC
0
1 1 kt1—=k—1 1 2}
2!{ Rhrn. | o)

k=2
l [ 1 _ 1
_5[;k2(k 1)2ka 3 2!4’
o) = - [3 ht+]

k=2
thus
gi(z,7) == (1= 1] [ 7 (@) + () +1]
[ 1 N |
22 e (e g )
1— |z 1 PR |
+ [;m(kJrl)((zT)k + (27 )+2,]
1—z[° = 1 —\k—1 —\k—1 1
i [; R DY) (D)1 + (D)) + 3& (2.29)
Furthermore,
(o) =3 [ gnalé ¢



1 k+3=k—1 4
Kkt D(k+2)(k+3) +2-4!Z}’

NE

1
_Z[
2

953(2,7) 21/0 94,2(¢, 7)d¢

o7

w

1 - 1 kt2—=k—1 3
- 3![;k2<k+1)(k+2)2 ™)

95,2(2,7) :%/0 94,1(@7')‘1(

i 1 1
a2l Err ey +t5a)

k=2



Lr 7)h-1 1 ]}
o | Zk2k+1 T o9

17 1

k-1 1
31l 22k2k+1)(k+2)(”) o

31

17 1
4! ; k(k+1)(k+2)(k+3)

1
k-1
(z7)" + 2.4!}’

- % g k:3(k:1+ oy (G G %}

- % g k:3(k:1+ (D G + %}

i % Z 2k + 11)(k oy (G @)+ %} }
1"2"‘{[ ) () G g

5[ e 7 ) g}

11— 26 - 1 —\k—1 — \k—1 1
N | | [ZMH)(HZ)((W) + (zr) )+§}
1—\z|8 > 1 el ek 1
- k(b + )k +2)(k+3) (7 + @) + |
(2.30)
For g¢(z,7)
aerm) =5 [ gsal€ G
l 1 — 1 A—k—1 L 5
:E[; k(k+ 1 )(k+2)(k+3)(k:+4)zk+ Tt
haer7) =3 [ gsal€ ¢
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_ 1 = 1 k+3=k—1 1 4
- 4![;1{2(“1)(“2)(“3) ! +2-4!2]’
1 z
gua(em) =3 [ gmal6 ¢
0
_]‘ - 1 k+2=k—1 1 3
_3!{[;k3(k+1)(k+2)2 Tt ]
1 - 1 k42—k—1 1 3
2![;kQ(k:+l)2(k+2)Z ! +2-3!-2!Z]}’
1 z
gua(em) =5 [ gma(6md
0
_ 1 - 1 k+1=k—1 1 2
- 2!{[;#@“)2 +2-2!Z]
IIES 1 k1=k—1 1 2
2'_;k3(k+1)2z ! +2.2!.2!Z]
_1'00 1 ht1=k—1 1 2
2'_;k3(k+1)2z ! +2-2!-2!Z]
1o 1 kt+1=k—1 1 2
+3!_;k2(k+1)2(l€+2)2 ! +2-2!-3!Z]}’
96,1(Z7T>:/ g5.0(¢, 7)d¢
0
- 1 k=k—1 1
={|[ X5+ 5
k=2
11w 1 PP |
2!_;1{4(1{“)” t 5
1 1w 1 |
2!-%1{4(1{“)” t 5
1o 1 k=k—1
+3!-k2:;k:3(k+1)(k+2)'27 +a )
1 ([ 1 |
2'{[;1&(1{: 1° +2-214
l 1w 1 A 1
2'[;k3(l€+1)2z +2-2!-2!Z]}
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I 1 R 1
+3![§k3(l§+1)(k+2)27 +2-312]

o)

1 k—k—1 1
41 [; T T T 2-4!2]’

= 1 k-1 1
“al Ty G ﬁ]}

+ %{ [Z m@ﬂkl 4 ﬁ]
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4! ; k2(k+1)(k+2)(k +3)

51 ; Kkt D)k +2)(k+3)(k+4) "

l [ 1 o 1
2!-;k2(k+1)2(k+2)(”) +2-3!-2!]}

1

|
—\k—1
() + 5 4!]

1

; K0k + 11)(k Ty (TG ;] J

{[g k4(k1+ (G G+ 21v]

5 e 7+ ) 4 )

i g I 11)(k oy (T B + %]

g K2(k + 1)(k:1+ Nk G EDT) %] J

5 [,i (7 e ) g




1—[2° - 1 k-1 | (= \k—1 1
Y {[;k?’(l{:—l—l)(l{;—k@((w) + G0 + 5]

1 - 1 k—1 k—1 1
_E[ZW(/CH)?(HQ)((”) + ) Hﬂ”
1—|z|8 - 1 ) 1
* [Zk2k+1)(k+2)(k+3)((ZT)k +EY) + g
1—|z]10 1 |
T [kZQk(k+1)(k+2)(k+3)(k+4)((27)k + G0 + 5
(2.31)
For g7(z,7):
gr6(2,7) é Ozg65(<,7')dC
IS 1 k+5—=k—1 L 6
:E[;k(m1)(k+2)(k+3)(k+4)(k+5)2 ! +2-—6!z]’
915(2,7) :% /OZ 96,4(C, 7)d¢
l 1 — 1 d—k—1 L5
__5[;k2(1c+1)(k+2)(k+3)(k+4)zk+Tk +2_5vz}
maeir) =3 [ awalé ¢
1 a 1 kt+3—=k—1 I
ZI{[;M/@H)(mz)(mg)z T +ﬁz}
1 > 1 +3=k—1 1 4
_5[;k2(k+1)2(k+2)(k+3)zk T +2.4!.2!4}’

—_

w
—~

97,3(277) :—/0 36,2 ¢, 7)d¢
1

1 g 1
- 5{{2 k4 (k + 1) (k + 2) ST 1+2-—3!23}

IIES 1 k+2-k—1 1 3}
21[;1{3(“1)2(1{;”)2 R TR
= 1
)

1 k+2—k—1 1 3}
A0S Bt 12k+2). | o’



1 [ 1 e 1
- 5[2 K2 (k + 1)2(k+2)22k+27k o 3!23]}’

k=2

1 z
97,2(277) :E/ 961( ,T)dC
0
_ 1 - 1 kt1—k—1 1 2}
_2!{{[;/{5(/€+1)Z TR
1< 1 ktl—k—1 1 2]
ol ; M1z | o
1< 1 kt1—k—1 1 2]
! ; M1z | o
11+ 1 k+1=k—1 1 2}}
RPN T R P TE

k=2
— %{ [; mzkﬂ?kl 1 r 21! . 2!22}
T  rrare))
* % g; k3 (k + 11)2(k i 2)’Zk+1?k_1 Ty 21! : 3!22}
- % i [T 1)2(/:+ Iy 21!.4122”’

1 [ 1 |
+3!-;k4(k+1)(/@+2)27 +2.3!4}

_%{[imzk#_l+ﬁ4

k=2
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g mzwl i3 21! - 2!4}

| ; Kk 1 11)(/<; e A 2%3"4

| ; I 1)(k1+ D ﬁz}
{ [; k5(k1+ 1)Zk?k_1 * ﬁz]

g; k4(k1+ 1)2'Zk?k_1 i3 21! : 2!4

g; k4(k1+ 1)2'Zk?k_1 i3 21! - 2!2}

;; I 11)2(/<: 7Tt 21! 57
{[; [y 11)(1c+2)2k?k_1 T3 -13!Z]

! ; 130k + 11)2(1<; n 2)216?]H Uy 31! - 2!2} }
. ; I 1)(k1+ . ﬁz]
; IS 21)(k e R
kz:; m(z?)k_l + ﬁ}

; m(z?)k_l + %}

kz:; K (k + 11)(/< IS %3'} J

}

1
251"
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{ [ki; k:5(k1+ LR 12!]
:gm(ﬁ)k_lJr 2.21!~2!”

. g (kT 11)(k:+2) () -13!]

i I 1)(/:+ o)t ﬁ] }

{ [Z k5(k1+ 1) (7) 7 + ﬁ]

M 1 ok 1
; Aoy o 2!-2!}

= 1 1 1
2; IS YD 2!}

= 1 N 1
P> e G Yo D al

" — 1 o 1
Ry sy e G tyal)

. {{ [Z k5(k1+ 1) (7 + ﬁ]
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¢ 1 - 1
+§[;k3(k+1)2(k;+2)<2) Rl
1 ([ 1 o 1
_5{[;/&(/@“)2(”) + 5ol
1[— 1 o 1
_ﬁ-;k?»(kﬂ)s(”z) +2.2!~2!-2!]}
1 [— 1 o 1
+§-;k3(k+1)2(k+2)(27) + 53l
1 [ 1 o 1
_Z_,;wkﬂ) PR il
= 1 o 1
.{[z;kuw PR + 5731
1y 1 - 1
~ ol Zk3k+1)2kz+2)(ZT> + 5733l
1y 1 - 1
~arl Zk?’ T +2-3!-2!]
1 1 - 1
il Zk2k+1)2k+2) (=7) +2-3!-3!]}
1 1 1
_4!{[;#”k+1)(k+2)(k+3)<ZT) +2.4J
1 [ 1 - 1
_ﬁ-;k2(k+1)2(k+2)(k+3)(”> +2-41-21]}
1 [w— 1 a1
+5-;k2(/<:+1)(k+2)(k+3)(k+4)(”) +2.5J
- 1 o
_a-kz:;k(k+1)(k+2)(k+3)(k+4)(k+5)(zT) *
gr(z,m) =0~ Y {{{ [ w5 (7 + ) +1]
1< 1 k=1 | (= \k—1
-3l Fle G ET) +



| + |
e T[]

1_oo
_52
k=2
1_oo
_I_;

o0

1
+§_Z

k=2

e

2!

« k3 (k+1)(k +2)(k + 3)

() 4+ =) ") + 1]

1

k=1 | (= k-1 1
2k4(k+1)(k+2)(<”) + (zr) )+§]
1 k=1 | (= \k—1 1
B (T EDT) 521 )
1

() + ) + 1

1
K20k + 1)(k + 2)(k + 3)(k +4)(

{{ [g; k5<k1+ D (P + @) ) + %]

31



1

Al ; 2k + 1)2(k + 2)(k + 3)

L ()

1—z°
3! {[IM k4 (k + 1)(k+2)(

1 1
2l -Z k3(k + 1)2(k + 2)

1

1—|zf°
41 {[; k3(k+1)(k+2)(k+3)

1

1 oo
_5[;k2(k+1

oo

12(k+2)(k+3) ((
1

Yz + l}

(D) + @) ) + 3191

() + ) + =

Z?)k_l + (27‘) a ) + 091

1— ||
el

[e.9]

2 j2(k + 1)(k + 2)(k + 3)(k + 4) (

1

1 — |Z’12[

6!
k=2
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From the above calculations of ¢1(z,7), g2(2, 7)

.., g7(z,7), we find that all
of them are sums with certain summands which take on some nice orderliness

precisely stated in the following Remark 8

In order to get g,(z,7), we introduce a vertical sum

(
a1

Qa
S =wtart o+ a, (2.33)

[ On

So we can also write ¢1(z,7), g2(2,7),...,97(2,7) in terms of some vertical
sums. For example,

%[Zk 2 k3(k+1) ((Z?)k_l + @M+ l]
11—z [

e
W=
—
e
[\
e
)
=
+
N
=
+
=
—~
—~
N
23
~—
—
_|_
—~
[
S
~—
T
—
~—
+
| =
1

g5(z,7)

i~ s ot (D + () ) + 4
]

— | Ee e (P + (3 Y) + oy
EIESs

—\k—1 k-1 1
[;kwﬂ Gy (G ) )+ 5]

o)

1—|ZI8[

k—1 — \k—1 1
;kkJrl k+2)(k:+3)((’”) +E) + ]

\

Obviously, in the above form of vertical sum, g5(z,7) is an excellent example

which is possessed of the nice circulatory structure and sequential properties in
detail stated in Remark 8 and Appendix A

In general, applying vertical sums, we have
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Theorem 4. For 1 <j <n-—5, let W,,;(z,7) be a vertical sum of the form

(

( /

(n—j—2)!

\
(

(yris T

( oo di— (Z’T) 1
[Zk:2 k"*j(kj—ll)m(k—&-j—l) + ﬁ]
d (z,7) 1
T [Zk 2 kr—i—1 I§+i)2 (k+j-1) + _2]
2' k 2 fn—a-1 k+1)2 (k+j5—1) ]'2'

P>

.

o
[ (n—j—3)!

dk,l(z,ﬂ') L:|
E T2 (k+1)2(k+2)2-(k+j—1) 41-3!

1Pyt
\

+ 3]

1
+ j!-2!-2!]

di—1(2,7)
[Zk 2 fn—g-1 I:+1)2 (k+7—1)

dp—1(z,7)
T al [Zk:2 k"*1*2(£+i)3---(k+j71)

di—1(2,7) 1
3! [Zk 2 kT2 (k1 I; (1k+2)2 D ﬁ]

1 o d—1(2,7)

Tl [Zk:Z k"*j*3(k+1)2(lf+;)2(k+3)2~~~(k+j—1) + '41]
oo dip—1(2,7)

_Zk:2 K3 (k412 (k+j—1)2(k+j)-(k+n—3—3) + rn—j— 2)]

(

Z d—1(2,7) 41
k=2 k=T 1(kt )2 (ktj—1) | jI-2I
1 oo dk—l(z7T
“al [Zk:Q =32 (k+1)3--
1 o0 di—1(2,7
T [Zk:Z kn*j72(k+1)3...

di—1(z,7)
[Ek 2 k72 (k11 ]; (1k+2)
\

1
D T j!~2!-2!]

)
(
) 1

(k+j—1) + j!~2!~2!]

1
~(k+j—1) + j!-2!-3!]

oo di—1(2,7)
[Zkz? kn—J— 2(1:4—1) ~(k+75-1) + g2l 2'i|

—L3
2! |:Z di_ 1(Z T) _|_ 1 :|
T2l | £ek=2 ki3 (kD) (kj—1) T jl2l2l2!
1 0o dp—1(2,7) 1
3! [Zk:2 k"*J*2(k+1]§2(1k+2)2,..(k+j—1) - j!-2!~3!]

dy—1(z,7) + 1 ]
(k+2)2(k+3)2(k+j—1) ' jl-2l-4l

1 o0
—u [Zk:Z kn—7-3(k+1)2

dy—1(z,7) 1
|:Zkz2 k4(k+1)2---(k+jfl)12(k+j)---(k+n—j—4) + j!-2!-(nfj73)!:|
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( 00 di—1(2,7) 1
[Zkzz DT (e - D2k )R Fn—7—8) T j!~<n—j—s>!}

1 0o di—1(2,7) 1
T [Zk=2 k5(k+1)3---(k-i—jil)?(k+j)-~»(k+n—j—6) + j!~(n—j—5)!-2l:|

Z 1 [ZOO di—1(2,7) + 1 i|
2! k=2 k5(k+1)3-(k+j—1)2(k+j) - (k+n—j—6) ' jl.(n—j—5)!-2!
1 00 di_1(2,7)
3! {Zk:z k4(k+1)3(k+2)3---(k]:-j1—1)2(k+j)--«(k+n—j—6) + j!-(n—j—5)!~3!}
\

(_1)n7j—6 Z
n—i 51 00 di—1(z,7) 1
e [Zkﬂ BT (- D2 ) =) T j!-(n—j—5>!~2!}

—a

1 0o di—1(2,7) i
o [Zk=2 Ic4(k+1)4-~»(k+jﬁl)2(k+j)»--(k+n7j76) + j!»(nfjf5)!-2!-2!}

1 [e'S) di—1(z,7) 1
3! [Zk:2 k4(k+1)3(k+2)3..A(k:]ikjlf1)2(k+j)~~-(k+n7j76) + j!~(n7j75)!-3!:|
1 00 di—1(2,7) 1
A [Zk:2 k3 (k+1)3(k+2)3(k+3)3---(k+j—1)2(k+j) - (k+n—3—6) + j!-(nfjfs)!~4!:|
\
( 00 di—1(2,7) 1
[Zk:z k5(k+1)2~-(k+j—1)12(k+j)---(k+n—j—5) + j!-(n—j—4)!]
1 0o di—1(2,7) 1
T [Zk:Q k4(k+1)3-~-(k+jil)12(k+j)-~~(k+n—j—5) + j!-(n—j—4)!~2!}
(=pr-i-s
(n—j—4)! 1 o0 dp—1(z,7) 1
Tl [Zk:Z k4(k+1)3-~»(k+jjl)2(k+j)"-(k+nfj75) + j!-(nfjf4)!-2!}
1 0 di—1(2,7) 1
3! [Zk:2 k3(k+1)3(k+2)3..~(klikj171)2(k+j)~~-(k+n7j75) + j!~(n7j74)!-3!:|
\
00 di—1(2,7) 1
» [ZH P DT (- D2 ) =0 T jll<n—j—3>!]
(=nH"—7-

dk_l(z,r) 1 i|

(n—7-3)! 1 00
ol [Zk:2 BTkt -D2 (k45— (htn—g—4) T 7 (n—j—3) 2l

(—1)n—9-3 0 di—1(2,7) 1
“(n—j—2)! [Zk:2 Ic3(k+1)2~~»(k+ji1)l2(k+j)---(k:+n7j73) + j!-(nfij)!]

(-1 n—j=2 0o di—1(2,7) 1
“(n—j—1)! [Zk=2 k2(k+1)2-(k+j—1)2(k+35) - (k+n—35—2) + jI-(n—j—l)!]

(2.34)
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with dy_1(z,7) = (27)F 1+ (27)%7L, and let

%) di—1(2,7) 1
[Zkz? k4(k+1)(l;c—&-12)-~~(k+n—5) + (n—4)!]

1 [ dp—1(z,7)
T [Zk:Q k3 (k+1)2 I(gk+12) -(k4+n—>5) + (n— 4)!2!

Wan-a(z,7) = —l[z o) NERURE (2.35)
21 k=2 &3(k+1)2(k+2)-(k+n—5) ' (n—4)l-2!
d (2,7)
3! [Zk 2 k2(k+1)2 (12:4:2) By S o )'3'}
\
0 dp—1(2,7) 1
[Zk:2 k3(k+1)(];c—&-12)-~(k+n—4) + (n—3)!]
Wn’”_?’(z’T) - Z 1 [ZOO dr_1(2,7) 1 } | (2'36)
% | 2ek=2 BHIDP (b 2) - (hn=d) T n=3)1a
dk—l(z77—) 1
Wi , 2.37
2 Zk2k+1 k+2) - (k+tn=3)  (n—2) (2:37)
S dp_1(2,7) 1
Wn— . 2.38
1 Zkk+ kt2) - (ktn—2)  (n_1) (2.38)

=2

If { gn(z,7) }°°, is a sequence of higher order Poisson kernel functions defined

on D x 0D , then
gn(2,7) = Di(2,7) + Da(2,7) + -+ - 4+ Dp_1(2, 7), (2.39)

where D;(z,7) = (—1)”*3'#1/1/%]'(2,7'), j=12,....,n—1. In all above for-
mulae, by convention, [T)_,(k+¢) =1 as1> 3.

Remark 8. Among all above formulae, g1(2,7),...,96(2,7) are the same ones
obtained by a different method in [9]. g¢7(z,7) and g,(z,7) are new. Carefully
observing all above vertical sums W, ;(z,7), j = 1,2,...,n — 1, one may find

that the vertical sums take on some structural orderliness. More precisely, there
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is a distinct circulatory structure of the following vertical sum

(i > . ERN (2.40)
P 2 {

(-yrt

@21 M7
(=1)a+2
\ (g+3)! vo

where a, 3, i, v are 1 or 0, all of which are nonzero or only one of which is nonzero,
the latter only happens when j =n—-4,n—-3n—-2n—-1,1<p<n-—4 and

0 < g <n—4. However, ¢,(,s,w,w,",0d are sums of the form

- d,_ 1
> g L ey
— km (k+1)m2(k+2)ms .- (k+n—2)m-1 49
where mq, ms, ..., m,_1 are nonnegative integers satisfying
my>mo >+ >my_1>0andm;+mo+---+mu_1 =n—1, (2.42)

whereas 1 is a product of some factorials which takes on some evident regularity,
i.e., ¥ is the product of j! and all denominators of the coefficients appearing
before the vertical sum symbols and the sum which it belongs to. Moreover,
when a = f = v = 6 = 1, the multiplicities have the following sequential
properties:

(1) From € to ¢ and w to w, m; decreases by 1 whereas msy simultaneously

increase by 1;

(2) From ( to g, my decreases by 1 whereas mgs simultaneously increase by

(3) From € to w, w to vy and 7 to 0, m; decreases by 1 for each step whereas

Mgy1, Mgt2 and my3 sequentially increases by 1.

It must be noted that the new multiplicities also satisfy (2.42) all the same.

In addition, for W, ;(z,7), there are n — j — 1 vertical sums as its summands in
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the outmost vertical sum. From the top down, these vertical sums respectively
have 2n—7=3 2n=i=4 2 1, 1 summands of the form as (2.41). The above
property (3) holds for the variance of the multiplicities about the first summand
of the form as (2.41) between two adjacent vertical sums and the coefficients
appearing before the vertical sum symbols are in turn 1, —%, e %,
% Interestingly, any one of these vertical sums has similar structure and
properties as the outmost vertical sum.

Just because of the above sequential properties of the multiplicities and the

nice circulatory structure, we can sequentially define W, ;(z,7) as the vertical

dr_1(2,7) 1
k+1)--(k+j—1) + i

sum (2.34) only from the first summand 377, 7
To prove Theorem 4, we need the following lemma.

Lemma 5. If { gn(z,7) }32, is a sequence of higher order Poisson kernels defined
on D x 0D, then
1 1,2,....n—1, n>1,

gnj(z,7) = (—1)”*”1?Wn,j(277), j= . , (2.43)
’ Y n= )

where g¢,.;(z,7) are the same ones in Theorem 3 and Wn,j(z,T) are given by

k:-f—j—l?k—l

replacing all numerators dy_1(z,7) by z and all numerators 1 by % mn

all summands as (2.41) of W, ;(z,7). Thus
Z?:—ll z‘j(—l)”_jﬁwnyj(z,ﬂ, n>1,

A (2.44)
Doro(ZT) T 5, n=1

gno(z,7) =
Proof. By (2.23) and (2.38) as well the definition of /I/Iv/n,j(z, 7), (2.43)-(2.44) holds
for m = 1. That is, the claim of Lemma 5 is real for m = 1. Suppose that the
claim is also real for m =n —1 (n > 2), by (2.19), (2.20) and the definition of
Wnyj(Z,T% for1 <j<n-1,

gn,j(sz) :j_l/o gn—l,j—l(CaT)dC

1
:(_1)"—J+1ﬁWn,j(z, 7). (2.45)
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By (2.21), we have

n—1

1 ~—

nolz.7) = 321 Wi ().
j=1 :
By induction method, the claim holds for all n € N. O]

Proof of Theorem 4. Noting the definitions of W, ;(z, 7) and Wnﬁj(z, 7), by (2.18),
(2.43) and (2.44), we have

n—1
gn(z,7) :2%{ ngnj(z,T)}
§=0
n—1 1 N
—2{ (1) - 2 )Wo(27) }
j=1
n—1 1
= ()" (1= [2[7)Wa(z, 7) (2.46)
j=1
Thus we complete the proof of Theorem 4. O
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