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Summary

Many psychologists agree with the statement that the multitrait-multimethod (MTMM) anal-
ysis developed by Campbell and Fiske (1959) is one of the most important methodological de-
velopments in the social and behavioral sciences (see e.g., Kenny, 1995). MTMM measurement
designs allow researchers to scrutinize the convergent and discriminant validity of their measures.
The numerous advantages of multimethod research (Eid, 2006) as well as the increasing interest in
longitudinal research have led many statisticians to develop new models for analyzing multitrait-
multimethod-multioccasion (MTMM-MO) data (e.g., Burns, Walsh, & Gomez, 2003; Burns &
Haynes, 2006; Cole & Maxwell, 2003; Courvoisier, 2006; Courvoisier, Nussbeck, Eid, Geiser, &
Cole, 2008; Crayen, Geiser, Scheithauer, & Eid, 2011; Geiser, 2008, 2009; Geiser, Eid, Nussbeck,
Courvoisier, & Cole, 2010; Grimm, Pianta, & Konold, 2009). Currently, the most common way to
analyze MTMM data is via structural equation models (SEMs; Eid, 2000). Using structural equa-
tion models for analyzing longitudinal MTMM data bears many advantages such as (a) separating
different sources of variance (e.g., due to trait, occasion-specific, method, and measurement error
influences), (b) testing theoretical assumptions via model test indices, (c) relating latent method
variables to external variables. However, researchers often struggle with choosing the appropriate
structural equation model for their particular MTMM-MO measurement design. According to Eid
et al. (2008) the model selection process should be guided by the types of methods used in the
MTMM measurement design. For example, measurement designs with interchangeable methods
imply that methods are randomly chosen from a common set of equivalent methods (e.g., multiple
student ratings for teaching quality). As a consequence, measurement designs using interchangeable
methods result out of a multistage sampling procedure and thus imply a hierarchical (multilevel)
data structure (e.g., raters nested in targets). In contrast, measurement designs with structurally
different methods result whenever methods are fixed. Structurally different methods are methods
which cannot be easily replaced by one another (e.g., physiological measures, self-ratings, teacher
ratings). In this thesis four different multilevel structural equation models (ML-SEMs) are pro-
posed for analyzing longitudinal MTMM data combining structurally different and interchangeable
methods. Specifically, a latent state (LS-COM) model (see chapter 2), a latent change (LC-COM)
model (see chapter 3), a latent state-trait (LST-COM) model (see chapter 4) and a latent growth
curve (LGC-COM) model (see chapter 5) is formally defined. The abbreviation COM stands for
the combination of structurally different and interchangeable methods. In addition, the statistical
performance of each model is investigated via four simulation studies (see Part III). According

to the results of the simulation studies, the models perform well in general. Across all simula-
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tion studies the amount of improper solutions (Heywood cases) as well as parameter estimate bias
(peb) was below 5%. No convergence problems with respect to the HO model were found. The
average standard error bias (seb) was also below the critical cutoff value of .1 for most parameters.
However, with increasing model complexity (number of parameters) larger sample sizes on both
levels are needed. The results of the simulation studies are discussed and practical guidelines for
empirical applications are given (see Section 11.1). Finally, the advantages and limitations of the

models are discussed and an outlook on future research topics is provided.
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Chapter 1

Introduction

“The MTMM matrix represents one of the
most important discoveries in the social

and behavioral sciences.”

(Kenny, 1995, p. 123)

1.1 Multitrait-multimethod analysis

Considering the potential devastating impacts of invalid and inaccurate measurement of impor-
tant aspects of human life, the need for valid measures in social and behavioral sciences can hardly
be overestimated. According to Courvoisier et al. (2008) “invalid measurements bear risks like over-
or underestimation of treatment effects, they may lead to the wrong diagnosis, they may indicate a
suboptimal treatment, or, in the worst case, they might even not detect a relevant symptom at all”
(p. 270). Therefore, many psychologists agree with the statement that any decision or diagnostic
judgment should be based on the best information available, which implies that the information is
valid, reliable, objective, and specific to a given problem (Courvoisier et al., 2008; Nussbeck, 2008).

Currently, one of the most common strategies to scrutinize the validity of a given measure
is via multitrait-multimethod (MTMM) analysis (Eid, 2000; Eid & Nussbeck, 2009). Since its
invention by Campbell and Fiske in 1959, MTMM has had an undeniable impact in psychology.
As Kenny (1995) notices: “The MTMM matrix represents one of the most important discoveries
in the social and behavioral sciences. It is as important an invention in the behavioral science field
as the microscope is in biology and the telescope is in astronomy” (p. 123). Moreover, Sternberg
(1992) states that the article by Campbell and Fiske (1959) entitled “Convergent and discriminant
validation by the multitrait matrix” is one of the most influential articles in psychology (see also
Eid & Nussbeck, 2009). Today, the article has been cited over 5,000 times! and MTMM analysis is
known as a gold standard for scrutinizing the validity of a measure (Carretero-Dios, Eid, & Ruch,
2011). Before discussing the numerous advantages of MTMM analysis in greater detail, the meaning
of the terms walidity as well as validation shall be clarified. According to Borsboom, Mellenbergh,

and van Heerden (2004) the term wvalidation refers to specific activities that researchers undertake

nformation retrieved from http://apps.webofknowledge.com [retrieved July, 2012]



CHAPTER 1. INTRODUCTION 3

in order to verify or disprove a test to be valid. On the other hand, the term walidity has been
conceptualized either in sense of a property of a given test (Borsboom et al., 2004) or in sense of

the adequacy of interpretations of test results (Messick, 1980, 1989, 1995):

Validity is an integrated evaluative judgment of the degree to which empirical evidence
and theoretical rationales support the adequacy and appropriateness of inferences and
actions based on test scores or other modes of assessment. [...] Broadly speaking,
then, validity is an inductive summary of both the existing evidence and the potential

consequences of score interpretation and use.
(Messick, 1995, p. 13)

In contrast to that, Borsboom et al. (2004) argue that validity is rather a matter of the adequacy

of the measurement, not of the interpretation of test scores:

It is our intent to convince the reader that most of the validity literature either fails
to articulate the validity problem clearly or misses the point entirely. Validity is not
complex, faceted, or dependent on nomological networks and social consequences of
testing. It is a very basic concept and was correctly formulated, for instance, by Kelley
(1927, p. 14) when he stated that a test is valid if it measures what it purports to

measure.
(Borsboom et al., 2004, p. 1061)

Despite this on-going philosophical dispute, most authors of the standards of educational and
psychological testing (e.g., APA, AERA & NCME, 1999) tend to agree with Messick’s definition of
validity (see Eid & Schmidt, in press). Different facets of validity have been proposed over the years,
for example convergent and discriminant validity, content validity, criterion-related validity and
face validity (see Campbell & Fiske, 1959; Messick, 1995; Shadish, Cook, & Campbell, 2002). The
authors of the standards of educational and psychological testing consider these different facets
of validity as subordinate to the main concept of construct validity (Eid & Schmidt, in press).
Construct validity, in the sense of Messick (1989), refers to “the adequacy and appropriateness
of inferences and actions based on test scores or other modes of assessments” (p. 13). In order
to verify that the interpretations of test scores are adequate, researchers usually try to provide
evidence that the hypothesized relationships between theoretical entities are linked consistently to
relationships between observed entities. For example, suppose that a test X measures empathy.
As a consequence, the test scores of this empathy test should also be empirically related to scores
of a test measuring aggressiveness (substantial negative intercorrelations). Besides that, the test
scores of test X should be empirically unrelated to test scores of another test Y which is assumed
to be theoretically unrelated to empathy (e.g., food preference). As the above quote of Borsboom
et al. (2004) indicates, researchers usually try to scrutinize these hypothesized (inter)relationships
among theoretical and observed entities with a nomological net (see Figure 1.1). Cronbach and
Meehl (1955) were the first to propose this validation method. However, both researchers also

emphasized that test validation is an on-going process which involves numerous kinds of studies,
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for instance (a) studies of group differences, (b) studies of interrelationships between other tests,
(c) studies of the internal structure (e.g., factor analysis), (d) studies of stability and change of test
scores, and (e) process analysis (for more details see Eid & Schmidt, in press). Nevertheless, the
approach by Cronbach and Meehl (1955) implies some shortcomings. First, Cronbrach and Meehl
(1955) did not explicitly stress the advantages of multimethod measurement and how to properly
study method bias. For instance, a self-report measure of empathy may be more positively biased
than warranted. It would be impossible to investigate the degree of method biases (e.g., bias
due to self-reports) in measurement designs when using only one method (Geiser, 2008). Another
methodological shortcoming refers to the link between the theoretical and observation entities (i.e.,
adequacy of measurement) depicted in Figure 1.1. In particular, it is unclear how to statistically
test whether the link between the theoretical and empirical entities is correct. Moreover, it is
unclear how to separate different sources of variances (e.g., measurement-error from true-score
variance) from one another in the classical approach. In contrast to Cronbrach and Meehl (1955),
Campbell and Fiske (1959) highlighted the importance of multimethod investigations in the social
and behavioral sciences. They suggested using multitrait-multimethod correlation matrices to
investigate the convergent and discriminant validity of the given measures. Convergent validity is
indicated by high positive correlations of test scores of two different scales that are theoretically
related (e.g., two different empathy scales). Discriminant validity is indicated if two theoretically
unrelated attributes are also empirically unrelated. For instance, only low or no associations
between test scores of intelligence and empathy scales are assumed, given that both constructs are
considered to be distinct.

One of the main reasons for using multiple methods is to disentangle different sources of influ-
ence such as effects of construct score influences, rater influences, measurement-error influences,
and/or temporal influences (Courvoisier et al., 2008; Kenny, 1995). According to Campbell and
Fiske (1959) at least two constructs and two methods are needed to separate trait from method
effects. It is important to note that the term method is not clearly defined in psychology (see
Geiser, 2008; Podsakoff, MacKenzie, Lee, & Podsakoff, 2003). For instance, different tests (e.g.
speeded test vs. non-speeded test), different types of assessment (e.g., questionnaire vs. physio-
logical measures), different items (e.g., positive vs. negative coded items), different persons (e.g.
multiple raters vs. expert ratings), or different measurement occasions can be conceived as method

(Eid & Nussbeck, 2009; Geiser, 2008).

Another advantage of multimethod measurement designs is that they are more informative than
single-method designs (Geiser, 2008). Moreover, multimethod measurement designs allow exam-
ining the degree of method specificity (e.g., method or rater biases) as well as the generalizability
of these method effects across constructs (Eid, 2006; Geiser, 2008). Method specificity refers to
the amount of observed or true score variance that is due to method influences (see Eid, 1995).
For example, method specificity may be reflected by the amount of observed variance of self-report
measures that cannot be predicted by other reports (e.g., parent report) (Eid, 2000; Geiser, 2008).

MTMM measurement designs allow separating different variance components from one another
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Figure 1.1: Nomological network for validating a new empathy scale following Cronbach and Meehl
(1955). Nodes represent theoretical or empirical quantities in the nomological network. Double
arrows represent probabilistic or deterministic relationships among the theoretical or empirical
quantities. Lines without any arrows reflect the operationalization or the measurement of the
theoretical quantities.

and investigating construct? and method influences (e.g., method bias). In the classical MTMM
approach by Campbell and Fiske (1959) four criteria for the evaluation of multitrait-multimethod

correlation matrix are proposed (see also Eid, 2010, pp. 851-852):

1. The entries in the validity diagonal referring to correlations between the same constructs
measured by different methods (i.e., monotrait-heteromethod block) should be significantly
different from zero and sufficiently large. This desideratum concerns the degree of convergent

validity.

2. Correlations between the same constructs measured by different methods (i.e., monotrait-
heteromethod block) should be higher than the correlations between different constructs
measured by different methods (i.e., heterotrait-heteromethod block). This desideratum con-

cerns the degree of discriminant validity.

3. Similarly, correlations between different constructs measured by the same method (i.e.,
heterotrait-monomethod block) should be smaller than correlations between the same con-
structs measured by different methods (i.e., monotrait-heteromethod block). This desidera-

tum also concerns the degree of discriminant validity.

4. Finally, “the same or a similar pattern of constructs should be shown in all of the heterotrait

2Following Geiser (2008) a distinction between traits and constructs is made. Throughout the entire thesis, the
term trait is used to refer to stable person-specific influences that can be separated from occasion-specific influences
(Steyer, Ferring, & Schmitt, 1992; Steyer, Schmitt, & Eid, 1999; Eid, 1995). The term construct is used to refer to
the attributes (e.g., teaching quality, life satisfaction etc.) that were measured.
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triangles of both the monomethod and the heteromethod blocks” (Eid, 2010, pp. 851-852).
This desideratum also concerns the degree of discriminant validity, given that it implies that
the associations between different constructs are similar across different methods as well as

method combinations.

Despite the numerous advantages of the classical approach by Campbell and Fiske (1959) there are
also some limitations. According to Eid (2010) “the application of these criteria is difficult if the
measures differ in their reliabilities” (p. 852). That is, because the correlations between the different
measures can be distorted in different ways due to measurement error influences. Furthermore,
there is no statistical test whether or not the criteria are fulfilled in empirical applications or
whether or not the psychometric model as such fits the data (Eid, 2010). Moreover, Campbell and
Fiske (1959) did not explicate how to account for temporal effects which are present in almost any
measurement. That is, measurement almost never takes place in a situational vacuum (see Steyer
et al., 1999). Hence, many important questions cannot be answered with the classical MTMM

approach:
e How strong is the influence of the measurement error?
e How adequate is the measurement model (the link between theoretical and observed entities)?
e Do the psychometric properties of the instrument change over time?
e Does the construct change over time?
e Does the method bias change over time?

With the development of more sophisticated statistical methods such as confirmatory factor anal-
ysis (CFA) and structural equation models [SEMs, see e.g., Bollen (1989), Joreskog (1979)] many
of these problems could be resolved. Over the years, CFA and SEM modeling approaches for mod-
eling MTMM data have been increasingly applied to social and behavioral data (e.g., Dumenci,
2000; Eid, 2000; Eid & Diener, 2006). The main advantages of MTMM-SEMs are (Dumenci, 2000;
Eid, Lischetzke, & Nussbeck, 2006; Eid et al., 2008): (a) they allow separating measurement influ-
ences from individual difference with respect to construct or method effects, (b) they allow relating
different construct or method variables to other external variables, and (c) they allow scrutinizing
the fit of the statistical model (e.g., with x? fit statistics). Several SEM-based MTMM models
have been proposed over the years (Eid, 2000; Eid, Lischetzke, Nussbeck, & Trierweiler, 2003; Eid
et al., 2008; Kenny & Kashy, 1992; Marsh & Hocevar, 1988; Marsh, 1993; Marsh & Grayson, 1994;
Pohl & Steyer, 2010; Widaman, 1985; Wothke, 1995). For an overview and detailed discussion of
existing MTMM-SEMs see Eid et al. (2006) as well as Geiser (2008). In the next section, important

developments of MTMM-SEMs for longitudinal measurement designs are discussed.

1.2 Multitrait-multimethod-multioccasion analysis

Change is an inevitable feature of human life. People think, feel, and/or behave differently over

time. Therefore it is not surprising that social and behavioral scientists share great interest in
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studying the change or stability of attributes (e.g., empathy), method effects (e.g., rater bias), and
psychometric properties (e.g., reliability, convergent and discriminant validity). The importance of
longitudinal measurement designs is also reflected in the increasing number of publications devoted
to this research area (Geiser, 2008). For instance, Khoo, West, Wu, and Kwok (2006) note that
32% of studies published in Developmental Psychology in 2002 included longitudinal measurement
designs. Biesanz, West, and Kwok (2003) found that 24% of studies published in the Journal of
Personality: Personality Process and Individual Differences from 2000 to 2001 included longitu-
dinal measurement designs. Moreover, longitudinal MTMM studies are more informative than
cross-sectional MTMM studies (Geiser, 2008). Only with respect to longitudinal MTMM analysis
is it possible to explicitly model temporal effects. Longitudinal MTMM analyses allow testing
crucial assumptions referring to measurement invariance or the existence of indicator-specific ef-
fects. These assumptions cannot be tested with respect to cross-sectional MTMM study designs.
Despite the numerous advantages of longitudinal modeling, only “few attempts have been made
to develop and use appropriate models for longitudinal MTMM data so far” (Geiser, 2008, p. 19).
Example of researchers who have contributed to this research field are Burns et al. (2003), Burns
and Haynes (2006), Cole and Maxwell (2003), Courvoisier (2006), Courvoisier et al. (2008), Geiser
(2008), Geiser et al. (2010), Grimm et al. (2009), Scherpenzeel and Saris (2007). The work by
Courvoisier (2006) and Geiser (2008) is essential for the understanding of the models presented in
this thesis. Therefore, the models by these authors are discussed in greater detail here.

Geiser (2008) proposed a latent state and a latent change model for longitudinal MTMM designs
(see Figure 1.2 and Figure 1.3). Geiser’s model? is an extension of the multiple indicator CTC (M-
1) model for cross-sectional data proposed by Eid et al. (2003). The starting point of the latent
state model is the decomposition of the observed scores into latent state S;ji; as well as error

variables E;;x;, where ¢ = indicator, j = construct, & = method, and [ = occasion of measurement:

Yiiki = Sijki + Eijki-

Next, a reference (standard) method is chosen in order to contrast different methods from
another (see Eid, 2000; Eid et al., 2003; Geiser, 2008). Without loss of generality, the reference
method is denoted by k¥ = 1. The remaining methods (k # 1) serve as non-reference methods.
Geiser, Eid, and Nussbeck (2008) provide detailed guidelines for choosing an appropriate reference
method. In order to define method variables that reflect the amount of observed variance of a
non-reference indicator (e.g., teacher report) that is not due to the reference method (e.g., student
self-report), it is necessary to regress the latent state variables pertaining to the non-reference
methods Sjji; on the latent state variables pertaining to the reference method S;;1;. In other

words, the latent state variables of the reference method are used as predictors of the latent state

3For the sake of clarity, the models in Figure 1.2 and Figure 1.3 are depicted with common latent state (change)
factors Sjy; (SjBllC) and with common latent method (change) factors My (M ﬁf), and not with indicator-specific

55, Mk, and Mg,g That means that the index ¢ denoting the indicator (item) is not
needed in these figures, and is therefore dropped. However, it is worth noting that Geiser (2008) introduced the
model in his original work with indicator-specific latent variables (i.e., Sj;1i, Sgﬁ, M k1, and Mgkcl')7 and then

latent factors S;;1;, S

introduced homogeneous assumptions with respect to these latent variables.



Eii1 Eo11
N ¥
J Yun As1i11 As1211 Yo |
Method 1 J Yoi11 S111 Sa11 Ya011 L Method 1
Y3111 Y3011
N ¥
Y; Y;
IRLE! 1221 s g
Method 2 2 Yo121 Ya221 I Method 2 5.
S
/\M3121 Y3121 Y3221 )\M3221 i
N ¥
— 7 Vi Yiasi |=
=
.% Method 3 @% You31 Y2231 Method 3
o
8 /\M3131 Y3131 YE&231 )\M3231
N ¥
Asii12 Asi212
N y
Method 1 Method 1
N y
N ¥
M M g
Method 2 { I Method 2 g
N y g
AM3122 AM3222 =
N ¥
[aN]
e N ¥
& Method 3 - - Method 3
3 N y
3 AM3132 AM3232
Contstruct 1 Contstruct 2

Figure 1.2: Path diagram of the CS-C(M — 1) model by Geiser (2008) for three indicators, two constructs, three methods, and two occasions of measurement. Yj;p=
observed variable (i = indicator, j = construct, k¥ = method, | = occasion of measurement). S;;; = common latent state factor. M;; = common latent method factor.
E;jri = error variable. All latent correlations are omitted for clarity.

NOLLONAOYLNI T H4LdVHD



CHAPTER 1. INTRODUCTION 9

variables of the non-reference methods. Generally, this latent regression can be expressed by the

following equation:
E(Sijk1|Siju) = cijrr + AsijuSiju, VEk#1

The residuals of this regression are the latent method variables M;jx;. These latent method vari-
ables reflect the over- or underestimation of the non-reference method (e.g., teacher report) with
respect to the reference method (e.g., self-report) at a given occasion of measurement. Given that
these latent method variables are defined as residuals, the general properties of residuals hold as

well (Geiser, 2008; Steyer & Eid, 2001), for example:

E(M;ji) =0,

CO'U(Sijll, Mijkl) =0.

In addition to that, the latent method variables M;;z; are assumed to be homogeneous across items
for the same construct, method, and measurement occasion. More specifically, all M;;z; are linear

functions of each other:

M = Aaijri Mk

The complete measurement equation of an observed indicator in the latent state MTMM-SEM by

Geiser (2008) can be expressed as follows:

agiu + AsiguSiiu + Eiju, Vik=1,

Yijr =
ikt + AsijuSiju + Amijri M + Eijra, YV k # 1

With respect to an alternative parametrization of the model, it is possible to study true interindi-
vidual differences in intraindividual change of constructs as well as method effects (see Geiser,

2008; Geiser et al., 2010). The measurement equation above may be rewritten as follows:

aiji + AsijulSijin + (Siju — Siji)] + Eiju, Vk=1,

Yijr =
aijrl + AsijulSijin + (Siju — Siji1)] + Aarije[Mjen + (M — M) + Eijra, ¥k # 1.

The latent difference variables (S;j1; — Sij11) represent interindividual differences in intraindividual
change with respect to the reference method. In contrast, the latent difference variables (M —
M) reflect the interindividual differences in intraindividual change with respect to method-
specific deviations from the reference method. These latent difference variables may serve as
explanatory or dependent variables in further latent regression analysis. For example, a researcher
might incorporate potential covariates (e.g., gender, age) in order to explain the deviation of change
scores from the reference method. Besides that, Geiser (2008) proposed a model in order to study
the true change of subsequent latent variables (so called neighbor change models) as well as models
for investigating time-invariant item-specific effects. The major advantage of these models lies
in the combination of longitudinal measurement theories such as the latent state/change theory

(Steyer, 1988; Steyer et al., 1992, 1999) and the Correlated-Trait-Correlated-(Method-1) modeling
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approach (e.g., Eid, 2000; Eid et al., 2003). First, all of these models enable researchers to analyze
the entire MTMM-MO (multitrait-multimethod-multioccasion) matrix, whereas previous attempts
generally focused on modeling the occasion-specific MTMM covariance matrices. Temporal effects
such as the stability and change of constructs as well as method effects can be fully investigated.
Second, all of the models account for measurement error influences and thus allow studying true
convergent and discriminant validity of the given measures. Third, crucial assumptions (e.g. the
degree of measurement invariance assumptions or the existence of indicator-specific effects) can
be tested via standard model fit statistics. Fourth, in the CTC(M-1) modeling approach (see
Eid, 2000), different components of variances can be separated. For example, the models allow
calculating coefficients of occasion-specific consistency, method specificity, indicator-specificity, and
reliability (for more details see Geiser, 2008). Fifth, essential psychometric properties regarding the
existence, uniqueness, admissible transformations, and meaningfulness of the latent variables have
been demonstrated. Moreover, the limits of the applicability of the models have been scrutinized by
extensive simulation studies (e.g., Crayen, 2008; Geiser, 2008) as well as by empirical applications
(Crayen et al., 2011; Geiser et al., 2010).

The multitrait-multimethod latent state-trait (MM-LST) model by Courvoisier (2006) com-
bines the advantages of latent state-trait theory (Steyer et al., 1999) and the CTC(M-1) modeling
approach (Eid, 2000; Eid et al., 2003). This model is especially useful when researchers seek to
analyze true discriminant and convergent validity on the level of occasion-specific variables (i.e.,
measures depending on momentary or situational effects) as well as on the level of trait variables
(i-e., free of situational and measurement error effects). According to the LST theory, the latent
state variables S;j.; can be further decomposed into latent trait Tj;r; and latent state-residual
variables O;j;;. The observed variables are therefore given by:

Vi = Sijrt + Eijkis
Tijki + Oijit + Eijra.
T;jki is the latent trait variable and reflects person-specific influences (i.e., consistent person-specific
effects across time). O,;x; represents effects of the situations and/or person-situation-interactions.
E;jk1 is the measurement error. In order to derive trait and occasion-specific method variables, one
has to choose a reference (standard) method and regress the trait/occasion-specific variables of the
non-reference method on the trait/occasion-specific variables of the reference method. The latent
residuals (T'M; ki, OM;jr;) of these latent regressions can be interpreted as trait or occasion-specific

method variables.

Tkt = E(Tijit| Tiju) + TMiju,

Oijrt = E(Ojjkt] Oijir) + OMiji.

Given that T'M;;; and OM;;1, are defined as residuals with respect to Tj;1; and O;;1;, the general

properties of residuals apply again (for more details see Courvoisier, 2006). The complete equation
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for the observed variables is given by:

= aiju + )‘Tz‘juTij + )\Oijlloijl + Eij1l7 Vk=1,

Yii =
= ikl + A1y Tij + Ararg 0 TMijr + Aoy,0, Oiji + Ao OMjia + Eijry, ¥V k# 1.

The latent trait variable T;; reflects person-specific influences measured by the reference method,
with the intercept a;jr, and factor loading Ar,;,,. The residual O;j represents effects of the sit-
uations and/or person-situation-interactions measured by the reference method. The parameter

Ao,,,, denotes the factor loadings for this latent factor. By definition the residual variable O;;; is

i
uncorrelated with the latent trait variable T;;. The latent trait method variable T'M; ;. represents
the method-specific influence of method k on the trait level weighted by its factor loading Araz,,,, -
The variance of this variables reflects the amount of person-specific variance of an observed variable
pertaining to the non-reference method which is not explained by the latent trait variable measured
by the reference method. Similarly, OMjy, is the latent residual and represents the method-specific

influences of method &k on the occasion level, weighted by its factor loading Aoy, With regard

ijkl”®
to the definition of the model, different variance components can be studied (see Courvoisier et al.,

2008, pp. 274-275):

1. The trait consistency coefficient TCon(Y;;x;): This coefficient represents the proportion of ob-
served variance due to stable interindividual differences (i.e., general trait level) as measured

by the reference method.

2. The occasion-specificity coefficient OSpe(Y;;x;): This coefficient represents the proportion of
observed variance due to occasion-specific interindividual differences (i.e., the momentaneous

oscillation around the stable trait) as measured by the reference method.

3. The trait-specific method coefficient TMSpe(Y;;x): This coefficient represents the part of

the observed variable that is uniquely due to the method deviation from the reference trait.

4. The occasion-specific method coefficient OMSpe(Y;;x;): This coefficient represents the part of
the observed variable that is uniquely due to the method deviation from the occasion-specific

reference state residual variable.

Researchers who are interested in studying the degree of true convergent validity on the level of
trait variables need to compare the consistency coefficient Con(Y;;x;) and the trait-specific method
coefficient TMSpe(Y;;r;). Conversely, researchers who are interested in analyzing the degree of
convergent validity on the level of occasion-specific residual variables need to compare the occasion-
specificity coefficient OSpe(Y;;x;) and the occasion-specific method coefficient OMSpe(Yj;x1).

The modeling approach by Courvoisier (2006) entails many advantages for studying longitudinal
MTMM data. For example, the MM-LST model is especially useful for studying variability pro-
cesses (i.e., occasion-specific oscillation around a time-invariant trait or method effects). Besides,
the latent variables of the model are clearly defined and have a clear psychometric meaning.

Despite the numerous advantages of the models by Geiser (2008) as well as Courvoisier (2006),

the models are only adequate for analyzing MTMM measurement designs incorporating structurally
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different methods (e.g., student self-report, parent report, physiological measures). However, many
researchers conduct longitudinal MTMM studies using a combination of structurally different and
interchangebale methods (see e.g., Ciarrochi & Heaven, 2009; Dai, De Meuse, & Peterson, 2010;
Denissen, Schonbrodt, van Zalk, Meeus, & van Aken, 2011; Ho, 2010; Violato, Lockyer, & Fidler,
2008). Especially in organizational and industrial psychology studies, it is common to use a combi-
nation of structurally different (e.g., employee’s self-report, supervisor report) and interchangeable
methods (e.g., colleagues reports, customers reports), for example, in so-called 360 degree feedback
designs (Mahlke et al., 2012). A detailed explanation of the meaning of the terms “structurally dif-
ferent” and “interchangeable” methods will be given in the next section. However, a very simplistic
interpretation of the terms shall be given now in order to understand why the models by Geiser
(2008) as well as Courvoisier (2006) are not appropriate in general for these types of measurement
designs: Interchangeable methods such as multiple colleagues (or customers) ratings for employees’
social competencies are more or less exchangeable, given that these ratings stem out of a uniform
rater population (see also Eid et al., 2008; Mahlke et al., 2012). In contrast, structurally different
methods (e.g., employee’s self-report and supervisor report) cannot easily be replaced by one an-
other, given that these methods stem out of different method (e.g., rater) populations. In addition,
whereas interchangeable methods can be selected randomly for a particular target, structurally
different methods are fixed beforehand for a particular target (see Eid et al., 2008). As a conse-
quence of this sampling process, MTMM measurement designs with a combination of structurally
different and interchangeable methods imply a multilevel data structure (Eid et al., 2008). Note
that the models by Geiser (2008) as well as Courvoisier (2006) are defined as single level structural
equation models. Thus, these models are not in general appropriate for measurement designs with
interchangeable methods (Eid et al., 2008; Geiser, 2008; Nussbeck, Eid, Geiser, Courvoisier, &
Lischetzke, 2009). Only under certain circumstances, for example, when a small and equal number
of raters per target is used, the models by Geiser (2008) as well as Courvoisier (2006) can also be
used for analyzing measurement designs with interchangeable methods (see Nussbeck et al., 2009).
Nevertheless, models that are more general and flexible than the existing models are needed for
analyzing longitudinal MTMM measurement designs with a combination of structurally different
and interchangeable methods. In the next section, the differences between measurement designs

with structurally different and/or interchangeable methods are discussed in more detail.

1.3 Different models for different types of methods

Some models are more appropriate for particular data structures than others. The simplest
explanation may be that a given model A fits the data better than an alternative model B. Com-
paring different models (e.g., A and B) according to the standard fit criteria is presumably the most
popular model selection strategy nowadays. However, such data driven model selection strategies
(e.g. testing all available models) may not always be the best solution. As Eid et al. (2008) noted,
data driven model selection strategies are highly arbitrary and may even “increase the likelihood
of improper solutions, convergence problems, and poor model fit” (p. 231). Even if a particular

model fits the data well, the model results may not be readily interpretable (see Eid et al., 2008).



CHAPTER 1. INTRODUCTION 15

Sampling procedure for structurally different methods Sampling procedure for interchangeable methods
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Figure 1.5: Sampling procedure for different kinds of methods. Figure A refers to the sampling
procedure of measurement designs with structurally different (fixed) methods. Figure B refers to
the sampling procedure of measurement designs with interchangeable (random) methods.

Moreover, in cases of equivalent models (e.g., latent state vs. latent change model), the model fit
criteria cannot be used for model comparisons. For that reason, Eid et al. (2008) strongly recom-
mended using theory-driven model selection strategies in MTMM studies. According to Eid et al.
(2008) different types of methods require different types of MTMM models. In total, three types
of measurement designs were distinguished by Eid et al. (2008): (1) measurement designs with
structurally different methods, (2) measurement designs with interchangeable methods, and (3)
measurement designs with a combination of structurally different and interchangeable methods.
Measurement designs with structurally different methods use methods that are fixed beforehand
for a given target. For example, the rating of a mother is fixed for a given child. In other words,
structurally different methods cannot be randomly selected out of a common set of methods. The
sampling procedure of measurement designs with structurally different methods requires selecting
a target t out of a set of targets 7" and then observe the ratings of the different raters (r = 1,2, 3)
on indicators ¢ for constructs j (see Figure A of 1.5). The simplest case of the random experiment

for measurement designs with three structurally different methods can be represented as follows:

Q:QTXQM]‘X...XQQin...ngij.

Qr refers to the possible set of targets, Q,; represents the first possible set of ratings (e.g., self
ratings) on indicator ¢ and construct j, €g;; refers to the second possible set of ratings (e.g.,
mother ratings for each child) on indicator ¢ and construct j and Qs,; refers to the third possible
set of structurally different methods (e.g., objective test scores for each child) with respect to
indicator ¢ and construct j. Finally, x is the Cartesian product set operator. Note that all
methods (self-rating, mother rating, objective test) may reflect different perspectives on the target
(child), given that all methods stem out of different non-interchangeable method populations.
Researchers who are interested in analyzing “pure” method effects (i.e., method effects that are
unrelated with the trait and only due to the influences of a particular method) should not aggregate
both ratings by taking the mean of both ratings. Instead, researchers should rather contrast
different methods against each other which is automatically done in the Correlated-Tait-Correlated-

(Method)-1 modeling approach (Eid, 2000; Eid et al., 2003).
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A number of MTMM-SEMs have been proposed for analyzing longitudinal as well as cross-
sectional measurement designs with structurally different methods (Courvoisier, 2006; Courvoisier
et al., 2008; Crayen et al., 2011; Geiser, 2008; Geiser et al., 2010; Eid, 2000; Eid et al., 2003).
These models offer many advantages. However, they are not appropriate for analyzing measure-
ment designs with interchangeable methods. Measurement designs with interchangeable methods
imply a different data structure than measurement designs with structurally different methods.
Measurement designs with interchangeable methods use methods that can be randomly sampled
out of a uniform distribution of methods. For example, a study with interchangeable methods may
use multiple peer ratings for the evaluation of students social competency or multiple colleague
ratings for leadership quality. Given that peers per student (or colleagues per employee) stem out
of the same rater population, these methods (ratings) can be conceived as interchangeable. It is
important to note that interchangeability does not mean that the values of these ratings are the
same across different raters per target, but rather that the raters pertain to the same rater pool.
In addition, measurement designs with interchangeable methods imply a multistage sampling pro-
cedure (see Figure B of 1.5). In the first step the target ¢ is selected out of a set of possible targets
T and in the second step the different raters r are selected out of a set of possible target-specific
raters R. Finally, the rating of each rater r of a particular target ¢ on indicator ¢ and construct
j is observed. The simplest case of the random experiment for interchangeable methods can be
represented as follows:

Q:QTXQRXQijk.

Qr refers to the set of possible targets and (g is the set of possible raters for each target. ;s
is the set of possible outcomes that contains the values of ratings for each indicator i and each
construct j. That means that €);;, maps the ratings of each raters for each target on indicator i
and for construct j into the set of real numbers R. The conceptual distinction between structurally
different methods and interchangeable methods relates to the distinction between fixed and random
factors in analysis of variance (Hays, 1994) and is well summarized by Shrout (1995) saying: “The
nature of the description of interrater consensus often varies according to the research perspective.
In formal methodological terms, the different perspectives may vary in terms of whether targets
and/or judges are considered to be fixed or random” (p. 82). Eid et al. (2008) proposed a multilevel
MTMM-SEM for measurement designs with interchangeable methods. The major advantage of this
multilevel modeling strategy is its flexibility. For example, the model allows to study “true” unique
rater bias for a varying number of raters per target. In contrast to the CTC(M-1) approach for
structurally different methods (see above), the latent trait variables are defined as latent means
in this framework. The “true” (measurement error free) average mean of the interchangeable
methods (peer ratings) is defined as trait (see Eid et al., 2008). As a consequence, the trait
values are free of measurement error influences and rater-specific influences (see Eid et al., 2008).
The unique rater bias is then given by the deviation of a particular rater’s true-score from this
true average mean (see Eid et al., 2008). Finally, “true” convergent and discriminant validity can
be studied as well. Given that many empirical studies use a combination of both structurally

different and interchangeable methods, Eid et al. (2008) formulated a model that combines both



CHAPTER 1. INTRODUCTION 17

modeling approaches for cross-sectional data. With respect to the extended or multilevel CTC(M-
1) model (Eid et al., 2008; Carretero-Dios et al., 2011) it is possible investigating trait effects as
well as “unique” and “common” method effects. The main advantage of this model is that method
influences can be studied on both levels (rater- and target-level). In addition, researchers may also

study different variance components (Eid et al., 2008, p. 245):

e The consistency coefficient indicates the degree of convergent validity. The consistency co-
efficient reflects the amount of true variance of a non-reference indicator that is explained
by the reference method (e.g., the amount of true variance of the peer ratings that is shared

with the self-rating).

e The common method specificity coefficient represents the amount of true variance of a non-
reference indicator that is not explained by the reference method (e.g., self-rating) but that

is common to all interchangeable methods (e.g., peer-ratings)

e The unique method specificity coefficient reflects the amount of true variance of a non-
reference indicator that is neither shared with the reference method (e.g., self-rating) nor
shared with other interchangeable methods (e.g., peers) but that is specific to a particular
rater. Hence, this coefficient reflects the variability that is only due to the unique view of

interchangeable raters.

Even though Eid et al. (2008) presented a basic framework for modeling both structurally different
and interchangeable methods, they did not consider an extension to longitudinal data. The aim
of this thesis is to formally define different multilevel CTC(M-1) models for longitudinal MTMM
measurement designs with structurally different and interchangeable methods. These new MTMM-
SEMs combine the advantages and flexibilities of the CTC(M-1) modeling approach, of longitudinal
modeling strategies (i.e., latent state, latent change, latent state-trait, and latent growth curve
modeling), and of multilevel (i.e., multirater) modeling strategies. Finally, all of the presented

models will be tested empirically with respect to extensive Monte Carlo simulation studies.

1.4 Aims and structure of the present work

The aim of this present work is to develop appropriate structural equation models for lon-
gitudinal MTMM measurement designs that imply a combination of structurally different and
interchangeable methods. Given that many longitudinal MTMM measurement designs do not
only incorporate one type of method (e.g., either structurally different or interchangeable meth-
ods), but a combination of different types of methods, there is a great need for such longitudinal
MTMM-SEMs. For example, in educational psychology many researchers are interested in studying
teaching quality by using multiple student ratings, teacher self ratings and/or the ratings of school
principles. In development psychology, researchers analyze the development of social competency
by using students’ self-ratings, peer ratings, and parent ratings. Furthermore, many organizational
psychologists use multiple source (360 degree) feedback designs in order to investigate the stability
and change of leadership quality. All of these measurement designs imply a combination of struc-

turally different and interchangeable methods. To my knowledge, no appropriate models have yet
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been proposed for analyzing such measurement designs. The aim of this present work is to fill this
gap and to develop models that are appropriate for such complex measurement designs. Addition-
ally, the models will be formulated with respect to the four longitudinal modeling frameworks (i.e.,
latent state, latent change, latent state-trait, and latent growth curve framework). The latent state
(LS-COM) model is a good starting point for modeling change over time. This model often serves
as a baseline model for testing and establishing crucial assumptions such as the degree of mea-
surement invariance (Geiser, 2008, 2012). Moreover, the stability and change of trait and method
effects can be studied by analyzing the correlations between latent variables. In order to explicitly
model “true” change of trait and/or method effects, two latent change versions are formulated. The
first latent baseline change model (baseline LC-COM model) allows modeling “true” interindividual
differences in intraindividual change with respect to the reference method. Hence, this model is
useful whenever researchers are solely interested in modeling “true” change of the construct over
time. In addition, an extended latent baseline change model (extended baseline LC-COM model) is
proposed that enables researchers studying “true” change of (common /unique) methods effects over
time. The third model combines the advantages of latent state-trait theory and the MTMM-MO
modeling framework for different types of methods. This model is called LST-COM model and is
useful for studying “true” convergent and discriminant validity on the level of occasion-specific vari-
ables and on the level of trait (free of occasion-specific influence and measurement error) variables.
This model is especially appropriate for investigating variability processes (i.e., occasion-specific
oscillation around a time-invariant trait). The fourth model (LGC-COM model) can be seen as
a more “general” variant of the LST-COM model that entails the LST-COM model as a special
case. The LGC-COM model is suitable for modeling different forms of growth with respect to
the trait (linear, quadratic, cubic) separately from occasion-specific, method-specific and measure-
ment error influences. All of the models will be formulated based on the stochastic measurement
theory (c.f. Steyer, 1989; Steyer & Eid, 2001; Suppes & Zinnes, 1963; Zimmermann, 1975). The
advantage of this approach is that (1) all latent variables are clearly defined, (2) the psychomet-
ric properties of each model with regard to existence, uniqueness, admissible transformations and
meaningfulness are explicitly demonstrated and (3) all additional assumptions and implications for
deriving testable consequences with respect to the latent covariances and mean structure of the
latent variables are unfold. In addition to that, the applicability and limitations of each model are

investigated in extensive Monte Carlo simulation studies.
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Chapter 2

Formal definition of the latent
state (LS-COM) model

2.1 A gentle introduction

In this chapter, a latent state model for longitudinal MTMM data incorporating a combination
of structurally different and interchangeable methods is formally defined. The model is called
LS-COM model. The abbreviation “LS-COM” was chosen for simplicity. The first part of the
abbreviation “LS” indicates which modeling approach for longitudinal data analysis is used. In this
case a latent state (LS) model. In the subsequent chapters, two latent change (LC), one latent
state-trait (LST) as well as one latent growth curve (LGC) model will be also defined. The second
part of the abbreviation “COM” stands for the combination of structurally different as well as
interchangeable methods. The latent state (LS-COM) model represents a good starting point for
modeling complex MTMM-MO data structures, given that it implies no restrictions with respect to
the latent variance-covariance matrix of the model (Geiser, 2008, 2012). With the LS-COM model,
it is possible studying the change and stability of constructs as well as method effects across
time. Moreover, the LS-COM model allows explicitly modeling the measurement error as well as
the hierarchical data structure of complex longitudinal MTMM measurement designs. Thus, the
LS-COM model enables researchers to study method effects on different levels (e.g., common and
unique method bias) and on different occasions of measurement. Hence, the LS-COM model makes
it possible studying the stability and change of common (rater-unspecific) as well as the unique
(rater-specific) method bias. In addition, the LS-COM model allows studying the degree of “true”
convergent and discriminant validity of the given measures and testing important assumptions such
as the degree of measurement invariance and/or the existence of indicator-specific effects. Before
the LS-COM model is formally defined in this chapter, a gentle introduction is provided. In the

gentle introduction, the main steps of the formal model definition are summarized and explained.

Step 1: Random experiment

In order to define an appropriate model for longitudinal MTMM measurement designs with
a combination of structurally different and interchangeable methods, it is important to consider
the sampling procedure for such complex data structures. The sampling procedure may be best

characterized in terms of the random experiment. Any single experiment, trial, or observation
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which can be repeated numerous times can be conceived as a random experiment (Behrends, 2013;
Eid, 1995; Steyer, 1988). A random experiment also constitutes the probability space (2,9, P)
upon which random (observed or unobserved) variables can be defined. For a detailed explanation
of the components of the probability space, see Eid (1995), Steyer (1988, 1989), Steyer and Eid
(2001), as well as Steyer, Nagel, Partchev, and Mayer (in press). The simplest case of the random
experiment that characterizes the sampling procedure for longitudinal measurement designs with

structurally different and interchangeable methods is the Cartesian products of the following sets:
QZQT XQTsl X ... XQTSL XQRXQRgl X ... XQRSL XQijkl X ... XQijkl~

The above equation states that target ¢ (e.g., Sophia) has been chosen from a set of targets Qrp
and is considered in a situation Qrg,. Then, a rater r (e.g., Elias) is selected from a set of raters
Qg in a situation Qrs,. The rating v (e.g., 4) is an element of €;;;, where ¢ = item/indicator, j =
construct, k¥ = method, and [ = occasion of measurement. In this case, the possible outcome w =
(t,ts,r,rs,v) = (Sophia in a situation ts on occasion of measurement [, Elias in a situation rs on
occasion of measurement [, 4). The phrase “in a situation on occasion of measurement {” is used to
express that targets and raters are assessed at the same occasion of measurement [, but may still
be affected differently by target- or rater-specific inner as well as outer situational influences (cf.
Geiser, 2008; Steyer, 1988). In total, the random experiment for longitudinal measurement designs
with structurally different and interchangeable methods implies five different types of mappings.
The mapping of the possible outcomes to the set of targets pr : @ — Qp, the mapping of the
possible outcomes to the set of target-situations prg, : 2 — Qrg,, the mapping of the possible
outcomes to the set of raters pr : 2 — Qg, the mapping of the possible outcomes to the set of
rater-situations prs, : € — Qgs,, and the mapping of the possible outcomes to the set of real

numbers Y, @ — R. The values of the variable Y, ., are the observed values of an indicator

tijh
i of construct j, assessed by the non-reference interchangeable method &, on the {** occasion of
measurement for target ¢ rated by rater r. Thus, the variable Y,.1ijr, may also be conceived as a
level-1 observed variable. In contrast to that, the values of the variable Y}, ., are the observed
values of an indicator i of construct j, assessed by a structurally different method k, on the [*"
occasion of measurement of the target t. For example, the self-rating of the target ¢ (e.g., Sophia)
may additionally be considered on occasion of measurement /. Given that these ratings are not
rater- but only target-specific, the values of these (self-)ratings are measured by the observed
variables Y;ijkl. In other words, the observed variables Ym‘jkl are measured on level-2 (i.e., the
target-level). Note that it is also possible to assess the ratings of another structurally different
method (e.g., parent or teacher) for target t on occasion of measurement .

Throughout this work, one and only one set of interchangeable methods/raters per target (e.g.,
peer-ratings) will be considered. On the other hand, the models presented here are not restricted
to any specific number of structurally different methods/raters (e.g., self-ratings, parent ratings,
teacher ratings, etc.). In order to differentiate between the different types of methods, the index

k is chosen to avoid an additional index or superscript (c.f Eid et al., 2008). The index k will be

used for the distinction between reference and non-reference method. For the sake of simplicity,
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the first method (e.g., self-rating) is chosen as reference method or gold standard. In order to refer
to the reference method, the index k& = 1 is used. Throughout this work, the second method k = 2
will refer to the set of interchangeable methods (e.g., peer-ratings). Every additional structurally
different method (e.g., parent or teacher rating) is indicated by k& > 2. In summary, k = 1 refers
to the reference method, whereas k # 1 refers to the non-reference methods, which can either be

the interchangeable method (k = 2) or another structurally different method (k > 2).

Step 2: Latent state variables as true-score variables

According to latent state theory (see Geiser, 2012; Steyer et al., 1992), each observed variable
can be decomposed into a latent state and an error variable. The latent state variables in latent

state theory correspond to the true-score variables in classical test theory (CTT, see Geiser, 2008).

Yy = Suiju + Erijus k =1, (reference method),
Y, iijor = Sptijor + Eriijor, k = 2, (interchangeable non-reference method),
Yiijke = Stijer + Erijs k > 2, (structurally different non-reference method).

The latent state and error variables are defined in terms of conditional expectations E(:|):

Stiju = E(Yjulpr, prs,), (2.1)
Eyiju = Yigu — EYgulpr, prs,), (2.2)
Sriijor = E(Yyiijo1lPT: P18, PR, PRS,) (2.3)
E,tijor = Yevijo — E(Ym‘jzﬂpTastl7PR,PRSl)a (2.4)
Stijil = E(Ytijkl lpT, DTS, ), k>2, (2.5)
Eijer = Yiiji — EYyijmalpr, prs,), k> 2. (2.6)

According to the above Definitions 2.1 to 2.6, it is clear that some latent state variables are
target specific, whereas other latent state variables are rater-target specific. For instance, the
values of E(Y,;.y,|pr,prs,) represent the true-scores of the reference method (e.g., student self-
ratings) on indicator ¢, for construct j on measurement occasion [. In contrast, the values of
E(Y,, 2l lpT, Prs,, PR, PRS,) are the true-scores of the i*? indicator for construct j on measurement
occasion | measured by a non-reference method that we expect for a rater in a rater-situation
for a target in a target-situation. In other words, the latent state variables are measured on
different levels (rater- or target-level). In order to define level-2 state variables on the basis of the
level-1 state variables the target- and occasion-specific expectations of the level-1 state variables
are considered. Moreover, if the latent state variables are measured on the same level (e.g., the
target-level), the latent state variables may also be contrasted against (regressed on) each other.
This latent regression approach (so called CTC(M-1) modeling framework), in which different
perspectives are contrasted against each other was, first proposed by Eid (2000) as well as by Eid
et al. (2003) for multiple indicator MTMM-SEMs.
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Step 3: Conditional Expectations of the latent state variables

By definition, interchangeable methods are randomly drawn from of a set of similar or uniform
methods (i.e., the same rater population). With respect to this definition, the expected value of
the “true” interchangeable ratings per target at occasion of measurement ! defines the target’s state
on occasion of measurement [ measured by the interchangeable methods. This is expressed by the

following equation:

Stijor = E(Spijolpr, P13)) (2.7)

=FE [E(Yrtijm \meTSl7pR,pRSl)|pT7stJ . (2.8)

According to Equation 2.7, the conditional expectations of the latent state variables S,,;.o; given
the target (pr) in a target-situation (prs,) can be defined as target (rater-unspecific) latent state

variables. Consequently, the latent state variables S,,.,; may be considered as “true means” of the

ij2

interchangeable ratings per target on occasion [ for indicator ¢ measuring construct j.

Step 4: Definition of latent residual method variables

The residuals of the latent regression analysis in Equation 2.7 are referred to as unique method

variables and are defined as:

UMm‘jm = Sm‘jm - E(Srtij2l|pTapTSz)

= Ortijal — Stij?l'

A value of the unique method variable UM,.;; o, reflects the unique deviations of a particular rater
r from the expected value of the interchangeable raters at occasion of measurement [. Moreover,

given that UM, ., is defined as residual with respect to the S,;;;, it follows that E(UM, ;o) = 0

ti52
and Cov(Sy; o, UM, .4;59;) = 0. In order to define latent residual method variables on level-2 (target-
level), the latent state variables of the non-reference methods S,; ki (for k # 1) are regressed on
the latent state variable Sy;;; of the reference method. In general, this latent regression analysis

can be expressed by the following equation:

E(Syijnl Stiju) = ijrr + AsigriStijus  k # 1.

The main advantage of this latent regression analysis is that different method variables can be
defined that are uncorrelated with the reference latent state variables Sy;;1;. Consider, for example,

that the level-2 latent state variables S, 5, of the interchangeable method are regressed on the latent
state variables of the reference method Sj;;;;. Then the residual variables of this latent regression

can be defined as common method variables:

CMtij2l = Stij2l - E(Stij2l|stijll)'
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The common method variables C'M,; ., capture the amount of “true” variance of the non-reference
interchangeable methods that is common to the interchangeable methods (e.g., general view of the
peers), but is not shared with the reference method (e.g., self-report) on occasion of measurement
l. The common method variables CM,, ol reflect the “true” occasion-specific common method bias
of the interchangeable methods that is unrelated with the reference method. This unrelatedness
follows by definition, given that common method variables are defined as residuals with respect
to the reference method and therefore the general properties of residuals hold (see Steyer & Eid,

2001). Specifically, the following properties hold:

E(CMtijZZ) =0,
OOU(Stijllv CMtij2l) =0,

COU(UMv-tiij CMtij2l) =0.

Similarly, “true” occasion-specific method variables M, ,, that pertain to the other structurally

different non-reference method (e.g., parent or teacher report, k > 2) can be defined as:
My = Stijia — E(Stijkl‘stijll)'

By definition, these latent method variables reflect the true amount of method influences specific
to the remaining non-reference structurally different methods on occasion of measurement [. The
latent method variables M, ,, reflect the true over- or underestimation of the target self-report
(reference method) by the true rating of the supervisor (non-reference structurally different method)
on occasion of measurement . Moreover, the variables M, ,, may be correlated with C'M,, ;.
These correlations indicate, for example, whether or not method bias generalizes across different

constructs j # j' and/or different occasion of measurement [ # I'.

Step 5: Definition of latent method factors

In order to obtain an identified model, it is assumed that all latent method variables UM, ;o)
CM,; 0, and My, ., are homogeneous across items. Specifically, it is assumed that the method
variables pertaining to the same kind of method UM, ;5005 CMtij2l? M, 1, are positive linear
functions of each, respectively (see also Courvoisier, 2006; Eid, 1995; Geiser, 2008; Steyer, 1988;
Steyer & Eid, 2001). Thus, these latent variables only differ by a multiplicative constant such that

UMm‘jzl = )‘UMij2lUMrtj2lv
OMtile = ACMij2lCMtj2l7

Miine = Mrigra Mg, k> 2.

Based on this assumption, it is possible to define latent method factors, namely: CM,;o;, UM, o,

and M, k- The existence of these latent occasion-specific method factors is demonstrated in Section
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2.3 of the subsequent chapter. Note that the index 4 for the indicator has been dropped, because
these variables are common to all indicators with the same indices r, ¢, j, k, and [. In summary,

the measurement equations for any observed variable of the LS-COM model are given by:

Yiiju = Stiju + Eriju, (2.9)
Yiijo = ®ijir + AgijriStijie + Aagija M + Etijkis k>2 (2.10)
Yorijor = ijor + AsijorStiju + AonmijuC Mijor + AvarijoiUMgjor + Ergijor- (2.11)

According to the above Equations 2.9 to 2.11, the observed variables pertaining to the reference
method Y, ;;, measure a latent state variable Sy;;1; as well as a measurement error variable Ej;j1;.

Note that there are no additional method variables present in Equation 2.9. The expressions

Qijk T AgijrrStigil, k> 2,

Qyiior + AgijorStijins

in Equations 2.10 and 2.11 refer to the latent regression analyses of the latent state variables per-
taining to the non-reference method on the latent reference state variables. The residuals of the
latent regression analyses are defined as method factors (M, CM,;y) as described above. As
a consequence, each of method factor (Mtjkl, CMthl) is weighted by a factor loading parameter
(A Mijkls AC Mij2l)' In addition to that, the observed variables of non-reference interchangeable
method Y, ;.o also measure a unique method factor U M, ;o weighted by a factor loading param-
eter Ajypp59- It is important to note that the values of the latent method factors have different
meanings. For example, a value of UM, ,;,, reflects the difference between the true rating of a
particular rater r on occasion of measurement [ from the expected value of all raters for target ¢
on occasion of measurement [. Given that this method bias is specific to the true over- or under-
estimation of a particular rater 7 on occasion of measurement [, it may be called occasion-specific
unique method bias. A value of CM, 9 reflects the “true” common view of the interchangeable
raters on occasion of measurement ! that is not shared with the reference method (e.g., target’s
self-report) on the same occasion of measurement. The term “common” is used, given that this
method bias is shared with other interchangeable raters for target ¢, but not with the reference
method. Thus, values of CM, jou Tepresent “true” occasion-specific common method bias. Finally, a
value of M, reflects the “true” method bias of another structurally different method (e.g., parent
or teacher rating) that is not shared with the reference method. For simplicity, it is assumed that
the measurement error variables (Eyiji1, Etijii, E,4;59) are uncorrelated with each other (see e.g.
Definition 2.2). Figure 2.4 illustrates a LS-COM model for three indicators, two constructs, three
methods (1 = reference method, 2 = interchangeable method 3 = another structurally different
reference method), and two occasions of measurement. For the sake of clarity, all correlations
among the latent variables were omitted in the figure. Note that the model illustrated in Figure

2.4 refers to a LS-COM model with indicator-specific latent state factors.
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2.2 Formal definition of the LS-COM model

In the following sections, the LS-COM model is formally defined based on the stochastic mea-
surement theory following the approach by Steyer and Eid (2001). For simplicity, the model is
defined for just three methods. The first method (k = 1) refers to the reference method which is
assumed to be structurally different method (e.g., students’ self-report) relative to the other meth-
ods. The second method (k = 2) refers to the set of interchangeable methods (e.g., peer reports for
a particular student). It is important to note that the set of interchangeable methods could also be
chosen as reference method, however, this is not done in the present work. Guidelines for choosing
an appropriate reference method are given in Section 11.1 as well as in Geiser et al. (2008). The

third method (k = 3) refers to another structurally different method (e.g., parent rating).

Definition 2.1 (LS-COM model)
The random variables {Y111111, - - - » e crsracas Yabcdef} and {Yq1111, - - - AP 7chdef} on
a probability space (Q, A, P) are variables of a LS-COM model if the following conditions hold:

(a) (Q,%, P) is a probability space such that Q = Qr x Qrg, X ... X Qrg, X Qr X Qrs, %
coo X QRSZ X Qijkl X ... X Qijkl-

(b) The projections pr : Q@ — Qr, prs, : Q@ = Qrs,, pr: @ — Qr, and prs, : & — Qgg, are
random variables on (2,9, P).

(c) The variables Yy ;5 « Q1 X Qrs, X ... x Qrg, = Roand Y0 1 Qr X Qrg, X ... X
Qrg, X Qp X Qprg, X ... X OQrs, =+ R, forwhichrGRE{l,...,a}, tETE{l,...,b},
iel={l,....c}, e J={1,....d}, ke K={1,...,e}, l e L={1,...,f} are
random variables on (Q,A, P) with finite first- and second-order moments.

(d) Without loss of generality, the first method (k = 1) is selected as reference method. The
second method (k = 2) refers to the set of interchangeable methods which serve as non-
reference methods. All other methods (k> 2) refer to structurally different methods which
serve as non-reference methods. Then, the following variables are random variables on
(2, %, P) with finite first- and second-order moments:

Rater-level (level-1):

Sm‘jzl = E(Yrtij2l|pTapTSlapRvaSI)v (2.12)
UM, 4;591 = Spiijor — E(SpiijoulPT, PTS,)5 (2.13)
Etijor = Yosijor — E(Yrtij21|pT7stl7PR,pRSl)- (2.14)

Target-level (level-2):

Stijll = E(Ytiju‘pTapTSz)v (2.15)
Stijor = E(Sm'jzﬂpT,pTSl), (2.16)
Stijin = E(YeijmlpT, P18, Vk>2, (2.17)
CMtile = Stij2l - E(StijQZ‘Stijll)a (2.18)
Myiik1 = Stijia — E(Spijuil Stijur)s Vk>2, (2.19)
Eiiju = Yiigu — E(Ytiju\pTaPTSz)a (2.20)
Eyiiti = Yy — EYyjulpT: PTs,)s Vk>2. (2.21)
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(e) For each construct j, measured by a non-reference method (k # 1) on occasion of mea-
surement | with item i, there is a constant ay,; ., € R as well as a constant Ag, ;1 € Ry
such that

E(S4iiklStiji) = Qijrr + AsigrStiju- (2.22)

(f) For each construct j, measured by a non-reference method k (in this case k = 2) on
occasion of measurement 1 and for each pair (i,i') € I x I', (i # ') there is a constant
Acwiijo € Ry such that

CMyi500 = Acmrii j21C Myis o (2.23)

(g9) For each construct j, measured by a non-reference method k > 2 on occasion of measure-
ment | and for each pair (i,i') € I x I', (i # i') there is a constant Ay € Ry such
that

Miirr = AaiirjnMeir it Vk>2 (2.24)

(h) For each construct j, measured by a non-reference method k (in this case k = 2) on
occasion of measurement | and for each pair (i,i') € I x I', (i # i) there is a constant
Auntiivju € Ry such that

UMrtij2l = )‘UMii’jZZUMrti’jﬂ' (2'25)

Remarks. In order to define the model six indices are needed: r for rater, ¢ for target, i for
indicator, j for construct, k£ for method, and [ for the occasion of measurement. The index r
denotes whether a variable is measured on the rater-level or not, whereas the index k represents
the type of method (reference or non-reference method). Note that the model is defined for one
and only one set of interchangeable methods which is always represented by k& = 2. Accord-
ing to Equation 2.16, the latent state variables Stile represent the conditional expectation of

S,.tijgl given a value of (pr) and a value of (prg). This latent regression may also be written as

E [E(Yrtilj2l|pT,pT5l,pR,pRSL)\pT,pTSZ]. The latent variables Sy, 5, thus represent the expected

values of the distribution of the interchangeable ratings given a target in a specific situation on
an occasion of measurement /. The residual of this latent regression is defined as unique method
variable (see Equation 2.13). A value of this method variable is the deviation of the true-scores
of one rater (for target t) from the expected value of all possible raters (for target t) for indi-
cator i, construct j, and occasion of measurement [. It can be also considered as “true” over-
or underestimation of a trait value by a particular rater on a particular measurement occasion I.
This bias might be due to the effect of a rater and/or the interaction between rater and target.
Each of the observed variables has its own associated latent true-score variable Sf,tijm7 Sy 10> OF
Syijr as well as measurement error variable E, ;o). Ey;.qy, or Ey; . According to Equation 2.22
the latent state variables of the non-reference methods Sy, 5, and Sy, are regressed on the latent
state variables of the reference method variables S, j1; bertaining to the same indicator ¢, construct
j, and measurement occasion [. The residuals of these latent regression analyses define the two
remaining method variables My, ;;, and CMtiﬂl. In Equation 2.23 to 2.25 below, common (i.e., to
all indicators) method factors are defined. Specifically, it is expected that all latent method vari-
able C'My; .01, My, UM,y 50, belonging to the same construct, method, and occasion are positive
linear functions of each other, respectively. In other words, it is assumed that these latent residual
variables are perfectly correlated and only differ by a multiplicative constant.

2.3 Existence

According to Definition 2.1 the latent method variables, belonging to the same construct j,
method k, and occasion of measurement /, but different indicators 7 and ¢ are positive linear trans-

formations of each other. As a consequence, these latent residual variables can be represented by



CHAPTER 2. THE LATENT STATE (LS-COM) MODEL 29

common (i.e., to all indicators) method factors. The following theorem demonstrates the existence

of the latent method factors (CM, o, My, and UM, ;o).

Theorem 2.1 (Existence)

The random variables {Yy11111,- - s Yyijurs - > Yapeder ) 908 {Y111115 -+ Yiignir - s Yoedes ) GT€
(CMm-le, M UMrtijQZ)-congenem'c variables of a LS-COM model if and only if the Con-
ditions a to e of Definition 2.1 hold and for eachr € R, t €T, i,e I, jeJ , ke K,l €L,
there are real-valued random variables CMy; o1, My, and UM, ;.5 on a probability space
(Q,%, P) and (Acprijors Aarigeis Auariga) € Ry such that:

CMtile = )‘CMijQICMthD (2'26)
Miiiki = MrijriMejis Vk > 2, (2.27)
UMTtile = )‘UMijZIUMrthI' (2-28)

Proofs. 1 Euxistence of latent variables

2.26 (1) For all i, j, k, I, assume that CM, ;o) = C M,y o) as well as Agprizo = Aoarinjor- Inserting
these parameters in Equation 2.23 of the above definition, yields Equation 2.26:

CMy;i00 = AonrijoC My (repeated).
(2) Similarly, according to Equation 2.26, CMthl can be expressed as

CM,..
o tig2l
CM,jo, = SV
CMij2l

CM.., .

ti’j21
as well as C Mo, = —=
Acnrirjor

. . A .
If both equations are set equal, it follows from that: C M,y = MCMWJQZ. Let Aoppivjor =

CMilj21

M} than the FEquation 2.23 is obtained:

CMilj2l

C M, 00 = Aoarii jorC My joy (repeated).

2.27 (1) For alli, j, k, I, assume that M, ;3 = M, 54, as well as Appiip = Appigjpg- Inserting these
parameters in Equation 2.24 of the above definition, yields Equation 2.27:

Myiier = MijraMyji (repeated).

2) Furthermore, according to Equation 2.27, M, .., can be expressed as
tykl

M,.. M.
My = IR s well as My = L
Mijkl Antirjkt
By setting both equations equal, it follows from that: M, o) = =M. Let Ny =
Mi’jkl

M’ than the Equation 2.2/ is obtained:

Mi’jkl
Mk = Mgiirjear My iy (repeated).

2.28 (1) For all i, j, k, I, assume that UM, ;;; = UM,y as well as Ayyrig = Ayaginjr-
Inserting these parameters in Equation 2.25 of the above definition, yields Equation 2.28:

UM, i1 = AumtijiaU M,y (repeated).
(2) Further, according to Equation 2.28, UM,y can be expressed as

UM, UM, i1k
~———as well as UM, = ~————.

UM’I"tjkl = Y A
UM:ijkl UM’ jkl
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By setting both equations equal, it follows from that:

A .
_ "UMijkl
UM, ;501 = S UM,y
UM’ jkl

Au s . . )
Let Ay apiirjrr = %, then the Equation 2.25 is obtained:

UM, ik = AuasiijrorU Mg jra (Tepeated).
O

Remarks. The above theorem clarifies that the assumptions made in Conditions 2.23 to 2.25 of
the above definition imply the existence of common factors C'M, 2l M, ki UM, jou- 1t is important
to note that the term common refers to the fact that each factor is assumed to be common to all
indicators, belonging to the same construct, same (non reference) method, and the same occasion
of measurement. Put another way, it is assumed that each of the method variables belonging to
the same construct, the same method, and the same occasion of measurement [CM,; o, My,
U Mrtile] are positive linear functions of each other and only differ by a multiplicative constant.
The proof of the theorem shows that the method variables CMtij2lﬂ M, 0, and UM, ;.o, are not
uniquely defined. In fact, there is a whole family of residual variables which could serve as common
latent method factors (CM, o, M, 1, and UM, o). The uniqueness of the latent method factors
is discussed in the uniqueness theorem (see Section 2.4).

2.4 Uniqueness

The latent factors (CM, o, M5, UM,

rtj21) are not completely uniquely defined in LS-COM

models. If such models are defined with (CMtij2l7 My UMrtijZl)—congeneric variables, all of
these variables and corresponding coefficients are uniquely defined only up to similarity transfor-
mation. That means that the latent variables in the LS-COM model as well as their corresponding
coefficients are only uniquely defined up to a multiplication with a positive real number. The next

theorem clarifies these statements in greater detail.

Theorem 2.2 (Admissible transformations and uniqueness)
1. Admissible Transformations
M = ((Q, %, P), Sy, St, UMye, CMyg, My, Evq, E¢, oijit, Asijkl, Aumijet; AcMijel,
AMijk1) 8 @ LS-COM model with:

( (
St = (S11111 - - - Stijkt - - - Sbedes) s (
UM, ¢ = (UMii111 - UMygjor -+ - UMagpazy) 7, (
CM; = (CMi11 -+ CMyjor - - - CMypazs) T, (
Mg = (M1t -+ Mijga - Mpgey) ™, (
Ert = (Bii1111 - Brvijor -+ Eabeazs) ™ (

E¢ = (Bi111 -+ Brijri -+ Ebedes) (2.35

(a1111"‘Oétijkl"'abcdef)T, (

= (A111 - Asight - Aedes) T (

( (

( (

( (

)

Aum = (A 11110 - )\UMij2l to Acdzf)T’
Aem = (A1111 "'>\CMij2l "'/\Cde)Tv
AM = (M111 - Antight - Aedes)

9
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. ~
and if forallr e R, teT,iel,jed ke K,l € L:
UM, 401 = BuntjaiUM,yjo, (2.41)
C My = BonmjaCMyy, (2.42)
My = Bujei My, k> 2, (2.43)
)‘/UMij2l = )‘UMijzl/ﬂUMJQl; (2.44)
/\,C'Mij2l = Acwmija/ Bomjat, (2.45)
)‘;\Mjkl = Angijrt/ Bkt k> 2, (2.46)
where Benja, Bumja, and Bujn € R, as well as Bowja, Bumja, and Bujr > 0,
then M = (9,9, P) Srt, St, UM, CM,, My, Ey¢, Eq, atijict, Asijid,
)‘UM1J217>‘CM1J217)‘Mlel> 1s a LS-COM model, too, with:
Srt = (S111111 - - Sreigor - - Sabchf)T7 (2.47)
St = (S11111 - - - Stk - - - Sbcdef)T7 (2.48)
UM = (UM11111 UM, rtj2l UMz/zbde)T’ (2.49)
CM; = (CMyyyy -+ CMyjpy -+ CMygaf) (2.50)
M; (M- Mtjkl Mbdef) ) (2.51)
Evt = (Bii1111 - Brvijor -+ Eabeazs) ™ (2.52)
E: = (Fii111 - Erijir - - Evedes) (2.53)
gl = (Q1111 - Quigjht - Qpedef) s (2.54)
As = (A1t Asight -+ Aedef) s (2.55)
)‘IUM = ()\/1111 ")‘/UMijQI : ")\;dzf)Ta (2.56)
XCM = ()\/1111 "XCMijzl T /\;d2f)Ta (2.57)
A;v[ = ()\,1111 ">‘;\/]ijkl T Xcdef)T- (2.58)
2. Uniqueness
If both M = ((Q, ¥, P), srt, S¢, UM, CM¢, My, E,lrt,Eh Ottiji, Asijkl, AUMij21,
/\CMijZIZ)\Mijkl> ,and M = ((2,%, P), Spt, S¢, UM, ¢, CMy, My, Ept, Eg, avtijia,
Asijkls Aumijels AcMijals /\Mijk1> are LS-COM models, then for eachi € I, j€ J, ke K,
L € L, there are Bcnjar, Bunmijat, and Bk € Ry such that Equations 2.41 to 2.58 hold.
L )

Proofs. 2 Admissible transformations and uniqueness

1. Admissible transformations

If UM,tqu CMtUQl, and Mm e are replaced by UMrt32l7 CJVItJQl, Mt/Jkl as well as )‘UMij217

’
)‘Cj\hj2l7 )‘szkl by the corresponding /\UMzJQl 7)‘CMz]2l7 )‘Mukb then:

UM, rtij2l — )‘U]\lzJZZU

B (ﬂUszz

- /\U]WUQIU

! ’
CMm’le = )‘CMij2lOMtj2l

B <50Mj21

= )‘C]V[ij2lCMtj2la

tj2l

rtj20s

) )‘Usz2lﬁU]\/132lU rtj2l

) AcmijabBomianC My,
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’ ’
Mtijkl = )‘MijklMtjkl
1
=\ 2 )\Mijkl/@MjklMtjkl
5Mjkl
= )‘MijklMtjkl'
’

’ ’
UM, 5 CMy M jr

In a similar way, if UM, CMyijo, and My are replaced by Borto” Bonral’ Baron

! ’ !/
as well as Aunrijor, Acmijars Amijrt bY BusgaAyarijor BomiAcnrijors BMikiA i then:

UM rtij2l — AUMl]2lUv rtj2l

B N UM, 2l
- BUszl UMij2l * 5
Buaja
!
= >‘UMij2lUM tj20
CMyijo1 = AonrijorC Mo
’7
B N OMthl
= ﬁCszl CMij2l *
Bemijat
’ ’
= )‘CMijZZCMthla
Mtijkl = )‘MijklMtjlcl
!’
tikl

!
= Bum KIAMijEL S 5
! TR Bk

! ’
= )‘JwijklMtjkl'

2. Uniqueness
If bOth M <(Q a[ P) S!‘ta St7 UMI‘ta CMta Mta E!‘ta Et7 atl_]kla )\Sl_]kla )\UMIJ217 )\CMl_]217
)\Ml_]kl> and M <(Q aI P) Sl‘t7 St7 UMrta CMt7 Mt7 El‘t7 Et7 atljklu )‘Sljkl7 )\UMI_]217
)‘CMllev )\Mle1> are LS-COM models, then Ajyppi0UM,450, = )\UMWQlU rjor-  Conse-
quently, for all j € J, k€ K, andl € L:

A
_ "UMij2l
UM, rejol = UM, rtj2l-
UMij2l

Guven that the ratio of Ayppii0, and /\/UMiﬂl has to be the same real value for each i € I
jeJ, ke K, andl € L, a real constant can be defined for eachi € I j € J, k € K, and
leL:

AUM1J2Z

ﬁUMg2l =\
UMij2l

Again, assume that both M and M’ are LS-COM models, then
Acmij2CMyjor = AcnijoiCMyjo- Consequently, for all j € J, k€ K, andl € L:

A .
/ _ "CMij2l
CM,jo = S CM, o
CMij2l

Guven that the ratio of Agppiz0, and XCMUQZ has to be the same real value for each i € I
jeJ, ke K, andl € L, a real constant can be defined for eachi € I j € J, k € K, and
lelL:

AC’MUQZ

Bcmja = v
CMij2l
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If both M and M’ are LS-COM models, then Atijri My :)\;mjklMtljkl. Consequently, for
alljeJ, ke K, andl € L:

o /\MijklM
tikt = N Wkl

Mijkl

Given that the ratio of )\]\/[ijk:l and )\/Mijkl has to be the same real value for eachi €I j € J,
ke K, andl € L, a real constant can be defined for eachi €I j€ J, k€ K, andl € L:

/\Mijkl

ﬂMjkl = 17 .
/\J\h‘jkl

O

Remarks. The above theorem implies that the latent method factors U Mrtj?l, CM, ot and M, ikl
as well as their corresponding factor loadings Ay pr;i01s Acarijor ad Ay are uniquely defined up
to similarity transformations, that is, up to a multiplication with a positive real number. Hence,
the latent method factors as well as their corresponding factor loadings are measured on a ratio
scale.

2.5 Meaningfulness

In the following section, meaningful statements regarding the latent variables in the LS-COM
models as well as their corresponding coefficients are addressed. Meaningful statements are state-
ments that remain invariant across the admissible transformations (Geiser, 2008; Steyer & Eid,
2001). The next corollary lists a selection of meaningful statements regarding the latent method

factors and their corresponding factor loadings.

Theorem 2.3 (Meaningfulness)

If both M = (%, %, P), Syt, S¢, UMy, CM¢, Mg, Epg, Eg, ovgijia, Asijil, Aumijzt, Acmijt,
Amigia) and M’ = ((Q,%, P), Sy, StvUM;tvCM;nM;aErtaEtvatijkla)\Sijkla)\/UMijzl,
)\/CMijm,)\;vﬁij are LS-COM models, then for wy, we € Q; r,7' € R, t,t' € T, 1,7’ € I,
5,5 €elJ, kk'e K, andl,l' € L:

AU Mij21 _ Ay mijor (2.59)

!
Aumirjal Ay

’
Aemija  Aowmija (2.60)
= ) .
)‘CMi/jQZ )\CMi’jzl

AMijkl MMkl (2.61)

)

- ’
AMitjkl Appijp
’ ’

/\UMij2l /\UMij’Zl’ . /\UMijQZ /\UMij’2l/ (2.62)

)

! ’
AUMi/j2l )‘UMi’j’2l’ )‘UMi’j2l )‘UMi’j/Ql’

’ ’
Moo Dewes Nowmwn Mo
CMij2l CMij’2l’ CMij2l CMij'2l
A _OMuA _ _CMud _ _CMuA (2.63)

! ’
ACMi’le AC’Mi’j’Ql’ ACMi’j2l )‘CMi’j’2l’

’ ’
Niias Aoyis Ao Ao
Mijkl Mij' k'l Mijkl Mij k'l
& — £l = & z (264)

)

Adtigel Mgk )‘;\li’jkl )‘II\M’j’k’l/
UMthZl (w1) _ UMthQl (w1) (2.65)
UM, (w2) UM;tﬂl (w2)’
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Jor UM, ;9 (w2) and UM;thZ (w2) #0,

CMtj2l (w1) CMthl (w1)

= 7 ; (2.66)
CMtj2l (w2) CMtj2l (w2)
for CMj o (w2) and CMyjy (w3) # 0,
Mtjkl (w1) _ Mt,jkl (w1) (2.67)

M, (w2) Mt,jkl (w2)’

for My, (w2) and Mt/jkz (w2) #0,

UMrtjzl (w1) B UMr/t’j’2l’ (w1) _ UM;«thz (w1) _ UM;"'t’j/Ql’ (w1) (2.68)
UMrtj2l (w2) UMr/t’j’Ql’ (w2) UM/thl (wa) UM;"’t’j/Ql' (w2)’

T

Jor UM, o, (w2), UM 05 (w2), UMr/tjzl (w2), UM;"tj’Zl’ (w2) #0,

CMthl (w1) B OMt’j’Zl’ (w1) . CMtlj2l (w1) CMt,’j’2l/ (w1)

= : — : , (2.69)
CMtj2l (w2) CMt’j’Ql’ (w2) CMtj2l (w2) CMt’j’2l’ (w2)
for C M (w2), CMy i1y (w2), CMyjg (wa), CMys 51y (w2) # 0,
Mtjkl (w1) Mt’j’k’l’ (w1) Mt,jkl (w1) Mt/’j’k’l’ (w1)
— = — - — , (2.70)
Mtjkl (LUQ) Mt’j/k/l/ (w2) Mtjk)l ((AJQ) Mt'j'k}’l’ (CLJQ)
for M, (w2), My ooy (w2), Mt,jkl (w2), Mt//j/k'l/ (w2) # 0,
)‘?]MijZIVQT(UMT’thZ) = )‘,UQMijZIVCW(UM;thI)v (2.711)
)‘QCMijzlvar(CMtj?l) = )‘C’QMijQZVCW(CMtle)’ (2.72)
AfwwleW(Mtjkl) = )‘]\%Iijklvar(Mtjkl)7 (2.73)
COTT(UMTt']Ql’ UMTltlj/2ll) == COTT(UMTtJQ, UM,,‘/tljlzl/)7 (2.74)
COTT(OMtij, CMt'j’Ql/) = COT‘T(CMthZ, CMt/j/QZ/), (275)
Corr(Mtij Mt/j’k:’l/) = COTT(Mtjkl, Mt/j/k./l/), (276)
where Var(.) denotes variance and Corr(.) denotes correlation.
= J

Proofs. 3 Meaningfulness

For simplicity, the proofs for the Equations 2.59, 2.65, 2.68, 2.71, and 2.74 are presented as exam-
ples. The proofs for the remaining statements follow the same principles and are straightforward.
Thus, these proofs are not reported here.

Buajai Buarjau

2.59 Replacing )\/UMile, )\/UMi,le in Equation 2.59 by (w) and (M), respectively,
verifies the equality

)\/ AuMij2l

UMij2l _ Buajai _ AUMij2l

/\/UMi/"2l Aumitjor >\UMi/j2l '
7 Bumjai

2.65 Replacing UM;tj2l by BumjaU Myijor verifies the equality

/

UM, jo (W1)  BuajauUMegjor(wl) UM,y (w1)

UM, 0 (w2)  BumjalU Mrjor(w2) — UM, (w2)
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2.68 Replacing UM;tﬂl by BunrjorUMyjor and UMT,tj,Ql, by BunjrorUMyejrory verifies the equality

UM, o1 (w2)  UM,psjigys (w2) - UM, oy (w2) UMy (w2)
_ BumgaUMrga (w1)  Bumgror UMy jor (wi)
 BumjaUM,jo (wo2) ; Bunjror UM oy (w2)
_ UM, ;0 (w1) UM, y5050 (w1)

- UM, ;o (W2) UM, 00y (w2)

UM, tj2l (w1) B UMr’t’j’Ql’ (w1) . UM;tjzl (w1) B UMrl’t’j’2l’ (w1)

/

2.71 Replacing )\QUMiﬂl by >‘/U2]\/Iij2lﬂ12]Mj2l as well as Var(UM,j21) by Var <UM“2‘> verifies the

Bu 2t

equality

’

UM ,.
2 N\ /2 2 rtj2l
)‘UMijQIVCLT(UMTtJQl) = >‘UMij2lﬂUMj2lvaT -
Buarja

- /2 2 1 ’
= )‘UMij2lﬁUMj2l762 Var <UMrtj2l>
UM;j21
/2 ’
= )\UMijleC““ (UMrthZ) .
UM, UM’

2.7} Replacing UM, jo1 and UM,jrop in Equation 2.7/ by o rtizl reg’2lt

M52l /3UM]"21/

UM, 5 UM,y 5000
COTT(UMth2l, UMT/t/j/ZZ/) = COTT ( rtj2l rt'yal >

Bumja Bumju

= Cor(UM,4jo, UM, 111 jr9)-
(]

Remarks. With respect to the factor loadings Ayarijor, Acoaijor, Anrijri, as well as their corre-
sponding latent method factors UM, jo1, CMy4j21, and Mk, statements regarding the absolute
values of the parameters are not meaningful (see also Geiser, 2008). The reason is that admissible
transformations (e.g., multiplication with a positive real number) would result in different values
of the parameters. Nevertheless, statements regarding the ratio of specific values of the factor
loadings or the ratio of values of associated latent method factors are meaningful. For example, it
is meaningful to say, that a value on the unique method factor for target A is x-times larger than
the value on the unique method factor for target B (see also Geiser, 2008). Given that the products
N s o1V ar(UM;j21) are also invariant to similarity transformations [see Equation 2.71], it follows
that statements regarding unique method specificity are meaningful. In fact, any statement with
respect to the ratio of variances (i.e., consistency, method specificity, reliability) are meaningful.
Finally, statements with respect to latent correlations between method factors is meaningful [see
Equations 2.74 to 2.76]. Hence, latent correlations between latent state and/or method variables
can be interpreted.

2.6 Testability

In the following section the covariance structure of the LS-COM model is discussed. In order
to derive testable consequences for the covariance structure of the LS-COM model, it is necessary
to introduce additional assumptions. These assumptions define a more restrictive variant of the
LS-COM model. These assumptions are called conditional regressive independence (CRI) assump-
tions. Models that fulfill this assumption will be called LS-COM model with CRI. This section is

structured as follows. First, the conditional regressive independence assumptions are introduced.
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Second, the covariances that are equal to zero as a consequence of the model definition are pre-
sented. These covariances must be fixed to zero in empirical applications. Third, covariances that
are assumed to be zero by further definitions are presented. The latter type of covariances may
be set to zero in empirical applications for parsimony. Finally, permissible covariances that are

estimable and substantively meaningful are discussed.

Definition 2.2 (LS-COM model with conditional regressive independence (RCI))
M = (% P),Spt,S¢, UM, CMg, My, Evt, Eg, vgijus Asijkl, AUMij2l, ACMij2l; AMijkl) 65
called a LS-COM model of (UM,i;21,C My;jo1,Myijki )-congeneric variables with conditional re-
gressive independence if and only if Definition 2.1 and Theorem 2.1 apply and

E (Yiijulpr, 015,15 s DTS5 Yitijmry )s Yergigary)) = EYyijmlpr, p1085,), (2.77)

E (}/’r'tij2l |pTa PTSy5--sPTSss PRsPRS15 -+-s PRSs 5 (}/t(Z]kl)’)a (}/rt(i]?l)’))

(2.78)
= E(K‘tijzl|pT7pTSl PR, PRS, )
E (Y,yijoulpT, P18, 5 s PT85> Yaigury ), (Yrecizry)) (2.79)
= E(YrtijgﬂpT,pTSl),
where (i, 7, k, 1) # (1,4, k,1).
b J

Remarks. The assumption stated in Equation 2.77 means that given a target (pr) and a situation
(prs,) on a measurement occasion [, an observed (level-2) variable Y5 (belonging to a structurally
different method) does neither depend on other target-situations, nor on the values of other Yy,
or Y,;;o1 variables. Similarly, Equation 2.78 means that given a target (pr), a target-situation
(prs,), a rater (pr), and a rater-situation (prs,) on a measurement occasion [, the observed
(level-1) variable Yitijo1 (pertaining to an interchangeable method) is conditionally regressively
independent of other rater or target-situations as well as of other observed variables. According
to Equation 2.79, an observed (level-1) variable Y;4;j2; (pertaining to an interchangeable method)
does also not depend on other target-situations, or on the values of other Y3, z; or Y,4;;2; variables,
given a target (pr) and a situation (prg,) on a measurement occasion [. As a consequence of these
additional definitions, error variables belonging to different occasions of measurement as well as
measurement levels (level-1 and level-2) are uncorrelated with each other.

2.6.1 Zero covariances based on model definition

The definition of the observed and latent variables has consequences for the covariance structure
of the observed and latent variables. The next theorem summarizes the covariances that are zero

as a consequence of the model definition of the LS-COM model with CRI.

Theorem 2.4 (Testability)

If M = (0%, P), Sreijats Stijkt, UMpejor, CMyjor, Myji, Erijot, Evijris ikt Asijhis

AU Mijats A Mijel, Aijki) @8 called a LS-COM model with conditional regressive independence
(RCI), then forr € R, t €T, i,i' €1, j,j' € J, k,k' € K, [,I' € L where i can be equal to 7,
jtoj', ktok andl tol' but (ijkl) # (ijkl)’ :

Uncorrelateness of latent residual variables:
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Cov(Eyryijays Ereijary) =0, (2.80)
Cov(Eyjkty, Erijrry) =0, (2.81)
COU( rt(ig21)» Et(l]kl) ) =0 (282)

Uncorrelateness of latent residual and latent state variables:

COU(St”kl, En j’k’l’) 07 (
Cov(Sytijor, Erirjrir) =0, (2.84
Cov(Stir ik s Ertijor) =0 (

) =0 (

)

COU(STtijQZa rti’ 521’

Uncorrelateness of latent residual and latent method variables:

Cov(U Mitj21, Evirjrinr) =0, (2.87)
Cov(CMyjou, Eyirjrrnr) =0, (2.88)
Cov(Myjui, Evirjrer) =0, (2.89)
Cov(U Myijo1, Ertirjrar) =0, (2.90)
Cov(CMyjor, Ergirjror) =0, (2.91)
Cov(Myjki, Ertirjrar) =0. (2.92)

Uncorrelateness of latent state and latent method variables:

Cov(Stiji, CMejor) =0, (2.93)
Cov(Stijiu, UMyijar) =0, (2.94)
COU(Stzjllth]kl) =0. (295)

Uncorrelateness of latent method variables:

Cov(CMyjo, UM, tjror) =
Cov(Myjxi, UMyjioy) =

0, (2.96)
0

Proofs. 4 Testability

The subsequent proofs are based on Definition 2.2 as well as important properties of residual vari-
ables, namely that residual variables are always uncorrelated with their regressors as well as with
numerically measurable functions of their regressors (see Steyer, 1988, 1989; Steyer € Fid, 2001;
Steyer et al., in press). Therefore, any expression of the form Cov[f(X), f(Y — E(Y|X)] equals
zero as a consequence of the definition of residual variables. For a detail description and proofs of
the properties of residual variables see Steyer et al. (in press, Chapter 9.4). In the following, the
proofs for a selection of the above mentioned zero-correlations are provided.

2.80 Consider the covariance Cov(Eyy(ijay, Ere(ijary) with Eryijory and Eyyjory being defined as
follows:
Eriijory = Yoriigon) — E(Yreqijen [T, PTS,, PRy PRS) ),
Eriijory = Yrejoy — E(Yreqjay |PT, 0TS, PR PRS), )

According to Bauer (1978, p. 54, Satz 9.4), Eyyijoy is a (DT,pTS, PR.PRS, > Yri(ij21))-
measurable function and with respect to the supposition made in Definition 2.2 it is admissible

to replace E(Yrtijoi|pr,prs, . Pr,PRS,) bY

E(Y'r‘tij2l|pT7stl7 <y PTSssPRyPRS,5 -+ PRSg> (K(?gkl)’)a (K“f(?]Ql)’)
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2.81

2.82

2.88

2.8/

Hence, for all (i,j,k,1) # (i,4,k,1)", Eruijor is also a residual with respect to the regressors
PT,PTS, ,PR,PRS, » and Yoyija1y - Given that residuals are always uncorrelated with their re-
gressors as well as with functions of their regressors (see Steyer, 1988, 1989; Steyer & Eid,
2001; Steyer et al., in press), it follows that Cov(Eyy(ijay, Ere(ijary) = 0.

In a similar way, the covariance Cov(Eyjny, Eyijryy) can be expressed as:

Cov{ [Yeji — EYeijrlpr, prs)] s [Yecijy — EYeqjuy lprprs, )] }-

Again, Eyijry = Yigry —EYiny [pr.p1s,,) and therefore Eygijry is a (pr,prs,., Yigijry)-
measurable function. According to Definition 2.2, one can replace E(Yi;jki|pr,prs,) by

E (Ytijkz|PT7PTSu <y PTSs (}/t(ijkl)’)v (Yrt(ijQI)/) .

Consequently, for (i,7,k,1) # (4,7, k,1)', Ejiw is also a residual with respect to the regres-
sors pr.prs, , and Yijry - Thus, Eyjey and By are uncorrelated, for all (4,35, k,1) #
(ia j7 k7 l)l

Consider the covariance Cov(Eyyijory, Erijry) with Epygjory and By being defined as
follows:

Ert(ij2l) = Yrt(ijzl) - E(Yrt(ijQZ) |pT,pT5,,PR,PRS) )5
Eyijry = Yigjey — EYegry lpr.prs,, )-

According to Definition 2.2, one can replace E(Yrt(ijzl)|pT7pTSz) by

E (Yrt(ijglﬂpT,stl oo DTS5 (Y(ignny ) (Yn(ijzz)/) :

Therefore, for all (i, j,k,1) # (1,5, k,1)", Ersijo is also a residual with respect to the regres-
s0r8 pr, prs, , and Yyijryy . Given that residuals are always uncorrelated with their regressors
as well as functions of their regressors (see Steyer, 1988, 1989; Steyer & Eid, 2001; Steyer
et al., in press), it follows that Cov(Eyyijary, Eyijriy) = 0.

The covariance Cov(Syijii, Evirjiwrr) can be expressed as
Cov {[E(Yesjulpr,prs,)] s [Yeirjwr — EV v lprprs,)] } -

Again, according to Definition 2.1 the latent state variables Si;jr; are defined as conditional
expectation of Yyir given the target (pr) and the rater (prg,). Thus, the latent state vari-
ables are (pr prs,)-measurable functions. Furthermore, the latent residual variables Eys iy
are defined as residuals with respect to any (pr.prs,)-measurable function, given that the
supposition made in Definition 2.2 allows replacing E(Yti/j,k/l/ lpT, PTS,) by

E (Y jow |01, 01815 0 P755> Yitijun)s Yeegizory) -

As a consequence, for all (i,7,k,1) # (i,7,k,1) the latent residual variables Ey; iy are
residuals with respect to the regressors pr, prs,, and Y. It follows that
Cov(Stijkt, Erirjrrr) = 0.

The covariance Cov(Syijor, Evirjrir) can be expressed as follows:
Cov {[E(Yrijulpr.prs, pr.prs.)] s [Yijwr — EYejoev|prprs, )] } -
According to Definition 2.2 one can replace E(Yyyjip lpr.pTs,) by
E (Y jow |01, 01515 - P755 Yitigun ) Yeegizory) -

Therefore, the latent variable Eyy iy is also a residual with respect to the regressors pr and
prs,, and Yoijory. Guen that Syiijor is defined as

Srtijoi = E(Yreijalpr, prs,, PR PRS,),

the correlation between Syyijor and Eyr iy must be zero.
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2.85 The covariances Cov(Syijiwrrr, Ertijor) can be written as follows:

Cov {[E(Yyrjowv|pr,prs,)]| s [Yetijo — EVrvijaulpr,prs, s pr,Prs,)]} -
According to Definition 2.2, one can replace E(Y, t(ij2l)|pT7stl) by

T

E (YTt(ijzzﬂpT,stl oo DTS5 (Ye(ijnty ) (Yrt(z'jzz)') :

Therefore, for all (i, j, k,1) # (1,5, k,1)", Ersijor is also a residual with respect to the regres-
5018 pr, P15, > and Yy(ijrry . Given that residuals are always uncorrelated with their regressors
as well as functions of their regressors (see Steyer, 1988, 1989; Steyer & Eid, 2001; Steyer
et al., in press), it follows that Cov(Syy ik s Ertijor) = 0.

2.87 The covariance Cov(UM,jo1, Evirjrirr) s equivalent to

1
———Cov(UM,sijo1, Brirjrwr) = ————Cov(Sriijoar — E(Yrwijorlpr, prs,), Erjrwr)

AUMij2l AU Mij21
——Cov (Syiijor, By ) — Cov (E(Yrwjaulpr, prs,)s Evirjrinr)
)\UMZ]2l
~———Cov (Sriijor, Evirjrinrr) — Cov (Seijits Erirjrir) -
)\UMZJQI

It fOllO’U]S that CO’U(UMthgh Eti/j’k/l/) = O, Zf CO’U(Srtijgl, Eti/j'k:’l/) =0 and
Cov(Stijki, Eirjrrr) = 0. It has already been shown that Cov(Syiijor, Evirjrkr) = 0
and CO’U(Stijkl, Eti’j’k/l’) =0 hold.

2.88 Similarly, the Cov(CMyjor, Evirjirr) is equivalent to

1 1
~———Cov(CMyijor, Erirjrwnrr) = ~———Cov(Stijor — E(Stijarl Stiju), Erirjrrrr)
Acmijal Acmijatl
1
= ——Cov (Stijo, Brirjrr) — Cov ((aijor + AsijarStijun)s Erirjren))
Acmijai
1
= ———Cov (Siijor, Erirjrrr) — AsijaiCov (Stijurs Evirjrwrrr) -
Acijal

It fOllO’LUS th(lt CO’U(CMthl, Eti/j’k:’l’) =0 Zf CO'U(Stijzl, Eti'j’k:’l’) =0 and
Cov(Siijii, Brirjrir) = 0. Again, it has already been shown that Cov(Syijor, Evirjrirr) = 0 and
Cov(Siijui, Evirjrerrr) = 0 hold.

2.90 The covariance Cov(U Myijor, Ergirjrar) can be rewritten as

1
~———Cov(UM,sijor, Eviirjrir) = ~————Cov(Sriijor — EYrvijoi|pr, 015,)s Ertirjrier)

AUMij21 AU Mij21
———Cov (Sriijot, Ertirjrirr) — Cov (E(Yrsijor|pr, prs,)s Ertirjrir)
)\Usz2l
~——Cov (Srtijar, Ertirjrkrrr) — Cov (Stijit, Brvirjrirrr) -
)\UMqu

It fOllOU)S that COU(UMrthI, Erti/j’k’l/) = 0, Zf COU(STtijQZ, Erti’j/k’l’) =0 and
CO’U(Stijkl, Erti’j/k’l’) = 0. Given that CO’U(SMUQI, Erti’j’k’l’) =0 and CO’U(Sm'jkl, Erti’j’k/l’) =
0 the equation Cov(UM,ijo, Erirjror) = 0 holds.

2.93 The covariance Cov(Syij11, CMyjor) equals zero, if pVErve C’ov(St,]u,C’Mmgl) is zero. By

definition, the variable CMy;jo; s a residual with respect to Stiju- Thus, for the same con-
struct and occasion of measurement both variables are uncorrelated with each other.
2.94 UM, yjop is a function of UMy jiop
UMy siryrar
UM, jr01 = %7
UMi'j'21

it follows that Cov(Syij11, UMyijio1) = 0, if Cov(Syijir, UMy jror) = 0. The latent variables
Stiju and UM,y 91 are defined as follows:

Stiju = E(Yiijulpr, prs,)
UM;tirjror = E(Yrtirjrov |pT: T8y s PRy PRSy) — E(Yrtirjrov [T, P15y )-
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As consequence, UM,y o is a residual with respect to the regressors pr,prs,, and Yy jror .
In other words, UMy jior is a (pr,prs,, Yetirjror )-measurable function. According to Defi-
nition 2 one can replace E(Ym/j/zz/ lpr, pTS,) by

E (Y;ti’j’Ql’ |pTapT5'1a <3 PTSs s (}/t(ljk‘l))7 (Yrt(ijQI))) .

Hence, UM 01 18 also a residual with respect to the regressors to pr,prs,, and Yijk. In
other words, UM,y 191 15 also a function of Syju and therefore both variables are uncorre-
lated with each other.

2.96 Again, UM, jop is a function of UM,y jor, and CMyjo is a function of C My o

UMty jrov
)
AU nijror

CMyij

UM, 501 = .
AcmMija

CMyjo =

Consequently, Cov(CMyjor, UM,ijror) is zero if Cov(CMyijor, UMy jror) is zero. According
to the following equation

CMyijor = Suijor — E(Stijoi| Stiju),

CMyijo is defined as residual with respect to the latent regression E(Stijoa|Stiju). As a
consequence, it follows that Cov(CMyjor, UMy jiorr) is zero, because UMy jrop is also a
function of Syiju;-

2.96 Szmllarly, equa’tion OOU(Mtjkly UMrtj’Ql’) = 0 can be shown. F’L'T'St, UMth/Ql/ 8 a f’u,nction
of UM, i jror as well as My is a function of Myjx.

UM, 0 jrop

UMyijror = ;
AU M 21

Mg = ——
Consequently, Cov(Myjxi, UMyjar) is zero, if Cov(Myijki, UMy jror) is zero. Given that
Myijia s a function of Siiju
Myijri = Stijir — E(Stijri) Stijin)s Vk>2.
It follows that Cov(Myjri, UMy jror) is zero, because UM,y jrop s also a function of Syiju.

O

2.6.2 Covariance structure: LS-COM model with CRI

According to Theorem 2.4 not all covariances between latent variables are permitted in the
LS-COM model with CRI. In the next section, the covariance structure for LS-COM models is
illustrated for three indicators x two traits x three methods x two occasions of measurements in
matrix form. Note that this 3 x 2 x 3 x 2 measurement design does not represent the simplest case of
the model. For example, it would be possible to specify an LS-COM model with just two indicators
i, two constructs j, two methods k (one structurally different and one set of interchangeable
methods), and two occasions of measurement [. Therefore, the model presented here (for a 3 x 2 x
3 x 2 measurement design) is more general. The complete covariance matrix of observed variables is
36 x 36 (i.e., ijkl x ijkl) dimensional. The total covariance matrix ) 4. of a LS-COM model with

CRI can be partitioned into a within ) v, and a between ) g matrix of the same size (36x36):
2=t
T W B

Then, the within matrix is given by:

> = AwPwAY + Ow,
W
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where Ayy refers to the factor loading matrix of the unique method factors of size 36x20 (i.e.,
ijkl x (1 4+ k —1)jl). The elements of this matrix are denoted by Ayarijo, where i=indicator,
j=construct, k=2 (set of interchangeable methods), [=measurement occasion. AL refers to the
transposed within factor loading matrix of size 36 x20 (i.e., ijkl x (i +k —1)jl). ®yy refers to the
within variance and covariance matrix of the unique method factors with the dimension of 20x20
li.e., (i+k—1)jl x (i+k—1)jl], and Ow is the diagonal residual covariance matrix of size 36x36.

In a similar way, the between matrix ) g of size 36x36 (i.e., ijkl x ijkl) is given by:
B

Again, Ag of size 36 x20 (i.e., ijkl x (i+k—1)jl) refers to the between factor loadings matrix of the
latent factors on the target-level. Thus, the elements of this matrix are Asiijri, Acareijar, Anrtijhl-
AL refers to the transposed matrix of the between factor loadings. ®g refers to the between
variance and covariance matrix of the between latent variables with the dimension of 20x20 [i.e.,
(i+k—1)j1 x (i+k—1)7l]. Finally, ®g refers to the between residual variance and covariance matrix
of size 36x36 (i.e., ijkl x ijkl). In order to illustrate the complete covariance matrix of the LS-
COM model for 3 indicators, 2 constructs, 3 methods, and 2 occasions of measurement, the index
(4, 1) which can take the following values (in the given ordering), is defined: (1,1), (1,2),(2,1), (2, 2).
The index (1,1) indicates that a given parameter (e.g., factor loading, latent variable) refers to
the first construct j = 1 measured on the first occasion of measurement [ = 1. In addition, the
function Pos((j,1)) is defined. The function maps the index (j,1) on its position p with respect

to the ordering above. The function therefore takes the values given in Table 2.1. The matrix I,

Function Values
(4, 1) (1,1 (1.2) (21) (2,2)
p=Pos((4,1)) 1 2 3 4

Table 2.1: Function for the mapping of the index (j,1) to p.

where p € N = {1,...,4} is defined as 4x4 (i.e., jl x jl) matrix with a one on the p** diagonal

element and zeros elsewhere. For example, the matrix I, for p = 2 is given by:

I»

Il
o o o o
o o o o
o o o o

o o = O

The function of the matrix I, is to define the structure of Ay and to map the indices (j,) to their
correct position in Ayy,. Therefore, Ay of size 36 x 20 (i.e., ijkl x (i +k — 1)ji) is written as the

sum over the Kronecker products I, and Aw,:

4
Avw = Z I, ® Aw,.
p=1
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I, refers to a matrix of size 4 x 4 (i.e., jI x jl) for the mapping function of p, ® is the Kronecker
product, and Ay, refers to the matrix of size 9x5 (i.e., ik x i +k — 1) including the within factor

loadings of the unique method factors. Hence, Aw,, is given by:

0

0

0
AUMijal
AU M2j21
AU s 2

0

0

0

9
|
© o O O © © ©o o o

o O O o o o o o o
o O O o o o o o o
o O O o o o o o o

The elements Ayarijor, Avarzjor, Aunmsjor are greater than 0, whereas all other elements are neces-
sarily zero. The complete within variance and covariance matrix ®5 of size 20x20 [i.e., (i+k—1)j!

x (i + k —1)jl] can be expressed as follows:
®w =E[(Vay —E[Vay])(Vay — E[Vay])"],

where E(+) is the expected value. Note that V., refers to the vector of size 20x1 (i.e., (i+k—1)jl

x 1) including all latent factors, except for the common method factor C'My;:

\V4 Stlllla St21117 St31lla UMrt121; Mt1313 St11127 St21127 St31127 UMrt1227 Mt132a
@ =

W
St1211, St2211, Se3211, U My221, My231, St1212, St2212, St3212, U Mri222, Mia3a
Note that for any j,j” € J and [,I" € L the unique method variables UM, ;2 are uncorrelated
with any latent state variable Sij1;r or any latent method variable M3 on the target-level.
Furthermore, note that the latent method variables C'My;/o;r are not represented in the vector

Vs However, the remaining latent variables (Siijri, Mijri) are included in the vector Vg, ,

w-
given that the covariance matrices )y, and > g have to be equally sized for matrix addition.
The structure of the covariance matrix ) y is illustrated in Figure 2.2. According to this figure,
permissible variances and covariances of latent unique method variables are represented as gray

colored cells. White colored cells refer to correlations restricted to zero.

Finally, the within error matrix @w of size 36x36 (i.e., ijkl x ijkl) is given by

4
Ow =Y I, 0w,

p=1

where Z;ﬁ:l is the matrix of size 4x4 (i.e., 5l x jl) for the mapping function of the index p, ® is

the Kronecker product, and @w,, is the variance-covariance matrix of the level-1 residual variables.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

| | | _

G e w e e

Figure 2.2: Within variance-covariance matrix ®y; of the LS-COM with 1=S;1111, 2=S111,
3=S3111, 4=UM, 4121, 5=Mi131, 6=S1112, 7=Sw2112, 8=5i3112, 9=UM,1122, 10=M;132, 11=S54211,
12=5011, 13=8i211, 14=UM; 4221, 156=DM;231, 16=S¢1212, 17=Si2212, 18=S5i3212, 19=U M, 202,

20=M;232. White colored cells indicate zero correlations, gray colored cells indicate permissible
correlations.

Thus, @w,, is given by:

00 0 0 0 0 00 0
00 0 0 0 0 00 0
00 0 0 0 0 00 0
0 0 0 Var(Enjm) 0 0 00 0
Ow,=| 0 0 0 0 Var(Erzjo) 0 000 |,
00 0 0 0 Var(Busjz) 0 0 0
00 0 0 0 0 00 0
00 0 0 0 0 00 0
00 0 0 0 0 00 0

for whichr e R, teT,iel, je J, ke K, € L, and for which only the elements Var(E,:j2)
> 0. The between factor loading matrix Ap of size 36x20 [i.e., ikjl x (i + k — 1)ji] is given by:

4
Ag =) I,®Ap,.

p=1

Again, I, refers to the matrix of size 4 x 4 described above, ® is the Kronecker product, and Ag,

refers to the between factor loading matrix of the latent variables on the level-2. Hence, Ag, is
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given by:
As1j11 0 0 0 0
0 JAsyu 0 0 0
0 0 JAsyu 0 0
As1j21 0 0 Acmijzat 0
Apj = 0 As2j21 0 Acm2j21 0
0 0 As3jor  Acmajal 0
As1;31 0 0 0 AM1431
0 As2;31 0 0 AM2530
0 0 As3531 0 AM3j31

Then, the between variance and covariance matrix ®g of size 20x20 [i.e., (i+k—1)jl x (i+k—1)jl]
is given by

(I>B =E I:(V‘I)B - E[V‘PB])(V‘PB - E[V‘PB])T} )

where Vg, refers to the vector of size 20x1 [i.e., (i + k — 1)jl x 1] including all latent factors on

the target-level, namely:

v Si111, Se2111, Sez111, CMya21, My, Siiii2, Sie112, Sis112, CMi122, My32,
By =

St1211, Sta211, Sta211, C Mi2o1, Mias1, St1212, Sta212, Sta212, C Miaaa, Miozo
Note that the expected values of the latent method factors (i.e., CMyjo; and Myjx;) equal zero,
given that these latent variables are defined as latent residuals. In contrast to that, the expected
values of Si;;1; can be freely estimated. The mean structure of the model is discussed in detail
in Section 2.5. Another consequence of the model definition is that all elements corresponding to
latent correlations between latent state variables S;;1; and the latent method variable (CM;jo; and
My ;1) pertaining to the same construct j and same occasion of measurement [ equal to zero. The
structure of the covariance matrix ) g is illustrated in Figure 2.3. Again, permissible variances
and covariances of latent variables are represented as gray colored cells. White colored cells refer
to zero correlations. Cells in lighter gray correspond to correlations that may be fixed to zero for

parsimony in empirical applications.

The matrix @p of size 36 x36 of the level-2 latent error variables is finally given by:

4
@B = le®®Bp7

p=1

where 2;21 is again the matrix of size 4x4 for the mapping function of the index p, ® is the

Kronecker product, and ©g, is the variance-covariance matrix of the level-2 residual variables.
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Figure 2.3: Between variance-covariance matrix ®g of the LS-COM with 1=5S;1111, 2=Si2111,
3=S3111, 4=CM121, 5=M¢131, 6=S1112, 7=Sw2112, 8=5i3112, 9=CM;122, 10=M;132, 11=S5211,
12=5p011, 13=Sp11, 14=CDMr21, 15=M;231, 16=S5i212, 17=5p212, 18=S5i212, 19=CDM;209,
20=M;235. White colored cells indicate zero correlations, dark gray colored cells indicate per-
missible correlations. Light gray colored cells indicate correlations that may be fixed to zero for
parsimony.

Thus, ©g,, is given by:

Var(Egju) 0 0 000 0 0 0
0 Var(Enju) 0 000 0 0 0
0 0 Var(Enju) 0 0 0 0 0 0
0 0 0 000 0 0 0

Op, = 0 0 0 00 0 0 0 0 ;

0 0 0 000 0 0 0
0 0 0 00 0 Var(Enja) 0 0
0 0 0 000 0 Var(Enjsi) 0
0 0 0 000 0 0 Var(Eojs)

for whicht € T, i €I, je J, k€ K, and | € L only the element Var(Ey;x) > 0, and all other
elements necessarily fixed to zero. Ultimately, the total variance-covariance matrix of the observed

variables of size 36x36 is given by:
D =Ag®pAg + O + AwdwAY + Ow.
T

The variance-covariance matrices presented in this section were used in the simulation of the LS-
COM model in Chapter 7 except for one additional restriction. In the Monte Carlo simulation study
common latent state factors Sy;j1; were assumed. Specifically, it was assumed that the indicator-
specific latent state variables Sy;;1; pertaining to the same construct j, same method k and same
occasion of measurement [ are perfectly correlated and can be therefore represented by common
latent factors. Figure 2.4 shows a path diagram of an LS-COM model with common latent state

factors.
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2.6.3 Interpretation of non-zero covariances and correlations

The following correlations are permissible with respect to the definition of the LS-COM model.

Consequently, these correlations can be estimated and interpreted.

1. The correlations Cor(S;;1;, Sy;151;) between indicator-specific latent state variables of the
reference method belonging to the same construct j and the same occasion of measurement [,
but different indicator 7 and ¢’ can be interpreted as degree of homogeneity of the indicators of
the reference method (see Geiser, 2008). High positive correlations indicate that the construct
measured by these indicators is unidimensional and may be also represented by a common

latent state factor.

2. The correlations between latent state factors of the reference method belonging to the same
indicator 7 and the same occasion of measurement [/, but different constructs j and j’ can be
interpreted as discriminant validity with respect to the reference method (see Geiser, 2008).
Two different correlations can be distinguished: (A) The latent correlations Cor(Sy;;1;, Sy;5i11)
between state factors of the reference method belonging to the same indicator ¢ across different
constructs j and j’. High correlations indicate low discriminant validity of the constructs
on occasion of measurement [ with respect to the reference method. (B) The correlations
Cor(Syij11s Spirjryy) between latent state factors of the reference method belonging the same
occasion of measurement [, but different indicators ¢ and i’ as well as different constructs j
and j'. These correlations can be interpreted as discriminant validity coefficients with respect

to the reference method that are corrected for indicator-specific effects.

3. The correlations Cor(CMtﬂl,CMtj,m) between latent common method factors belonging
to the same occasion of measurement [, but different constructs j and j' indicate that the
common method effects measured on the same occasion of measurement [ generalize across
different constructs j and j’. Correlations close to zero indicate that the common method
effects are construct-specific. Substantial correlations result, for example, if the “true” peer
effects that are not with the self-report generalize over different constructs. A negative
correlation would be given, if peers underestimate the self-reported empathy of a particular
child on occasion of measurement [, but overestimate the self-reported aggressiveness on the

same occasion of measurement [.

4. The correlations Cor(C’Mtjzl, Mtj 1) between common method factors pertaining to the same
construct j and the same occasion of measurement [, but different non-reference method &
and kt reflect the partial correlations of two different non-reference methods corrected for the
self-report (see Geiser, 2008). For example, teachers (i.e., non-reference structurally different
method) as well as peers (i.e., non-reference interchangeable method) both have similar view

concerning the aggressiveness of the child that is not shared with the self-report of the child.

5. The correlations Cor(UM, o, UM, ;15;) between latent unique method factors belonging to

the same occasion of measurement [, but different constructs j and j’, can be interpreted
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in a similar way, namely as generalizability of the unique method effects across constructs
on the same occasion of measurement. Note that the unique method factor represents the
“true” peer rating, that are neither shared with other peers nor shared with the self-report
of the target. In other words, these correlations reflect whether or not “true” specific peer
effects (that are not shared with other peers) generalize across different constructs (e.g.,
aggressiveness and empathy). Correlations close to zero indicate that the unique method

effect is construct-specific.

6. The correlations Cor(S,;;1;, CM,;5;) and Cor(Sy;;q;, M, j5;) between method factors belong-
ing to the non-reference method and latent state variables pertaining to the reference method,
for the same occasion of measurement [, but for different constructs j and j’ can be inter-
preted as discriminant validity coefficient that is corrected for method influences of the ref-
erence method (see Geiser, 2008). In many empirical applications these coefficients will be

close to zero. It is therefore recommended to fix these correlations to zero for parsimony.

7. The correlations Cor(CM, o, M, ;1)) between method factors pertaining to the same occasion
of measurement [, but different constructs j and j' and different non reference methods k
and k' indicate discriminant validity between method factors corrected for the discriminant
validity with respect to the reference method. Significant correlations indicate that the
association between methods cannot be completely explained by the reference method. For
example, the over- or underestimation of students’ self-reported aggressiveness by peers is
associated with the over- or underestimation of students’ self-reported empathy by teachers.
Hence, peers and teachers share something in common that is not reflected by the self-report

of the students.

8. The correlations between latent state factors for the reference method belonging to the same
indicator ¢, the same construct 7, but different occasions of measurement ! and I’ can be
interpreted as construct stability coefficients (see Geiser, 2008). Two different types of corre-
lations can be distinguished: First, the correlations between the same latent indicator-specific
sate factors over time. (A) These correlations Cor(Sy;;1;, Sy;51,) can be interpreted as sta-
bility coefficients not corrected for indicator-specific effects. (B) Second, the correlations
COT(Stijlh St,iju,) between latent state factors belonging to the same construct j, but dif-
ferent indicators ¢ and i’ as well as different occasions of measurement ! and !’ represent

construct stability corrected for indicator-specific effects.

9. (A) The correlations Cor(Sy;;1;: Sy;5i1;,) between latent state factors belonging to the refer-
ence method of the same indicator ¢, but different constructs j and j’ and different occasion
of measurement [ and !’ can be interpreted as discriminant validity coefficients with respect to
the reference method that are corrected for common occasion-specific influences (see Geiser,
2008). (B) The correlations Cor(Sy;;1;, Syi;01y) between latent state factors belonging to the
reference method of different indicators 7 and #’, different constructs j and j’, and different
occasions of measurement [ and I’ can be interpreted as discriminant validity coefficients that

are corrected for indicator-specific and common occasion-specific influences.



CHAPTER 2. THE LATENT STATE (LS-COM) MODEL 49

10.

11.

12.

13.

14.

The correlations between method factors belonging to the same construct j, the same non
reference method k, but different occasions of measurement [ and I’ can be interpreted as
degree of stability of construct-specific method effects (see Geiser, 2008). For instance,
the teachers consistently over- or underestimate students’ empathy skills with respect to
self-reports over time. Given that there are three different method factor, there are also
three different correlations coefficients. (A) The correlations Cor(CM, o, C M, ;o)) reflect
the degree of stability of the construct-specific common method effects. (B) The correlations
Cor(UM, o, UM, 5,,) represent the stability of construct-specific unique-method effects. (C)
The correlations Cor(Mtjkl, Mtjkl,) capture the degree of stability of the construct-specific
method (e.g., teacher ratings) effects.

The correlations Cor(CM,;o;, CM,;o;), Cor(UM,jo;,UM,;op,), and Cor(M, 3, M) be-
tween method factors of pertaining to the same non-reference method k, but different con-
structs j and j’ and different occasions of measurement [ and [’ can be interpreted as gener-
alizability of method effects corrected for common occasion-specific effects (see Geiser, 2008).
For example, high correlations COT(MtjmaMtjkw) indicate that teacher consistently over-
or underestimate students’ self-reports over time, regardless which construct (e.g., aggres-
siveness or empathy) is considered. High correlations Cor(U Mo UMthZ,) indicate that
specific peers consistently deviate from the general view of all peers for a particular target

across different measurement occasions.

The correlations between method factors pertaining to level-2 non-reference methods and
latent state variables belonging to the reference method of the same construct j, but different
occasions of measurement [ and !’ are not easy to interpret. In most empirical applications
these correlations will not be significant. Nevertheless these correlations are permissible and
estimable. (A) Significant correlations of Cor(S,;;,;, CM, ) would indicate that the part
of “true” peer ratings that are shared with other peers, but not shared with students’ self-
reports at time [ can predict children’s self-reported empathy scores at time I’. (B) Significant
correlations of CO’"(Sn'juv Mtj2l') may indicate that the part of “true” teacher ratings that is
not shared with children’s self-reports at time [ can predict children’s self-reported empathy

scores at time [’.

The correlations Cor(S,;;1;, CM, ;o) and Cor(S,;;1;, M, ;o) between the method factors be-

i1
longing to the level-2 non-reference methods and the latent state variable belonging to the
reference method for different constructs j and j’ as well as for different occasions of mea-
surement [ and [’ are most likely to be close to zero in empirical applications. Significant
correlations would reflect coeflicients of discriminant validity corrected for common method

effects and common occasion-specific influences (see Geiser, 2008). In most application it is

recommended to fix these correlations to zero for parsimony.

The correlations Cor(C M, o), M, ;) between method factors pertaining to the same con-
struct, but different level-2 non-reference methods and different occasions of measurement [

and !’ indicate the partial correlations between two different non-reference method corrected
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for the reference method and common occasion-specific influences (see Geiser, 2008).

15. The correlations Cor(CM, o, M, .1,/) between method factors pertaining to different level-2
non-reference methods, different constructs j and j' and different occasion of measurement
[ and !’ indicate discriminant validity of methods effects corrected for construct-specific and

common occasion-specific influences (see Geiser, 2008).

2.7 General measurement equations and variance decompo-
sitions

In the following section the general measurement equations of LS-COM models are discussed.
Based on the definition of the LS-COM model different variance coefficients can be defined. These
coefficients can be meaningfully interpreted as shown in Theorem 2.3. Note that the independence
among latent variables derived in Theorem 2.4 are important prerequisites for separating different
variance components from one another. Hence, a LS-COM model that fulfills these requirements
is restated first. In a second step the general measurement equations of the LS-COM model are
derived. In a third step, the additive variance decomposition of the observed variables is introduced

and the different variance coefficients are discussed.

Definition 2.3
Let M = ((,%, P), Sy¢, S¢, UM, CMy, My, Er, Eg, oijii, Asijkl, AUMij21, ACMij2ls
AMijk1) be a LS-COM model according to the Definition 2.1 and Theorem 2.1 and:

St = (S11111 - - - Stijkt - - Seedes)
UM, = (UMii111 -+ UMygjor -+ - UMapang) ™,
CM; = (CMiq11 -+ CMyjor - CMypazg) T,
M; =
E: = (Bi111 - Euijir -+ - Boeaer) "
Q1111 ° Okl * abcdef)Tv
= (A1111 " ASijht - Aedef) s
Aum = (A1t Avamigar - Aeazyp) s

T
A111 - ACMigel - Aed2f) s

(
(
(
(
(

Ert = (Er11111 - - Ertijor -+ Babed2f)
(
(
(
(
Aem = (
(

AM = (A1111 0 Avigkt - Aedef)

Remarks. According to the Definition 2.3 a LS-COM model with common method factors (i.e.,
CM, o1, My UM,y o) is defined. All indicators Y5, belonging to the same construct, same
method, and same measurement occasion measure a latent state factor S;;;, and two construct-
and occasion specific method factors, namely C'M,;,, and UM, .o, Moreover, all indicators Yy,
belonging to the same construct, same method, and same measurement occasion measure a latent

state factor Sy, 1, and a construct- and occasion specific method factor, called M, ;;,. The complete



CHAPTER 2. THE LATENT STATE (LS-COM) MODEL 51

measurement equations for the observed variables are given by:

Yiiju = Stiju + Eriju, (2.98)
Yiijo = ®ijir + AgijriStijie + Aagij M + Etijris k>2 (299
Yoiijor = ijor + AsijoarStiju + AomijuCMijor + AvarijoUMygjor + Ergijor- (2.100)

2.7.1 Variance decomposition

According to the Equations 2.98 to 2.100, the variance of the observed variables can be addi-

tively decomposed as follows:

Var(Yy) =Var(Siiju) + Var(Eiju), (2.101)
Var(ytijkl) :)‘QSijklvar(Stijll) + )\?Mijklvar(Mtjkl> + VGT(Etijkz), k> 2, (2.102)

Va’“(ym'jzl) :)‘2Sij2lvar(stij1l) + AszijzzvaT(CMtjzl)"' (2.103)
A?]Milevar(UMrtjm) +Var(E, o)

Due to the additive variance decomposition, it is possible to define different variance compo-
nents. The true intraclass correlation (ICC), as well as the coefficients of true consistency, true
(common and unique) method specificity, and reliability can be defined. The true ICC reflects the
amount of true-score variance that is explained by true interindividual differences between targets.
The true ICC coefficients can also be interpreted as true rater-consistency on the target-level, given
that this coefficient reflects the amount true-score variance that is shared by the methods (e.g.,
raters) on the target-level. Note that this coefficient is corrected for measurement error influences
as well as specific (unique) rater influences. The true ICC is defined on the basis of the true-score

variables pertaining to the interchangeable methods, 7,,;.5/:

ICC(7,y,) = A%’ij?lvar(‘stijll) Jr)%‘MilevaT(CMtj%)
Tt V‘”"(Yrtipl) - V‘”"(Ertiﬂl)

The true consistency coefficient represents the amount of true-score variance that is explained by
the latent state variable of the reference method at time I. The square root of the consistency
coefficient can be interpreted in terms of true convergent validity with respect to the reference

method:

. A%ijklva""(stiju)

a Var(ytijkl) - Var(Etijkl)’
- )‘?gz‘jzlvar(stz‘ju)

B Var(Yrtij2l) - V‘”’(Em‘jm).

CON(Ttijkl)

k> 2,

CON(Trti]Ql)

Furthermore, different coefficients of true method specificity can be defined. Method specificity

coeflicients represent the proportion of true-score variance that is due to method specific influences.
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In total, three method specificity coefficients can be defined:

A2, Var(M,
MS(Ttijk.l) _ Mijkl ( tjkl) k> 27

a VW‘(Ytijkz) - VaT(Etijkl)’

_ )‘%‘Milevar(CMtjﬂ)
Var(y;"tijﬂ) - V‘”"(Em‘jzl) ,

/\%JMijQZVGT(UM )

UMS 3 _ rtj2l )
(Tmﬂl) Var(yrtiﬂl) - V‘W(Em'jzl)

CMS(Trtile)

The MS(Y,;;,) coefficient represents the proportion of true-score variance that is due to method
specific influences of the non-reference structurally different methods. For example, this coefficient
reflect the amount of true variance that is due to the true over- or underestimation of the employee’s
self-report (target) by the supervisor (structurally different rater). The CMS(Y,,; o) coefficient
represents the proportion of true-score variance that is due to method specific influences of the
common view of the interchangeable methods. This coefficient reflects the amount of true variance
that is due to the true over- or underestimation of the employee’s self-report (target) with respect to
the general view of the colleagues (interchangeable methods). In contrast to that, the UM S(Y, ;o)
coefficient represents the proportion of true variance that is due to method specific influences
of the unique view of a interchangeable method (e.g., a particular rater) that is neither shared
with the self-report (e.g., reference method) nor with other raters (e.g., the general view of the

colleagues). In addition, total method specificity with respect to the true-score variables 7,.,; ., of

tig2

the interchangeable methods can be calculated:

TMS(7,45521) = CMS(T,4501) + UMS(7,45501)
=1- CON(TrtijQZ)'

The reliability Rel(-) as well as unreliability Unrel(-) coefficients for the observed variables are

given by:
VC”’(Etiju)
Rel(ynju) =1- V‘W(Ytiju) =1- Unr@l(yn‘ju)»
Rel(Vyy ) =1 — L) oy V> 2
tig Var(}/tijk;l) tig ) ’
VC”’(Ertijzl)
Rel(Ym'jzl) =1- VC”"(Ym‘jzl =1- Unrel(y;tijﬂ)‘

2.8 Mean structure

With respect to longitudinal studies many researcher seek to investigate mean changes over
time. In this section, the latent variable mean structure of the LS-COM model is discussed.
The following theorem shows the consequence of the model definition for the observed and latent

variables.
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Theorem 2.5 (Mean structure)

If M = (0, %, P), Sresjo1, Stijit, UMypsjor, CMyjor, Myjrr, Evtijor, Etigrts Qtijhts ASijkts

AUMij21, ACMij2t, AMijki) 15 called a LS-COM model with CRI. Without loss of generality, k=1
method is chosen as reference method, then the following mean structure holds for allT € R =
{1,...5a}, t e T ={1,...;b},ieI={l,....,c¢}, je J={l,...,d}, ke K ={1,...,e},
leL={1,...,f}:

E(Y,ij21) = Eoyijor) + MtijaE(Stiju), (2.104)
E(Yyijr) = E(owije) + Mgt E(Stiju), Vk>2. (2.105)
E(Stiju) = E(Yiiju), (2.106)
E(CMijo) =0, (2.107)
E(UM;j21) = 0, (2.108)
E(Myijr1) = 0, vV k> 2, (2.109)
E(Etijri) = 0, Vk#2, (2.110)
E(Eriij) =0, (2.111)

where E(.) denotes expected value.

Proofs. 5 Mean structure

According to Equation 2.9, Yy, ., = Stiju + Evju. Thus, E(Yn—jll) = E(Stju) + E(Eiju). Given
that Ey;j1; are defined as residuals, it follows that E(Ey;j1;) = 0. Therefore, E(Y;ij”) = E(Suju)
(see Equation 2.106). Furthermore, the latent variables CMyjor, UMyijor, Myijri, Erijri, and Ergijo
are also defined as latent residuals variables. By definition, residuals have an expected value of zero
(Steyer, 1989; Steyer & Eid, 2001). Thus, Equations 2.107 to 2.111 follow directly by definition of
the latent variables. Next, according to Equation 2.10, Yy, = Qg+ Mgy Stijie + Anpijin My jr +
Erigri. Thus, BE(Yy51) = Eagn) + B Siiju) + EQppijraMigr) + E(Etiji). Given that,
ErijraMyjrn) and E(Euji) equals zero, the equation simplifies to Equation 2.105. Similarly,
Equation 2.11 is given by Y01 = Qijor + AsigorSriju T AonminCMyjor + AvarijmUM,gjo +
B i Hence, E(Y,y50) = E(;501) + BN g1 S1ij10) + EAonrijmnC My jo1) + By agijor UM,y o) +
E(ErtijZZ)' Again, E(/\CMijleMtjzz); E()‘Ujv[ij2lUMrtj2l)7 and E(Em'jzl) are zero according to
Equation 2.107, 2.108, and 2.111 and therefore the above equation simplifies to Equation 2.104.

O

Remarks. Equations 2.104 and 2.105 clarify that the expected value of an observed variable
is equal to the expected value of the corresponding state factor if and only if ay;;, = 0 and
Atijit = 1. According to Equation 2.106, the expected values of the reference state factors are
identical to the expected values of the indicators pertaining to the reference method. Equations
2.107 to 2.109 show very important implications of the model definition, namely that the method
factors (CM, o), UM, 0, and M, ;) are defined as residuals and therefore have expected values of
zero. The same holds for the measurement error variables (see Equation 2.110 and 2.111).

2.9 Identifiability

An important prerequisite for parameter estimation refers to the problem of model identifica-
tion. A model is said to be identified, if and only if each parameter of the model (e.g., means,
variances, and covariances of the latent variables) can be uniquely determined with respect to
the information in the data (e.g., means, variances, and covariances of the observed variables).
A parameter is uniquely determined, if there is one and only one mathematical solution for each

parameter in the model. In order to demonstrate the identification of a model, it is necessary to
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assign a scale to each latent factor (Bollen, 1989). A general rule in structural equation modeling
is to constrain the variance of the latent variable to a non-zero value or to fix one factor loading per
factor to 1 (Bollen, 1989; Bollen & Curran, 2006). With respect to longitudinal SEMs usually the
first factor loading per factor is fixed to 1, given that these restrictions still allow to investigate the
change or stability of factor variance over time (Geiser, 2008). The next theorem implies that each
parameter of the LS-COM model is identified, if at least 1 construct is measured by 2 methods
on 2 occasions of measurement, with 2 indicators per method and if the state as well as method

factors on the rater- and target-level are substantially correlated.

Theorem 2.6 (Identification of the LS-COM covariance structure)

Let M = ((, %, P),Sy¢,St, UMy, CMg, My, Evg, E, aitijit, Asijkl, AUMij21, ACMij21, AMijkl )
be a LS-COM model of (UM, ijo1,C Myijor, My jri )-congeneric variables with conditional regres-
stve independence, then the parameter of the matrices Ag, Ay, Py, Pw, OB, and Ow are
identified, if either one factor loading Asijri, Acmijar, Aumijor, Akt for each factor Siijui,
CM, o1, UM, 10, and My, or the variance of the factors are set to any real value larger than
0, and

(a) ifi=2,7>1,k>2,1>2 and g as well as By contain permissible intercorrelations
amonyg the latent variables (i.e., nonzero elements in the off-diagonal), otherwise

(b) ifi>3,j>1,k>21>2

Remarks. Assuming that the first factor loading parameters per latent factor (i.e., Asij11, Aarijkt,
Acmijar, and Ayarijor) are fixed to one and assuming that the latent method factors on level-1
and level-2 are substantially correlated with each other. Then each parameter of the model has a
unique mathematical solution for a 2 x 1 x 2 x 2 MTMM-MO design. It is worth noting that the
total covariance matrix 3 of the LS-COM model can be partitioned into a between covariance
matrix 3 and a within covariance matrix 3w (see Section 2.6.2). The between covariance matrix
Yp of any LS-COM model is a special case of the covariance matrix of a CS-C(M-1) model for
structurally different methods proposed by Geiser (2008) for the same dimension. The covariance
matrix ¥g of the LS-COM model is a special case, given that the residual variances of Y;.4;;2; are
set to zero on level-2. Therefore, the between covariance matrix g is a restrictive variant of the
the variance-covariance matrix of a CS-C(M-1) model for same number of indicators, constructs,
methods, and occasions. Hence, the identification of the model on the target-level is proven by
Geiser (2008). The within covariance matrix X is equivalent to the covariance matrix of a CFA-
model. Thus, the “Three-Measurement-Rule” and “Two-Measurement-Rule” apply (see Bollen,
1989). In other words, the model on the within (rater) level is identified for two indicator per
unique method factor if both factor are substantially correlated. If both factors are uncorrelated,
at least three indicator per unique method factor are required for model identification.

2.10 Measurement invariance

Whenever researchers wish to compare test scores of different occasions of measurement (or of
different groups), they have to ensure that the given measures assess the same constructs. That
relates to the question whether or not the psychometric properties of a measure have changed over
time or groups. In case of measurement non-invariance, it is not guaranteed that the differences in
test scores can be directly be interpreted as differences or change in the level of an attribute (Geiser,
2008; Meredith, 1993; Tisak & Tisak, 2000). Therefore, establishing measurement invariance (MI)

is an essential prerequisite for the analysis of test scores changes in longitudinal or in multigroup
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studies. According to Widaman and Reise (1997, see also Meredith, 1993; Meredith & Horn, 2001)

four different levels of measurement invariance can be distinguished:
1. factorial measurement invariance,
2. weak (or metric) measurement invariance,
3. strong measurement invariance, and
4. strict measurement invariance.

Factorial measurement invariance is the less restrictive form of MI and solely requires that the
number of factors as well as the factor pattern of the latent factor loading parameters are similar
across time points or groups. Weak factorial measurement invariance holds, if and only if the factor
loading parameters per latent factor (state or method factors) are time-invariant. In addition to
weak measurement invariance, strong measurement invariance requires that the intercepts of the
observed variables are the same over time. In addition to strong MI, strict MI is established if
and only if the residual variances of the observed variables are the same over time. The main
advantage of MTMM-SEMs is to directly test the degree of measurement invariance via x? fit
statistics. Note that it is also possible to impose further restrictions on the factor structure.
For example, researcher may impose additional constraints on the latent means, latent variances
and/or covariances structure of the latent variables. In the next chapter, a latent change version
of the LS-COM model is formally defined. With respect to this model latent difference variables
are introduced. One important prerequisite of this (latent change) model is strong measurement
invariance. In empirical applications, researchers should therefore test these restrictions before

specifying a latent change model.

Definition 2.4 (LS-COM model with CRI and strong MI)

M = (%, P), S, S¢, UMy, CMy, My, Eyi, B¢, atijit, Asijkl, AuMijzl, ACMij21, AMijkl) S
called a LS-COM model of (UM,i;21,C My;jo1,Myijki )-congeneric variables with conditional re-
gressive independence and with strong measurement invariance iff Definition 2.1, Theorem
2.1, Definition 2.2 hold and for each indicator i, construct j, method k and for each pair
(,I') € L x L', (I #1') there is a constant ay;;;, € R, a constant Ag; ;. € Ry, a constant
Acmije € Ry, a constant Ayarije € Ry, as well as a constant A1 € Ry, such that

Qtijk = Otijkl = Oltijkl’, (2.112)
ASijk = Asijkl = ASijkls (2.113)
AcMmije = AcMijal = AcMijar, (2.114)
AUMij2 = AUMij2i = A\UMij21 (2.115)
AMijk = AMijkl = AMijkl Vk>2. (2.116)
- J

Remarks. With respect to the Definition 2.4 LS-COM model with CRI and MI is established
by imposing restrictions on the level-2 intercepts as well as the factor loading parameters for
each factor pertaining to the same indicator, construct and method. In particular, the level-
2 intercepts ou;jr; pertaining to the same indicator, construct and method are set equal across
occasions of measurement. Furthermore, the latent factor loading parameters of the factors (S i,
Mk, CMyjo;, and UM,4j9;) pertaining to the same indicator, construct, method but different
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occasions of measurement are set equal. With respect to these restrictions, it is possible to define
time-invariant intercepts (oui;i) as well as time-invariant latent factor loading parameters (Agijk,

ACMij2, ANUMij2, AMijk)-
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Box 2.1 (General)
Probability space & projections

(Q, 9%, P)

pT - Q— QT
prs, : 8 = Qrg,
PR : QO — QR
PRs, : 8 = QRg,

Ytijll

rtij2l

tijkl

tijil

rtij2l

tijhl

Probability space

Mapping into a set of targets

Mapping into a set of target-specific situations
Mapping into a set of raters

Mapping into a set of rater-specific situations

Observed € measurement error variables

Observed variables pertaining to the reference (here:
structurally different, k = 1) method (e.g., the self-
ratings of the targets t of construct j on measurement
occasion | with indicator i ).

Observed variables pertaining to the mon-reference
(here: interchangeable, k = 2) method (e.g., the rat-
ings of the interchangeable raters r for particular tar-
gets t of construct j on measurement occasion | with
indicator i)

Observed variables pertaining to the mon-reference
(here: another structurally different, k # 1,2 )
method (e.g., the ratings of the boss for target t of
construct j on measurement occasion | with indica-
tor i)

Measurement error variables pertaining to indicator
i, construct j, reference method k = 1, and measure-
ment occasion [

Measurement error variables pertaining to indicator
i, construct j, non-reference method k = 2, and mea-
surement occasion [

Measurement error variables pertaining to indicator
i, construct j, non-reference method k # 1,2, and
measurement occasion |
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Box 2.2 (Latent State Model)
Latent variables of the LS-COM model

Stijll

rtij2l

Stile

Stijki

UM,

rtig2l

CMtile

M, in

target-specific latent state variables of the reference
(here: structurally different, k = 1) method of con-
struct j on measurement occasion l assessed by indi-
cator %

rater-target-specific latent state variables of the non-
reference (here: interchangeable, k = 2) method of
construct j on measurement occasion l assessed by
indicator i

target-specific latent state wvariables of the mnon-
reference (interchangeable, k = 2) method of con-
struct j on measurement occasion | assessed by indi-
cator i (i.e., latent group mean of the interchangeable
ratings for a particular target)

target-specific latent state variables of other mon-
reference (here: structurally different, k # 1,2)
methods of construct j on measurement occasion [
assessed by indicator i

rater-target-specific latent unique method variables of
the non-reference method k = 2 of construct j on
measurement occasion | assessed by indicator i (e.g.,
unique view of a particular rater which is neither
shared with the self-rating (here: reference method)
nor with the common view of all raters for indicator
i assessing construct j on measurement occasion l)
target-specific latent common method variables of the
non-reference method k = 2 of construct j on mea-
surement occasion | assessed by indicator i (e.g.,
common view of the raters which is not shared with
the self-rating of a particular target for indicator i
assessing construct j on measurement occasion )
target-specific latent method variables of other mon-
reference methods k # 1,2 of construct j on mea-
surement occasion | assessed by indicator i (e.g., the
unique view of the boss that is not shared with the
self-rating of the target for indicator i assessing con-
struct j on measurement occasion l)
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( 0
Box 2.3
Definition of the latent variables of the LS-COM
Stijll EE(Ytij1l|pTapTSz)a
Sytijor =E(Y,4i5011PT5 PTS, PRy PRS, )5
Skt =E(Viijua|pr, Prs, ) VEk>2,
Etijll =Xyi511 — E(Y;ijll|pT7pTSz)7
E,tijor =Yriijor — E(Ym‘jm |pT, PTS,s PR:PRS))>
Eyiini =Yg — E(Vygilpr, prs,), Vk>2,
Spijo =E [E(Ym'jzl |pT7pTSl7pRapRSl)|pTvaSL] )
UM, ;501 =E(Y,4350|PT, PT5,: PR, PRS,)—
E(E(Yrtijm lpT, PTS,> PR, PRS,)|IPT, PTS, )
CM,;501 =E [E(Y,4i521|P7, P18, PRy PRS,)|PT, PT5, | —
E(E [E(Yrtij2l|pT’pTSl7pR7pRSz>|pTapTSL] |E()/tijll‘pT7pTSz))7
M,ijm EE(Ytz‘jkl IpT, pTs,)—
E(E(Ytijkl |PTaPTSl)|E(Ytiju\PT,PTSZ))-
~ )




Chapter 3

Formal definition of the baseline
latent change (LC-COM) model

3.1 A gentle introduction

One of the key interests in psychology is to study interindividual differences in intraindividual
change. The main advantage of longitudinal MTMM-SEMs is that “true” (i.e., measurement error
free) change of constructs as well as method effects can be studied over time. In the following
chapter, two latent change models are defined according to the stochastic measurement theory
(Steyer, 1989; Steyer & Eid, 2001; Zimmermann, 1975). Latent change (LC) or latent difference
(LD) models (McArdle & Hamagami, 2001; Steyer, Eid, & Schwenkmezger, 1997; Steyer, Partchev,
& Shanahan, 2000) can be seen as an alternative parametrization of latent state (LS) models with
strong measurement invariance. With respect to latent change (difference) models it is possible to
explicitly model “true” interindividual differences in intraindividual change with regard to latent
difference variables (see Steyer et al., 1997, 2000). In addition, it is possible to relate latent
difference variables to manifest or latent background variables (e.g., age, gender, treatment groups
etc.) in order to explain interindividual differences in “true” change scores. The latent difference
(change) variables (denoted by Sgﬁl) are obtained by a simple tautological decomposition of the

latent state variables pertaining to occasions of measurement [, where [ > 1:
Stiji = Stiji1 + (Stiju — Stiji1) = Stiji1 + Sﬁﬁu Vi>1. (3.1)

According to Equation 3.1, “true” change is modeled with respect to the initial status on the first
measurement occasion [ = 1 (i.e., baseline). Specifically, the latent change variables (S;j1; —
Stiji1) = Sﬁﬁl represent the true intraindividual change of target ¢, measured by the reference
method k = 1, indicator i, construct j from measurement occasion ! = 1 (the initial status or
baseline) to measurement occasion [. Due to this tautological reformulation of the latent state
variables (see Equation 3.2), the model is called baseline latent change (baseline LC-COM) model.
The superscript (BC) of the latent difference variables indicate that change is modeled with respect
to the initial status (the baseline). In contrast to that, researchers may also investigate true change

between each pair of subsequent measurement occasions which can be easily done by the following

60
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parametrization:
Stiju = Srjra—1) + (Stiju — Stijia—1)) = Sujra-1) + SHja1 Vi>1. (3.2)

According to Equation 3.2, true change is not modeled with regard to the initial status, but rather
with regard to the preceding measurement occasion [i.e., (Stiji1 — Stij1—1))]. Hence, this model
is called neighbor latent change (neighbor LC-COM) model. The superscript (NC) indicates that
true change is studied with respect to the values of preceding (neighbor) latent state variables.
Again, neighbor latent change models do not impose any additional restrictions and represent
a simple restatement of latent state models with strong measurement invariance (Geiser, 2008).
Moreover, reformulating a baseline change model into a neighbor change model and vise versa is
straightforward and would even yield identical solutions for two occasions of measurement (see
Equations 3.1 and 3.2). For the sake of simplicity, this thesis covers only baseline LC-COM
change models. Precisely, two baseline LC-COM models are formally defined. With regard to the
first model the main focus is on analyzing “true” change with respect to the latent state variables
pertaining to the reference methods. This model will only differ slightly from the latent state model
(LS-COM) with strong measurement invariance. The second model (extended baseline LC-COM)
model enables researchers to study true change with respect to the reference as well as non-reference
methods. Put differently, the extended LC-COM model allows studying “true” change of constructs
as well as method effects. Moreover, it is possible to investigate “true” change of method bias on
different levels (change of common or unique method bias). This modeling approach is particular
beneficial with respect to intervention studies, given that “true” change of pure method effects (e.g.
“true” change with respect to the over- or underestimation of the reference method that is specific
to method influence of the non-reference methods) is studied and explained by manifest or latent
background variables. The tautological decomposition of the latent method variables follows in a

similar way as presented above:

UMrtile = UMrm'jm + (UMrtile — UMrtijgl) = UM'rtij21 + UM£52I7 Vi> 1,

CMy9 = CMyjoy + (CMy 50 — CMy; 1) = C M50, + CMJG,, Vi>1,
M, = M50 + My — Myp) = M1 + Mt]?j%l’ VE>2AVI>1.

In order to define latent change (LC) models strong measurement invariance is necessary (see
Proof 10 below). If strong measurement invariance does not hold, the meaning of the latent
difference variables is ambiguous and thus the variables should not be interpreted (Geiser, 2008).
Furthermore, with respect to strong measurement invariance latent state (LS) and latent change
(LC) models are algebraically equivalent. Figure 3 shows the extended baseline LC-COM model for
three indicators (i = 1,2,3), two constructs (j = 1,2), three methods (k = 1,2,3) and two occasions

of measurement (I = 1,2).
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Figure 3.1: Path diagram of the extended baseline LC-COM model with indicator-specific latent state and change factors .
An extended baseline LC-COM model with indicator-specific latent state and change factors incorporating for three indicators (i=1,2,3), two constructs (j=1,2), three
methods (k=1,2,3) and two occasions of measurement (I=1,2). All factor loadings as well as correlations between latent variables were omitted for clarity. Measurement
error variables E, r; and Ey;jp; are only depicted for the first indicator pertaining to method 1 and 2.
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3.2 Definition of the simple baseline LC-COM model

( 0

Definition 3.1 (Simple baseline LC-COM model)

The random variables {Yi11111s- -+ Yapeder) @74 {Yi11115- -+ Yieaes} 0n a probability space
(Q, A, P) are variables of a baseline LC-COM model if the conditions made in Definition 2./
hold.

(a) Foralliel, jeJ, ke K,l€ L, andV¥ | >1, let
Sﬁﬁz = (Stijll - Stijll)»

be also real-valued random variables on (Q, A, P) with finite first- and second-order mo-
ments.

(b) Then the measurement equations of any observed variable Y y4ji pertaining to the same
indicator i, construct j, and measurement occasion | (where ¥ | > 1), can be rewritten

as follows:
Yiiju =Sy + ngcu + Eyiju, Vi>1, (3.3)
Yiijrr =0tiji + AgijeSujn + )‘Sijkst]?jcll+ VES21>1 (3.4)
AmijeMyji + Erigri, ’ ’
Yitijor =0uijo + Agi59Stij11 + )\Sijzsgﬁl'f‘ Vis1 (3.5)
AcmijeCMyjor + AumijaUMpjor + Ergijors
. /

Remarks. According to the definition 3.1, it is clear that the latent baseline change (LC-COM)
model is an alternative parametrization of the LS-COM model with CRI and strong measurement
invariance. Consequently, the measurement equations of the observed variables in the LS-COM
model can be rewritten as stated in the equations of Condition (b). With regard to these equations,
it is assumed that any latent state variable Stijll of measurement occasion [, where [ > 1 can be
fully decomposed into a initial state S;;;;; and the difference of both states (S,;;;; — Sy;;11)- The
difference of both latent state variables is defined as a latent change variable representing true
interindividual differences in intraindividual change with respect to the reference method. Given
that the LC-COM model is algebraically equivalent to the LS-COM model, the psychometric
properties of the LC-COM model regarding existence, uniqueness, admissible transformation and
meaningfulness of the latent variables remain unaltered as shown for the LS-COM model with
CRI and strong MI. It is important to note that the occasion index ! has been dropped from
the intercepts and factor loadings to express that these parameters are time-invariant. Note that
the same correlations that are zero as a consequence of the LS-COM model definition have to be
also constrained in the LC-COM model. Furthermore, it is recommended to fix any correlations
between latent state variables S, and latent method variables UM, , ), CM,;9;, M, ;1 t0 zero. As
a direct consequence of these restrictions, all latent difference variables Sgﬁl are also uncorrelated

with all other latent method variables UM, o C’Mtjzl, M, in the LC-COM model.

3.3 Definition of the extended baseline LC-COM model

In the following section, an extended version of the LC-COM model is presented. With respect
to the extended LC-COM model it is possible to study “true” intraindividual change with regard
to trait and method effects. Moreover, it is possible to investigate the true change of common and
unique rater bias. These latent change method effects can be explained by other covariates (e.g.,

gender, age, treatment group).
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Definition 3.2 (Extended Baseline LC-COM model)
The random variables {Yi11111s- -+ Yapedes} @74 {Yi11115- -+ Yeaes} 0On a probability space

(Q, A, P) are variables of an extended baseline LC-COM model if the conditions in Definition
3.1 hold.

(a) Foralliel, jeJ, ke K,l€L andV 1> 1, let

Smu = (Syiju — Stij1) (3.6)
UM tz]Ql = (UMm'jzl - UMrtij21)» (3~7)
CM tij2l = (CMtile - CMtile)a (3.8)

Mtz]kl (Myijer — Mysjna)s (3.9)

be also real-valued random variables on (Q,%, P) with finite first- and second-order mo-
ments.

(b) Then the measurement equations of any observed variable Yi;j11, Yiijri, or Yoo pertain-
ing to the same indicator i and construct j and measurement occasion | (where l > 1),
can be rewritten as follows:

Yiiju =Sy + Sgﬁl + Eyju, Vi>1, (3.10)
tij tij Sijk*~tigll Zzé,k tigll Vk> 271 > 1’ (311)
AtijeMejin + Anrije Mg + Etijl,
BC
Yitijor =0uije + AgijoSeijin + AsijeStut
c

AcarijaC Mo + ACMWCM,J?M Vi>1. (3.12)

)\UMZJQU rtj2l + )\UMZJQU t]2l + Ert132l7
(¢) Definition of common latent common method difference variables. For each construct j,
measured by a non-reference method k (in this case, k = 2) on occasion of measurement
I, 1> 1 and for each pair (i,i') € I x I', (i # i') there is a constant Acpri50 € Ry,

such that

CMgggl - AC’Mii’jQCMt?’?Zl' (3'13)

(d) Definition of common latent method difference variables. For each construct j, mea-
sured by a non-reference method k (in this case k > 2) on occasion of measurement I,
1> 1 and for each pair (i,i') € IxI', (i # i') there is a constant Ay, € Ry, such that

Mn]kl )‘Mn jkMtz "5kl Vk>2. (314)

(e) Definition of common latent unique method difference variables. For each construct j,
measured by a non-reference method k (in this case k = 2) on occasion of measurement I,
I > 1 and for each pair (i,i') € IXI', (i # i') there is a constant A\i;pr;.050 € Ry, such that

UM rtij2l — )‘UMu ]2U tz ]2l (315)

Remarks. The above Definition 3.2 implies that the latent change version of the LC-COM
model is simply a reformulation of the latent state version of the LC-COM model (described in
Chapter 2). In addition to that, strong measurement invariance is a necessary condition for defining
and interpreting latent difference variables. According to Equations 3.6 to 3.9, latent difference
variables can be construed. For example, the latent state difference variables are construed by
this tautological expression: Siij1; = Stiji1 + (Stiju — Stiji1), where { > 1. Put differently, a
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later reference state variable is perfectly determined by the initial latent reference state and the
latent difference between the initial and the later reference state. In the same logic, the latent
difference method variables are defined. According to Equations 3.13 to 3.15, it is assumed that
latent difference method variables are perfectly correlated with each other. In other words, latent
difference method variables belonging to the same construct j, same method k, and same occasion
of measurement, but different indicators i and ¢’ only differ by a multiplicative constant (i.e.,
ACMiirj2, AUMiitj2, AMiirjk, where k > 2). Thus, these latent difference method variables are
positive linear functions of each other, respectively.

3.4 Existence

The conditions made in Definition 1 logically imply that the method variables, belonging to the
same construct 7, method k, and occasion of measurement [, where [ > 1, but different indicators @
and 4’ are linear functions of each other. The following theorem entails the existence of the latent

method factors CMt?QC;, Mg,gf;, and UngCQl.

Theorem 3.1 (Existence)

The random variables {Y1111115-- - Yapeaert and {Yi1111:-- 5 Yyeqes} are CMt]?ng, Mt?j%l’
UMgng-congeneric variables of a LC-COM model if the conditions a of Definition 3.1 hold

and for eachr e R, teT,ie€l,j€ J, ke K, € L, there are real-valued random variables
MBS, MBS, and UMES,, on a probability space (Q,%, P) and (Acprijor Mrijes Avarije)
€ R, such that:

CMES: = Aca2C MBS, Vi>1, (3.16)
M5 = MrijpMEg) ViEk>21>1, (3.17)
UMES = AuaszUMES, Vi>1. (3.18)

Proofs. 6 Ezistence.

3.16 For all ¢, j, k, I, assume that CM;?QCZ = Cng%l as well as Acppiio = Aonrinjo- Inserting
these parameters in Equation 3.13 of the above definition, yields Equation 3.16:

CME5 = AonijnCMEs (repeated).
Similarly, according to Equation 3.16, CMt’?QCZ can be expressed as

CMES CMEC

tig2l ti’ 521
CM§ = —= as well as CM[J§ = —I=.
/\C’Mij2 )‘CAM’jQ

; ; BC __ /\CMij2 BC — >‘CM¢']'2
If both Equations are set equal, it follows C M35 = mCMti’jQZ’ Let Aongiings = P
it i

than Equation 8.18 is obtained:
CM,EJ%Z = )\CMii,ﬂCMf’,%l (repeated).

The proofs for Equation 3.17 and 3.18 follow the same logic and therefore will be left to the
reader.

O

Remarks. The above theorem clarifies that the assumptions made in Definitions 3.13 to 3.15
are equivalent to assuming common latent difference variables CMgQC; , Mg,g’;, U Mg]%l. Again,
the term “common” refers to the fact that each latent method difference factor is assumed to be
common for all indicators, belonging to the same construct, same (non-reference) method, and
the same occasion of measurement. The proof of this theorem also shows that the latent method
difference variables OM,EJ%, Mt’fj%, U Mﬁggl are not uniquely defined. The uniqueness of the
latent method factors is discussed in the next Section 3.5.
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3.5 Uniqueness

The latent factors (CMt?QC; , Mﬁg, U ng%l) are not uniquely defined in the extended baseline

LC-COM model. If such models are defined with (CMPS ij(,’;l, UME

tiio00 rtif2 1)-congeneric variables,

all of these parameters are defined up to similarity transformations. That is to say that these
latent variables are only uniquely defined up to multiplications with a positive real number. In other
words, the latent change method variables are measured on a ratio scale. The next theorem concerns
the uniqueness and admissible transformations of parameters in the extended latent baseline LC-

COM models.

r ~
Theorem 3.2 (Uniqueness)
1. Admissible transformations
M = ((Q,%, P), Sy, St, SBC, UM,, UMEC, CM;, CMBC, M, MBS, E,, Eq, atiji.,
Asijk, AUMij2, ACMij2, AMijk; ) 45 @ baseline LC-COM model with:
Srt =(S111111 - - Srtajor - Sabchf)T7 (3.19)
St =(S11111 -+ Stijkt - Svedes) s (3.20)
S E(511112 Smkz Sbcdef) ) (3.21)
UM, =(UMa111 - - 'UMrtj2l 000 UMabde)Tv (3.22)
UME =(UM{1s UM - UMgaop)" (3.23)
CM; =(CMji117 -+ CMtjgl -+ CMypazs) T, (3.24)
CM?C E(CME?Q CM tjal 2o (O bd2f) ) (3.25)
M, =(Mi111 -+ - Myjg - - Mbdef) ; (3.26)
M? E(‘7\/-"1131?2 (Mt]kl (Mbdef) ) (3.27)
Ert =(F111111 - Ertijor -+ - Bavedzs) (3.28)
E¢ =(E1111 - Erijrt - Ebeaer) ™ (3.29)
Qtijk E(041111 cc Ol ot Oébcde)T, (3'30)
As =M1t Asijk - Aede) s (3.31)
Aum =M1 Avarije o Aeaz) s (3.32)
Aom =M1 Aoarijz Aeaz) (3.33)
A =(A111 - AMigh - Acde) - (3.34)
and if forallr e R, teT,iel,jeJ ke K, € L:
UM,5% = BumpUMES,, (3.35)
CMthl = 5CMj2CMtj217 (3.36)
MBS = BrsuMES, Vk>2, (3.37)
>‘UMij2 = Ay mije/Bumjz, (3.38)
XCMijZ = Aomije/Bomjz, (3.39)
A;\hjk = Apriji/ Bk VEk>2, (3.40)
(3.41)
where Bonge, Bunjz, and Barjr € R, as well as Bowje, Bunje, and Barjr > 0, then
M’ = (9,9, P), Sy, St, SEC, UM, UM BC, CM,,, CMBC, My, M{BC, E,, Eq, i,
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. N
)‘Sijk’)‘/UMij27/\,CMij27>‘;\/Iijk7> is a baseline LC-COM change model, too, with:
Srt =(S111111 *** Srtijor - - - Sabeazs) s (3.42)
St =(S11111 - Stijt - - - Svedes) (3.43)
S? E(511112 Stzgkl Sbcdef) ) (3.44)
UM, =(UMii111 -+ UMyjor - - UMapazs) ™, (3.45)
UMr]?C E(UMﬁ?nz UMTt]Zl UMabd2f) ) (3.46)
CM; =(CMjq11 - CMyjor - - CMyanys) ", (3.47)
CM;BC E(CMES CMtj2l : CMbd2f) ) (3.48)
M =(Myq11 - Mijgr - Mpaer) ™, (3.49)
MPC =(Mi75 - M7 - M), (3.50)
Evt =(Br11111 - Breijor - Babedzs) s (3.51)
E¢ =(Eii11 - Beigki -+ Bveder) ™, (3.52)
ije =(Q1111 * Qigh - Qbede) s (3.53)
As =(A111 ">\Sz’jk"'>\cde)Ta (3.54)
um =(Ni1g UMijQ T )‘/cd2)T7 (3.55)
oM =M\ ::‘Mij2"' chz)Ta (3.56)
A =(Ajgg - Mijk"'/\cde)T' (3.57)
2. Uniqueness
If both M = ((Q,%, P), Sy, S¢, SBEC, UM,, UMBC CM,, CMBC, M, MBC E,
E¢, ttijk, Asijks A\UMij2; AcMij2, AMijk, ) and M’ = (%, P), Sy, St, SEC, UM,
UM,2C, CM,, CMBC, M, MBC, Ey¢, Ee, asjic, Asiiie; Aunmiges Aomijes Mgl ) 07
baseline LC-COM change models, then there are for eachi € I, j € J, k€ K, € L,
Bemje, Bumje, and Barjr € RT such that Equations 3.35 to 8.57 hold.
L J

Proofs. 7 Uniqueness & admissible transformations

IfFUMBC, CM

1. Admissible transformations

rtij2l’ t132l7 rt]2l7

)\CMWQ, )‘Muk by the corresponding )\UMWQ, )\CMUQ, )\M”k, then:

UM tz]21 - )\UMZJQU t]2l - )‘UJL1172UZ\/rt72l

1
= <5Usz) Avumijz - BumjeUM, t_}2l

- /\UM132U

f]2[7
! 'BC _ BC
CM tij2l — /\CMijQCMthZ = /\CMijzc]V[tjzl
1
_ BC
= < )‘CMijQ 'BCMﬂCMthl
501\13‘2
- )\CMUQC lea

BC
Mtljkl /\MZJkMtjkl - )‘szijkl

1
= (51\4) )\Mijk ‘5Mjk:Mgig
Jk

= )‘]\/IiJkMtgkl

and MP ti) ¢, are replaced by UM, ‘B¢ C’MtJBQlC, Mtﬁclc as well as Ayppii0s
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In a simil fUMBS,, CMES, MP laced by LMot OMAT g ML
n a similar way, if UM%, il jkl are replaced by w2, odE

Bnjk as

’
well as Auarij2, Aomije: Aije by BuniaNyarije: BomiaAonrijar BrixAasijns then:

UM tz]2l - /\UMUQU t]2l

'BC
UMrt]2l

= rBUMj2)‘UMij2 )
Bunjo

BC
- )\UMZJZU t]2l7

BC _ BC
CM,i5 = AenrijaC Mo

BC
B N CMWQI
- 5CMJ'2 CMij2" 3
6CM]2

- ’ /BC
= /\CMijQCMtj2l )

BC
Mtljkl /\MZJkMtjkl
’

M
- /gMJk/\Mz]k L
Bk

- /\Mz]kMt]kl

2. Uniqueness

If both M = {(Q,¥, P), Sy, St, SEC, UM,, UMEC CM,, CME€, MhMt , Evt, E,
aﬁjbAsUk,AUMUZ,ACMUZ,AMUk,> and M’ = {(.%, P). Sre, Sy, SPC, UM, UMEC,
CM,, CM,BC, M,, MBC Ert,Et,amk,Asuk,AUMUz,ACMuz,A;\AUk,> are baseline
LC-COM change models, then )\UMUQUM i = )\UMz]2UM7"tJZZ Consequently, for all j €
J, ke K, andl € L:

)\UI\/IZ_]Q

UM thl UM t]2l

AUM1J2

Guen that the ratio of Ay ;0 and )‘/UJVIij2 has to be the same real value for eachi c I j € J,
ke K, andl € L, a real constant can be defined for eachi €1 je€ J, ke K, andl € L:

AUM'L]Q

Bumijz = v
UMij2

Again, assume that both M and M’ are LC-COM models, then
)‘CMz'jszgg = )\Cj?]\%ﬂCMtﬂl . Consequently, forallj € J, k€ K, andl € L:

A
'BC CMij2
CM, 5 = IV CM]QZ
CMij2

Guwen that the ratio of Mgy and )‘/C‘Mij2 have to be the same real value for each i € I
jedJ, ke K, andl € L, a real constant can be defined for eachi € I j € J, k € K, and
lelL:

>\C‘sz2

Bemje = v
CMij2

Again, if both M and M’ are LC-COM models, then MrigeM ]jgkl —)\M”kMtﬁclc Conse-
quently, for allj € J, k€ K, andl € L:

A

Mijk 2 rBC
Mt]kl - )\ Mtjkl'

Mijk
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Guven that the ratio of Ay, and XMijk have to be the same real value for eachi € I j € J,
ke K, andl € L, a real constant can be defined for eachi €1 j€ J, k€ K, andl € L:

AMijk

Bumijk = =
AMijk

O

Remarks. The above theorem implies that the latent method factors U ngczl, C’Mﬁgg , and Mg,g
as well as their corresponding factor loadings Ay ys;i2, Acarije, and Ay, are uniquely defined up
to similarity transformations, that is, up to a multiplication with a positive real number. Hence,
the latent method factors as well as their corresponding factor loadings are measured at the ratio
level.

3.6 Meaningfulness

In the following section, meaningful statements regarding parameters of the LC-COM model
are addressed. The next theorem lists a selection of meaningful statements regarding the latent

method factors and their corresponding factor loadings.

Theorem 3.3 (Meaningfulness)

If both M = ((Q, %, P), Spt, St, SEC, UM,, UMEC CM,, CMBC M;, MEC E,, E,

Qtijie, Asijio AUMij2> ACMij2, Mgk, ) and M = (0,9, P), S, St, SBC, UM, ¢, UM,BC,
CMg, CM,;BC7 My;, MtBC, E.¢, E¢, atijk, Asijk, )\UMij27 )\CMij27 )\Mijk7> are baseline LC-COM
change models, then for wi, wo € Q; r,r' € R, t,t' € T, 1,7’ €I, 5,7/ € J, k,k' € K, and
I,I' € L:

Aumijz  Auije (3.58)

)

’
AUMitj2 >‘UMz"j2

AcMij2 _ AcMij2 (3.59)
AcMij2 XCMZ"]’Q ’
AMijk _ )‘Mijk (3.60)
AMijk  Apgick ’

)‘UMij2 . )‘UMij/Q . >‘UMij2 _ )‘UMij’2 (3.61)

’ ’
/\UMi/jQ /\UMi’j/Q )‘UMi’j2 )‘UMi’j’2

>‘C’Mij2 . )‘CMij'Q . )‘CMijQ _ )‘CMij’Q (3.62)

)

- ’ ’
)‘CMi’j2 ACMi’j’2 )‘CMi’jZ )‘CMi’j’2
’ ’

A . )\ R0 )\ .. )\ N
wijk _ Awtigee _ Awigke Auigre (3.63)

- ’ / Y
)\Mi’jk: /\Mi’j’k:’ )\Mi’jk /\Mi’j’k:’

/

UMES, (w1)  UM,ES) (w1)

UMEG, (wn) ~ UMLEG )’ S
for UngCQl (ws) and UM;Z-% (we) #£0,
OMEG @) _ CMES (o) o
CMJG (w2)  OM3F (wa)’
for CMt‘?’QCl (w2) and CM;jBQlC (we2) #0,
MBS (1) _ MES (wn) .

Mt?’,g (wa) Mtﬁlc (wa)’
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s 0
for Mg,g (wa) and Mtlﬁczc (we) # 0,
UMTthl (Wl) . UMgth"Ql’ (wl) UMth%( 1) UM 5§2l’( 1) (3 67)
UMEG, (wo)  UMBGyy (wo)  UMBES (w2)  UMEG,, (wo)’
for UMZS, rtj2l (w2), UMﬁg'zl' (w2), UM, thl( 2); UMr’tj’Ql’ (w2) #0,
CMi5 (wi1)  CMJGy (wi) _ OM 5 (w1) B CM,BG, (w1) (3.68)
C’Mgzcl( 2) Cij%l, (w2) C’Mt’f;lc (we) CM;,?,CQ'I, (w2)’
fO'I" CMt?g (wz), CMt’j'Ql/ ((UQ), CMt/jBQ? (Wz), CMt/j’ZZ/ (Wz) # 0,
Mt’?ﬁ (w1) . Mt%gk’l' (w1) _ Mt]kzc (w1) . M;/}?/(i;fl/ (w1) (3.69)
Mﬁﬁ (w2) Mt%gk/l/ (w2) Mtﬁ? (w2) Mt’/?/(i;fl/ (w2)’
for MEG (w2), MBS, (wa), MAS (w2), MBS, (w2) #0,
>‘UM1j2va’r(U rtj?l) )‘UMZJ2V0“T(U rtj?l) (370)
)‘QC’Mij2vaT(CMj2l) = AICQMij2var(CM£j32?)v (3.71)
)\M’ijvar( t?lcc;) = /\MZkaar( t]B;ch) (372)
Corr(UMES,,UMES,,) = Corr(UM,ES, UM,E5,.), (3.73)
COTT(C thl’ CMB/QZ/) = COTT(C t]21 ,CM /2l/) (374)
COT‘T(Mt]kl’ MB/k/l/) COTT(Mt]kl ,M 'k:’l’) (375)
where Var(.) denotes variance and Corr(.) denotes correlation.
_ J

Proofs. 8 Meaningfulness.
The proofs for Equations 3.58, 3.64, 3.67, 3.70, and 3.73 are provided for illustration purposes.
The remaining statements follow straightforward.

3.58 Replacing XUMU-Q, XUMMQ in Equation 3.58 by (’\UM”2> and (AUM"/” ), respectively, verifies

Bumj2 Bumij2

the equality

)\’ AUMij2
UMij2  Pumzz /\UMijQ

! - A . .
Aunmige  SUMiz Aumige
Bumij2

3.64 Replacing UM 7t]2l by Bumj2U My jo verifies the equality

UM (w1)  BumpUMES (wl)  UMES, (w)
UMES (w2)  BumjpUMES (w2) — UMES, (w2)

rtj2l

3.67 Again, replacing UMthzl by /BUMJQUMT.tJQZ and UMm,Ql, by Buaj2UMES o verifies the
equality
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UMgngl( 1) UME%/QW (Wl) UM, B¢, (w1) UM’I/‘E.]'C;QV (w1)

rtj21

UMES, ()~ UMEG, (wa) — UMEG (w ) - UMEGy (@)
ﬂUMJQU tjzz (w1) B 5UMj’2UM55'2V (w1)
 BumpUMES, (W) BumjUMES,,, (w2)
UM, rigo1 (W1) UMﬁg'zl' (w1)
C UM t]2l( 2) UMﬁgle' (wa)

'BC

3.70 Replacing N ppi50 by /\/L?Miﬂﬁ?]Mﬂ as well as Var(UMES,) by Var <UMT“”) verifies the

Bumj2

equality

) UM,PS,
)\UMijQVW(UM t]2l) = )‘UMzJQBUMJQ Var -
Bunrj2

/2 2
= )\UMijzﬂUsz ﬂ —5—Var (UM t]2l)
UMj2

_ 2
= /\UMij2var (UMrt]2l>
UM BSC UM BS

3.78 Replacing UM tj2l and UMrtj’2l' in Equation 3.73 by o rti2l g —rti2l

Mj2 /3UMJ/2

U UM B/ ’
Corr(UM S5, UMS ) = Corr ( ’tﬂl rtj’2l )

Bumijz = Bumjre

:OOTT(U rf]2laU rtj’2l’)

]

Remarks. With respect to the factor loadingb AUMij2, AcMij2, AMijk, as well as their correspond-
ing latent method factors U ng%l, CM, Ttﬂl, and M Bkl statements regarding the absolute values
of the parameters are not meaningful as already explamed in the previous chapter. Nevertheless,
statements regarding the ratio of specific values of the factor loadings or the associated latent
method factors are meaningful. Hence, it is meaningful to say that the unique method change
factor for target A is x-times larger or smaller than the unique method change factor for target B
(see also Geiser, 2008). Similarly, statements regarding variance components of the latent factors
as well as latent correlations among the latent method change factors also meaningful.

3.7 Testability

In this section the covariance structure of the baseline LC-COM change models is addressed.
First, zero covariances are discussed. In empirical applications, it is important to restrict these
covariances to zero. Second, admissible (freely estimated) covariances and their interpretations are

regarded.

3.7.1 Zero covariances based on the model definition

The definition of the observed and latent variables has consequences for the covariance structure
of the observed and latent variables. The next theorem summarizes the covariances which are zero

by definition of the LC-COM model with conditional regressive independence.
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Theorem 3.4 (Testability consequences of model deﬁnition)

If./\/l = <(Q,§)I,P),Srt,st,s UMrtyUMrt ,CMt,CM Mt,M?C,Ert,Et,OztiJk,
Asijk, AUMij2, ACMij2, AMijk, ) @8 called an extended baseline LC-COM change model according
to Definition 3.2. Then forr € R, t€ T, i,i' €1, 5,5 € J, k,k' € K, [,l' € L where i can be
equal to i, j to j', k to k', and l tol’, and | > 1, but (ijkl), (ij21) # (ijkl)’:

Cov(St5a, Bearjorr) = 0, (3.76)

Cov(SHi5jor Brarrwr) = 0, (3.77)

Cov(SES ikts Brtijar) = 0, (3.78)

Cov(S5 5ot Ertirrar) = 0, (3.79)

Cov(UMS 5, Brirgiir) = 0, (3.80)

Cov(CMs;, Birrwnr) = 0, (3.81)

Cov( tjkuEtz/yk/L/) =0, (3.82)

Cov(UM %, Ervirjrar) =0, (3.83)

COU(CMtJQly rtirjrar) = 0, (3.84)

Cov(M[, Ervirrar) = 0, (3.85)

COU(Smﬂla UM ) = 0, (3.86)

Cov(CM5 t521 Ungzz/) =0, (3.87)

Cov(M{i, UM/55) = 0. (3.88)

Moreover, all zero-correlations stated in Theorem 2.4 hold as well.
~ J

Remarks. In addition to the zero covariances stated in Theorem 3.4, it is strongly recommended
to fix the following covariances between latent state different variables Sﬁﬁl and latent method

difference variables (C’Mﬁgl,, Mtj?,ckl,) belonging to different constructs j # ;' as well as different
occasions of measurement [ # I’, where [,1' > 1 to zero:

COU(Sme CMB’QZ/) 0,
COU(Stzjll7 ’kl’) 0.
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Proofs. 9 Testability

3.76 The covariance C’ov(Sﬁﬁcl, Eyirjigr) can be expressed as follows

Cov(St5, Brirjorr) = Covl(Syijr — Spijin)s Brirgrur]

Vi>1.
= COU(Stijkla Eti’j’k’l’) - COU<Stijk1> Eti’j'k’l’),

Given that Cov(Stijkl, Eirjigr) as well as COU(Stijkp Eyirjigr) are zero as a consequence of
the model definition, the covariance Cov(Sﬁﬁl, Eyirjrir) must be zero as well.

3.77-3.79 The proofs for Equations 3.77 to 3.79 follow straightforward and will be left to the reader.

3.80 The covariance C’ov(Ung%l, Eyirjiir) is equivalent to

CO'U(UMgJ'C?l’ Etirjrir) = COU[(UMrthZ — UM, 4j01), Eyirjrir]

vVi>1
= COU(UMrtj2l7 Eyirjow) — COU(UMrthD Eyirjrgn),

Given that Cov(UMTtﬂl,Eti/j/k/p) as well as Cov(UMTtﬂl,En-/j/k/l/) are zero as a conse-

quence of the model definition, the covariance COU(UngCQl,Etifj/k/l/) must be zero as well.
Hence, Equation 3.80 holds, too.

3.81-3.85 The proofs for Equations 3.81 and 3.85 follow straightforward and will be left to the reader.

3.86 The covariance Cov(Sgﬁl, UMEJ%I/) equals zero, given that

C’ov(Sgﬁl, UMB'C'21') :COU[(Stijll - Stijll)? (UM,

rtj ol UMrtj’21)]

rt]

:COU(Stijlh UMthIQZ/) - COU(Stijll’ UM '/21) V l # l/ /\V ll > ].

rtg
- COU(Stijlla UM, o) + OO”(Stiﬂp UMrtj’21)a

rtj

It has been already shown that Cov(S,; 1, UM, ir91), Cov(Sy;iq1 UM,y 191), Cov(Syiin1, UM,y i0a1),

as well as Cov(Sy;;11,UM,.j151) are zero by definition. Therefore Equation 3.86 holds.

O

3.7.2 Covariance structure: LC-COM model with CRI

In this section the covariance structure of an extended LC-COM model for three indicators x
two traits x three methods x two occasions of measurement is presented. This model is algebraic
equivalent to a LS-COM model with conditional regressive independence (CRI) and strong mea-
surement invariance (MI) presented in Chapter 2. Therefore, the total covariance matrices > . of
the observed variables of both models (LS-COM and LC-COM model) are identical. Nevertheless
the reformulation of a LS-COM model into a LC-COM model may be reasonable for answering
particular substantive research questions concerning true intraindividual change. Again, the total

covariance matrix ) . is partitioned into a within )y, and a between ) 5 matrix:
2. =2t
T W B
The within matrix of size 36 x36 is given by:
Y = AwWERAY + Ow
w

Ay refers to the matrix of the time-invariant factor loadings pertaining to the unique method

(change) factors. The elements of this matrix are denoted by Ay asij2, where i=indicator, j=construct,
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k=2 (i.e., interchangeable method). Note that the index [ for the measurement occasion has been
dropped, given that these parameters are assumed to be time-invariant. A, refers to the trans-
posed within factor loading matrix. ®BC refers to the within variance and covariance matrix of
the unique method (baseline change) variables, and @ is the diagonal residual covariance matrix,
which is identical to the within residual covariance matrix of the LS-COM model with CRI and

strong MI. The between matrix ) g of size 36 x 36 is given by:
> =Ag®E°AL + 065
B

Ap refers to the matrix of the time-invariant between-level factor loadings. The elements of this
matrix are Aggijr, Aomtije, AMtijk- AE refers to the transposed vector. (I,gc refers to the between
variance and covariance matrix of the between latent (baseline change) variables. ®g refers to
the diagonal between residual covariance matrix and is again identical to the between residual
covariance matrix of the LS-COM model with CRI and strong MI.

In order to define the factor loading matrices Ay, and Ag properly, the function Pos((F,1))
is needed. This function is clearly defined in Section 2.6.2. However, in contrast to the LS-COM

model, the matrices I,, where p € N = {1, ..., 4} are defined as follows:

10 0 100 00 0 00 0

100 01 0 00 0 00 0
I = I = I3 = I, =

00 0 00 0 01 0 00 0

00 0 00 0 01 0 00 1

The matrix Ayy of size 36 x 20 can now be written as the sum over the Kronecker products of I,

and Aw,:
4
Aw => I, ®Aw,.
p=1

Aw, of size 9 x 5 contains the time invariant within-level factor loadings and is given by:

0

0

0
AUMLj2
Aw, = AUM2j2
Aunmsj2

0

0

0

o ©O O o o o o o o
o o o o o o o o o
o O O o o o o o o
o O O o o o o o o

The elements Ayarij2, Avmzje, Aumsje are greater than 0 and denote the latent factor loadings
of the within latent factors U M.k, respectively U ngc;l. The remaining elements of this matrix

are necessarily zero. The within variance and covariance matrix ®5€ of size 20x 20 is structurally
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

RN | O O N

Figure 3.2: Within variance-covariance matrix ¢I>$VC of the LC-COM with 1=S;1111, 2=5¢2111,
3=Siz111, 4=UM, 21, 5=Musz1, 6=5S/i715, 7=5512, 8=, 9=UM/i555, 10=MJ5;, 11=Sio11,
12=Si211, 13=Si011, 14=UM, 4221, 15=Mya31, 16=SES 5, 17=555,, 18=S2S,, 19=UMES,,,
20=M5$,. White colored cells indicate zero correlations, gray colored cells indicate permissible
correlations.

equivalent to the latent covariance matrix of the LS-COM model and is given by:
$BC _E [(Vq,vsvc ~E[Vgnc])(Vane - E[Vq,‘l?vc])’r} .

E(-) is the expected value and V(I)‘E)!VC refers to the vector of size 20x1 including all latent factors,

except for the common method (difference) factor (C My, CMg,g), namely

T
BC oBC oBC BC BC
St1111, St2111, Sea111, UMy121, Mia31, SiiTi2, Siat12: Siat12, UM 120, M55,

Bc f—
Vo

W BC oBC  oBC BC BC
St1211, St2211, Se3211, UMyri201, Mi231, Sii519, Siagi2, Siazia, UM 50, M35

Given that V§§Vc refers to the vector of the within (rater-specific) latent variables, any UM, o or
Ung%l is uncorrelated with any other variables on the target-level (i. e., Syji1r, Sg,?,u,, Myjrar,
Mggl,7 CMyjiar, CMt?gl,). Therefore, Vq;.‘Eist contains only the latent variance and covariances
of the unique method (change) factors. The structure of the covariance matrix ) 5 is illustrated
in Figure 3.2. Given that the LC-COM model is just a reparametrization of the LS-COM model,

both covariance matrices of the models are identical.

The matrix of the between factor loading Ap of size 36x20 is given by:

4
Ag =) I,®Agp,.

p=1
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Ag,, refers to the between factor loadings matrix of size 9x5:

Asii 00 0 0
0 Aspi O 0 0
0 0 Jdssn 0 0
Asijz 0 0 Aowmije 0
Agyx3 = 0 As2zjz2 0 Aowmzje 0
0 0 Aszjz Aowmsje 0
D 0 Aars
0 As2i3 0 0 AM2;3
0 0 Assjs 0 AM3;3

Again, note that the factor loading matrices Aw_, and Ap, are structurally equivalent to the
matrices presented in Section 2.6.2. The only differences between the LS-COM and LC-COM
model is that different contrast matrices I, are defined. The between variance and covariance
matrix ®E€ of size 20x20 is also equivalent with the covariance matrix ®g of the LS-COM
model, namely:

BC_E [(vq,gc — E[Vgpc])(Vape — E[Vgse])T|.

E(-) is the expected value and V@EC refers to the vector of size 20x1 including all latent factors

on the target-level, namely:

T
BC oBC  oBC BC 17BC
Sti111, Sea111, S3111, CMiaor, Mz, Siitias Siat12, Si3ni2, CMitan, Miiss,

BC =
Va

B BC @BC  oBC BC 1/BC
St1211, Se2211, Sea211, CMy221, Miasi, Sii512, Sia512, Siaz12, C M35, Mi535

As stated above, all covariances between latent state variables S;;q; (respectively Sgﬁ) and any
latent method factor CMyjo; (respectively CMJS) or Myjs; (respectively M[$) pertaining to
the same construct j and same occasion of measurement [ necessarily equal zero. In Figure 3.3
the between covariance matrix ®BC of the extended LC-COM model is given for the sake of

completeness.
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9 10 11 12 13 14 15 16 17 18 19 20

Figure 3.3: Between variance-covariance matrix ,I,gc of the LC-COM with 1=S;1111, 2=S¢2111,
3=Si111, 4=CMp21, 5=Muz1, 6=Si%12, 7=55%2, 8=5f012, 9=CM{S,, 10=M{S,, 11=Si211,
12=Si211, 13=Sio11, 14=CM;291, 15=Mie31, 16=S58$,, 17=S5%,, 18=S5%,, 19=CMES,,
20=M}%S,. White colored cells indicate zero correlations, dark gray colored cells indicate per-
missible correlations. Light gray colored cells indicate correlations that may be fixed to zero for
parsimony.
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The complexity of variance-covariance matrices of the extended LC-COM model with indicator-
specific latent factors can be reduced by assuming common latent factors for the reference state/change
variables as well as for the latent method variables. A path diagram of an extended baseline LC-

COM model with common latent state and change factors is depicted in Figure 3.7.2.



Level 2

__________________________ a E E I'“““‘““"“""“““:
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. Level 1 1 Level 1 .
1 : Y Y : 1
| | | |

1 1 1
o1 : A A | |
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1 1 1 1
| Ert112} Ert1221 ]
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1 1 1 1
1 1 1 1
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1 1
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Figure 3.4: Path diagram of the extended LC-COM model with common latent state and change factors.
An extended LC-COM model with common latent state and change factors incorporating three indicators (i=1,2,3), two constructs (j=1,2), three methods (k=1,2,3)
and two occasions of measurement ([=1,2). All correlations between latent variables were omitted for clarity. Measurement error variables E,;jx; and Eyj;p; are only
depicted for the first indicator pertaining to method 1 and 2.
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3.7.3 Interpretation of non-zero covariances and correlations

The following correlations are permissible with respect to the definition of the LC-COM model.

Consequently, these correlations can be estimated and interpreted.

1. The correlations Cor(Sy;;11, Sgﬁl) between the initial reference state factors (T1) and the
latent change variables pertaining to the same indicator 4, and the same construct j, reflect
the associations between the initial status and change of the targets (see Geiser, 2008). High
positive correlations indicate that targets with high latent state scores (e.g., high teaching
motivation at T1) tend to also have higher latent change scores from measurement occasion

[ to I’ compared to those targets with lower latent state scores at T1.

2. The correlations Cor(Sy;;11, Sﬁﬁll) between the initial reference state factors (T1) and the
latent change variables pertaining to different construct j and j' can in some cases be inter-
preted as predictive validity (see Geiser, 2008). For example, teachers with higher teaching
motivation at T1 might benefit more from an intervention than teachers with lower teaching
motivation at T1. Therefore, the high initial status on teaching motivation might also predict

greater increase in teaching quality from time 1 to [.

3. The correlations Cor(Sgﬁl, Sﬁﬁl,) between latent change variables pertaining to the same
constructs j reflect the relationship between difference scores pertaining to different time
points (see Geiser, 2008). For instance, researcher might be interested in whether or not
the teaching quality increases or decreases persistently after two or more interventions. High
positive correlations indicate that individuals with higher state change scores between differ-
ent time points (1 and [) tend to also have higher latent state change scores between time

points (1 and I').

4. The correlations C’or(Sﬁﬁl, ngqu/) between latent change scores pertaining to different con-
structs j and j' indicate that true change with regard to construct j (e.g., teaching ability) is
associated with true change with regard to another construct j' (e.g., teaching quality). Posi-
tive correlations indicate that individuals with higher change scores with respect to construct
j also tend to have higher change scores with respect to construct j/. These correlations can
also be interpreted as discriminant validity of change (see Geiser, 2008). Low correlations

mirror high discriminant validity of change.

5. The correlations between initial method factors and method difference factors belonging to
the same construct j and same method k represent the association of method-specific devia-
tion from the reference method at T1 with the method-specific deviation in change (see Geiser,
2008). Two types of correlations can be distinguished: (i) The correlations Cor(M,;,,, MJ5)
between initial method factors and method difference factors pertaining to the same construct
and the same structurally different method; (ii) the correlations Cor(C’Mtﬁl,CMt?z(’; ) be-
tween initial common method factors and common method difference factor pertaining to the
same construct, as well as (iii) the correlations Cor(UM, .9, U ng%l) between initial unique

method factors and unique method difference factors pertaining to the same construct.
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10.

11.

The correlations Cor (M, Mt?,c,;l) between the initial method factors and method differ-
ence factors belonging to the same method, but different constructs j and j' are difficult
to interpret (see also Geiser, 2008). In most empirical applications these correlations will
not substantially differ from zero. However, significant correlations would indicate that the
method bias at T1 (e.g., over- or underestimation of the teaching motivation by the school
principal with respect to the teacher self-rating) is associated in some way with the method
bias change between time points 1 and [ with respect to the teaching quality. Again, corre-
lations [Cor(CMthI,CMggl) and C’or(UMthzl,UMg%l)} between the initial common or

unique method factors and common or unique method difference factors belonging to different

constructs 7 and j' can be estimated, too.

The correlations [Cor(M, .1, CM;?QC;), and Cor(C M, o1, Mtlfkc;)] between initial method fac-
tors and method difference factors pertaining to the same construct j, but different methods
k and %’ reflect the association between the method specific deviation of method &k from
the reference method at T1 and the method specific deviation in change for method k' (see
Geiser, 2008). The correlations are also relatively difficult to interpret. An example of this
correlation would be the correlation between the over- or underestimation of the teaching mo-
tivation by the school principal with respect to the teacher’s self-report (reference method)
at T1 and the change in the over- or underestimation by the student ratings with respect to

the teacher’s self-report.

The correlations [Cor(M,;;.,, CM[S,), and Cor(C M, ;y,, M35,)] can be estimated for method
factors at T1 and method difference factors pertaining to different constructs j and j' and dif-
ferent methods k and k’. For most applications these correlations will not differ significantly

from zero.

The correlations [Cor(MJZ5, M), Cor(CMES, CMPS,), and Cor(UMES,, UMES,,,)] be-
tween method difference factors pertaining to the same construct and method represent the
association between the method specific deviation in change scores pertaining to different
measurement occasions (see Geiser, 2008). High positive values would indicate, for exam-
ple, that the change scores of the method specific deviation of the student ratings from the
teacher’s self-rating at time [ correlate with the change scores of the method specific devia-
tion of the student ratings from the teacher’s self-rating at time !’. In other words, the true

change of method bias for a particular method k follows the same direction (i.e., increase or

decrease in method bias) across different time points [ and [’.

The correlations [Cor(M[JS, MJS,), Cor(CMS,CMES,), and Cor(UMES,, UMES,,)]
can be estimated for method difference factors pertaining to the same method k&, but different
constructs 7 and j’. These correlations can be interpreted as discriminant validity of change

corrected for the influence of the reference method (see Geiser, 2008).

The correlations C’or(MtE;,g, C’Mt’?g ) between method difference factors belonging to the same
construct 7, but different methods k& and k' can be interpreted as the convergent validity of

change. For instance, students and the school principal may agree in their ratings of the
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teacher’s development over the course of time, above what can already be predicted by the
teacher’s self-report. High positive correlations indicate that the non-reference methods share

a “common view in change” that is not shared with the reference method (see Geiser, 2008).

12. The correlations between method difference factors pertaining to different constructs j and j,
different methods & and k', and different time points [ and I’ characterize the “common view
in change” shared by different method difference factors but not shared with the reference
method with respect to different constructs j and j’. In most applications these correlations

will not significantly differ from zero (see Geiser, 2008).

3.7.4 Correlations that should be set to zero for parsimony

The following correlations are permissible by definition, but shall be set to zero for parsimony
in empirical applications. It is most likely that these correlations will not substantially differ from

zero, and thus will be negligible:

1. The correlations between initial state factors of the reference method and any latent method

difference factor.
Cor (8,11, MES), VE>2AVj#7 AVI>1
COT(StijllaOMt]?gl)a Vi#Aj7AVI>1

2. The correlations between any initial latent method factor and latent reference state difference

factor.
Cor(M,j51, SH51); Vidi AV j#7AVE>2AVI>1
Cor(CM, 5, SES 1)), Vitdi AVj£7AVI>1

3. The correlation between latent reference state difference factors and any latent method dif-

ference factors.

Cor(M56, S5 0), Vit i AVj#FAYVE>2AVIATAVI>1

Cor(CM5, SES ), Vit A\Vj#F7AYIAUAYI>1
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3.8 General measurement equations and variance decompo-
sitions

In the following section the general measurement equations of extended latent baseline LC-COM
models are discussed. Again, based on the definition of the extended latent baseline LC-COM
model different variance coefficients can be defined. In Theorem 3.3 it has already been shown
that these variance coefficients can be meaningfully interpreted. Again, the independence among
latent variables discussed in Theorem 3.4 as well as Theorem 2.4 are important requirements for
defining different variance coefficients. The next Definition 3.3 defines an extended latent baseline
LC-COM model with common latent change method factors. On the basis of this definition the
general measurement equations of extended latent baseline LC-COM models are introduced. In

the next step, different variance coefficients are discussed.

Definition 3.3

Let M = {(Q,¥, P), Syt, St, SBC, UM,, UMEBC, CM¢, CMPC, M, MBC | E,¢, E¢, auijk,
Asijk, AUMij2, ACMij2, AMijk, ) be an extended baseline LC-COM model according to Definition
3.2 and Theorem 3.1, and:

(511112 m]kl Sbcdef) )

= (UM{%5 - UMSS tjzz UM, bd2f) )
CMPC = (CM{it, - CM{g - CM5,)T,
MBC_(Mluz Mtgkl Mbdef)] .

All other latent variables of the LS-COM model (see Definition 2.3) remain unaltered.

\ J

Remarks. In the above Definition 3.3 an extended latent baseline LC-COM model with common
latent difference method factors is defined. Note that the latent difference variables were construed
by the following tautological equations:

Stiju = Stiji1 + (Stiju — Stiji1),
CMyijor = CMyijo1 + (CMyijor — CMyijor),
UMyijor = UMyijo1 + (UMyjor — UMyijon),
Muijkr = Myijen + (Myijin — Myijea ), Vk>2,

where (Stiji — Stijin) = 5'5]117 (CMiijor — CMyijon) = CMES,, (UMyiijor — UMyijor) = UM,
and (Myiju — Myijin) = Mmkl Furthermore, according to the statements in Definition 3.2 it was

shown (see Theorem 3.1) that latent difference method variables (CMSJ%, UMESQZ’ Mt]f]kl) per-

taining to the same construct j, same non-reference method k, and same occasion of measurement

[ are positive linear transformations of each other, respectively. Hence, it was assumed that these

latent difference variables only differ by a multiplicative constant. Consequently, latent difference

method factors (C'Mgg(’;7 UMffj(’;l7 Mt]kl) were construed. According to Theorem 3.4 as well as 2.4
the measurement equations for the observed variables are given by:

BC

Yiiiu =Stijnn + Stiju + Eriju, Vi>1, (3.89)

Yy =Ctijk + AsiinSiiing + AgiinSES,+

tijkl 2 Sijk*~tizll 5;]6{6 tij1l VE> 2,l >1, (390)

Amije M + Arije Mg + Etijis

Yiiijor =0uij2 + AgijoSiin + )‘SijQSgﬁl"’_
AcwmijaC My + AonrijaC M5+ Vi>1. (3.91)

BC
Avari2UM o1 + AuagijeUMyijor + Ergijors
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3.8.1 Variance decomposition

Based on the above Equations 3.89 to 3.91, the variance of the observed variables can be

decomposed as follows:

Var(Yy) =Var(Syji,) + Var(Smu)—F Vs, (3.92)
2COU(Stij11aSgﬁz) + Var(Eyju),
Var(Yy ) )\i*ijkVW(Stijn)+/\%ijkva7"(sgﬁl)+
()‘SZJk:)COU(StUlh Stmll) + )\?\mkvar( M)+
)‘Mz]kvar( t]kl) +2()‘Mijk)cov( tjkl?M]kl)

Var(Egjw),

VkE>2Vi>1 (3.93)

Var( mgzl) )‘QSij2var(Stij11) + A%ij2va7(55ﬁ1)+
()‘5132)001)(5751]11’ Stl]ll)+
)\CMijzvaT(CMtjm) + )\CMijzvaT(CMt?g)‘f‘ Vi>1 (3.94)
2()‘%'Mij2)COU(CMtj217 CMmz)
)‘2UMij2var(UM t]21)+>‘UMz]2VG‘T(U tg2l)+

2()‘?]Mij2)cov(UM tjo1, UM, t]2l) +Var(E,y o),

According to the above Equations 3.92 to 3.94 the variance decomposition of the observed variables
implies not only additive variance components, but also the latent covariances between the initial
state S, k1 and the latent difference variables Sgﬁl. Given that researchers might find it difficult to
interpret different variance components with regard to this variance decomposition, an alternative
variance decomposition is proposed. The following variance decomposition is based on the observed
difference scores, given that the observed difference scores are of particular interest for researchers
studying true interindividual differences in intraindividual change. A convenient side effect of
this variance decomposition is that no covariance structure between the initial state and latent
difference (change) variables has to be considered (see also Geiser, 2008). In order to decompose
the total variance of the observed difference (change) scores, strong measurement invariance has
to be assumed. Only if strong measurement invariance holds, the total variance of any observed

: BC — BC  _
difference score [Yijy = (Yyijn — Yiijra) as well as Y55y = (Yiyijor — Yorijor), ¥ 1 > 1] can be
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decomposed as follows (see Proof 10):

Var( tljll) Va'T(St’lel) + Var(Etljll)

Vi1, (3.95)
VaT(Etijll)a
BC
VCL?"( tl]k}l) )\S'ijvar<stzjll) + )‘Mmkrvar( t]kl)+ VE> 27l > 1, (396)
Var(Eijin) + Var(Eji),
Var( rtngl) :A%ijQV‘zr(ngCll)+
M2 i Var(CMES)+
catz 2 Vi1 (3.97)

/\%fMijQVGT(UM thl)+

Var(E,jo1) + Var(E,jo),

With respect to the Equations 3.95 to 3.97, it is clear that the amount of “true” change with respect
to reference state or method variables can be investigated. However, it is important to note that
the error variances at both time points are part of the equation (see Geiser, 2008). This is a direct
consequence of the rules of variances and covariances (see Steyer & Eid, 2001, Box F.1., p. 343). On
the basis of this additive variance decomposition, it is possible to define the consistency coefficient

of true change:

)\% 'kvar(sﬁ'clvl)
CON(TZ ) tJ 1] s Vk> 27
LV ar(YiZ5) = Var(Byjpy) = Var(Eyj)
/\ZSzJZVCLT’(StB;qu)

CON(, mﬂl) Var( rtngl) Var( mj21) - VC”"(Em‘ﬂl)-

The consistency coefficient of true change represents the proportion of true variance of the observed
change scores that is determined by the change of the reference method. The consistency coefficient
of true change may also be interpreted as index of true convergent validity of change (Geiser,
2008). In addition, different coefficients of method specificity indicating true method change can
be calculated. These coefficients represent the proportion of true variance of an observed change
score that is determined by “pure” method change. The term “pure” refers to the fact that the
proportion of true change of an observed change score is investigated that is not explained by the
true change of the reference method. This amount of true variance is free of change of the reference
method, but solely due to the change of a non-reference method. In total, three method specificity
coefficients of “true” method change can be defined: the method specificity coefficient of the non-
reference structurally different method M S (Tm %1), the common method specificity coefficient of

the non-reference interchangeable methods C'M S(7,.; le) and the unique method coefficient of the
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non-reference interchangeable methods UM S(r,; ]21)'

MS(Tt]?]Ckl) BC A%Jijkvar(Mt?Ig) 5 Vk> 2,
V‘“"(Ytzgkz) VaT(Eujm) - VC”"(Em‘jkz)
CMS(r mﬂl) - )‘%‘Mij2var<CMtg2cl') 7
V‘”’(Ym]zl) Va,r(Erti]Ql) Var(ErtijQI)
UMS(EG) = gy UM -
‘”"(Ymgzz) Var( m‘jzl) VC”"(Em'ng)

Moreover, the total method change coefficient TMS(7,.;; JQl) with respect to the true change scores

of the interchangeable methods is given by:

)‘?]MZJQV(IT(UMES’J%Z) + AQCAIijzvar(CMgzcg)

Var( mgzl) Var( mj21)—Var(Ertij2l)

TMS( th]Ql) =

Finally, the reliability coeflicient for the observed change scores can be defined as follows:

Var(Eyji1) + Var(Ey;q)

Rel =1- , Vk>2,
€ ( tzykl) VCL’I"(Y;,LBEH)
Rel( )= 1— Var( m]kl) + Var(Etijkl)
g Var(Y,25)
Subsequently, the unreliability coefficients are defined as follows:
Var(E,; +Var(E,,
Unrel( tzykl) Rel()/tzﬂcl) ( . ]kl) ( ' ]kl) VE> 27

Va‘r(yvtijgl) 7
V‘”’(Emgm) + VW(Em‘ﬂl)

Var( rtz]2l)

U?’l’/‘@l( rtz]2l) =1- Rel(Y tl]2l)

Proofs. 10 If and only if the conditions of strong factorial invariance hold, the observed variables
can be decomposed in the following way:

Yiijin =Stijin + Erijn

Ytig‘u :Stijll + Etijlla vi>1,
Yiiikn =%ijk + AgijiStijin + ArijeMejin + Etijra, Vk>2,
Yiijer =tiji + AsijeSeiju + Arije M + Erigi, VEk>210>1,

Yitijo1 =ij2 + AgijoStijn + AcmijeC Mo+
>‘UM7.32UM rtj21 + Erthlv
Y;'tile =Ctij2 + /\SUQStz]ll + AC]VIUQOMUQI—’—

Vi>1.
Avmij2UMpjor + Epyijor
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The observed difference scores are then given by:

(Yeiju — Yiijnn) =(Spiju + Eriju) — (Sjin + Etijin)
:(Stijll - Stijll) + Eviju — Eviju,

(Yijrr = Yiijrr) =(ijk + AgijeSeiju + ArijeMeji + Erijra) —
(tijk + AsijeSrijin + AarijeMijer + Erijk1)
=Asijk(Stiju — Stiji1) + Magigr(Myjpg — Myjir)+

Eiijri — Eijrt,

(Yorijor = Yerigor) =(uije + AsijoSuju + AemijpC Mg + AungijoU Mgy + Epgijor) —
(OltzJZ + /\5’1]25“]11 + /\CMzJQCMtj21 + )\U]\/I'L_]QU rtj21 + Erfngl)
=Agij2 (St — Stiji1) T Aonrije(C Mo — CMyjo1)+
)‘UMijQ(UM tj2l - UM, tj21) + Ertz]Zl Ertile'
Let ()/tijkl tz]kl) be }/n]kb (}/rtijQZ rtz;21) be Ytszl and (Stljll Stz]ll) be Stzgll’ (Mtjkl_Mtjkl)

be Mgkcz, (CM, 0y — CMyj5q) be CMtﬂl, and (UM, ;0 — UM, 51) be UMPES, rijo1; then the equations
yield:

mu _StZJll + Eviju — Eyjin, (3.98)
Ymkz )\sqksmu + )\MmkMt]kz + Eiijrr — Etijra, Vk>2 (399
YI“tZ]Ql )\SZ]2Stlj1l + )‘CMZJZCMtJZZ + AUM'L]ZU tj2l + Ert2]2l Ertij21' (3100)

If and only if strong measurement invariance holds, then Equations 3.98 to 3.100 follow, given
that the intercepts aujr drop out and all variables on the right hand side of the equations are
uncorrelated with each other.

O

3.9 Mean structure

With respect to longitudinal studies many researcher seek to investigate mean change over time.
In this section, the latent variable mean structure of the LC-COM model is discussed. The following

theorem shows the consequences of the model definition for the observed and latent variables.

Theorem 3.5 (Mean structure)

If M = ((Q,%, P), Sy, St, SBC, UM,, UMBC, CMy, CMEBC, M, MBC E,, E¢, auiji,
Asijks AUMij2, ACMij2, AMijk, ) 18 called an extended baseline LC-COM change model and with-
out loss of generality, k=1 method is chosen as reference method, then the following mean
structure holds for all v € R = {1,...,a}, t € T = {1,...,b}, i ¢ I = {1,...,¢},
jedJ={l,....d}, ke K={1,...,e},le L={1,..., f}:

E(Y;tz]ﬂ) AtszE(Sm]u) Vi>1, (3101)
E(Kl]kﬁl) )\tZ]kE(St’lel) V k > 2,/\V l > ]., (3.102)
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E(S{) = E(Y55), Vi>1, (3.103)
E(CMtﬂl) 0, Vi>1, (3.104)
E(UMthgl) 0, Vi>1, (3.105)
E(Mtz]kl) 0, VEkE>2AVI>1, (3.106)
E(E4ijr1) =0, Yk #2, (3.107)
E(Ertij21) =0, (3.108)
where E(.) denotes expected value (mean).

Proofs. 11 According to Equation 3.99 the measurement equation of the observed difference vari-
ables Ytg% is given by:
BC BC
Yngkz AsijieStigi + AnijeMejer + Erijrt — Erijra .-
Therefore, the equation above can be rewritten as follows:
BC BC
E(Yyiin) = ()‘SZJkStzjll) + E(A i Miji) + E(Etigi) — E(Eijrt).-

According to Equation 3.106 and 3.107, the expected values of the latent method change as well as
the measurement error variables equal zero. This is a direct consequence of the definition of these
variables, given that these variables (M tgkl7 Eyijki, and Eyiji1) are defined as residuals and residual
variables always have an expected value of zero (Steyer, 1989; Steyer & FEid, 2001). Hence, the
equation above simplifies to Equation 3.102:

E(Y;mkl) ()‘Sz]kstwll) ASijkE(SggCll)

Similarly, according to Equation 3.100 the measurement equation of the observed difference vari-
ables Ymﬂl 18 given by:

Ymgzl )‘Sijzsgﬁl + ACMijQCMt?ZCZ + )\UMiszng%l + Erpijor — Ergijor-
Again, the above equation can be rewritten in terms of expected values as follows:
E(Ym;zﬂ ()‘SZJQStzjll) + E(Acmij2CM, j2l) + EAyaij2UM, thl) + E(E,1ij01) — E(Epi501)-

As a consequence of the definition of the latent variables (CMtBQC;, Ung%l, E,iijors and E,y;501) as
latent residual variables, the conditions stated in Equation 3.104, 3.105, and 3.108 hold. Therefore,
Equation 3.101 follows, given that

E(Yrtngl) ()‘51]25151]11) )‘51]2E(Stz_]ll)

Finally, according to Equation 3.98 the measurement equation of the observed difference variables
Yt?ﬁl is given by:
t2]ll Stzyll + Etijll - Etijll'

With respect to the definition of the latent variables, this equation can be rewritten as follows:

Y;Z]ll - (Stzjll)

given that the measurement error variables are again defined as latent residuals, and thus have an
expected value of zero (Steyer, 1989; Steyer & FEid, 2001).

3.10 Identifiability

As mentioned before, both change models (baseline LC-COM as well as extended baseline LC-
COM model) represent an alternative parametrization of the LS-COM model (see Chapter 2).
Thus, the parameters of any latent LC-COM model are identified for at least two indicators, one
construct, two methods, and two occasions of measurement and correlated latent state as well as

change method factors as described in Theorem 2.6 of Chapter 2.
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Box 3.1 (Baseline latent change Model)
Latent variables of the baseline LS-COM model

BC
Stijll

BC
UM, ;iin

BC
OMtile

BC
M35t

target-specific latent change variables of the reference
(here: structurally different, k = 1) method of con-
struct j on measurement occasion | assessed by in-
dicator i (e.g., “true” intraindividual change of the
leadership quality of a particular target assessed by
indicator i from the initial state to occasion of mea-
surement 1)

rater-target-specific latent unique method change
variables of the non-reference method k = 2 of con-
struct j on measurement occasion l assessed by indi-
cator i (e.g., “true” change of the unique rater bias
of the leadership quality assessed by indicator i from
the initial state to occasion of measurement 1)
target-specific latent common method change vari-
ables of the non-reference method k = 2 of construct
J on measurement occaston | assessed by indicator i
(e.g., “true” change of the common rater bias of the
leadership quality assessed by indicator i from the ini-
tial state to occasion of measurement l)
target-specific latent method change variables of other
non-reference methods k > 2 of construct j on mea-
surement occasion | assessed by indicator i (e.g., the
“true” change of method bias of the leadership quality
assessed by indicator i on occasion of measurement

)




Chapter 4

Formal definition of the latent
state-trait (LST-COM) model

4.1 A gentle introduction

In the following chapter, a longitudinal multitrait-multimethod (MTMM) latent state-trait
model for the combination of structurally different and interchangeable methods is formally de-
fined. The model will be abbreviated LST-COM model. Latent state-trait (LST) models (Eid,
Schneider, & Schwenkmezger, 1999; Steyer et al., 1992) are commonly used to study “true” (i.e.,
measurement error free) stable interindividual differences, true occasion-specific interindividual dif-
ferences, as well as occasion-specific influences due to measurement error (Geiser, 2008). The basic
principle of LST-theory is the decomposition of the latent state variables S;; into a latent trait
variables &;; and an occasion-specific residual variables ¢;; (Eid et al., 1999; Steyer et al., 1992).
For the sake of simplicity, the general decomposition of the latent state variables of a LST model
is presented for monoconstruct-monomethod measurement designs first. That is, only two indices
are needed: i for indicator (item) and [ for occasion of measurement. Later in this chapter, this
general decomposition is extended to multiconstruct-multimethod measurement designs combin-
ing structurally different and interchangeable methods. The latent variables in a LST model are

defined as follows (Courvoisier, 2006; Eid, 1995; Eid et al., 1999; Steyer et al., 1992):

Sit = E(Yu|pu, psit,),
Eil = Y; - E(Yil|pu7p5itl)a
&a = E[E(Yiﬂpuapsmﬂpu] = EYulp.),

Gt = E(Yulpu, psit,) — E(Yit|pu)-

E(+]-) is the conditional expectation, (p,,) represents the projection into a set of persons and (psit, )
denotes the projection into a set of situations. The total measurement equation of any observed

variable in a LST model can be therefore written as:

Y = E(Ya|pu) + [E(Yi|pu, psit,) — E(Yi|pu)] + [Yi — E(Ya|pu, psit,)]

=¢; + Ca + Eir.

90
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The latent state variables S;; are defined as conditional expectations of Y;; given the person (p,,)
and the situation (pg;,). The measurement error variables E;; are defined as differences between
the observed variables Y;; and the latent state variables. The latent trait variables &;; are defined
as conditional expectations of the latent state variable S;; (or the observed variables Y;;) given the
person (p,). Consequently, the latent trait variables reflect “true” person-specific influences. The
latent state residual variables (;; are defined as differences between the latent state variables S;; and
the latent trait variables &;;. Hence, the latent state residual variables represent measurement error
free influences due to the situation (pg;,) and/or due to the interaction between the person (py,)
and the situation (ps;:,). As a consequence of the definition of (;; as latent residuals with respect
to &;;, both latent variables are uncorrelated with each other. For a detail description of the LST
theory see Steyer et al. (1992) as well as Eid (1995). In the following sections, the definition of the
latent variables of a LST model for multiconstruct-multimethod measurement designs combining
structurally different and interchangeable methods is given. This model is called LST-COM model,
given that it combines LST-theory and multiconstruct-multimethod analysis for a combination of
different types of methods. Again, the abbreviation LST denotes that a LST model is defined. The

abbreviation COM stands for combination of structurally different and interchangeable methods.

Step 1: Definition of the latent trait and state-residual variables

In a similar way, the latent variables (i.e., the latent state, trait, state-residuals, and measure-

ment error variables) of the LST-COM model are defined:

Sriijor = E(Ym‘j21|PTaPTSlaPR7PRSL),

Spijrel = E(Ytijkl lpT, PTs,)s
E,tijor = Yevijo — E(Kﬂtij2l|pTapTSL7pR7pRSz)’
Etz’jkl = Ytijkl - E()/tijkl|pTapTSL)’

Stijrl = E(Stijkl lpT),

Crijul = Stijkl - E(Stz‘jkl|pT)'

Again, E(+]-) is the conditional expectation. However, (pr) stands for the projection into a set of
targets, (prs,) represents the projection into a set of target-specific situations, (pg) refers to the
projection into a set of raters, (prs,) denotes the projection into a set of rater-specific situations.
The latent variables (5,0, E,i0;) Tepresent the latent state variables as well as their corre-
sponding measurement error variables on level-1 (rater-level), whereas the latent variables (S,;;;,
§tijkl, Ctijkl, Etijkl) denote the latent state, trait, state-residual and measurement error variables
on level-2 (i.e., the target-level). Note that six indices are used in order to define a LST model for
multitrait-multimethod measurement designs combining different types of methods: Again, k = 2
represents the non-reference interchangeable method (e.g., multiple student ratings for teaching
quality). The index r indicates that multiple ratings for target ¢ are measured on the rater-level.
Conversely, any latent variable without the index r is measured on the target-level. The remaining

indices (4, 4,1) stand for ¢ = item or indicator, j = construct, and I = occasion of measurement.
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In order to define level-2 (target-specific) latent state variables Sy, on the basis of the level-1
(rater-specific) latent state variables 5,5, pertaining to the interchangeable methods (k = 2), the

target- and occasion-specific expectations of the level-1 latent state variables S,.,; .5, are considered

rtij2
once again:

Syijou = E(Sppijulpr, p15s,) (4.1)

= E [E(Y,ijulpr, prs,, PR PRS,)|PT, P15, | (4.2)

= E(Y,yijulpr. p18))- (4.3)

According to the above Equation 4.1, the latent state variables Stiﬂl are defined as conditional

expectations of S

L1ijor Given the target (pr) in a situation (prs,). Hence, these latent variables

may be interpreted as expected values of the interchangeable ratings Stiﬂl for a particular target ¢
on occasion of measurement /. The residuals of the latent regression analysis are defined as unique

method variables UM, o)
UMrtij2l = Srtij2l - E(S'r'tile lpT, Prs,)-

The latent residual variables UM, ;5 represent the occasion-specific unique method bias for a
particular rater. In other words, the latent unique method variables UM,.;; o, reflect the true over-
or underestimation of the true ratings of the interchangeable raters by a particular rater on occasion
of measurement [. Given that these latent variables are defined as residuals and given the fact that
the expectations of residual variables are always zero (Steyer, 1988, 1989; Steyer & Eid, 2001), the
expectations of the U M, ;5o residual variables are also zero by definition. Another consequence is
that the latent unique method variables are uncorrelated with any other latent state variable S,; .o,
on the target-level. In order to defined level-2 latent trait as well as level-2 latent state-residual
variables on the basis of the latent state variables Stij2l> the target- and occasion-specific latent

state variables Sy, 5, are decomposed as follows:

§ijar = E(Stijalpr) (4.4)
=F [E(YrtijQZ |pT7pTSL)‘pT] (45)
= E(Y,ijlpr)- (4.6)

With respect to the Equation 4.4, the latent trait variables {;;;2; for the non-reference interchange-
able method represent the conditional expectations of the latent state variables Sy;jo; given the
target (pr). Thus, the latent trait variables &;jo; represent the “true” and consistent view of the
interchangeable raters for a particular target. Note that the latent trait variables for the remaining

methods (k =1 and k > 2) can be defined in a similar way:

Stiju = E(YﬁjlﬂPT),

gt = E(Yyijmlpr), YV k> 2.
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However, the latent trait variables (§uj11, &ijri) represent the “true” consistent view of the ref-
erence or non-reference method (e.g., teacher’s self-ratings, rating of the school principle). That
means that the index k indicates whether the “true” and consistent view of the target’s behavior
is measured with regard to the reference method (k=1; self-report), the non-reference method be-
longing to the interchangeable method (k=2; peer reports), or the non-reference method belonging
to a structurally different method (k>2; parent report). The residuals of these latent regression

analyses are once again defined as occasion-specific latent residual variables (Ceijiz, Crijors Grijhi):

Ciju = Stiju — &g,
Ctijor = Stija — Exijat,

Crijkt = Stijit — Eeijret, ¥ k> 2.

The latent state-residual variables (Ctij1l7 Ctijals Cm‘jkl) are defined as difference between latent state
variables and the latent trait variables. Again, these variables are defined as residual variables.
Therefore, these variables have expectations of zero and are uncorrelated with their corresponding
latent trait variables. The latent state-residual variables (;;52; represent the occasion-specific devia-
tions of the “true” common view of the interchangeable methods from the “true” time-invariant (i.e.,
trait) common view of the interchangeable methods. In contrast to that, the latent state-residual
variables (y;51; represent the occasion-specific deviations of the “true” rating of the reference method
(e.g., teacher’s self-rating) from the occasion-unspecific (time-invariant) “true” rating of the refer-
ence method. The latent state-residual variables (4;;x; represent the occasion-specific deviations of
the “true” ratings of the structurally different non-reference method (e.g., ratings of the school prin-

ciple) from the occasion-unspecific “true” rating of the structurally different non-reference method.

Step 2: Definition of the latent trait and state-residual method variables on the rater-

level

One of the main advantages of the LST-COM model is that trait (5%%21, ft”% §£"{§kl) as
well as state-residual (Cmﬂz’ Cmﬂl, thkl) method variables can be defined. With respect to the
definition of these latent method variables it is possible to analyze consistent as well as occasion-
specific method bias on different measurement levels (rater- and target-level). With respect to the
definition of the latent trait and state method variables <§tw2l’ fmkl, C“ﬂl, C%kl) it is also possible
to investigate “pure” trait or state method effects (i.e., not shared with the reference method).

In the following, the latent trait unique method variables £UM , on the rater-level (level-1) are

rtig2
considered first. In the next step, the latent trait method variables fmm and §%kl on the target-

level (level-2) are discussed. The latent trait unique method variables ¢YM, o1 are defined as follows:

5%?;121 = (UM tz]2[|pT7pR) (47)

With respect to the Equation 4.7, it is not easy to see what the latent trait unique method variables
5%%21 mean, given that the occasion-specific unique method variables U M. rtijol (on the right side

of the equation) can be further decomposed. For the sake of clarity, this decomposition shall be
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illustrated briefly:

g%zl EE(UMrtijm'pTva)
:E[(SrtijQZ - Stile)|pT7pR]
:E(S'rtij2l lpT,PR) — E(Stij2l|pT7pR)

:E[E(K‘tz]ﬂ |pT7 PTS,;sPR;PRS; ) |pT7pR] - E[E(Yrtile |pTa prs, ) IpT7 pR)

With respect to one additional assumption (called: conditional regressive independence with re-

SpeCt to StijZl)7 the equa’tion [E[E(Yrtile |pTa Prs,sPR,PRS,; ) |pTa pR] 7E[E(Yrt2]2l |pT7pTSl ) |pTa pR)]
can be simplified to (see Proof 12):

f%%zl = E(ijzﬂPT,PR) - E(Yrtij21|pT)'

Hence, if this additional assumption holds, the latent trait unique method variables fff;%[ﬂ can
be interpreted as “true” and consistent unique method bias of a particular rater. The additional
assumption assumes that the latent state variables S, .o, are conditionally regressive independent

from the raters (pgr) given the target (pr). Another consequence of this additional assumption

UM

is that the latent state-residual unique method variables (;;%5; can be defined as residuals with

respect to the latent trait unique method variables:
UM _ UM
rtijal = UMyyijor — Ervijor-

Given that the latent state-residual unique method variables ng%l are defined as residuals, they

have expectations of zero and are uncorrelated with their corresponding fgﬁ‘;le variables. The latent

UM

state-residual unique method variables ¢ 3;%, can be interpreted as “true” momentary rater-bias

with respect to the interchangeable methods.

Step 3: Definition of the latent trait and state-residual method variables on the target-

level

The consistent as well as occasion-specific method variables on the target-level can be defined

with respect to the following latent regression analyses:

E(ftijkl|£tijll> = it AcijriSeijin (4.8)

E(CijrilCrijin) = MeijriCrigur- (4.9)

Note that this latent regression approach relates to the general CTC(M-1) modeling framework
(see Courvoisier, 2006; Eid, 2000; Eid et al., 2003). The LST-COM model therefore combines the
advantages of the CTC(M-1) modeling framework as well as the longitudinal modeling approach
of LST models. The residuals of the regression above (see Equation 4.8 and 4.9) can be defined as
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the latent trait (common) method effects (fgjj‘gl, g%kl):

CM _
ftiﬂz = 5m‘j21 - E(ftzjzﬂftiju)v

Eint = Cuigna — EGijml€iju), Yk >2.

The latent trait common method variables 55;‘% represent the common and consistent (time-
invariant) part of method bias pertaining to the interchangeable methods (e.g., peer ratings, col-
league ratings) that is not shared with the reference method (e.g., target’s self-report). The term
“common” refers to the fact that this consistent method bias is common to all interchangeable
raters and thereby reflects the consistent view of the interchangeable raters that is not shared with
the reference method. The latent trait method variables f% i Teflect the consistent deviation of a
non-reference structurally different method (e.g., parent rating, supervisor rating) from the refer-

ence method (e.g., self-report). With respect to the correlations of these two latent trait method

variables (55%1, %ML the generalizability of consistent method biases across indicators, methods
and/or constructs can be studied. As a consequence of the definition of the latent trait method
variables (namely as latent residual variables), it follows that these variables have a expected values
of zero and are uncorrelated with all latent trait variables pertaining to the same indicator and

construct.

CM

According to the Equation 4.9, the latent state-residual (common) method variables ((j; 3,

(tilvg kl) can be also defined as latent residual variables:

CM _
Cm‘ﬂz = Ctz’j2l - E(Ctvlj2l|€tijll)7

Coinnt = it — B Cgnal i), ¥ k> 2.

The latent state-residual common method ng‘gl variables represent the occasion-specific (not con-
sistent or time-invariant) part of method bias of the interchangeable methods (e.g., peer ratings,
colleague ratings) that is not shared with the consistent view of the reference method (e.g., tar-
get’s self-report). In other words, the latent ¢S ;‘2/11 variables capture the amount of occasion-specific
and common method influences of the set of interchangeable methods/raters that is not shared
with occasion-specific influences of the reference method (target’s self-report). In contrast, the
Cf‘{g ; variables represent the occasion-specific deviation of the non-reference structurally differ-
ent method (e.g., parent rating, supervisor rating) from the occasion-specific view of the reference
method (e.g., target’s self-report). Again, due to the definition of these variables as latent residuals,
the general properties of residuals apply as well (Steyer & Eid, 2001).

According to the LST-theory it is possible to define different variance coeflicients such as con-
sistency and specificity (Eid et al., 1999; Steyer et al., 1992). However, for simplicity reasons these
coefficients are not discussed in this gentle introduction, but rather in Section 4.7.1 after the LST-
COM model has been formally defined. Besides, in order to define all of these variance coefficients
properly, additional assumptions have to be introduced (see Section 4.6.1). In the next step, the
gentle introduction ends with the general measurement equations of the observed variables in the

LST-COM model.
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Step 4: Definition of common trait and method variables

In the fourth step, additional homogeneity assumptions are imposed with regard to the latent
trait variables. These assumptions are important for defining latent trait factors (see also Cour-
voisier, 2006; Eid, 1995; Eid et al., 1999; Geiser, 2008; Steyer et al., 1992). For a detailed discussion
of how these latent trait factors can be formally defined based on the homogeneity assumptions
see Section 4.3.

The first homogeneity assumption concerns the latent trait variables &,, 1 as measured by the
reference method. Specifically, it is assumed that the latent trait variables pertaining to the same
indicator 4, construct j, the reference method £ = 1, but different occasions of measurement [
and I’ are homogeneous and only differ with respect to an additive ay;j1; as well as multiplicative
Aetijir constant. With respect to this assumption, common item- and construct-specific latent trait

factors (i.e., item- and construct-specific latent trait factors) can be defined:

Siju = igu + Aetijuérign-

Note that the index & = 1 with respect to the latent trait variable &;;1 may also be dropped,
given that all the latent trait variables belonging to the non-reference methods §,;;;, are regressed
on the reference latent trait variables ftijll and thus all latent trait variables are measured by a
general latent trait factor §;,;;. In a similar way, it is assumed that the latent trait method variables
pertaining to the same indicator i, construct j, method k, but different occasion of measurement

[ and I’ are homogeneous. Thus, latent trait method factor maybe defined as well:

fmgzl 5132l€rtz]2a (4.10)
ftuzl fnglgth ) (4.11)
&l = Netmbige, VEk>2 (4.12)

(4.13)

Finally, it is assumed that the latent occasion-specific method variables pertaining to the same
occasion of measurement [, construct j and method k, but different indicators ¢ and i’ are homo-

geneous and only differ by a multiplicative constant:

UM

rior = Ao (4.14)
ngzl @]21%21 ) (4.15)
Ctl\i/[jlcl c”kz%kl, Vk>2. (4.16)

(4.17)

Again, with respect to the Equations 4.14 to 4.16, it is possible to construe latent trait as well
as latent method factors. The demonstrations of the existence, uniqueness as well as admissible

transformations of these common latent variables are provided in the following sections. Finally,
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the complete measurement equation of the observed variables of the LST-COM model is given by:

Yiiju =8ej + Cuiji T Evijus (4.18)
Yiiier =Cijrt + Meijuieij + Mijmtignt

tij tij §igklStij §ijklStig Vk>2, (4.19)
AcijkiCeiji )\Q]letjkl + Eyijrs

}/7751]2l _atUQl + )‘&]2[6151] + Aéz]Ql&tng 52J2l£7Ut’]L\;[2+ (420)

)‘CUQlCtul + )\Clj2l<—tj21 Cl]?l(’l‘tj2l + Ertzg?l

Figure 4.1 illustrates the LST-COM model that was explained in this gentle introduction. However,
due to the complexity of this model a more restrictive variant of the LST-COM model with common
latent state, trait, and method factors is presented in Figure 4.1. Both models are presented for a
complete measurement design of three indicators, two constructs, three methods (two structurally

different and one set of interchangeable methods), and two occasions of measurement.
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Figure 4.2: Path diagram of the LST-COM model with common latent trait factors.
Path diagram of the LST-COM model with common latent state, trait, and method factors incorporating for three indicators (i=1,2,3), two constructs (j=1,2), three
methods (k=1,2,3) and two occasions of measurement ((=1,2). All correlations between latent variables were omitted for clarity. Measurement error variables Ei.;jx
and Ej;ji; are only depicted for the first indicator pertaining to method 1 and 2.
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4.2 Definition of the LST-COM model

The following chapter the LST-COM model is formally defined based on the stochastic mea-
surement theory by Steyer (1989) as well as Steyer and Eid (2001). Moreover, the LST-COM
model incorporates the CTC(M-1) modeling framework by Eid (2000) as well as Eid et al. (2003).

Definition 4.1 (LST-COM model)

The random variables {Yi111115 -+ Yorijrrr -+ Yabedesd 04 {Yi11115 -+ Yeiurr - s Yoeder } OP
a probability space (,¥, P) are variables of a LST-COM model if and only if the conditions
(a to e) of Definition 2.1 [i.e., LS-COM model] and the conditional regressive independence

assumption made in Definition 2.2 hold:

(a) Then, the variables

Rater-level (level-1):

ggt%[Zl = E(UM, i |pr: PR), (4.21)
gs%zl =UM, 500 — fg%[zlv (4.22)

Target-level (level-2):

ftijkz = E(Stijkl|pT)> (4.23)
oot = Semn — Saras (4.24)
gjj\/fzz = fn‘jm - E(ftijQﬂftijll)v (4.25)
5%1@1 = ijrr — E(Eijriliiju)s Vk>2, (4.26)
Cg%l = Cn‘jzl - E(Ctij?l'Ctijll)v (4.27)
C%‘kl = Grigin — E(CoijnalCrignn) Vk>2, (4.28)
(4.29)

are random variables on (Q, A, P) with finite and positive variance.

(b) With respect to the same indicator i, same construct j, and same occasion of measure-
ment [, it is assumed that the regression of the trait variable belonging to a non-reference
method k on the latent trait variable belonging to the reference method (k = 1) is linear.
For each construct j, measured by a non-reference method k on occasion of measurement
! and for each pair (i,i') € I x I', (i # i) there is a constant o, € R as well as a
constant Ag;;p, € Ry, such that

E(&ijnil€eiji) = ijra + Aesjraeiju- (4.30)

(¢) Definition of common trait variables. For each indicator i, construct j, measured by the

reference method k (k = 1) and for each pair (1,I') € L x L', (I #1) there is a constant
Qi a8 well as a constant Ag; 4y, such that

§tij1l = Qi+ )‘gijlll’gtijll" (4.31)

(d) For each indicator i, construct j, measured by a non-reference method k (k # 1) on
occasion of measurement | there is a constant Ay;;p,; € Ry, such that

E(Ctijletiju) = )‘(ijletijll' (4-32)
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(e) Definition of common method trait variables. For each indicator i, construct j, measured
by the non-reference method k (k # 1) and for each pair (1,I') € L x L', (I #1') there
are constants )\g%”,, )\g%”,, as well as )\é‘fjk”,, such that

&Gt = Aem i (4.33)
Eﬁi\jﬂ >‘£z_]2ll’€7‘Utz]2l’ (434)
fmkl )‘Emkll/gtz]kl’ Vk>2. (4.35)

(f) Definition of common method state residual variables. For each construct j, measured
by the non-reference method k (k # 1) and for each pair (i,i') € I x I', (i # i') there
are constants )\8-%-21, )‘CUi%Ql’ as well as )‘%"jkp such that

Ctzj2l Cu J2l<t’b /520> (436)
gfg\gl = )‘(ii/jQZCrti’jZZv (4.37)
Cf%kl = )‘Z‘Ii’jklcg{jkla Vk>2 (4.38)

= J

Remarks. According to the above definition the latent trait variables §tiji 0 the LST-COM
model are defined as conditional expectations of the latent state variables given the target E(S,; ki |pT).-
The latent trait variables are free of situational or rater-specific influences and are only due to
target-specific influences. Note that Equation 4.23 also implies the formal definition of the (non)-
reference latent trait variables, indicated by k = 2. The latent occasion-specific variables ;.
(called: state-residuals) are defined as differences between the latent state and the latent trait vari-
ables (see Equation 4.24). The latent state-residual variables are defined as residuals with respect
to the latent trait variables pertaining to the same indicator ¢, construct j, method k and occasion
of measurement [. Consequently, both latent variables are uncorrelated by definition. According
to Definition 4.1 the latent trait unique method variables §m oy are defined as conditional expec-
tations of UM, ;.o given (pr) and (pr). The latent state-residual unique method variables are
defined as difference between UM, ,, .o, and fmﬂl The latent trait (common) method variables
(375 o and &M i11) are defined as residuals with respect to the latent regression of the non-reference
trait variables on the reference trait variables [see Equations 4.25-4.26]. Therefore, these latent
variables reflect the consistent bias of the other ratings which is not shared with the consistent view
of the target’s self-perception [see Equations 4.25 and 4.26]. Hence, with respect to the latent trait
method components it is possible to investigate the stability or consistency of method bias. The
latent state method variables are again defined as difference between the latent method variables
and the latent trait method variables [see Equations 4.28-4.22]. These latent variables represent
the occasion-specific (momentary) rater bias which is not shared with the occasion-specific (mo-
mentary) view of the target (reference method). According to the Conditions (b) and (d) of the
above definition latent linear regressions are assumed. With respect to the Conditions (e) and (f)
in the above definition homogeneity assumptions regarding the latent trait and latent state method
variables are postulated.

4.2.1 Definition of the LST-COM model with conditional regressive in-
dependent latent state variables

In order to interpret the unique trait variables fgt%[m as difference between the conditional
expectations of Y,.4;50; given the target (pr) and the rater (pgr) from the the conditional expectations
of Y4521 given the target (pr), it is necessary to impose an additional assumption. This assumption
is called conditional regressive independence assumption with respect to the latent state variables
Stile' This assumption postulates that the level-2 latent state variables Stiﬂl are conditionally

regressive independent from (pr) given (pr). LST-COM models that fulfill this assumption will
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be called LST-COM model with CRI latent state variables Stiﬂl.

Definition 4.2 (Conditional regressive independence of the latent state variables)
LetM = <(Qaa[7 P)a§t7 }tjz ) t 75(—, 7<ta 7 t a t aEl‘taEt7O‘t7A§7A?MaAgMa)‘g/Ia)‘Cv
)\?M, )\?M, )\?/I) be a LST-COM model accordmg to the above Definition 4.1. If and only if,

E(Stijalpr, pr) = E(StijalpT) (4.39)

holds, then M s called LST-COM model with conditionally regressive independent Sy, ;o -
variables.

Remarks. In the above Definition 4.2, a LST-COM model with conditionally regressive inde-
pendent S,; ., -variables is formally defined. With respect to Equation 4.39 in Definition 4.2 it is
assumed that the latent state variables Stiﬂl on the target-level are conditionally independent from
the rater pr, given the target ppr. This additional assumption corresponds to the commonly known
ii.d. (independent and identically distributed random variables) assumption of level-1 residuals
made in multilevel regression analysis. Therefore, this additional assumption is relatively “weak”
and common in multilevel analysis. However, this assumption might be violated in cross-classified
data structures, where interchangeable raters evaluate multiple targets.

( 0

Theorem 4.1 (Consequences of the Deﬁnition 4. 2)

LetME<(Q7a[aP)7€t7 :-{ ) t 7§t 7<ta 7 t 7Ct 7Ert7Et7ata)\fa)‘§M )‘CM )‘ )‘47
)\UM )\CM /\M> be a LST-COM model wzth conditional regressive mdependent latent state

St1]2l vamables according to Definition 4.2, then the fmﬂl variables can be defined as follows:

gti\;[ﬂ = E(Y;"tij2l|pT?pR) - E(Yrtij2l|pT)' (4.40)

Remarks. According to Theorem 4.2 the latent trait unique method variables 55{5%12[ can be

defined as the difference between the conditional expectation of Y,.iijo given target and the rater

pr,PR) an e conditional expectation o given the target (pr). ith respect to this
d the conditional tation of Y, the target With t to thi

definition, the latent trait unique method variables §Z£‘f21 can be interpreted as consistent over-

or underestimation of the trait of a target with respect to a particular rater. Hence, the latent
trait unique method fmﬂl variables reflect the consistent bias of a particular rater that is free of
measurement error and occasion-specific influences.

Proofs. 12 According to Definition 4.1 the latent trait unique method fmﬂl variables can be de-
fined as follows:

STMJQZ *E(UM f1321|pT pR)
:E[(SrtijZl - Stij2l)|pT,pR]
:E(Srtij2l|pT»pR) - E(Stij2l|pT7pR)'

If and only if, the statement in Definition 4.2 holds (see Equation 4.39), then E(Srm‘jzl lpr, PR) —
E(Stij2l lpr, pR) can be rewritten as follows:

E(Srtij2l|pTapR) - E(Stij2l IpT)
E[E(Yrtiﬂl \pT, P18, PR, PRS,)|PT, PR] — E[E(Yrtijgz lpr, prs,)|pT)
E(ijzz lpT, PR) — E(YrtijzﬂPT)-
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4.3 Existence

Theorem 4.2 (Existence)

The random variables {Y111111, - - - ijkl, e ,Yabcdef} and {Yi11115 - - - R TATIET ,chdef} are
Crijr E0a > ESY, §mk7 Cuijir Ciral s Chas iy )-congeneric variables of a LST-COM model
with conditional regressive independent latent state variables if and only if the statements in
Definition 4.2 hold and for each v € R, t € T, i, I, 5 € J , k € K, € L, there are
real-valued random variables &,;;, 5751;2} gmﬂ, g%k, Ctijl, Cg%, Cg%l, Ct];/[kl on a probability

CM UM M CM UM M

space (2,4, P) and (0v;;1;, Aejjp )‘gmzl: Agijoir Neijhir Acijits )‘(zg2lf Aciyaur Mijre) € RY, such
that:

Eeijut = Uigni + Agojuibeiss (4.41)
E(&ijnil€esin) = g + Aeijrbess (4.42)
ftuzz 5u2zfng2 ) (4.43)
rijal = Aeignirrige: (4.44)
fn‘jkz = )\gijsztijka VEk>2, (4.45)
E(Ctijsznju) = ACijllCtijlv (4'46)
Cmgzz MGt (4.47)
riiin = AimCrgan (4.48)
Ctijkz = )\cijkl@jkh Vk>2. (4.49)
L )

Proofs. 13 Existence of the latent variables.
4.42 Inserting Equation 4.31 into Equation 4.30 of the above definition, yields Equation 4.42:
E(&iiniléiiji) = Qigra + Aeijur (@i + Aeijur e )

if Qi 18 defined as Qi T )\gijklatiﬂ”, and if )‘gijkl is defined as )\gijkl)\&jl”, hold. Simi-
larly, according to Equation 4.41, two different latent trait variables i and &5y can be
expressed as

§n‘j1l — Qg ftiju' — Qg1

§uij = ) and §uij =
Y /\giju Y >‘§ijll’
Setting both equations equal, yields:
A 11
§iji = Qiju + &(gtijll’ — Q).

>‘£ij1l’

Aeis
= y gijul Aciju i : ‘ned:
Let ayiqp = iy — atljll,(}\gzjll’) and Ag;iq = X, , then Equation 4.31 is obtained:

§iju = Qi + /\giﬂwfn‘ju/ (repeated).
4.43 For all 7, j, [, assume that ft(i% = «ft,ﬂl, as well as )\g%l = )\g%”, Inserting fmﬂl/ as well as
)\g%”, in Equation 4.33 of the above Definition 4.1, yields Equation 4.43:

OM _ \CM ¢CM
gtile gzgmfnﬂ (repeated).

According to Equation 4.43, gtw2 can be expressed as

ECM f
tig2l 1 tig2l
gtng - /\CJW , as well as gtng - )\CM .
§1521 Eig2l
: : : CM XS 21 CM A Aéz
By setting both equations equal, it follows ;775 = /\géﬁi, §t”21, Let Agijon = /\éxél, then
: &ij

Equation 4.33 is obtained:

gtngl fz]le’ftwﬂ/ (repeated)
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4.44 For all 7, j, [, assume that m;2 = TUmzl, as well as )\5”% = )\&]2“, Inserting 5%\]42[, as well

as )\5”2”, into Equation 4.34 of the above Definition 4.1, yields Equation 4.44:

UM _ \UM UM
rtijal = MiguSriige (repeated).

According to Equation 4.44, €0, can be expressed as

rtij

UM o
UM Srtige UM _ rtij2'
rtij2 = NOar 0 88 well as 3,70 = N

gij2l gijol

By setting both equations equal, it follows

AUM
UM §ij2l ;UM
rtig2l = YUM Srtij2l’:
Eig2l’
Y . . .
Let )\g%”, = /\533/ then Equation 4.34 is obtained:

gij2l’

UM UM
rtij2l — AEl]Qlllth’Lj2l/ (repeated)

4.45 For alli, 7, k > 2, [, assume that ft]‘fjk = 5%1@1’ as well as )\gjkl = )\gjkll,. Inserting f,f\{[jkl,
as well as )\é\fjk”, in Equation 4.35 of the above Definition 4.1, yields Equation 4.45:

M M M
‘ftijkz = )\@jkl&ijk (repeated).

According to Equation 4.45, ftj\{[jk can be expressed as

é.t'ijl i ft’bjk}l'
ft”k VI as well as ft”k VI
§ijkl gkl
By setting both equati L it follows €M — M Let NM. = ey,
y setting both equations equal, it follows gtijkl = M/étijkl,. et Nejjpr = SUE en
ij

Equation 4.35 is obtained:
M M M
rijkt = Aeijru Stigre (repeated).

4.47 For allv, j, I, assume that Ctﬂl = Ctl 1io1 as well as )\42]21 = /\C”jzl Inserting Cg,%l as well
as )‘Cm "jor i Equation 4.36 of the above Definition 4.1, yields Equation 4.47:

oM
Crijor = )‘C7,j2l t]2l (repeated).

According to Equation 4.47, Cg% can be expressed as

Ct 21 CtCle
Ctﬂl = )\C”M , as well as Ctﬂz = )\” .
¢ig2l Ci'521

CM CcM
By setting both equations equal, it follows szl = ;\é’}{f’ M 1o Let )\8]-2”/ = ;\c}’fl then the
¢ilj

/21
Equation 4.36 is obtained:

Ctz]2l sz ]2l<tz /521 (repeated)

The demonstrations of Equations 4.48 and 4.49 follow the same principle and are straight-
forward. Therefore will be left to the reader.

Remarks. The above Theorem 4.2 shows that common (1) indicator-specific and occasion-
unspecific latent trait factors £,;;, (2) common indicator-specific and occasion-unspecific latent

trait method factors (fth , E8My, &L i) (3) common indicator- and occasion-specific state-residual
factors ((;;;), as well as (4) common indicator-unspecific and occasion-specific latent state-residual

method factors (Ctﬂl ) Crtjzlv Ciﬁl) exist.
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4.4 Uniqueness

According to the statements in Theorem 4.2 it is clear that the latent factors (trait, trait-specific
method, occasion-specific and occasion-specific method) are not uniquely defined in LST-COM
models. If such models are defined with (&, 55}2{, Emﬂ, ft”k, QUI,CWI , Crtjzl, C%d)—congeneric
variables, all of the parameters are defined up to positive linear or similarity transformation. The
next theorem concerns the uniqueness and admissible transformations of the latent factors and

their corresponding factor loadings in LST-COM models.

r ~
Theorem 4.3 (Admissible transformations & uniqueness)
1. Admissible tmnsformations
M = ((Q,%, P), &, E™, &M, &1, G, (R ¢ 7C%\/I7ErtaEtaO‘tv>‘ a/\?M7
)\gM,)\é\/I,)\C, )\?M,)\gM,)\?/I> 8 a LST COM model with:
& = (5111 é}ij e Epea) (4.50)
= (600 gt%z ehez) s (4.51)
e = (€N € e Coaen) (4.52)
%VI (51111 ftz‘jk o 'fbcde) ) (4-53)
= (C1111 Cpgi* Coear) (4.54)
= (¢ 5%1 abdzf) (4.55)
oM = (¢t j2l : de2f> ) (4.56)
er = (G G Ges) T (4.57)
Ert = (Brii1111 - - Ervigor - Eabchf)T7 (4.58)
E¢ = (Bii111 - Brijir - -+ Evedes) ™ (4.59)
o = (01111 - Qg - abcdef)T, (4.60)
Ae = (>\51111 “ Aggjnt - Aeeder) s (4.61)
A?M (A& 51111 e Agmz e gchf)Tv (4.62)
)\? = (A§ 51111 e )\5”21 e 5cd2f)Ta (4.63)
)\?/I ()\51111 e )‘gzjkl e )‘Ecdef)Tv (4.64)
Ae = (Acrnnn - Acggur - Aeeder) s (4.65)
)\?M = (&1111 e )‘(z]2l e Cchf)T’ (4.66)
)\?M ()‘41111 e )\czgzl e Ccd2f)T7 (4.67)
MW= ()\q1111 e )‘kal e Ccdef)T’ (4.68)
and if forallr e R, teT,iel,jed ke K,l € L:
& = Vi + Beisbis (4.69)
Eutzo = Beigs S (4.70)
5tzg2 = ﬂgngnﬂ ) (4'71)
§tijk = ﬁgijkfn‘jka Vk>2, (4.72)
G = IBCiletijh (4.73)
ris = BEsnGim (4.74)
Conl = BEIMC, (4.75)
gt]glkl = ﬁ(ijkl(tjkl? Vk>2, (4.76)
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Oé;ijkl Qtijkl — Veij )\émjl (4.77)
Meijh = Nesght/Beig (4.78)
Ag%z gzgzz/ﬁgmz, (4.79)
Ag%; gzﬂz/ﬁg”z ) (4.80)
M = M/ B, Vk>2, (4.81)
Meigit = Mgt/ Bty (4.82)
)\gUz]]\g; gzﬂz/ﬁgzﬂb (4.83)
)‘8%; ng?l/ﬁ(ngh (4.84)
/\Cigfkl = )\cijkz/ﬁcijkln VEk>2, (4.85)

where Yeigs 55137 ﬂ&j27 551327 ﬂ&zgk’ ﬂ@]” ﬂCz]2l7 ﬂ(zj2l’ and ﬂé\z/[jkl € R"H " then M =
<(Q a[ P) gtv UM7 t 7€t 7Ct7<UM CM 7Ct 7ErtaEt7at7)\57
APM ASMT MY 3L ATM ,Ag‘M ,AMY) is a LST-COM model, too, with:

= (Ey11 &y Epea) s (4.86)

HM (VR - €50, - - €M), (4.87)
oM = (A G eTMNT, (4.88)
gt’ (M- &0 )T, (4.89)
o= (Cuu le Cbcdf) ) (4.90)
rIiM ( 11111 g&%l/ "'C%%})Tv (4~91)
oM = (oM AT G, (4.92)
ct/ (M G- oo )™, (4.93)
E;t (Ellllll E;tzﬂl E:zbcd2f)T’ (4'94)
E;i(E11111 E;mkl Ebcdef)Ta (4.95)
o = (0111 it * Cpodes) s (4.96)
)\/g (A 1111"')\gzgkl"')\gcdeﬁT, (4.97)
MM = OB B RN, (4.98)
MM = OG- A AEME T, (4.99)
A= O A M) (4.100)
)\c ()‘Cllll"'/\Cz]kl"')‘Ccdef)T’ (4~101)
MM = TN G AT, (4.102)
)‘CM/ ()\41111"')‘8%;"' 8]2142/f)T, (4.103)
)\M/ =(A 41111"')\gzgkz"')\ccdef)T (4.104)

2. Uniqueness
If both M = (2,3, P), &, &M, 65, €1, G, GEM, GOV, QM B, By, 0, g,

AUM, NCM AM ) UM ZCM MY grg M = <(Q ¥, P), &, EQM ,eEM M ¢,
G, GEM O, B, Ny AP MG A, 3 NP XM 3B e LST-GOM
models, then there are for each i € I j € J ke K,le L, Veijs Beigs 55”2, 552]2, Bé\/[”k,
Beijt, BC”% ﬁ@ﬂl’ and ﬁkal € Rt such that Equations 4.69 to 4.104 hold.

Proofs. 14 Admissible Transformations & Uniqueness

A. Latent trait variables




CHAPTER 4. THE LATENT STATE-TRAIT (LST-COM) MODEL 107

Al. Admissible transformations
If &5 = Yei + Beigbeiss Opijry = Cright — Veij é;””; and Negjp = Aeijhi/Beijs then (uij =
f;ij—'y@j)/ﬁgij, Qttijkl = a;ijkl—i—v@j)\/&jkl, and Aeijr = X&ijklﬂiij' Inserting these parameters
in Equation 4.42, this yields E(fnjkﬂftiju) = a;ijkl + /\;ijkl@;ij.

A2. Uniqueness
IbethME<(Q7Q[7P)a€t7 [I‘i ’ t agt s Ges a t a t aErhEt’atv)‘gv
APM ASM M )\C,)\}JM,)\?M,)\?’I) and M’ = <(Q A P), &, EM cCM M
CUM', CM’, gt e, B g, A, APMASMT M )\C,, ATM, AEM AMY
are LST-COM models, then owijri + Aeijribeiy = Oy + Aeijrieij- ASs a consequence, it
follows for alli eI, je J, ke K, andl € L:

/\@g Kl
)\

Eij - ftzj

!’
/ latijkl — Qyiikl

7
Aijkl €ijkl

Given the fact that the ratio of the parameters A¢ijr and )\;ijkl as well as the term

!
Qtigkl — Q1
b L
Agijkl

have to be the same real value for eachi € I, j € J, k € K, andl € L, one can also define
constants, namely:

!’
Qtigjkl — ikl

Veig = 7
)‘.fijkl
ikl
ﬂflj /\/5”
Eijkl
B. Latent trait method variables
B1. Admissible transformations
Let

UM’ _ UM’ _ \UM /3UM

rtij2 — ﬁfzg2 rtz]27 )‘EijQZ - £Zj2l/ﬁf’bj27

oM’ _ cM oM’ _
fn‘ﬂ /85132€t132? and )\51‘]‘21 = 5132l/ﬁ£z]27

M _ M M _

Stijk = BeigkM&piz, YV k>2, Aeijrl = A&ijkl/ﬂ{ijk» Vk>2.

By simple manipulation of these equations, it follows:
UM UM
rtij2 — Ttlj2/551j27 )‘Ez]2l 51]215@]'27
C’M’ \CM!
gtm? tzj2 //8€Zj2’ and )‘&]21 fz]2l651]27
ﬁtzjk =¢ mk/ﬁgzgka Vk>2, /\fijkl = /\fz‘jklﬁgi]‘k, Vk>2.

Inserting these parameters back into Equations 4.43, 4.44, and 4.45, the following equations
are received:

UM fUM’
7'tij2l fz]Ql rtij2>
g )\C’]\/I/EC']\/I/
tij2l = Agij21Stij2 o
M/ !
gtijkl = AeijriStijh VEk>2.

B2. Uniqueness
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C1.

C2.

D1.

Let both M and M' be LST-COM models. Logically, for allie I, jeJ, ke K,le L

\UM' cUM! _ UM’ Af@ﬂl
51J21€rt1j2 51]215%1‘]‘2 - frtijZ )\UM’ thzyQa
£ij21
A\CM
CM' CM' _ cM’ &121
51j2l£tw2 - £ij2l£tij2 - gtijQ - )\CM’ Et2j2’
£ij21
\M
M M M’ ! ! §igkl
Acijritije = AeijriSijh = Srigr = M fn‘jkv Vk>2.
Eijkl
\UM
Given that, for each i € I, j € J, k € K, l € L the parameters of the three ratios Afj]{ff ,
gijal
\CM AM .
Sotrs and )\j’/,“ must be the same real values, the following real constants can be defined for
£ij2l cijkl
eachi €I, jeJ ke K,lelL:
)‘.51321
55 = 30
£ij21l
UM
BUM Aéijal
gij2 = \UM™
£ij21l
\M
kl
Béiin = Sarr Vk>2.
Eigkl

Latent state variables

Admissible transformations

’
tijl

Let C;ijl be equal to BeijiCeiji as well as )‘;“ijkl be equal to A¢ijii/Beiji- Then, (i = B and

Acijkl = )‘/CijklﬁCijl' Substituting both parameters in Equation 4.46 yields: E(Cyix1/Criina) =
AcijriSeiji-

Uniqueness
If both M and M are LST-COM models, then A¢ijriCeiji = A@jklgml. Thus,

Acijhl

Criji = N

Ct'l_]l
Cijkl

Given that the ratio of the parameters Aciji and Xgijkl have to be the same for all i € I,
jedJ, ke K,le L, areal constant can be defined for allic I, je J, ke K,l € L:

Acijkl
/BCZ] )\/CU
Cijkl
Latent state method variables
Admissible transformations
Again, let
oM’ _ oM
CthI ﬂ(z]ZlCt]Zl ) A(ij2l C’LJQ[//BCZJQl’
UM’ _ UM’ _
rtj2l — ﬁ(qu rt]2l’ and ACij?l = Cz]2l/6C1]217
Ctjkz = B, YV E>2, Akt = Nt/ Bebw, YV k> 2.
Then, by simple manipulation of the above equation:
cM’
Ct]Zl
Ct]?l - BCMv )‘CUQZ (2J2l5§132l7
Cij2l
Cra
UM r
rtj2l — BU]]W/? and )‘(zJQZ (z]?lﬂ(l]?la
(ij2l
Ct kl M M oM
= VEk>2, Acijkt = AijkiBeije, ¥ k> 2.

ﬁg‘ijkl
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Finally, by substituting these parameters back into Equations 4.47, 4.48, and 4.49, yields:

C C ’CCM'
tij2l = 'j2l 520
UM CUM/
rtij2l — {ngl rtj2l»
CM = \M M Vk>2
tijkl = Cijlcl ikl .

D2. Uniqueness
Again, let both M and M be LST-COM models. Then, for alli eI, je J, ke K, € L:

\CM ~CM cM’ _ cM’ Cm2l
C1j2lCt]2l C'Lj?lCtj2l - Ctj2l - ACM/ Cthl’
Cig2l
UM
\UM UM _ )\UM/CUM/ _ CUM’ _ )‘Cij2l UM
17 rtj 17 rtj - rtj2l T 7/ rtj20»
Cig2l 21 — "Mig2l j21 j21 A\ j21
Cig2l
)\IM
M ~M _ M M _ ! ZCigkl
/\Cijletjkl - /\Cijklgtjkl - Ctjkl AM’ Ctjklv Vik>2
Cigkl

As stated before, the ratios of the parameters )\g%l and )\g%l, )‘cUz%l and )\2%2, as well as

)\%jkl and Aévf;kl must have the same real values for each i € I, j € J, k € K, 1l € L.
Therefore, the following real constants can be defined for eachi €I, je J, ke K,l € L:

CM

_ )\Clj2l
B = yeir
¢ig2l

UM

ﬁ _ )\CzJQl
Cij2l = \UM’>
Cij2l

A
ﬁmkz )\f\y, ) Vk>2.
Cijkl

O

Remarks. The above Theorem 4.3 concerns the level of measurement of the latent variables in
the LST-COM model. The latent trait variables are measured on an interval scale, whereas the
latent trait method variables as well as the latent state variables and latent state method variables
are measured on ratio scale. In other words, the latent trait variables are only uniquely defined up
to linear transformation, whereas the remaining latent variables are only defined up to similarity
transformations (i.e., multiplication with a real constant).

4.5 Meaningfulness

According to Theorem 4.3 it was shown that the parameters in the LST-COM model are
only uniquely defined up to positive linear or similarity transformations. The following theorem
addresses the question whether statements regarding LST-COM model parameters remain mean-
ingful (true), if the particular parameter has been subject to one of the admissible transformations.
The most important and meaningful statements of LST-COM model parameters are summarized

in Theorem 4.4.

Theorem 4.4 (Meaningfulness)
If both M = <(Q,§[, P)vfta Pt: ) t vgt 7<t7 v EMv t 7Ert7Et7at7)‘§7 )‘g P ACM )‘M7
ACa)‘?Ma)‘?Ma)‘?/I> G/I’ld M/ = <(Q a[ P) €t7 UM,: tCM/7§t aCta UM/7 tCM,7€t rta
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s 0
g, Ae, ATMASMY AMT L ADMY NEMY AMYY e LST-COM models, then for wi, wy €
rr' €R, t,t' €T, i,i €l, j,57’€J, kk e K, and [,l' € L:
i s )\’ g
Eijkl _ /fljkl ’ (4105)
Agighlr )‘gijkz'
Aeiit | A
Cigkl _ /ngkl 7 (4106)
Acigkl Airjka
Nejh _ A 4.107
2 -, (4.107)
gigal Eigal
@ oM’
Nejn _ Neiy 4.108
)\C’M - )\C’M’ ’ ( . )
gijal gigal!
AM AM
Afjiﬂkl ~ @77“ Vk>2, (4.109)
Eijkl’ Eijkl’
UM UM’
Aijol . Aijol (4.110)
UM T UM :
Ci'j21 Ci'j2l
N _ Xy 4.111
S - (4.111)
¢i'j2l ¢i'j2l
AM AM
Cijkl _ 7'Cijkl
o= VE>2 (4.112)
Ci' jkl Ci' jkl
S s
Netj Agigr Aty Mg
@ 1} cM’ cM’
)‘51‘%1 _ )‘gi%l/ _ )‘Ei%l _ )‘Ei%l/ (4.114)
C T = YCOM' CM' > :
)‘ii{\;[ﬂ )‘g{\fzz/ Ag%zz Agi{\fzw
AM AM AM M
Eigkl gkl 7Eigkl Eigkl’
€i'jkl il jhl! €15kl il jkl!
UM UM UM’ UM’
Agijal _ Aigar _ Adigat _ Acigar (4.116)
Notjor  Aigar Mg Aodjar
c @ cM’ cM’
Agi%z _ )‘cz%l/ _ /\Ci%l _ )‘Ci%l’ (4.117)
C @ = \OM’ CM’ ’ :
)‘gi%z /\Ci{\;‘IQZ’ )‘gi%z /\Ci{\;‘IQZ’
AM AM AM M
Cijkl Cigkl’ 7Cigkl Cijkl’
Ci'jkl Cil gkl Ci' gkl Ci' jkl’
Qtijkl — Ottighl’ ‘?‘n‘jkz - O‘wltijkl’ 7 (4.119)
Qtijkl” — Qtijkl!! Qpiitrrr — gk
fO’I" Qlgijkl’ — Qtigjkl! and a;ijkl” - a;ijkl”/ # 0,
Ctijz (w1) _ Ctijl (w1) (4.120)
Geajt (w2) Ct/ijz (w2)’
for Gy (w2) and (5 (w2) # 0,
gt%z (w1) _ fg% (w1) (4.121)
Uy (wa) €5 (w2)’
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Jor €5y (w2) and €53, (w2) #0,
gtng ( 1) 55%/( )
. 4.122
€N w2) €N (@)’ (122)
for €G3 (w2) and €G}3" (wa) # 0,
gé\fjk (wl) gtzgk ( )
, Vk>2, 4.123
) ) )
for {%k (wa) and f,f‘{[j/k (we) #0,
&tij (w1) — &ij (w2) §;ij (w1) — f;ij (w2)
== ; ) 4.124
§tij (ws) — &tij (wa) &tij (w3) — &uij (wa) ( )
for &; (w3) — S (wa) and g;ij (w3) — géij (wa) #0,
Coar (w1) Crij (w1) C;ijl (w1) Ctlijl’ (w1)
_ =2 == , 4.125
Ctijl (w2) Ctijl’ (w2) Ctijz (w2) Ctijl’ (w2) ( )
for Ceiji (w2), Cijir (w2), Ct/ijl (w2), C;ijl’ (w2) #0,
Ernz (w1)  Enia (wn) _ %M, (w1) B UM, (wr) (4.126)
Eriga (w2) €N (wo)  E0Y, (w2)  €Rio (wa) '
for €5y (ws), E9M%s (wa), €503 (w2), €M, (wa) # 0,
gt2]2 ( 1) Etz 52 (wl) ggj]\gl ( 1) Etz ]2/ (wl) (4 127)
€M (wa) €L (w2)  EGM (wo) €55 (wa)’ '
for gg% (wQ)’ gtci"j2 (wQ) ftng ( ) gtz 152 (w2) 7é 0,
f%k (w1) gtI\i/{jk’ (w1) gmMjk (w1) 5%}1@' (w1)
= = = - , Vk>2, 4.128
o w) @) ) @) )
fO’I” g%k (WQ); gg\i/{jk/ (WQ); 5%/19 (w2)7 g%;’k’ (w2> 7& 07
gf\;jzz (w1) B CrUt%zz (w1) _ C%f\;lz,z (w1) T{Jm 1521 (w1) (4.129)
gf\fm (w2) Cg%?l (w2) gf\;fél (W2) gnM]/Qz (we)’ .
for C}“Jt?jgl (wa2), CrUm]‘\f/[jm (w2), Cgi\]/[Ql (wa2), Cymszz (wa2) #0,
ngj\gl (w1) _ Cg’%l (w1) ngQl (w1) Cg]ng/z (w1) (4.130)
COM (w2) (G (wo)  CGM (w2)  CTME (w2)’ '
for ngj\zll (w2), Cg/%z (w2), ng2l, (w2), Cg/%z (w2) #0,
Ct]\i/ljkl (w1) C%jk/z (w1) C%/kl (w1) Q%’k/z (w1)
- === , VEk>2, 4.131
Ctj\i/ljkl (w2) C%g‘k/z (W2) Ctzgkl (w2) Ctj\i/{jk/z (w2) - ( )
for ¢ (w2), ¢ (wa), C%‘/kl (wa2), Cti’jk’l (wa2) #0,
/\gijklvar(ftij) = )‘/gz‘jklvar(éij)a (4.132)
)\gijklvm"@tijl) = Alg‘%jklvar(dijl)v (4.133)
(>‘ng21) Var(fyt%Q) ()‘51]21) V(I’/’(ﬁgi\jg/), (4134)
()‘5132l) Var(£t232) ()‘52]2l) Var(fg%,), (4135)
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( R
AWM )2Var(€d,) = W) Var(€d), VE>2, (4.136)
(NGH)*Var (s = (&5 Var(Gain), (4.137)
(A8 Var(CGa) = 05 Var(Gal), (4.138)
(/\é‘fjmﬂVar(C%) = ()‘gg{kl)Qvar(Ct]y[k/l)v VEk>2, (4.139)
Corr(&ijy &uirjr) = CO”"(féija §;i’j')v (4.140)
Corr(Ceijiy Gearjrr) = Corr(dz’jlv Ct/i/j’l)7 (4.141)
Corr(E53%, E5iting) = Cor (€503, £5a2), (4.142)
Conm(elce M= Con(ce Moo, (4.143)
Corr(€is, €M 1) = Cor(€M, €M), Y k> 2, (4.144)
Corr(Gitas Crigrr) = Cor(Gratar, Grighar), (4.145)
Corr(¢om, CoM) = Cor(¢SA , ¢EM), (4.146)
COTT(Ct%b C?f/k/z) = COT(C%C,I,C%;Q% Vk>2, (4.147)
where Var(.) denotes variance and Corr(.) denotes correlation.

Proofs. 15 Meaningfulness

The proofs for Equations 4.105, 4.113, 4.120, 4.121, 4.126, 4.132, 4.134, 4.140, 4.142 are provided
as examples. The remaining proofs for the other statements follow the same principle and are
straightforward. Therefore these proofs will not be reported here.

- P
4.105 Replacing A¢iji by ()\g”“) and Aeijer by (’5”“) in Equation 4.105 verifies the equality

ﬁﬁijkl ﬁgijkl
’
Aeijh ’
Agijkl  Bewwi gkl
- ’ - ’ .
Agijki Aesjurr /\fz’jkl’
Beijkt
UM A UM LMo UM A UM A
; ij i’j ij i'j
4.113 Replacing A,z by BT | Aol bY ot | Aéijor bY B0 and Ag;iop by vy
verifies the equality
v v,
UM UM L2 g2 UM’ UM’
Adijol _ Adijar BTN _ Bgm Adija _ Agijou
UM UM~ Soua’ oM UM UM’
Adivjor i Aeirjol Aeit it Adivjor i
J J UM UM J J
ﬁ&jZl ’3£j2l

4-120 Replacing G,y by BCiﬂgijl in Equation 4.120 verifies the equality

Ctijl (w1) _ B@jlc;ijl (w1) _ Ct/ijl (w1)
Ctijl (w2) 5Cijl§;z‘jz (w1) C;ijl (w2)
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4.121 Replacing 5%\]42 by ﬁg% Zﬁ\fé in Equation 4.121 verifies the equality

Z?fg (w1) Bgzgz %%2 (w1) €M (w1)

rtij2
vz (o) BEIENRNS (w2) &1 (w2)

4.126 Replacing £507, by 551]25%%2/ and €Y 7o by ﬁ& ﬂfm ]2 in BEquation 4.126 verifies the equality

4

gs%[z (w1) B f%%‘z (w1) . 5@7‘2 %%2( 1) 5@ nggt%z( 1)
- / 7

gs%[z (w2) gt%z (w2) Z% %%2 (w2) 551 152 Et%z (w2)

!
ggt%[z (w1) SZ%Q (w1)
UM’ -

rtij2 (w2) g:%fz (w2) .

4-132 Replacing N1, by /\;g%jkzﬁgij and Var(&j) by Var (W) in Equation 4.132 verifies
the equality

, €iij — Veis
NeijriVar(§uij) = AéiuabBes; Var ( Zjﬂsu j

, € Veii
= A2 B Var o5y
SiktTe Beij  Peij

4 1 ’
2 2
= AijriBeij B Var (ﬁtij - 75@')
€ij

= )\g%jkzvar(ftij)-

UM’
4-134 Replacing (\}3,)° by ()\gUéV[M”m) (BESa)? and Var(Ell,) by Var ((5?755)2> in Equation
4.132 verifies the equality

: &ty
()‘5132l) Va?"(frtﬁ\fz) (Aggﬂijzz)z(ﬂg%zf‘/ Tz
<6§zj2l)

( UM'

51j2l) (BEZJZZ) (ﬁgwgl) VO/I’( rt2]2>
(/\gzﬂl) VCL’I"( 7t1]2)

4-140 Replacing &,;; by (W) and &0 by (”’2?57) in Equation 4.140 verifies the equality

Beij ’

PV 5,,,,/77--
Corr(Esy Eueyr) = Cory ( 1210 Sut =760
B{zg
— Corr <£tij (37 ftm’ _ “Y{ij)

ﬁﬁz] 551] 551] ﬁ&z;
gtu gtz’]’
= Cor
(ﬂ&zg ﬂ&zg )
= Corr(gtijv fn‘/j/)-

UIW UM
4.142 Replacing fmﬂ by ( ”}ff) and 57{{5%,2 by <£é}}1{42> in Equation 4.142 verifies the equality
21 €ij2l

UM >
szle szle

UM’ UM’
= COTT(fm‘jza frti/j'2)~

UM UM,
UM UM o rtij2 rti’ 5’2
COTT(frtz‘j%ﬁrti/]‘/z) = Cor
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O

Remarks. According to the Theorem 4.4, statements regarding the ratios of differences regarding
the values of the common latent trait variables as well as the ratios regarding the values of the
common latent state variables are meaningful. In contrast, statements regarding the absolute
values of the LST-COM model parameters (such as values of the latent trait or state variables) are
not meaningful. For example, it is meaningful to say that the difference of the latent trait values
of two targets t1 and to is n-times the difference between the values of two other targets on the
same latent trait variable. Similarly, it is meaningful to say that the latent state value of a target
t1 is n-times greater or smaller than the latent state value of a target t; at the same occasion of
measurement (Courvoisier, 2006). However, statements regarding the change of the targets’ latent
state values from occasion of measurement [ to I’ are only meaningful, if these statements refer
to the ratio of the differences of the latent state values. Moreover, statements regarding (i) the
ratio of factor loadings, (ii) the variance components defined above as well as (iii) the permissible
correlations between latent variables are meaningful. In the next section permissible as well as
non-permissible covariances and correlations among the latent variables of the LST-COM model
are described in detail.

4.6 Testability

In order to derive testable consequences for the covariance structure of the LST-COM model, it
is necessary to introduce an additional assumption. Again, with respect to this assumption a more
restrictive variant of the LST-COM model is defined. LST-COM models that fulfill this assumption
will be called LST-COM model with conditional regressive independence (CRI). Based on the
additional assumption, it is possible to demonstrate that not all covariances between latent variables
in the LST-COM are permissible. These non-permissible (zero) covariances between the latent
variables of the LST-COM are discussed in Theorem 4.5. The total variance-covariance structure
of the LST-COM model is provided in Section 4.6.2. In addition, permissible covariances that
should be fixed to zero for parsimony are discussed. Finally, the interpretations of the admissible

(freely estimated) covariances of the latent variables in the LST-COM model are given.
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Definition 4.3 (The LST-COM model with conditional regressive independence)
M = <(Q,Q[7P),£t, 1I-{M7 tCMagtl;VIaCtv gMa 1;CM7C%VI7EI‘t7Et7ata)‘§7)\gM7)‘gM,)‘évIv

Acs /\?M,)\?M,)\?/I> is called a LST-COM model of (&5, fg%, S]]\g, §%k, Ceijt, (g%l, Cg%,
C%Cl)-congeneric variables with conditional regressive independence if and only if Definition
4.2 and Theorem 4.2 hold and

E (Yyjulpr, 018415 -0 PT3535 Yagijnny ) Yreijary)) = EYyijulpr, p1085,),8 (4.148)

E (K‘tij2l|pT7pT31 y s PTSsyPR>; PRS15-+-» PRSs» (}/t(ijkl)/)v (Yrt(ijQI)’))

(4.149)
= E(Yrtij2l |pTa prs;, pR7pRSl)7
E (Yo, 01815 s P188 > Yaijmry )s Yregigary))
(4.150)
= E(Yrtij2l |pT7 prs, )7
E (S4ijua|pT, PTS1 5 0 PTSs_1» PTS5110 5 PTS,) = E(SiijualpT), (4.151)
E (S'ftijkl|pT7pT51 5 "'7pTSs,1apTSS+17 <y PTS;PRyPRS15 s PRSs_1 7pRSs+1 ) "'7pRSl) (4 152)
= E(Srtijkl|pT7pR)’
where (i, j,k,1)' # (i,4,k,1).
= J

Remarks. The assumptions made in the above theorem (see Equations 4.148 to 4.150) can be
interpreted in the same way as the assumptions made in Theorem 2.2 in Chapter 2. The two
additional assumptions (see Equations 4.151-4.152) have important consequences for the uncor-
relatedness of the latent state-residual variables on both levels (rater- and target-level). Ac-
cording to Equation 4.151, it is assumed that the target-specific latent state variables Stijkl
are conditionally independent from other target-situations on different occasions of measurement
(PTS1 s+ PTSs_1»PTSs 1+ -+ PTS,) given the target (pr). In other words, different target-situations
that could be realized on other measurement occasions do not contain any additional informations
with respect to the expectations of the latent state variables S,,;;, above the target (pr) itself
(see also Eid, 1995; Steyer, 1988). Similarly, it is assumed that the rater-specific latent state
variables Sm'j . are conditionally independent from other rater- or target-situation on different
occasions of measurement, given the target (pr) and the rater (pr). The assumptions stated in
Equation 4.151 and 4.152 have important consequences for the independence of the latent state-
residual variables measured on different occasions of measurement [ and I’ (see also Eid, 1995;
Steyer, 1988).

4.6.1 Zero covariances based on model definition

By definition of the LST-COM model the following covariances are zero. Note that these
covariances/correlations must be fixed to zero in empirical applications.

( 0

Theorem 4.5 (Testability: consequences of model definition)

IfM = <(Q’?I7 P)agta HMv tCMvgi\/Ivgta RM7 tCMaCEVIaE!‘taEtvahA@)‘EMa)‘gMa)‘g/Ia
)\C,)\?M,)\?M,)\?/I> 1s called a LST-COM model with CRI, then forr € R, t € T, i,i' € I,
5,5 € J, k,k' € K, I,I! € L where i can be equal to 7', j to 5/, k to k' and | to l' but
(ijkl) # (ijkl)".

Uncorrelateness of latent residual variables:
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( N
Cov(Eyrs(ijonys Ereijary) = 0, (4.153)
Cov(Eyijkty, Ey(ijry) = 0, (4.154)
Cov(Ers(sjo1ys Ei(sjrry) = 0. (4.155)

Uncorrelateness of latent variables and latent residual variables:

Cov(&eirj, Erytijre) = 0, (4.156)
Cov(Eriia: Erytigrt) = 0, (4.157)
COU(ftz']'m Erytijr) = 0, (4.158)
Cov(&litjirrs Eqrytigrr) = 0, (4.159)
Cov(Geirjrrs Erytigrt) = 0, (4.160)
Cov(Catiars Ewrytight) = 0, (4.161)
COU(CUQV Erytijr) = 0, (4.162)
Cov(Ctj’k’lH E(rytijer) = 0. (4.163)
Uncorrelateness of latent trait variables and latent trait method variables:
Cov(&rijs Eniryra) = 0, (4.164)
Cov(&ij,&503) =0, (4.165)
Cov (&5, Ehir,) = 0. (4.166)

Uncorrelateness of latent trait variables and latent state (method) variables:

Cov(&sijs Girgrrr) = 0, (4.167)
Cov(&sij, Clrar) =0, (4.168)
Cov(&sijy Crar) =0, (4.169)
Cov(&tij, Ctjfk/l/) =0. (4.170)

Uncorrelateness of latent trait method wvariables and latent state (method)
variables:

Cov(&giins Grrrrr) = 0, (4.171)
COU(fmka Ct]’k/l’) =0, (4.172)
C’ov(ft”k, Ct_]’2l’) =0, (4.173)
Cov(Elw: Grigrar) = 0, (4.174)
Cov(&63 s Guirjrrr) = 0, (4.175)
Cov(€q, Comp) =0, (4.176)
Cov(ft”za tyzzt) =0, (4.177)
Cov(E]s, Chtn) =0, (4.178)
Cov(€ria, Geirgrr) = 0, (4.179)
Cov(E8N, i) =0, (4.180)
Cov(§ rtngaCtg’Ql’) =0, (4.181)
Cov(E4a, Crigrarr) = 0. (4.182)
Uncorrelateness of latent trait method variables:
Cov(&5s, i) = 0, (4.183)
COU(ftzgza g%"z) =0. (4.184)
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Uncorrelateness of latent state and state method variables:

Cov(Criji, i) = 0, (4.185)
Cov(ctijh thj'é\/ll’) = 07 (4186)
Cov(Griis Gregrar) = 0- (4.187)

Uncorrelateness of latent state method variables:

Cov(Ceiji, Cuigr) =0, VI#, (4.188)
OO”(C%WC%@V) =0, VI#£U, (4.189)
COW(Ctgzl aCtJQl’) =0, VI#£U, (4.190)
COU(Crtgzza <7"t_]2[’) =0, VI#£IU. (4.191)
~ J

Remarks. Note that in Equations 4.188 to 4.191 of the above theorem it was necessary to indicate
that both latent state-residual variables (;;;; and (57 were measured on different occasions [ and
I’. Hence, latent state-residual variables are only uncorrelated with each other if they pertain
to the same indicator i, same construct j, but different occasions of measurement [ and [’. For
example, latent state-residual variables may be correlated, if they belong to same indicator i and
same occasion of measurement [, but different constructs j and j'. In contrast to that, latent state-
residual variables are uncorrelated with any latent state-residual (common or unique) method
variable belonging to the same construct j, regardless whether or not both latent variables were
measured on the same or different occasions of measurement (see Equation 4.185 to 4.187).

Proofs. 16 Testability

Again, the following proofs are based on the above Definition 4.8 as well as the principle properties
of residual variables, namely that any expression of the form Cov[f(X), f(Y — E(Y|X)] equals zero
(see Steyer, 1988, 1989; Steyer & FEid, 2001; Steyer et al., in press).

4.153-4.153 The uncorrelateness of the latent residual variables has been already demonstrated in Chapter
2.6. Thus, the proofs will not be repeated again.

4.156-4.163 In Section 2.6 it was demonstrated that the latent state variables (Smkl and Srmzl) are
uncorrelated with any latent error variable (E,,, joery and B,y 3'21/) By definition of the LST-
COM, the following non-error variables (i.e. fn;kb 5751]21’ 5rt2]2l7 fmzw Etijkl, Ctl-jkl, Ctile’
C}«th\fm’ Ctzle’ kal) are functions of their correspondmg latent state variables pertaining to the
same indicator i, construct j, method k, and occasion of measurement | (see Definition 4.1).
Consequently, these latent non-error variables of the LST-COM model are also uncorrelated
with any latent error variable (Ey iy and B,y 50 ). A similar proof of the uncorrelatedness
between measurement error and latent non-error variables is shown by Steyer (1988).

4.164 (a) The latent trait variables measured by the reference method &;; are functions of &uijui,
given that:
&g — ikl
§tij = S PO
&ijkl

(b) The latent trait unique method variables Y., are functions of UM Vjror s given that:

rti’j
gUM
UM rti’ 5’2l
rti’§'2 )\UJV[ .
gl 121

(¢) Hence, Cov(Erij, €55a) equals zero, if Cov(Erijur, E5iap) equals zero.
(d) The covariance Cov(ftiju,fg%m,) can be expressed as follows:

Cov(ftijlz,éﬂ%/zz/) = Cov [E (E(i/tijll|pT7pTSL)‘pT) 7E(Yrti’j/2l’|pT7pR) - E(Ym'/jfzﬂpT)]
= Cov [E(YtijllU?T)a E(Yrti/j/m/ lpT, PR) — E(Yrti’j/Zl"pT)} .
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(e) Therefore, &ij1i is a (pr)-measurable function and YN Vo 18 a residual with respect to
the regressor pr. Given that residuals are always uncorrelated with their regressors (see
Steyer, 1988; Steyer & FEid, 2001), it follows that &;;1 and fg%/zz' are uncorrelated.

4.165-4.166 (a) Similarly, the latent trait method variables (i.e. §t112 and 5%-” are functions of 55]”2[[
and §n—jkl, given that:

EeM &M

tig2l tijkl

£t1,32 - )\CM ) gtz]k )\M :
£ij21 Etijkl

(b) Thus, Cov(&j, €55 ) and Cov(&ij, &)%) equal zero, if Cov(Eriju, €5 19;) and Cov(Eriju, €151
equal zero.

(¢) Given that &1, and &%y, are defined as

St”zl = ftmz - E(ftij2l|§tij1z) = E(Ym'jzz lpr) — E[E(Yrtij21|PT)|E(Ytij1l|PT)L
ftz’jkl = ftz‘jkl - E(fn’jkz\ﬁtiju) = E(Ytijkl lpr) — E[E(Ytijkl |PT)|E(Ytij1z\pT)]a
and the latent trait variables &iju are defined as E(Y,,;y|pr), it is clear that the latent

trait method variables fngQl as well as ff\{[jkl are defined as residuals with respect to
E(Y,;;1lpr). Therefore, the covariances Cov(gtij,fg%) and Cov(ftij,fg‘ék) equal zero.

4.167 (a) Again, &j is a function of {1 (see proofs above).
(b) The latent state-residual variables Cyr iy are functions of ik, given that

Crarj v

Cuvjrr = .
j )\Ci/j/k,/l/

(c) Thus, Cov(&ij, Crirjrrr) equal zero, if Cov(Eijir, Grrjrkir) equal zero.
(d) Again, &1 is a (pr)-measurable function (as explained in Proof 4.164).
(e) Cirjrwrrr is defined as residual with respect to pr, given that
Cti’j’k/l/ ESti/j’k/l/ - fti’j/k’l’
=E(Yiirjievlpr, prs, ) — EYirjoer|pr)-
(f) Hence, the latent state-residual variables Gy iy are defined as residuals with respect to
pr and &1 s o (pr)-measurable function. Given that residuals are always uncorrelated

with their regressors as well as with numerically measurable functions of their regressors
(see Steyer, 1988; Steyer & Eid, 2001), it follows that (i jriri and &ij1y are uncorrelated.

4.168 (a) &j is a function of &1 and ngzl/ is a function of Cg%/ﬂ,, given that

CUM

UM _ Srti’j’2l

rtj’ 2l — )\UM .
Ci'gr2l

(b) Thus, Cov(ftij,g‘%?fgl,) equal zero, if Cov({tiju,Cg%,zl,) equal zero.

(¢) The covariance Cov(&ijii, Cg%,zl/) can be rewritten as follows

UM
Cov(gtijlb UMrtz 1§21 T grti’j/Ql’)
UM
CO'U(ftijlh UMrtz ]'2[’) - Cov(gtijllv é-rtz ]’2[’)

(d) As explained above (see Proofs 4.156-4.163), &ij11 is o function of Sy;u and it has been
already shown that Syju is uncorrelated with all unique method variables UMY m’]'Ql’
(see Proof 2.94). In addition, it has been demonstrated that &1, is uncorrelated with
all latent unique method variables €Y Yoy (see Proof 4.164). According to Pmof4 164
it has also been shown that C’ov(ft”mﬁ%%,m,) 0. Therefore, it follows that m/ym/
is also uncorrelated with & 1;.

4.169-4.170 (a) &uj is a function of &1, and <t3’2l’ as well as Cg[,k,l, are functions of

CcM M
o Ctz 14121 M Ctz T§r R
Ctj’Ql’ - \CM s Ctj’k’l’ = 7)\1\/1 .
Cllj/Qll Cllj,k'll/
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4.171

4.172

4.183

(b)

(c)

(d)

(¢)

(f)
(a)

(b)
(c)
(d)

(¢)

(f)

(a)
(b)
(c)

(d)

(¢)

(a)
(b)

Therefore, C’ov({tij,gg,j\éfl,) and C’ov(ftij,gyk,l,) equal zero, if Cov(ftiju,Cg%m,) and

Cov(Eijut, Gyt jopryr) equal zero.

The latent variables Cg%m/ and C%j,k,l, are defined by:

cM
Crirjrarr =Crirjrarr — E(Cti'jlzl'Kti'j'u')a

M _
Cti'j/k/l' :Cn‘/j/k/l/ - E(Cti’j’k/l/Kti’j’ll’)‘

Therefore, Cg,l}/{zl, and C%j/k,l, are functions of Gy and Gy, Tespectively. Thus,
the covariances Cov(&iji, Cglj‘;{Ql/) and Cov(&ij11, C%j/k,l,) equal zero, if Cov(&iju, Ct,i/j/Ql/)
and Cov(&ijuis G gy ) equal zero.

According to Proof 4.167, it has already been shown that the covariances Cov(&iji, Cti/j/Ql/)
and Cov(&ijurs Gy jrgrp) Mmust equal zero.

Hence, the statements Cov(ftij,fg%) =0 and Cov({tij7§,f\{[jk) =0 are true as well.

§%k is a function of ft]\é_kl, given that

gM

M Stijkl

tijk — \M
)‘Eijkl

Crirjrrr is a function of Cuirjrir (see proofs above).
Therefore, C’ov(g%jk, Crirjrrr) equals zero, if and only if Cov(gtj‘{[jkl, Ceirjrirrr) equals zero.

The covariance Cov(ﬁt]\{[jkl, Cti/j/k/l/) can be rewritten as follows:
Cov [fm’jkz - E(ftijkl|§tij1l)7 Sti’j’k’l’ - fn’/j/k/l/] .
Given that f{‘{[jkl is a function of .1, the covariance Cov(ft]‘{[jkl, Cearjrirrr) 1s zero, if

Cov(ftima Sti’j’k/l/ - fn"j/k/z') =0,
Cov [E(Y;fijkﬂpT)?E(Y;:i’j’k’l/ |PT7PTS,/) - E(Yti’j’k’l’|pT)] =0.

Given that the latent trait variable ;.\, is defined as (pr)-measurable function and
the latent state-residual variables Cuyjipry are defined as residuals with respect to the
regressor pr, it follows that §%kl is also uncorrelated with Cyrjipry. The proofs for
Equations 4.175 and 4.179 follow the same principle and thus will not be demonstrated
here.

Again, 5%% s a function ofgggkl and Ct]‘f,k/l, is a function of Ct]‘z‘/'[j'k’l/ (see proofs above).
Therefore, COU(gil\fjk7Ctjj\'4/k/l/) equals zero, if Cov({%kl,gﬁfj,k/l/).

Again, Et]\{[jkl is defined as §y; 51y — E(&yjxl6ein), and (g{j,k,l, is defined as Curjriy —
E(Ceirjrirrr [Cearjrr)-

That means that f%kl is a function of &,y In addition, C,f‘i/{j,k,l/ is a function of
Crirgran -

M
Eeijrt = B (&pigral€eijnr) + &tija
M
Cti'j/ll/ = E(Cti/jlk/l/|cti/j/1l/) + Cti/j/k),l"
Hence, the covariance C’ov(&%jkl,(%j,k,l,) is zero, if the covariance Cov(ftijkl, Cti’j’k’l’)

is zero. In Proof 4.167 it has been already been shown that the covariance Cov(&,;ix1s Crirjrirrr)

must equal zero. It follows that the Cov(f%kl,g\ﬂj,k,l,) must also equal zero. Hence,
Equation 4.172 holds. The proofs for Equation 4.173, 4.174, 4.176, 4.177, 4.178, 4.180,
4.181, and 4.182 follow the same principle and thus are not demonstrated here.

f%k s a functions of f%‘kz and 5%%,2 is a function of ffft%m, (see proofs above).

- M UM . M UM
Accordingly, Cov(&;y,, &irgra) €quals zero, if Cov(&iiyy, irjrar) equals zero. The co-
variance Cov(f%kl,fg%,m/) can be expressed as follows:

Cov {&iji — E(&uijral i), fgt%‘/zl/}
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(¢) According to Equation 4.30 in Definition 4.1, it is possible to replace E(&ijri|eiji) by
Qiirl t Aeigribeijn-

(d) Given that the covariances Cov(Erijri, €5y ) as well as Cov(Eriju, E5150y) must equal
zero, according to Proof 4.164, it follows that the latent covariances C’ov(ft”kl, fm 7,21,)
must also be zero. The proof for Equation 4.184 follow the same principles and is
straightforward. Hence, this proof will not be demonstrated here.

4.188 (a) For alll # U, Guji is a function of (i and Cjir is a function of Cujrir (see proofs
above).
(b) Therefore, for all 1 # 1" Cov(Cuiji, Crijir) = 0, if Cov(Cijas Crirr) = 0.
(c) The latent variables (ijrr and Cuijrr are defined as follows:

Ctijil = Stijii — E(Stijrlpr),
Ctijitr = Stijurr — E(Stijrr|pr)-

(d) According to Equation 4.151 of the above Definition 4.3, it is possible to replace E(S,; 1, |pT)
by:
E (Stijk;l |pT7pT5'1 y ey PTSs_ 15 pTSs+1 PR pTSl) .

(e) Therefore, the latent state-residual variables (i and Cujpr are defined as residual
variables with respect to the same regressor pr (see also Steyer, 1988, p. 403). Thus,
Ctijkt and Cijrr are uncorrelated.

4.189 (a) For alll # U, (%cl is a function of Ct%kl and (%cl, s a function of Cz%‘kl’ (see proofs
above).

(b) Therefore, for all 1 # 1" Cov(¢y, Cr) = 0, if Cov(Cfyy, Ciipr) = 0.

(¢) The latent variables (%-kl and C%-kl/ are defined as follows:

M _
Cm‘jkl = Ctijkl - E(Ctijletijll)’

M _
Crigkrr = Cuijhrr — E(Ctijkl"(tijll’)'

(d) Given that C%—kl is a function of Gy and C%—kl, is a function of Gy, the latent state-
restdual method variables C%kl and C%-kl, are uncorrelated with each other (for alll #
I), if the latent state-residual variables Cy;;py and Gy iy uncorrelated with each other

(for alll £1).

(e) In the above Proof 4.188 it has been already been shown that the latent state-residual
variables Cy;ipy and Cyipy pertaining to different occasions of measurements | and ' are
uncorrelated with each other. Thus, the latent state-residual method variables Ct];/[jkl and
Ct]\i/ljkl’ are also uncorrelated with each other for all 1 # 1.

The Proof for Equation 4.190 follow the same principle and is straightforward. Thus, this
proof is not demonstrated here.

4.191 (a) For ajll # U, CHig is a function of CTMyy and CE13, is a function of (5, (see proofs
above

(b) Therefore, for alll # ' Cov((rtﬂl, Ht%l,) =0, if Cov(Cmﬂl, gf\jgl,) = 0.

(c) The latent variables Cm‘le and Cm‘pl/ are defined as follows:

UM
rtngl =UM, rtij2l — Ertij2l7

UM UM
rtig2l) = =UM, rtig2l) grtile"

(d) Hence, the latent variables Cgtf?zz and ¢GM. tijor ore defined as residuals with respect to the

latent variables fmﬂl and fﬂ%fm,, respectively. These regressor variables can be defined
as follows:

UM

rtij2l = E(Srtij21|pT>pR) - E(Stile lpT),

7[”]15?;'[21’ = E(SrtijQZ’ lpT,PR) — E(StijQI’ lpT).
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(e) According to Equation 4.151 of the above Definition 4.5, it is possible to replace E(S,;,|pr)
by:
E (Stijkl |pTapT5'1 y s PTSs_ 15 pTSs+1 FIEEES) pTSl) .

(f) Similarly, according to Equation 4.152 of the above Definition 4.3, it is possible to replace
E(Srtij2l|pTapR) by:

E (Srtijkl|pTapT5'1a "'7pTSS_17pTSS+17 <y PTS;»PRyPRS; > "°7pRSS_17pRSs+1 5 "'7pRSl) .

(g) Therefore, the latent variables g{f%]m and Cgf;gl, are defined as residual variables with
respect to the same regressor 5%%21 (see also Steyer, 1988, p. 403). Thus, Equation
4.191 holds as well.

4.185 (a) For alll # 1", Cuji is a function of (. and C%gz/ is a function of C%kl, (see proofs
above).

(b) Therefore, for alll £, C’ov(Ctjk“C%kl/) =0, i Cov((tijkl,ct]‘{[jkl/) =0.

(¢) The latent variables Grijia and C%-kl, are defined as follows:

Crijrl = Stijkl = &tijhis

M _
Ceighrr = Crigrrr — B (Gijrar [Ceajurr)-
(d) Given that Ct];-/gkl, is a function of Gy

M
Grijkrr = B (Cijrrr 1Crigrrr) + Cigrars

it follows the latent state-residual method variables C%kl, are uncorrelated with all latent
variables Gy, pertaining to different measurement occasions (I and l'), if the latent
state-residual variables ;. are uncorrelated with the latent variables Cy;ipyr -

(e) According to the above Proof 4.188, it has already been shown that the latent state-
residual variables Gy 51y and Gy, pertaining to different occasions of measurements [

and I are uncorrelated with each other. Thus, for alll # I, the latent variables C%—kl,
and Ctijkl are also uncorrelated with each other.

The Proofs for Equations 4.186 and 4.187 follow the same principle and are straightforward.
Thus, these proofs are not shown here.

]

4.6.2 Covariance structure: LST-COM model with conditional regres-
sive independence

In the following section the total variance-covariance matrix of the LST-COM model for three
indicators X two traits X two methods x three occasions of measurements is described. Similar
to the previous chapters, the total covariance matrix ) .. of size 36x36 (i.e., ijkl x ijkl) can be

decomposed into a within )y, and a between )5 matrix:
2=
T W B

As a consequence of the definition of the model, each of these matrices ) |y, and > | can be further
decomposed into a trait, state and residual matrix. This decomposition follows directly, given that
latent trait variables are uncorrelated with latent state-residual variables (see above Theorem 4.5).

Thus, the within )y, and between ) g variance-covariance matrices may be represented as

;:ZJFZJFZ, and D=4+

EW (W OW B (B (B 6B



CHAPTER 4. THE LATENT STATE-TRAIT (LST-COM) MODEL 122

>_ew refers to the within trait matrix, .y refers to the within state matrix, ),y refers to
the within residual matrix, 3 .p refers to the between trait matrix, » .p refers to the between
state matrix, and ) _,p is the between residual matrix. The within and between residual matrices
> ow and Y, are structurally equivalent to the residual matrices of the LS-COM and LC-COM
model. Therefore, the residual matrices of the LST-COM model are not represented in this section.
The within and between trait and state matrices > o, D cws 2_¢p» and ) .p are then further

decomposed into:

Z = Agw‘I’gwAgW, and Z = A(W(I’(\;VAEW,
EW W

Z = AgB(I)EBAgTBv and Z = ACB@CBA’EB.
B ¢B

Agw refers to the factor loading matrix for the trait-specific latent variables on the within level,
with Agw being its transpose, ®¢w is the variance and covariance matrix of the latent trait-specific
variables on the within level, A¢w is the factor loading matrix for the latent state-residual variables
on the within level, with ACTW being the transposed matrix, ®.w is the variance and covariance
matrix of the latent state-residual variables on the within level. In a similar way, the target-level
matrices are denoted by the subscript B for between level. Again, a two-dimensional index (j,1) is
defined similarly as described in Section 2.6.2. The index can take the following values in the given
ordering (1,1), (1,2),(1,3),(2,1),(2,2),(2,3). In addition, the function Pos((j,!)) which maps the
two-dimensional index (j,1) on its position p is defined. Then, the matrix Agw of size 36x6 (i.e.,
ijkl x ij) containing the factor loadings of the latent trait unique method variables UM, ;o is

given by:
6

Aew =D 13, @ Aew,,

p=1
22:1 refers to the sum over all constructs j and measurement occasions . IR& is a contrast or
dummy matrix for a particular combination of construct and occasion of measurement (e.g., j =1
and [ = 1). ® is the Kronecker product and A¢w,, is the within trait unique method factor loading
matrix of size 6x3 (i.e., ik x ). The contrast matrix Iﬁg, where p € N = {1,...,6} is defined as

6x2 matrix (i.e., j1 x j):

oSO O O o o o

o O o o o o

o O O o O =
o O o = O O
o = O O o o
o O o o o o
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5

o O O o o o

o ©O o o o O
S O = O O O

o O o o o o
= o o o o o

o O O o = O

Then, the within trait unique method factor loading matrix Agw, of size 6x3 (i.e., ik x i), where

the elements )\g%l, )\gz%l, )‘2]3%1 > 0 and all other elements are zero, is given by:

0 0 0
0 0 0
0 0 0
Aew, = .,
)‘fleZ 0 0
0 A&y 0
0 0 M,

Similarly, the within state unique method factor loading matrix Acw of size 36x6 (i.e., ijkl x jI)

can be defined: .

Acw =) T3 ®Acw,.

p=1
Iﬁ( refers to a contrast matrix of size 6x6 (i.e., jl x jl) where p € N = {1,...,6} with a one on

the p** diagonal element and zeros elsewhere, e.g. for p=2:

2 _

o O o o o o
o O o o o o
o O o o o o

o o o o o o
o o o o o o

o o o o = O

Again, the the within state unique method factor loading vector Acw, of size 6x1 (i.e., ik x 1) is

given by

ACWP - UM
/\§1j2l

UM
>‘C2j21

UM
)‘43]‘21
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Figure 4.3: Within variance-covariance matrix @y of the LST-COM, where 1=¢YM, 2=¢UM,

3=¢UM, 4=¢UM, 5=¢UM, 6=¢Y2,. Cells colored in dark gray indicate permissible and inter-

pretable variances and covariances among the latent variables.

The complete within covariance matrix of the latent trait variables ®¢w of size 6x6 (i.e., ij x ij)

can be represented as follows (see Figure 4.3):
‘I’gw =E [(V‘I”gw - E[V‘Pgw])(v‘Pgw - E[V‘I"gw])T] )

where Vg, refers to the vector of size 6x1 (i.e., ij x 1) including all latent trait unique method
s T .

factors on the within level, namely (£515, €310, €930, €50%0, £585,, €53%2) - Note that all covari-

ances and correlations between latent trait unique method variables are permissible (see Theorem

4.5). Consequently, Py does not contain zero-elements. In a similar way, ®cw is given by:
i)CW =E [(V‘I’gw - E[V‘?gw])(V‘I’gW - E[Végw])’r] )

where Vg, refers to the vector of size 6x1 (i.e., j1 x 1) including all latent state unique method
Shi UM UM UM UM UM UM N\T UM
factors on the within level, namely (CU1%,, 5351, ¢Yi%s, CUa%s, CEi%s. Clid4s) - Note that g2l
are assumed to be homogeneous across items, therefore the index 7 was dropped. In contrast to
‘I’vi the within variance and covariance matrix ®w of the latent state-residual variables Cg%l
of size 6x6 (i.e., jI x jl) contains zero-elements. The zero-elements (see Theorem 4.5) refer to the
correlations among the latent state unique method variables pertaining to the same construct j, but
different occasions of measurement [ and I', that is Cov(¢[}05, ¢53) = 0, ¥ 1 # 1" (see white cells
in Figure 4.4). Furthermore, it is also recommended to fix all of the following correlations referring
to associations between latent state unique method factors pertaining to different constructs j # j'
and different occasions of measurement [ # I’ to zero as well: Cov(¢09, CE3h) =0, ¥ 5,1 # 5/,1

(see light gray cells in Figure 4.4). In most empirical applications these correlations will be close

to zero, and therefore may be fixed to zero for parsimony.

The target-level matrices can be defined following a similar logic. First, the between latent
trait factor loadings matrix A¢g of size 36x12 (i.e., ijkl x jkl) containing the latent factor loading

onto the latent trait variables &; and ¢4 is given by:

6
Agg =) T} ®Acs,,

p=1
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Figure 4.4: Within variance-covariance matrix ® .y, of the LST-COM, where 1=¢Y2%,, 2=cYM |

3=CUM,, 4=CU,, 5=CU, 6=CY3L,. Cells colored in dark gray indicate permissible and inter-

pretable variances and covariances among the latent variables. Cells colored in light gray refer to
covariances that can be fixed to zero for parsimony. White cells refer to non-permissible covariances
among the latent variables.

for which the elements )\§1j1l7)\£2j117)\£3j117)\£1j217)\§2j217)\§3j217)\g%17 )\5021}/12“ )\%%l > 0 and all
other elements are necessarily zero. Iﬁg refers to a contrast matrix of size 6 x 2 (i.e., jl x j)
described above. Then, A¢p, is the matrix of the between factor loadings of size 6x6 (i.e., ik x

ik) which is given by:

Aeju 0 0 0 0 0
0 Aeju O 0 0 0
0 0 Aeju O 0 0
A¢p, = o
A¢ij21 0 0 Aéijal 0 0
0 Aegjzr O 0 MGy 0
0 0  IAejm O 0 A&y

In a similar way, the matrix A¢g of size 36x12 (i.e., ijkl X jkl) containing the between latent

state factor loadings of the common latent state variables (;;; and Cg% is given by:

6
A=) I} ®As,.

p=1

Again, IRC refers to the contrast matrix of size 6 x 6 (i.e., jl x jl) described above and A¢p, is

the between factor loadings matrix', represented by:

Aciju 0

Ac2j1i 0

Ac3j 0

A =

¢Bp Py )\CM
¢1j21 ¢1j21
CM
)‘C2j2l )‘§2j2l

CcM
/\C3j2l /\g3j21

INote that for the sake of simplicity, it is assumed that the latent state-residual variables Ctiji are homogeneous
across items. Hence, it is assumed that the latent state-residual variables (;;;; are measured by a common latent
state-residual factor (y;j;. The matrix ACBp refers therefore to the factor loading matrix of common (;;; and Cg%
variables. Note that this model differs slightly from the model in Definition 4.1.
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Figure 4.5: Between variance-covariance matrix ®.g of the LST-COM model, where 1=,

2=Eea1, 3=Cua1, 4=E1", 5=€R1", 6=ER1, T=Ena, 8=Crm, 9=Ess, 10=€Y, 11=€0Y", 12=¢33.
Cells colored in white indicate zero-covariances, cells colored in gray indicate permissible and in-
terpretable variances and covariances. Cells in light gray indicate covariances that should be fixed
to zero for parsimony.

The between variance and covariance matrix of the latent trait variables ®¢p of size 12x12 (i.e.,

ijk x ijk) is given by:
(I)ﬁB =E [(V‘I>§B - E[V‘I"gB])(V‘PgB - E[V‘PgB])T] )

where Vg, refers to the vector of size 12x1 including all latent trait unique method factors
on the between level, namely (§t11 Eia1, Eus1, €11 €1 €GBT s Eras Eusa, €187, €087, €635 ) As
a consequence of the definition of the model, all elements referring to C’ov(&tij,étijz) = 0 are
zero-elements. For parsimony reasons, it is recommended to also fix the elements referring to
Cov(&iryr ,{tzﬂ) =0, V1,5 #14,7 to zero. In Figure 4.5 the structure of the variance-covariance

matrix ®¢p is depicted.

The between variance and covariance matrix of the latent state factors ®.p of size 12x12 (i.e.,

Jkl x jkl) is given by:
(I)CB =E [(V‘I><B - E[V‘P(B])(V‘I’(B - E[V‘I><B])T] )

where Vg, refers to the vector of size 12x1 including all latent state factors on the between
level, namely (Qtlh(t%v{vCt21,CtC2%7Ct12,Cg%a4t22,<tcz%vCtl3,§g%7Ct23,Cg%)T- By definition, all
elements referring to Cov(Cyi, (i) = C’o*u(Ctjl,Ctﬂl,) = C’o*u((tm ,Ctﬂl,) =0, VI #IU are
zero elements. Again, for parsimony reasons, it is recommended to fix the elements referring
to Cov(Ctjl,Cg,AQ/Il,) Y 4,0 # j',I' to zero as well. Figure 4.6 illustrates the complete between

variance-covariance matrix for the latent state variables.
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Figure 4.6: Between variance-covariance matrix <I><B of the LST-COM model, where 1=(s1,

2=CiiM, 3=Cean, 4=, 5=Cina, 6=C{{5, T=Craa, 8=Cf233, 9=Cuiz, 10=C{135, 11=Co3, 12=(535.
Cells colored in white indicate zero covariances, cells colored in gray indicate permissible and
interpretable variances and covariances among the latent variables. Cells in light gray indicate
covariances among the latent variables that should be fixed to zero for parsimony.

4.6.3 Interpretation of non-zero correlations and correlations

In the following section permissible covariances between latent variables in the LST-COM model
with CRI are discussed. Some of the correlation coefficients may be interpreted as discriminant
validity or the generalization of trait and/or state method effects. Therefore, these latent cor-
relations are of practical significance. The interpretation of some of these correlations will be
illustrated briefly in the next section. Note that the correlation coefficients described below refer
to the LST-COM model illustrated in Figure 4.1. Hence, indicator-specific latent trait variables
(&nijs 609, €Ll and &)%) as well as indicator-specific latent state-residual ((,;;) variables are

assumed.

1. The correlations Cor(ftij, & j) between latent trait factors belonging to the same trait j, but
different indicators ¢ and ¢’ can be interpreted as degree of homogeneity of the indicators. If
these correlations differ from 1, then it can be concluded that the items measure different
facets or aspects of the construct. The correlations between the latent trait factors belonging
to the same indicator, but different constructs j and j' indicate discriminant validity with
respect to the reference method. Two different correlations can be distinguished: (A) The
latent correlations Cor(ftij, & j,) between trait factors of the reference method belonging to
the same indicator ¢ across different constructs j and 7. High correlations indicate low dis-
criminant validity with respect to the reference method. (B) The correlations Cor(&;;, 1)
between latent trait factors of the reference method belonging to different indicators ¢ and
i’ as well as different constructs j and j’. These correlations can be interpreted as dis-
criminant validity coefficients with respect to the reference method that are corrected for

indicator-specific effects.

2. The correlations Cor( g}g , 5/;42) between the latent trait common method factors of the

same construct j, but different indicators ¢ and i’ can be interpreted as generalization of
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common rater bias with respect to different indicators. If these correlations are close to
one, it is reasonable to define latent trait common method factors gg;” . The correlations
C’or(ft”2 ,§gj%) between the latent trait common method variables belonging to the same
indicator 7, but different constructs j and ;' indicate to which extent the common trait bias of
the interchangeable methods (that is not shared with the trait bias of the reference method)
generalizes across different constructs. For example, it might be interesting to know whether
or not peers consistently under- or overestimate the students self-ratings over time with regard
to two different constructs (e.g., depression and anxiety). The correlations C’or(gg}g €S ]/2)
between latent trait common method variables pertaining to different indicators ¢ and i’ as
well as different constructs j and j’ represent the generalization of the latent trait common

method bias across different indicators and different constructs.

3. The correlations Cor(E5My, €500), Cor(E5y, E5ths), and Cor (51, €5M5) between the
latent trait unique method variables can be interpreted in a similar way as the correlations
described before. However, these correlations reflect the generalization of stable unique rater
bias (i.e., the consistent deviation of a particular interchangeable rater from the common
view of the interchangeable raters) across different indicators, different constructs, or different

indicators and different constructs.

4. If other structurally different methods (e.g., teacher or parent ratings) are used, then the
generalization of stable common method effects (e.g., common peer bias) and stable method
effects (e.g., parent or teacher rating) can be investigated with respect to the following cor-
relations: COT(&&UQ ?gtz]k) COT(ftuQaftz k) Cor(gmz 7ftzg/k) and Cor(gmﬂ 7ftz’]'k) For
example, it might be interesting to know, whether or not teachers and peers consistently
converge in their judgments, and whether or not, these rater agreement can be generalized

across different constructs j and j’, and/or indicators ¢ and #'.

5. The correlations [Cor(&,;,£505), Cor(&,;, E851), Cor(Eug, §45), and Cor (&5, €0 51)] be-
tween the latent trait variables and the latent trait (common) method variables are admissible
by definition of the LST-COM model, if and only if both latent variables pertain to different
constructs j and j'. Therefore, these correlations may be estimated in empirical applications.
Nevertheless, these correlations are rather difficult to interpret and will be rather low in em-
pirical applications. Therefore, the correlations should be set to zero if possible. With respect

to the simulation study (see Chapter 6) these correlations were fixed to zero for parsimony.

6. The correlations between the latent state-residual variables may be investigated as well.
The correlations COT(Cm‘jlv Crirj ;) between the latent state-residual variables pertaining to the
same construct j, but different indicators ¢ and ', reflect the homogeneity of indicators with
respect to occasion-specific (momentary) influences. If these correlations are close to 1, this
indicates that the occasion-specific (momentary) influences are homogeneous across different
indicators ¢ and /. Hence, a latent state-residual factor may be construed. For parsimony,
latent state-residual factors were assumed for the simulation of this model. The correlations

Cor((tiﬂ,gﬁj,l) between latent state-residual variables belonging to different constructs j
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and j’ indicate whether or not occasion-specific influences of the reference method can be
generalized across different constructs. These correlations can also be interpreted as degree of
discriminant validity on the state-level. For example, it may be interesting to know whether
or not the child’s self-rated depression level at the first occasion of measurement is associated
with the self-rated anxiety level at the same occasion of measurement. The correlations
Cor(Cyijis Crirjry) between latent state-residual variables of different indicators i and 4" and
different constructs j and j' represent to what extent occasion-specific (momentary) influences

can be generalized across different indicators and different constructs.

7. The correlations [Cor( g%l, rtj’2l) Cor(Cﬂl ,Ct],zl) C’or((%kl,g‘;f,kl), Cor(Cg‘fkl,C%k,l), and

Cor((tjﬁl, C% w1)] between the occasion-specific and the method-specific effects might be stud-

UM UM

rijors Grejro) between the latent state-residual unique

ied as well. The correlations Cor(
method factors belonging to different constructs j and j’, indicate to what extent occasion-
specific and rater-specific effects can be generalized across different constructs. For example,
a particular peer may over- or underestimate a child’s depression level rated by all peers on
the first measurement occasion in a similar way as the child’s anxiety level rated by all raters
on the same occasion of measurement. In a similar way, the correlations Cor(Ctﬂl thJ’2l)
between latent state-residual common method factors pertaining to different constructs j
and j’ can be interpreted as generalization of the occasion-specific common view of the in-
terchangeable raters across different constructs. Of course, these kind of correlations (see

correlations above) may be also investigated with respect to structurally different methods

(k > 2) of different constructs j and j’.

8. Moreover, the occasion-specific common method effects of a set of interchangeable methods
may be related to the occasion-specific method effects of a structurally different method
i.e., Cor(¢S 1ol ,Ctjkl)] Again, these correlations between occasion-specific method vari-
ables pertaining to a set of interchangeable methods and occasion-specific method variables

pertaining to structurally different methods may generalize across different constructs [i.e.,

Cor (Gl » i)

9. Finally, the correlations [Cor((,,;, Ctjle) and C’or((tiﬂ, C%kl)] between the occasion-specific
effects of the reference method and occasion-specific effects of non-reference methods should
be fixed to zero for parsimony. Again, these correlations are difficult to interpret and will
often not differ significantly from zero. However, substantial correlations would indicate,
for example, that the momentary self-rated anxiety level of a child is associated with the
momentary peer-rated depression level of the child corrected for the self-reported momentary

depression level.
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4.7 General measurement equations and variance decompo-
sitions

In the following section the general measurement equations of the LST-COM models are derived.
Based on the definition of the LST-COM model different variance coefficients can be calculated.
In Theorem 4.4 it has been shown that these variance coefficients can be meaningfully interpreted.
As already discussed in the previous chapters the covariance structure of the latent variables of the
LST-COM model is essential for the decomposition of different variance components. In Theorem
4.5 non-permissible covariances that must be fixed to zero in empirical applications were discussed.
Based on these conditions the measurement equations as well as the variance decomposition of

LST-COM models are presented next.

Definition 4.4

M= {(Q,H, P), &, M, ¢EM M ¢ (UM ¢C ,(N,Ert,Et,at,)\g,/\gM,/\gM,/\é\/I,/\c,
ATM ACM MY s o LST-COM model with conditional regressive independent latent state
variables if and only if the statements in Definition 4.2 as well as the statements 4.41 to 4.49

of Theorem 4.2 hold, and:

T

§e = (5111 €tij o &pea)
UM _ ( UM UM )T
rt 11111 rtij2 abed2 )
CM _ ( CM CM)T
t 1111 tlj2 bde2) >
M _ T
t (51111 gtijk e gbcde) )
Gt = (C1111 Ctijl < Coear) "
UM _ ( UM UM )T
rt 11111 rtj2l abd2f) >
CM _
t ( 1111 j2l : deQf) )
M _
t (Cllll Ct]k‘l deef) )
Ert = (Brii111 -+ Breijor -+ Bapeazs)
E¢ = (B1i111 - Brijit - Bocdef) s
ay = (a1 - C Okl abcdef)Ta
Ae = ernnn - Agijir - - Aeedes)
UM _ T
)‘5 = ()‘51111 e )‘EUZI e fchf) )
CM _ T
)‘5 ()‘51111 U A&z]?l o Scd2f) ’
)\M—()\ oo \M M )T
E — E1111 Eijkl Eedef)
/\4 (/\gllll "')‘Cijkl "'>\Ccdef)T7
UM _ T
)‘C ( {1111“')‘C2J2l"' Cchf) )
CM _ T
)\q ( g1111"‘>\41325"‘ <cd2f) y
= )"

M _
A )\<1111 T )‘Cijkl T (cdef

Remarks. According to the above Definition 4.4, all indicators Y,;;1, belonging to the reference
method (k = 1), the same construct j, and the same measurement occasion ! measure a latent
trait §,;;, a latent state residual ¢, and an occasion-specific measurement error Ej; ;. All
indicators Y, ;; belonging to a non-reference method (k > 2) as well as construct j, and occasion
of measurement [ measure also a latent trait §;;;, a latent state residual (;; j1 as well as an occasion-
specific measurement error E,; ;1 In addition, these variables also measure a latent trait method
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factors f% . as well as a latent state method factors Ct];{[kl All indicators Y, 1tijor Pelonging to a non-
reference method (k = 2) as well as to the same construct j, and the same measurement of occasion
[ measure a latent trait §;;;, a latent state residual ¢, and an occasion-specific measurement error
E, ijo- Moreover, these observed variables also measure two indicator- and construct-specific
latent trait method factors, namely §m2 and §m]2, as well as two construct- and occasion-specific
latent state-residual method variables, namely &2/ o1 and M

2l The measurement equations of the
observed variables are given by:

t’LJll gtzg + Ctzgl + Etzglh (4192)
_ M M
Yiijw =i + )‘gijklfjij +Aj§ijk15tz’jk+ Vk>o, (4.193)
AcijriCeiji T AcijriCeikt + Lrijris
\UM
}/rtz]2l 7at132l + AEZ]Qlfttj + /\.ijZlthJZ §zj2l§rtz]2+ 4.194
UM (4.194)

AcijorGriji + >‘§7,j2l tJQl + )\4”21 rij2l T Ereijor-
4.7.1 Variance decomposition

Based on the above Equations 4.192 and 4.194, the variance of the observed variables can be
additively decomposed into the variance of the indicator-specific trait factors (;;;), variance of
the indicator- and trait-specific method factors (£% Ttl_]2’ 515”2 , Etl‘fjk), variance of the indicator- and
occasion-specific factors (Ctijl)7 variance of the common indicator-occasion-specific method factors

(Crt]?l’ Ct]Ql , Ct]kl) as well as the variance of the measurement error variables (E; i1, E,.;i07):

Var(Yuu) =Var(&y;) + Var(Cuy) + Var(Byy), (4.195)
=(Aeiga)Var (&) + (NG ja)*Var(€iz)+

()\5”21) Var(¢ mgz) (Acijar)? Var(Guji)+ (4.196)
(&2 Var(Goal) + (52 Var(Gaja) + Var(Epyja),
=(
(

) Var(itzg) ( §1jkl) Var(gtz]k)
)‘kal) V‘“"(Cm]l) (Aévfjkz)QVar(C%zH VE>2 (4'197)

VCL’I"( Ttl]2l)

Var(Yeje) =(Aeijr

VaT(Etijkl)a

Moreover, it is possible to define different variance components. First, the true intraclass coefficient

(ICC) can be defined on the basis of true-score variables pertaining to the interchangeable method

(Trtij2l):

()\Eijm)Qvar(ftij) ()\ﬁz]2l) VaT(gtsz) ()\Cij2l)2var(<m‘jl) ()\(zj2l) VaT(Cg%) '

I1CC(Tr4i501) =
(i) VC”“(Ym'jzl) - Var(ErtijQZ)

The true ICC coefficient represents the proportion of true-score variance that is determined by
consistent (stable) as well as momentary rater influences on the target-level. In other words, the
true ICC coefficient reflects the amount of true (stable as well as momentary) rater-congruency on
the target-level. That means that these true rater effects are free of single rater-specific influences.
Hence, the true ICC coefficients can also be interpreted as true amount of rater-consistency on
the target-level. Note that the true rater-consistency coefficient is calculated on the level of the
true-score variables and corresponds to the classical intraclass correlation (Hox, 2010; Luke, 2004;

Snijders & Bosker, 2011; Raudenbrush & Bryk, 2002). The true rater-consistency coefficient on the
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target-level can be further decomposed into a consistent [trait; ERC(T,452:)] as well as a momentary

[state; (RC(Trtijo1)] rater-consistency coefficient:

()‘Eiﬂl)QVW(ftij) (A @]2[) Var(ftzgz)
Var( thyZl) Va’r( rtijZI)

ERC(Trtijor) =

9

()‘ciﬂl)Qvar(Cnﬂ) (A Cz]2l) Var(ctﬂl).

CRC (Traion) =
(rtizer) Var( rtz]2l) — Var( rtile)

The true trait (§) rater-consistency coefficient reflects the amount of true stable rater-consistency
(i.e., free of rater-specific and occasion-specific influences). In contrast to that the true state
(¢) rater-consistency coefficient reflects the amount of true occasion-specific (momentary) rater-
consistency (i.e., free of rater-specific and trait-specific influences). In addition, it is possible to
define different trait or state specificity coefficients: (1) the true trait (§) specificity coefficient
and (2) true state (¢) specificity coefficient. The true trait (£) specificity coefficient represents the
proportion of true-score variance that is determined by stable (not occasion-specific or momentary)

influences and is given by:

Var(&,;)
S(74 ij ’
§S(Teiju) = Var(Yyq,) — Var(Ey )
£8(Tigu) = (Aeijr)*Var(E;) + (M) 2 Var(Ell,) ke

Var( tzykl) Var( tijkl) 7

(Aﬁiﬂl)QV‘”'(ftij) (A 5172l) Va?"(fmﬂ) (A 5”21) V‘“"(fmﬂ)

S rtij =
5 (th2l) Var( 7tu2l) - Var( 7'tij2l)

These coefficients may be of particular interest for researchers who seek to determine how much
variance of the true-score variables is due to stable (trait) influences. Conversely, researchers
may calculate the true state () specificity coefficient in order to investigate how much true-score

variance is due to occasion-specific or momentary influences:

Var((,.p)
¢S(m J ,
i) = Var( mll) VaT(Etiju)
CS(Tomt) = (ACijkl)Zvar(Ctijl) (>\42sz) Var(Ciﬁz) VES2
te - ) )
’ Var( tzgkl) — Var( tijkl)
CS(Tosijar) = (ACiJQl)ZvaT(Ctijl) ()\Czj2l) VaT(Cthl) (>‘4”21) Var( rt]2l)
rtig - .

VaT( th]2l) - V(l’/’( rtile)

The true occasion-specific (¢) specificity coefficient reflects the proportion of true-score variance
that is due to occasion-specific or momentary influences. The true trait (£) specificity coefficients

can be further decomposed into a trait consistency and a trait method specificity coefficient. In
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a similar way, the true occasion-specific ({) specificity coefficients can be further decomposed
into an occasion-specific consistency and an occasion-specific method specificity coefficient. With
regard to the trait consistency coefficients it is possible to investigate the degree of true convergent
validity on trait level, whereas the occasion-specific consistency coefficients reflects the degree of

true convergent validity on state level. The true trait (£) consistency coefficients are given by:

()‘ﬁijkl)Qvar(gtij)

ECON (T45511) = , YV k> 2,
(i) Var(Y;ijkl) - VW(Etijkl)
(Aeij l)QVC”"(fi'
ECON (Tpiijor) = Sk 1)

V‘W(ang‘zl) - Var(ErtijZZ).

Note that the trait consistency coefficients are only shown for the true-score variables belonging

to the non-reference methods. The square root of these true trait (£) consistency coefficients

[\V€CON(-)] can be interpreted as degree of true convergent validity on trait level. In a similar

way, the true occasion-specific (¢) consistency coefficients are defined as follows:
(Acijr)*Var(Cy)

CCON (Tiiji) = , VEk>2,
" V‘“”(Ksijkl) - Var(Etijkl)

(Acijor)?Var (¢, )
CCON (Triijor) = < L .
V‘”"(Ym‘jzl) - Va?"(Ertijzl)

The square root of these true occasion-specific (¢) consistency coefficients [\/(CON(-)] represent
the degree of true convergent validity on state level. The true trait (or occasion-specific) method
specificity coefficients represent the true (measurement error free) stable (or momentary) amount

of method bias. These coefficients are defined by:

(/\?f'kz)QVar(S%)
§MS(T"M)= J J s Vk>2,
" VC““(Ytijkz) - Va'r(Etijkl)

(A3 Var(€Gl)
VGT(Y;”]Q[) - Var(Ertile) )
AT N2V g (eUM
EUMS(Trtijor) = ( fzﬂzl) (&rij2) ’
Var(Y, o) — Var(E,a)

(M) Var(Gl)
CMS(Tijur) = ’ ] 7 R
( tij ) Va""(y;ijkl) — VCLT(Em‘jkl)

€CMS(Trtij21) =

MM N2V ar (CEM
CCMS(Triijo) = (Agija) (Cizat ) ’
Var(Y, o) — Var(E, o)

UM 2 UM
CUMS (Triijor) = (/\Q‘j2l) Var( Ttﬂl) |
’ Var(Y,ijo) = Var(E,;)

EM S(7yijk1) represents the proportion of true-score variance of Yy, that is determined by con-
sistent method-specific influences due to the non-reference method k. For example, with respect
to this coefficient it is possible to investigate the proportion of true variance that is due to con-

sistent (stable) over- or underestimations of the non-reference structurally different method (e.g.,
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supervisor) with respect to the reference method (e.g., employee’s self-report). ECMS(Trtij21)

reflects the proportion of true-score variance of an observed variable ij2

; that is determined
by consistent method-specific influences common to the non-reference interchangeable methods
k = 2. In empirical applications, {CM S(7,j21) represents the amount of true consistent (sta-
ble) over- or underestimations of the general view of the interchangeable raters (e.g., colleagues)
with respect to the target’s self-report (reference method). In contrast, UM S(7,4;521) denotes
the proportion of true-score variance that is due to stable single rater-specific influences. That
means that EUM S(7,4;521) represents the amount of true and consistent over- or underestimation
of a particular rater (e.g., colleague A) with respect to the general and consistent view of all in-
terchangeable raters (e.g., all colleagues for the particular target). This rater influence is unique
(specific) to a particular rater, thus not shared with other raters. The coefficients (M S(Tyi k1),
CCMS(Trtijor), and UM S(Tr4i521) can be calculated in an analogous way. These coefficients reflect

pure measurement-error free occasion-specific method bias. Finally, the reliability coefficients of

the observed variables are defined as follows:

Var(Ey;y;)
Rel(Y;:4;) =1 — LI
tn VGT(Ytiju)
Var(Eyjr)
Rel(Yyi1) =1 — LA V k> 2,
bkl V‘W(Yn‘jkz)
Var(E,;x)
Rel(Y ,..o1) =1 — Y
el mﬂl) V‘W(Ympl)
Consequently, the unreliability coefficients are given by
Var(Ey;q,)
Unrel(Y,:q;) = L
rtt Var(}/tijll)
Var(Ey ;)
Unrel(Yyi) = 2o, Vk>2,
Hkl Var(}/tijkl)
Var(E, ;)
Unrel(Y, i0) = AL
K Va’r(yrtijQZ)

4.8 Mean structure

This section concerns the latent variable mean structure of the LST-COM model. The following

theorem shows the consequence of the model definition for the observed and latent variables.

Theorem 4.6 (Mean structure)

IfM = <(Q’?Ia P)v§t7 H:Mv tCMvgtI:VIth’ RM7 tCM’d’v{’Ert’Et’at’/\ﬁ’)\gM’AgM’)\g/I’

>‘Ca )‘?Mv)‘(CMJ)‘Ig\/I> is a LST-COM model Of (gtijy fgjj\g; g%; g%k; Ctijl; C}«Jt%l; g%; Ct]\]{[kl)'
congeneric variables and without loss of generality, k = 1 method is chosen as reference method,
then the following mean structure holds for all r € R = {1,...,a}, t € T = {1,...,b},
iel={1,....,c},jeJ={1,....d}, ke K={1,...,e}, le L={1,..., f}:
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E(Yiijut) =0ijir + Aeijrr B (Eeiz), Vk>2, (4.198)
E(Y,pijo1) =0jo1 + Agijor B (tig)- (4.199)
E(Yyi1) =E (&) (4.200)
E(Ceiji) =0, (4.201)
E(£41) =0, (4.202)
E(&}y) =0, (4.203)
B(&l) =0, Vk>2, (4.204)
E((rgm) =0, (4.205)
E(¢Gat) =0, (4.206)
E (i) =0, Vk>2, (4.207)
E(Etiju) =0, Vk #2, (4.208)
E(Eptija) =0, (4.209)
where E(.) denotes expected value.

Proofs. 17 Mean structure
According to FEquation 4.192, the observed wvariable Y, ;1 measured by the reference method is
decomposed into:

Yiiiu = &tij + Ceiji + Eriju-
The expected value of Yiiju is

EYy1) = E(&uij) + E(Gigi) + E(Eriju)-

According to the Equations 4.201 and 4.208 in the above Theorem 4.6, it follows:

E(Ytz‘jll) = E(ftij)-

Equations 4.201 and 4.208 in the above Theorem 4.6 state that the latent state-residual variables
Ceiji as well as the measurement error variables Ey;j1; are defined as residuals. As a consequence of
this definition, it follows directly that these variables have expectations of zero (Steyer, 1989; Steyer
& Eid, 2001). Similarly, according to Equation 4.193, the observed variable Y, tijkl U decomposed
wmto:

M M M M
Yiiik = Quijrer T Aeijrabtis + Neijribtizn T AcijriCtigt + AcijriCeir + Etijkt-

The expected value of Yy, 15

E(Yii) = Eloyjn) + Eeijraéeii) + E()\gfjuf%‘k)
+ E(AcijriCeijt) + E(/\Cijklctjkl) + E(Etijrt)-
According to the Equations 4.201, 4.204, 4.207, and 4.208 of the above Theorem 4.6, it follows that

the expected values of the residual variables (yji, §%k, Ct%l and Eyjr are zero. Thus, the above
equation simplifies to (see Equation 4.198):

EYijr) = Qijia + Neijra o (i )-

Equations 4.201, 4.204, 4.207 and 4.208 follow by definition, given that Cuji, ft]‘{[jk, Ct%l and Eyj i
are defined as residuals (Steyer, 1989; Steyer & Eid, 2001). In a similar way, according to Equation
4.194 the observed variable Y, ;.o is

_ L ACM M
Yoiijor =ijor T Aeijubtis + Aeijuliize + 5”21@:&1]24‘

CM ~CM
AcijaiCtijl + Al + ng2lCrt]2l + Ertijor-
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Therefore, the expected value of Y,.,;0; s
E(Y,ij1) =E(ay01) + E(Neijiéeij) + E(Ag%lgtzﬂ) + E()‘EzJQI Z%jz)ﬂL
()‘Czj2lCt1Jl) + E()\CZJQlCtjzl ) + E()‘C'LJQl g&j\gl) + E(ETtiJQl)'

Again, the expected values of the latent variables 5,5”2, dft?j@, Ctijis Ctj%, g%l, and E,yj01 are

zero with respect to the above theorem, then the Equation simplifies to (see Equation 4.199):
E(Y,1i501) = Qijor + Aeijor B (Erig)-

Again, Equations 4.201, 4.208, 4.202, 4.206, 4.205 and 4.209 follow by definition, given that the
latent variables fnﬂ , §m]2, Ctijis Cg%, (g%l, and Eryjo1 are defined as residuals, and residuals
have always an expected value of zero.

]

Remarks. Equations 4.198 and 4.199 clarify that the means of the observed variables are equal
0 Qyipg + Aeijra B (Eeij) and a0 + Agioi E(&rij), Tespectively. According to Equation 4.200, the
mean of the latent trait variable is identical to the mean of the indicator pertaining to the reference
method. Equations 4.201 to 4.207 reveal the latent state residuals as well as the trait-specific and
state-specific method factors are defined as residuals and therefore have an expected value of zero.
The same holds for the measurement error variables (see Equation 4.208 and 4.209).

4.9 Identifiability

According to the following theorem, the parameter of the LST-COM model are uniquely iden-
tified for at least two indicators, two traits, two methods, and three occasions of measurement (i.e.,
2 X 2 x 2 x 3 measurement design). Again, the between covariance matrix of any LST-COM model
is identical to a restricted covariance matrix of the MM-LST (Multitrait-Multimethod latent state-
trait model by Courvoisier (2006) for the same dimension, and for which the measurement error
variances of the observed variables pertaining to the second method Y;;j2; have been fixed to zero.
Hence, the between variance-covariance matrix of the LST-COM model is a special case of the
variance-covariance matrix of the MM-LST model by Courvoisier (2006). The minimal condition
of parameter identification with respect to a MM-LST model is a 2 x 2 X 2 X 3 measurement design.
Thus, the parameter of a LST-COM model are also uniquely identified for a 2 x 2 x 2 x 3 mea-
surement design, if and only if the indicator specific latent state (method) variables on the rater-
and target-level are correlated. In cases of two indicators, two constructs, two sets of methods,
and two occasions of measurement (2 x 2 x 2 x 2 measurement design) the model is not identified
without further restrictions. As Courvoisier (2006) pointed out this model would be only identified
if the factor loading parameters of the latent trait variables are fixed to one, and the latent state

variables are homogeneous across items and substantially correlated.

Theorem 4.7 (Identiﬁcation of the LST COM covariance structure)

LetM_<(Q a[ P) §t U ) t 75{: 7<ta 7 t aCéVIaEl‘taEt7at7A AUM )‘CM )‘Ma

>\<, )‘UM )‘CM )‘M> be a LST COM model Of (6“]7 ftzg2 ’ 5tz]2 ’ gtzﬂw Ctth Crthlf Ct]Zl ’ Cg[kl)'
congenemc Uamables with conditional regressive independence, then the parameters of the ma-
trices peB, Aew, ®Pew, Acw, @gw, 20W7 AgB, P, AgB, (I’Q'B, EQW are identified, if
either one factor loading )\wkl, /\mkl’ Agzjzl; )\5”2” Acijkls )\Q]kl, >‘4m2l’ ’\CzJ2l for each factor
Etijr §t1,32 , frmw Ceijus Ctﬂl , Crtﬂl or the variance of these factors are set to any real value
larger than 0, and
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(a) iff it =2,5 >2, k>212>3 and Pew, Pew, Pen, PcB contain permissible in-
tercorrelations among the latent variables (i.e., nonzero elements in the off-diagonal),
otherwise

(b) iffi>3,j>1,k>3,1>3.

Remarks. According to the above Theorem 4.7 the LST-COM model parameter are uniquely
identified for the minimal condition of two indicators, two constructs, two sets of methods (one
structurally different and one set of interchangeable methods) and three occasions of measurement.
Given that the between covariance matrix ) g of the LST-COM can be seen as restrictive variant of
the total covariance matrix of the MM-LST model by Courvoisier (2006), the model identification
for the parameter with respect to the between covariance matrix ) g is shown by Courvoisier
(2006, chapter 5.4.11). The identification for the parameters of the within covariance matrix )
is demonstrated for the case of a 2 x 2 x 2 x 3 measurement design.

Proofs. 18 (Identification of ) ;) The following proofs concern the identification of the pa-
rameters of the within (rater-level) variance-covariance matriz Y . The identification of the
LST-COM model parameters on the target-level is demonstrated by Courvoisier (2006). Therefore,
it will be assumed that these parameters are known throughout the subsequent proofs. Note that
the parameters measured on the target-level will be used for identification without replacing them
by parameters of the observed variables. Moreover, parameters that are identified in previous iden-
tification steps will also not be replaced by parameters of the observed variables. As starting point
for the identification of the within variance-covariance matriz Y s, the measurement equation of
any observed variable pertaining to the interchangeable method is considered:

U]\/[
Y"'“J2l _at’bj2l + AEZ]QlftZ] + )‘57,j2l£t1j2 §z]2l§rtz]2+
UJV[
ACZ]QlCtlJl + AC1]21<t12l CzJ2lC7t_721+
Ertile'

For the subsequent proofs the zero-covariances among the latent variables of the LST-COM are
used (see Theorem 4.5).

Identification of /\g%l :

For any observed variables pertaining to the set of non-reference (interchangeable) methods Y, 1o
measured on the rater-level:

COU( rtij21, Yrtile’) )\57]21)\51321/‘/@7"(@1‘1]2)
Cov(Yrsijor, Yrtijor) = )\gmgl)\gmzszaT(frmﬂ)
According to Theorem 4.7 the first factor loadings of any latent factor in the LST-COM model is

set to one for identification purposes (see also Bollen, 1989, 2002). Hence, )\&]21 = 1. Substituting
this parameter value in the equations above as well as setting above equations equal, yields:

C y. o COU( rtzy?l;}/rti]?l’)
O'U( rtij21, rtij2l') - \UM

£i521

The equation above can be reformulated as follows:

\UM Cov(Yreijor, Yetijor)
Cov(Yriijo1, Yetijor)

€ij2l =

Identification of Var( mgz)

UM Cov(Yriijat1,Y, tu2l’)
Given that, Ag;o = Cov(Yreij21,Yrpijar)

and Ag%l =1 (see Theorem 4.7), it follows from that:

UM
Cov(Yrtijor, Yrtijar) =Aeiym AoV ar(Eisa)

_ Coy( rtzj2l7Yrtij2l’)V (€UM)
~ Cov(Yygijor, Yrtijor) T2
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Consequently,

Var( UtMQ) Cov(Yrtijo1, Yrtijoa) Cov(Yetijar, Yesijor) )
Tty CO'U( rtij2ls Yrtszl’)

Identification of Cov(E5Yy, EENs), where (i, ) # (i',5'):

Because of the zero-covariances between latent state-residual unique method variables (Y 1 ond
ng,gl, for all (4,1) # (3',1), it follows that

U]W UM
COU( thj21a}/7"ti’j’21/) *Agzjﬂ Ez’j/2l’cov(€rt1]27 rti’j/2)'

; UM __ Cov(Y,. tij21 s Yrtz]Ql”)
Given that, )\5”21/ = CTov(Vrtijor Yoeijorr) &

and AZ%l =1 (see Theorem 4.7), it follows from that

COU( th]?laYrtz’]’Ql’)CO'U( rtzg217Yrtij2l”)
COU( rtig2l’ Yvrtzg?l”)

UM
COU( rtlea rti/j’2)

Identification of Cov((rtﬂl, 7[45\'421)
Given that NN = 1, NX&M o = 1, AEN, = 1, A& oy = 1 (see Theorem 4.7) and given that the
covariance COU(g,’{Jt%27£%11\;[‘/2) has been identified (see previous steps), it follows from that:

\UM UM
Cov(Yrerjor, Yrerjear) = >‘<1g2 41]/2100”( rtj2la Tt]’2l)+)‘£1]2l glj/Ql'COU(frﬂ]Qa rtlj’2)'
Rearrangement of the equation above, yields:

UM ,UM UM
Cov( rtj2l rtj’QZ) Cov(Yrtrjo1, Yrtrjra1) — COU( Tt1]27 rtlj’2)'

Identification of /\Qﬂl
For two observed variables Y1121 and Yy4i501 measured on the rater-level, it follows that:

UM \UM \UM
Cov( rtnzl,Yrtijzl) = )\gnzz)\cijleO’U( rtlQlaCrtj2l) 51121 fzyZlCOU(frﬂlegrtsz)

Given that all parameters of the above equation are known, with the exception of )‘CUz%l’ it follows

that:

_ UM UM UM
Cov(Yre1121, Yotijor) = )\gijQzCO’U( rt120 rtj2l)
UM
\UM Cov(Yruiar, Yrrijar) — AgijoCov
Cigal = UM UM
Cov(Criiars rthZ)

UM
gzgzlcov( rt1127 rtij2)7

UM UM
( rt112>» rtij?)

Note that the parameters AgY5,, Cov(EfdTo, €M), and Cov(¢51%,,¢505) have been already iden-
tified in the previous steps.

Identification of Var( 7t]21)
For two observed variables Y1521 and Yriij01 measured on the rater-level, it follows that:

U]V[ UM
CO’U( Tt1]2l?Y7“tZ]21) - )\ﬁljZl)‘Q]lear( rt]2l) +)‘§1j2l 52]2lCOU( ’I"tle’ TtijZ)'

Rearrangement of the above equation yields,

COU( rtlj20, Y;’“jm) 51]21001}(57‘1‘/1]2’67‘1‘/1]2)

Var( g%l)

UM
AC1]2Z
Note that the parameters AZ‘%z’ Cov(f%lgz, TUtZQ) and /\Qﬂl have been already identified in the

previous steps.

Identification of Var(E, ;o)
For any observed variable Yy 501,
VCL?"( rtz]2l) ()‘ﬁij2l)2va7a(§tij) ()‘5U2l) (§t€%)
( &1]2[) VCL?"( T‘tlj2) ()\Cijm) Var(ctijl)+
()‘Czj2l) VaT(CtJQZ) ()‘CZJQI) Var((rt%l)+

Var( rtij2l)'
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Therefore, Var(E, ;o) is identified by:

V‘””(Em'jm) =Var(Yriju) — ()‘éiﬂl)zvar(ftij) (gcz%l) Var(ftzﬂ)
()‘Z%l) Var( rt132) ()‘Cile)Qvar(Ctijl)_

( Cz]2l) Var(Cthé\/l[) ( gUz%l) V(]//'( ’I”t]2l)

given that all other parameters are identified.

4.10 Measurement Invariance

Testing measurement invariance is crucial when fitting LST models to empirical data (see Geiser,
Keller, Lockhart, Eid, et al., 2012). In the next theorem, a LST-COM model with conditional

regressive independence (RCI) and strong measurement invariance (MI) is therefore defined.

Definition 4.5 (LST- COM model with RCI and strong MI)

M <(Q a[ P) €t7 UM7 t aét 7Ct7 UM) t 7 t 7Ert7Etaata)‘ AUM ACM AM A aA?Ma
ACM >‘M> is called a LST-COM model Of (gtz]7 gtz]2’ fmgz’ gtz]k’ Ctz_]l’ Ct]2l’ Crt]2l’ Ct]\j{lkl)_
congenemc variables with conditional regressive independence and with strong measurement
invariance if and only if Definition 4.1, Theorem 4.2, Definition 4.3 hold and for each
indicator i, construct j, method k and for each paz’r QGU')e LxL', (14U ) there is a constant
i, € R, a constant Aeiji € Ry, a constant >\€”2 € R, a constant /\5”2 € Ry, a constant
)\é\f]k € Ry, a constant A\¢iji € Ry, a constant )‘4212 € Ry, a constant )\032 € R, a constant
)\C”k € Ry, such that

Qtijk = Qtijhl = Qijkl’s (4.210)
Agijk = Agijkt = gk (4.211)
MGs = Mo = Ao (4.212)
Aeigs = Mo = Aeigos (4.213)
)‘éijk = )‘Eijkl = )‘gijkl” YV k>2, (4.214)
Acijk = Acijht = Acijktt (4.215)
AZ’% = )‘ngzz )‘g%l’v (4.216)
Neija = Aijor = Aigav (4.217)
)‘Cijk = )‘Cijkl = )‘é\gjkl’u YV k> 2. (4.218)




CHAPTER 4. THE LATENT STATE-TRAIT (LST-COM) MODEL 140

Box 4.1 (LST-COM Model)
Eijr target-specific latent trait variable of the (non-)reference (structurally different) method

§rijor Tater-target-specific latent trait variable of the non-reference (interchangeable) method

Crijry target-specific latent state-residual variable of the (non-)reference (structurally different)
method

Grijor target-specific latent state-residual variable of the non-reference (interchangeable) method

fg%fm rater-target-specific latent trait unique method variable of the non-reference (inter-
changeable) method

(g%[m rater-target-specific latent state-residual unique method variable of the mon-reference
(interchangeable) method

55%1 target-specific latent trait common method variable of the non-reference (interchangeable)
method

CSJ%IZ target-specific latent state-residual common method variable of the non-reference (inter-
changeable) method

ftj‘{fjkl target-specific latent trait method variable of the non-reference (structurally different)
method

C% w1 target-specific latent state-residual method variable of the non-reference (structurally dif-
ferent) method

ftz‘jkl = E(Stz’jkl lpT),

G = Stijkl — o

€9y, = B(UM,julpr,pR)
rtij2l = rtij21|\PT»PR),
CM _

Etijor = rijor — E(ftijzz|§tij1z)7
M _

Erijrt = Erijir — B(&ignal&rizn)s Vk>2,
UM _ UM

rtigol = UM, yi500 — Ebijors
cM _

Crijor = Crijor — E(CeajorlCeajue)s

Ct]\i/ljkl = Gt — B (GijralCrign)s VEk>2




Chapter 5

Formal definition of the latent
growth curve (LGC-COM) model

5.1 A gentle introduction

Over the last decades, latent growth curve (LGC) models have been increasingly applied to
social and behavioral data (Bollen & Curran, 2006; Ferrer, Balluerka, & Widaman, 2008; Hancock,
Kuo, & Lawrence, 2001; McArdle & Epstein, 1987; McArdle, 1988; Meredith & Tisak, 1990).
One of the main advantages of LGC models is that the shape of true intraindividual change
can be directly modeled, rather than modeled indirectly, as for instance with respect to latent
change models (Geiser, 2012). LGC models also allow relating true interindividual differences in
intraindividual change to manifest or latent background variables (e.g., gender, age, treatment
groups etc.) in order to explain interindividual differences in growth. Many researchers have
noticed the methodological similarities between models for measuring change (LC models), growth
(LGC models) and variability processes (LST models) in the past (Cole, Martin, & Steiger, 2005;
Eid & Hoffmann, 1998; Geiser, 2012; Tisak & Tisak, 2000). However, the methodological link
between LGC models and LST theory (Eid, 1995; Steyer et al., 1992) has just been recently
formalized in a work by Geiser, Keller, and Lockhart (2012). In particular, Geiser, Keller, and
Lockhart (2012) showed that first and second order LGC models represent a restrictive variant
of LST change models, where the change of the latent trait variables is modeled by a linear or
nonlinear function. Moreover, Geiser, Keller, and Lockhart (2012) showed analytically as well as
empirically (with simulation studies) why second order LGC models often outperform first order
LGC models. That is that in second order LGC models “true” change can be studied separately
from “true” occasion-specific as well as measurement error influences, which is not possible with
respect to first order LGC models (c.f Geiser, Keller, & Lockhart, 2012).

It is worth noting that the terms “first order LGC model” and “second order LGC model” can
be quiet misleading. The reason for that is that first order LGC models are generally based on one
single observed variable measured repeatedly over time (e.g., Hancock et al., 2001), whereas second
order LGC models require multiple (at least two) observed variables measured repeatedly over time
(e.g., Geiser, Keller, & Lockhart, 2012; Tisak & Tisak, 2000). Moreover, second order LGC models
do not always have to be specified as second order CFA models. For example, in Figure 5.1, model

F is graphically presented as first order CFA model. However, under specific conditions, model F

141
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becomes equivalent to model D, a second order LGC models. Hence, in this work the distinction
between single vs. multiple indicator LGC models is preferred rather than the general distinction
between first vs. second order LGC models. Many researchers have emphasized the advantages of
multiple indicator (or second order) LGC models (e.g., Chan, 1998; Geiser, Keller, & Lockhart,
2012; Ferrer et al., 2008; Leite, 2007; Murphy, Beretvas, & Pituch, 2011; von Oerzen, Hertzog,
Lindenberger, & Ghisletta, 2010). According to Geiser, Keller, and Lockhart (2012, pp. 3-4) the

main advantages of multiple indicator LGC models can be summarized as follows:

e Multiple indicator LGC models allow separating different variances components from one an-
other. That is, multiple indicator LGC models allow separating measurement error variance

from true change as well as reliable time-specific variance (see also Sayer & Cumsille, 2001).

e Multiple indicator LGC models allow testing crucial assumptions such as measurement in-

variance assumptions in longitudinal data analysis (see also Chan, 1998; Ferrer et al., 2008).

e Multiple indicator LGC models are more sensitive than single indicator LGC models for the

investigation of individual differences in change (see also von Oerzen et al., 2010).

e Multiple indicator LGC models allow separating indicator-specific (or method) variance from

construct variance.

In order to understand why multiple indicator LGC models often outperform single indicator LGC
models, the methodological links between latent change (LC) models, latent state-trait (LST)
models and latent growth curve (LGC) models are summarized again. The key steps for defining
second order LGC models are depicted in Figure 5.1. Model A in Figure 5.1 represents a latent
state model with strong measurement invariance, which is often used as baseline model. Strong
measurement invariance requires equivalence restrictions on the intercepts «;; and factor loading
parameters \; for each indicator belonging to different occasions of measurement (Meredith, 1993;
Widaman & Reise, 1997). As already shown in Chapter 3, any latent state (LS) model with strong
measurement invariance can be reparametrized into a latent change (LC) model. A data equivalent
latent change model is given in B of Figure 5.1. Latent change models allow studying the true
interindividual differences in intraindividual change with respect to the initial status. The formal
tautological restatement of a latent state model into a latent baseline (BC) change model is given
by the following equation:
Sy =81+ (S —S1) =S, + SPC

Again, with respect the latent difference or change variables SlBC it is possible to study true
interindividual differences in intraindividual change. The term “true” refers to the fact that the
latent difference variables are free of measurement error influences. In order to define a latent
growth curve model, it is necessary to assume that the latent change (difference) variables S£¢
pertaining to different measurement occasions [ and I’ follow a particular linear or non-linear
function. For example, if the true intraindividual change for each individual is assumed to be
linear for each individual, the relationship between the latent change (difference) variables maybe

rewritten as SP¢ = (1 —1)- S(]?fl). Hence, LGC models can also be seen as special case (or more
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restrictive variant) of latent change (LC) models, where researchers specify a particular function
for the true intraindividual change. The function of these individual growth curves can be linear
(I — 1) or non-linear [e.g., quadratic (I — 1)? or cubic (I — 1)3]. In order to define a second order
LGC model, it is useful to consider the basic concept of LST theory. According to LST-theory
(Eid, 1995; Steyer et al., 1992), latent state variables can be decomposed into a latent trait as well

as a latent state-residual variable. Generally, this decomposition can be expressed as follows:

Yy = Su + Ey,
Si = & + Ca,
Yi =& + Ca+ Ey.

The index i denotes the observed variables, whereas the index [ refers to the occasion of measure-
ment. Furthermore, &; refers to the latent trait variables, (;; to the latent state-residual variables,
and F;; the measurement error variables. The main advantage of LST models is that person-specific
influences (§;;), occasion-specific or momentary ((;;) influences and measurement error influences
(E;) can be separated from one another. This is not possible with respect to latent state (LS)
models, given that latent state variables in LS models consist of both stable as well as momentary

influences. Of course, LST-models may be reformulated into latent state-trait change version:

Yi = Su + Eu,

Sit = & + G,

i = & + (i — &in)s

Yi = &1+ (§a — &) + Cu + Eir.

With respect to latent state-trait change (LSTC) models it is possible to investigate true trait
change with respect to initial trait, while accounting for occasion-specific and measurement error
influences. In order to define a second order LGC model (that allows the separation of measurement
error variance from true change and reliable time-specific variance), it is assumed that the trait

change follows some linear or nonlinear function:

& = &1+ (& — &),
(G — &) =1 —=1) (&2 — &),
Yi=861+ (1 —-1) (&2 — &)+ Cu + Ea.

The structural similarities of LGC and LST models become obvious, if &;; is replaced by Z;; (for
intercept) and (&;2 — &;1) is replaced by S;; (for slope):

Yu=Zun+(1-1)-Su+Cu+ Fi. (5.1)

Again, the second order LGC model given in Equation 5.1 allows separating measurement error

influence from true trait change and occasion-specific influences. In addition to that, it is possible
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to test measurement invariance with x? difference tests. In summary, the model above encompasses
all advantages of a second order LGC model. Moreover, the model given in Equation 5.1 allows the
specification of indicator-specific intercept and slope factors. This is not possible for the models C
and D in Figure 5.1. In fact, these models implicitly make the rather restrictive assumption that
the intercept and slope variables belonging to different indicators i and i’ are perfectly correlated
with each other. However, if these assumptions hold, one may derive a second order LGC model

according to the following equations (see Geiser, Keller, & Lockhart, 2012):

Yi = oy +  \aSi + Eq,

Si=8+Gq,

G=&+ (& &),
G@-&)=0-1)(&-&),

Yio=ag+Aal6r+(—1) (& — &)+ Gl + Ea.

Therefore,

Yo=au+ i +(1-1)-S+ G|+ Eq. (5.2)

Note that the index 7 has been dropped from the latent variables Z;, §;, and (; in Equation 5.2 in
order to express that these latent variables are unidimensional. The model given in Equation 5.2
is represented in model D of Figure 5.1. Again, it is important to note that the model F in Figure
5.1 is data equivalent to model D and therefore also implies that the latent intercept and slope
variables pertaining to different indicators ¢ and i’ are linear functions of each other. Nevertheless,
this restriction can be relaxed, which is not possible with respect to model D in Figure 5.1. In the
following chapter, a latent growth curve model with indicator specific intercept and slope variables
for longitudinal MTMM data combining structurally different and interchangeable methods is
formally defined. This model will be called LGC-COM model and represents a restrictive variant
of the LST-COM model discussed in Chapter 4.

Measurement invariance and other necessary restrictions

Again, measurement equivalence across time is a crucial prerequisite for the application of
LGC models. If strong measurement invariance holds “true” interindividual differences in change
can be investigated with respect to the same latent variables (i.e., ensuring no changes of the
measurement with regard to the latent variables over time). The latent intercept variables in
the LGC-COM model represent the “true” average of the measured attribute at the first occasion
of measurement [ = 1. The variance of the latent intercepts variables represents the amount
of “true” interindividual differences with respect to the attribute measured at the first occasion
of measurement | = 1. Analogously, the mean of the latent slope variables may be interpreted
as general (average) growth of the measured attribute across different occasions of measurement.

The variance of the latent slope variables indicate the degree of “true” interindividual differences
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in intraindividual change of the measured attribute. Furthermore, the correlations between the
latent intercept and slope variables may be investigated. In order to estimate the latent means of
the intercept and slope variables, it is necessary to fix all intercepts of the observed variables oy
to zero and fix the latent factor parameters of the latent intercept variables Az;; to one. Figure 5.1
shows a LGC-COM model with common latent intercept, slope, trait, and state (method) factors.

Note that this figure does not incorporate indicator-specific latent variables for simplicity.
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A Latent State Model B Latent Change Model

E Latent State-Trait Model F Latent Growth Curve Model
1 A¢21 1 A¢22 1 A¢23 1 ; 3 A¢21 1 ; 3 A¢22 1 ; 3 A¢23
Yin || Yar | | Ya2
Ei -,

Figure 5.1: Possible ways of defining LGC models on the basis of multiple indicator LST and LC
models. Y;; = observed variables (i = indicator, = occasion of measurement). S; = latent state
variables, £ = latent trait variable, (; = latent state-residual variable, Z = latent intercept variable,
S = latent slope variable, E;;. For all model strong measurement invariance is assumed. Detailed
explanations are given in the text.
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Figure 5.2: Path diagram of the LGC-COM model with common latent intercept, slope, trait, state (method) factors.
The LGC-COM model with common latent factors incorporating three indicators (i=1,2,3), two constructs (j=1,2), two methods (k=1,2) and three occasions of
measurement (1=1,2,3). For the sake of clarity, all latent variables of the model are represented by common latent factors. All factor loadings as well as correlations
between latent variables were omitted for clarity. Measurement error variables E,;;;; and Ey i are only depicted for the first indicator pertaining to method 1 and 2.
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5.2 Definition of the LGC-COM model

( 0

Definition 5.1 (LGC-COM model)

The random variables {Yi111115 -+ Yorijiir -+ Yabedesd 04 {Yi11115 -+ Vet - -+ Yoeder f OP
a probability space (Q,%, P) are variables of a LGC-COM model if and only if the conditions
(a to f, except for c) of Definition 4.1 with conditional regressive independence (see Definition
4.8) and strong measurement invariance (see Definition 4.5) hold.

(a) Then, without any loss of generality the latent trait variables &5 pertaining to the ref-
erence method k = 1 and measurement occasion l, where l > 0 can be further decomposed
into an initial trait variable &1, and a latent trait change variable (§,;;1; — &5511)¢

&iju = Eajnn + Cejur — &eijia)s (5.3)
which are also random variables on (A, P) with finite first- and second order moments.

(b) For each indicator i, construct j, measured by method k and for each |l € L, wherel > 0
there is a constant 6;jpq—1) = (I — 1), such that

(ftz‘jll - ftiju) = 5ijk(l71)(£tij12 - ftz’jn)a (5.4)

and for all indicators pertaining to Eriju (see condition b in Definition 4.1), the intercepts
Q1 0re constrained to zero and the factor loadings A, ;) are constrained to one.

(c) Finally, let eij11 = Ty and (ftz‘ju - §tij11) = Stij'

Remarks. According to the conditions made in Definition 5.1, it is clear that the LGC-COM
model is defined as a restrictive variant of a LST-COM baseline change model. With respect
to Equation 5.3 each latent trait variable can be decomposed into an initial latent trait variable
§1j11 and a latent trait change or latent trait difference variable (§;;;1; — &§;;;11)- This tautological
decomposition cannot be falsified empirically. With respect to Equation 5.4 it is assumed that any
latent trait change variable (£;;:1; — &§y;;11) 18 a linear function of (§;;;15 — &§;511)- For example, the
latent trait change from the first to the third measurement occasion is two times the latent trait
change from the first to the second measurement occasion:

(gtij13 - gtijll) =2- (gtij12 - gtijll)-

For simplicity, it is assumed that the shape of the true intraindividual change (d;;x—1)) is linear
for the remaining chapter. However, non-linear (quadratic or cubic) growth functions may also be
defined as follows:

(&rijur — &) = Oijra—1) (Erijrz — i) + 055001y Erijrz — Erignn),
=4

(
(&rijur — Erijin) = Gijra—1) Erijrz — i) + 61y Erijrz — i) + 05501y Erijrz — Erignn)-

Moreover, it is important to constrain each intercept oy, to zero and each factor loading Aeijkl
to 1. As a direct consequence of these constraints, the latent regression simplifies as follows:

E(ﬁtijkﬂfn‘ju) = Q51 + )‘gijkl [fn‘ju + 5ijk(l—1)(fn‘j12 - gtijll)]'

If Qtijkl = 0 and )‘gijkl =1 as well as fn‘ju = Ztij and (5tij12 - ftiju) = Sy, then

ij
E(&iinliiji) = Ziij + 0ije—1)Sej-

Given that the LGC-COM model can be derived from the LST-COM baseline change model by

imposing additional constraints with respect to the intercept and factor loadings, all psychometric

statements with respect to existence, uniqueness, admissible transformations or meaningfulness
follow directly from the definition of the LST-COM model.
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5.3 Testability

As stated above, the LGC-COM model represents a restrictive variant of the LST-COM model
with conditional regressive independence (CRI) and strong measurement invariance (MI) (see Def-
inition 5.1). Therefore, the covariance structure of the LGC-COM model is almost equivalent to
the covariance structure of the LST-COM model provided in Section 4.6.2. The only differences
between the covariance structure of the LST-COM and the LGC-COM model refer to the addi-
tional restrictions made with respect to the covariance matrix » g in the LGC-COM model. The
following theorem summarizes the additional restrictions of the LGC-COM model. Figure 5.3 illus-
trates the latent covariance matrix ®.g of the LGC model. For simplicity, the following covariance
matrix is solely discussed for LGC-COM models with two methods (i.e., a structurally different
method k£ = 1 and a set of interchangeable methods & = 2). The extension of the LGC-COM

models to three or more methods can be easily done as discussed in the previous chapters.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 5.3: Between variance-covariance matrix ®.g of the LGC-COM model, where 1=7;1,
2=Ty91, 3=Ti31, 4=8u11, 5=8s21, 6=8i31, T=Eq1%, 8=Eo1%, 9=E515, 10=T412, 11=T42, 12=T;3,,
13=812, 14=S890, 15=839, 16=¢53%, 17=¢508 18=¢G0 . Cells colored in white indicate zero
correlations, cells colored in gray indicate permissible and interpretable correlations. Cells in light
gray indicate correlations that should be fixed to zero for parsimony.

Theorem 5.1 (Covariance structure)

Let M = <(Qu a’ P)aztvsh HMa tCMaftl-,vj:a Ctu HMa EMv C%\/Iv Ertv Eh 6: )‘?M’ ’\gMa )‘]é\/lv
/\47)\?M’>\EM’>\2/I> be a LGC-COM model Of (ggjj\g’ &S_jﬂgi gt]\i/ljk: Ctijl; Cf«{f%l} Cg%; Ctjglkl)'
congeneric variables with conditional regressive independence and strong measurement invari-
ance (see Definition 4.5). Then, with respect to a 8x 2x 2x 8 measurement the total variance-
covariance matrices of the LGC-COM model is equivalent to the variance-covariance matrices
of the LST-COM model, expect for the between trait matriz Zng which is constraint such
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that:
> =Ap®EA%.
(B
A¢B refers to the between factor loading matriz of size 36x 18, AgB is the transposed matriz
and ®¢p refers to the between covariance matriz of size 18x18. Furthermore, A¢p 1is given
by:
Agg =) T} ®Acs,

where Y refers to the sum over all constructs j and measurement occasions l. IR& refers to
the contrast matrix of size 6X 2 equivalent to the contrast matriz presented in Section 4.6.2, ®
refers to the Kronecker product and A¢g refers to the factor loading matriz of size 6x 9, which
s given by

1 0 0 dyia-1 0 0 0 0 0
010 0 82j10-1) 0 0 0 0
A — 00 1 0 0 83510-1) O 0 0
BT 1 0 0 ooy 0 0 MM 0 0
01 0 0 82j2(1-1) 0 0 A% 0

0 0 1 0 0 S352(1-1) 0 0 A&

The latent between variance-covariance matriz ®ep of size 18x 18 is given by:
‘ﬁgB =E [(V‘I"EB - E[V‘PEB])(V‘PgB - E[V‘I"sB])T] )

where Vg .y refers to the vector of size 18x1 including all latent intercept, slope, and trait
common method factors on the between level. Specifically, V&, g is then given by:

CM ¢CM CM \T
Ti11,Zi21, Le31, Stan, Seo1, Si31, §119» Eia19- §i312+
CM 2CM (OM

Zi12, Lt22, Lt32, St12, Sta2, St32, £, E2, Er3oa-

Furthermore, Vr e R,teT,1€l,jeJ, ke K:

Cov(Lyij,6575) =0, (5.5)
Cov(Stij, €579 ) = 0. (5.6)

All other matrices of the LST-COM model (i.e., Aew, ®ew, Acw, Y gw: AcB, BB, D o)
remain unchanged.

Remarks. According to the above theorem, the covariance structure of the LGC-COM model
differs from the covariance structure of the LST-COM only with respect to the covariance matrix
Z§B~ Specifically, it is stated that the LST-COM model matrix of the loading parameters A:p
is restricted in such a way that the latent trait factors &;; are decomposed into a latent intercept
factor Z;11 and a latent slope factor S;11. Note that the covariance matrix of the LGC-COM model
is only represented for two method, not three. However, if another structurally different method
k = 3 would be present, the covariance matrix of the LGC-COM model could be easily extended in
a similar way as discussed in the previous chapters. The covariances (correlations) among the latent
intercept and latent slope factors are permissible in the LGC-COM model. However, the covariances
between the latent intercept and/or latent slope factors and the latent trait method factors 5%1”2[
pertaining to the same indicators and same constructs are not permissible (see Equation 5.5 and
5.6). In addition to that, the covariances between the latent intercept and slope factors and any
other latent trait method factor 5% i are zero as well. For parsimony, it is recommended to fix the
covariances between the latent intercept and slope factors and the latent trait (common) method
factors pertaining to different indicators ¢ and i’ as well as different constructs j and j’ to zero as
well.
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Proofs. 19 Testability: consequences of model definition

5.5 Given that Ly is a function of {11, and C’ov(ftiju,fg%m,) is necessarily zero (see Proof
4.165), it follows that COU(Itij,gg%2) =0.

5.6 Similarly, given that Syj is a function of &uju, and Cov(ftiju,ft(’;/}/{m/) 18 mecessarily zero
(see Proof 4.165, it follows that Cov(Stij,Eg/}%) =0.

In a similar way, the proofs for Cov(Zy;;, 5%;‘/1@) =0 and COU(Stij,ftI\i/{j/k/) =0 can be shown,
given that Ip;; as well as Sy; are functions of &1, and Cov(&zij, fg{j,k,) s necessarily zero
(see Proof 4.166).

5.3.1 Interpretation of non-zero covariances and correlations

In the following section, the permissible non-zero correlations in LGC-COM models are dis-

cussed.

1. The correlations Cor(Z,;;,Z;; ;) between the latent intercept variables belonging to the same
construct 7, but different indicators 7 and i’ can be interpreted as degree of homogeneity
with respect to the indicators at the first measurement occasion (the initial status). If these
correlations are close to one, a common intercept factor may be defined. The correlations
between the latent intercept variables belonging to different constructs j and ;' indicate
discriminant validity with respect to the reference method at the first measurement occa-
sion (initial status). Again, two different correlations can be distinguished: (A) The latent

1,

correlations Cor(Z, ) between the latent intercept variables of the reference method be-

ijs Lig!
longing to the same indicator i across different constructs j and j'. And (B) the correlations

Cor(Z,;;,Z,, ;) between the latent intercept variables of the reference method belonging to
different indicators ¢ and ¢’ as well as different constructs j and j’. Both correlations indi-
cate the generalization of the true initial status as measured by the reference method across
different items and/or constructs. A vivid example may be that the level of self-reported lead-
ership quality measured on the first occasion of measurement may be significantly correlated
with the level of self-reported communication skills on the first occasion of measurement.
Thus, high leadership quality as measured by the reference method on the first occasion of
measurement might be positively associated with high communication skills as measured by

the reference method on the first occasion of measurement.

2. In a similar way, the correlations Cor(S,,, S, j) between latent slope variables belonging to

ij
the same trait 7, but different indicators 7 and ¢’ can be interpreted as degree of homogene-
ity with respect to the indicators. Again, correlations close to one indicate that a general
slope factor may be specified instead for parsimony reasons. The correlations C’or(Stij7 Stij,)
between latent slope variables belonging to different constructs j and j' indicate discrimi-
nant validity with respect to the reference method across different occasions of measurement.
High positive correlations would indicate low discriminant validity in the growth among two

constructs. For example, the linear (or non linear) growth of leadership quality as measured

by the reference method might be positively related to the linear (or non linear) growth of
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social competencies as measured by the reference method. Again, it is also possible that

these correlations may generalize across different items and constructs [i.e., Cor(S,;;, Sy ;1)]-

3. The correlations between the latent intercept and slope variables Cor(Z,;;,S,;;) of the same
indicator and same construct can be interpreted as the strength of the association between
the initial status at T1 as measured by the reference method and the linear (or non linear)
growth of a construct across time measured by the reference method. For example, high
positive correlations indicate that higher initial statuses are significantly associated with a
stronger increases in the linear (or non linear) growth as measured by the reference method.
Negative correlations indicate that higher initial statuses are associated with stronger declines
in the linear growth as measured by the reference method. With respect to the previous ex-
ample, it might be reasonable assuming that higher leadership quality measured by the refer-
ence method (e.g., self-report) at T1 are negatively associated with the linear (or non linear)
growth of leadership quality measured by the reference method. Again, these correlations may
be also be investigated for latent intercept and slope variables that pertain to different indi-

), Cor(Zy;:,Syi40), Cor(Z,;:,8,;0:1)]. For

cators, or different constructs, or both [i.e., (Z,;:, S, tij> Stijr tijs Stir jr

tijr Oti'j
example, it might be interesting investigating whether or not low communication skills mea-
sured by the reference method at T1 are on average significantly associated with a stronger

increase of leadership quality as measured by the reference method (e.g., self-report).

5.4 General measurement equations and variance decompo-
sitions

In the following section the general measurement equations of LGC-COM models are discussed.
Again, based on the definition of the LGC-COM model different variance coefficients can be defined.
Given that the LST-COM model is a special case of the LGC-COM model the meaningfulness of
these coefficients has already been demonstrated in Theorem 4.4. In addition, the independence of
the LST-COM latent variables has already been shown in Theorem 4.5. In the following Definition
5.2 a LGC-COM model is defined based on the definition of the LST-COM model. Next, additional

variance coefficients that could be studied by researchers are discussed.

Definition 5.2 (Definition 2)
Let M = <(Qa g[a P)a §t7 }{:Ma SMa 5%\47 Cta HMv EMa C%VI’ El‘ta Et7 Qg Aga A?M’ )\?M’ )‘g/la )‘Cv
)\?M, )\?M, )\2/[) be a LST-COM model with conditional regressive independence, strong mea-
surement invariance, and:

Iy = (1111 e ‘Itij e 'Ibcd)T,

St = (S111 Sy Sbea) ™

6 = (61111 Gijk(1-1) ** * Oede(f—1)) -

Then, M= <(Qaa[,P)aIt78tv ng Evatl;VItha II-ng tCM7 %\A7ErtuEt767 )\?M,AngAév[v
)\C,/\?M,AEM,)\?/I> is called a LCG-COM model, if and only if the statements a to c in
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Definition 5.1 hold. Note that all other latent variables of the LST-COM model (see Definition
4.4) remain unaltered.

Remarks. According to the above Definition 5.2, all indicators Y,; ;1 belonging to the reference
method (k = 1), the same construct j, and measurement occasion | measure a latent intercept
factor Z,;;, a latent slope factor Stij weighted by a constant d;;1,—1), a latent state residual (5
and an occasion-specific measurement error Ey;;1;. All indicators Ytij 1 belonging to a non-reference
method (k > 2), construct j, and occasion of measurement | measure also a latent intercept factor
Z,;;, a latent slope factor S,;; weighted by a constant d;;x—1), a latent state residual ¢ as well
as an occasion-specific measurement error Fy;;i;. Besides that, all of these indicators also measure
a latent trait method factors §t2 . as well as a latent state method factors Ct%l' All indicators
Y,.iijo belonging to the non- reference method (k = 2) as well as to the same construct and same
measurement of occasion | measure a latent intercept factor Z;;, a latent slope factor S;; weighted
by a constant d;5(;—1), a latent state residual (5 and an occasion-specific measurement error Ey;j1;
and above that, two indicator-and construct specific latent trait method factors, namely gg}g and
57%?]42, as well as two construct and occasion-specific latent method state variables, namely Cg%

and (ﬁi%l. Therefore, the measurement equations of the observed variables are given by:

Yiiju =Zyj + 0ij10-1)Stij + Ceigi + Erigut, (5.7)

Yiijet =Lyij + 0iji(i—1)Stij + NearijraéMeijet
AcijriCtigt + AearijiCMeji + Etij,

Yitijor =Ly;; + Oijoq—1)Su; + 52321515132 52J215mp+

cM
AcijrCtijt +>‘§z]2l t521 +>\gz]21 rt]2l + Ertijar-

Vk>2, (5.8)

(5.9)
Note that d;j1-1) equals zero for indicators pertaining to the first measurement occasion.

5.4.1 Variance decomposition

According to the above measurement Equations (see Equation 5.7 to 5.9) as well as the state-

ments in Theorem 4.6.1, the variance of the observed variables (indicators) can be decomposed as
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follows:

Var(Yig) =Var(Zy;) + (610-1))2Var(Sy;)+
2(5”1”_1))00@(115”7Stzj) (510)

Var(Giji) + Var(Egju),

Var(Yiije) =Var(Zy;) + (6ijk(l71))2va7'(8tij)+
2(0ijk(1-1))Cov(Lyiz, Spij)+
(A gmkl) Var(ft”k) V k> 2, (5.11)
()\Cijkl) VaT(Ctijl) (/\gmkz) VC”"(Q;M)

VaT(Etijkl):

Var( rtﬁﬂl) =Var(Z, tzg)+(5ijk(l—1))2Va7"(Stij)+
2(61’]’1@(1—1))00'0(1 Stz])

tig>

()\fz]2l) Valr(é.tz]Q) (Aﬁz]ﬂ) VCL’I"( 7Ut7{\212)+ (512)
()\Ciﬂl) Var((tijl) (/\gzgm) VC”“(Q%\?[)"‘

()‘QJZl) Var( Tt]2l) + Var(E,ijo)-

Similar to the coefficients proposed in Section 4.7.1 of the previous chapter, it is possible to define
different variance components such as true ICC coefficients, reliability coefficients etc. In fact, most
of the coefficients presented in the previous chapter remain unaltered, given that the LGC-COM
model represents a restrictive variant of the LST-COM model. However, given that latent growth
curve models assume that the variance of any observed variable increases in a non-linear form

[due to the expression (8;j5(-1))*Var(Sy;) + 2(6;jk0-1))Cov(Z,5, S

tij>Stij)]; it is not recommended to

compare different variance ratios across time points. For example, the reliability coefficients of an
observed variable may increase over time, given that latent growth curve models implicitly assume
that the interindividual differences in intraindividual change increase over time points. This can
be seen by computing the variance of reference indicators pertaining to different time points, while
holding the error variance of the indicators [e.g., Viar(E¢;j1;)] constant:

Var(Yuj) = Var( tw) +0- Var(Sti]) (2- O)Cov(Im,Sm)

Var(Ceji) + Var(Egiju),

Var(Yiji2) = Var( t1])+1~Var(Stij) (2-1)Cou(Z, Stw)

tigo

Var((uije) + Var(Erijiz2),
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V(J/I“(Y;gijlg) = VCLT‘(I

tij

Var(Cujs) + Var(Eji3).

)+ (22)Var(8tij) +(2-2)Cov(Zy;;, i)+

tig>

Researchers who are interested in investigating the psychometric properties of their measures
across time points may rather compare the amount of residual variance of the observed variables
Var(Eju), Var(Ej k), Var(Erj )] than compute reliability coefficients.

Nevertheless, in addition to the coefficients proposed in the previous chapter, an additional

coefficient for studying true consistency and true trait change is introduced:

Var(Z,;) + Gijia-1))*Var(S,;) + 2(0i10-1))Cov(Zyy5, Syij)

CC Ti' = )
i ju) V‘”’(Yn‘ju) - Var(Etijll)
Var(Z,.)+ 0%, ,_ \Var(S,:) + 2(6ix1-1))Cov(Z,;:, Sy
CC(Tn‘jkl) _ ( tj) ijk(l—1) ( t]) ( gkl 1)) ( tij tg)7 Vik>2,
Var(ytijkl) - Var(Etijkl)
Var(Z,;.;) + (8i500-1))*Var(S,;:;) + 2(8:5201-1))Cov(Z,;:, S,
OC () = (Zyi;) + (Gija-1)) (Spij) +2(0ij2(1-1))Cov(Zy, tj)‘

Var(Yrtijzl) - V(“"(Em‘jzz)

The consistency and trait change coefficient CC(Yy;;1,), CC(Yy51), and CC(Y,;.o;) reflect the

proportion of true-score variance that is accounted by trait and trait change effects.

5.5 Mean structure

This section concerns the latent variable mean structure of the LST-COM model. The following

theorem shows the consequence of the model definition for the observed and latent variables.

Theorem 5.2 (Mean structure)

Let M = ((Q,%, P), Ty, S, EGM, €EM ¢M ¢, ¢(YM ¢EM) N,Ert,Et,&)\gM,)\gM,)\?ﬁ,

Acs )\?M, )\?M, )\?/I> be a LGC-COM model. Then the mean structure of the LGC-COM holds
forallr € R={1,...;a}, t € T = {1,...,b}, i € I = {1,...,¢}, j € J = {1,...,d},
ke K={1,...,e},leL={1,...,f}:

E(Yi1) =E(Ztij) + dij10-1) E(Stij), for k=1, (5.13)
E(Yii1) =E(ZLtiz) + Sijra—1)E(Stij), Vk>2, (5.14)
E(Y,1i50) =E(Zti5) + 0ij201-1) E(Stij), (5.15)
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E(Yyijn1) =E(Tuij), (5.16)
(<tl]l) 0, (517)
E(£432) =0, (5.18)
(gtz]2) 07 (519)
E(&5x) =0, Vk>2, (5.20)
E(Grtja) =0, (5.21)
E(¢Ga) =0, (5.22)
E (i) =0, Vk>2, (5.23)
E(Eijr1) =0, YV k # 2, (5.24)
E(Eriijor) =0, (5.25)
where E(.) denotes expected value.

Proofs. 20 Mean structure
Due to the measurement equations 5.7 to 5.9, it follows that:

E(Yiiju) =E(Zy;;) + 0ij10-1)E(Siz) + E(Ceijt) + E(Eriju),
E(Yiiji) =E(Zy;) + 0ijra—1) E(Spiz) + Aenrijra B(EMuiji)+
it B (Ceijt) + Aenrijra B (CMijrt) + E(Erigri),
E(Yriijor) =E(Zy;) + 0ijoa-1)E(Syy) + /\smzl (fngz) + )\51]21 ( g%)*‘
Acija B (Grigi) + QJQZE(nglj) + AZ%Z ( rtj2l) + E(Erijat)-
According to the Equations 5.17 to 5.25 of the above Theorem 5.2, it follows that the expectations
of the latent residual variables Cyiji, EMyijr, CMyjri, Erijri, §C0Myijo, EUMpyijo, Cuiji, CCMyjor,
CUM,tjo1, and Eyy;jo; are zero. These statements follow directly by the definition of these variables
as latent residuals, and given the fact that residual variables always have expectations of zero
(see e.g., Steyer € Eid, 2001). Researchers must therefore fix the expected values of these variables

to zero in empirical applications. As a consequence of these zero expectations, the above Equations
can be simplified as follows:

Vk>2,

E(Yiiju) =E(Zy;;) + dij10-1)E(Sy; ),
E(Yiijr1) =E(Zyi;) + 0ijea-1)E(Spj), YV k>2,
E(Yriiju) =E(Zy;;) + dijaa-1)E(Sy;)-
Because of 6;511—-1) = 0ijk—1) = ijou—1) = 0, for I=1 (see Equation 5.16), if follows
EYiijr1) = E(Zy;;).

Given that E(Z,;;) can be identified with respect to the first occasion of measurement E(Yyijk1), the
expected values of the latent slope variables E(Stij) are identified for 1 > 1:

E(Yiiju) — E(Yiijn)

E(S..) =
( tlj) 6ij1(l71) )
E(Yiiji) — E(Yeijin)
E(Stij) : jéijk(lﬂ) " , VEk>2,
E(Yriijor) — E(Yrgijor)
BSiy) = : j(SijZ(lfl) H.

O

Remarks. Equations 5.14 and 5.15 clarify that the expected values of the observed variables
are equal to the expected values of the latent trait variable &;;. According to Equation 5.16, the
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expected values of the latent trait variables are identical to the expected values of the indicators
pertaining to the reference method. Equations 5.17 to 5.23 reveal that the latent state residuals
as well as the trait-specific and state-specific method factors are defined as residuals and therefore
the expected values of these latent residual variables are necessarily zero. The same holds for the
measurement error variables (see Equation 5.24 and 5.25).

5.6 Identifiability

In this section, the identification of the LGC-COM model parameters is addressed. The iden-
tification of the mean structure of the latent variables in the LGC-COM model has been already
demonstrated in Theorem 20 and will not be repeated again. This section only concerns the iden-
tification of the variance-covariance structure of the LGC-COM model. Given that the LGC-COM
model is a special case (or restrictive variant) of the LST-COM model, the parameters of the
LGC-COM model are identified whenever the parameters of the LST-COM model are identified.
According to Theorem 4.7 the parameters of the LST-COM model are uniquely determined under
the minimal condition of a 2 x 2 x 2 x 3 measurement design (see Courvoisier, 2006, p. 73-130).
The following theorem states that this condition holds also for the identification of the LGC-COM
model parameters. For the sake of simplicity, it will be assumed that all parameters of the LST-
COM model are known and thereby only the identification of the remaining parameters of the
LGC-COM model is shown. Note that the known parameters of the LST-COM will be used for
identification without replacing them by parameters of the observed variables. Furthermore, con-
ditions concerning the independence (uncorrelatedness) of the latent variables in LGC-COM model
will be used for identification (see Theorem 5.1 and 4.5). By definition of the LGC-COM model,
it is assumed that forallt € T, i€ I, j € J, k€ K, and | € L a5, = 0 and 6501y = (I — 1).

Theorem 5.3 (Identification of the LGC- COM covariance structure)
LetM—<(Q§[P)ItSt’ U ’ t 7£t 7<ta 7 t 7C%\47El‘taEt7AIv5)\UM ACM

)\M )\g»)‘UM )‘CM )‘M> be a LGC coM model of (ftzﬂ ) t1327 gtz]k’ Geijts Crt]2l’ Ctﬂl ’ Ciﬁz)-
congenerzc Uamables wzth conditional regressive independence, then the parameters of the ma-
triv ®¢p are identified, if either one factor loading /\&]kl, )\&ﬂl, /\gﬂ, Acijkts )\kal, )‘Q%l’
)‘czﬂl for each factor, ftUQ, fmgw Ceijis Ctﬂl , CTtﬂl or the variance of these factors are set to
any real value larger than 0, and

(a) iffi=2,j>2,k>21>3 and Pew, Pew, Pen, Bcp contain intercorrelations (i.e.,
nonzero elements in the off-diagonal).

Proofs. 21 (Identification) Assuming that all elements of the matrices Aew, ®ew, Acw, D_pw >
AeB, AcB, ®cB, Yy are identified and the parameters are known for a LST-COM model with 2
indicators, 2 constructs, 2 methods (one structurally different method and one set of interchange-
able methods), and 8 occasions of measurement, except for the elements of ®¢g. Then, for any
observed variable Yy1;j01 and Yiij1; in a LGC-COM model with the same dimension (i.e., 2x2x2x3)
the expected values are:

E(}/tijll) :E(Itij) + 6ij1(l*1)E(Stij) + E(Ctijl) + E(Etijll)
E(Yrtijn) =E(Lyij) + 0ij20-1) B(Spij) + AGGnE (€G3 ) + AeijnE(Eria) +
Nciga B (Guigt) + AGHE(CTH) + NGHE () + E(Epeijan).
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Identification of Var(Z;):
Var(Itij) can be directly identified by the variance of the first indicator measured on the first
measurement occasion.

Var(Yijn) = Var(Zy,;) + Var(Cuji) — Var(Ejin)-
Var(It ) = V(M“(Yrtijll) — Var((tijl) — Var(Etijll).

ij

Presuming that Var((uji1) and Var(Egji1) are known.

Identification of Cov(Z,;;,S,;):

tig>

C’ov(In-j,Stij) is identified with respect to the covariance of Yiij11 and Yiji2.

Cov(Yiij1, Yeijiz) = Cov {(Itij + Grij1 + Erijin), (Zyi; + 0ij12-1)Stij + CGrige + Eiij12)}
= Cov(Zy;;,Ly;;) + Cov(Zy, 5, Sij)
= Var(Z,;;) + Cov(Zy;;, Sy j)-

Hence, Cov(Z,

tij>

Stij) = Cov(Yiiji1, Yaijiz) — VC”“(Itij)'

Identification of Var(S,;;):

Var(Sn-j) is identified with respect to the covariance of Yiij1 and Yyyijor, for I>1.
Zyij + 0ij1-1)Spi; + Criji + Eriju),
T

(

CM +CM |\ \UM (UM
(Z4i; + 5ij2(l—21‘3tijc—’]_v[)‘fij2§ﬁj2 JM)‘gij2l£rtij2+
AcijaCtijt + AcijuCian + Ao + Ertijar)

COU(Y{sijll , Yrtij2l) =Cov

Cov(Yiiju, Yrtijar) =Var(Zy;) + 0ij1a—1)Cov(Zy 5, Spij)+
0ij2(1-1)C0v(Zyij, Spiz) + 0ijia-1)0ij2a-1)Var(Sy;)+
)‘?ijmvar(ctijl)~

COU(Yiz‘ﬂh Ym‘j21) - V‘”‘(Im‘j)_
6i2]’1(l—1)cov(1tij’ Stij) = 0ij2-1)Cov(Lyi5: Stij) —
)\@jzlvar(gtijl)

Var(S,,;) =
(Stis) dij1—1)052(1—1)

For example, with respect to measurement occasion | = 2 (i.e., d;;11—1) and d;50q-1) equal one),
the variance of the latent slope variables is given by:

Var(8,;;) = Cov(Yiijiz, Yrtijaz) — Var(Zy;) — 2Cov(Zy;;, Syyj) — Aziﬁlvar(giﬂ)'

Identification of Cov(Zy;;, Ty 50):

CO%I%,IW]-/) is identified with respect to the covariance between Yiiji11 and Y11, where (i,5)
# (i'.5').

T it 4 B
Cov(Yyijin, Yeirjrn1) = Cov{ (Zyij + Ceij1 + Erijin), }

(Zyirjr + Grrjrr + Etirjran)
= Cov(Zy;;, Ly ji) + Cov(Griji, Gerjrn)-
Cov(Zy;5, Ly 5) = Cov(Yijin, Yairjrin) — Cov(Ciju, Grirjrn)-

tig>

Identification of Cov(Z;;, Syrj):

tig>
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Cov(Itij,Sti/j) is identified with respect to the covariance between Yiij11 and Y1, where i # i/

as well asl > 1.

Cov(Yiji1, Yiirju) = Cov { (Zyij + Grij1 + Erijin), }

(Zyirjr + 0irj11—1)Spirj + Geirjt + Erirjur)
= COU(ZtijaIti’j) + 5i'j1(l—1)COU(Itija Sti’j)'

Cov(, COU(Ytz‘jll’Yti/jll) *COU(Itij,Itilj).

tig>

Sti/j) =

dirj1(1-1)

Identification of Cov(S,;;,Syr;):

tigo

OO’U(Stij,Sti/j) is identified with respect to the covariance between Yi;j1; and Y11, where i # 4/

and l > 1.

(Zyi; + Sij10-1)Sui; + Grijt + Eriju)
C Yiii 7)/ 7 = 1] ] tig J J 5 .
ov(Yyijur, Yeirju) ov { (Im.,j + 6i,j1(l71)3“,,j + Ceirjt + Erirju)

COU(Ytz‘jll,Yti/]‘ll) = OOU(Itijvzti’j) + 5ij1(l,1)001}(ztij,Sti/j)—l-

= 6@"]’1([71)00’0(8&]’7Iti’j) + 6ij1(l71)5i’j1(l71)cov(8ﬂj7 Sti’j)""
= Cov(Ceijis Ceirji)-

Cov(Yeiju, Yeirju) — Cov(Zy5, Ly i) —
(Sijl(lfl)COU(Itij7Sti/j) — 5i’j1(l71)COU(3tij7ij)—

C ity Gt i
CO’U(Sti]‘78ti/j) = OU(Ct gl Ct ]l)

dij11—1)0irj1(1-1)

Identification of Cov(Zy;;, Syirjr):
Cov(Zy;;,S,05) 18 identified with respect to the covariance between Yiiji1 and Yiirjn1, where (i,5)

# (i',5') and 1 > 1.

COU(Ytiju,YWj'u) — CO’U{ (Itij + Ctijl + Etijll)v }

(Zyirjr + 0ijr1—1)Spirjr + Crigrt + Erirjrar)
= CO'U(I“]',I”/J'/) + 51‘/]'/1(1_1)007)(]:”]', Sti/j’)'

CO’U(Y}Z']‘H, Yti’j'll) — COU(Itiijti/j')

dirjr1(1—1)

Cov(Itij, Sti,j,) =

Identification of Cov(Sy;;, Sy i)
Cou(S,

ijaSm'/j/) is identified with respect to the covariance between Yi;j1; and Y, where (i,7)
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# (i',7') and 1 > 1.

(Zyij + 0ij11-1)Spij + Ceijt + Eriju)
Cov Y,L 7Yi’ 2 =Cov ) J tig J J1l)s
( tigll ti'y 11) { (Iti/j/ + 5i,j/1(l_1)5ti'j/ + Cti'j/l + Eti’j'll)

:CO’U(It,L-j 5 Iti’j/) + 6i'j/1(l—1)COU(Itij3 Sti’j’)+
6ij1(lfl)cov(8tijaIti’j’) + 5ij1(l71)6i’j’1(171)cov(5‘ti’j’aStij)+
Cov(Ciji, Crirjrn)-

Cov(Yaiju, Yeirju) — Cov(ZLy 5, Ly o) —
6irj1(1-1)Cov( Ly, Spirjr) = bij1a—1)Cov(Syijs Ly o) —
Cov(Ciji, Crirjrr)

‘51‘)‘1(1—1)5@’]'/1(1—1)

CO'U(Sti/j/ B Stl]) ==

For the second measurement occasion | = 2, where d;j1(2—1) = dyjr1(2—1) = 1 the equation above
simplifies to:
CO’U()/“J'Q, ifm‘/j/lz) :COU(ItiﬁIti’j’) + OOU(Itij7 Sti’j/)+
COU(Iti/j/7 St’bj) + CO'U(StZ‘/j/, Stlj)+
Cov(Crijt, Grirjin)-

Sti’j') :COU(YZU‘H, Y;gi/j/lg) — CO’U(Itij’Iti’j’)_
CO'U(I“J- s Sti/j’) - COU(Iti’j/ s Stz])_
Cov(Crij2, Crirjr2)-

Cov(S,

35

Identification of Cov(Z;;,E5M,):
Cov(Itij,fg%Q) is tdentified with respect to the covariance between Yy;j11 and Yy o1, where (i,5)
# (i',7') and 1 > 1.

(Itij + Crij1 + Erijin),
CM CM UM UM
CO’U(Eijll, Y,-ti/j/Ql) :COU (Iti'j’ + 5i’j’2(l_1)$ti/j/ + )\gi/jIQthi/jlg + )\gi/j/2l ’I‘ti’j'2+
\ Coirin + ACM,_[cCM L \UM UM 4 p )
¢irgr215t7 571 Ci§r215t5'21 Ci'§'215rt5' 21 rti’j'21

:COU(Itij»Iti’j/) + 5i’j’2(l—1)COU(Itija Sti’j’) + Ag{\f/mco”gma fg/];%)-

COU(Y;Z'J'H, Kﬂti’j’Zl) - CO’U(Iti "It" 4/) - 5i/ ‘/2(1_1)001)(1“» iy St" -/)
COU(Itija §g¥2) _ ;CM'Z J J J 1] .
&i'5'21
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Identification of Cov(S,,;, &6 MY):
Finally, Cou( n-j,fti, ~,2) is identified with respect to the covariance between Yi;;1; and Yiy oy,
where (i,7,1) # (1',5',') and 11" > 1.

(Z tij T 51]1(l 1) tlj + Griji + Etwu)
Cov(Yeigut, Yreirjrar) =Cov § - (Tysrge + dirjra— 1)St it T )‘52 g’21/fn 2+ )‘gz/yzl/fm 2t
)\Cz/]/QIICtZ 3 + )\C1/]/21/<tj/21/ + )\Clljlgl’CTt_/IQZ/ + E’I“tz j’QI’)

=C0v(Lyi5, Tyirjr) + Sirjrowr—1)Co0(Lij, Spivjr) + A rap Cov( Ty, €1 )+

0ij1(1-1)C0V(Syig Tyiryr) + Bigii—1)0ir 2 —1) C0V(Sti, Spirje )+
5ij1(1—1)>\g{\f/21/00v(8tij, gg/;{z),

Cov(Yiijur, Yeirjror) — Cov(Zy; 3Itzj )—
5i’j’2(l’—1)COU(It7,j’Stl’j’) )\67/]'21’001)( tlj’gtl/]IQ)
5ij1(l—1)CO'U(SnJaItz 14 ) - 51J1(l 1)6 jr2(— 1)COU(SMJ’SWJ’)

CM
51j1(l—1))‘§i’j’2l/

Cov(stija 55%2) =
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Box 5.1 (LGC-COM Model)
1,;; target-specific latent intercept factor of the reference (structurally different) method

Sy target-specific latent slope factor of the reference (structurally different) method

dijk(—1) latent slope factor loading for modeling the shape of trait change

§tij11 = Lyijo
(5tij12 - ftijll) = Stij,
digi-1) = (I = 1).
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Monte Carlo Simulation Studies
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Chapter 6

Rationale and Aims of the Monte
Carlo simulation studies

Some statistical questions that cannot be answered analytically (e.g., questions concerning the
limits of the applicability of a statistical model) may be better answered by conducting Monte Carlo
simulations studies (Geiser, 2008; Harwell, Stone, Hsu, & Kirisci, 1996). There are numerous rea-
sons for doing so. First, Monte Carlo (MC) simulation studies enable researchers to investigate the
performance of a given statistical model under experimental conditions (see Li, Boos, & Gumpertz,
2001). For example, Monte Carlo simulation studies allow researchers to predetermine a set of true
population parameters (i.e., population model), to randomly generate numerous data sets (usually
500 to 1000 MC replications) based on the population model, and to compare the true population
parameters with the average parameter estimates from the MC samples after fitting the model (or
even different models) of interest to the generated MC samples (Geiser, 2008). In real data appli-
cations, it is often not possible to achieve such controlled conditions, where only specific conditions
(e.g., sample size, skewness, misspecification) are varied and others are held constant. Moreover,
in real data applications, the true population parameters are usually unknown and large sample
sizes are rather difficult to obtain. Therefore, MC simulation studies are more efficient than real
data applications, given that they require less time, money, and man power. Second, numerous
criteria can be used for evaluating the performance of a given model in MC simulation studies.
For example, researchers may calculate the bias in parameter estimates (peb) and standard errors
(seb) in order to scrutinize the consistency of parameter estimates. They can furthermore count
the number of improper solutions (i.e., Heywood cases) as well as the number of convergence prob-
lems, and/or they can study the trustworthiness of fit statistics (for more details see Bandalos,
2006; L. K. Muthén & Muthén, 2002). If researchers are interested in investigating the minimal
required sample size for valid parameter estimates, they may either perform a power analysis by
conducting a MC simulation study (L. K. Muthén & Muthén, 2002), or relate different types of
biases (e.g., peb or seb) to different MC conditions (e.g., different sample sizes, model misspeci-
fication etc.). Thereby, researchers may be able to identify favorable and unfavorable conditions
for proper estimation of parameters, standard errors, fit statistics etc. (Geiser, 2008). For more
details concerning the basic principles of MC simulation studies as well as their implementation
see Bandalos (2006) as well as L. K. Muthén and Muthén (2002).

In the following chapters the results of four extensive simulation studies are presented. Each
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simulation study refers to a different model presented in the previous chapter:
1. Simulation study I : latent state (LS-COM) model (see Chapter 7)
2. Simulation study II : latent change (LC-COM) model (see Chapter 8)
3. Simulation study III : latent state-trait (LST-COM) model (see Chapter 9)
4. Simulation study IV : latent growth curve (LGC-COM) model (see Chapter 10).

The results of the following simulation studies reveal new insights to multilevel structural equa-
tion modeling of complex MTMM-MO data. To my knowledge no simulation study has yet been
conducted investigating the performance of such complex structural equation models (i.e., lon-
gitudinal multilevel MTMM-SEMs). However, several simulation studies have been carried out
investigating the performance of less complex SEMs. For example, the performance of single level
SEMs under various conditions has been scrutinized by numerous researchers (Chen, Bollen, Pax-
ton, Curran, & Kirby, 2001; Beauducel & Herzberg, 2006; Boomsma, 1982; Gerbing & Anderson,
1985; Jackson, 2001; Marsh, Hau, Balla, & Grayson, 1998; MacKenzie, Podsakoff, & Jarvis, 2005).
In general, the results of these simulation studies suggest that the parameter estimates in SEMs
become more reliable with increasing sample size and an increasing number of unidimensional in-
dicators per factor (Anderson & Gerbing, 1984; Boomsma, 1982; Marsh et al., 1998). For example,
according to the results of simulation studies by Boomsma (1982) the minimal required sample size
for proper parameter estimates in single level SEM is 100. According to Bentler and Chou (1987)
the minimal required sample size depends on the ratio between the number of observations and
the number of parameters should be above 5:1. Bollen (1989, 2002) recommends a ratio of 10:1
for more complex models instead. With respect to two-level SEMs, Julian (2001) suggests to sam-
ple at least 100 level-2 units (observations) for proper parameter estimates when using maximum
likelihood estimation. In addition, simulation studies by Maas and Hox (2005) indicate that the
sample size on the cluster (between) level is more important for proper parameter estimates than
the sample size on the individual (within) level with respect to general multilevel models.

The performance of cross-sectional MTMM-SEMs has also been investigated by various simu-
lation studies (Conway, Lievens, Scullen, & Lance, 2004; Marsh & Bailey, 1991; Nussbeck, Eid, &
Lischetzke, 2006; Tomas, Hontangas, & Oliver, 2000). According to Nussbeck et al. (2006) even
relatively complex MTMM-MO models with categorical items [CTC(M)-1 model] perform well
using the WLSMV (weighted least square mean and variance adjusted) estimator implemented in
Mplus. Important contributions to the field of longitudinal MTMM-SEMs are the simulation stud-
ies by Crayen (2008) and Geiser (2008). In both simulation studies, the authors investigated the
performance of multiple indicator SEMs for longitudinal MTMM measurement designs. However,
the authors focused on the performance of longitudinal MTMM-SEMs for structurally different
methods, and not on the performance of longitudinal MTMM-SEMs for a combination of struc-
turally different and interchangeable methods. The main findings of both simulation studies can

be summarized as follows:

e Estimates of parameters as well as standard errors are well recovered even in small sample

sizes (N = 125) for longitudinal CTC(M)-1 model models.
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e Estimation of standard errors are more sensitive to bias than the estimations of parameters.

e Longitudinal CTC(M)-1 model models perform better (i.e., less bias, less improper solutions,
higher convergence rates) with an increasing amount of empirical information (e.g., sample

size, number of indicators per factor, number of occasions).

e An increase of method specificity (i.e., higher convergent validity) was related to an decrease

in estimation accuracy.

o The empirical y2-distribution was not well approximated for complex models. In general,
an increase of type I error was found with increasing model complexity and decreasing small
sample size. Only in extremely large data sets the y2-distribution could be approximated

correctly.

6.1 Aims of the simulation studies

The main goals of the simulation studies are investigating

(a) the appropriateness of parameter and standard error estimates via coefficients of parameter

estimate bias (peb) and standard error bias (seb),

(b) the amount of improper solutions (estimation problems) with respect to the latent covariance

matrix ¥ and latent error covariance matrix © (so called Heywood cases),
(c) the robustness of the x?-fit statistics,
(d) the amount of convergence problems, and

(e) the limits of the applicability of presented models by relating different types of biases (i.e.,

average peb and seb) to different MC conditions.

bR

In the subsequent chapters, the terms “possible”, “actual” and “negligible” improper solution are
distinguished. Throughout this thesis, “actual” improper solutions refer to out of-range parameter
estimates, also known as Heywood cases (Chen et al., 2001; Geiser, 2008). It is important to note
that the term “actual” improper solution is only used to refer to negative variances (< 0) of the
latent variables in the model and/or permissible correlations among the latent variables in the
model that are greater than |1|. However, improper solutions referring to higher order (partial)
correlations among the latent variables in the model (that have no substantive meaning with respect
to the definition of the model, but will still count as improper solution in Mplus outputs) will be
treated as “negligible” improper solutions, and not as “actual” or “real” improper solutions. In other
words, “actual” or “real” improper solutions refer to out of-range parameter estimates that can be
investigated by the TECH4 output option in Mplus. The sum of “actual” and “negligible” improper
solutions equals the amount of “possible” improper solutions. Therefore, the amount of “possible”
improper solutions represents the total amount of Mplus warning messages. Again, it shall be re-
emphasized that the total amount of Mplus warning messages does not necessarily corresponds to

the total amount of “actual” improper solution or Heywood cases. With regard to the subsequent
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simulation studies, models with “possible” improper solutions were first refitted to their specific MC
sample(s). Afterwards the TECH4 outputs of the specific model(s) were investigated for “actual”

improper solutions.

6.2 Simulation designs

The simulation designs of the latent state (LS-COM) and the latent change (LC-COM) model
are given in Table 6.1. Note that the simulation designs for both models are identical. The maxi-
mum number of conditions for each of these models was 232 with 500 replications (56 conditions

were not simulated due to identification problems!). In total, 116,000 data sets were simulated

and saved for LS-COM and LC-COM model simulations.

Table 6.1: Simulation design of simulation study I & II

Multiconstruct Condition

High Consistency Low Consistency
k=2 k=3 k=2 k=3
nLLl nL2 N =2 1=3 1=4 1=2 I= I=4 1=2 1=3 1=4 1=2 1=3 1=4
100 200 v n.s. n.s. n.s. n.s. n.s. v n.s. n.s. n.s. n.S. n.s.
2 250 500 v v v v v ns. Vv v v v v n.s.
500 1000 v v v v v v v v v v v v
100 500 v n.s. n.s. n.s. n.s. n.Ss. v n.s. n.s. ns. 1n.s. n.s
5 250 1250 v v v v v ns. Vv v v v v n.s.
500 2500 v v v v v v v v v v v v
100 1000 v, ns. ns. ns. 1ns. ns. v, ns. ns. ns. ns. n.s
10 250 2500 v v v v v, ns. Vv v v v v n.s.
500 5000 v v v v v v v v v v v v
100 2000 v n.s. n.s. n.s. n.s. 1n.Ss. v n.s. n.s. n.s. n.s n.s
20 250 5000 v v v v v ns. v v v v v n.s.
500 10000 Vv v v N v v v v v v v v
Monoconstruct Condition
100 200 v v v v v ns. Vv v v v v n.s.
2 250 500 v v v v v v v v v v v v
500 1000 v v v v v v v v v v v
100 500 v v v v v ns. VY v v v v n.s.
5 250 1250 v v v v v v v v v v v v
500 2500 v v v v v v v v v v v v
100 1000 v v v v v ns. Vv v v v v n.s.
10 250 2500 v v v v v v v v v v v v
500 5000 v v v v v v v v v v v v
100 2000 v v v v v ns. VvV v v N v n.s.
20 250 5000 v v v v v v v v v v v
500 10000 Vv v v v v v v v v v v v

Notes. Simulation design of the LS-COM and LC-COM model. The symbol n.s. refers to conditions
that were not simulated and thus not part of the simulation design. The checkmark sign v refers
to conditions for which 500 data sets of a particular model were simulated. nLL1 = number of raters
per target (level-1 units); nL.2 = number of targets (level-2 units).

Five conditions were manipulated in simulation study I and II (see Table 6.1):

IThe term “identification problems” refers to a general warning message in Mplus 6.1. Note that these warning
messages do not indicate a problem of the model per se or that the model is not identified. Instead these error
messages refer to the fact that the number of parameters to be estimated is larger than the number of observations
on the between level. In many cases, these warning messages may be ignored and will not necessarily lead improper
parameter estimates (L. K. Muthén & Muthén, 1998-2010). Given that the results of these MC conditions constitute
another condition in the simulation design that was not of interest here, these conditions were not simulated in the
first place.
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1. the degree of convergent validity (i.e., High vs. Low Con),

2. the number of methods (i.e., k = 2, 3),

3. the number of occasions of measurement (i.e.,1 = 2, 3, and 4),

4. the number of level-1 units or the number of raters per target (i.e., nL1 = 2, 5, 10, or 20),
5. the number of level-2 units or the number of targets (i.e., nL.2 = 100, 250, or 500).

The main reason for choosing small sample sizes (N = 200) was to investigate the model under
minimal and realistic conditions. For example, previous simulation studies have shown that at
least 100 level-2 units (here: targets) are required for valid parameter estimates (see Julian, 2001).
Therefore, the minimum sample size in the simulation studies I and II was set to 200 observations
(nL1 = 2, nL2 = 100). The simulation designs of study III and IV were similar to the simulation
designs of the latent state and latent change model. However, given that the LST-COM and LGC-
COM model more complex (i.e., more parameters) than the LS-COM model, the sample size on
the between (target) level was increased to 350, 500, or 700 in the LST-COM simulation study,
and to 400, 600, or 800 observations in the LGC-COM simulation study. With respect to these
adjustments all cells in the simulation designs in Table 6.1 could be simulated. In total, 288 (232
+ 56) conditions were simulated for the simulation study IIT and IV. Again, for each condition 500
MC sample were simulated (500 x 288 = 144,000 data sets). Finally, the number of measurement
occasions was set to 3, 4 or 5 in the LGC-COM model simulation, given that latent growth curve

models require at least 3 occasions of measurement to be identified (see e.g., Geiser, 2012).

6.3 General procedure

Due to the complexity of the simulation designs and models, it was necessary to assign different
MC conditions to multiple computers (max. 28 PCs). All simulations were carried out in the com-
puter lab of the Freie Universitit Berlin. By this procedure, it was possible to reduce the duration
of estimation notably (approximately 6 days for each simulation study). Numerous automation
syntaxes and R-functions were written. The R-functions were used for creating Mplus inputs as
well as for extracting different simulation results after the simulation was done. All simulation
results were then analyzed in R (see syntaxes in the appendix CD).

The general procedure for running one simulation study encompassed the following steps:

1. Set up the simulation design for a given model and predetermine the population parameters.

2. Specify the correlation matrix of the observed variables for the given model using OpenMx

(Boker et al., 2011).

3. Check whether or not the correlation matrix and/or subsets of the correlation matrix are

positive definite and invertible.

4. Transform the correlation matrix into a variance-covariance matrix of the observed variables
using the R package corcounts (Erhardt, 2009) and use the unstandardized parameters in

order to create Mplus input files with the true population model.
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5. Create Mplus input templates for all conditions of the simulations design using the package

MplusAutomatation (Hallquist, 2011).

6. Run a test simulation and fix syntax errors, estimate the approximate duration of estimation,

and organize the simulation study.
7. Run the simulation study and save all data files and outputs.

8. Write R functions and syntaxes to automate the extraction of the simulation results, (e.g.,

parameter estimation bias, standard error bias etc.). Extract all needed informations.
9. Re-run part of the simulation in order to calculate the number of “actual” W-problems.
10. Analyze the results of the simulation study.

All models were simulated using Mplus 6.1 (L. K. Muthén & Muthén, 1998-2010), the free software
R 2.14.0 (R Development Core Team, 2008), as well as various R packages such as MplusAutomation
(Hallquist, 2011), OpenMx (Boker et al., 2011), and corcounts (Erhardt, 2009).

6.3.1 Estimators

The LS-COM and LC-COM model were estimated using two different estimators: 1) the max-
imum likelihood (ML) estimator and 2) the robust maximum likelihood (MLR) implemented in
Mplus 6.1. Because of this additional condition, it was possible to compare the simulation results of
both estimators. With respect to the LST-COM and LGC-COM model only one estimator, the ro-
bust maximum likelihood (MLR) estimator was used. This was done, because the MLR~estimator
is the default estimator for multilevel analyses in Mplus and is also generally recommended for
this type of analysis (L. K. Muthén & Muthén, 1998-2010). However the ML and MLR results
should only differ to a small extent, given that the standard errors as well as the x2 fit statistics are
adjusted under MLR (see Satorra & Bentler, 1994, 2001; Yuan & Bentler, 2000). The parameter
estimates as well as the parameter estimate biases are unaffected and remain the same for both

estimators.

6.3.2 Criteria for evaluating the performance of the models

The performance of the models was evaluated according to the similar criteria used by Crayen

(2008) and Geiser (2008):

Rate of non-convergence

The term “convergence” refers to the ability of a particular SEM-software (e.g., Mplus) to find
an unique solution for the parameters of the model after a certain number of iterations (Geiser,
2008). The default number of iterations in Mplus 6.1 is 1000. If a software (e.g., Mplus) is unable
to find a unique solution for the parameter of the model after a certain number iterations, the
estimation process has not converged. According to previous simulation studies complex models

usually require a larger number of iterations (Geiser, 2008). It is important to distinguish between



CHAPTER 6. RATIONALE AND AIMS OF THE MONTE CARLO SIMULATION STUDIES170

the convergence of the HO and the H1 model. The HO model represents the specified model,
whereas the H1 model represents the saturated model. In the current simulation studies the
number of replications in which the HO model (i.e., specified model) did not converge was recorded.

According to Geiser (2008) the non-convergence rate should be below 1 %.

Improper solutions

Improper solutions indicate estimation problems of particular model parameters, for example
the residual covariance matrix (so-called: ©-problems) or the variance-covariance matrix of the
latent variables (so-called W-problems). In the current simulation studies the number of ©-problems
as well as the number of “actual” ¥-problems was recorded. No more than 5 % of all replications

should refer to “actual” improper solutions (Crayen, 2008; Geiser, 2008).

Relative parameter estimation bias (peb)

The accuracy of the parameter estimation was investigated according to the absolute value
of the relative parameter estimation bias (peb). The peb coefficient can be seen as standardized

indicator of parameter bias and is calculated by the following formula:

| M, — e

€p

peb = (6.1)

M, is the average of the MC parameter estimates (over all replications) and e, is the true
population value. The absolute value of the standardized peb was taken in order to average across
different sets of parameters (e.g., factor loadings, latent covariances, residual variances etc.). The

parameter estimation bias should not exceed 10 percent of any parameter of the model.

Relative standard error bias (seb)

The accuracy of the standard errors was evaluated with respect to the absolute value of the
relative standard error bias. The seb can be considered as standardized indicator of standard error
bias. Significant standard error bias can lead to serious bias in significant testing (Geiser, 2008).

The seb is calculated by the following formula:

_ |Msp — 5Dy

seb SD,

(6.2)

The cutoff value of the seb in the present simulation studies is .10. The absolute value of the

relative seb was taken, in order to average across different sets of parameters.

x2-Test

The adequacy of x? fit statistics in multilevel structural equation modeling is a delicate and
ongoing research topic. Recently, researchers provided methods in order to obtain level-specific
x? fit statistics for multilevel structural equation models (Yuan & Bentler, 2003, 2007; Ryu &
West, 2009). Besides, the results of previous simulation studies suggests that the x? fit statistic

are not trustworthy for complex structural equation models (Crayen, 2008; Geiser, 2008). In the
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present study, the adequacy of the 2 fit statistic was only evaluated for the LS-COM and LC-
COM model, given that these models represent the least complex models (with respect to the
number of parameters). This analysis was not repeated for the LST-COM and LGC-COM model,
because the computing time for obtaining the additional x? fit statistics would have increased to
an unacceptable amount. By not computing the x?2 fit statistics for these models the elapsed time
of computation was reduced by 80 %. In order to evaluate the robustness of the x? fit statistic the
observed Monte Carlo x? distribution was compared to the theoretical x? distribution. A large
discrepancy between both distributions would indicate a biased 2 fit statistic. The adequacy of
the x2 fit statistic was evaluated according to the following criterion: The proportion of models
that would be rejected at a nominal 5 % alpha level on the basis of the theoretical x? distribution

should not be larger than .10 according to the MC x? distribution (see Crayen, 2008; Geiser, 2008).

6.4 (General expectations

Simulation studies are mainly considered as an exploratory method. Therefore, it is not very
common to explicitly formulate statistical hypothesis. However, in the next section a list of general
expectations will be provided. These expectations can be seen as “working hypothesis” which may

be formulated based on the findings of previous simulation studies.

Convergence

All specified models (i.e., LS-COM, LC-COM, LST-COM, LGC-COM) should converge. Ac-
cording to previous simulations studies, complex models require a higher number of iterations in
order to converge (see Geiser, 2008). The main focus of the subsequent simulation studies concerns

the convergence rate of the specified (HO) model, not of the saturated (H1) model.

Improper solutions

In general, the number of “actual” improper solutions should be low across all conditions and
across all four simulated studies. However, it is assumed that more Mplus error messages (potential
improper solutions) will be encountered for the ¥ matrix than for the © matrix. There are several
reasons for that: First, Mplus error messages referring to W-problems do not necessarily indicate
“actual” Heywood cases (as indicated above), whereas © error messages generally do. Second,
the U-problems may result from higher order partial correlations among latent variables. Many
previous simulation studies indicate that improper solutions with respect to variance-covariance
matrix ¥ of the latent variables occur frequently in complex MTMM-SEM models (Crayen, 2008;
Geiser, 2008; Lance, Noble, & Scullen, 2002; Marsh & Bailey, 1991; Marsh, Byrne, & Craven, 1992).
It can be expected, that the amount of Mplus error messages referring to W-problems increases
with an increase of the model complexity (e.g., increasing number of constructs, items, methods)
but decreases with an increase of the number of empirical information (e.g., sample size, number
of measurement waves). Moreover, it can be assumed that the number of ¥-problems is greater
in the high consistency than in the low consistency conditions. The reason for this assumption is

that the amount of method variance in the high consistency condition is very low compared to the
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low consistency condition. In fact, a higher degree of convergent validity (i.e., high consistency)
was chosen in the simulation studies than usually present in real data applications. This was done,
to put the models through an endurance test and investigate the performance of the models under
extreme (but rather unlikely) data conditions. Therefore, a greater number of “actual” improper

solutions is expected in the high than in the low consistency condition.

Parameter estimate bias and standard error bias

Overall, the amount of bias of parameter estimates (peb) as well as standard errors (seb) should
be low. With respect to findings of previous simulation studies it can be expected that the bias
of parameter estimation is lower than the bias of standard errors. Moreover, it can be assumed
that the amount of bias (peb or seb) increases with increasing model complexity (e.g., number
of parameters or constructs) and decreases with an increasing number of empirical information
(e.g., sample size, occasions of measurement). Furthermore, it is expected that bias of parameter
estimates and standard errors occur more often in the high consistency condition than in the low

consistency condition.

x2-fit statistics

In general, it is expected that the observed y2-distribution does not approximate well the
theoretical y2-distribution well for complex models or in conditions with few observations. Unfor-
tunately, Mplus 6.1 only reports unscaled (uncorrected) x? fit statistics (i.e., ML x? fit statistics)
in the Monte Carlo option, even when using the MLR estimator (L. K. Muthén & Muthén, 1998-

2010). Hence, all x? fit statistics will be based on maximum likelihood estimation.

ML vs. MLR estimator

Many researchers recommend to use maximum likelihood estimator with robust standard er-
rors (MLR) instead of the regular maximum likelihood estimator (ML) when modeling multilevel
(hierarchical) data structures (see L. K. Muthén & Muthén, 1998-2010; Satorra & Bentler, 1994,
2001; Yuan & Bentler, 2000). However, it is important to note that the MLR estimator is based
on the regular ML estimator and solely adjusts the x? fit-statistics and the standard errors for
the parameter estimates (L. K. Muthén & Muthén, 1998-2010). It can be expected that both
estimators (ML and MLR) yield similar results, if (a) the sample size is relatively large, (b) the
data multivariate is normally distributed and (c) the multilevel structure is explicitly modeled (i.e.,
no additional clustering or dependency). With respect to the subsequent simulation studies, all of
these assumptions are met. Therefore, it is assumed that the difference between the ML and the
MLR estimates will be negligible. However, it is expected that the MLR estimator outperforms

the regular ML estimator, when one or more of the assumptions above are not met.
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6.5 Statistical analyses

In order to determine favorable or unfavorable conditions for the applicability of the models
different types of biases (peb and seb) were related to different MC conditions (i.e., number of
constructs, method, measurement occasions, sample size, consistency condition). It is very com-
mon to use analyses of variance (e.g., ANOVA or MANOVA) for analyzing simulation results.
When conducting an analysis of variance (ANOVA) different MC conditions are regarded as fixed
factors. However, sometimes it is more reasonable to consider different MC conditions as random
factors. For example, in cases in which (a) the number of MC conditions is large (above 100),
(b) the amount of bias varies across different conditions and/or different parameters (i.e., multiple
crossed random effects), (c) the simulated models contain numerous parameters (e.g., covariances,
variances, factor loadings etc.) with varying degree of bias, and (d) different MC conditions can be
seen as random samples of data conditions which might occur in real data applications. In these
cases, considering the different MC conditions as random may be beneficial, given that a multilevel
model can be used for the analysis instead of a general ANOVA. In fact, multilevel analysis has
many advantages, for instance less strict assumptions and higher flexibility, prevention of standard
error bias, inflated type 1 error (see Geiser, 2012). For the analysis of the simulation studies in
the present work, a multilevel model with two crossed random effects was specified. The reason
for using multilevel analysis with crossed random effects was that both types of biases (peb and
seb) varied across different conditions and different types of parameters (e.g., factor loadings, la-
tent covariances etc.). With this procedure, it was possible investigating which MC conditions are
most (un)favorable and which set of parameters (e.g., latent covariance, factor loadings, intercepts,
etc.) is most sensitive to bias in a single analysis. Given that the absolute values of the peb and
seb coefficients were calculated, the pep and seb (dependent variables) were extremely positive
skewed. For that reason, the absolute peb and seb values were log-transformed before entering in
the model. In addition to that, a small constant (.00001) was added to the peb and seb coefficients,
given that some peb and seb values approached zero. This log-transformation was done according
to the recommendations of Cohen, Cohen, West, and Aiken (2003, p. 235). The different types
of MC conditions (e.g., consistency, sample size on level-1 and level-2, number of methods, num-
ber of constructs, number of occasions) were dummy coded and used as independent variables for
the prediction of bias in parameter estimates (peb) and standard errors (seb). The unstandard-
ized regression coefficients were then back-transformed by taking an exponential function. As a
consequence of the exponential transformation, the unstandardized regression weights (5;) of the
dummy coded independent variables (C;) can be interpreted as the percentage impact of C; on Y
(i.e., peb or seb) controlling for all other independent variables in the model (see Giles, 2011). The
back-transformation formula can be expressed as follows: 100 x [exp(8;) — 1]. The analyses was
performed in R using 1me4 (D. Bates, Maechler, & Bolker, 2011). For more information concerning

multilevel regression with crossed random effects see D. M. Bates (in press).



Chapter 7

Simulation I : Latent state

(LS-COM) model

7.1 Specification of the population model

Table 7.1 provides informations regarding the specification of the population LS-COM model.
As indicated in Chapter 2 (see Figure 2.4), a LS-COM model with common latent state factors
was simulated. In other words, it was assumed that the indicator-specific latent state variables
are perfectly correlated. The reliability was set to .8 and portioned into the variance due to con-
sistency and method specificity. In the low consistency (low convergent validity) condition the
common and unique method specificity coefficient was set to .25, whereas the method specificity
coefficient of the third method was set to .5. The consistency coefficient was set to .3. In em-
pirical applications items do not often have equal reliability coefficients. In order to achieve most
realistic conditions in the simulation studies, all model parameters varied across items per CMOU
(construct-method-occasion unit). That is, for each item per CMOU a constant of .025 (.05) was
either subtracted or added to the coefficients given in table 7.1. For example, the reliability co-
efficients for the indicators per construct-method-occasion-unit (CMOU) was .775, .8, and .825.
Moreover, strong measurement invariance was assumed with respect to the simulation of the LS-
COM model (Meredith, 1993; Widaman & Reise, 1997). Again, strong measurement invariance
implies restrictions on the latent intercepts and latent factor loadings for each item belonging to
the construct j, method k, but different occasions of measurement [ and !’. Furthermore, the H1
iterations were set to 7500 for all models in order to provide goodness-of-fit statistics. Note that
the H1 model refers to the saturated and not to the specified model. A complete Mplus Monte
Carlo input of a LS-COM model is given on the appendix CD-ROM.

7.2 Results

7.2.1 Convergence

All models converged.

174
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Table 7.1: Consistency, method specificity & reliability of the LS-
COM model

low consistency high consistency
consistency 30 (£.025) .60 (£.025)

unique method specificity .25 (£.025) .10 (£.025)
common method specificity .25  (£.025) .10 (£.025)
method specificity 50 (£.050) .20 (£.050)
reliability 80 (£.025) .80  (£.025)

Note. The values for the remaining items per CMOU varied by
.025.

7.2.2 Improper solutions

Across all 232 conditions, 65 (28.0 %) conditions contained replications with improper solu-
tions with respect to the latent covariance matrix ¥. Most of these U-warning messages were
encountered in the multiconstruct conditions (37 out of 65 conditions, 56.9 %) compared to the
monoconstruct conditions (28 out of 65 conditions, 43.0 %). In addition, more ¥-warnings mes-
sages were encountered in high consistency (56 out of 65 conditions, 86.2 %) conditions (see Table

7.2) for both multiconstruct as well as monoconstruct measurement designs.

Table 7.2: Amount of W-Problems in Multi- and Monoconstruct Designs for High
and Low Consistency Condition.

Multiconstruct Monoconstruct Total
High consistency condition 32 (864 %) 24  (85.7%) 56  (86.2 %)
Low consistency condition 5 (135%) 4 (143%) 9 (13.8%)
Total 37 (56.9%) 28 (43.0%) 65 (100.0 %)

Note. Results do not represent the “actual” amount of ¥-problems.

It is important to note that these results do not represent the amount of “actual” W-problems,
but rather the total amount of Mplus warning messages (i.e., “possible” ¥-problems). In fact,
only 69 (3.09 %) out of 2231 Mplus warning messages referred to “actual” W-problems. Hence,
the amount of “actual” W-problems was below the cut-off value of 5 %. According to Figure
7.1, the “potential” W-problems occurred more often in high than low consistency conditions and
decreased substantially with increasing level-1 as well as level-2 units (number of raters and targets).
Moreover, the number of level-1 units (i.e., number of raters per target) seems to be especially
important for the reduction of “potential” W- problems. For example, in Figure 7.1 it can be
noticed that the amount of “potential” W- problems decreases substantially with more than 2
raters per target. However, in Figure 7.1 it is not yet clear how many observations are sufficient for
proper parameter estimates. In order to get a better understanding of how many observations are
needed for reducing the amount of “potential” U-problems, the ratio “observation per parameter”
was calculated and related to the amount of ¥-problems (see Bentler & Chou, 1987; Bollen, 1989,
2002).

Figure 7.2 shows the relationship between the amount of U-problems and the amount of observa-
tions per parameter. According to the Figure 7.2 the amount of W-problems decreased substantially

as the amount of observations per parameter increased. As potential cutoff value, at least five (bet-
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ter ten) observations per parameter are needed to reduce the amount of “potential” WU-problems
notably. This recommendation is in line with the findings of previous simulation studies by Bentler
and Chou (1987) (see straight line in Figure 7.2) and Bollen (1989, 2002) (see dashed line in Figure
7.2). Moreover, the Figure 7.2 reveals that more “potential” ¥-problems are more likely to occur
in the high consistency condition than in the low consistency condition. Most of these “potential”
W-problems refer to improper solutions with regard to the correlations among the latent method
factors (common as well as unique method factors). This might be explained by the fact that
a higher amount of consistency implies a lower a amount of method variance (i.e., lower method
bias). Therefore the LS-COM model is over-factorized in these MC conditions. However, if method
bias exists (low consistency condition) almost no W-problems occur. Overall, only 2 out of 232
conditions contained ©-problems. Both of these errors occurred in conditions referring to LS-COM
models in the high consistency condition incorporating 1 or 2 constructs, 2 methods, 2 occasions of
measurement and a total sample size of 200 (nL1 = 2, nL.2 = 100). Thus, the ©-problems occurred
only in conditions of low sample sizes on the rater- as well as target-level. These results show the

importance of level-1 and level-2 units for the reduction of improper solutions.
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Figure 7.1: Average number of WU-problems in high and low consistency conditions. nL1
= number of level-1 units; n.2 = number of level-2 units.
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7.2.3 Bias of parameter estimates and standard errors

Across all 232 conditions the absolute parameter estimation bias (peb) was below .1 and thereby
did not exceed the critical cutoff value of .1. However, the standard error bias (seb) exceeded the
cutoff value of .1 in 21 out of 232 (9.1 %) conditions. Higher standard error biases (seb above
.1) were more often encountered in the monoconstruct (14 out of 21 conditions, 66.7 %) than in
the multiconstruct (7 out of 21 conditions, 33.3 %) condition. In addition, higher standard error
biases (seb above .1) were more often found in the high than in the low consistency condition (see
Table 7.3). These results indicate that bias of standard errors (seb) are more likely to occur if
the amount of method bias is low (i.e. high convergent validity). Again, this might be partially
explained by the fact that the LS-COM model implicitly assumed substantial method bias that can
be modeled. If the different types of method (i.e., structurally as well as interchangeable raters)
perfectly converge in their ratings, the LS-COM model would be over-factorized for the data.

Amount of seb in Multi- and Monoconstruct Designs for High and Low Consistency

Conditions.
Table 7.3: Amount of seb in LS-COM model

Multiconstruct Monoconstruct Total
High consistency condition 4 (571 %) 10 (711.4%) 14  (66.6 %)
Low consistency condition 3 (429%) 4  (286%) 7 (333 %)
Total 7 (333 %) 14  (66.6 %) 21 (100.0 %)

Figure 7.3 illustrates the average peb and seb values with regard to the high and low consistency
condition. The two figures in the upper row refer to the average peb values in the high and low
consistency condition, whereas the two figures in the lower half refer to the average seb values in
the high and low consistency condition. According to the figures, peb as well as seb values are
lower in the low consistency condition than in the high consistency condition (i.e., high convergent
validity). Interestingly, the peb as well as seb values decrease substantially with increasing sample
size. Again, the sample size on level-1 (raters per targets) seems to be important for the reduction
of parameter as well as standard error bias. The major drop in the average seb can be noticed for
five instead two raters per target. It can also be seen in Figure 7.3 that the average peb and seb
values did not exceed the critical cut-off value of .1.

In order to investigate possible reasons for bias in parameter estimates (peb) as well as standard
errors (seb), a multilevel regression analysis with two random effect terms (one for the parameters
types and one for the condition types) was carried out. The two random effect terms were specified,
given that the amount of bias in parameter estimates and standard errors varied across different
types of parameters (e.g., factor loadings of latent factors, covariances among latent factors, vari-
ances of latent factors etc.) as well as across conditions (i.e., in total 232). The multilevel analysis
with cross random effects was carried out using the package 1me4 (D. Bates et al., 2011). The
results are given in Table 7.4. Note that the dependent variables (i.e., peb and seb values) were
first log-transformed and afterwards back-transformed as explained in section 6.5. Therefore, the
unstandardized regression weights may be interpreted as average percentage increase or decrease

in bias in the given group (e.g., 500 targets) with respect to the reference group (e.g., 100 targets)
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Figure 7.3: Average peb and seb values with respect to sample size in high and low consistency
conditions in the LS-COM model. nl.1 = number of level-1 units; n.2 = number of level-2 units.

holding everything else constant (ceteris paribus). According to the results given in Table 7.4,
the bias in parameter estimates (peb, see model 1) increased significantly with an increase of the
number of constructs (32 % increase of bias), but decreased significantly with an increase in the
number of measurement occasions (8-10 % decrease of bias), number of raters (36-51 % decrease of
bias) and targets (50-64 % decrease of bias). Again, bias in parameter estimates was rather found
in high consistency than in low consistency conditions (21 % increase of bias). Interestingly, the
number of methods was not significantly associated with bias in parameter estimates. This implies
that an increase of methods (e.g., parents, teacher, self-ratings etc.) does not lead to more bias of
the parameter estimates. According to the results regarding model 2, the standard error bias (seb)
decreased significantly with increasing number of raters (20-28 % decrease of bias) and number of
targets (21-29 % decrease of bias). The seb also increased with model complexity (i.e., number of
constructs and measurement waves; 12-19 % increase of bias). Moreover, bias in standard error was
significantly more often found in the high convergent validity condition than in the low convergent
validity condition (6 % increase of bias). According to these results, the amount of parameter as
well as standard error bias can be substantially reduced with increasing sample size on both levels.

With respect to the variability of the peb as well as seb-values across different types of param-
eters, it is possible to evaluate which class of parameter (e.g., factor loadings, latent variances,
covariances) is most sensitive to bias. The variability of peb and seb-values across different types
of parameters is displayed in Figure A.1 and A.2 in the appendix. The 95 % prediction intervals

of the random effects confirm that the conditional distribution of the parameter estimation bias
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Table 7.4: Estimates for the prediction of bias in parameter estimates (peb)
and standard errors (seb) in the LS-COM model.

Parameter Modell(peb) Model2(seb)
—2%LL 6085.64 5560.64
AIC 6164.33 5643.85
BIC 6246.72 5726.23
Fixed effects
Constant 0.01%** 0.03***
(0.22) (0.06)
Level-2 (conditions)
Methods 3 vs 2 0.04™5 0.17***
(0.03) (0.03)
Constructs 2 vs 1 0.32*** 0.19***
(0.03) (0.03)
Occasion 3 vs 2 —0.08* 0.12%**
(0.03) (0.03)
Occasion 4 vs 2 —0.10** 0.15%**
(0.04) (0.04)
Rater 5 vs 2 —0.36*** —0.23***
(0.04) (0.04)
Rater 10 vs 2 —0.45*** —0.28***
(0.04) (0.04)
Rater 20 vs 2 —0.51*** —0.20***
(0.04) (0.04)
Target 250 vs 100 —0.50*** —0.21%**
(0.04) (0.04)
Target 500 vs 100 —0.64*** —0.29***
(0.04) (0.04)
Cond low vs high —0.21%** —0.06*
(0.03) (0.03)
Random effects
Level-1
o2 0.57 0.47
Level-2
a2y, (con) 0.00 0.00
o2y (par) 0.56 0.01

Note. Reference group is a LS-COM model with 3 indicators, 1 construct,
2 methods, 2 occasions of measurement, 2 raters per target, 100 targets in
the high consistency condition. standard errors are in parentheses. peb=
log-transformed parameter estimation bias; seb = log-transformed standard
error bias; LL = log likelihood; N= 2656; (con) = condition type (232);
(par) = parameter type (12).

*p < .05; ***p < .001; ™° not significant.

for different parameters showed less variability than the conditional distribution of standard error
bias of different parameters. Moreover, bias in parameter estimates seem to be more sensitive with
respect to the estimation of latent covariances on the rater- and target-level, whereas the stan-
dard error bias was rather associated with the factor loadings of different kinds of method factors

(Acmijors Aunmijor, Amijrr) as well as the variance of the unique method factor [Var(UM,4;a)].
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7.2.4 Appropriateness of \? fit statistics

In Table 7.5 and 7.6 the expected and observed proportions of the x? fit-statistics for different
sample sizes and different models are given. The results of Table 7.5 refer to the x? fit statistics
of a monotrait LS-COM model with 3 indicators, 1 construct, 2 methods and 2 occasions of
measurement. The monotrait LS-COM model represents the least complex LS-COM model. The
results given in Table 7.6 refer to the y? fit statistics of a multitrait LS-COM model with 3
indicators, 2 constructs, 2 methods and 2 occasions of measurement. The values in the first column
refer to the probability of observing a y2-value greater than the corresponding percentile values
from a theoretical x? distribution with the degrees of freedom given by the model (L. K. Muthén
& Muthén, 1998-2010). The bold values of .05 in the first columns of Table 7.5 and 7.6 indicate
the nominal alpha level of 5 % for the theoretical x? distribution with the degrees of freedom given
by the model. The bold values (in columns 2 to 12) correspond to the observed values in the MC
replications. According to the results given in Table 7.5 and 7.6 the theoretical x2-values were
well recovered by the observed y2-values on a nominal alpha level of 5 % (see bold value in Table
7.5 and 7.6). The discrepancies between the observed and theoretical proportions on a nominal
alpha level of 5 % vary between .01 und .05. However, in all of these cases, the observed x2-values
were lower than the theoretical x?-values, implying a downward bias in asymptotic type I errors.
This means that to many specified models would be accepted according to the observed x? test
statistics, which results in too liberal x? model fit tests. As expected the y? fit statistics were
less downward biased in the monotrait condition (i.e., for less complex models) compared to the
multitrait condition. Interestingly, there is no clear-cut interpretation with regard the relationship
between x? fit statistics and different samples sizes (cf. Crayen, 2008; Geiser, 2008). A graphical
representation of these results is given in Figures B.1 and B.2 in the appendix). Given that these
results refer to the general maximum likelihood y? values, a scaling (correction) factor of the 2

values may be appropriate (see Yuan & Bentler, 2000).



Table 7.5: Expected and observed proportions of the x2-statistic for different sample sizes in the low consistency condition for
a monotrait LS-COM model.

Observed proportions

Expected 2x100 2x250 2x500 5x100 5x250 5x500 10x100 10x250 10x500 20x100 20x250 20x500
proportions

.99 97 .96 .95 97 .96 .96 .96 .98 97 97 .96 98
.98 .95 .94 .93 94 .93 .93 .93 .94 .94 94 .94 .96
.95 .87 .88 .84 .89 .87 .86 .87 .89 .88 .87 .87 .92
.90 .78 .79 77 .78 .76 N .80 .79 .78 .78 .78 .86
.80 .62 .60 .65 .62 .61 .62 .67 .63 .64 .64 .67 .71
.70 .01 .50 49 49 A48 .0l .55 .50 .02 .52 .07 .60
.50 .33 .30 .30 .29 .30 .32 .36 .34 .30 .33 37 .39
.30 21 .16 13 14 14 .15 18 A7 .16 18 .18 18
.20 13 .09 .07 .08 .08 .09 .09 .10 .08 .10 A1 A1
.10 .06 .03 .03 .04 .03 .04 .03 .04 .04 .04 .05 .07
.05 .04 .01 .01 .02 .01 .02 .01 .02 .01 .01 .02 .03
.02 .01 .00 .00 .00 .01 .01 .00 .00 .00 .00 .01 .01
.01 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

Note. LS-COM model with one construct, two methods, two occasions of measurement, and three indicators per CMOU
(3 x 1 x 2 x 2 version) and with 37 degrees of freedom; Expected proportions = proportions based on the theoretical
chi-square distribution; 2 x 100, 10 x 250, etc. indicate the sample size on level-1 and level-2.
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Table 7.6: Expected and observed proportions of the x2-statistic for different sample sizes in the low consistency condition for
a multitrait LS-COM model.

Observed proportions

Expected 2x100 2x250 2x500 5x100 5x250 5x500 10x100 10x250 10x500 20x100 20x250 20x500
proportions

.99 .98 93 91 94 .90 .95 .95 93 .93 .95 .95 .95
.98 .95 .89 .87 91 .88 .89 91 .88 .89 91 91 .93
.95 .90 .83 .78 .82 .78 .78 .81 .79 .80 .82 .82 .85
.90 .79 .69 .68 71 .68 .65 71 .67 .69 .72 .71 .74
.80 .65 5l .50 .56 5l .50 .05 49 .53 .55 .04 .58
.70 .52 38 .36 43 .35 .38 A2 .35 40 A1 A1 43
.50 .34 .23 .19 .23 .20 .20 27 .20 .22 .20 .23 21
.30 18 .09 .08 12 .09 .08 A2 .10 .10 .10 .09 A1
.20 .10 .06 .03 .06 .05 .04 .07 .06 .04 .05 .05 .05
.10 .04 .03 .02 .02 .01 .02 .03 .03 .02 .01 .02 .01
.05 .02 .00 .00 .01 .01 .01 .01 .01 .01 .01 .01 .00
.02 .01 .00 .00 .00 .00 .00 .01 .00 .00 .01 .00 .00
.01 .00 .00 .00 .00 .00 .00 .01 .00 .00 .00 .00 .00

Note. LS-COM model with two construct, two methods, two occasions of measurement, and three indicators per CMOU
(3 x 2 x 2 x 2 version) and with 86 degrees of freedom; Expected proportions = proportions based on the theoretical
chi-square distribution; 2x100, 10x250, etc. indicate the sample size on level-1 and level-2.
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7.3 Results based on the MLR estimator

In line with the general expectations, the average parameter bias (peb) was identical for all sets
of parameters regardless of the type of estimator (ML or MLR) used (see Table 7.7). Moreover,
the average standard error bias differed negligibly (second and third decimal place) with respect to
the different estimators used (see Table 7.8). In contrast to the general expectations, the average
standard error bias was higher in the MLR condition than in the ML condition. This might be
partially explained by the fact that the MLR estimator corrects the standard errors (by adding a
constant) which may be not necessary for the simulated data structure, given that all assumptions
of the general maximum likelihood estimator (e.g., multivariate normality, no additional clustering,
sufficient sample size) were met. Finally, it is rather encouraging to see that the average peb and

seb values are relatively small for all parameters across all MC conditions (see Table 7.7 and 7.8).
Table 7.7: Average absolute peb values for different

LS-COM model parameters and different maximum
likelihood estimators.

Peb ML MLR

State factor loadings 0.001  0.001

Common method factor loadings 0.005 0.005
Between covariances 0.016 0.016

Between latent means 0.005 0.005
Between intercepts  0.002  0.002

Between variances 0.007  0.007

Between residuals 0.005 0.005

Unique method factor loadings 0.004 0.004
Within covariances 0.013 0.013

Within variances 0.003 0.003

Within residuals  0.003  0.003

Note. ML= maximum likelihood estimator;
MLR=robust maximum likelihood estimator;
peb= average parameter estimate bias.

Table 7.8: Average absolute seb values for different
LS-COM model parameters and different maximum
likelihood estimators.

Seb ML MLR

State factor loadings 0.029 0.032

Common method factor loadings 0.048 0.055
Between covariances 0.029 0.032

Between latent means 0.026 0.026
Between intercepts 0.026  0.026

Between variances 0.031 0.035

Between residuals  0.029 0.033

Unique method factor loadings 0.036 0.038
Within covariances 0.031 0.033

Within variances 0.032 0.034

Within residuals  0.025 0.027

Note. ML= maximum likelihood estimator;
MLR=robust maximum likelihood estimator;
seb= average standard error bias.



Chapter 8

Simulation II : Latent change

(LC-COM) model

8.1 Specification of the population model

The population parameters of the LC-COM model were set to the same values as the population
parameters of the LS-COM model (see Table 7.1). For the sake of simplicity, a baseline LC-COM
model with common latent change factors for the reference method, but without latent method
change factors was specified. In other words, with respect to the simulated LC-COM model only
“true” change with respect to the reference method was assumed. Given that the LS-COM and the
baseline LC-COM are statistically equivalent, the results will be identical, except for variations due
to the different Monte Carlo sampling processes. The results regarding the ML-x? fit statistics are
not presented here. Results with respect to the amount of improper solutions, bias in estimation of
parameter and standard error etc. are provided for reasons of completeness and comparability of
the LS-COM model. In addition, all parameter restrictions such as strong measurement invariance,
number of H1 iterations (7,500) were set to the same values of the simulation study I (i.e., LS-
COM model). An example of the Mplus input for the simplest LC-COM model is provided in the
appendix CD-ROM.

8.2 Results

8.2.1 Convergence

All models converged.

8.2.2 Improper solutions

<

In total, 65 out 232 (28.0 %) conditions contained warning messages with respect to “pos-
sible” W-problems, whereas only 3 (1.3 %) conditions contained error messages referring to ©-

problems. Again, more V-warning messages were encountered in multi-construct designs than in
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mono-constructs designs as well as in the high consistency condition compared to the low consis-
tency condition (see Table 8.1).

Table 8.1: Amount of ¥-problems in multi- and monoconstruct designs for high
and low consistency condition.

Multiconstruct Monoconstruct Total
High consistency condition 32  (86.4 %) 24  (85.7%) 56  (86.2 %)
Low consistency condition 5 (135%) 4  (143%) 9 (13.8%)
Total 37 (56.9%) 28 (43.0%) 65 (100.0 %)

Note. Results do not represent the “actual” amount of W-problems.

The maximum number of replications with warning messages was 333. This MC replication
referred to LC-COM models in the high consistency condition with 2 constructs, 3 methods, 3
occasions of measurements and a sample size of N = 500 (2 x 250). The percentage of replications

with “actual” ¥-problems was below the 5 % cutoff value (3.0 %, 69 out of 2311).
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Figure 8.1: Average number of W-problems in high and low consistency conditions. nL1
= number of level-1 units; nL.2 = number of level-2 units.

Figure 8.1 confirms that the amount of “possible” W-problems is higher in the high consistency
conditions than in the low consistency condition. Moreover, the amount of “possible” W-problems
decreased substantially with increasing sample size on both levels. The majority of improper so-
lutions referred to the estimation of the latent correlations among unique and common method
factor (e.g., UMyjor, C My e), indicating that these parameter estimates are most prone to im-
proper solutions if the sample size on both levels is small and/or only a small amount of method
bias is present. The amount of “possible” W-problems decreased exponentially with an increasing
number of observations per parameter (see Figure 8.2). Again, a ratio of five observations per

parameter reduces the amount of improper solutions notably.
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8.2.3 Bias of parameter estimates and standard errors

Similar to the previous results, no bias of parameter estimates greater than .1 (10 %) was found
across all 232 conditions. However, the standard error bias (seb) exceeded the critical cutoff value
of .1 in 15 out of 232 (6.5 %) conditions (see Table 8.2). Therefore, the amount of bias with
regard to standard errors greater than .1 occurred less frequently in the change than in the state
parametrization of the model. However, similar to the LS-COM simulation, it was more likely
to find higher standard error bias (seb) in the monoconstruct (11 out of 15, 73.3 %) than in the
multiconstruct (4 out of 15, 26.7 %) condition. Besides that, more standard error bias (seb) above
|1| were encountered in the high consistency (i.e., high convergent validity) condition.

Amount of seb in multi- and monoconstruct designs for high and low consistency

condition.
Table 8.2: Amount of seb in LC-COM model.

Multiconstruct Monoconstruct Total
High consistency condition 3 (75.0%) 6  (54.5%) 9  (60.0%)
Low consistency condition 1 (25.0%) 5 (455 %) 6  (40.0 %)
Total 4 (267%) 11 (733%) 15 (100.0 %)

The average peb and seb values with regard to the high and low consistency condition are
illustrated in Figure 8.3. The two figures in the upper row show the average peb values in the high
and low consistency condition, whereas the two figures in the bottom row present the average seb
values in the high and low consistency condition. Similar to the previous results of the LS-COM
model, the peb as well as seb values are lower in the low consistency condition than in the high

consistency condition and decrease substantially with increasing sample size.
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Figure 8.3: Average peb and seb values with respect to sample size in high and low consistency
conditions in the LC-COM model. nL.L1 = number of level-1 units; nL2 = number of level-2 units.
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The results of multilevel regression analysis with two crossed random effects are shown in Table
8.3. According to these results, the bias in parameter estimates (peb, see model 1) increases
significantly with an increase of model complexity (i.e., number of constructs, 39 % increase of
bias), but decreases significantly with increasing sample size (number of raters, 36-47 % and targets,
51-65 %). However, the amount of bias in parameter estimates was not significantly associated
with the number of measurement occasions or methods. Again, the average amount peb decrease
substantially in the low consistency conditions (10 % decrease of bias). The amount of standard
error bias (seb) decreases significantly with increasing samples size (number of raters, 18-25 % and
targets, 25-33 %). Similar to the previous results the number of constructs as well as methods was
significantly associated with an increase of standard error bias (16 %). Interestingly, the average
amount of standard error bias was not significantly associated with the consistency conditions (high
vs. low).

The variability of peb and seb-values across different types of parameters is displayed in Figure
A.3 and A4 in the appendix. Again, the estimates of latent covariances on the within (rater) and
between (target) level were most sensitive to parameter bias (peb) as well as standard error bias

(seb).



CHAPTER 8. SIMULATION II : LATENT CHANGE (LC-COM) MODEL 190

Table 8.3: Estimates for the prediction of bias in parameter estimates (peb)
and standard errors (seb) in the LC-COM model.

Parameter Modell(peb) Model2(seb)
—2%LL 6116.40 5206.02
AIC 6195.23 5290.88
BIC 6277.66 5373.31
Fixed effects
Intercept 0.01%** 0.03***
(0.21) (0.05)
Level-2 (conditions)
Methods 3 vs 2 0.04™5 0.16***
(0.03) (0.03)
Constructs 2 vs 1 0.39*** 0.16***
(0.03) (0.03)
Occasion 3 vs 2 —0.02™¢ 0.09**
(0.04) (0.04)
Occasion 4 vs 2 —0.07™% 0.12%**
(0.04) (0.03)
Rater 5 vs 2: —0.36*** —0.21%**
(0.04) (0.04)
Rater 10 vs 2 —0.44*** —0.25***
(0.04) (0.04)
Rater 20 vs 2 —0.47** —0.18***
(0.04) (0.04)
Target 250 vs 100 —0.51*** —0.25***
(0.04) (0.04)
Target 500 vs 100 —0.65*** —0.33***
(0.04) (0.04)
Cond low vs high —0.10** —-0.01™°
(0.03) (0.03)
Random effects
Level-1
o2 0.57 0.41
Level-2
a2y, (con) 0.00 0.00
o2y (par) 0.48 0.01

Note. Reference group is a LC-COM model with 3 indicators, 1 construct,
2 methods, 2 occasions of measurement, 2 raters per target, 250 targets in
the high consistency condition. standard errors are in parentheses. peb=
log-transformed parameter estimation bias; seb = log-transformed standard
error bias; LL = log likelihood; N= 2664; (con) = condition type (232);
(par) = parameter type (12).

*p < .05; ***p < .001; ™ not significant.



Chapter 9

Simulation III : Latent state-trait

(LST-COM) model

9.1 Specification of the population model

Table 9.1 summarizes the amount of variance due to trait/state specificity as well as trait/state
method specificity that was manipulated in the study. In contrast to the LS-COM and LC-COM
simulation studies, the values were not varied across items for reasons of simplicity. The amount
of variance due to trait/occasion-specific (unique/common) method influences is rather low in the
high consistency condition, varying between 4 and 6.25 %. Parameter restrictions with regard
to strong measurement invariance were imposed (see Geiser, Keller, Lockhart, Eid, et al., 2012;
Meredith, 1993; Widaman & Reise, 1997). The covariance matrix of the simulated LST-COM
model is represented in Chapter 4.6.2. A Mplus input of the LST-COM model is provided on the
appendix CD-ROM.

Table 9.1: Consistency, method specificity and reliability in the LST-COM population
model.

Low consistency High consistency

Trait specificity coefficient

Reference method 49.00 49.00
Non-reference method 12.25 30.25
Trait-specific unique method coefficient 16.00 06.25
Trait-specific common method coefficient 12.25 04.00
Trait-specific method coefficient 30.25 12.25
Occasion specificity coefficient

Reference method 36.00 36.00
Non-reference method 12.25 30.25
Occasion-specific unique method coefficient 16.00 06.25
Occasion-specific common method coefficient 12.25 04.00
Occasion-specific method coefficient 30.25 12.25
Reliability coefficient

Reliability (within) 85.00 85.00
Reliability (between) 81.00 81.00

Note. Exact values of the amount of trait/state (method) specificity and reliability
in percent. The values did not vary across items.
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9.2 Results

9.2.1 Convergence

All HO models converged. However, the number of iterations for the H1 models was set to 1.
Therefore, none of the H1 models converged and no x? fit statistics were produced. This was done
in order reduce to computation time of these complex models (see Section 6.3). With respect to
this restriction the elapse time of the entire simulation could be reduced by 80 %. This also shows

that the software Mplus needs a lot of time for the estimation of the H1 (saturated) model.

9.2.2 Improper solutions

The percentage of warning messages referring to “possible” improper solution was relatively
low across all conditions. In total, 58 out of 288 conditions (20.1 %) contained replications with
“possible” improper solutions concerning the latent covariance matrix ¥. The majority of these
warning messages were encountered in the multiconstruct condition (38 out of 58). Less warning
messages were given in the monoconstruct condition (20 out of 58). Furthermore, more WU-warnings
messages were found in the high consistency (convergent validity) condition (see Table 9.2.2). No

warning messages were found concerning ©-problems.

Table 9.2: Amount of “possible” W-problems in multi- and monoconstruct designs
for high and low consistency condition.

Multiconstruct Monoconstruct Total
High consistency condition 32  (84.2 %) 19  (95.0%) 51  (87.9 %)
Low consistency condition 6 (158 %) 1 5.0%) 7 (121 %)
Total 38 (655%) 20 (345%) 58 (100.0 %)

Note. Results do not represent the “actual” amount of W-problems.

It is important to note that these results do not represent the amount of “actual” W-problems.
In fact, only 379 (10.8 %) out of 3517 Mplus warning messages referred to “actual” U-problems.
Regarding the absolute number of replications (144,000), the percentage of real WU-problems was
below 1 %.

More than 90 % of the “actual” WU-problems were encountered in high consistency conditions.
According to Figure 9.1 the amount of “possible” W-problems decreased substantially with increas-
ing sample size on both levels (i.e., number of targets and raters). Again, a ratio of 5 (better
10) observations per parameter reduces the amount of W-warning messages substantially in the
low consistency condition (see Figure 9.2). Note that this ratio incorporates the total number of

observations (targets and raters).
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9.2.3 Bias of parameter estimates and standard errors

The parameter estimation bias (peb) exceeded the cutoff value of .1 (10 %) in 1 out of 288
conditions. This condition referred to LST-COM models with 3 indicators, 2 constructs, 2 methods,
2 occasion of measurement in the high consistency condition with a sample size of 700 (350 targets
and 2 raters per target). The peb value of .125 in this MC condition referred to the covariance
among two latent unique state factors pertaining to the same occasion of measurement, but different
constructs. This high parameter bias may result from the small sample size on level-1 (only 2 raters
per target). The standard error bias (seb) exceeded the cutoff value in 2 out of 288 conditions.
Both of these MC conditions referred to LST-COM models in the high consistency condition with
also few level-1 observations (i.e., 2 raters per target). The increased seb values referred to the
standard errors of the covariance between occasion-specific method factors on the between level
and to the latent factor loadings of the occasion-specific common method factors. The maximum
seb value was .109. As indicated above, bias of parameter estimates and/or standard errors were
encountered solely in conditions with 2 rater per target. Figure 7.3 illustrates the average peb and

seb values with regard to the high and the low consistency condition. Again, a multilevel analysis
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Figure 9.3: Average peb and seb values with respect to sample size in high and low consistency
conditions in the LST-COM model. nlL1 = number of level-1 units; n.2 = number of level-2 units.

with crossed random effects was carried out in order to investigate possible reasons for bias of
parameter estimates as well as standard errors. The results of this analysis are given in Table 9.3.
The bias of parameter estimates (see Model 1) decreased substantially with increasing sample size
on level-1 (rater, 31-53 % decrease of bias) as well as level-2 (targets, 20-36 % decrease of bias).
Moreover, the amount of peb decreased significantly with an increasing number of measurement
occasions (25-31 % decrease of bias). This may be partially due to the fact that the number of

observations as well as the number of measurement occasions constitute more empirical information.
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Furthermore, LST-models are more restrictive than LS-models given that the covariances that
would be freely estimated in LS-models are restricted in LST-models (Geiser, 2012). Therefore,
additional occasions of measurement should not lead to more bias or improper solutions. Similar
to the previous results, the amount of parameter bias increased significantly with an increasing
number of constructs (25 % increase of bias) and methods (12 % increase of bias). Again, the
amount of parameter bias was higher in the high convergent validity condition than in the low
convergent validity condition (21 % of bias). The amount of standard error bias (seb) increased
significantly with an increasing number of constructs (17 % increase of bias). However, in contrast
to the previous results the amount of standard error bias was neither significantly associated with
the number of measurement occasions, methods, targets nor the condition type (high vs. low).
Nevertheless, the average amount of seb reduced significantly with an increasing number of raters
per target (6-17 %).

The variability of peb and seb values across different types of parameters is displayed in Figure
A.5 and A.6 in the appendix. The 95 % prediction intervals of the random effects confirm that
the conditional distribution of the parameter estimation bias of different parameters has much
less variability than the conditional distribution of the standard error bias of different parameters.
Furthermore, bias in parameter estimates seem to be more sensitive to covariances among latent
factors on the within (rater) and between (target) level. In particular, higher peb values are more
often found with respect to the estimation of the covariance between latent trait method factors
and the latent factor loading of the occasion-specific method factors. The standard error bias (seb)

is rather associated with the latent covariance of the unique method state factors (173,
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Table 9.3: Estimates for the prediction of bias in parameter estimates (peb)
and standard errors (seb) in the LST-COM model.

Parameter Modell(peb) Model2(seb)
—2+LL 10920.67 11876.36
AIC 11009.00 11964.81
BIC 11100.94 12056.75
Fixed effects
Intercept 0.01%** 0.02%**
(0.18) (0.05)
Level 2 (conditions)
methods 3 vs 2 0.12%** 0.00™¢
(0.02) (0.02)
constructs 2 vs 1 0.25%** 0.17***
(0.02) (0.02)
occasion 3 vs 2 —0.27*** 0.04™%
(0.02) (0.03)
occasion 4 vs 2 —0.31%** 0.04™%
(0.02) (0.02)
rater 5 vs 2: —0.31*** —0.03"°
(0.03) (0.03)
rater 10 vs 2 —0.42%** —0.06*
(0.03) (0.03)
rater 20 vs 2 —0.53*** —0.17***
(0.03) (0.03)
target 500 vs 350 —0.20*** —0.04"¢
(0.03) (0.03)
target 750 vs 350 —0.36*** —0.05™¢
(0.03) (0.03)
cond low vs high —0.21%** 0.02™°
(0.03) (0.03)
Random effects
Level 1
o? 0.45 0.55
Level 2
02y, (con) 0.00 0.00
a2y (par) 0.63 0.02

Note. Reference group is a LST-COM model with 3 indicators, 1 construct,
2 methods, 2 occasions of measurement, 2 raters per target, 350 targets in
the high consistency condition. Standard errors are in parentheses. peb =
log-transformed parameter estimation bias; seb = log-transformed standard
error bias; LL = log likelihood; N = 5256; (con) = condition type (288);
(par) = parameter type (21).

*p < .05; **p < .001; ™® not significant.



Chapter 10

Simulation IV : Latent growth
curve (LGC-COM) model

10.1 Specification of the population model

The parameter specification of the population model is given in Table 10.1. Note that the
LGC-COM is a special variant of the the LST-COM. Therefore, only the additional variance
decomposition of the latent intercept and slope variables are provided in Table 10.1. Again, these
values were not varied across items, and strong measurement invariance was assumed for all LGC-

COM models. A Mplus input file can be found on the appendix CD-ROM.

Table 10.1: Variances of the intercept and slope factors in the LGC-COM population
model.

low consistency high consistency

Intercept Variance

Reference method indicator 672 .672
Non-reference method indicator .336 .528
Slope Variance

Reference method indicator (linear growth) 196 .196
Non-reference method indicator (linear growth) .098 .154

Note. Exact values of the variance coefficients of the intercept and slope factors in
the LGC-COM population model. The values did not vary across items. All other
coefficients in the LGC-COM model were set to the same values as proposed for the
LST-COM model.

10.2 Results

10.2.1 Convergence

All HO models converged. However, the number of iterations for the H1 models was set to 1.

Therefore, non of the H1 models converged and no x? fit statistics were produced.
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10.2.2 Improper solutions

Overall, 110 out of 288 conditions (38.2 %) contained replications with warming messages indi-
cating possible estimation problems with respect to the latent covariance matrix ¥. More warning
messages were encountered in the multiconstruct condition (61, 55.5 %) than in the monoconstruct
condition (49, 45.5 %). The amount of “possible” ¥-problems was almost equally distributed across
high and low consistency condition (see Table 10.2). In the worst case, 400 out of 500 replications
entailed ¥-warning messages. However, the amount of real WU-problems was relatively low (5237
of 144,000 replication, 3.6 %). That means that only 58.7 % (5237 out of 8922) of Mplus warning
messages referred to “actual” W-problems. The rest of the warning messages referred to estimation
problems concerning higher order partial correlations. All of the 5237 “actual” W-problems were
associated with the estimation of between (target) level parameters.

Table 10.2: Amount of “possible” U-problems in multi- and monoconstruct designs
for high and low consistency condition.

Multiconstruct Monoconstruct Total
High consistency condition 32 (525 %) 25  (51.0%) 57 (51.8 %)
Low consistency condition 29 (475 %) 24  (49.0%) 53 (482 %)
Total 61  (555%) 49  (455%) 110 (100.0 %)

Note. Results do not represent the “actual” amount of W-problems.

In Figure 10.1 the average amount of W-warning messages for different samples sizes is given.
As the figure illustrates, the average amount of W-warning messages decreased with an increasing
number of observations on both levels (number of targets, number of rater per targets). Note that
the average amount of U-warning messages is almost equal in the high and low consistency condi-
tion. This might be explained by the fact that the LGC-COM model implies the decomposition of
an observed variable (of the interchangeable method) into eight different components (see Chapter
5). In addition to that, according to Figure 10.2 the average number of U-warning messages de-
creases with an increasing number of observations per parameter. However, due to the complexity
of the LGC-COM model, a higher ratio of observations per parameter is needed in order to reduce
the amount of improper solutions. It can be seen from Figure 10.2 that even a ratio of 10:1 is not
sufficient for reducing the amount of W-warning messages. However, it is important to note that
both Figures 10.1 and 10.2 refer to the total amount of Mplus warning messages (hence: “possible”

improper solutions) and not to the amount of “actual” improper solutions.

Bias of parameter estimates and standard errors

The amount of parameter estimate bias and standard errors bias was relatively low. Across all
288 conditions the parameter estimation bias (peb) was below .1 and thereby did not exceed the
critical cutoff value of .1. Nevertheless, the standard error bias (seb) exceeded the cutoff value in 4
cases of the low consistency condition and once in the high consistency conditions. In all of these
MC conditions only 2 raters per target (few level-1 observation) were given. The maximum seb
value of 1.88 was associated with the standard error estimation of slope covariances. Nonetheless,

the average amount of bias (peb as well as seb) was relatively low across all simulation studies.
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Figure 10.1: Average number of W-problems in high and low consistency conditions. nL1
= number of level-1 units; n.2 = number of level-2 units.

According to the results of the multilevel analysis with crossed-random effects (see Table 10.3), the
average amount of peb decreased significantly with an increasing number of measurement waves
(13-27 % reduction), raters (25-45 %) as well as targets (19-30 %). Moreover, the average peb
was higher in the high consistency condition than in the low consistency condition (11 %). Only
with respect to the number of constructs (i.e., model complexity) the average amount of bias (peb)
increased significantly (26 %). The average percentage increase or decrease of the standard error
bias with respect the MC conditions was relatively low (1-13 %). The average amount standard
error bias (seb) was related to an increase of the number of constructs (13 % increase of bias). In
contrast to that, the number of rater (1-8 %) as well as targets (2-6 %) were negatively associated

with the average amount of standard error bias.
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Figure 10.2: Relationship between W-problems and observations per number of parame-

ters.
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Table 10.3: Estimates for the prediction of bias in parameter estimates (peb)
and standard errors (seb) in the LGC-COM model.

Parameter Modell(peb) Model2(seb)
—2%LL 13592.21 13717.57
AIC 13683.17 13809.89
BIC 13778.50 13905.22
Fixed effects
Intercept 0.01%** 0.02%**
(0.21) (0.21)
Level 2 (conditions)
Methods 3 vs 2 0.06*** 0.02m¢
(0.02) (0.02)
Constructs 2 vs 1 0.26*** 0.13***
(0.02) (0.02)
Occasion 3 vs 2 —0.13*** 0.07**
(0.02) (0.02)
Occasion 4 vs 2 —0.27** 0.02"
(0.02) (0.02)
Rater 5 vs 2 —0.25*** —0.01™°
(0.02) (0.02)
Rater 10 vs 2 —0.29*** —0.07**
(0.02) (0.02)
Rater 20 vs 2 —0.45*** —0.08"*
(0.02) (0.02)
Target 600 vs 400 —0.19*** —0.02"¢
(0.02) (0.02)
Target 800 vs 400 —0.30*** —0.06**
(0.02) (0.02)
Cond low vs high —0.11%** 0.05**
(0.02) (0.02)
Random effects
Level 1
o2 0.44 0.45
Level 2
a2y, (con) 0.00 0.01
o2y (par) 1.08 0.07

Note. Reference group is a LGC-COM model with 3 indicators, 1 construct,
2 methods, 2 occasions of measurement, 2 raters per target, 400 targets in
the high consistency condition. Standard errors are in parentheses. peb =
log-transformed parameter estimation bias; seb = log-transformed standard
error bias; LL = log likelihood; N= 6696; (con) = condition type (288);
(par) = parameter type (26).

*p < .05; ***p < .001; ™ not significant.
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10.3 Summary of the Monte Carlo simulation studies and
general recommendations

The results of these four extensive simulation studies indicate that the presented models (LS-
COM model, LC-COM model, LST-COM model, and LGC-COM model) perform well in general.
No convergence problems with respect to the specified HO model were encountered in any of the
simulation studies. With respect to the H1 (saturated) model, researchers should increase the
number of iterations to at least 7,500 for the LS-COM and LC-COM model and to 15,000 for the
LST-COM and LGC-COM model in order to obtain y? fit statistics. The convergence difficulties
of the H1 model may be partially explained by the fact that Mplus tries to estimate the saturated
model, which may be computational extremely demanding for complex ML-SEM models when
random MC sampling is involved. Nevertheless, further research needs to be done in order to
scrutinize the convergence issues related to the estimation of complex MI-SEMs.

The amount of “actual” improper solutions (¥- and/or ©-problems) was below 5 % in any of
the MC simulation studies. Moreover, the average parameter bias (peb) as well as standard error
bias (seb) was relatively small for most parameters and only exceeded the critical cutoff value
of 10 % in rare cases. Therefore, it can be concluded that the model parameters are generally
well recovered by the presented models. Moreover, the amount of improper solutions as well as
bias can be substantially reduced by an increasing number of observations on both levels. Most
sensitive to bias (peb and seb) as well as improper solutions were the latent covariances among the
latent variables as well as the factor loadings of the latent factors. More specifically, the estimation
problems involved common as well as unique method factors, especially in high consistency (i.e.,
low method variance) conditions. However, with respect to an increase of empirical information
(e.g., sample size as well as occasions of measurement) the amount of bias and improper solutions
can be significantly reduced. Based on these findings, at least five (better ten) observations per
parameter are needed for proper parameter estimates. These recommendations are in line with the
results of previous simulation studies (Bentler & Chou, 1987; Bollen, 1989, 2002). Moreover, the
results of the simulation study suggest that the number of level-1 (rater per target) observations
are important for proper parameter estimates. Specifically, the number of improper solutions as
well as the amount of bias decreased significantly with increasing number of raters per target.
Therefore, it is recommended to sample at least 5 raters per target.

High standard error bias (seb) occurred more often in conditions with few level-1 observations
(e.g., 2 raters per target), low method bias (i.e., high consistency conditions) and high model
complexity (i.e., number of parameters). In general, the standard error bias (seb) may be therefore

reduced
¢ by increasing the number of level-1 units (more than 2 raters per target),

¢ by reducing the number of free estimated parameters (e.g., by reducing the number of con-

structs, inducing more restrictions), and/or

e by increasing the total number of observations per parameter.
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As arule of thumb, a minimal ratio of 5:1 (better 10:1) observations per parameter is recommended
for proper standard errors. Across all simulation studies, the sample size on level-2 (target) and
level-1 (rater) are equally important for proper parameter estimates. In line with the simulation
study by Julian (2001) the number of level-2 units (number of targets) should be above 100. Based
on the simulation results it is however recommended to sample at least as many targets (level-2
units) as parameters are estimated by the model, given that Mplus produces warning messages
and it is yet not clear, whether or not parameters will be biased under these circumstances.

In contrast, to previous simulation studies on multilevel models (see e.g., Maas & Hox, 2005),
the number of level-1 units (i.e., raters per target) is extremely important for valid parameter
estimates. In regard to the x? test of model fit, it was found that the observed x? distribution
approximates the theoretical x? distribution well under maximum likelihood (ML) estimation.
These results are quiet interestingly, given that previous simulation studies show that the x?2 fit
statistics are often not trustworthy for complex MTMM-MO structural equation models (Crayen,
2008; Geiser, 2008). However, researcher should be aware that the observed x? distribution is
downward biased compared to the theoretical x2? distribution, meaning that the y? model fit test
is too liberal. Unfortunately, no clear cut trends with respect to sample size and the x? test of
model fit could be made with regard to the presented simulation studies. Consequently, more
research is needed in order to scrutinize adequacy and robustness of x?2 fit statistics in longitudinal

multilevel MTMM-SEMs. Future research should especially focus on level-specific x? fit statistics.
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Chapter 11

Final discussion

11.1 Practical guidelines for empirical applications

In the subsequent section, practical guidelines for empirical applications of the presented mod-
els are provided. The guidelines are divided into the following topic-related parts: (a) selection
strategies for choosing an appropriate MTMM-MO model, (b) selection of the reference method,
(c) selection of the indicators (e.g., items vs. item-parcels), (d) selection of the methods and deal-
ing with complex hierarchical data structures (e.g., three-level data structures, multiple sets of
interchangeable methods, cross-classification of raters etc.), and (e) choosing the optimal sample

size.

11.1.1 Model selection

In the present work, four longitudinal multilevel structural equation models for complex MTMM
measurement designs combining structurally different and interchangeable methods have been pro-
posed. Specifically, a latent state (LS-COM) model, two latent baseline change (LC-COM) models,
a latent state-trait (LST-COM) model, and a latent growth curve (LGC-COM) model have been
formally defined. Depending on the substantive research questions that researchers may seek to
answer, the presented models may be more or less useful. In the following section the strength and
weaknesses of the presented models are briefly summarized in order to provide a basic guideline to
researchers for choosing the appropriate MTMM-MO model.

The latent state (LS-COM) model can be used as baseline model for modeling complex MTMM-
MO measurement designs combining structurally different and interchangeable methods, given that
the LS-COM model implies less restrictions on the latent variance-covariance matrix than, for ex-
ample, the LST-COM or the LGC-COM model. The LS-COM model can be used for testing crucial
assumptions of longitudinal analysis such as the degree of measurement invariance (see also Geiser,
2008, 2012). By applying the LS-COM model it is also possible (a) to investigate the stability and
change of construct as well as method effects across time, (b) to analyze the true convergent and
discriminant validity of the given measures, and (c) study the latent mean structure. However, with
LS-COM models it is only possible to investigate the stability and change of construct as well as
method effects indirectly by examining the correlations among the latent variables. In other words,
it is neither possible to model the stability nor the true change of method effects directly with re-

spect to latent state models (see Geiser, 2012). Researchers who are interested in modeling true
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interindividual differences in intraindividual change via latent difference variables, should therefore
rather apply one of the LC-COM models or the LGC-COM model. The simple baseline LC-COM
model is useful for studying true interindividual differences in intraindividual change with respect
to the reference method. The simple baseline LC-COM model allows analyzing true change of con-
struct effects, but not of method effects. The extended latent baseline LC-COM model also enables
the investigation of true change in construct as well as method effects. Both LC-COM models are
particular useful for analyzing longitudinal MTMM intervention studies, given that it is possible
to relate external variables (e.g., intervention group) to the latent differences variables. By includ-
ing these additional variables into the LC-COM model, researcher may predict the true change
of leadership quality as measured by the reference method. For example, researchers may explain
why leadership quality is over- or underestimated by colleagues and/or the supervisor across time.
Researchers can also conduct an intervention study in order to establish more congruency between
the different raters (e.g., self-report, colleagues reports, supervisor reports). Geiser et al. (2010)
provide a detailed description of how true change can be investigated via MTMM-MO-SEMs for
structurally different methods.

The LGC-COM model can be used for modeling the shape of the true intraindividual change
as measured by the reference method. That means, researchers can test whether or not the growth
in leadership quality as measured by the reference method increases (or decreases) in a linear
or in a non-linear form. In addition, researchers may also investigate whether or not the true
interindividual differences in growth and the initial status as measured by the reference method
can be predicted by external variables. The main advantage of the LGC-COM model is that growth
can be studied free of stable method influences, occasion-specific as well as occasion-specific method
influences, and measurement error influences. In other words, the LGC-COM model combines the
advantages of multiple indicator latent growth curve models and MTMM modeling approaches
(specifically the CT-C(M-1) modeling approach).

The LST-COM model is useful for studying variability processes in MTMM-MO designs in-
corporating a combination of structurally different and interchangeable methods. Specifically,
researchers can investigate (a) to which degree the constructs are stable or occasion-specific, (b)
to which degree the method effects are stable or occasion-specific, (¢) to which degree the consis-
tency (congruency) between different methods (e.g., raters) are stable or occasion-specific. The
latter allows investigating the convergent validity of different measures on trait as well as state
level. Moreover, the LST-COM model allows researchers to examine (d) whether or not stable
(trait) method effects generalize across different constructs and (e) whether or not momentary
(occasion-specific) method effects generalize across different constructs.

Measurement designs do not always incorporate a combination of structurally different and
interchangeable methods. Measurement designs that just use structurally different methods (e.g.,
self-report, parent report, and physiological measures), researchers can apply the models presented
by Geiser (2008) or Courvoisier (2006). With respect to measurement designs that just incorporate
interchangeable methods (e.g., multiple peer reports for teaching quality), researchers can apply a
longitudinal version of the ML-CFA-MTMM model proposed by Eid et al. (2008).

In summary, researchers should be aware of the fact that substantive research questions as well
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as the type of methods used in the MTMM measurement design should guide the model selection
process (see Eid et al., 2008).

11.1.2 Choice of the reference method

The choice of the reference (gold standard) method is crucial for the interpretation of the model
parameters. It is, therefore, strongly recommended selecting the reference method based on the-
oretical considerations (Geiser et al., 2008). In many cases, researchers will be able to select an
appropriate reference method by considering their substantive research questions. For example,
researchers may select the reference method considering whether the attribute of interest is observ-
able (or properly measurable) by peer reports. Social competencies may be more closely linked to
peer evaluations than to self-evaluations. Moreover, if researchers are interested in explaining why
particular students over- or underestimate their level of social competencies with respect to the
peer reports (here: gold standard) then the peer reports should be taken as the reference method.
Pham et al. (2012) showed how the set of interchangeable methods may be used as a reference
method for evaluating teaching quality (performance) of teachers rated by their corresponding stu-
dents. In cases where researchers struggle with a theory-driven selection of the reference method,
it may be appropriate to choose the most reliable method as the reference method or impose addi-
tional restrictions on the factor loading parameters so that the model fit of the specified CTC(M-1)
model is not affected by the choice of the reference method (Geiser et al., 2008; Geiser, Eid, West,
Lischetzke, & Nussbeck, 2012).

11.1.3 Item selection

Researchers should use reliable (homogeneous) items (e.g., self-report, peer report, other re-
port). First, it has been shown that the number of homogeneous (unidimensional) items are ben-
eficial for the proper parameter estimates (Marsh et al., 1998). Second, if the items per factor are
homogeneous (unidimensional), it is possible to specify common, instead of indicator-specific latent
factors. Hence, homogeneous items are useful for specifying a more parsimonious model. If scales
with numerous items are used (e.g., Large Scale Assessments), it is recommended to build item
parcels following the recommendations by Little, Cunningham, Shahar, and Widaman (2002). By
using item parcels (e.g., test halves) it is possible to reduce the complexity of the models (number
of parameters) as well as the computational burden with respect to maximum likelihood estima-
tion. For example, the computational burden for the estimation of complex multilevel structural
equation models with categorical items increases exponentially with an increasing number of items
(integration points) (L. K. Muthén & Muthén, 1998-2010). Therefore, it is strongly recommended

to reduce the complexity of the given model as much as possible. In summary, this can be done by
e specifying common latent factors instead of item-specific latent factors,
e using item parcels in case of many categorical or not normally distributed items, and/or
e imposing as many permissible and reasonable restrictions as possible:

— establishing the highest degree of measurement invariance,
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— specifying latent factors that are common to all indicators

— fixing correlations to zero for parsimony

11.1.4 Complex hierarchical data structures

The presented models in this thesis can be considered as two-level longitudinal structural equa-
tion models, where interchangeable methods (e.g., raters) are modeled on the within-level and
structurally different methods are modeled on the between-level. Researchers who seek to apply
these models should follow the general guidelines of designing multilevel studies (e.g., Hox, 2010;
Luke, 2004; Raudenbrush & Bryk, 2002; Snijders & Bosker, 2011). Researchers should note that

measurement designs with more complex hierarchical data structures, including:
e three-level multilevel structural equation models (ML-SEMs),
e ML-SEMs with multiple sets of interchangeable raters,
o ML-SEMs with cross-classified methods,

imply different random experiments. The random experiment as well as the probability spaces for
the presented models have been explicitly characterized throughout this work. In order to extend
these models to more complex multilevel measurement designs, additional research (e.g., simulation

studies) is needed (see Section 11.4 for more details).

11.1.5 Optimal sample size

According to the extensive simulation designs in Chapter 7 to 10, the minimum required sample
size depends on the particular model (LS-COM, LC-COM, LST-COM, LGC-COM) and the specific
MTMM-MO measurement design (i.e., number of items, constructs, methods, occasions of mea-
surement). Under realistic circumstances (i.e., low convergent validity), the parameter estimates
will be well recovered by the models in samples with a ratio of five observations per parameter,
which corresponds to the general recommendation of Bentler and Chou (1987). In addition, it is
recommended to use more than two level-1 units (interchangeable raters per target), given that the
results of the simulation studies indicate that the sample size on level-1 is extremely important for
the reduction of parameter as well as standard error bias. As a rule of thumb, it is recommended to
(a) sample at least as many level-2 units (i.e., targets) as parameters are estimated by the model,
and to (b) multiply the number by five (for the number of raters per target) in order to obtain the
total minimal sample size for proper parameter estimates. Given that the presented models can
easily become quiet complex (if multiple traits and multiple methods are used). Additionally, it is
suggested to sample at least 100 level-2 units (i.e., targets). Under unrealistic circumstances (i.e.,
high convergent validity and low method variance) a larger sample size is required for proper pa-
rameter estimates. This is especially the case for the more complex models such as the LST-COM

or LGC-COM model.
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11.2 Advantages

The models presented in this thesis encompass many advantages. Most of all, the models (i.e.,
LS-COM model, LC-COM model, LST-COM model, LGC-COM model) combine the strengths and
benefits of (a) longitudinal modeling approaches, (b) multimethod-multitrait (MTMM) modeling
approaches, (c) multilevel modeling approaches and (d) structural equation modeling approaches.
To my knowledge, the combination of all of these modeling approaches is unique. A similar
general but different modeling framework represents the generalized linear latent and mixed mod-
eling (GLLAMM) approach by Rabe-Hesketh and Skrondal (2004). However, in contrast to the
GLLAMM approach, the presented models are formally defined based on stochastic measurement
theory (Steyer, 1989; Steyer & Eid, 2001; Suppes & Zinnes, 1963; Zimmermann, 1975). By this
mathematical formalization, the psychometric meaning as well as the psychometric properties of
the latent variables (e.g., existence, uniqueness, admissible transformations, etc.) were clearly
shown. The major advantage of these models is that they allow investigating complex (multilevel)
MTMM-MO matrices by estimating one single model, instead of running multiple models sepa-
rately. In other words, researchers will no longer have to aggregate the ratings per target or have
to specify different MTMM models for different waves of measurement. As a consequence, research

questions concerning the study of

e level-specific method bias at each occasion of measurement,

the generalizability of method effects across constructs,

the stability and/or occasion-specificity of method effects,

the degree of true convergent and discriminant validity,

e true intraindividual change as well as the degree of stable or occasion-specific influences due

to interindividual differences,
e potential causes for method bias or the change of method bias,

can be answered properly without losing any relevant information. In addition, the presented

models are formulated based on four main longitudinal modeling frameworks:
e latent state modeling,
e latent difference/change variables modeling,
e latent state-trait modeling,
e latent growth curve modeling.

The methodological similarities of all of these frameworks have been explained and the appropri-
ateness of each modeling framework for different substantive research questions has been discussed.
In addition to that, the presented models may be considered as extensions of the models presented
by Geiser (2008) and Courvoisier (2006) to measurement designs with structurally different and

interchangeable methods. Therefore, the presented models will also encompass the advantages



CHAPTER 11. FINAL DISCUSSION 210

of these models. Finally, important assumptions such as measurement invariance can be directly

tested with x? model fit statistics.

11.3 Limitations

Despite the numerous advantages, the presented models are limited in some aspects. First,
the major limitations relate to the complexity of the models. For example, a general LS-COM
model with 3 indicators, 2 methods, 2 constructs and 3 occasions of measurement incorporates
133 parameters in case of strong measurement invariance and 189 parameter estimates in case of
configural measurement invariance (see Table 11.1). According to the general recommendation
given above, at least five observations per parameter are needed for proper parameter estimates.
Therefore, the required sample size for this 3x2x2x3 MTMM-MO measurement design ranges
between 665 and 945 observations. Evidently, the presented models are not appropriate for small
samples. However, there are many things that researchers can do in order to reduce the complexity

of the models (see Section 11.1).

Table 11.1: Number of parameters of the LS-COM model depending on
different degrees of measurement invariance and the dimension of the

model.

Model dimension configural MI ~ weak MI  strong MI  strict MI
2x1x2x2 35 30 27 23
3x1x2x2 51 42 37 31
2x1x3x2 56 48 43 37
3x1x3x2 80 66 58 49
2x1x2x3 57 47 41 33
3x1x2x3 81 63 53 41
2x1x3x3 93 77 67 55
3x1x3x3 129 101 85 67
2x2x2x2 82 72 66 58
3x2x2x2 114 96 86 74
2x2x3x2 136 120 110 98
3x2x3x2 184 156 140 122
2x2x2x3 141 121 109 93
3x2x2x3 189 153 133 109
2x2x3x3 240 208 188 164
3x2x3x3 312 256 224 188

Note. Model dimension = itemsxconstructsx methodsxoccasions;

MI = measurement invariance.

First of all, researchers should impose as many restrictions as possible (e.g., strong measure-
ment invariance restrictions, restrictions of theoretical meaningless factor correlations etc.). The
additional restrictions are beneficial for reducing the model complexity and introducing additional
hypotheses for a more stringent model test (Geiser, 2008). Second of all, homogeneous items should
be selected in order to to specify common latent factors instead of indicator-specific latent factors
(Geiser, 2008). Researchers may also reduce the complexity of the model by specifying the models
for each construct separately (i.e., monoconstruct measurement design). For example, with regard
to the LS-COM model mentioned above, the required sample size reduces to 265 (strong MI) and

465 (configural MI) observations in the monoconstruct measurement design (see Table 11.1). This
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corresponds to a reduction of the model complexity by 51% to 60%. Note that complex struc-
tural equation models do not always lead to more problems in SEMs (Geiser, 2008; Marsh et al.,
1998). For example, according to the results of simulation studies a relatively small sample size
(2x100=200) maybe sometimes beneficial for the appropriateness of the x? fit statistics (see Table
7.5 and 7.6 in Section 7.2.4). Finally, researchers may use parcels when it is reasonable to reduce
the number of indicators per CMOU. Generally, it is recommended to use three rather than two
indicators (items or parcels) per CMOU for model identification reasons.

Another limitation of the model concerns the scale level of the items. All of the models are
defined using continuous observed variables. Even though it is straightforward to define the models
for ordered categorical observed variables, it may be computationally demanding to estimate these
models. Researchers who want to apply these models to categorical observed variables should
conduct additional simulation studies in order to investigate efficient ways with respect to the
estimation and the required samples size for such models. An appropriate estimator for SEMs with
categorical observed variables is the WLSMV (weighted least square mean and variance adjusted)
or MLR (maximum likelihood robust) estimator implemented in Mplus (L. K. Muthén & Muthén,
1998-2010). Given that both estimators require numerical integration, which is computationally
demanding, researchers should specify a sufficiently large number of Monte Carlo integration points
in order to receive proper parameter estimates. An alternative estimation procedure may involve
Bayesian estimation techniques (Asparouhov & Muthén, 2010b; B. Muthén & Asparouhov, 2012;
Asparouhov & Muthén, 2010a; B. O. Muthén, 2010). In general, additional research is needed in
order to develop appropriate estimation techniques and algorithms for complex structural equation
models.

The presented models are also limited by the fact that only one set of interchangeable methods
can be modeled. However, it is possible to extend the models to multiple sets of interchangeable
methods. In a recent work by Mahlke et al. (2012) it is shown how multilevel SEMs with multiple
sets of interchangeable methods can be specified for cross-sectional MTMM data. The presented
models also may be extended to three-level clustered data. With respect to the new version of Mplus
(version 7.0) it will be possible to directly specify three-level SEMs. The new version of Mplus also
allows one to model cross-classified multilevel data structures. Modeling cross-classified multilevel (-
rater) data is especially interesting, given that in many empirical applications it is neither realistic
nor feasible to sample different raters per target. Note that these extensions to categorical, three-
level, or cross-classified data will necessarily lead to more complex models. I therefore hope that

the above mentioned limitations will inspire researchers to overcome these limitations.

11.4 Future research

In this section, possible directions for future research are discussed. An important area of
research concerns the extension of the presented models to ordered categorical (ordinal) response
variables. This area of research is essential as well as challenging. It is essential given that the scale
level of many response variables in the behavioral sciences (e.g., items of a given questionnaire)

is not continuous, but rather (ordered) categorical (Agresti, 2007). It is also often not feasible or
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advisable to use item parcels instead of the raw items (Crayen et al., 2011; Little et al., 2002).
Extending the presented models to categorical (ordinal) observed variables is also very challenging.
The main difficulties associated with this extension concern the general estimation of such models
rather than their psychometric formalization. With respect to the work by Eid (1995), the math-
ematical formalization and extension of the presented models to ordered categorical indicators is
straightforward. However, relatively few attempts have been made to estimate complex multi-
level structural equation models with categorical items (Rabe-Hesketh & Skrondal, 2004). One
possible explanation may be that the estimation process is extremely computationally demanding
(L. K. Muthén & Muthén, 1998-2010). Therefore, future research is needed to develop appropriate
and efficient estimation techniques for complex multilevel SEMs with ordered categorical (ordinal)
items. With respect to Bayesian estimation techniques, the estimation of complex multilevel SEMs
with categorical indicators can be done (Asparouhov & Muthén, 2010b; B. Muthén & Asparouhov,
2012; Asparouhov & Muthén, 2010a; B. O. Muthén, 2010). In addition to that, Bayesian estima-
tion techniques may also improve the applicability of complex multilevel SEMs to small sample
sizes.

Additional research is needed for developing adequate, robust and level-specific model fit statis-
tics for complex multilevel structural equation models. Important contributions to this field have
been made by Yuan and Bentler (2003), Yuan and Bentler (2007) as well as Ryu and West (2009).
However, many of the presented solutions for producing level-specific and unbiased 2 fit statistics
are cumbersome and require more observations than necessary for the actual model identification.
Correct fit statistics are important for testing specific model restrictions (e.g., measurement invari-
ance) and for comparing alternative models. Again, Bayesian fit indices represent an alternative
way for calculating adequate fit statistics (Levy, 2011).

In many empirical applications of longitudinal multirater designs, multiple targets often are
rated by the same raters. These so called cross-classified data structures violate the assumptions of
uncorrelated error terms in general multilevel analyses. Further research is needed to investigate the
statistical consequences of ignoring the additional dependencies in such data structures. Moreover,
additional psychometric work is required for defining appropriate multilevel MTMM-MO-SEMs
with crossed classified interchangeable raters. With respect to the new developments in Mplus
(version 7.0), it will be possible to model and estimate the effects of such cross-classifications.

Another important research direction concerns the statistical examination of the interchange-
ability of different raters per target. Nussbeck et al. (2009) showed how the interchangeability
assumption for an equal number of raters per target can be tested empirically by introducing
additional restrictions on the parameters. However, additional research is needed for testing the
interchangeability of methods when the number of raters per target differs. It may also be inter-
esting to study why particular raters do not fulfill the interchangeability assumption. Alternative
ways for scrutinizing the interchangeability of raters may be latent mixture models (e.g., latent
class analysis) or the specification of random latent factors in multilevel SEMs. Finally, future
research may be directed to the calculation of confidence intervals for the variance coeflicients
proposed throughout this thesis or the estimation of latent mediation and moderation effects in

complex multilevel MTMM-SEMs.
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11.5 Summary and Conclusion

In this thesis the flexibility, versatility, and advantages of longitudinal modeling, multitrait-
multimethod modeling, structural equation modeling, and multilevel modeling have been combined
to one general modeling approach. In particular, four new multilevel structural equation models
for complex MTMM longitudinal data have been proposed. In the first part of this thesis, the
formal (psychometric) soundness of the models was demonstrated. All of the presented models
were defined based on the stochastic measurement theory (Steyer, 1989; Steyer & Eid, 2001;
Suppes & Zinnes, 1963; Zimmermann, 1975). The meaning and the level of measurement (i.e.,
scale level) of the latent variables was shown. Meaningful statements with regard to the model
parameters were discussed. Finally, it was shown under which conditions the parameter of the
models are identified. In the second part of this thesis, the empirical applicability of the models was
scrutinized. As the results of four extensive simulation studies reveal, the model parameters were
generally well recovered by the models, the amount of actual improper solutions (Heywood cases)
were low, and the standard error bias decreased notably with increasing sample size. Based on the
results of these simulation studies, practical guidelines have been provided for how to design and
model complex longitudinal MTMM data. Finally, the advantages and limitations of the models
have been discussed. Many of the listed limitations lead to new directions for future research
and may be temporal as the development of new estimation techniques and software packages
increases. The main purpose of this thesis was to provide appropriate structural equation models for
multilevel longitudinal MTMM data that are flexible, general, and powerful for complex empirical
applications. Complex measurement designs are increasingly found in educational, developmental,

and organizational research.
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Appendix A

Dotplots for the random effects
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Figure A.1: 95 % prediction intervals of random effects for different parameters of model 1 (peb)
for the LS-COM model.
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Figure A.2: 95 % prediction intervals of random effects for different parameters of model 2 (seb)
for the LS-COM model.
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Figure A.3: 95 % prediction intervals on the random effects for different parameters of model 1
(peb) for the LC-COM model.
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Figure A.4: 95 % prediction intervals on the random effects for different parameters of model 2
(seb) for the LC-COM model.
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Figure A.5: 95 % prediction intervals of the random effects for different parameters of model 1
(peb) for the LST-COM model.
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Figure A.6: 95 % prediction intervals of the random effects for different parameters of model 2
(seb) for the LST-COM model.
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Figure A.7: 95 % prediction intervals of the random effects for different parameters of model 1
(peb) for the LGC-COM model.
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Figure A.8: 95 % prediction intervals of the random effects for different parameters of model 2

(seb) for the LGC-COM model.
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v2-Approximation
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Figure B.1: PP-plot of the observed and theoretical proportions of the x? values for the monotrait
LS-COM model.
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Figure B.2: PP-plot of the observed and theoretical proportions of the x? values for the multitrait
LS-COM model.
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Appendix CD-ROM

All files of the appendix CD-ROM can be downloaded from the following website:

http://www.ewi-psy.fu-berlin.de/einrichtungen/arbeitsbereiche/psymeth/mitarbeiter/
tkoch/index.html
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Appendix D

German Appendix (Anhang in
deutscher Sprache)

D.1 Zusammenfassung in deutscher Sprache

In der vorliegenden Arbeit werden insgesamt vier Mehrebenen-Strukturgleichungsmodelle fiir
multimethodale Langsschnittsuntersuchungen (multitrait-multimethod-multioccasion, MTMM-MO

Designs) vorgestellt. Insbesondere werden in dieser Arbeit folgende Modelle vorgestellt:
e Multimethod-Latent-State-Modelle (LS-COM-Modelle),
e Multimethod-Latent-Change-Modelle (LC-COM-Modelle),
e Multimethod-Latent-State-Trait-Modelle (LST-COM-Modelle) und
e Multimethod-Latent-Growth-Curve-Modelle (LGC-COM-Modelle).

Ein wesentlicher Vorteil der neu definierten Modelle ist, dass sie fiir die Analyse von MTMM-MO
Forschungsdesigns mit einer Kombination von strukturell unterschiedlichen und austauschbaren
Methoden eingesetzt werden kénnen. Geméf Eid et al. (2008) sind austauschbare Methoden (z.B.
Peer-Berichte) Methoden, die zufillig aus einer Population gleichartiger Methoden gezogen wer-
den konnen. Im Gegensatz dazu, kénnen strukturell unterschiedliche Methoden (z.B. Eltern- und
Schiilerberichte) nicht zufillig aus einer Population von gleichartigen Methoden gezogen werden,
sondern liegen a priori fiir den zu Beurteilenden (Target) fest (Eid et al., 2008). So liegt der El-
ternbericht beispielsweise fiir jeden Schiiler und jede Schiilerin fest. Ferner werden die in dieser Ar-
beit vorgestellten Modelle fiir unterschiedliche Langsschnittanalysen definiert. Das bedeutet, dass
Forscher die neuen Modelle fiir Latent-State-, Latent-Change-, Latent-State-Trait-, oder Latent-
Growth-Curve-Modellierungen verwenden koénnen. Die Definitionen der Modelle erfolgen dabei
auf der Basis der stochastischen Messtheorie (Steyer, 1989; Steyer & Eid, 2001; Suppes & Zinnes,
1963; Zimmermann, 1975). Das heift, es wurden in dieser Arbeit die wesentlichen psychometrischen
Eigenschaften der Modelle (Fragen bzgl. der Existenz, Eindeutigkeit, Bedeutsamkeit, Identifizier-
barkeit) im Detail geklidrt. Dariiber hinaus, wurden alle Modelle mittels aufwendigen Monte-
Carlo-Simulationsstudien in Hinblick auf ihre statistische Performanz untersucht. Im Rahmen der
Simulationsstudien zeigte sich, dass die neu definierten Modelle generell fiir komplexe MTMM-

Modellierungen geeignet sind und zu zuverlédssigen Parameter- sowie Standardfehlerschitzungen

232



APPENDIX D. GERMAN APPENDIX (ANHANG IN DEUTSCHER SPRACHE) 233

fithren. Ebenso war die Anzahl von wahren unzuléssigen Parameterschitzungen (sog. Heywood
cases) gering. Auflerdem zeigte sich, dass mit zunehmender Anzahl von Level-1 Einheiten (d.h.
Anzahl der austauschbaren Rater pro Target) der Standfehlerbias sowie die Anzahl von wahren
unzuléssigen Parameterschitzungen deutlich reduziert werden kann. Eine Erhchung der Anzahl
der Level-2 Einheiten (d.h. Anzahl von Targets) zeigte &hnliche, aber weniger stark ausgeprégte
Ergebnisse in Bezug auf die Reduktion von Standardfehlerverzerrungen.

Die beiliegende Arbeit ist wie folgt gegliedert: Im ersten Teil der Arbeit wird eine generelle
Einfiihrung zum Thema MTMM-Analysen gegeben, wobei die zentralen Vorteile von Strukturgle-
ichungsmodellen fiir die Analyse von MTMM-Daten hervorgehoben werden. Ferner werden die
lingschnittlichen MTMM-Modelle von Geiser (2008) sowie von (Courvoisier, 2006) vorgestellt, da
diese als Spezialfille aus den vorgestellten Modellen hervorgehen. Im zweiten Teil der Arbeit
werden die neu vorgestellten Modelle in einzelnen Kapiteln formal definiert und deren psychome-
trischen Eigenschaften mathematisch bewiesen. Im dritten Teil der Arbeit werden die Ergebnisse
der Monte-Carlo-Simulationsstudien vorgestellt. Abschliefend werden die Ergebnisse dieser Arbeit

im vierten Teil nochmals zusammengefasst und diskutiert.

D.2 Erklidrung

Hiermit versichere ich, dass ich die vorgelegte Arbeit selbstindig verfasst habe. Andere als
die angegebenen Hilfsmittel habe ich nicht verwendet. Die Arbeit ist in keinem fritheren Promo-

tionsverfahren angenommen oder abgelehnt worden.

Berlin, 3. Februar 2013 (Unterschrift)
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