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Summary

Many psychologists agree with the statement that the multitrait-multimethod (MTMM) anal-

ysis developed by Campbell and Fiske (1959) is one of the most important methodological de-

velopments in the social and behavioral sciences (see e.g., Kenny, 1995). MTMM measurement

designs allow researchers to scrutinize the convergent and discriminant validity of their measures.

The numerous advantages of multimethod research (Eid, 2006) as well as the increasing interest in

longitudinal research have led many statisticians to develop new models for analyzing multitrait-

multimethod-multioccasion (MTMM-MO) data (e.g., Burns, Walsh, & Gomez, 2003; Burns &

Haynes, 2006; Cole & Maxwell, 2003; Courvoisier, 2006; Courvoisier, Nussbeck, Eid, Geiser, &

Cole, 2008; Crayen, Geiser, Scheithauer, & Eid, 2011; Geiser, 2008, 2009; Geiser, Eid, Nussbeck,

Courvoisier, & Cole, 2010; Grimm, Pianta, & Konold, 2009). Currently, the most common way to

analyze MTMM data is via structural equation models (SEMs; Eid, 2000). Using structural equa-

tion models for analyzing longitudinal MTMM data bears many advantages such as (a) separating

different sources of variance (e.g., due to trait, occasion-specific, method, and measurement error

influences), (b) testing theoretical assumptions via model test indices, (c) relating latent method

variables to external variables. However, researchers often struggle with choosing the appropriate

structural equation model for their particular MTMM-MO measurement design. According to Eid

et al. (2008) the model selection process should be guided by the types of methods used in the

MTMM measurement design. For example, measurement designs with interchangeable methods

imply that methods are randomly chosen from a common set of equivalent methods (e.g., multiple

student ratings for teaching quality). As a consequence, measurement designs using interchangeable

methods result out of a multistage sampling procedure and thus imply a hierarchical (multilevel)

data structure (e.g., raters nested in targets). In contrast, measurement designs with structurally

different methods result whenever methods are fixed. Structurally different methods are methods

which cannot be easily replaced by one another (e.g., physiological measures, self-ratings, teacher

ratings). In this thesis four different multilevel structural equation models (ML-SEMs) are pro-

posed for analyzing longitudinal MTMM data combining structurally different and interchangeable

methods. Specifically, a latent state (LS-COM) model (see chapter 2), a latent change (LC-COM)

model (see chapter 3), a latent state-trait (LST-COM) model (see chapter 4) and a latent growth

curve (LGC-COM) model (see chapter 5) is formally defined. The abbreviation COM stands for

the combination of structurally different and interchangeable methods. In addition, the statistical

performance of each model is investigated via four simulation studies (see Part III). According

to the results of the simulation studies, the models perform well in general. Across all simula-
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tion studies the amount of improper solutions (Heywood cases) as well as parameter estimate bias

(peb) was below 5%. No convergence problems with respect to the H0 model were found. The

average standard error bias (seb) was also below the critical cutoff value of .1 for most parameters.

However, with increasing model complexity (number of parameters) larger sample sizes on both

levels are needed. The results of the simulation studies are discussed and practical guidelines for

empirical applications are given (see Section 11.1). Finally, the advantages and limitations of the

models are discussed and an outlook on future research topics is provided.
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Chapter 1

Introduction

“The MTMM matrix represents one of the

most important discoveries in the social

and behavioral sciences.”

(Kenny, 1995, p. 123)

1.1 Multitrait-multimethod analysis

Considering the potential devastating impacts of invalid and inaccurate measurement of impor-

tant aspects of human life, the need for valid measures in social and behavioral sciences can hardly

be overestimated. According to Courvoisier et al. (2008)“invalid measurements bear risks like over-

or underestimation of treatment effects, they may lead to the wrong diagnosis, they may indicate a

suboptimal treatment, or, in the worst case, they might even not detect a relevant symptom at all”

(p. 270). Therefore, many psychologists agree with the statement that any decision or diagnostic

judgment should be based on the best information available, which implies that the information is

valid, reliable, objective, and specific to a given problem (Courvoisier et al., 2008; Nussbeck, 2008).

Currently, one of the most common strategies to scrutinize the validity of a given measure

is via multitrait-multimethod (MTMM) analysis (Eid, 2000; Eid & Nussbeck, 2009). Since its

invention by Campbell and Fiske in 1959, MTMM has had an undeniable impact in psychology.

As Kenny (1995) notices: “The MTMM matrix represents one of the most important discoveries

in the social and behavioral sciences. It is as important an invention in the behavioral science field

as the microscope is in biology and the telescope is in astronomy” (p. 123). Moreover, Sternberg

(1992) states that the article by Campbell and Fiske (1959) entitled “Convergent and discriminant

validation by the multitrait matrix” is one of the most influential articles in psychology (see also

Eid & Nussbeck, 2009). Today, the article has been cited over 5,000 times1 and MTMM analysis is

known as a gold standard for scrutinizing the validity of a measure (Carretero-Dios, Eid, & Ruch,

2011). Before discussing the numerous advantages of MTMM analysis in greater detail, the meaning

of the terms validity as well as validation shall be clarified. According to Borsboom, Mellenbergh,

and van Heerden (2004) the term validation refers to specific activities that researchers undertake

1Information retrieved from http://apps.webofknowledge.com [retrieved July, 2012]
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CHAPTER 1. INTRODUCTION 3

in order to verify or disprove a test to be valid. On the other hand, the term validity has been

conceptualized either in sense of a property of a given test (Borsboom et al., 2004) or in sense of

the adequacy of interpretations of test results (Messick, 1980, 1989, 1995):

Validity is an integrated evaluative judgment of the degree to which empirical evidence

and theoretical rationales support the adequacy and appropriateness of inferences and

actions based on test scores or other modes of assessment. [. . . ] Broadly speaking,

then, validity is an inductive summary of both the existing evidence and the potential

consequences of score interpretation and use.

(Messick, 1995, p. 13)

In contrast to that, Borsboom et al. (2004) argue that validity is rather a matter of the adequacy

of the measurement, not of the interpretation of test scores:

It is our intent to convince the reader that most of the validity literature either fails

to articulate the validity problem clearly or misses the point entirely. Validity is not

complex, faceted, or dependent on nomological networks and social consequences of

testing. It is a very basic concept and was correctly formulated, for instance, by Kelley

(1927, p. 14) when he stated that a test is valid if it measures what it purports to

measure.

(Borsboom et al., 2004, p. 1061)

Despite this on-going philosophical dispute, most authors of the standards of educational and

psychological testing (e.g., APA, AERA & NCME, 1999) tend to agree with Messick’s definition of

validity (see Eid & Schmidt, in press). Different facets of validity have been proposed over the years,

for example convergent and discriminant validity, content validity, criterion-related validity and

face validity (see Campbell & Fiske, 1959; Messick, 1995; Shadish, Cook, & Campbell, 2002). The

authors of the standards of educational and psychological testing consider these different facets

of validity as subordinate to the main concept of construct validity (Eid & Schmidt, in press).

Construct validity, in the sense of Messick (1989), refers to “the adequacy and appropriateness

of inferences and actions based on test scores or other modes of assessments” (p. 13). In order

to verify that the interpretations of test scores are adequate, researchers usually try to provide

evidence that the hypothesized relationships between theoretical entities are linked consistently to

relationships between observed entities. For example, suppose that a test X measures empathy.

As a consequence, the test scores of this empathy test should also be empirically related to scores

of a test measuring aggressiveness (substantial negative intercorrelations). Besides that, the test

scores of test X should be empirically unrelated to test scores of another test Y which is assumed

to be theoretically unrelated to empathy (e.g., food preference). As the above quote of Borsboom

et al. (2004) indicates, researchers usually try to scrutinize these hypothesized (inter)relationships

among theoretical and observed entities with a nomological net (see Figure 1.1). Cronbach and

Meehl (1955) were the first to propose this validation method. However, both researchers also

emphasized that test validation is an on-going process which involves numerous kinds of studies,
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for instance (a) studies of group differences, (b) studies of interrelationships between other tests,

(c) studies of the internal structure (e.g., factor analysis), (d) studies of stability and change of test

scores, and (e) process analysis (for more details see Eid & Schmidt, in press). Nevertheless, the

approach by Cronbach and Meehl (1955) implies some shortcomings. First, Cronbrach and Meehl

(1955) did not explicitly stress the advantages of multimethod measurement and how to properly

study method bias. For instance, a self-report measure of empathy may be more positively biased

than warranted. It would be impossible to investigate the degree of method biases (e.g., bias

due to self-reports) in measurement designs when using only one method (Geiser, 2008). Another

methodological shortcoming refers to the link between the theoretical and observation entities (i.e.,

adequacy of measurement) depicted in Figure 1.1. In particular, it is unclear how to statistically

test whether the link between the theoretical and empirical entities is correct. Moreover, it is

unclear how to separate different sources of variances (e.g., measurement-error from true-score

variance) from one another in the classical approach. In contrast to Cronbrach and Meehl (1955),

Campbell and Fiske (1959) highlighted the importance of multimethod investigations in the social

and behavioral sciences. They suggested using multitrait-multimethod correlation matrices to

investigate the convergent and discriminant validity of the given measures. Convergent validity is

indicated by high positive correlations of test scores of two different scales that are theoretically

related (e.g., two different empathy scales). Discriminant validity is indicated if two theoretically

unrelated attributes are also empirically unrelated. For instance, only low or no associations

between test scores of intelligence and empathy scales are assumed, given that both constructs are

considered to be distinct.

One of the main reasons for using multiple methods is to disentangle different sources of influ-

ence such as effects of construct score influences, rater influences, measurement-error influences,

and/or temporal influences (Courvoisier et al., 2008; Kenny, 1995). According to Campbell and

Fiske (1959) at least two constructs and two methods are needed to separate trait from method

effects. It is important to note that the term method is not clearly defined in psychology (see

Geiser, 2008; Podsakoff, MacKenzie, Lee, & Podsakoff, 2003). For instance, different tests (e.g.

speeded test vs. non-speeded test), different types of assessment (e.g., questionnaire vs. physio-

logical measures), different items (e.g., positive vs. negative coded items), different persons (e.g.

multiple raters vs. expert ratings), or different measurement occasions can be conceived as method

(Eid & Nussbeck, 2009; Geiser, 2008).

Another advantage of multimethod measurement designs is that they are more informative than

single-method designs (Geiser, 2008). Moreover, multimethod measurement designs allow exam-

ining the degree of method specificity (e.g., method or rater biases) as well as the generalizability

of these method effects across constructs (Eid, 2006; Geiser, 2008). Method specificity refers to

the amount of observed or true score variance that is due to method influences (see Eid, 1995).

For example, method specificity may be reflected by the amount of observed variance of self-report

measures that cannot be predicted by other reports (e.g., parent report) (Eid, 2000; Geiser, 2008).

MTMM measurement designs allow separating different variance components from one another
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Figure 1.1: Nomological network for validating a new empathy scale following Cronbach and Meehl
(1955). Nodes represent theoretical or empirical quantities in the nomological network. Double
arrows represent probabilistic or deterministic relationships among the theoretical or empirical
quantities. Lines without any arrows reflect the operationalization or the measurement of the
theoretical quantities.

and investigating construct2 and method influences (e.g., method bias). In the classical MTMM

approach by Campbell and Fiske (1959) four criteria for the evaluation of multitrait-multimethod

correlation matrix are proposed (see also Eid, 2010, pp. 851-852):

1. The entries in the validity diagonal referring to correlations between the same constructs

measured by different methods (i.e., monotrait-heteromethod block) should be significantly

different from zero and sufficiently large. This desideratum concerns the degree of convergent

validity.

2. Correlations between the same constructs measured by different methods (i.e., monotrait-

heteromethod block) should be higher than the correlations between different constructs

measured by different methods (i.e., heterotrait-heteromethod block). This desideratum con-

cerns the degree of discriminant validity.

3. Similarly, correlations between different constructs measured by the same method (i.e.,

heterotrait-monomethod block) should be smaller than correlations between the same con-

structs measured by different methods (i.e., monotrait-heteromethod block). This desidera-

tum also concerns the degree of discriminant validity.

4. Finally, “the same or a similar pattern of constructs should be shown in all of the heterotrait

2Following Geiser (2008) a distinction between traits and constructs is made. Throughout the entire thesis, the
term trait is used to refer to stable person-specific influences that can be separated from occasion-specific influences
(Steyer, Ferring, & Schmitt, 1992; Steyer, Schmitt, & Eid, 1999; Eid, 1995). The term construct is used to refer to
the attributes (e.g., teaching quality, life satisfaction etc.) that were measured.
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triangles of both the monomethod and the heteromethod blocks” (Eid, 2010, pp. 851-852).

This desideratum also concerns the degree of discriminant validity, given that it implies that

the associations between different constructs are similar across different methods as well as

method combinations.

Despite the numerous advantages of the classical approach by Campbell and Fiske (1959) there are

also some limitations. According to Eid (2010) “the application of these criteria is difficult if the

measures differ in their reliabilities”(p. 852). That is, because the correlations between the different

measures can be distorted in different ways due to measurement error influences. Furthermore,

there is no statistical test whether or not the criteria are fulfilled in empirical applications or

whether or not the psychometric model as such fits the data (Eid, 2010). Moreover, Campbell and

Fiske (1959) did not explicate how to account for temporal effects which are present in almost any

measurement. That is, measurement almost never takes place in a situational vacuum (see Steyer

et al., 1999). Hence, many important questions cannot be answered with the classical MTMM

approach:

� How strong is the influence of the measurement error?

� How adequate is the measurement model (the link between theoretical and observed entities)?

� Do the psychometric properties of the instrument change over time?

� Does the construct change over time?

� Does the method bias change over time?

With the development of more sophisticated statistical methods such as confirmatory factor anal-

ysis (CFA) and structural equation models [SEMs, see e.g., Bollen (1989), Jöreskog (1979)] many

of these problems could be resolved. Over the years, CFA and SEM modeling approaches for mod-

eling MTMM data have been increasingly applied to social and behavioral data (e.g., Dumenci,

2000; Eid, 2000; Eid & Diener, 2006). The main advantages of MTMM-SEMs are (Dumenci, 2000;

Eid, Lischetzke, & Nussbeck, 2006; Eid et al., 2008): (a) they allow separating measurement influ-

ences from individual difference with respect to construct or method effects, (b) they allow relating

different construct or method variables to other external variables, and (c) they allow scrutinizing

the fit of the statistical model (e.g., with χ2 fit statistics). Several SEM-based MTMM models

have been proposed over the years (Eid, 2000; Eid, Lischetzke, Nussbeck, & Trierweiler, 2003; Eid

et al., 2008; Kenny & Kashy, 1992; Marsh & Hocevar, 1988; Marsh, 1993; Marsh & Grayson, 1994;

Pohl & Steyer, 2010; Widaman, 1985; Wothke, 1995). For an overview and detailed discussion of

existing MTMM-SEMs see Eid et al. (2006) as well as Geiser (2008). In the next section, important

developments of MTMM-SEMs for longitudinal measurement designs are discussed.

1.2 Multitrait-multimethod-multioccasion analysis

Change is an inevitable feature of human life. People think, feel, and/or behave differently over

time. Therefore it is not surprising that social and behavioral scientists share great interest in
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studying the change or stability of attributes (e.g., empathy), method effects (e.g., rater bias), and

psychometric properties (e.g., reliability, convergent and discriminant validity). The importance of

longitudinal measurement designs is also reflected in the increasing number of publications devoted

to this research area (Geiser, 2008). For instance, Khoo, West, Wu, and Kwok (2006) note that

32% of studies published in Developmental Psychology in 2002 included longitudinal measurement

designs. Biesanz, West, and Kwok (2003) found that 24% of studies published in the Journal of

Personality: Personality Process and Individual Differences from 2000 to 2001 included longitu-

dinal measurement designs. Moreover, longitudinal MTMM studies are more informative than

cross-sectional MTMM studies (Geiser, 2008). Only with respect to longitudinal MTMM analysis

is it possible to explicitly model temporal effects. Longitudinal MTMM analyses allow testing

crucial assumptions referring to measurement invariance or the existence of indicator-specific ef-

fects. These assumptions cannot be tested with respect to cross-sectional MTMM study designs.

Despite the numerous advantages of longitudinal modeling, only “few attempts have been made

to develop and use appropriate models for longitudinal MTMM data so far” (Geiser, 2008, p. 19).

Example of researchers who have contributed to this research field are Burns et al. (2003), Burns

and Haynes (2006), Cole and Maxwell (2003), Courvoisier (2006), Courvoisier et al. (2008), Geiser

(2008), Geiser et al. (2010), Grimm et al. (2009), Scherpenzeel and Saris (2007). The work by

Courvoisier (2006) and Geiser (2008) is essential for the understanding of the models presented in

this thesis. Therefore, the models by these authors are discussed in greater detail here.

Geiser (2008) proposed a latent state and a latent change model for longitudinal MTMM designs

(see Figure 1.2 and Figure 1.3). Geiser’s model3 is an extension of the multiple indicator CTC(M -

1) model for cross-sectional data proposed by Eid et al. (2003). The starting point of the latent

state model is the decomposition of the observed scores into latent state Sijkl as well as error

variables Eijkl, where i = indicator, j = construct, k = method, and l = occasion of measurement:

Yijkl = Sijkl + Eijkl.

Next, a reference (standard) method is chosen in order to contrast different methods from

another (see Eid, 2000; Eid et al., 2003; Geiser, 2008). Without loss of generality, the reference

method is denoted by k = 1. The remaining methods (k 6= 1) serve as non-reference methods.

Geiser, Eid, and Nussbeck (2008) provide detailed guidelines for choosing an appropriate reference

method. In order to define method variables that reflect the amount of observed variance of a

non-reference indicator (e.g., teacher report) that is not due to the reference method (e.g., student

self-report), it is necessary to regress the latent state variables pertaining to the non-reference

methods Sijkl on the latent state variables pertaining to the reference method Sij1l. In other

words, the latent state variables of the reference method are used as predictors of the latent state

3For the sake of clarity, the models in Figure 1.2 and Figure 1.3 are depicted with common latent state (change)
factors Sj1l (SBCj1l ) and with common latent method (change) factors Mjkl (MBC

jkl ), and not with indicator-specific

latent factors Sij1l, S
BC
ij1l, Mijkl, and MBC

ijkl. That means that the index i denoting the indicator (item) is not

needed in these figures, and is therefore dropped. However, it is worth noting that Geiser (2008) introduced the
model in his original work with indicator-specific latent variables (i.e., Sij1l, S

BC
ij1l, Mijkl, and MBC

ijkl), and then

introduced homogeneous assumptions with respect to these latent variables.
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Figure 1.2: Path diagram of the CS-C(M − 1) model by Geiser (2008) for three indicators, two constructs, three methods, and two occasions of measurement. Yijkl=
observed variable (i = indicator, j = construct, k = method, l = occasion of measurement). Sj1l = common latent state factor. Mjkl = common latent method factor.
Eijkl = error variable. All latent correlations are omitted for clarity.
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variables of the non-reference methods. Generally, this latent regression can be expressed by the

following equation:

E(Sijkl|Sij1l) = αijkl + λSij1lSij1l, ∀ k 6= 1.

The residuals of this regression are the latent method variables Mijkl. These latent method vari-

ables reflect the over- or underestimation of the non-reference method (e.g., teacher report) with

respect to the reference method (e.g., self-report) at a given occasion of measurement. Given that

these latent method variables are defined as residuals, the general properties of residuals hold as

well (Geiser, 2008; Steyer & Eid, 2001), for example:

E(Mijkl) = 0,

Cov(Sij1l,Mijkl) = 0.

In addition to that, the latent method variables Mijkl are assumed to be homogeneous across items

for the same construct, method, and measurement occasion. More specifically, all Mijkl are linear

functions of each other:

Mijkl = λMijklMjkl.

The complete measurement equation of an observed indicator in the latent state MTMM-SEM by

Geiser (2008) can be expressed as follows:

Yijkl =

 αij1l + λSij1lSij1l + Eij1l, ∀ k = 1,

αijkl + λSij1lSij1l + λMijklMjkl + Eijkl, ∀ k 6= 1.

With respect to an alternative parametrization of the model, it is possible to study true interindi-

vidual differences in intraindividual change of constructs as well as method effects (see Geiser,

2008; Geiser et al., 2010). The measurement equation above may be rewritten as follows:

Yijkl =

 αij1l + λSij1l[Sij11 + (Sij1l − Sij11)] + Eij1l, ∀ k = 1,

αijkl + λSij1l[Sij11 + (Sij1l − Sij11)] + λMijkl[Mjk1 + (Mjkl −Mjk1)] + Eijkl, ∀ k 6= 1.

The latent difference variables (Sij1l−Sij11) represent interindividual differences in intraindividual

change with respect to the reference method. In contrast, the latent difference variables (Mjkl −

Mjk1) reflect the interindividual differences in intraindividual change with respect to method-

specific deviations from the reference method. These latent difference variables may serve as

explanatory or dependent variables in further latent regression analysis. For example, a researcher

might incorporate potential covariates (e.g., gender, age) in order to explain the deviation of change

scores from the reference method. Besides that, Geiser (2008) proposed a model in order to study

the true change of subsequent latent variables (so called neighbor change models) as well as models

for investigating time-invariant item-specific effects. The major advantage of these models lies

in the combination of longitudinal measurement theories such as the latent state/change theory

(Steyer, 1988; Steyer et al., 1992, 1999) and the Correlated-Trait-Correlated-(Method-1) modeling
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Figure 1.3: Path diagram of the change version of the CS-C(M -1) model by Geiser (2008) for three indicators, two constructs, three methods, and two occasions of
measurement. Yijkl= observed variable (i = indicator, j = construct, k = method, l = occasion of measurement). Sj1l = common latent state factor. SBCj1l = common

change factor for the reference method from measurement occasion 1 to l (i.e., superscript BC = baseline change). Mjkl = common method factor. MBC
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change method factor for the non-reference method from measurement occasion 1 to l (i.e., superscript BC = baseline change). Eijkl = error variable. All latent
correlations are omitted for clarity.
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approach (e.g., Eid, 2000; Eid et al., 2003). First, all of these models enable researchers to analyze

the entire MTMM-MO (multitrait-multimethod-multioccasion) matrix, whereas previous attempts

generally focused on modeling the occasion-specific MTMM covariance matrices. Temporal effects

such as the stability and change of constructs as well as method effects can be fully investigated.

Second, all of the models account for measurement error influences and thus allow studying true

convergent and discriminant validity of the given measures. Third, crucial assumptions (e.g. the

degree of measurement invariance assumptions or the existence of indicator-specific effects) can

be tested via standard model fit statistics. Fourth, in the CTC(M-1) modeling approach (see

Eid, 2000), different components of variances can be separated. For example, the models allow

calculating coefficients of occasion-specific consistency, method specificity, indicator-specificity, and

reliability (for more details see Geiser, 2008). Fifth, essential psychometric properties regarding the

existence, uniqueness, admissible transformations, and meaningfulness of the latent variables have

been demonstrated. Moreover, the limits of the applicability of the models have been scrutinized by

extensive simulation studies (e.g., Crayen, 2008; Geiser, 2008) as well as by empirical applications

(Crayen et al., 2011; Geiser et al., 2010).

The multitrait-multimethod latent state-trait (MM-LST) model by Courvoisier (2006) com-

bines the advantages of latent state-trait theory (Steyer et al., 1999) and the CTC(M-1) modeling

approach (Eid, 2000; Eid et al., 2003). This model is especially useful when researchers seek to

analyze true discriminant and convergent validity on the level of occasion-specific variables (i.e.,

measures depending on momentary or situational effects) as well as on the level of trait variables

(i.e., free of situational and measurement error effects). According to the LST theory, the latent

state variables Sijkl can be further decomposed into latent trait Tijkl and latent state-residual

variables Oijkl. The observed variables are therefore given by:

Yijkl =

 Sijkl + Eijkl,

Tijkl +Oijkl + Eijkl.

Tijkl is the latent trait variable and reflects person-specific influences (i.e., consistent person-specific

effects across time). Oijkl represents effects of the situations and/or person-situation-interactions.

Eijkl is the measurement error. In order to derive trait and occasion-specific method variables, one

has to choose a reference (standard) method and regress the trait/occasion-specific variables of the

non-reference method on the trait/occasion-specific variables of the reference method. The latent

residuals (TMijkl, OMijkl) of these latent regressions can be interpreted as trait or occasion-specific

method variables.

Tijkl = E(Tijkl|Tij1l) + TMijkl,

Oijkl = E(Oijkl|Oij1l) +OMijkl.

Given that TMijkl and OMijkl are defined as residuals with respect to Tij1l and Oij1l, the general

properties of residuals apply again (for more details see Courvoisier, 2006). The complete equation
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for the observed variables is given by:

Yijkl =

 = αij1l + λTij1lTij + λOij1lOijl + Eij1l, ∀ k = 1,

= αijkl + λTij1lTij + λTMijkl
TMijk + λOij1lOijl + λOMijkl

OMjkl + Eijkl, ∀ k 6= 1.

The latent trait variable Tij reflects person-specific influences measured by the reference method,

with the intercept αijkl and factor loading λTij1l . The residual Oijl represents effects of the sit-

uations and/or person-situation-interactions measured by the reference method. The parameter

λOij1l denotes the factor loadings for this latent factor. By definition the residual variable Oijl is

uncorrelated with the latent trait variable Tij . The latent trait method variable TMijk represents

the method-specific influence of method k on the trait level weighted by its factor loading λTMijkl
.

The variance of this variables reflects the amount of person-specific variance of an observed variable

pertaining to the non-reference method which is not explained by the latent trait variable measured

by the reference method. Similarly, OMjkl is the latent residual and represents the method-specific

influences of method k on the occasion level, weighted by its factor loading λOMijkl
. With regard

to the definition of the model, different variance components can be studied (see Courvoisier et al.,

2008, pp. 274-275):

1. The trait consistency coefficient TCon(Yijkl): This coefficient represents the proportion of ob-

served variance due to stable interindividual differences (i.e., general trait level) as measured

by the reference method.

2. The occasion-specificity coefficient OSpe(Yijkl): This coefficient represents the proportion of

observed variance due to occasion-specific interindividual differences (i.e., the momentaneous

oscillation around the stable trait) as measured by the reference method.

3. The trait-specific method coefficient TMSpe(Yijkl): This coefficient represents the part of

the observed variable that is uniquely due to the method deviation from the reference trait.

4. The occasion-specific method coefficient OMSpe(Yijkl): This coefficient represents the part of

the observed variable that is uniquely due to the method deviation from the occasion-specific

reference state residual variable.

Researchers who are interested in studying the degree of true convergent validity on the level of

trait variables need to compare the consistency coefficient Con(Yijkl) and the trait-specific method

coefficient TMSpe(Yijkl). Conversely, researchers who are interested in analyzing the degree of

convergent validity on the level of occasion-specific residual variables need to compare the occasion-

specificity coefficient OSpe(Yijkl) and the occasion-specific method coefficient OMSpe(Yijkl).

The modeling approach by Courvoisier (2006) entails many advantages for studying longitudinal

MTMM data. For example, the MM-LST model is especially useful for studying variability pro-

cesses (i.e., occasion-specific oscillation around a time-invariant trait or method effects). Besides,

the latent variables of the model are clearly defined and have a clear psychometric meaning.

Despite the numerous advantages of the models by Geiser (2008) as well as Courvoisier (2006),

the models are only adequate for analyzing MTMM measurement designs incorporating structurally
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Figure 1.4: Path diagram of the MTMM-LST model by Courvoisier (2006) for two indicators, two constructs, two methods, and two occasions of measurement.
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different methods (e.g., student self-report, parent report, physiological measures). However, many

researchers conduct longitudinal MTMM studies using a combination of structurally different and

interchangebale methods (see e.g., Ciarrochi & Heaven, 2009; Dai, De Meuse, & Peterson, 2010;

Denissen, Schönbrodt, van Zalk, Meeus, & van Aken, 2011; Ho, 2010; Violato, Lockyer, & Fidler,

2008). Especially in organizational and industrial psychology studies, it is common to use a combi-

nation of structurally different (e.g., employee’s self-report, supervisor report) and interchangeable

methods (e.g., colleagues reports, customers reports), for example, in so-called 360 degree feedback

designs (Mahlke et al., 2012). A detailed explanation of the meaning of the terms “structurally dif-

ferent” and “interchangeable” methods will be given in the next section. However, a very simplistic

interpretation of the terms shall be given now in order to understand why the models by Geiser

(2008) as well as Courvoisier (2006) are not appropriate in general for these types of measurement

designs: Interchangeable methods such as multiple colleagues (or customers) ratings for employees’

social competencies are more or less exchangeable, given that these ratings stem out of a uniform

rater population (see also Eid et al., 2008; Mahlke et al., 2012). In contrast, structurally different

methods (e.g., employee’s self-report and supervisor report) cannot easily be replaced by one an-

other, given that these methods stem out of different method (e.g., rater) populations. In addition,

whereas interchangeable methods can be selected randomly for a particular target, structurally

different methods are fixed beforehand for a particular target (see Eid et al., 2008). As a conse-

quence of this sampling process, MTMM measurement designs with a combination of structurally

different and interchangeable methods imply a multilevel data structure (Eid et al., 2008). Note

that the models by Geiser (2008) as well as Courvoisier (2006) are defined as single level structural

equation models. Thus, these models are not in general appropriate for measurement designs with

interchangeable methods (Eid et al., 2008; Geiser, 2008; Nussbeck, Eid, Geiser, Courvoisier, &

Lischetzke, 2009). Only under certain circumstances, for example, when a small and equal number

of raters per target is used, the models by Geiser (2008) as well as Courvoisier (2006) can also be

used for analyzing measurement designs with interchangeable methods (see Nussbeck et al., 2009).

Nevertheless, models that are more general and flexible than the existing models are needed for

analyzing longitudinal MTMM measurement designs with a combination of structurally different

and interchangeable methods. In the next section, the differences between measurement designs

with structurally different and/or interchangeable methods are discussed in more detail.

1.3 Different models for different types of methods

Some models are more appropriate for particular data structures than others. The simplest

explanation may be that a given model A fits the data better than an alternative model B. Com-

paring different models (e.g., A and B) according to the standard fit criteria is presumably the most

popular model selection strategy nowadays. However, such data driven model selection strategies

(e.g. testing all available models) may not always be the best solution. As Eid et al. (2008) noted,

data driven model selection strategies are highly arbitrary and may even “increase the likelihood

of improper solutions, convergence problems, and poor model fit” (p. 231). Even if a particular

model fits the data well, the model results may not be readily interpretable (see Eid et al., 2008).
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A B

Sampling procedure for structurally different methods Sampling procedure for interchangeable methods

target (t) fixed rater (r) per target (t) target (t) set of raters (r) per target (t)

peers or
friends

peers or
friends

peers or
friends

mother

father

class
teacher

Figure 1.5: Sampling procedure for different kinds of methods. Figure A refers to the sampling
procedure of measurement designs with structurally different (fixed) methods. Figure B refers to
the sampling procedure of measurement designs with interchangeable (random) methods.

Moreover, in cases of equivalent models (e.g., latent state vs. latent change model), the model fit

criteria cannot be used for model comparisons. For that reason, Eid et al. (2008) strongly recom-

mended using theory-driven model selection strategies in MTMM studies. According to Eid et al.

(2008) different types of methods require different types of MTMM models. In total, three types

of measurement designs were distinguished by Eid et al. (2008): (1) measurement designs with

structurally different methods, (2) measurement designs with interchangeable methods, and (3)

measurement designs with a combination of structurally different and interchangeable methods.

Measurement designs with structurally different methods use methods that are fixed beforehand

for a given target. For example, the rating of a mother is fixed for a given child. In other words,

structurally different methods cannot be randomly selected out of a common set of methods. The

sampling procedure of measurement designs with structurally different methods requires selecting

a target t out of a set of targets T and then observe the ratings of the different raters (r = 1, 2, 3)

on indicators i for constructs j (see Figure A of 1.5). The simplest case of the random experiment

for measurement designs with three structurally different methods can be represented as follows:

Ω = ΩT × Ω1ij × . . .× Ω2ij × . . .× Ω3ij .

ΩT refers to the possible set of targets, Ω1ij represents the first possible set of ratings (e.g., self

ratings) on indicator i and construct j, Ω2ij refers to the second possible set of ratings (e.g.,

mother ratings for each child) on indicator i and construct j and Ω3ij refers to the third possible

set of structurally different methods (e.g., objective test scores for each child) with respect to

indicator i and construct j. Finally, × is the Cartesian product set operator. Note that all

methods (self-rating, mother rating, objective test) may reflect different perspectives on the target

(child), given that all methods stem out of different non-interchangeable method populations.

Researchers who are interested in analyzing “pure” method effects (i.e., method effects that are

unrelated with the trait and only due to the influences of a particular method) should not aggregate

both ratings by taking the mean of both ratings. Instead, researchers should rather contrast

different methods against each other which is automatically done in the Correlated-Tait-Correlated-

(Method)-1 modeling approach (Eid, 2000; Eid et al., 2003).
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A number of MTMM-SEMs have been proposed for analyzing longitudinal as well as cross-

sectional measurement designs with structurally different methods (Courvoisier, 2006; Courvoisier

et al., 2008; Crayen et al., 2011; Geiser, 2008; Geiser et al., 2010; Eid, 2000; Eid et al., 2003).

These models offer many advantages. However, they are not appropriate for analyzing measure-

ment designs with interchangeable methods. Measurement designs with interchangeable methods

imply a different data structure than measurement designs with structurally different methods.

Measurement designs with interchangeable methods use methods that can be randomly sampled

out of a uniform distribution of methods. For example, a study with interchangeable methods may

use multiple peer ratings for the evaluation of students social competency or multiple colleague

ratings for leadership quality. Given that peers per student (or colleagues per employee) stem out

of the same rater population, these methods (ratings) can be conceived as interchangeable. It is

important to note that interchangeability does not mean that the values of these ratings are the

same across different raters per target, but rather that the raters pertain to the same rater pool.

In addition, measurement designs with interchangeable methods imply a multistage sampling pro-

cedure (see Figure B of 1.5). In the first step the target t is selected out of a set of possible targets

T and in the second step the different raters r are selected out of a set of possible target-specific

raters R. Finally, the rating of each rater r of a particular target t on indicator i and construct

j is observed. The simplest case of the random experiment for interchangeable methods can be

represented as follows:

Ω = ΩT × ΩR × Ωijk.

ΩT refers to the set of possible targets and ΩR is the set of possible raters for each target. Ωijk
is the set of possible outcomes that contains the values of ratings for each indicator i and each

construct j. That means that Ωijk maps the ratings of each raters for each target on indicator i

and for construct j into the set of real numbers R. The conceptual distinction between structurally

different methods and interchangeable methods relates to the distinction between fixed and random

factors in analysis of variance (Hays, 1994) and is well summarized by Shrout (1995) saying: “The

nature of the description of interrater consensus often varies according to the research perspective.

In formal methodological terms, the different perspectives may vary in terms of whether targets

and/or judges are considered to be fixed or random” (p. 82). Eid et al. (2008) proposed a multilevel

MTMM-SEM for measurement designs with interchangeable methods. The major advantage of this

multilevel modeling strategy is its flexibility. For example, the model allows to study “true” unique

rater bias for a varying number of raters per target. In contrast to the CTC(M -1) approach for

structurally different methods (see above), the latent trait variables are defined as latent means

in this framework. The “true” (measurement error free) average mean of the interchangeable

methods (peer ratings) is defined as trait (see Eid et al., 2008). As a consequence, the trait

values are free of measurement error influences and rater-specific influences (see Eid et al., 2008).

The unique rater bias is then given by the deviation of a particular rater’s true-score from this

true average mean (see Eid et al., 2008). Finally, “true” convergent and discriminant validity can

be studied as well. Given that many empirical studies use a combination of both structurally

different and interchangeable methods, Eid et al. (2008) formulated a model that combines both
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modeling approaches for cross-sectional data. With respect to the extended or multilevel CTC(M -

1) model (Eid et al., 2008; Carretero-Dios et al., 2011) it is possible investigating trait effects as

well as “unique” and “common” method effects. The main advantage of this model is that method

influences can be studied on both levels (rater- and target-level). In addition, researchers may also

study different variance components (Eid et al., 2008, p. 245):

� The consistency coefficient indicates the degree of convergent validity. The consistency co-

efficient reflects the amount of true variance of a non-reference indicator that is explained

by the reference method (e.g., the amount of true variance of the peer ratings that is shared

with the self-rating).

� The common method specificity coefficient represents the amount of true variance of a non-

reference indicator that is not explained by the reference method (e.g., self-rating) but that

is common to all interchangeable methods (e.g., peer-ratings)

� The unique method specificity coefficient reflects the amount of true variance of a non-

reference indicator that is neither shared with the reference method (e.g., self-rating) nor

shared with other interchangeable methods (e.g., peers) but that is specific to a particular

rater. Hence, this coefficient reflects the variability that is only due to the unique view of

interchangeable raters.

Even though Eid et al. (2008) presented a basic framework for modeling both structurally different

and interchangeable methods, they did not consider an extension to longitudinal data. The aim

of this thesis is to formally define different multilevel CTC(M -1) models for longitudinal MTMM

measurement designs with structurally different and interchangeable methods. These new MTMM-

SEMs combine the advantages and flexibilities of the CTC(M -1) modeling approach, of longitudinal

modeling strategies (i.e., latent state, latent change, latent state-trait, and latent growth curve

modeling), and of multilevel (i.e., multirater) modeling strategies. Finally, all of the presented

models will be tested empirically with respect to extensive Monte Carlo simulation studies.

1.4 Aims and structure of the present work

The aim of this present work is to develop appropriate structural equation models for lon-

gitudinal MTMM measurement designs that imply a combination of structurally different and

interchangeable methods. Given that many longitudinal MTMM measurement designs do not

only incorporate one type of method (e.g., either structurally different or interchangeable meth-

ods), but a combination of different types of methods, there is a great need for such longitudinal

MTMM-SEMs. For example, in educational psychology many researchers are interested in studying

teaching quality by using multiple student ratings, teacher self ratings and/or the ratings of school

principles. In development psychology, researchers analyze the development of social competency

by using students’ self-ratings, peer ratings, and parent ratings. Furthermore, many organizational

psychologists use multiple source (360 degree) feedback designs in order to investigate the stability

and change of leadership quality. All of these measurement designs imply a combination of struc-

turally different and interchangeable methods. To my knowledge, no appropriate models have yet
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been proposed for analyzing such measurement designs. The aim of this present work is to fill this

gap and to develop models that are appropriate for such complex measurement designs. Addition-

ally, the models will be formulated with respect to the four longitudinal modeling frameworks (i.e.,

latent state, latent change, latent state-trait, and latent growth curve framework). The latent state

(LS-COM) model is a good starting point for modeling change over time. This model often serves

as a baseline model for testing and establishing crucial assumptions such as the degree of mea-

surement invariance (Geiser, 2008, 2012). Moreover, the stability and change of trait and method

effects can be studied by analyzing the correlations between latent variables. In order to explicitly

model “true” change of trait and/or method effects, two latent change versions are formulated. The

first latent baseline change model (baseline LC-COM model) allows modeling “true” interindividual

differences in intraindividual change with respect to the reference method. Hence, this model is

useful whenever researchers are solely interested in modeling “true” change of the construct over

time. In addition, an extended latent baseline change model (extended baseline LC-COM model) is

proposed that enables researchers studying“true”change of (common/unique) methods effects over

time. The third model combines the advantages of latent state-trait theory and the MTMM-MO

modeling framework for different types of methods. This model is called LST-COM model and is

useful for studying “true” convergent and discriminant validity on the level of occasion-specific vari-

ables and on the level of trait (free of occasion-specific influence and measurement error) variables.

This model is especially appropriate for investigating variability processes (i.e., occasion-specific

oscillation around a time-invariant trait). The fourth model (LGC-COM model) can be seen as

a more “general” variant of the LST-COM model that entails the LST-COM model as a special

case. The LGC-COM model is suitable for modeling different forms of growth with respect to

the trait (linear, quadratic, cubic) separately from occasion-specific, method-specific and measure-

ment error influences. All of the models will be formulated based on the stochastic measurement

theory (c.f. Steyer, 1989; Steyer & Eid, 2001; Suppes & Zinnes, 1963; Zimmermann, 1975). The

advantage of this approach is that (1) all latent variables are clearly defined, (2) the psychomet-

ric properties of each model with regard to existence, uniqueness, admissible transformations and

meaningfulness are explicitly demonstrated and (3) all additional assumptions and implications for

deriving testable consequences with respect to the latent covariances and mean structure of the

latent variables are unfold. In addition to that, the applicability and limitations of each model are

investigated in extensive Monte Carlo simulation studies.
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Chapter 2

Formal definition of the latent
state (LS-COM) model

2.1 A gentle introduction

In this chapter, a latent state model for longitudinal MTMM data incorporating a combination

of structurally different and interchangeable methods is formally defined. The model is called

LS-COM model. The abbreviation “LS-COM” was chosen for simplicity. The first part of the

abbreviation “LS” indicates which modeling approach for longitudinal data analysis is used. In this

case a latent state (LS) model. In the subsequent chapters, two latent change (LC), one latent

state-trait (LST) as well as one latent growth curve (LGC) model will be also defined. The second

part of the abbreviation “COM” stands for the combination of structurally different as well as

interchangeable methods. The latent state (LS-COM) model represents a good starting point for

modeling complex MTMM-MO data structures, given that it implies no restrictions with respect to

the latent variance-covariance matrix of the model (Geiser, 2008, 2012). With the LS-COM model,

it is possible studying the change and stability of constructs as well as method effects across

time. Moreover, the LS-COM model allows explicitly modeling the measurement error as well as

the hierarchical data structure of complex longitudinal MTMM measurement designs. Thus, the

LS-COM model enables researchers to study method effects on different levels (e.g., common and

unique method bias) and on different occasions of measurement. Hence, the LS-COM model makes

it possible studying the stability and change of common (rater-unspecific) as well as the unique

(rater-specific) method bias. In addition, the LS-COM model allows studying the degree of “true”

convergent and discriminant validity of the given measures and testing important assumptions such

as the degree of measurement invariance and/or the existence of indicator-specific effects. Before

the LS-COM model is formally defined in this chapter, a gentle introduction is provided. In the

gentle introduction, the main steps of the formal model definition are summarized and explained.

Step 1: Random experiment

In order to define an appropriate model for longitudinal MTMM measurement designs with

a combination of structurally different and interchangeable methods, it is important to consider

the sampling procedure for such complex data structures. The sampling procedure may be best

characterized in terms of the random experiment. Any single experiment, trial, or observation

20
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which can be repeated numerous times can be conceived as a random experiment (Behrends, 2013;

Eid, 1995; Steyer, 1988). A random experiment also constitutes the probability space (Ω,A,P)

upon which random (observed or unobserved) variables can be defined. For a detailed explanation

of the components of the probability space, see Eid (1995), Steyer (1988, 1989), Steyer and Eid

(2001), as well as Steyer, Nagel, Partchev, and Mayer (in press). The simplest case of the random

experiment that characterizes the sampling procedure for longitudinal measurement designs with

structurally different and interchangeable methods is the Cartesian products of the following sets:

Ω = ΩT × ΩTS1 × . . .× ΩTSl × ΩR × ΩRS1 × . . .× ΩRSl × Ωijk1 × . . .× Ωijkl.

The above equation states that target t (e.g., Sophia) has been chosen from a set of targets ΩT
and is considered in a situation ΩTSl . Then, a rater r (e.g., Elias) is selected from a set of raters

ΩR in a situation ΩRSl . The rating v (e.g., 4) is an element of Ωijkl, where i = item/indicator, j =

construct, k = method, and l = occasion of measurement. In this case, the possible outcome ω =

(t, ts, r, rs, v) = (Sophia in a situation ts on occasion of measurement l, Elias in a situation rs on

occasion of measurement l, 4). The phrase “in a situation on occasion of measurement l” is used to

express that targets and raters are assessed at the same occasion of measurement l, but may still

be affected differently by target- or rater-specific inner as well as outer situational influences (cf.

Geiser, 2008; Steyer, 1988). In total, the random experiment for longitudinal measurement designs

with structurally different and interchangeable methods implies five different types of mappings.

The mapping of the possible outcomes to the set of targets pT : Ω → ΩT , the mapping of the

possible outcomes to the set of target-situations pTSl : Ω → ΩTSl , the mapping of the possible

outcomes to the set of raters pR : Ω → ΩR, the mapping of the possible outcomes to the set of

rater-situations pRSl : Ω → ΩRSl , and the mapping of the possible outcomes to the set of real

numbers Yrtijkl : Ω→ R. The values of the variable Yrtijkl are the observed values of an indicator

i of construct j, assessed by the non-reference interchangeable method k, on the lth occasion of

measurement for target t rated by rater r. Thus, the variable Yrtijkl may also be conceived as a

level-1 observed variable. In contrast to that, the values of the variable Ytijkl are the observed

values of an indicator i of construct j, assessed by a structurally different method k, on the lth

occasion of measurement of the target t. For example, the self-rating of the target t (e.g., Sophia)

may additionally be considered on occasion of measurement l. Given that these ratings are not

rater- but only target-specific, the values of these (self-)ratings are measured by the observed

variables Ytijkl. In other words, the observed variables Ytijkl are measured on level-2 (i.e., the

target-level). Note that it is also possible to assess the ratings of another structurally different

method (e.g., parent or teacher) for target t on occasion of measurement l.

Throughout this work, one and only one set of interchangeable methods/raters per target (e.g.,

peer-ratings) will be considered. On the other hand, the models presented here are not restricted

to any specific number of structurally different methods/raters (e.g., self-ratings, parent ratings,

teacher ratings, etc.). In order to differentiate between the different types of methods, the index

k is chosen to avoid an additional index or superscript (c.f Eid et al., 2008). The index k will be

used for the distinction between reference and non-reference method. For the sake of simplicity,
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the first method (e.g., self-rating) is chosen as reference method or gold standard. In order to refer

to the reference method, the index k = 1 is used. Throughout this work, the second method k = 2

will refer to the set of interchangeable methods (e.g., peer-ratings). Every additional structurally

different method (e.g., parent or teacher rating) is indicated by k > 2. In summary, k = 1 refers

to the reference method, whereas k 6= 1 refers to the non-reference methods, which can either be

the interchangeable method (k = 2) or another structurally different method (k > 2).

Step 2: Latent state variables as true-score variables

According to latent state theory (see Geiser, 2012; Steyer et al., 1992), each observed variable

can be decomposed into a latent state and an error variable. The latent state variables in latent

state theory correspond to the true-score variables in classical test theory (CTT, see Geiser, 2008).

Ytij1l = Stij1l + Etij1l, k = 1, (reference method),

Yrtij2l = Srtij2l + Ertij2l, k = 2, (interchangeable non-reference method),

Ytijkl = Stijkl + Etijkl, k > 2, (structurally different non-reference method).

The latent state and error variables are defined in terms of conditional expectations E(·|·):

Stij1l ≡ E(Ytij1l|pT , pTSl), (2.1)

Etij1l ≡ Ytij1l − E(Ytij1l|pT , pTSl), (2.2)

Srtij2l ≡ E(Yrtij2l|pT , pTSl , pR, pRSl), (2.3)

Ertij2l ≡ Yrtij2l − E(Yrtij2l|pT , pTSl , pR , pRSl), (2.4)

Stijkl ≡ E(Ytijkl|pT , pTSl), k > 2, (2.5)

Etijkl ≡ Ytijkl − E(Ytijkl|pT , pTSl), k > 2. (2.6)

According to the above Definitions 2.1 to 2.6, it is clear that some latent state variables are

target specific, whereas other latent state variables are rater-target specific. For instance, the

values of E(Ytij1l|pT , pTSl) represent the true-scores of the reference method (e.g., student self-

ratings) on indicator i, for construct j on measurement occasion l. In contrast, the values of

E(Yrtij2l|pT , pTSl , pR, pRSl) are the true-scores of the ith indicator for construct j on measurement

occasion l measured by a non-reference method that we expect for a rater in a rater-situation

for a target in a target-situation. In other words, the latent state variables are measured on

different levels (rater- or target-level). In order to define level-2 state variables on the basis of the

level-1 state variables the target- and occasion-specific expectations of the level-1 state variables

are considered. Moreover, if the latent state variables are measured on the same level (e.g., the

target-level), the latent state variables may also be contrasted against (regressed on) each other.

This latent regression approach (so called CTC(M -1) modeling framework), in which different

perspectives are contrasted against each other was, first proposed by Eid (2000) as well as by Eid

et al. (2003) for multiple indicator MTMM-SEMs.
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Step 3: Conditional Expectations of the latent state variables

By definition, interchangeable methods are randomly drawn from of a set of similar or uniform

methods (i.e., the same rater population). With respect to this definition, the expected value of

the “true” interchangeable ratings per target at occasion of measurement l defines the target’s state

on occasion of measurement l measured by the interchangeable methods. This is expressed by the

following equation:

Stij2l ≡ E(Srtij2l|pT , pTSl) (2.7)

= E
[
E(Yrtij2l|pT , pTSl , pR, pRSl)|pT , pTSl

]
. (2.8)

According to Equation 2.7, the conditional expectations of the latent state variables Srtij2l given

the target (pT ) in a target-situation (pTSl) can be defined as target (rater-unspecific) latent state

variables. Consequently, the latent state variables Stij2l may be considered as “true means” of the

interchangeable ratings per target on occasion l for indicator i measuring construct j.

Step 4: Definition of latent residual method variables

The residuals of the latent regression analysis in Equation 2.7 are referred to as unique method

variables and are defined as:

UMrtij2l ≡ Srtij2l − E(Srtij2l|pT , pTSl)

= Srtij2l − Stij2l.

A value of the unique method variable UMrtij2l reflects the unique deviations of a particular rater

r from the expected value of the interchangeable raters at occasion of measurement l. Moreover,

given that UMrtij2l is defined as residual with respect to the Stij2l, it follows that E(UMrtij2l) = 0

and Cov(Stij2l, UMrtij2l) = 0. In order to define latent residual method variables on level-2 (target-

level), the latent state variables of the non-reference methods Stijkl (for k 6= 1) are regressed on

the latent state variable Stij1l of the reference method. In general, this latent regression analysis

can be expressed by the following equation:

E(Stijkl|Stij1l) = αtijkl + λSijklStij1l, k 6= 1.

The main advantage of this latent regression analysis is that different method variables can be

defined that are uncorrelated with the reference latent state variables Stij1l. Consider, for example,

that the level-2 latent state variables Stij2l of the interchangeable method are regressed on the latent

state variables of the reference method Stij1l. Then the residual variables of this latent regression

can be defined as common method variables:

CMtij2l ≡ Stij2l − E(Stij2l|Stij1l).
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The common method variables CMtij2l capture the amount of “true” variance of the non-reference

interchangeable methods that is common to the interchangeable methods (e.g., general view of the

peers), but is not shared with the reference method (e.g., self-report) on occasion of measurement

l. The common method variables CMtij2l reflect the “true” occasion-specific common method bias

of the interchangeable methods that is unrelated with the reference method. This unrelatedness

follows by definition, given that common method variables are defined as residuals with respect

to the reference method and therefore the general properties of residuals hold (see Steyer & Eid,

2001). Specifically, the following properties hold:

E(CMtij2l) = 0,

Cov(Stij1l, CMtij2l) = 0,

Cov(UMrtij2l, CMtij2l) = 0.

Similarly, “true” occasion-specific method variables Mtijkl that pertain to the other structurally

different non-reference method (e.g., parent or teacher report, k > 2) can be defined as:

Mtijkl ≡ Stijkl − E(Stijkl|Stij1l).

By definition, these latent method variables reflect the true amount of method influences specific

to the remaining non-reference structurally different methods on occasion of measurement l. The

latent method variables Mtijkl reflect the true over- or underestimation of the target self-report

(reference method) by the true rating of the supervisor (non-reference structurally different method)

on occasion of measurement l. Moreover, the variables Mtijkl may be correlated with CMtij2l.

These correlations indicate, for example, whether or not method bias generalizes across different

constructs j 6= j′ and/or different occasion of measurement l 6= l′.

Step 5: Definition of latent method factors

In order to obtain an identified model, it is assumed that all latent method variables UMrtij2l,

CMtij2l, and Mtijkl are homogeneous across items. Specifically, it is assumed that the method

variables pertaining to the same kind of method UMrtij2l, CMtij2l, Mtijkl are positive linear

functions of each, respectively (see also Courvoisier, 2006; Eid, 1995; Geiser, 2008; Steyer, 1988;

Steyer & Eid, 2001). Thus, these latent variables only differ by a multiplicative constant such that

:

UMrtij2l = λUMij2lUMrtj2l,

CMtij2l = λCMij2lCMtj2l,

Mtijkl = λMijklMtjkl, k > 2.

Based on this assumption, it is possible to define latent method factors, namely: CMtj2l, UMrtj2l,

and Mtjkl. The existence of these latent occasion-specific method factors is demonstrated in Section
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2.3 of the subsequent chapter. Note that the index i for the indicator has been dropped, because

these variables are common to all indicators with the same indices r, t, j, k, and l. In summary,

the measurement equations for any observed variable of the LS-COM model are given by:

Ytij1l = Stij1l + Etij1l, (2.9)

Ytijkl = αtijkl + λSijklStij1l + λMijklMtjkl + Etijkl, k > 2, (2.10)

Yrtij2l = αtij2l + λSij2lStij1l + λCMij2lCMtj2l + λUMij2lUMrtj2l + Ertij2l. (2.11)

According to the above Equations 2.9 to 2.11, the observed variables pertaining to the reference

method Ytij1l measure a latent state variable Stij1l as well as a measurement error variable Etij1l.

Note that there are no additional method variables present in Equation 2.9. The expressions

αtijkl + λSijklStij1l, k > 2,

αtij2l + λSij2lStij1l,

in Equations 2.10 and 2.11 refer to the latent regression analyses of the latent state variables per-

taining to the non-reference method on the latent reference state variables. The residuals of the

latent regression analyses are defined as method factors (Mtjkl, CMtj2l) as described above. As

a consequence, each of method factor (Mtjkl, CMtj2l) is weighted by a factor loading parameter

(λMijkl, λCMij2l). In addition to that, the observed variables of non-reference interchangeable

method Yrtij2l also measure a unique method factor UMrtj2l weighted by a factor loading param-

eter λUMij2l. It is important to note that the values of the latent method factors have different

meanings. For example, a value of UMrtj2l reflects the difference between the true rating of a

particular rater r on occasion of measurement l from the expected value of all raters for target t

on occasion of measurement l. Given that this method bias is specific to the true over- or under-

estimation of a particular rater r on occasion of measurement l, it may be called occasion-specific

unique method bias. A value of CMtj2l reflects the “true” common view of the interchangeable

raters on occasion of measurement l that is not shared with the reference method (e.g., target’s

self-report) on the same occasion of measurement. The term “common” is used, given that this

method bias is shared with other interchangeable raters for target t, but not with the reference

method. Thus, values of CMtj2l represent “true” occasion-specific common method bias. Finally, a

value of Mtjkl reflects the “true” method bias of another structurally different method (e.g., parent

or teacher rating) that is not shared with the reference method. For simplicity, it is assumed that

the measurement error variables (Etij1l, Etijkl, Ertij2l) are uncorrelated with each other (see e.g.

Definition 2.2). Figure 2.4 illustrates a LS-COM model for three indicators, two constructs, three

methods (1 = reference method, 2 = interchangeable method 3 = another structurally different

reference method), and two occasions of measurement. For the sake of clarity, all correlations

among the latent variables were omitted in the figure. Note that the model illustrated in Figure

2.4 refers to a LS-COM model with indicator-specific latent state factors.
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Figure 2.1: Path diagram of the LS-COM model with indicator-specific state factors.
Path diagram of the LS-COM model with indicator-specific state factors incorporating three methods at two measurement occasions for two constructs. All correlations
between latent variables were omitted for clarity.
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2.2 Formal definition of the LS-COM model

In the following sections, the LS-COM model is formally defined based on the stochastic mea-

surement theory following the approach by Steyer and Eid (2001). For simplicity, the model is

defined for just three methods. The first method (k = 1) refers to the reference method which is

assumed to be structurally different method (e.g., students’ self-report) relative to the other meth-

ods. The second method (k = 2) refers to the set of interchangeable methods (e.g., peer reports for

a particular student). It is important to note that the set of interchangeable methods could also be

chosen as reference method, however, this is not done in the present work. Guidelines for choosing

an appropriate reference method are given in Section 11.1 as well as in Geiser et al. (2008). The

third method (k = 3) refers to another structurally different method (e.g., parent rating).

Definition 2.1 (LS-COM model)
The random variables {Y111111, . . . , Yrtijkl, . . . , Yabcdef} and {Y11111, . . . , Ytijkl, . . . , Ybcdef} on
a probability space (Ω,A,P) are variables of a LS-COM model if the following conditions hold:

(a) (Ω,A,P) is a probability space such that Ω = ΩT × ΩTS1 × . . . × ΩTSl × ΩR × ΩRS1 ×
. . .× ΩRSl × Ωijk1 × . . .× Ωijkl.

(b) The projections pT : Ω→ ΩT , pTSl : Ω→ ΩTSl , pR : Ω→ ΩR, and pRSl : Ω→ ΩRSlare
random variables on (Ω,A,P).

(c) The variables Ytijkl : ΩT × ΩTS1 × . . . × ΩTSl → R and Yrtijkl : ΩT × ΩTS1 × . . . ×
ΩTSl × ΩR × ΩRS1 × . . .× ΩRSl → R, for which r ∈ R ≡ {1, . . . , a}, t ∈ T ≡ {1, . . . , b},
i ∈ I ≡ {1, . . . , c}, j ∈ J ≡ {1, . . . , d}, k ∈ K ≡ {1, . . . , e}, l ∈ L ≡ {1, . . . , f} are
random variables on (Ω,A,P) with finite first- and second-order moments.

(d) Without loss of generality, the first method (k = 1) is selected as reference method. The
second method (k = 2) refers to the set of interchangeable methods which serve as non-
reference methods. All other methods (k > 2) refer to structurally different methods which
serve as non-reference methods. Then, the following variables are random variables on
(Ω,A,P) with finite first- and second-order moments:

Rater-level (level-1):

Srtij2l ≡ E(Yrtij2l|pT , pTSl , pR, pRSl), (2.12)

UMrtij2l ≡ Srtij2l − E(Srtij2l|pT , pTSl), (2.13)

Ertij2l ≡ Yrtij2l − E(Yrtij2l|pT , pTSl , pR , pRSl). (2.14)

Target-level (level-2):

Stij1l ≡ E(Ytij1l|pT , pTSl), (2.15)

Stij2l ≡ E(Srtij2l|pT , pTSl), (2.16)

Stijkl ≡ E(Ytijkl|pT , pTSl), ∀ k > 2, (2.17)

CMtij2l ≡ Stij2l − E(Stij2l|Stij1l), (2.18)

Mtijkl ≡ Stijkl − E(Stijkl|Stij1l), ∀ k > 2, (2.19)

Etij1l ≡ Ytij1l − E(Ytij1l|pT , pTSl), (2.20)

Etijkl ≡ Ytijkl − E(Ytijkl|pT , pTSl), ∀ k > 2. (2.21)
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(e) For each construct j, measured by a non-reference method (k 6= 1) on occasion of mea-
surement l with item i, there is a constant αtijkl ∈ R as well as a constant λSijkl ∈ R+
such that

E(Stijkl|Stij1l) = αtijkl + λSijklStij1l. (2.22)

(f) For each construct j, measured by a non-reference method k (in this case k = 2) on
occasion of measurement l and for each pair (i, i′) ∈ I × I ′, (i 6= i′) there is a constant
λCMii′j2l ∈ R+ such that

CMtij2l = λCMii′j2lCMti′j2l. (2.23)

(g) For each construct j, measured by a non-reference method k > 2 on occasion of measure-
ment l and for each pair (i, i′) ∈ I × I ′, (i 6= i′) there is a constant λMii′jkl ∈ R+ such
that

Mtijkl = λMii′jklMti′jkl, ∀ k > 2. (2.24)

(h) For each construct j, measured by a non-reference method k (in this case k = 2) on
occasion of measurement l and for each pair (i, i′) ∈ I × I ′, (i 6= i′) there is a constant
λUMii′j2l ∈ R+ such that

UMrtij2l = λUMii′j2lUMrti′j2l. (2.25)

Remarks. In order to define the model six indices are needed: r for rater, t for target, i for
indicator, j for construct, k for method, and l for the occasion of measurement. The index r
denotes whether a variable is measured on the rater-level or not, whereas the index k represents
the type of method (reference or non-reference method). Note that the model is defined for one
and only one set of interchangeable methods which is always represented by k = 2. Accord-
ing to Equation 2.16, the latent state variables Stij2l represent the conditional expectation of
Srtij2l given a value of (pT ) and a value of (pTS). This latent regression may also be written as

E
[
E(Yrtij2l|pT , pTSl , pR, pRSl)|pT , pTSl

]
. The latent variables Stij2l thus represent the expected

values of the distribution of the interchangeable ratings given a target in a specific situation on
an occasion of measurement l. The residual of this latent regression is defined as unique method
variable (see Equation 2.13). A value of this method variable is the deviation of the true-scores
of one rater (for target t) from the expected value of all possible raters (for target t) for indi-
cator i, construct j, and occasion of measurement l. It can be also considered as “true” over-
or underestimation of a trait value by a particular rater on a particular measurement occasion l.
This bias might be due to the effect of a rater and/or the interaction between rater and target.
Each of the observed variables has its own associated latent true-score variable Srtij2l, Stij1l, or
Stijkl as well as measurement error variable Ertij2l, Etij1l, or Etijkl. According to Equation 2.22
the latent state variables of the non-reference methods Stij2l and Stijkl are regressed on the latent
state variables of the reference method variables Stij1l pertaining to the same indicator i, construct
j, and measurement occasion l. The residuals of these latent regression analyses define the two
remaining method variables Mtijkl and CMtij2l. In Equation 2.23 to 2.25 below, common (i.e., to
all indicators) method factors are defined. Specifically, it is expected that all latent method vari-
able CMtij2l, Mtijkl, UMrtij2l belonging to the same construct, method, and occasion are positive
linear functions of each other, respectively. In other words, it is assumed that these latent residual
variables are perfectly correlated and only differ by a multiplicative constant.

2.3 Existence

According to Definition 2.1 the latent method variables, belonging to the same construct j,

method k, and occasion of measurement l, but different indicators i and i′ are positive linear trans-

formations of each other. As a consequence, these latent residual variables can be represented by
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common (i.e., to all indicators) method factors. The following theorem demonstrates the existence

of the latent method factors (CMtj2l, Mtjkl, and UMrtj2l).

Theorem 2.1 (Existence)
The random variables {Y111111, . . . , Yrtijkl, . . . , Yabcdef} and {Y11111, . . . , Ytijkl, . . . , Ybcdef} are
(CMtij2l, Mtijkl, UMrtij2l)-congeneric variables of a LS-COM model if and only if the Con-
ditions a to e of Definition 2.1 hold and for each r ∈ R, t ∈ T , i,∈ I, j ∈ J , k ∈ K, l ∈ L,
there are real-valued random variables CMtij2l, Mtijkl, and UMrtij2l on a probability space
(Ω,A,P) and (λCMij2l, λMijkl, λUMij2l) ∈ R+ such that:

CMtij2l = λCMij2lCMtj2l, (2.26)

Mtijkl = λMijklMtjkl, ∀k > 2, (2.27)

UMrtij2l = λUMij2lUMrtj2l. (2.28)

Proofs. 1 Existence of latent variables

2.26 (1) For all i, j, k, l, assume that CMtj2l ≡ CMt1j2l as well as λCMij2l ≡ λCMi1j2l. Inserting
these parameters in Equation 2.23 of the above definition, yields Equation 2.26:

CMtij2l = λCMij2lCMtj2l (repeated).

(2) Similarly, according to Equation 2.26, CMtj2l can be expressed as

CMtj2l =
CMtij2l

λCMij2l
as well as CMtj2l =

CMti′j2l

λCMi′j2l
.

If both equations are set equal, it follows from that: CMtij2l = λCMij2l
λ
CMi′j2l

CMti′j2l. Let λCMii′j2l ≡
λCMij2l
λ
CMi′j2l

, than the Equation 2.23 is obtained:

CMtij2l = λCMii′j2lCMti′j2l (repeated).

2.27 (1) For all i, j, k, l, assume that Mtjkl ≡Mt1jkl as well as λMijkl ≡ λMi1jkl. Inserting these
parameters in Equation 2.24 of the above definition, yields Equation 2.27:

Mtijkl = λMijklMtjkl (repeated).

(2) Furthermore, according to Equation 2.27, Mtjkl can be expressed as

Mtjkl =
Mtijkl

λMijkl

as well as Mtjkl =
Mti′jkl

λMi′jkl

.

By setting both equations equal, it follows from that: Mtij2l = λMijkl
λ
Mi′jkl

Mti′jkl. Let λMii′jkl ≡
λMijkl
λ
Mi′jkl

, than the Equation 2.24 is obtained:

Mtijkl = λMii′jk2lMti′jkl (repeated).

2.28 (1) For all i, j, k, l, assume that UMrtjkl ≡ UMrt1jkl as well as λUMijkl ≡ λUMi1jkl.
Inserting these parameters in Equation 2.25 of the above definition, yields Equation 2.28:

UMrtijkl = λUMijklUMrtjkl (repeated).

(2) Further, according to Equation 2.28, UMrtjkl can be expressed as

UMrtjkl =
UMrtijkl

λUMijkl

as well as UMrtjkl =
UMrti′jkl

λUMi′jkl

.
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By setting both equations equal, it follows from that:

UMrtij2l =
λUMijkl

λUMi′jkl

UMrti′jkl.

Let λUMii′jkl ≡
λUMijkl
λ
UMi′jkl

, then the Equation 2.25 is obtained:

UMrtijkl = λUMii′jk2lUMrti′jkl (repeated).

�

Remarks. The above theorem clarifies that the assumptions made in Conditions 2.23 to 2.25 of
the above definition imply the existence of common factors CMtj2l, Mtjkl, UMrtj2l. It is important
to note that the term common refers to the fact that each factor is assumed to be common to all
indicators, belonging to the same construct, same (non reference) method, and the same occasion
of measurement. Put another way, it is assumed that each of the method variables belonging to
the same construct, the same method, and the same occasion of measurement [CMtij2l, Mtijkl,
UMrtij2l] are positive linear functions of each other and only differ by a multiplicative constant.
The proof of the theorem shows that the method variables CMtij2l, Mtijkl, and UMrtij2l are not
uniquely defined. In fact, there is a whole family of residual variables which could serve as common
latent method factors (CMtj2l, Mtjkl, and UMrtj2l). The uniqueness of the latent method factors
is discussed in the uniqueness theorem (see Section 2.4).

2.4 Uniqueness

The latent factors (CMtj2l, Mtjkl, UMrtj2l) are not completely uniquely defined in LS-COM

models. If such models are defined with (CMtij2l, Mtijkl, UMrtij2l)-congeneric variables, all of

these variables and corresponding coefficients are uniquely defined only up to similarity transfor-

mation. That means that the latent variables in the LS-COM model as well as their corresponding

coefficients are only uniquely defined up to a multiplication with a positive real number. The next

theorem clarifies these statements in greater detail.

Theorem 2.2 (Admissible transformations and uniqueness)
1. Admissible Transformations
M≡ 〈(Ω,A, P ),Srt,St,UMrt,CMt,Mt,Ert,Et, αtijkl, λSijkl, λUMij2l, λCMij2l,
λMijkl〉 is a LS-COM model with:

Srt ≡ (S111111 · · ·Srtij2l · · ·Sabcd2f )T, (2.29)

St ≡ (S11111 · · ·Stijkl · · ·Sbcdef )T, (2.30)

UMrt ≡ (UM11111 · · ·UMrtj2l · · ·UMabd2f )T, (2.31)

CMt ≡ (CM1111 · · ·CMtj2l · · ·CMbd2f )T, (2.32)

Mt ≡ (M1111 · · ·Mtjkl · · ·Mbdef )T, (2.33)

Ert ≡ (E111111 · · ·Ertij2l · · ·Eabcd2f )T, (2.34)

Et ≡ (E11111 · · ·Etijkl · · ·Ebcdef )T, (2.35)

αtijkl ≡ (α1111 · · ·αtijkl · · ·αbcdef )T, (2.36)

λS ≡ (λ1111 · · ·λSijkl · · ·λcdef )T, (2.37)

λUM ≡ (λ1111 · · ·λUMij2l · · ·λcd2f )T, (2.38)

λCM ≡ (λ1111 · · ·λCMij2l · · ·λcd2f )T, (2.39)

λM ≡ (λ1111 · · ·λMijkl · · ·λcdef )T, (2.40)
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and if for all r ∈ R, t ∈ T , i ∈ I, j ∈ J , k ∈ K, l ∈ L:

UM
′

rtj2l ≡ βUMj2lUMrtj2l, (2.41)

CM
′

tj2l ≡ βCMj2lCMtj2l, (2.42)

M
′

tjkl ≡ βMjklMtjkl, k > 2, (2.43)

λ
′

UMij2l ≡ λUMij2l/βUMj2l, (2.44)

λ
′

CMij2l ≡ λCMij2l/βCMj2l, (2.45)

λ
′

Mijkl ≡ λMijkl/βMjkl, k > 2, (2.46)

where βCMj2l, βUMj2l, and βMjkl ∈ R, as well as βCMj2l, βUMj2l, and βMjkl > 0,

then M′ ≡ 〈(Ω,A, P ),Srt,St,UM′

rt,CM′

t,M
′

t,Ert,Et, αtijkl, λSijkl,

λ
′

UMij2l, λ
′

CMij2l, λ
′

Mijkl〉 is a LS-COM model, too, with:

Srt ≡ (S111111 · · ·Srtij2l · · ·Sabcd2f )T, (2.47)

St ≡ (S11111 · · ·Stijkl · · ·Sbcdef )T, (2.48)

UM
′

rt ≡ (UM
′

11111 · · ·UM
′

rtj2l · · ·UM
′

abd2f )T, (2.49)

CM
′

t ≡ (CM
′

1111 · · ·CM
′

tj2l · · ·CM
′

bd2f )T, (2.50)

M
′

t ≡ (M
′

1111 · · ·M
′

tjkl · · ·M
′

bdef )T, (2.51)

Ert ≡ (E111111 · · ·Ertij2l · · ·Eabcd2f )T, (2.52)

Et ≡ (E11111 · · ·Etijkl · · ·Ebcdef )T, (2.53)

αtijkl ≡ (α1111 · · ·αtijkl · · ·αbcdef )T, (2.54)

λS ≡ (λ1111 · · ·λSijkl · · ·λcdef )T, (2.55)

λ
′

UM ≡ (λ
′

1111 · · ·λ
′

UMij2l · · ·λ
′

cd2f )T, (2.56)

λ
′

CM ≡ (λ
′

1111 · · ·λ
′

CMij2l · · ·λ
′

cd2f )T, (2.57)

λ
′

M ≡ (λ
′

1111 · · ·λ
′

Mijkl · · ·λ
′

cdef )T. (2.58)

2. Uniqueness
If both M≡ 〈(Ω,A, P ),Srt,St,UMrt,CMt,Mt,Ert,Et, αtijkl, λSijkl, λUMij2l,

λCMij2l, λMijkl〉 and M′ ≡ 〈(Ω,A, P ),Srt,St,UM′

rt,CM′

t,M
′

t,Ert,Et, αtijkl,

λSijkl, λ
′

UMij2l, λ
′

CMij2l, λ
′

Mijkl〉 are LS-COM models, then for each i ∈ I, j ∈ J , k ∈ K,
l ∈ L, there are βCMj2l, βUMj2l, and βMjkl ∈ R+ such that Equations 2.41 to 2.58 hold.

Proofs. 2 Admissible transformations and uniqueness

1. Admissible transformations

If UMrtij2l, CMtij2l, and Mtijkl are replaced by UM
′

rtj2l, CM
′

tj2l, M
′

tjkl as well as λUMij2l,

λCMij2l, λMijkl by the corresponding λ
′

UMij2l ,λ
′

CMij2l, λ
′

Mijkl, then:

UMrtij2l = λ
′

UMij2lUM
′

rtj2l

=
(

1
βUMj2l

)
λUMij2lβUMj2lUMrtj2l

= λUMij2lUMrtj2l,

CMtij2l = λ
′

CMij2lCM
′

tj2l

=
(

1
βCMj2l

)
λCMij2lβCMj2lCMtj2l

= λCMij2lCMtj2l,
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Mtijkl = λ
′

MijklM
′

tjkl

=
(

1
βMjkl

)
λMijklβMjklMtjkl

= λMijklMtjkl.

In a similar way, if UMrtj2l, CMtj2l, and Mtjkl are replaced by
UM

′
rtj2l

βUMj2l
,
CM

′
tj2l

βCMj2l
, and

M
′
tjkl

βMjkl

as well as λUMij2l, λCMij2l, λMijkl by βUMj2lλ
′

UMij2l, βCMj2lλ
′

CMij2l, βMjklλ
′

Mijkl, then:

UMrtij2l = λUMij2lUMrtj2l

= βUMj2lλ
′

UMij2l ·
UM

′

rtj2l

βUMj2l

= λ
′

UMij2lUM
′

rtj2l,

CMtij2l = λCMij2lCMtj2l

= βCMj2lλ
′

CMij2l ·
CM

′

tj2l

βCMj2l

= λ
′

CMij2lCM
′

tj2l,

Mtijkl = λMijklMtjkl

= βMjklλ
′

Mijkl ·
M
′

tjkl

βMjkl

= λ
′

MijklM
′

tjkl.

2. Uniqueness

If both M≡ 〈(Ω,A, P ),Srt,St,UMrt,CMt,Mt,Ert,Et, αtijkl, λSijkl, λUMij2l, λCMij2l,

λMijkl〉 and M′ ≡ 〈(Ω,A, P ),Srt,St,UM′

rt,CM′

t,M
′

t,Ert,Et, αtijkl, λSijkl, λ
′

UMij2l,

λ
′

CMij2l, λ
′

Mijkl〉 are LS-COM models, then λUMij2lUMrtj2l = λ
′

UMij2lUM
′

rtj2l. Conse-
quently, for all j ∈ J , k ∈ K, and l ∈ L:

UM
′

rtj2l =
λUMij2l

λ
′
UMij2l

UMrtj2l.

Given that the ratio of λUMij2l and λ
′

UMij2l has to be the same real value for each i ∈ I
j ∈ J , k ∈ K, and l ∈ L, a real constant can be defined for each i ∈ I j ∈ J , k ∈ K, and
l ∈ L:

βUMj2l ≡
λUMij2l

λ
′
UMij2l

.

Again, assume that both M and M′
are LS-COM models, then

λCMij2lCMtj2l = λ
′

CMij2lCM
′

tj2l. Consequently, for all j ∈ J , k ∈ K, and l ∈ L:

CM
′

tj2l =
λCMij2l

λ
′
CMij2l

CMtj2l.

Given that the ratio of λCMij2l and λ
′

CMij2l has to be the same real value for each i ∈ I
j ∈ J , k ∈ K, and l ∈ L, a real constant can be defined for each i ∈ I j ∈ J , k ∈ K, and
l ∈ L:

βCMj2l ≡
λCMij2l

λ
′
CMij2l

.
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If both M and M′
are LS-COM models, then λMijklMtjkl =λ

′

MijklM
′

tjkl. Consequently, for
all j ∈ J , k ∈ K, and l ∈ L:

M
′

tjkl =
λMijkl

λ
′
Mijkl

Mtjkl.

Given that the ratio of λMijkl and λ
′

Mijkl has to be the same real value for each i ∈ I j ∈ J ,
k ∈ K, and l ∈ L, a real constant can be defined for each i ∈ I j ∈ J , k ∈ K, and l ∈ L:

βMjkl ≡
λMijkl

λ
′
Mijkl

.

�

Remarks. The above theorem implies that the latent method factors UMrtj2l, CMtj2l, and Mtjkl

as well as their corresponding factor loadings λUMij2l, λCMij2l, and λMijkl are uniquely defined up
to similarity transformations, that is, up to a multiplication with a positive real number. Hence,
the latent method factors as well as their corresponding factor loadings are measured on a ratio
scale.

2.5 Meaningfulness

In the following section, meaningful statements regarding the latent variables in the LS-COM

models as well as their corresponding coefficients are addressed. Meaningful statements are state-

ments that remain invariant across the admissible transformations (Geiser, 2008; Steyer & Eid,

2001). The next corollary lists a selection of meaningful statements regarding the latent method

factors and their corresponding factor loadings.

Theorem 2.3 (Meaningfulness)
If both M≡ 〈(Ω,A, P ),Srt,St,UMrt,CMt,Mt,Ert,Et, αtijkl, λSijkl, λUMij2l, λCMij2l,

λMijkl〉 and M′ ≡ 〈(Ω,A, P ),Srt,St,UM′

rt,CM′

t,M
′

t,Ert,Et, αtijkl, λSijkl, λ
′

UMij2l,

λ
′

CMij2l, λ
′

Mijkl〉 are LS-COM models, then for ω1, ω2 ∈ Ω; r, r′ ∈ R, t, t′ ∈ T , i, i′ ∈ I,
j, j′ ∈ J , k, k′ ∈ K, and l, l′ ∈ L:

λUMij2l

λUMi′j2l
=

λ
′

UMij2l

λ
′
UMi′j2l

, (2.59)

λCMij2l

λCMi′j2l
=

λ
′

CMij2l

λ
′
CMi′j2l

, (2.60)

λMijkl

λMi′jkl
=
λ
′

Mi′jkl

λ
′
Mi′jkl

, (2.61)

λUMij2l

λUMi′j2l
−
λUMij′2l′

λUMi′j′2l′
=

λ
′

UMij2l

λ
′
UMi′j2l

−
λ
′

UMij′2l′

λ
′
UMi′j′2l′

, (2.62)

λCMij2l

λCMi′j2l
−
λCMij′2l′

λCMi′j′2l′
=

λ
′

CMij2l

λ
′
CMi′j2l

−
λ
′

CMij′2l′

λ
′
CMi′j′2l′

, (2.63)

λMijkl

λMi′jkl

−
λMij′k′l′

λMi′j′k′l′
=

λ
′

Mijkl

λ
′
Mi′jkl

−
λ
′

Mij′k′l′

λ
′
Mi′j′k′l′

, (2.64)

UMrtj2l (ω1)
UMrtj2l (ω2) =

UM
′

rtj2l (ω1)
UM

′
rtj2l (ω2)

, (2.65)
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for UMrtj2l (ω2) and UM
′

rtj2l (ω2) 6= 0,

CMtj2l (ω1)
CMtj2l (ω2) =

CM
′

tj2l (ω1)
CM

′
tj2l (ω2)

, (2.66)

for CMtj2l (ω2) and CM
′

tj2l (ω2) 6= 0,

Mtjkl (ω1)
Mtjkl (ω2) =

M
′

tjkl (ω1)
M
′
tjkl (ω2)

, (2.67)

for Mtjkl (ω2) and M
′

tjkl (ω2) 6= 0,

UMrtj2l (ω1)
UMrtj2l (ω2) −

UMr′t′j′2l′ (ω1)
UMr′t′j′2l′ (ω2) =

UM
′

rtj2l (ω1)
UM

′
rtj2l (ω2)

−
UM

′

r′t′j′2l′ (ω1)
UM

′
r′t′j′2l′ (ω2)

, (2.68)

for UMrtj2l (ω2), UMr′tj′2l′ (ω2), UM
′

rtj2l (ω2), UM ′

r′tj′2l′ (ω2) 6= 0,

CMtj2l (ω1)
CMtj2l (ω2) −

CMt′j′2l′ (ω1)
CMt′j′2l′ (ω2) =

CM
′

tj2l (ω1)
CM

′
tj2l (ω2)

−
CM

′

t′j′2l′ (ω1)
CM

′
t′j′2l′ (ω2)

, (2.69)

for CMtj2l (ω2), CMt′j′2l′ (ω2), CM
′

tj2l (ω2), CM ′

t′j′2l′ (ω2) 6= 0,

Mtjkl (ω1)
Mtjkl (ω2) −

Mt′j′k′l′ (ω1)
Mt′j′k′l′ (ω2) =

M
′

tjkl (ω1)
M
′
tjkl (ω2)

−
M
′

t′j′k′l′ (ω1)
M
′
t′j′k′l′ (ω2)

, (2.70)

for Mtjkl (ω2), Mt′j′k′l′ (ω2), M ′

tjkl (ω2), M ′

t′j′k′l′ (ω2) 6= 0,

λ2
UMij2lV ar(UMrtj2l) = λ

′2
UMij2lV ar(UM

′

rtj2l), (2.71)

λ2
CMij2lV ar(CMtj2l) = λ

′2
CMij2lV ar(CM

′

t2kl), (2.72)

λ2
MijklV ar(Mtjkl) = λ

′2
MijklV ar(M

′

tjkl), (2.73)

Corr(UMrtj2l, UMr′t′j′2l′) = Corr(UM
′

rtj2, UM
′

r′t′j′2l′), (2.74)

Corr(CMtjk2, CMt′j′2l′) = Corr(CM
′

tj2l, CM
′

t′j′2l′), (2.75)

Corr(Mtjkl,Mt′j′k′l′) = Corr(M
′

tjkl,M
′

t′j′k′l′), (2.76)

where Var(.) denotes variance and Corr(.) denotes correlation.

Proofs. 3 Meaningfulness
For simplicity, the proofs for the Equations 2.59, 2.65, 2.68, 2.71, and 2.74 are presented as exam-
ples. The proofs for the remaining statements follow the same principles and are straightforward.
Thus, these proofs are not reported here.

2.59 Replacing λ
′

UMij2l, λ
′

UMi′j2l in Equation 2.59 by
(
λUMij2l
βUMj2l

)
and

(
λUMi′j2l
βUMj2l

)
, respectively,

verifies the equality

λ
′

UMij2l

λ
′
UMi′j2l

=
λUMij2l
βUMj2l

λUMi′j2l
βUMj2l

= λUMij2l

λUMi′j2l
.

2.65 Replacing UM
′

rtj2l by βUMj2lUMrtj2l verifies the equality

UM
′

rtj2l (ω1)
UM

′
rtj2l (ω2)

= βUMj2lUMrtj2l(ω1)
βUMj2lUMrtj2l(ω2) =

UMrtj2l (ω1)
UMrtj2l (ω2) .
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2.68 Replacing UM
′

rtj2l by βUMj2lUMrtj2l and UM
′

rtj′2l′ by βUMj′2l′UMrtj′2l′ verifies the equality

UMrtj2l (ω1)
UMrtj2l (ω2) −

UMr′t′j′2l′ (ω1)
UMr′t′j′2l′ (ω2) =

UM
′

rtj2l (ω1)
UM

′
rtj2l (ω2)

−
UM

′

r′t′j′2l′ (ω1)
UM

′
r′t′j′2l′ (ω2)

= βUMj2lUMrtj2l (ω1)
βUMj2lUMrtj2l (ω2) −

βUMj′2l′UMr′t′j′2l′ (ω1)
βUMj′2l′UMr′t′j′2l′ (ω2)

=
UMrtj2l (ω1)
UMrtj2l (ω2) −

UMr′tj′2l′ (ω1)
UMr′t′j′2l′ (ω2) .

2.71 Replacing λ2
UMij2l by λ

′2
UMij2lβ

2
UMj2l as well as V ar(UMrtj2l) by V ar

(
UM

′
rtj2l

βUMj2l

)
verifies the

equality

λ2
UMij2lV ar(UMrtj2l) = λ

′2
UMij2lβ

2
UMj2lV ar

(
UM

′

rtj2l

βUMj2l

)

= λ
′2
UMij2lβ

2
UMj2l

1
β2
UMj2l

V ar
(
UM

′

rtj2l

)
= λ

′2
UMij2lV ar

(
UM

′

rtj2l

)
.

2.74 Replacing UMrtj2l and UMrtj′2l′ in Equation 2.74 by
UM

′
rtj2l

βUMj2l
and

UM
′
rtj′2l′

βUMj′2l′

Corr(UMrtj2l, UMr′t′j′2l′) = Corr

(
UM

′

rtj2l

βUMj2l
,
UM

′

r′t′j′2l′

βUMj2l

)
= Cor(UM

′

rtj2, UM
′

r′t′j′2l′).

�

Remarks. With respect to the factor loadings λUMij2l, λCMij2l, λMijkl, as well as their corre-
sponding latent method factors UMrtj2l, CMrtj2l, and Mrtjkl, statements regarding the absolute
values of the parameters are not meaningful (see also Geiser, 2008). The reason is that admissible
transformations (e.g., multiplication with a positive real number) would result in different values
of the parameters. Nevertheless, statements regarding the ratio of specific values of the factor
loadings or the ratio of values of associated latent method factors are meaningful. For example, it
is meaningful to say, that a value on the unique method factor for target A is x-times larger than
the value on the unique method factor for target B (see also Geiser, 2008). Given that the products
λ2
UMij2lV ar(UMrtj2l) are also invariant to similarity transformations [see Equation 2.71], it follows

that statements regarding unique method specificity are meaningful. In fact, any statement with
respect to the ratio of variances (i.e., consistency, method specificity, reliability) are meaningful.
Finally, statements with respect to latent correlations between method factors is meaningful [see
Equations 2.74 to 2.76]. Hence, latent correlations between latent state and/or method variables
can be interpreted.

2.6 Testability

In the following section the covariance structure of the LS-COM model is discussed. In order

to derive testable consequences for the covariance structure of the LS-COM model, it is necessary

to introduce additional assumptions. These assumptions define a more restrictive variant of the

LS-COM model. These assumptions are called conditional regressive independence (CRI) assump-

tions. Models that fulfill this assumption will be called LS-COM model with CRI. This section is

structured as follows. First, the conditional regressive independence assumptions are introduced.
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Second, the covariances that are equal to zero as a consequence of the model definition are pre-

sented. These covariances must be fixed to zero in empirical applications. Third, covariances that

are assumed to be zero by further definitions are presented. The latter type of covariances may

be set to zero in empirical applications for parsimony. Finally, permissible covariances that are

estimable and substantively meaningful are discussed.

Definition 2.2 (LS-COM model with conditional regressive independence (RCI))
M ≡ 〈(Ω,A, P ),Srt,St,UMrt,CMt,Mt,Ert,Et, αtijkl, λSijkl, λUMij2l, λCMij2l, λMijkl〉 is
called a LS-COM model of (UMrtj2l,CMtij2l,Mtijkl)-congeneric variables with conditional re-
gressive independence if and only if Definition 2.1 and Theorem 2.1 apply and

E
(
Ytijkl|pT , pTS1 , ..., pTSS , (Yt(ijkl)′), (Yrt(ij2l)′)

)
= E(Ytijkl|pT , pTSl), (2.77)

E
(
Yrtij2l|pT , pTS1 , ..., pTSS , pR, pRS1 , ..., pRSS , (Yt(ijkl)′), (Yrt(ij2l)′)

)
= E(Yrtij2l|pT , pTSl , pR, pRSl),

(2.78)

E
(
Yrtij2l|pT , pTS1 , ..., pTSS , (Yt(ijkl)′), (Yrt(ij2l)′)

)
= E(Yrtij2l|pT , pTSl),

(2.79)

where (i, j, k, l) 6= (i, j, k, l)′.

Remarks. The assumption stated in Equation 2.77 means that given a target (pT ) and a situation
(pTSl) on a measurement occasion l, an observed (level-2) variable Ytijkl (belonging to a structurally
different method) does neither depend on other target-situations, nor on the values of other Ytijkl
or Yrtij2l variables. Similarly, Equation 2.78 means that given a target (pT ), a target-situation
(pTSl), a rater (pR), and a rater-situation (pRSl) on a measurement occasion l, the observed
(level-1) variable Yrtij2l (pertaining to an interchangeable method) is conditionally regressively
independent of other rater or target-situations as well as of other observed variables. According
to Equation 2.79, an observed (level-1) variable Yrtij2l (pertaining to an interchangeable method)
does also not depend on other target-situations, or on the values of other Ytijkl or Yrtij2l variables,
given a target (pT ) and a situation (pTSl) on a measurement occasion l. As a consequence of these
additional definitions, error variables belonging to different occasions of measurement as well as
measurement levels (level-1 and level-2) are uncorrelated with each other.

2.6.1 Zero covariances based on model definition

The definition of the observed and latent variables has consequences for the covariance structure

of the observed and latent variables. The next theorem summarizes the covariances that are zero

as a consequence of the model definition of the LS-COM model with CRI.

Theorem 2.4 (Testability)
If M≡ 〈(Ω,A, P ), Srtij2l, Stijkl, UMrtj2l, CMtj2l,Mtjkl, Ertij2l, Etijkl, αtijkl, λSijkl,
λUMij2l, λCMij2l, λMijkl〉 is called a LS-COM model with conditional regressive independence
(RCI), then for r ∈ R, t ∈ T , i, i′ ∈ I, j, j′ ∈ J , k, k′ ∈ K, l, l′ ∈ L where i can be equal to i′,
j to j′, k to k′ and l to l′ but (ijkl) 6= (ijkl)′:
Uncorrelateness of latent residual variables:
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Cov(Ert(ij2l), Ert(ij2l)′) =0, (2.80)

Cov(Et(ijkl), Et(ijkl)′) =0, (2.81)

Cov(Ert(ij2l), Et(ijkl)′) =0. (2.82)

Uncorrelateness of latent residual and latent state variables:

Cov(Stijkl, Eti′j′k′l′) =0, (2.83)

Cov(Srtij2l, Eti′j′k′l′) =0, (2.84)

Cov(Sti′j′k′l′ , Ertij2l) =0, (2.85)

Cov(Srtij2l, Erti′j′2l′) =0. (2.86)

Uncorrelateness of latent residual and latent method variables:

Cov(UMrtj2l, Eti′j′k′l′) =0, (2.87)

Cov(CMtj2l, Eti′j′k′l′) =0, (2.88)

Cov(Mtjkl, Eti′j′k′l′) =0, (2.89)

Cov(UMrtj2l, Erti′j′2l′) =0, (2.90)

Cov(CMtj2l, Erti′j′2l′) =0, (2.91)

Cov(Mtjkl, Erti′j′2l′) =0. (2.92)

Uncorrelateness of latent state and latent method variables:

Cov(Stij1l, CMtj2l) =0, (2.93)

Cov(Stij1l, UMrtj′2l′) =0, (2.94)

Cov(Stij1l,Mtjkl) =0. (2.95)

Uncorrelateness of latent method variables:

Cov(CMtj2l, UMrtj′2l′) =0, (2.96)

Cov(Mtjkl, UMrtj′2l′) =0. (2.97)

Proofs. 4 Testability
The subsequent proofs are based on Definition 2.2 as well as important properties of residual vari-
ables, namely that residual variables are always uncorrelated with their regressors as well as with
numerically measurable functions of their regressors (see Steyer, 1988, 1989; Steyer & Eid, 2001;
Steyer et al., in press). Therefore, any expression of the form Cov[f(X), f(Y − E(Y |X)] equals
zero as a consequence of the definition of residual variables. For a detail description and proofs of
the properties of residual variables see Steyer et al. (in press, Chapter 9.4). In the following, the
proofs for a selection of the above mentioned zero-correlations are provided.

2.80 Consider the covariance Cov(Ert(ij2l), Ert(ij2l)′) with Ert(ij2l) and Ert(ij2l)′ being defined as
follows:

Ert(ij2l) ≡ Yrt(ij2l) − E(Yrt(ij2l)|pT , pTSl , pR, pRSl),
Ert(ij2l)′ ≡ Yrt(ij2l)′ − E(Yrt(ij2l)′ |pT , pTSl′ , pR, pRSl′ ).

According to Bauer (1978, p. 54, Satz 9.4), Ert(ij2l)′ is a (pT,pTSl′ ,pR,pRSl′ , Yrt(ij2l)′)-
measurable function and with respect to the supposition made in Definition 2.2 it is admissible
to replace E(Yrtij2l|pT,pTSl,pR,pRSl) by

E(Yrtij2l|pT , pTS1 , ..., pTSS , pR, pRS1 , ..., pRSS , (Yt(ijkl)′), (Yrt(ij2l)′).
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Hence, for all (i, j, k, l) 6= (i, j, k, l)′, Ertij2l is also a residual with respect to the regressors
pT,pTSl′ ,pR,pRSl′ , and Yrt(ij2l)′ . Given that residuals are always uncorrelated with their re-
gressors as well as with functions of their regressors (see Steyer, 1988, 1989; Steyer & Eid,
2001; Steyer et al., in press), it follows that Cov(Ert(ij2l), Ert(ij2l)′) = 0.

2.81 In a similar way, the covariance Cov(Et(ijkl), Et(ijkl)′) can be expressed as:

Cov
{

[Ytijkl − E(Ytijkl|pT , pTSl)] ,
[
Yt(ijkl)′ − E(Yt(ijkl)′ |pT,pTSl′ )

] }
.

Again, Et(ijkl)′ ≡ Yt(ijkl)′−E(Yt(ijkl)′ |pT,pTSl′ ) and therefore Et(ijkl)′ is a (pT,pTSl′ , Yt(ijkl)′)-
measurable function. According to Definition 2.2, one can replace E(Ytijkl|pT,pTSl) by

E
(
Ytijkl|pT , pTS1 , ..., pTSS , (Yt(ijkl)′), (Yrt(ij2l)′

)
.

Consequently, for (i, j, k, l) 6= (i, j, k, l)′, Etijkl is also a residual with respect to the regres-
sors pT,pTSl′ , and Yt(ijkl)′ . Thus, Et(ijkl) and Et(ijkl)′ are uncorrelated, for all (i, j, k, l) 6=
(i, j, k, l)′.

2.82 Consider the covariance Cov(Ert(ij2l), Et(ijkl)′) with Ert(ij2l) and Et(ijkl)′ being defined as
follows:

Ert(ij2l) ≡ Yrt(ij2l) − E(Yrt(ij2l)|pT,pTSl,pR,pRSl),
Et(ijkl)′ ≡ Yt(ijkl)′ − E(Yt(ijkl)′ |pT,pTSl′ ).

According to Definition 2.2, one can replace E(Yrt(ij2l)|pT , pTSl) by

E
(
Yrt(ij2l)|pT , pTS1 , ..., pTSS (Yt(ijkl)′), (Yrt(ij2l)′

)
.

Therefore, for all (i, j, k, l) 6= (i, j, k, l)′, Ert(ij2l) is also a residual with respect to the regres-
sors pT , pTSl′ , and Yt(ijkl)′ . Given that residuals are always uncorrelated with their regressors
as well as functions of their regressors (see Steyer, 1988, 1989; Steyer & Eid, 2001; Steyer
et al., in press), it follows that Cov(Ert(ij2l), Et(ijkl)′) = 0.

2.83 The covariance Cov(Stijkl, Eti′j′k′l′) can be expressed as

Cov {[E(Ytijkl|pT,pTSl)] ,
[
Yti′j′k′l′ − E(Yti′j′k′l′ |pT,pTSl′ )

]}
.

Again, according to Definition 2.1 the latent state variables Stijkl are defined as conditional
expectation of Ytijkl given the target (pT ) and the rater (pTSl). Thus, the latent state vari-
ables are (pT,pTSl)-measurable functions. Furthermore, the latent residual variables Eti′j′k′l′

are defined as residuals with respect to any (pT,pTSl)-measurable function, given that the
supposition made in Definition 2.2 allows replacing E(Yti′j′k′l′ |pT , pTSl′ ) by

E
(
Yti′j′k′l′ |pT , pTS1 , ..., pTSS , (Yt(ijkl)), (Yrt(ij2l)

)
.

As a consequence, for all (i, j, k, l) 6= (i, j, k, l)′ the latent residual variables Eti′j′k′l′ are
residuals with respect to the regressors pT , pTSl , and Ytijkl. It follows that
Cov(Stijkl, Eti′j′k′l′) = 0.

2.84 The covariance Cov(Srtij2l, Eti′j′k′l′) can be expressed as follows:

Cov {[E(Yrtij2l|pT,pTSl,pR,pRSl)] ,
[
Yti′j′k′l′ − E(Yti′j′k′l′ |pT,pTSl′ )

]}
.

According to Definition 2.2 one can replace E(Yti′j′k′l′ |pT,pTSl) by

E
(
Yti′j′k′l′ |pT , pTS1 , ..., pTSS , (Yt(ijkl)), (Yrt(ij2l)

)
.

Therefore, the latent variable Eti′j′k′l′ is also a residual with respect to the regressors pT and
pTSl , and Yrt(ij2l). Given that Srtij2l is defined as

Srtij2l ≡ E(Yrtij2l|pT , pTSl , pR, pRSl),

the correlation between Srtij2l and Eti′j′k′l′ must be zero.
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2.85 The covariances Cov(Sti′j′k′l′ , Ertij2l) can be written as follows:

Cov
{[
E(Yti′j′k′l′ |pT,pTSl′ )

]
, [Yrtij2l − E(Yrtij2l|pT,pTSl , pR, pRSl)]} .

According to Definition 2.2, one can replace E(Yrt(ij2l)|pT , pTSl) by

E
(
Yrt(ij2l)|pT , pTS1 , ..., pTSS (Yt(ijkl)′), (Yrt(ij2l)′

)
.

Therefore, for all (i, j, k, l) 6= (i, j, k, l)′, Ert(ij2l) is also a residual with respect to the regres-
sors pT , pTSl′ , and Yt(ijkl)′ . Given that residuals are always uncorrelated with their regressors
as well as functions of their regressors (see Steyer, 1988, 1989; Steyer & Eid, 2001; Steyer
et al., in press), it follows that Cov(Sti′j′k′l′ , Ertij2l) = 0.

2.87 The covariance Cov(UMrtj2l, Eti′j′k′l′) is equivalent to

1
λUMij2l

Cov(UMrtij2l, Eti′j′k′l′) = 1
λUMij2l

Cov(Srtij2l − E(Yrtij2l|pT , pTSl), Eti′j′k′l′)

= 1
λUMij2l

Cov (Srtij2l, Eti′j′k′l′)− Cov (E(Yrtij2l|pT , pTSl), Eti′j′k′l′)

= 1
λUMij2l

Cov (Srtij2l, Eti′j′k′l′)− Cov (Stijkl, Eti′j′k′l′) .

It follows that Cov(UMrtj2l, Eti′j′k′l′) = 0, if Cov(Srtij2l, Eti′j′k′l′) = 0 and
Cov(Stijkl, Eti′j′k′l′) = 0. It has already been shown that Cov(Srtij2l, Eti′j′k′l′) = 0
and Cov(Stijkl, Eti′j′k′l′) = 0 hold.

2.88 Similarly, the Cov(CMtj2l, Eti′j′k′l′) is equivalent to

1
λCMij2l

Cov(CMtij2l, Eti′j′k′l′) = 1
λCMij2l

Cov(Stij2l − E(Stij2l|Stij1l), Eti′j′k′l′)

= 1
λCMij2l

Cov (Stij2l, Eti′j′k′l′)− Cov ((αtij2l + λSij2lStij1l), Eti′j′k′l′))

= 1
λCMij2l

Cov (Stij2l, Eti′j′k′l′)− λSij2lCov (Stij1l, Eti′j′k′l′) .

It follows that Cov(CMtj2l, Eti′j′k′l′) = 0 if Cov(Stij2l, Eti′j′k′l′) = 0 and
Cov(Stij1l, Eti′j′k′l′) = 0. Again, it has already been shown that Cov(Stij2l, Eti′j′k′l′) = 0 and
Cov(Stij1l, Eti′j′k′l′) = 0 hold.

2.90 The covariance Cov(UMrtj2l, Erti′j′2l′) can be rewritten as

1
λUMij2l

Cov(UMrtij2l, Erti′j′k′l′) = 1
λUMij2l

Cov(Srtij2l − E(Yrtij2l|pT , pTSl), Erti′j′k′l′)

= 1
λUMij2l

Cov (Srtij2l, Erti′j′k′l′)− Cov (E(Yrtij2l|pT , pTSl), Erti′j′k′l′)

= 1
λUMij2l

Cov (Srtij2l, Erti′j′k′l′)− Cov (Stijkl, Erti′j′k′l′) .

It follows that Cov(UMrtj2l, Erti′j′k′l′) = 0, if Cov(Srtij2l, Erti′j′k′l′) = 0 and
Cov(Stijkl, Erti′j′k′l′) = 0. Given that Cov(Srtij2l, Erti′j′k′l′) = 0 and Cov(Stijkl, Erti′j′k′l′) =
0 the equation Cov(UMrtj2l, Erti′j′2l′) = 0 holds.

2.93 The covariance Cov(Stij1l, CMtj2l) equals zero, if 1
λCMij2l

Cov(Stij1l, CMtij2l) is zero. By

definition, the variable CMtij2l is a residual with respect to Stij1l. Thus, for the same con-
struct and occasion of measurement both variables are uncorrelated with each other.

2.94 UMrtj′2l′ is a function of UMrti′j′2l′

UMrtj′2l′ = UMrti′j′2l′

λUMi′j′2l′
,

it follows that Cov(Stij1l, UMrtj′2l′) = 0, if Cov(Stij1l, UMrti′j′2l′) = 0. The latent variables
Stij1l and UMrti′j′2l′ are defined as follows:

Stij1l ≡ E(Ytij1l|pT , pTSl)
UMrti′j′2l′ ≡ E(Yrti′j′2l′ |pT , pTSl′ , pR, pRSl′)− E(Yrti′j′2l′ |pT , pTSl′).
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As consequence, UMrti′j′2l′ is a residual with respect to the regressors pT , pTSl′ , and Yrti′j′2l′ .
In other words, UMrti′j′2l′ is a (pT , pTSl′ , Yrti′j′2l′)-measurable function. According to Defi-
nition 2 one can replace E(Yrti′j′2l′ |pT , pTSl) by

E
(
Yrti′j′2l′ |pT , pTS1 , ..., pTSS , (Yt(ijkl)), (Yrt(ij2l))

)
.

Hence, UMrti′j′2l′ is also a residual with respect to the regressors to pT , pTSl , and Ytijkl. In
other words, UMrti′j′2l′ is also a function of Stij1l and therefore both variables are uncorre-
lated with each other.

2.96 Again, UMrtj′2l′ is a function of UMrti′j′2l′ , and CMtj2l is a function of CMtij2l.

UMrtj′2l′ = UMrti′j′2l′

λUMi′j′2l′
, CMtj2l = CMtij2l

λCMij2l
.

Consequently, Cov(CMtj2l, UMrtj′2l′) is zero if Cov(CMtij2l, UMrti′j′2l′) is zero. According
to the following equation

CMtij2l ≡ Stij2l − E(Stij2l|Stij1l),

CMtij2l is defined as residual with respect to the latent regression E(Stij2l|Stij1l). As a
consequence, it follows that Cov(CMtij2l, UMrti′j′2l′) is zero, because UMrti′j′2l′ is also a
function of Stij1l.

2.96 Similarly, equation Cov(Mtjkl, UMrtj′2l′) = 0 can be shown. First, UMrtj′2l′ is a function
of UMrti′j′2l′ as well as Mtjkl is a function of Mtijkl.

UMrtj′2l′ = UMrti′j′2l′

λUMi′j′2l′
, Mtjkl = Mtijkl

λMijkl
.

Consequently, Cov(Mtjkl, UMrtj′2l′) is zero, if Cov(Mtijkl, UMrti′j′2l′) is zero. Given that
Mtijkl is a function of Stijkl

Mtijkl ≡ Stijkl − E(Stijkl|Stij1l), ∀ k > 2.

It follows that Cov(Mtijkl, UMrti′j′2l′) is zero, because UMrti′j′2l′ is also a function of Stij1l.

�

2.6.2 Covariance structure: LS-COM model with CRI

According to Theorem 2.4 not all covariances between latent variables are permitted in the

LS-COM model with CRI. In the next section, the covariance structure for LS-COM models is

illustrated for three indicators × two traits × three methods × two occasions of measurements in

matrix form. Note that this 3×2×3×2 measurement design does not represent the simplest case of

the model. For example, it would be possible to specify an LS-COM model with just two indicators

i, two constructs j, two methods k (one structurally different and one set of interchangeable

methods), and two occasions of measurement l. Therefore, the model presented here (for a 3× 2×

3×2 measurement design) is more general. The complete covariance matrix of observed variables is

36 × 36 (i.e., ijkl × ijkl) dimensional. The total covariance matrix
∑

T of a LS-COM model with

CRI can be partitioned into a within
∑

W and a between
∑

B matrix of the same size (36×36):

∑
T

=
∑
W

+
∑
B

.

Then, the within matrix is given by:

∑
W

= ΛWΦWΛT
W + ΘW,
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where ΛW refers to the factor loading matrix of the unique method factors of size 36×20 (i.e.,

ijkl × (i + k − 1)jl). The elements of this matrix are denoted by λUMij2l, where i=indicator,

j=construct, k=2 (set of interchangeable methods), l=measurement occasion. ΛT
W refers to the

transposed within factor loading matrix of size 36×20 (i.e., ijkl × (i+ k− 1)jl). ΦW refers to the

within variance and covariance matrix of the unique method factors with the dimension of 20×20

[i.e., (i+k−1)jl × (i+k−1)jl], and ΘW is the diagonal residual covariance matrix of size 36×36.

In a similar way, the between matrix
∑

B of size 36×36 (i.e., ijkl × ijkl) is given by:

∑
B

= ΛBΦBΛT
B + ΘB.

Again, ΛB of size 36×20 (i.e., ijkl × (i+k−1)jl) refers to the between factor loadings matrix of the

latent factors on the target-level. Thus, the elements of this matrix are λStijkl, λCMtij2l, λMtijkl.

ΛT
B refers to the transposed matrix of the between factor loadings. ΦB refers to the between

variance and covariance matrix of the between latent variables with the dimension of 20×20 [i.e.,

(i+k−1)jl × (i+k−1)jl]. Finally, ΘB refers to the between residual variance and covariance matrix

of size 36×36 (i.e., ijkl × ijkl). In order to illustrate the complete covariance matrix of the LS-

COM model for 3 indicators, 2 constructs, 3 methods, and 2 occasions of measurement, the index

(j, l) which can take the following values (in the given ordering), is defined: (1, 1), (1, 2), (2, 1), (2, 2).

The index (1, 1) indicates that a given parameter (e.g., factor loading, latent variable) refers to

the first construct j = 1 measured on the first occasion of measurement l = 1. In addition, the

function Pos((j, l)) is defined. The function maps the index (j, l) on its position p with respect

to the ordering above. The function therefore takes the values given in Table 2.1. The matrix Ip,

Function Values
(j, l) (1,1) (1,2) (2,1) (2,2)

p=Pos((j, l)) 1 2 3 4

Table 2.1: Function for the mapping of the index (j, l) to p.

where p ∈ N = {1, ..., 4} is defined as 4×4 (i.e., jl × jl) matrix with a one on the pth diagonal

element and zeros elsewhere. For example, the matrix Ip for p = 2 is given by:

I2 =


0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 .

The function of the matrix Ip is to define the structure of ΛW and to map the indices (j,l) to their

correct position in ΛW. Therefore, ΛW of size 36× 20 (i.e., ijkl × (i+ k− 1)jl) is written as the

sum over the Kronecker products Ip and ΛWp :

ΛW =
4∑

p=1
Ip ⊗ΛWp .
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Ip refers to a matrix of size 4× 4 (i.e., jl × jl) for the mapping function of p, ⊗ is the Kronecker

product, and ΛWp refers to the matrix of size 9×5 (i.e., ik × i+ k− 1) including the within factor

loadings of the unique method factors. Hence, ΛWp is given by:

ΛWp =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 λUM1j2l 0

0 0 0 λUM2j2l 0

0 0 0 λUM3j2l 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



.

The elements λUM1j2l, λUM2j2l, λUM3j2l are greater than 0, whereas all other elements are neces-

sarily zero. The complete within variance and covariance matrix ΦW of size 20×20 [i.e., (i+k−1)jl

× (i+ k − 1)jl] can be expressed as follows:

ΦW = E
[
(VΦW −E[VΦW ])(VΦW −E[VΦW ])T] ,

where E(·) is the expected value. Note that VΦW refers to the vector of size 20×1 (i.e., (i+k−1)jl

× 1) including all latent factors, except for the common method factor CMtjkl:

VΦW =

 St1111, St2111, St3111, UMrt121,Mt131, St1112, St2112, St3112, UMrt122,Mt132,

St1211, St2211, St3211, UMrt221,Mt231, St1212, St2212, St3212, UMrt222,Mt232

T

.

Note that for any j, j′ ∈ J and l, l′ ∈ L the unique method variables UMrtj2l are uncorrelated

with any latent state variable Stj′1l′ or any latent method variable Mtj′3l′ on the target-level.

Furthermore, note that the latent method variables CMtj′2l′ are not represented in the vector

VΦW . However, the remaining latent variables (Stijkl, Mtjkl) are included in the vector VΦW ,

given that the covariance matrices
∑

W and
∑

B have to be equally sized for matrix addition.

The structure of the covariance matrix
∑

W is illustrated in Figure 2.2. According to this figure,

permissible variances and covariances of latent unique method variables are represented as gray

colored cells. White colored cells refer to correlations restricted to zero.

Finally, the within error matrix ΘW of size 36×36 (i.e., ijkl × ijkl) is given by

ΘW =
4∑

p=1
Ip ⊗ΘWp ,

where
∑4
p=1 is the matrix of size 4×4 (i.e., jl × jl) for the mapping function of the index p, ⊗ is

the Kronecker product, and ΘWp is the variance-covariance matrix of the level-1 residual variables.
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Figure 2.2: Within variance-covariance matrix ΦW of the LS-COM with 1=St1111, 2=St2111,
3=St3111, 4=UMrt121, 5=Mt131, 6=St1112, 7=St2112, 8=St3112, 9=UMrt122, 10=Mt132, 11=St211,
12=St211, 13=St211, 14=UMrt221, 15=Mt231, 16=St1212, 17=St2212, 18=St3212, 19=UMrt222,
20=Mt232. White colored cells indicate zero correlations, gray colored cells indicate permissible
correlations.

Thus, ΘWp is given by:

ΘWp =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 V ar(Ert1j2l) 0 0 0 0 0

0 0 0 0 V ar(Ert2j2l) 0 0 0 0

0 0 0 0 0 V ar(Ert3j2l) 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0



,

for which r ∈ R, t ∈ T , i ∈ I, j ∈ J , k ∈ K, l ∈ L, and for which only the elements V ar(Ertij2l)

> 0. The between factor loading matrix ΛB of size 36×20 [i.e., ikjl × (i+ k − 1)jl] is given by:

ΛB =
4∑

p=1
Ip ⊗ΛBp .

Again, Ip refers to the matrix of size 4× 4 described above, ⊗ is the Kronecker product, and ΛBp

refers to the between factor loading matrix of the latent variables on the level-2. Hence, ΛBp is
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given by:

ΛBjl =



λS1j1l 0 0 0 0

0 λS2j1l 0 0 0

0 0 λS3j1l 0 0

λS1j2l 0 0 λCM1j2l 0

0 λS2j2l 0 λCM2j2l 0

0 0 λS3j2l λCM3j2l 0

λS1j3l 0 0 0 λM1j3l

0 λS2j3l 0 0 λM2j3l

0 0 λS3j3l 0 λM3j3l



.

Then, the between variance and covariance matrix ΦB of size 20×20 [i.e., (i+k−1)jl × (i+k−1)jl]

is given by

ΦB = E
[
(VΦB −E[VΦB ])(VΦB −E[VΦB ])T] ,

where VΦB refers to the vector of size 20×1 [i.e., (i+ k − 1)jl × 1] including all latent factors on

the target-level, namely:

VΦB =

 St1111, St2111, St3111, CMt121,Mt131, St1112, St2112, St3112, CMt122,Mt132,

St1211, St2211, St3211, CMt221,Mt231, St1212, St2212, St3212, CMt222,Mt232

T

.

Note that the expected values of the latent method factors (i.e., CMtj2l and Mtjkl) equal zero,

given that these latent variables are defined as latent residuals. In contrast to that, the expected

values of Stij1l can be freely estimated. The mean structure of the model is discussed in detail

in Section 2.5. Another consequence of the model definition is that all elements corresponding to

latent correlations between latent state variables Stj1l and the latent method variable (CMtj2l and

Mtj3l) pertaining to the same construct j and same occasion of measurement l equal to zero. The

structure of the covariance matrix
∑

B is illustrated in Figure 2.3. Again, permissible variances

and covariances of latent variables are represented as gray colored cells. White colored cells refer

to zero correlations. Cells in lighter gray correspond to correlations that may be fixed to zero for

parsimony in empirical applications.

The matrix ΘB of size 36×36 of the level-2 latent error variables is finally given by:

ΘB =
4∑

p=1
Ip ⊗ΘBp ,

where
∑4
p=1 is again the matrix of size 4×4 for the mapping function of the index p, ⊗ is the

Kronecker product, and ΘBp is the variance-covariance matrix of the level-2 residual variables.
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Figure 2.3: Between variance-covariance matrix ΦB of the LS-COM with 1=St1111, 2=St2111,
3=St3111, 4=CMt121, 5=Mt131, 6=St1112, 7=St2112, 8=St3112, 9=CMt122, 10=Mt132, 11=St211,
12=St211, 13=St211, 14=CMt221, 15=Mt231, 16=St212, 17=St212, 18=St212, 19=CMt222,
20=Mt232. White colored cells indicate zero correlations, dark gray colored cells indicate per-
missible correlations. Light gray colored cells indicate correlations that may be fixed to zero for
parsimony.

Thus, ΘBp is given by:

ΘBp =



V ar(Et1j1l) 0 0 0 0 0 0 0 0

0 V ar(Et1j1l) 0 0 0 0 0 0 0

0 0 V ar(Et1j1l) 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 V ar(Et1j3l) 0 0

0 0 0 0 0 0 0 V ar(Et1j3l) 0

0 0 0 0 0 0 0 0 V ar(Et1j3l)


,

for which t ∈ T , i ∈ I, j ∈ J , k ∈ K, and l ∈ L only the element V ar(Etijkl) > 0, and all other

elements necessarily fixed to zero. Ultimately, the total variance-covariance matrix of the observed

variables of size 36×36 is given by:

∑
T

= ΛBΦBΛT
B + ΘB + ΛWΦWΛT

W + ΘW.

The variance-covariance matrices presented in this section were used in the simulation of the LS-

COM model in Chapter 7 except for one additional restriction. In the Monte Carlo simulation study

common latent state factors Stj1l were assumed. Specifically, it was assumed that the indicator-

specific latent state variables Stij1l pertaining to the same construct j, same method k and same

occasion of measurement l are perfectly correlated and can be therefore represented by common

latent factors. Figure 2.4 shows a path diagram of an LS-COM model with common latent state

factors.
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2.6.3 Interpretation of non-zero covariances and correlations

The following correlations are permissible with respect to the definition of the LS-COM model.

Consequently, these correlations can be estimated and interpreted.

1. The correlations Cor(Stij1l, Sti′j1l) between indicator-specific latent state variables of the

reference method belonging to the same construct j and the same occasion of measurement l,

but different indicator i and i′ can be interpreted as degree of homogeneity of the indicators of

the reference method (see Geiser, 2008). High positive correlations indicate that the construct

measured by these indicators is unidimensional and may be also represented by a common

latent state factor.

2. The correlations between latent state factors of the reference method belonging to the same

indicator i and the same occasion of measurement l, but different constructs j and j′ can be

interpreted as discriminant validity with respect to the reference method (see Geiser, 2008).

Two different correlations can be distinguished: (A) The latent correlations Cor(Stij1l, Stij′1l)

between state factors of the reference method belonging to the same indicator i across different

constructs j and j′. High correlations indicate low discriminant validity of the constructs

on occasion of measurement l with respect to the reference method. (B) The correlations

Cor(Stij1l, Sti′j′1l) between latent state factors of the reference method belonging the same

occasion of measurement l, but different indicators i and i′ as well as different constructs j

and j′. These correlations can be interpreted as discriminant validity coefficients with respect

to the reference method that are corrected for indicator-specific effects.

3. The correlations Cor(CMtj2l, CMtj′2l) between latent common method factors belonging

to the same occasion of measurement l, but different constructs j and j′ indicate that the

common method effects measured on the same occasion of measurement l generalize across

different constructs j and j′. Correlations close to zero indicate that the common method

effects are construct-specific. Substantial correlations result, for example, if the “true” peer

effects that are not with the self-report generalize over different constructs. A negative

correlation would be given, if peers underestimate the self-reported empathy of a particular

child on occasion of measurement l, but overestimate the self-reported aggressiveness on the

same occasion of measurement l.

4. The correlations Cor(CMtj2l,Mtjkl) between common method factors pertaining to the same

construct j and the same occasion of measurement l, but different non-reference method k

and kť reflect the partial correlations of two different non-reference methods corrected for the

self-report (see Geiser, 2008). For example, teachers (i.e., non-reference structurally different

method) as well as peers (i.e., non-reference interchangeable method) both have similar view

concerning the aggressiveness of the child that is not shared with the self-report of the child.

5. The correlations Cor(UMrtj2l, UMrtj′2l) between latent unique method factors belonging to

the same occasion of measurement l, but different constructs j and j′, can be interpreted
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Figure 2.4: Path diagram of the LS-COM model with common latent state factors.
Path diagram of the LS-COM model with common latent state factors incorporating three methods at two measurement occasions for two constructs. All correlations
between latent variables were omitted for clarity.
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in a similar way, namely as generalizability of the unique method effects across constructs

on the same occasion of measurement. Note that the unique method factor represents the

“true” peer rating, that are neither shared with other peers nor shared with the self-report

of the target. In other words, these correlations reflect whether or not “true” specific peer

effects (that are not shared with other peers) generalize across different constructs (e.g.,

aggressiveness and empathy). Correlations close to zero indicate that the unique method

effect is construct-specific.

6. The correlations Cor(Stij1l, CMtj′2l) and Cor(Stij1l,Mtj′2l) between method factors belong-

ing to the non-reference method and latent state variables pertaining to the reference method,

for the same occasion of measurement l, but for different constructs j and j′ can be inter-

preted as discriminant validity coefficient that is corrected for method influences of the ref-

erence method (see Geiser, 2008). In many empirical applications these coefficients will be

close to zero. It is therefore recommended to fix these correlations to zero for parsimony.

7. The correlations Cor(CMtj2l,Mtj′kl) between method factors pertaining to the same occasion

of measurement l, but different constructs j and j′ and different non reference methods k

and k′ indicate discriminant validity between method factors corrected for the discriminant

validity with respect to the reference method. Significant correlations indicate that the

association between methods cannot be completely explained by the reference method. For

example, the over- or underestimation of students’ self-reported aggressiveness by peers is

associated with the over- or underestimation of students’ self-reported empathy by teachers.

Hence, peers and teachers share something in common that is not reflected by the self-report

of the students.

8. The correlations between latent state factors for the reference method belonging to the same

indicator i, the same construct j, but different occasions of measurement l and l′ can be

interpreted as construct stability coefficients (see Geiser, 2008). Two different types of corre-

lations can be distinguished: First, the correlations between the same latent indicator-specific

sate factors over time. (A) These correlations Cor(Stij1l, Stij1l′) can be interpreted as sta-

bility coefficients not corrected for indicator-specific effects. (B) Second, the correlations

Cor(Stij1l, St′ij1l′) between latent state factors belonging to the same construct j, but dif-

ferent indicators i and i′ as well as different occasions of measurement l and l′ represent

construct stability corrected for indicator-specific effects.

9. (A) The correlations Cor(Stij1l, Stij′1l′) between latent state factors belonging to the refer-

ence method of the same indicator i, but different constructs j and j′ and different occasion

of measurement l and l′ can be interpreted as discriminant validity coefficients with respect to

the reference method that are corrected for common occasion-specific influences (see Geiser,

2008). (B) The correlations Cor(Stij1l, St′ij′1l′) between latent state factors belonging to the

reference method of different indicators i and i′, different constructs j and j′, and different

occasions of measurement l and l′ can be interpreted as discriminant validity coefficients that

are corrected for indicator-specific and common occasion-specific influences.
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10. The correlations between method factors belonging to the same construct j, the same non

reference method k, but different occasions of measurement l and l′ can be interpreted as

degree of stability of construct-specific method effects (see Geiser, 2008). For instance,

the teachers consistently over- or underestimate students’ empathy skills with respect to

self-reports over time. Given that there are three different method factor, there are also

three different correlations coefficients. (A) The correlations Cor(CMtj2l, CMtj2l′) reflect

the degree of stability of the construct-specific common method effects. (B) The correlations

Cor(UMtj2l, UMtj2l′) represent the stability of construct-specific unique-method effects. (C)

The correlations Cor(Mtjkl,Mtjkl′) capture the degree of stability of the construct-specific

method (e.g., teacher ratings) effects.

11. The correlations Cor(CMtj2l, CMtj2l′), Cor(UMtj2l, UMtj2l′), and Cor(Mtjkl,Mtjkl′) be-

tween method factors of pertaining to the same non-reference method k, but different con-

structs j and j′ and different occasions of measurement l and l′ can be interpreted as gener-

alizability of method effects corrected for common occasion-specific effects (see Geiser, 2008).

For example, high correlations Cor(Mtjkl,Mtjkl′) indicate that teacher consistently over-

or underestimate students’ self-reports over time, regardless which construct (e.g., aggres-

siveness or empathy) is considered. High correlations Cor(UMtj2l, UMtj2l′) indicate that

specific peers consistently deviate from the general view of all peers for a particular target

across different measurement occasions.

12. The correlations between method factors pertaining to level-2 non-reference methods and

latent state variables belonging to the reference method of the same construct j, but different

occasions of measurement l and l′ are not easy to interpret. In most empirical applications

these correlations will not be significant. Nevertheless these correlations are permissible and

estimable. (A) Significant correlations of Cor(Stij1l, CMtj2l′) would indicate that the part

of “true” peer ratings that are shared with other peers, but not shared with students’ self-

reports at time l can predict children’s self-reported empathy scores at time l′. (B) Significant

correlations of Cor(Stij1l,Mtj2l′) may indicate that the part of “true” teacher ratings that is

not shared with children’s self-reports at time l can predict children’s self-reported empathy

scores at time l′.

13. The correlations Cor(Stij1l, CMtj2l′) and Cor(Stij1l,Mtj2l′) between the method factors be-

longing to the level-2 non-reference methods and the latent state variable belonging to the

reference method for different constructs j and j′ as well as for different occasions of mea-

surement l and l′ are most likely to be close to zero in empirical applications. Significant

correlations would reflect coefficients of discriminant validity corrected for common method

effects and common occasion-specific influences (see Geiser, 2008). In most application it is

recommended to fix these correlations to zero for parsimony.

14. The correlations Cor(CMtj2l,Mtjkl′) between method factors pertaining to the same con-

struct, but different level-2 non-reference methods and different occasions of measurement l

and l′ indicate the partial correlations between two different non-reference method corrected
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for the reference method and common occasion-specific influences (see Geiser, 2008).

15. The correlations Cor(CMtj2l,Mtj′kl′) between method factors pertaining to different level-2

non-reference methods, different constructs j and j′ and different occasion of measurement

l and l′ indicate discriminant validity of methods effects corrected for construct-specific and

common occasion-specific influences (see Geiser, 2008).

2.7 General measurement equations and variance decompo-
sitions

In the following section the general measurement equations of LS-COM models are discussed.

Based on the definition of the LS-COM model different variance coefficients can be defined. These

coefficients can be meaningfully interpreted as shown in Theorem 2.3. Note that the independence

among latent variables derived in Theorem 2.4 are important prerequisites for separating different

variance components from one another. Hence, a LS-COM model that fulfills these requirements

is restated first. In a second step the general measurement equations of the LS-COM model are

derived. In a third step, the additive variance decomposition of the observed variables is introduced

and the different variance coefficients are discussed.

Definition 2.3
Let M≡ 〈(Ω,A, P ),Srt,St,UMrt,CMt,Mt,Ert,Et, αtijkl, λSijkl, λUMij2l, λCMij2l,
λMijkl〉 be a LS-COM model according to the Definition 2.1 and Theorem 2.1 and:

Srt ≡ (S111111 · · ·Srtij2l · · ·Sabcd2f )T,
St ≡ (S11111 · · ·Stijkl · · ·Sbcdef )T,

UMrt ≡ (UM11111 · · ·UMrtj2l · · ·UMabd2f )T,
CMt ≡ (CM1111 · · ·CMtj2l · · ·CMbd2f )T,

Mt ≡ (M1111 · · ·Mtjkl · · ·Mbdef )T,
Ert ≡ (E111111 · · ·Ertij2l · · ·Eabcd2f )T,
Et ≡ (E11111 · · ·Etijkl · · ·Ebcdef )T,

αtijkl ≡ (α1111 · · ·αtijkl · · ·αbcdef )T,
λS ≡ (λ1111 · · ·λSijkl · · ·λcdef )T,

λUM ≡ (λ1111 · · ·λUMij2l · · ·λcd2f )T,
λCM ≡ (λ1111 · · ·λCMij2l · · ·λcd2f )T,
λM ≡ (λ1111 · · ·λMijkl · · ·λcdef )T.

Remarks. According to the Definition 2.3 a LS-COM model with common method factors (i.e.,
CMtj2l, Mtjkl, UMrtj2l) is defined. All indicators Yrtij2l belonging to the same construct, same
method, and same measurement occasion measure a latent state factor Stij1l and two construct-
and occasion specific method factors, namely CMtj2l and UMrtj2l. Moreover, all indicators Ytijkl
belonging to the same construct, same method, and same measurement occasion measure a latent
state factor Stij1l and a construct- and occasion specific method factor, called Mtjkl. The complete



CHAPTER 2. THE LATENT STATE (LS-COM) MODEL 51

measurement equations for the observed variables are given by:

Ytij1l = Stij1l + Etij1l, (2.98)

Ytijkl = αtijkl + λSijklStij1l + λMijklMtjkl + Etijkl, k > 2, (2.99)

Yrtij2l = αtij2l + λSij2lStij1l + λCMij2lCMtj2l + λUMij2lUMrtj2l + Ertij2l. (2.100)

2.7.1 Variance decomposition

According to the Equations 2.98 to 2.100, the variance of the observed variables can be addi-

tively decomposed as follows:

V ar(Ytij1l) =V ar(Stij1l) + V ar(Etij1l), (2.101)

V ar(Ytijkl) =λ2
SijklV ar(Stij1l) + λ2

MijklV ar(Mtjkl) + V ar(Etijkl), k > 2, (2.102)

V ar(Yrtij2l) =λ2
Sij2lV ar(Stij1l) + λ2

CMij2lV ar(CMtj2l)+

λ2
UMij2lV ar(UMrtj2l) + V ar(Ertij2l).

(2.103)

Due to the additive variance decomposition, it is possible to define different variance compo-

nents. The true intraclass correlation (ICC), as well as the coefficients of true consistency, true

(common and unique) method specificity, and reliability can be defined. The true ICC reflects the

amount of true-score variance that is explained by true interindividual differences between targets.

The true ICC coefficients can also be interpreted as true rater-consistency on the target-level, given

that this coefficient reflects the amount true-score variance that is shared by the methods (e.g.,

raters) on the target-level. Note that this coefficient is corrected for measurement error influences

as well as specific (unique) rater influences. The true ICC is defined on the basis of the true-score

variables pertaining to the interchangeable methods, τrtij2l:

ICC(τrtij2l) =
λ2
Sij2lV ar(Stij1l) + λ2

CMij2lV ar(CMtj2l)
V ar(Yrtij2l)− V ar(Ertij2l)

.

The true consistency coefficient represents the amount of true-score variance that is explained by

the latent state variable of the reference method at time l. The square root of the consistency

coefficient can be interpreted in terms of true convergent validity with respect to the reference

method:

CON(τtijkl) =
λ2
SijklV ar(Stij1l)

V ar(Ytijkl)− V ar(Etijkl)
, k > 2,

CON(τrtij2l) =
λ2
Sij2lV ar(Stij1l)

V ar(Yrtij2l)− V ar(Ertij2l)
.

Furthermore, different coefficients of true method specificity can be defined. Method specificity

coefficients represent the proportion of true-score variance that is due to method specific influences.
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In total, three method specificity coefficients can be defined:

MS(τtijkl) =
λ2
MijklV ar(Mtjkl)

V ar(Ytijkl)− V ar(Etijkl)
, k > 2,

CMS(τrtij2l) =
λ2
CMij2lV ar(CMtj2l)

V ar(Yrtij2l)− V ar(Ertij2l)
,

UMS(τrtij2l) =
λ2
UMij2lV ar(UMrtj2l)

V ar(Yrtij2l)− V ar(Ertij2l)
.

The MS(Ytijkl) coefficient represents the proportion of true-score variance that is due to method

specific influences of the non-reference structurally different methods. For example, this coefficient

reflect the amount of true variance that is due to the true over- or underestimation of the employee’s

self-report (target) by the supervisor (structurally different rater). The CMS(Yrtij2l) coefficient

represents the proportion of true-score variance that is due to method specific influences of the

common view of the interchangeable methods. This coefficient reflects the amount of true variance

that is due to the true over- or underestimation of the employee’s self-report (target) with respect to

the general view of the colleagues (interchangeable methods). In contrast to that, the UMS(Yrtij2l)

coefficient represents the proportion of true variance that is due to method specific influences

of the unique view of a interchangeable method (e.g., a particular rater) that is neither shared

with the self-report (e.g., reference method) nor with other raters (e.g., the general view of the

colleagues). In addition, total method specificity with respect to the true-score variables τrtij2l of

the interchangeable methods can be calculated:

TMS(τrtij2l) = CMS(τrtij2l) + UMS(τrtij2l)

= 1− CON(τrtij2l).

The reliability Rel(·) as well as unreliability Unrel(·) coefficients for the observed variables are

given by:

Rel(Ytij1l) = 1−
V ar(Etij1l)
V ar(Ytij1l)

= 1− Unrel(Ytij1l),

Rel(Ytijkl) = 1−
V ar(Etijkl)
V ar(Ytijkl)

= 1− Unrel(Ytijkl), ∀ k > 2,

Rel(Yrtij2l) = 1−
V ar(Ertij2l)
V ar(Yrtij2l)

= 1− Unrel(Yrtij2l).

2.8 Mean structure

With respect to longitudinal studies many researcher seek to investigate mean changes over

time. In this section, the latent variable mean structure of the LS-COM model is discussed.

The following theorem shows the consequence of the model definition for the observed and latent

variables.
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Theorem 2.5 (Mean structure)
If M≡ 〈(Ω,A, P ), Srtij2l, Stijkl, UMrtj2l, CMtj2l,Mtjkl, Ertij2l, Etijkl, αtijkl, λSijkl,
λUMij2l, λCMij2l, λMijkl〉 is called a LS-COM model with CRI. Without loss of generality, k=1
method is chosen as reference method, then the following mean structure holds for all r ∈ R ≡
{1, . . . , a}, t ∈ T ≡ {1, . . . , b}, i ∈ I ≡ {1, . . . , c}, j ∈ J ≡ {1, . . . , d}, k ∈ K ≡ {1, . . . , e},
l ∈ L ≡ {1, . . . , f}:

E(Yrtij2l) = E(αtij2l) + λtij2lE(Stij1l), (2.104)

E(Ytijkl) = E(αtijkl) + λtijklE(Stij1l), ∀ k > 2. (2.105)

E(Stij1l) = E(Ytij1l), (2.106)

E(CMtj2l) = 0, (2.107)

E(UMrtj2l) = 0, (2.108)

E(Mtijkl) = 0, ∀ k > 2, (2.109)

E(Etijkl) = 0, ∀ k 6= 2, (2.110)

E(Ertij2l) = 0, (2.111)

where E(.) denotes expected value.

Proofs. 5 Mean structure
According to Equation 2.9, Ytij1l = Stij1l + Etij1l. Thus, E(Ytij1l) = E(Stij1l) + E(Etij1l). Given
that Etij1l are defined as residuals, it follows that E(Etij1l) = 0. Therefore, E(Ytij1l) = E(Stij1l)
(see Equation 2.106). Furthermore, the latent variables CMtj2l, UMrtj2l, Mtijkl, Etijkl, and Ertij2l
are also defined as latent residuals variables. By definition, residuals have an expected value of zero
(Steyer, 1989; Steyer & Eid, 2001). Thus, Equations 2.107 to 2.111 follow directly by definition of
the latent variables. Next, according to Equation 2.10, Ytijkl = αtijkl+λSijklStij1l+λMijklMtjkl+
Etijkl. Thus, E(Ytijkl) = E(αtijkl) + E(λSijklStij1l) + E(λMijklMtjkl) + E(Etijkl). Given that,
E(λMijklMtjkl) and E(Etijkl) equals zero, the equation simplifies to Equation 2.105. Similarly,
Equation 2.11 is given by Yrtij2l = αtij2l + λSij2lStij1l + λCMij2lCMtj2l + λUMij2lUMrtj2l +
Ertij2l. Hence, E(Yrtij2l) = E(αtij2l)+E(λSij2lStij1l)+E(λCMij2lCMtj2l)+E(λUMij2lUMrtj2l)+
E(Ertij2l). Again, E(λCMij2lCMtj2l), E(λUMij2lUMrtj2l), and E(Ertij2l) are zero according to
Equation 2.107, 2.108, and 2.111 and therefore the above equation simplifies to Equation 2.104.

�

Remarks. Equations 2.104 and 2.105 clarify that the expected value of an observed variable
is equal to the expected value of the corresponding state factor if and only if αtijkl = 0 and
λtijkl = 1. According to Equation 2.106, the expected values of the reference state factors are
identical to the expected values of the indicators pertaining to the reference method. Equations
2.107 to 2.109 show very important implications of the model definition, namely that the method
factors (CMtj2l, UMrtj2l and Mtjkl) are defined as residuals and therefore have expected values of
zero. The same holds for the measurement error variables (see Equation 2.110 and 2.111).

2.9 Identifiability

An important prerequisite for parameter estimation refers to the problem of model identifica-

tion. A model is said to be identified, if and only if each parameter of the model (e.g., means,

variances, and covariances of the latent variables) can be uniquely determined with respect to

the information in the data (e.g., means, variances, and covariances of the observed variables).

A parameter is uniquely determined, if there is one and only one mathematical solution for each

parameter in the model. In order to demonstrate the identification of a model, it is necessary to
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assign a scale to each latent factor (Bollen, 1989). A general rule in structural equation modeling

is to constrain the variance of the latent variable to a non-zero value or to fix one factor loading per

factor to 1 (Bollen, 1989; Bollen & Curran, 2006). With respect to longitudinal SEMs usually the

first factor loading per factor is fixed to 1, given that these restrictions still allow to investigate the

change or stability of factor variance over time (Geiser, 2008). The next theorem implies that each

parameter of the LS-COM model is identified, if at least 1 construct is measured by 2 methods

on 2 occasions of measurement, with 2 indicators per method and if the state as well as method

factors on the rater- and target-level are substantially correlated.

Theorem 2.6 (Identification of the LS-COM covariance structure)
Let M ≡ 〈(Ω,A, P ),Srt,St,UMrt,CMt,Mt,Ert,Et, αtijkl, λSijkl, λUMij2l, λCMij2l, λMijkl〉
be a LS-COM model of (UMrtj2l,CMtij2l,Mtijkl)-congeneric variables with conditional regres-
sive independence, then the parameter of the matrices ΛB, ΛW, ΦB, ΦW, ΘB, and ΘW are
identified, if either one factor loading λSijkl, λCMij2l, λUMij2l, λMijkl for each factor Stij1l,
CMtj2l, UMrtj2l and Mtjkl or the variance of the factors are set to any real value larger than
0, and

(a) if i = 2, j ≥ 1, k ≥ 2, l ≥ 2 and ΦB as well as ΦW contain permissible intercorrelations
among the latent variables (i.e., nonzero elements in the off-diagonal), otherwise

(b) if i ≥ 3, j ≥ 1, k ≥ 2, l ≥ 2.

Remarks. Assuming that the first factor loading parameters per latent factor (i.e., λS1j1l, λM1jkl,
λCM1j2l, and λUM1j2l) are fixed to one and assuming that the latent method factors on level-1
and level-2 are substantially correlated with each other. Then each parameter of the model has a
unique mathematical solution for a 2× 1× 2× 2 MTMM-MO design. It is worth noting that the
total covariance matrix ΣT of the LS-COM model can be partitioned into a between covariance
matrix ΣB and a within covariance matrix ΣW (see Section 2.6.2). The between covariance matrix
ΣB of any LS-COM model is a special case of the covariance matrix of a CS-C(M -1) model for
structurally different methods proposed by Geiser (2008) for the same dimension. The covariance
matrix ΣB of the LS-COM model is a special case, given that the residual variances of Yrtij2l are
set to zero on level-2. Therefore, the between covariance matrix ΣB is a restrictive variant of the
the variance-covariance matrix of a CS-C(M -1) model for same number of indicators, constructs,
methods, and occasions. Hence, the identification of the model on the target-level is proven by
Geiser (2008). The within covariance matrix ΣW is equivalent to the covariance matrix of a CFA-
model. Thus, the “Three-Measurement-Rule” and “Two-Measurement-Rule” apply (see Bollen,
1989). In other words, the model on the within (rater) level is identified for two indicator per
unique method factor if both factor are substantially correlated. If both factors are uncorrelated,
at least three indicator per unique method factor are required for model identification.

2.10 Measurement invariance

Whenever researchers wish to compare test scores of different occasions of measurement (or of

different groups), they have to ensure that the given measures assess the same constructs. That

relates to the question whether or not the psychometric properties of a measure have changed over

time or groups. In case of measurement non-invariance, it is not guaranteed that the differences in

test scores can be directly be interpreted as differences or change in the level of an attribute (Geiser,

2008; Meredith, 1993; Tisak & Tisak, 2000). Therefore, establishing measurement invariance (MI)

is an essential prerequisite for the analysis of test scores changes in longitudinal or in multigroup
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studies. According to Widaman and Reise (1997, see also Meredith, 1993; Meredith & Horn, 2001)

four different levels of measurement invariance can be distinguished:

1. factorial measurement invariance,

2. weak (or metric) measurement invariance,

3. strong measurement invariance, and

4. strict measurement invariance.

Factorial measurement invariance is the less restrictive form of MI and solely requires that the

number of factors as well as the factor pattern of the latent factor loading parameters are similar

across time points or groups. Weak factorial measurement invariance holds, if and only if the factor

loading parameters per latent factor (state or method factors) are time-invariant. In addition to

weak measurement invariance, strong measurement invariance requires that the intercepts of the

observed variables are the same over time. In addition to strong MI, strict MI is established if

and only if the residual variances of the observed variables are the same over time. The main

advantage of MTMM-SEMs is to directly test the degree of measurement invariance via χ2 fit

statistics. Note that it is also possible to impose further restrictions on the factor structure.

For example, researcher may impose additional constraints on the latent means, latent variances

and/or covariances structure of the latent variables. In the next chapter, a latent change version

of the LS-COM model is formally defined. With respect to this model latent difference variables

are introduced. One important prerequisite of this (latent change) model is strong measurement

invariance. In empirical applications, researchers should therefore test these restrictions before

specifying a latent change model.

Definition 2.4 (LS-COM model with CRI and strong MI)
M ≡ 〈(Ω,A, P ),Srt,St,UMrt,CMt,Mt,Ert,Et, αtijkl, λSijkl, λUMij2l, λCMij2l, λMijkl〉 is
called a LS-COM model of (UMrtj2l,CMtij2l,Mtijkl)-congeneric variables with conditional re-
gressive independence and with strong measurement invariance iff Definition 2.1, Theorem
2.1, Definition 2.2 hold and for each indicator i, construct j, method k and for each pair
(l, l′) ∈ L × L′, (l 6= l′) there is a constant αtijk ∈ R, a constant λSijk ∈ R+, a constant
λCMij2 ∈ R+, a constant λUMij2 ∈ R+, as well as a constant λMijk ∈ R+, such that

αtijk ≡ αtijkl = αtijkl′ , (2.112)

λSijk ≡ λSijkl = λSijkl′ , (2.113)

λCMij2 ≡ λCMij2l = λCMij2l′ , (2.114)

λUMij2 ≡ λUMij2l = λUMij2l′ , (2.115)

λMijk ≡ λMijkl = λMijkl′ , ∀ k > 2. (2.116)

Remarks. With respect to the Definition 2.4 LS-COM model with CRI and MI is established
by imposing restrictions on the level-2 intercepts as well as the factor loading parameters for
each factor pertaining to the same indicator, construct and method. In particular, the level-
2 intercepts αtijkl pertaining to the same indicator, construct and method are set equal across
occasions of measurement. Furthermore, the latent factor loading parameters of the factors (Stij1l,
Mtjkl, CMtj2l, and UMrtj2l) pertaining to the same indicator, construct, method but different
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occasions of measurement are set equal. With respect to these restrictions, it is possible to define
time-invariant intercepts (αtijk) as well as time-invariant latent factor loading parameters (λSijk,
λCMij2, λUMij2, λMijk).
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Glossary

Box 2.1 (General)
Probability space & projections

(Ω,A,P) Probability space
pT : Ω→ ΩT Mapping into a set of targets
pTSl : Ω→ ΩTSl Mapping into a set of target-specific situations
pR : Ω→ ΩR Mapping into a set of raters
pRSl : Ω→ ΩRSl Mapping into a set of rater-specific situations

Observed & measurement error variables

Ytij1l Observed variables pertaining to the reference (here:
structurally different, k = 1) method (e.g., the self-
ratings of the targets t of construct j on measurement
occasion l with indicator i).

Yrtij2l Observed variables pertaining to the non-reference
(here: interchangeable, k = 2) method (e.g., the rat-
ings of the interchangeable raters r for particular tar-
gets t of construct j on measurement occasion l with
indicator i)

Ytijkl Observed variables pertaining to the non-reference
(here: another structurally different, k 6= 1, 2 )
method (e.g., the ratings of the boss for target t of
construct j on measurement occasion l with indica-
tor i)

Etij1l Measurement error variables pertaining to indicator
i, construct j, reference method k = 1, and measure-
ment occasion l

Ertij2l Measurement error variables pertaining to indicator
i, construct j, non-reference method k = 2, and mea-
surement occasion l

Etijkl Measurement error variables pertaining to indicator
i, construct j, non-reference method k 6= 1, 2, and
measurement occasion l



CHAPTER 2. THE LATENT STATE (LS-COM) MODEL 58

Box 2.2 (Latent State Model)
Latent variables of the LS-COM model

Stij1l target-specific latent state variables of the reference
(here: structurally different, k = 1) method of con-
struct j on measurement occasion l assessed by indi-
cator i

Srtij2l rater-target-specific latent state variables of the non-
reference (here: interchangeable, k = 2) method of
construct j on measurement occasion l assessed by
indicator i

Stij2l target-specific latent state variables of the non-
reference (interchangeable, k = 2) method of con-
struct j on measurement occasion l assessed by indi-
cator i (i.e., latent group mean of the interchangeable
ratings for a particular target)

Stijkl target-specific latent state variables of other non-
reference (here: structurally different, k 6= 1, 2)
methods of construct j on measurement occasion l
assessed by indicator i

UMrtij2l rater-target-specific latent unique method variables of
the non-reference method k = 2 of construct j on
measurement occasion l assessed by indicator i (e.g.,
unique view of a particular rater which is neither
shared with the self-rating (here: reference method)
nor with the common view of all raters for indicator
i assessing construct j on measurement occasion l)

CMtij2l target-specific latent common method variables of the
non-reference method k = 2 of construct j on mea-
surement occasion l assessed by indicator i (e.g.,
common view of the raters which is not shared with
the self-rating of a particular target for indicator i
assessing construct j on measurement occasion l)

Mtijkl target-specific latent method variables of other non-
reference methods k 6= 1, 2 of construct j on mea-
surement occasion l assessed by indicator i (e.g., the
unique view of the boss that is not shared with the
self-rating of the target for indicator i assessing con-
struct j on measurement occasion l)
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Box 2.3
Definition of the latent variables of the LS-COM

Stij1l ≡E(Ytij1l|pT , pTSl),
Srtij2l ≡E(Yrtij2l|pT , pTSl , pR, pRSl),
Stijkl ≡E(Ytijkl|pT , pTSl), ∀ k > 2,
Etij1l ≡Ytij1l − E(Ytij1l|pT , pTSl),
Ertij2l ≡Yrtij2l − E(Yrtij2l|pT , pTSl , pR , pRSl),
Etijkl ≡Ytijkl − E(Ytijkl|pT , pTSl), ∀ k > 2,
Stij2l ≡E

[
E(Yrtij2l|pT , pTSl , pR, pRSl)|pT , pTSl

]
,

UMrtij2l ≡E(Yrtij2l|pT , pTSl , pR, pRSl)−
E(E(Yrtij2l|pT , pTSl , pR, pRSl)|pT , pTSl),

CMtij2l ≡E
[
E(Yrtij2l|pT , pTSl , pR, pRSl)|pT , pTSl

]
−

E(E
[
E(Yrtij2l|pT , pTSl , pR, pRSl)|pT , pTSl

]
|E(Ytij1l|pT , pTSl)),

Mtijkl ≡E(Ytijkl|pT , pTSl)−
E(E(Ytijkl|pT , pTSl)|E(Ytij1l|pT , pTSl)).



Chapter 3

Formal definition of the baseline
latent change (LC-COM) model

3.1 A gentle introduction

One of the key interests in psychology is to study interindividual differences in intraindividual

change. The main advantage of longitudinal MTMM-SEMs is that “true” (i.e., measurement error

free) change of constructs as well as method effects can be studied over time. In the following

chapter, two latent change models are defined according to the stochastic measurement theory

(Steyer, 1989; Steyer & Eid, 2001; Zimmermann, 1975). Latent change (LC) or latent difference

(LD) models (McArdle & Hamagami, 2001; Steyer, Eid, & Schwenkmezger, 1997; Steyer, Partchev,

& Shanahan, 2000) can be seen as an alternative parametrization of latent state (LS) models with

strong measurement invariance. With respect to latent change (difference) models it is possible to

explicitly model “true” interindividual differences in intraindividual change with regard to latent

difference variables (see Steyer et al., 1997, 2000). In addition, it is possible to relate latent

difference variables to manifest or latent background variables (e.g., age, gender, treatment groups

etc.) in order to explain interindividual differences in “true” change scores. The latent difference

(change) variables (denoted by SBCtij1l) are obtained by a simple tautological decomposition of the

latent state variables pertaining to occasions of measurement l, where l > 1:

Stij1l = Stij11 + (Stij1l − Stij11) = Stij11 + SBCtij1l, ∀ l > 1. (3.1)

According to Equation 3.1, “true” change is modeled with respect to the initial status on the first

measurement occasion l = 1 (i.e., baseline). Specifically, the latent change variables (Stij1l −

Stij11) = SBCtij1l represent the true intraindividual change of target t, measured by the reference

method k = 1, indicator i, construct j from measurement occasion l = 1 (the initial status or

baseline) to measurement occasion l. Due to this tautological reformulation of the latent state

variables (see Equation 3.2), the model is called baseline latent change (baseline LC-COM) model.

The superscript (BC) of the latent difference variables indicate that change is modeled with respect

to the initial status (the baseline). In contrast to that, researchers may also investigate true change

between each pair of subsequent measurement occasions which can be easily done by the following

60
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parametrization:

Stij1l = Stij1(l−1) + (Stij1l − Stij1(l−1)) = Stij1(l−1) + SNCtij1l, ∀ l > 1. (3.2)

According to Equation 3.2, true change is not modeled with regard to the initial status, but rather

with regard to the preceding measurement occasion [i.e., (Stij1l − Stij1(l−1))]. Hence, this model

is called neighbor latent change (neighbor LC-COM) model. The superscript (NC) indicates that

true change is studied with respect to the values of preceding (neighbor) latent state variables.

Again, neighbor latent change models do not impose any additional restrictions and represent

a simple restatement of latent state models with strong measurement invariance (Geiser, 2008).

Moreover, reformulating a baseline change model into a neighbor change model and vise versa is

straightforward and would even yield identical solutions for two occasions of measurement (see

Equations 3.1 and 3.2). For the sake of simplicity, this thesis covers only baseline LC-COM

change models. Precisely, two baseline LC-COM models are formally defined. With regard to the

first model the main focus is on analyzing “true” change with respect to the latent state variables

pertaining to the reference methods. This model will only differ slightly from the latent state model

(LS-COM) with strong measurement invariance. The second model (extended baseline LC-COM)

model enables researchers to study true change with respect to the reference as well as non-reference

methods. Put differently, the extended LC-COM model allows studying“true”change of constructs

as well as method effects. Moreover, it is possible to investigate “true” change of method bias on

different levels (change of common or unique method bias). This modeling approach is particular

beneficial with respect to intervention studies, given that “true” change of pure method effects (e.g.

“true” change with respect to the over- or underestimation of the reference method that is specific

to method influence of the non-reference methods) is studied and explained by manifest or latent

background variables. The tautological decomposition of the latent method variables follows in a

similar way as presented above:

UMrtij2l = UMrtij21 + (UMrtij2l − UMrtij21) = UMrtij21 + UMBC
rtij2l, ∀ l > 1,

CMtij2l = CMtij21 + (CMtij2l − CMtij21) = CMtij21 + CMBC
tij2l, ∀ l > 1,

Mtijkl = Mtijk1 + (Mtijkl −Mtijk1) = Mtijk1 +MBC
tijkl, ∀ k > 2 ∧ ∀ l > 1.

In order to define latent change (LC) models strong measurement invariance is necessary (see

Proof 10 below). If strong measurement invariance does not hold, the meaning of the latent

difference variables is ambiguous and thus the variables should not be interpreted (Geiser, 2008).

Furthermore, with respect to strong measurement invariance latent state (LS) and latent change

(LC) models are algebraically equivalent. Figure 3 shows the extended baseline LC-COM model for

three indicators (i = 1,2,3), two constructs (j = 1,2), three methods (k = 1,2,3) and two occasions

of measurement (l = 1,2).
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Figure 3.1: Path diagram of the extended baseline LC-COM model with indicator-specific latent state and change factors .
An extended baseline LC-COM model with indicator-specific latent state and change factors incorporating for three indicators (i=1,2,3), two constructs (j=1,2), three
methods (k=1,2,3) and two occasions of measurement (l=1,2). All factor loadings as well as correlations between latent variables were omitted for clarity. Measurement
error variables Ertijkl and Etijkl are only depicted for the first indicator pertaining to method 1 and 2.
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3.2 Definition of the simple baseline LC-COM model

Definition 3.1 (Simple baseline LC-COM model)
The random variables {Y111111, . . . , Yabcdef} and {Y11111, . . . , Ybcdef} on a probability space
(Ω,A,P) are variables of a baseline LC-COM model if the conditions made in Definition 2.4
hold.

(a) For all i ∈ I, j ∈ J , k ∈ K, l ∈ L, and ∀ l > 1, let

SBCtij1l ≡ (Stij1l − Stij11),

be also real-valued random variables on (Ω,A,P) with finite first- and second-order mo-
ments.

(b) Then the measurement equations of any observed variable Y(r)tijkl pertaining to the same
indicator i, construct j, and measurement occasion l (where ∀ l > 1), can be rewritten
as follows:

Ytij1l =Stij11 + SBCtij1l + Etij1l, ∀ l > 1, (3.3)

Ytijkl =αtijk + λSijkStij11 + λSijkS
BC
tij1l+

λMijkMtjkl + Etijkl,
∀ k > 2, l > 1, (3.4)

Yrtij2l =αtij2 + λSij2Stij11 + λSij2S
BC
tij1l+

λCMij2CMtj2l + λUMij2UMrtj2l + Ertij2l,
∀ l > 1. (3.5)

Remarks. According to the definition 3.1, it is clear that the latent baseline change (LC-COM)
model is an alternative parametrization of the LS-COM model with CRI and strong measurement
invariance. Consequently, the measurement equations of the observed variables in the LS-COM
model can be rewritten as stated in the equations of Condition (b). With regard to these equations,
it is assumed that any latent state variable Stij1l of measurement occasion l, where l > 1 can be
fully decomposed into a initial state Stij11 and the difference of both states (Stij1l − Stij11). The
difference of both latent state variables is defined as a latent change variable representing true
interindividual differences in intraindividual change with respect to the reference method. Given
that the LC-COM model is algebraically equivalent to the LS-COM model, the psychometric
properties of the LC-COM model regarding existence, uniqueness, admissible transformation and
meaningfulness of the latent variables remain unaltered as shown for the LS-COM model with
CRI and strong MI. It is important to note that the occasion index l has been dropped from
the intercepts and factor loadings to express that these parameters are time-invariant. Note that
the same correlations that are zero as a consequence of the LS-COM model definition have to be
also constrained in the LC-COM model. Furthermore, it is recommended to fix any correlations
between latent state variables Stij1l and latent method variables UMrtj2l, CMtj2l,Mtjkl to zero. As

a direct consequence of these restrictions, all latent difference variables SBCtij1l are also uncorrelated
with all other latent method variables UMrtj2l, CMtj2l,Mtjkl in the LC-COM model.

3.3 Definition of the extended baseline LC-COM model

In the following section, an extended version of the LC-COM model is presented. With respect

to the extended LC-COM model it is possible to study “true” intraindividual change with regard

to trait and method effects. Moreover, it is possible to investigate the true change of common and

unique rater bias. These latent change method effects can be explained by other covariates (e.g.,

gender, age, treatment group).
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Definition 3.2 (Extended Baseline LC-COM model)
The random variables {Y111111, . . . , Yabcdef} and {Y11111, . . . , Ybcdef} on a probability space
(Ω,A,P) are variables of an extended baseline LC-COM model if the conditions in Definition
3.1 hold.

(a) For all i ∈ I, j ∈ J , k ∈ K, l ∈ L and ∀ l > 1, let

SBCtij1l ≡ (Stij1l − Stij11), (3.6)

UMBC
rtij2l ≡ (UMrtij2l − UMrtij21), (3.7)

CMBC
tij2l ≡ (CMtij2l − CMtij21), (3.8)

MBC
tijkl ≡ (Mtijkl −Mtijk1), (3.9)

be also real-valued random variables on (Ω,A,P) with finite first- and second-order mo-
ments.

(b) Then the measurement equations of any observed variable Ytij1l, Ytijkl, or Yrtij2l pertain-
ing to the same indicator i and construct j and measurement occasion l (where l > 1),
can be rewritten as follows:

Ytij1l =Stij11 + SBCtij1l + Etij1l, ∀ l > 1, (3.10)

Ytijkl =αtijk + λSijkStij11 + λSijkS
BC
tij1l+

λMijkMtjkl + λMijkM
BC
tjkl + Etijkl,

∀ k > 2, l > 1, (3.11)

Yrtij2l =αtij2 + λSij2Stij11 + λSij2S
BC
tij1l+

λCMij2CMtj2l + λCMij2CM
BC
tj2l+

λUMij2UMrtj2l + λUMij2UM
BC
rtj2l + Ertij2l,

∀ l > 1. (3.12)

(c) Definition of common latent common method difference variables. For each construct j,
measured by a non-reference method k (in this case, k = 2) on occasion of measurement
l, l > 1 and for each pair (i, i′) ∈ I × I ′, (i 6= i′) there is a constant λCMii′j2 ∈ R+,
such that

CMBC
tij2l = λCMii′j2CM

BC
ti′j2l. (3.13)

(d) Definition of common latent method difference variables. For each construct j, mea-
sured by a non-reference method k (in this case k > 2) on occasion of measurement l,
l > 1 and for each pair (i, i′) ∈ I×I ′, (i 6= i′) there is a constant λMii′jk ∈ R+, such that

MBC
tijkl = λMii′jkM

BC
ti′jkl, ∀ k > 2. (3.14)

(e) Definition of common latent unique method difference variables. For each construct j,
measured by a non-reference method k (in this case k = 2) on occasion of measurement l,
l > 1 and for each pair (i, i′) ∈ I×I ′, (i 6= i′) there is a constant λUMii′j2 ∈ R+, such that

UMBC
rtij2l = λUMii′j2UM

BC
rti′j2l. (3.15)

Remarks. The above Definition 3.2 implies that the latent change version of the LC-COM
model is simply a reformulation of the latent state version of the LC-COM model (described in
Chapter 2). In addition to that, strong measurement invariance is a necessary condition for defining
and interpreting latent difference variables. According to Equations 3.6 to 3.9, latent difference
variables can be construed. For example, the latent state difference variables are construed by
this tautological expression: Stij1l = Stij11 + (Stij1l − Stij11), where l > 1. Put differently, a
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later reference state variable is perfectly determined by the initial latent reference state and the
latent difference between the initial and the later reference state. In the same logic, the latent
difference method variables are defined. According to Equations 3.13 to 3.15, it is assumed that
latent difference method variables are perfectly correlated with each other. In other words, latent
difference method variables belonging to the same construct j, same method k, and same occasion
of measurement, but different indicators i and i′ only differ by a multiplicative constant (i.e.,
λCMii′j2, λUMii′j2, λMii′jk, where k > 2). Thus, these latent difference method variables are
positive linear functions of each other, respectively.

3.4 Existence

The conditions made in Definition 1 logically imply that the method variables, belonging to the

same construct j, method k, and occasion of measurement l, where l > 1, but different indicators i

and i′ are linear functions of each other. The following theorem entails the existence of the latent

method factors CMBC
tj2l , M

BC
tjkl, and UMBC

rtj2l.

Theorem 3.1 (Existence)
The random variables {Y111111, . . . , Yabcdef} and {Y11111, . . . , Ybcdef} are CMBC

tij2l, MBC
tijkl,

UMBC
rtij2l-congeneric variables of a LC-COM model if the conditions a of Definition 3.1 hold

and for each r ∈ R, t ∈ T , i ∈ I, j ∈ J , k ∈ K, l ∈ L, there are real-valued random variables
MBC
tij2l, M

BC
tijkl, and UMBC

rtij2l on a probability space (Ω,A,P) and (λCMij2, λMijk, λUMij2)

∈ R+, such that:

CMBC
tij2l = λCMij2CM

BC
tj2l , ∀ l > 1, (3.16)

MBC
tijkl = λMijkM

BC
tjkl, ∀ k > 2, l > 1, (3.17)

UMBC
rtij2l = λUMij2UM

BC
rtj2l, ∀ l > 1. (3.18)

Proofs. 6 Existence.

3.16 For all i, j, k, l, assume that CMBC
tj2l ≡ CMBC

t1j2l as well as λCMij2 ≡ λCMi1j2. Inserting
these parameters in Equation 3.13 of the above definition, yields Equation 3.16:

CMBC
tij2l = λCMij2CM

BC
tj2l (repeated).

Similarly, according to Equation 3.16, CMBC
tj2l can be expressed as

CMBC
tj2l =

CMBC
tij2l

λCMij2
as well as CMBC

tj2l =
CMBC

ti′j2l

λCMi′j2
.

If both Equations are set equal, it follows CMBC
tij2l = λCMij2

λ
CMi′j2

CMBC
ti′j2l. Let λCMii′j2 ≡

λCMij2
λ
CMi′j2

,

than Equation 3.13 is obtained:

CMBC
tij2l = λCMii′j2CM

BC
ti′j2l (repeated).

The proofs for Equation 3.17 and 3.18 follow the same logic and therefore will be left to the
reader.

�

Remarks. The above theorem clarifies that the assumptions made in Definitions 3.13 to 3.15
are equivalent to assuming common latent difference variables CMBC

tj2l , M
BC
tjkl, UM

BC
rtj2l. Again,

the term “common” refers to the fact that each latent method difference factor is assumed to be
common for all indicators, belonging to the same construct, same (non-reference) method, and
the same occasion of measurement. The proof of this theorem also shows that the latent method
difference variables CMBC

tij2l, M
BC
tijkl, UM

BC
rtij2l are not uniquely defined. The uniqueness of the

latent method factors is discussed in the next Section 3.5.
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3.5 Uniqueness

The latent factors (CMBC
tj2l , M

BC
tjkl, UM

BC
rtj2l) are not uniquely defined in the extended baseline

LC-COM model. If such models are defined with (CMBC
tij2l, M

BC
tijkl, UM

BC
rtij2l)-congeneric variables,

all of these parameters are defined up to similarity transformations. That is to say that these

latent variables are only uniquely defined up to multiplications with a positive real number. In other

words, the latent change method variables are measured on a ratio scale. The next theorem concerns

the uniqueness and admissible transformations of parameters in the extended latent baseline LC-

COM models.

Theorem 3.2 (Uniqueness)
1. Admissible transformations
M≡ 〈(Ω,A, P ),Srt,St,SBC

t ,UMrt,UMBC
rt ,CMt,CMBC

t ,Mt,MBC
t ,Ert,Et, αtijk,

λSijk, λUMij2, λCMij2, λMijk, 〉 is a baseline LC-COM model with:

Srt ≡(S111111 · · ·Srtij2l · · ·Sabcd2f )T, (3.19)

St ≡(S11111 · · ·Stijkl · · ·Sbcdef )T, (3.20)

SBC
t ≡(SBC11112 · · ·SBCtijkl · · ·SBCbcdef )T, (3.21)

UMrt ≡(UM11111 · · ·UMrtj2l · · ·UMabd2f )T, (3.22)

UMBC
rt ≡(UMBC

11112 · · ·UMBC
rtj2l · · ·UMBC

abd2f )T, (3.23)

CMt ≡(CM1111 · · ·CMtj2l · · ·CMbd2f )T, (3.24)

CMBC
t ≡(CMBC

1112 · · ·CMBC
tj2l · · ·CMBC

bd2f )T, (3.25)

Mt ≡(M1111 · · ·Mtjkl · · ·Mbdef )T, (3.26)

MBC
t ≡(MBC

1112 · · · (MBC
tjkl · · · (MBC

bdef )T, (3.27)

Ert ≡(E111111 · · ·Ertij2l · · ·Eabcd2f )T, (3.28)

Et ≡(E11111 · · ·Etijkl · · ·Ebcdef )T, (3.29)

αtijk ≡(α1111 · · ·αtijk · · ·αbcde)T, (3.30)

λS ≡(λ111 · · ·λSijk · · ·λcde)T, (3.31)

λUM ≡(λ111 · · ·λUMij2 · · ·λcd2)T, (3.32)

λCM ≡(λ111 · · ·λCMij2 · · ·λcd2)T, (3.33)

λM ≡(λ111 · · ·λMijk · · ·λcde)T. (3.34)

and if for all r ∈ R, t ∈ T , i ∈ I, j ∈ J , k ∈ K, l ∈ L:

UM
′BC
rtj2l ≡ βUMj2UM

BC
rtj2l, (3.35)

CM
′BC
tj2l ≡ βCMj2CM

BC
tj2l , (3.36)

M
′BC
tjkl ≡ βMjkM

BC
tjkl, ∀ k > 2, (3.37)

λ
′

UMij2 ≡ λUMij2/βUMj2, (3.38)

λ
′

CMij2 ≡ λCMij2/βCMj2, (3.39)

λ
′

Mijk ≡ λMijk/βMjk, ∀ k > 2, (3.40)

(3.41)

where βCMj2, βUMj2, and βMjk ∈ R, as well as βCMj2, βUMj2, and βMjk > 0, then

M′ ≡ 〈(Ω,A, P ),Srt,St,SBC
t ,UMrt,UM′BC

rt ,CMt,CM′BC
t ,Mt,M

′BC
t ,Ert,Et, αtijk,
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λSijk, λ
′

UMij2, λ
′

CMij2, λ
′

Mijk, 〉 is a baseline LC-COM change model, too, with:

Srt ≡(S111111 · · ·Srtij2l · · ·Sabcd2f )T, (3.42)

St ≡(S11111 · · ·Stijkl · · ·Sbcdef )T, (3.43)

SBC
t ≡(SBC11112 · · ·SBCtijkl · · ·SBCbcdef )T, (3.44)

UMrt ≡(UM11111 · · ·UMrtj2l · · ·UMabd2f )T, (3.45)

UM
′BC
rt ≡(UM

′BC
11112 · · ·UM

′BC
rtj2l · · ·UM

′BC
abd2f )T, (3.46)

CMt ≡(CM1111 · · ·CMtj2l · · ·CMbd2f )T, (3.47)

CM
′BC
t ≡(CM

′BC
1112 · · ·CM

′BC
tj2l · · ·CM

′BC
bd2f )T, (3.48)

Mt ≡(M1111 · · ·Mtjkl · · ·Mbdef )T, (3.49)

M
′BC
t ≡(M

′BC
1112 · · ·M

′BC
tjkl · · ·M

′BC
bdef )T, (3.50)

Ert ≡(E111111 · · ·Ertij2l · · ·Eabcd2f )T, (3.51)

Et ≡(E11111 · · ·Etijkl · · ·Ebcdef )T, (3.52)

αtijk ≡(α1111 · · ·αtijk · · ·αbcde)T, (3.53)

λS ≡(λ111 · · ·λSijk · · ·λcde)T, (3.54)

λ′UM ≡(λ′111 · · ·λ′UMij2 · · ·λ′cd2)T, (3.55)

λ′CM ≡(λ′111 · · ·λ′CMij2 · · ·λ′cd2)T, (3.56)

λ′M ≡(λ′111 · · ·λ′Mijk · · ·λ′cde)T. (3.57)

2. Uniqueness
If both M≡ 〈(Ω,A, P ),Srt,St,SBC

t ,UMrt,UMBC
rt ,CMt,CMBC

t ,Mt,MBC
t ,Ert,

Et, αtijk, λSijk, λUMij2, λCMij2, λMijk, 〉 and M′ ≡ 〈(Ω,A, P ),Srt,St,SBC
t ,UMrt,

UM′BC
rt ,CMt,CM′BC

t ,Mt,M
′BC
t ,Ert,Et, αtijk, λSijk, λ

′

UMij2, λ
′

CMij2, λ
′

Mijk, 〉 are
baseline LC-COM change models, then there are for each i ∈ I, j ∈ J , k ∈ K, l ∈ L,
βCMj2, βUMj2, and βMjk ∈ R+ such that Equations 3.35 to 3.57 hold.

Proofs. 7 Uniqueness & admissible transformations

1. Admissible transformations

If UMBC
rtij2l, CM

BC
tij2l, and MBC

tijkl are replaced by UM
′BC
rtj2l, CM

′BC
tj2l , M

′BC
tjkl as well as λUMij2,

λCMij2, λMijk by the corresponding λ
′

UMij2, λ
′

CMij2, λ
′

Mijk, then:

UMBC
rtij2l = λ

′

UMij2UM
′BC
rtj2l = λUMij2UM

BC
rtj2l

=
(

1
βUMj2

)
λUMij2 · βUMj2UM

BC
rtj2l

= λUMij2UM
BC
rtj2l,

CMBC
tij2l = λ

′

CMij2CM
′BC
tj2l = λCMij2CM

BC
tj2l

=
(

1
βCMj2

)
λCMij2 · βCMj2CM

BC
tj2l

= λCMij2CM
BC
tj2l ,

MBC
tijkl = λ

′

MijkM
′BC
tjkl = λMijkM

BC
tjkl

=
(

1
βMjk

)
λMijk · βMjkM

BC
tjkl

= λMijkM
BC
tjkl.
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In a similar way, if UMBC
rtj2l, CM

BC
tj2l , M

BC
tjkl are replaced by

UM
′BC
rtj2l

βUMj2
,
CM

′BC
tj2l

βCMj2
, and

M
′BC
tjkl

βMjk
as

well as λUMij2, λCMij2, λMijk by βUMj2λ
′

UMij2, βCMj2λ
′

CMij2, βMjkλ
′

Mijk, then:

UMBC
rtij2l = λUMij2UM

BC
rtj2l

= βUMj2λ
′

UMij2 ·
UM

′BC
rtj2l

βUMj2

= λ
′

UMij2UM
′BC
rtj2l,

CMBC
tij2l = λCMij2CM

BC
tj2l

= βCMj2λ
′

CMij2 ·
CM

′BC
tj2l

βCMj2

= λ
′

CMij2CM
′BC
tj2l ,

MBC
tijkl = λMijkM

BC
tjkl

= βMjkλ
′BC
Mijk ·

M
′

tjk

βMjk

= λ
′

MijkM
′BC
tjkl .

2. Uniqueness

If both M≡ 〈(Ω,A, P ),Srt,St,SBC
t ,UMrt,UMBC

rt ,CMt,CMBC
t ,Mt,MBC

t ,Ert,Et,
αtijk, λSijk, λUMij2, λCMij2, λMijk, 〉 and M′ ≡ 〈(Ω,A, P ),Srt,St,SBC

t ,UMrt,UM′BC
rt ,

CMt,CM′BC
t ,Mt,M

′BC
t ,Ert,Et, αtijk, λSijk, λ

′

UMij2, λ
′

CMij2, λ
′

Mijk, 〉 are baseline

LC-COM change models, then λUMij2UM
BC
rtj2l = λ

′

UMij2UM
′BC
rtj2l. Consequently, for all j ∈

J , k ∈ K, and l ∈ L:

UM
′BC
rtj2l =

λUMij2

λ
′
UMij2

UMBC
rtj2l.

Given that the ratio of λUMij2 and λ
′

UMij2 has to be the same real value for each i ∈ I j ∈ J ,
k ∈ K, and l ∈ L, a real constant can be defined for each i ∈ I j ∈ J , k ∈ K, and l ∈ L:

βUMj2 ≡
λUMij2

λ
′
UMij2

.

Again, assume that both M and M′
are LC-COM models, then

λCMij2CM
BC
tj2l = λ

′BC
CMij2CM

′BC
tj2l . Consequently, for all j ∈ J , k ∈ K, and l ∈ L:

CM
′BC
tj2l =

λCMij2

λ
′
CMij2

CMBC
tj2l .

Given that the ratio of λCMij2 and λ
′

CMij2 have to be the same real value for each i ∈ I
j ∈ J , k ∈ K, and l ∈ L, a real constant can be defined for each i ∈ I j ∈ J , k ∈ K, and
l ∈ L:

βCMj2 ≡
λCMij2

λ
′
CMij2

.

Again, if both M and M′
are LC-COM models, then λMijkM

BC
tjkl =λ

′

MijkM
′BC
tjkl . Conse-

quently, for all j ∈ J , k ∈ K, and l ∈ L:

M
′BC
tjkl =

λMijk

λ
′
Mijk

MBC
tjkl.



CHAPTER 3. THE BASELINE LATENT CHANGE (LC-COM) MODEL 69

Given that the ratio of λMijk and λ
′

Mijk have to be the same real value for each i ∈ I j ∈ J ,
k ∈ K, and l ∈ L, a real constant can be defined for each i ∈ I j ∈ J , k ∈ K, and l ∈ L:

βMjk ≡
λMijk

λ
′
Mijk

.

�

Remarks. The above theorem implies that the latent method factors UMBC
rtj2l, CM

BC
tj2l , and MBC

tjkl

as well as their corresponding factor loadings λUMij2, λCMij2, and λMijk are uniquely defined up
to similarity transformations, that is, up to a multiplication with a positive real number. Hence,
the latent method factors as well as their corresponding factor loadings are measured at the ratio
level.

3.6 Meaningfulness

In the following section, meaningful statements regarding parameters of the LC-COM model

are addressed. The next theorem lists a selection of meaningful statements regarding the latent

method factors and their corresponding factor loadings.

Theorem 3.3 (Meaningfulness)
If both M≡ 〈(Ω,A, P ),Srt,St,SBC

t ,UMrt,UMBC
rt ,CMt,CMBC

t ,Mt,MBC
t ,Ert,Et,

αtijk, λSijk, λUMij2, λCMij2, λMijk, 〉 and M′ ≡ 〈(Ω,A, P ),Srt,St,SBC
t ,UMrt,UM′BC

rt ,

CMt,CM′BC
t ,Mt,M

′BC
t ,Ert,Et, αtijk, λSijk, λ

′

UMij2, λ
′

CMij2, λ
′

Mijk, 〉 are baseline LC-COM
change models, then for ω1, ω2 ∈ Ω; r, r′ ∈ R, t, t′ ∈ T , i, i′ ∈ I, j, j′ ∈ J , k, k′ ∈ K, and
l, l′ ∈ L:

λUMij2

λUMi′j2
=

λ
′

UMij2

λ
′
UMi′j2

, (3.58)

λCMij2

λCMi′j2
=

λ
′

CMij2

λ
′
CMi′j2

, (3.59)

λMijk

λMi′jk
=

λ
′

Mijk

λ
′
Mi′jk

, (3.60)

λUMij2

λUMi′j2
−
λUMij′2

λUMi′j′2
=

λ
′

UMij2

λ
′
UMi′j2

−
λ
′

UMij′2

λ
′
UMi′j′2

, (3.61)

λCMij2

λCMi′j2
−
λCMij′2

λCMi′j′2
=

λ
′

CMij2

λ
′
CMi′j2

−
λ
′

CMij′2

λ
′
CMi′j′2

, (3.62)

λMijk

λMi′jk

−
λMij′k′

λMi′j′k′
=

λ
′

Mijk

λ
′
Mi′jk

−
λ
′

Mij′k′

λ
′
Mi′j′k′

, (3.63)

UMBC
rtj2l (ω1)

UMBC
rtj2l (ω2)

=
UM

′BC
rtj2l (ω1)

UM
′BC
rtj2l (ω2)

, (3.64)

for UMBC
rtj2l (ω2) and UM

′BC
rtj2l (ω2) 6= 0,

CMBC
tj2l (ω1)

CMBC
tj2l (ω2)

=
CM

′BC
tj2l (ω1)

CM
′BC
tj2l (ω2)

, (3.65)

for CMBC
tj2l (ω2) and CM

′BC
tj2l (ω2) 6= 0,

MBC
tjkl (ω1)

MBC
tjkl (ω2)

=
M
′BC
tjkl (ω1)

M
′BC
tjkl (ω2)

, (3.66)
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for MBC
tjkl (ω2) and M

′BC
tjkl (ω2) 6= 0,

UMBC
rtj2l (ω1)

UMBC
rtj2l (ω2)

−
UMBC

r′tj′2l′ (ω1)
UMBC

r′tj′2l′ (ω2)
=
UM

′BC
rtj2l (ω1)

UM
′BC
rtj2l (ω2)

−
UM

′BC
r′tj′2l′ (ω1)

UM
′BC
r′tj′2l′ (ω2)

, (3.67)

for UMBC
rtj2l (ω2), UMBC

r′tj′2l′ (ω2), UM
′BC
rtj2l (ω2), UM ′BC

r′tj′2l′ (ω2) 6= 0,

CMBC
tj2l (ω1)

CMBC
tj2l (ω2)

−
CMBC

t′j′2l′ (ω1)
CMBC

t′j′2l′ (ω2)
=
CM

′BC
tj2l (ω1)

CM
′BC
tj2l (ω2)

−
CM

′BC
t′j′2l′ (ω1)

CM
′BC
t′j′2l′ (ω2)

, (3.68)

for CMBC
tj2l (ω2), CMBC

t′j′2l′ (ω2), CM
′BC
tj2l (ω2), CM

′BC
t′j′2l′ (ω2) 6= 0,

MBC
tjkl (ω1)

MBC
tjkl (ω2)

−
MBC
t′j′k′l′ (ω1)

MBC
t′j′k′l′ (ω2)

=
M
′BC
tjkl (ω1)

M
′BC
tjkl (ω2)

−
M
′BC
t′j′k′l′ (ω1)

M
′BC
t′j′k′l′ (ω2)

, (3.69)

for MBC
tjkl (ω2), MBC

t′j′k′l′ (ω2), M ′BC
tjkl (ω2), M

′BC
t′j′k′l′ (ω2) 6= 0,

λ2
UMij2V ar(UMBC

rtj2l) = λ
′2
UMij2V ar(UM

′BC
rtj2l), (3.70)

λ2
CMij2V ar(CMBC

tj2l) = λ
′2
CMij2V ar(CM

′BC
tj2l ), (3.71)

λ2
MijkV ar(MBC

tjkl) = λ
′2
MijkV ar(M

′BC
tjkl ), (3.72)

Corr(UMBC
rtj2l, UM

BC
rtj′2l′) = Corr(UM

′BC
rtj2l, UM

′BC
rtj′2l′), (3.73)

Corr(CMBC
tj2l , CM

BC
tj′2l′) = Corr(CM

′BC
tj2l , CM

′BC
tj′2l′), (3.74)

Corr(MBC
tjkl,M

BC
tj′k′l′) = Corr(M

′BC
tjkl ,M

′BC
tj′k′l′), (3.75)

where Var(.) denotes variance and Corr(.) denotes correlation.

Proofs. 8 Meaningfulness.
The proofs for Equations 3.58, 3.64, 3.67, 3.70, and 3.73 are provided for illustration purposes.
The remaining statements follow straightforward.

3.58 Replacing λ
′

UMij2, λ
′

UMi′j2 in Equation 3.58 by
(
λUMij2
βUMj2

)
and

(
λUMi′j2
βUMj2

)
, respectively, verifies

the equality

λ
′

UMij2

λ
′
UMi′j2

=
λUMij2
βUMj2

λUMi′j2
βUMj2

= λUMij2

λUMi′j2
.

3.64 Replacing UM
′BC
rtj2l by βUMj2UMrtj2 verifies the equality

UM
′BC
rtj2l (ω1)

UM
′BC
rtj2l (ω2)

=
βUMj2UM

BC
rtj2l(ω1)

βUMj2UMBC
rtj2l(ω2)

=
UMBC

rtj2l (ω1)
UMBC

rtj2l (ω2)
.

3.67 Again, replacing UM
′BC
rtj2l by βUMj2UM

BC
rtj2l and UM

′BC
rtj′2l′ by βUMj′2UM

BC
rtj′2l′ verifies the

equality
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UMBC
rtj2l (ω1)

UMBC
rtj2l (ω2)

−
UMBC

r′tj′2l′ (ω1)
UMBC

r′tj′2l′ (ω2)
=
UM

′BC
rtj2l (ω1)

UM
′BC
rtj2l (ω2)

−
UM

′BC
r′tj′2l′ (ω1)

UM
′BC
r′tj′2l′ (ω2)

=
βUMj2UM

BC
rtj2l (ω1)

βUMj2UMBC
rtj2l (ω2)

−
βUMj′2UM

BC
r′tj′2l′ (ω1)

βUMj′2UMBC
r′tj′2l′ (ω2)

=
UMBC

rtj2l (ω1)
UMBC

rtj2l (ω2)
−
UMBC

r′tj′2l′ (ω1)
UMBC

r′tj′2l′ (ω2)
.

3.70 Replacing λ2
UMij2 by λ

′2
UMij2β

2
UMj2 as well as V ar(UMBC

rtj2l) by V ar

(
UM

′BC
rtj2l

βUMj2

)
verifies the

equality

λ2
UMij2V ar(UMBC

rtj2l) = λ
′2
UMij2β

2
UMj2 · V ar

(
UM

′BC
rtj2l

βUMj2

)

= λ
′2
UMij2β

2
UMj2 ·

1
β2
UMj2

V ar
(
UM

′BC
rtj2l

)
= λ

′2
UMij2V ar

(
UM

′BC
rtj2l

)
.

3.73 Replacing UMBC
rtj2l and UMBC

rtj′2l′ in Equation 3.73 by
UM

′BC
rtj2l

βUMj2
and

UM
′BC
rtj′2l′

βUMj′2

Corr(UMBC
rtj2l, UM

BC
rtj′2l′) = Corr

(
UM

′BC
rtj2l

βUMj2
,
UM

′BC
rtj′2l′

βUMj′2

)
= Corr(UM

′BC
rtj2l, UM

′BC
rtj′2l′).

�

Remarks. With respect to the factor loadings λUMij2, λCMij2, λMijk, as well as their correspond-
ing latent method factors UMBC

rtj2l, CM
BC
rtj2l, and MBC

tjkl statements regarding the absolute values
of the parameters are not meaningful as already explained in the previous chapter. Nevertheless,
statements regarding the ratio of specific values of the factor loadings or the associated latent
method factors are meaningful. Hence, it is meaningful to say that the unique method change
factor for target A is x-times larger or smaller than the unique method change factor for target B
(see also Geiser, 2008). Similarly, statements regarding variance components of the latent factors
as well as latent correlations among the latent method change factors also meaningful.

3.7 Testability

In this section the covariance structure of the baseline LC-COM change models is addressed.

First, zero covariances are discussed. In empirical applications, it is important to restrict these

covariances to zero. Second, admissible (freely estimated) covariances and their interpretations are

regarded.

3.7.1 Zero covariances based on the model definition

The definition of the observed and latent variables has consequences for the covariance structure

of the observed and latent variables. The next theorem summarizes the covariances which are zero

by definition of the LC-COM model with conditional regressive independence.
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Theorem 3.4 (Testability: consequences of model definition)
If M≡ 〈(Ω,A, P ),Srt,St,SBC

t ,UMrt,UMBC
rt ,CMt,CMBC

t ,Mt,MBC
t ,Ert,Et, αtijk,

λSijk, λUMij2, λCMij2, λMijk, 〉 is called an extended baseline LC-COM change model according
to Definition 3.2. Then for r ∈ R, t ∈ T , i, i′ ∈ I, j, j′ ∈ J , k, k′ ∈ K, l, l′ ∈ L where i can be
equal to i′, j to j′, k to k′, and l to l′, and l > 1, but (ijkl), (ij2l) 6= (ijkl)′:

Cov(SBCtijkl, Eti′j′k′l′) = 0, (3.76)

Cov(SBCrtij2l, Eti′j′k′l′) = 0, (3.77)

Cov(SBCti′j′k′l, Ertij2l) = 0, (3.78)

Cov(SBCrtij2l, Erti′j′2l′) = 0, (3.79)

Cov(UMBC
rtj2l, Eti′j′k′l′) = 0, (3.80)

Cov(CMBC
tj2l , Eti′j′k′l′) = 0, (3.81)

Cov(MBC
tjkl, Eti′j′k′l′) = 0, (3.82)

Cov(UMBC
rtj2l, Erti′j′2l′) = 0, (3.83)

Cov(CMBC
tj2l , Erti′j′2l′) = 0, (3.84)

Cov(MBC
tjkl, Erti′j′2l′) = 0, (3.85)

Cov(SBCtij1l, UMBC
rtj′2l′) = 0, (3.86)

Cov(CMBC
tj2l , UM

BC
rtj′2l′) = 0, (3.87)

Cov(MBC
tjkl, UM

BC
rtj′2l′) = 0. (3.88)

Moreover, all zero-correlations stated in Theorem 2.4 hold as well.

Remarks. In addition to the zero covariances stated in Theorem 3.4, it is strongly recommended
to fix the following covariances between latent state different variables SBCtij1l and latent method

difference variables (CMBC
tj′2l′ , M

BC
tj′kl′) belonging to different constructs j 6= j′ as well as different

occasions of measurement l 6= l′, where l, l′ > 1 to zero:

Cov(SBCtij1l, CMBC
tj′2l′) = 0,

Cov(SBCtij1l,MBC
tj′kl′) = 0.
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Proofs. 9 Testability

3.76 The covariance Cov(SBCtijkl, Eti′j′k′l′) can be expressed as follows

Cov(SBCtijkl, Eti′j′k′l′) = Cov[(Stijkl − Stijk1), Eti′j′k′l′ ]
= Cov(Stijkl, Eti′j′k′l′)− Cov(Stijk1, Eti′j′k′l′),

∀ l > 1.

Given that Cov(Stijkl, Eti′j′k′l′) as well as Cov(Stijk1, Eti′j′k′l′) are zero as a consequence of

the model definition, the covariance Cov(SBCtijkl, Eti′j′k′l′) must be zero as well.

3.77-3.79 The proofs for Equations 3.77 to 3.79 follow straightforward and will be left to the reader.

3.80 The covariance Cov(UMBC
rtj2l, Eti′j′k′l′) is equivalent to

Cov(UMBC
rtj2l, Eti′j′k′l′) = Cov[(UMrtj2l − UMrtj21), Eti′j′k′l′ ]

= Cov(UMrtj2l, Eti′j′k′l′)− Cov(UMrtj21, Eti′j′k′l′),
∀ l > 1.

Given that Cov(UMrtj2l, Eti′j′k′l′) as well as Cov(UMrtj21, Eti′j′k′l′) are zero as a conse-

quence of the model definition, the covariance Cov(UMBC
rtj2l, Eti′j′k′l′) must be zero as well.

Hence, Equation 3.80 holds, too.

3.81-3.85 The proofs for Equations 3.81 and 3.85 follow straightforward and will be left to the reader.

3.86 The covariance Cov(SBCtij1l, UMBC
rtj′2l′) equals zero, given that

Cov(SBCtij1l, UMBC
rtj′2l′) =Cov[(Stij1l − Stij11), (UMrtj′2l′ − UMrtj′21)]

=Cov(Stij1l, UMrtj′2l′)− Cov(Stij1l, UMrtj′21)
− Cov(Stij11, UMrtj′2l′) + Cov(Stij11, UMrtj′21),

∀ l 6= l′ ∧ ∀ l′ > 1.

It has been already shown that Cov(Stij1l, UMrtj′2l′), Cov(Stij1l, UMrtj′21), Cov(Stij11, UMrtj′2l′),
as well as Cov(Stij11, UMrtj′21) are zero by definition. Therefore Equation 3.86 holds.

�

3.7.2 Covariance structure: LC-COM model with CRI

In this section the covariance structure of an extended LC-COM model for three indicators ×

two traits × three methods × two occasions of measurement is presented. This model is algebraic

equivalent to a LS-COM model with conditional regressive independence (CRI) and strong mea-

surement invariance (MI) presented in Chapter 2. Therefore, the total covariance matrices
∑

T of

the observed variables of both models (LS-COM and LC-COM model) are identical. Nevertheless

the reformulation of a LS-COM model into a LC-COM model may be reasonable for answering

particular substantive research questions concerning true intraindividual change. Again, the total

covariance matrix
∑

T is partitioned into a within
∑

W and a between
∑

B matrix:

∑
T

=
∑
W

+
∑
B

The within matrix of size 36×36 is given by:

∑
W

= ΛWΦBC
W ΛT

W + ΘW

ΛW refers to the matrix of the time-invariant factor loadings pertaining to the unique method

(change) factors. The elements of this matrix are denoted by λUMij2, where i=indicator, j=construct,
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k=2 (i.e., interchangeable method). Note that the index l for the measurement occasion has been

dropped, given that these parameters are assumed to be time-invariant. ΛT
W refers to the trans-

posed within factor loading matrix. ΦBC
W refers to the within variance and covariance matrix of

the unique method (baseline change) variables, and ΘW is the diagonal residual covariance matrix,

which is identical to the within residual covariance matrix of the LS-COM model with CRI and

strong MI. The between matrix
∑

B of size 36× 36 is given by:

∑
B

= ΛBΦBC
B ΛT

B + ΘB

ΛB refers to the matrix of the time-invariant between-level factor loadings. The elements of this

matrix are λStijk, λCMtij2, λMtijk. ΛT
B refers to the transposed vector. ΦBC

B refers to the between

variance and covariance matrix of the between latent (baseline change) variables. ΘB refers to

the diagonal between residual covariance matrix and is again identical to the between residual

covariance matrix of the LS-COM model with CRI and strong MI.

In order to define the factor loading matrices ΛW and ΛB properly, the function Pos((j, l))

is needed. This function is clearly defined in Section 2.6.2. However, in contrast to the LS-COM

model, the matrices Ip, where p ∈ N = {1, ..., 4} are defined as follows:

I1 =


1 0 0

1 0 0

0 0 0

0 0 0

 I2 =


1 0 0

0 1 0

0 0 0

0 0 0

 I3 =


0 0 0

0 0 0

0 1 0

0 1 0

 I4 =


0 0 0

0 0 0

0 0 0

0 0 1


The matrix ΛW of size 36× 20 can now be written as the sum over the Kronecker products of Ip

and ΛWp :

ΛW =
4∑

p=1
Ip ⊗ΛWp .

ΛWp of size 9× 5 contains the time invariant within-level factor loadings and is given by:

ΛWp =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 λUM1j2 0

0 0 0 λUM2j2 0

0 0 0 λUM3j2 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


The elements λUM1j2, λUM2j2, λUM3j2 are greater than 0 and denote the latent factor loadings

of the within latent factors UMrtjkl, respectively UMBC
rtjkl. The remaining elements of this matrix

are necessarily zero. The within variance and covariance matrix ΦBC
W of size 20×20 is structurally
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Figure 3.2: Within variance-covariance matrix ΦBC
W of the LC-COM with 1=St1111, 2=St2111,

3=St3111, 4=UMrt121, 5=Mt131, 6=SBCt1112, 7=SBCt2112, 8=SBCt3112, 9=UMBC
rt122, 10=MBC

t132, 11=St211,
12=St211, 13=St211, 14=UMrt221, 15=Mt231, 16=SBCt1212, 17=SBCt2212, 18=SBCt3212, 19=UMBC

rt222,
20=MBC

t232. White colored cells indicate zero correlations, gray colored cells indicate permissible
correlations.

equivalent to the latent covariance matrix of the LS-COM model and is given by:

ΦBC
W = E

[
(VΦBC

W
−E[VΦBC

W
])(VΦBC

W
−E[VΦBC

W
])T
]
.

E(·) is the expected value and VΦBC
W

refers to the vector of size 20×1 including all latent factors,

except for the common method (difference) factor (CMtjkl, CM
BC
tjkl), namely

VΦBC
W

=

 St1111, St2111, St3111, UMrt121,Mt131, S
BC
t1112, S

BC
t2112, S

BC
t3112, UM

BC
rt122,M

BC
t132,

St1211, St2211, St3211, UMrt221,Mt231, S
BC
t1212, S

BC
t2212, S

BC
t3212, UM

BC
rt222,M

BC
t232

T

.

Given that VΦBC
W

refers to the vector of the within (rater-specific) latent variables, any UMrtj2l or

UMBC
rtj2l is uncorrelated with any other variables on the target-level (i. e., Sti′j′1l′ , S

BC
ti′j′1l′ , Mtj′3l′ ,

MBC
tj′3l′ , CMtj′2l′ , CM

BC
tj′2l′). Therefore, VΦBC

W
contains only the latent variance and covariances

of the unique method (change) factors. The structure of the covariance matrix
∑

W is illustrated

in Figure 3.2. Given that the LC-COM model is just a reparametrization of the LS-COM model,

both covariance matrices of the models are identical.

The matrix of the between factor loading ΛB of size 36×20 is given by:

ΛB =
4∑

p=1
Ip ⊗ΛBp .
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ΛBp refers to the between factor loadings matrix of size 9×5:

Λ9×3 =



λS1j1 0 0 0 0

0 λS2j1 0 0 0

0 0 λS3j1 0 0

λS1j2 0 0 λCM1j2 0

0 λS2j2 0 λCM2j2 0

0 0 λS3j2 λCM3j2 0

λS1j3 0 0 0 λM1j3

0 λS2j3 0 0 λM2j3

0 0 λS3j3 0 λM3j3



.

Again, note that the factor loading matrices ΛWp and ΛBp are structurally equivalent to the

matrices presented in Section 2.6.2. The only differences between the LS-COM and LC-COM

model is that different contrast matrices Ip are defined. The between variance and covariance

matrix ΦBC
B of size 20×20 is also equivalent with the covariance matrix ΦB of the LS-COM

model, namely:

ΦBC
B = E

[
(VΦBC

B
−E[VΦBC

B
])(VΦBC

B
−E[VΦBC

B
])T
]
.

E(·) is the expected value and VΦBC
B

refers to the vector of size 20×1 including all latent factors

on the target-level, namely:

VΦBC
B

=

 St1111, St2111, St3111, CMt121,Mt131, S
BC
t1112, S

BC
t2112, S

BC
t3112, CM

BC
t122,M

BC
t132,

St1211, St2211, St3211, CMt221,Mt231, S
BC
t1212, S

BC
t2212, S

BC
t3212, CM

BC
t222,M

BC
t232

T

.

As stated above, all covariances between latent state variables Stj1l (respectively SBCtj1l) and any

latent method factor CMtj2l (respectively CMBC
tj2l) or Mtj3l (respectively MBC

tj3l) pertaining to

the same construct j and same occasion of measurement l necessarily equal zero. In Figure 3.3

the between covariance matrix ΦBC
B of the extended LC-COM model is given for the sake of

completeness.
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Figure 3.3: Between variance-covariance matrix ΦBC
B of the LC-COM with 1=St1111, 2=St2111,

3=St3111, 4=CMt121, 5=Mt131, 6=SBCt1112, 7=SBCt2112, 8=SBCt3112, 9=CMBC
t122, 10=MBC

t132, 11=St211,
12=St211, 13=St211, 14=CMt221, 15=Mt231, 16=SBCt212, 17=SBCt212, 18=SBCt212, 19=CMBC

t222,
20=MBC

t232. White colored cells indicate zero correlations, dark gray colored cells indicate per-
missible correlations. Light gray colored cells indicate correlations that may be fixed to zero for
parsimony.
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The complexity of variance-covariance matrices of the extended LC-COM model with indicator-

specific latent factors can be reduced by assuming common latent factors for the reference state/change

variables as well as for the latent method variables. A path diagram of an extended baseline LC-

COM model with common latent state and change factors is depicted in Figure 3.7.2.
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Figure 3.4: Path diagram of the extended LC-COM model with common latent state and change factors.
An extended LC-COM model with common latent state and change factors incorporating three indicators (i=1,2,3), two constructs (j=1,2), three methods (k=1,2,3)
and two occasions of measurement (l=1,2). All correlations between latent variables were omitted for clarity. Measurement error variables Ertijkl and Etijkl are only
depicted for the first indicator pertaining to method 1 and 2.
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3.7.3 Interpretation of non-zero covariances and correlations

The following correlations are permissible with respect to the definition of the LC-COM model.

Consequently, these correlations can be estimated and interpreted.

1. The correlations Cor(Stij11, S
BC
tij1l) between the initial reference state factors (T1) and the

latent change variables pertaining to the same indicator i, and the same construct j, reflect

the associations between the initial status and change of the targets (see Geiser, 2008). High

positive correlations indicate that targets with high latent state scores (e.g., high teaching

motivation at T1) tend to also have higher latent change scores from measurement occasion

l to l′ compared to those targets with lower latent state scores at T1.

2. The correlations Cor(Stij11, S
BC
tij′1l) between the initial reference state factors (T1) and the

latent change variables pertaining to different construct j and j′ can in some cases be inter-

preted as predictive validity (see Geiser, 2008). For example, teachers with higher teaching

motivation at T1 might benefit more from an intervention than teachers with lower teaching

motivation at T1. Therefore, the high initial status on teaching motivation might also predict

greater increase in teaching quality from time 1 to l.

3. The correlations Cor(SBCtij1l, SBCtij1l′) between latent change variables pertaining to the same

constructs j reflect the relationship between difference scores pertaining to different time

points (see Geiser, 2008). For instance, researcher might be interested in whether or not

the teaching quality increases or decreases persistently after two or more interventions. High

positive correlations indicate that individuals with higher state change scores between differ-

ent time points (1 and l) tend to also have higher latent state change scores between time

points (1 and l′).

4. The correlations Cor(SBCtij1l, SBCtij′1l′) between latent change scores pertaining to different con-

structs j and j′ indicate that true change with regard to construct j (e.g., teaching ability) is

associated with true change with regard to another construct j′ (e.g., teaching quality). Posi-

tive correlations indicate that individuals with higher change scores with respect to construct

j also tend to have higher change scores with respect to construct j′. These correlations can

also be interpreted as discriminant validity of change (see Geiser, 2008). Low correlations

mirror high discriminant validity of change.

5. The correlations between initial method factors and method difference factors belonging to

the same construct j and same method k represent the association of method-specific devia-

tion from the reference method at T1 with the method-specific deviation in change (see Geiser,

2008). Two types of correlations can be distinguished: (i) The correlations Cor(Mtjk1,M
BC
tjkl)

between initial method factors and method difference factors pertaining to the same construct

and the same structurally different method; (ii) the correlations Cor(CMtj21, CM
BC
tj2l) be-

tween initial common method factors and common method difference factor pertaining to the

same construct, as well as (iii) the correlations Cor(UMrtj21, UM
BC
rtj2l) between initial unique

method factors and unique method difference factors pertaining to the same construct.
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6. The correlations Cor(Mtjk1,M
BC
tj′kl) between the initial method factors and method differ-

ence factors belonging to the same method, but different constructs j and j′ are difficult

to interpret (see also Geiser, 2008). In most empirical applications these correlations will

not substantially differ from zero. However, significant correlations would indicate that the

method bias at T1 (e.g., over- or underestimation of the teaching motivation by the school

principal with respect to the teacher self-rating) is associated in some way with the method

bias change between time points 1 and l with respect to the teaching quality. Again, corre-

lations [Cor(CMtj21, CM
BC
tj′2l) and Cor(UMrtj21, UM

BC
rtj′2l)] between the initial common or

unique method factors and common or unique method difference factors belonging to different

constructs j and j′ can be estimated, too.

7. The correlations [Cor(Mtjk1, CM
BC
tj2l), and Cor(CMtj21,M

BC
tjkl)] between initial method fac-

tors and method difference factors pertaining to the same construct j, but different methods

k and k′ reflect the association between the method specific deviation of method k from

the reference method at T1 and the method specific deviation in change for method k′ (see

Geiser, 2008). The correlations are also relatively difficult to interpret. An example of this

correlation would be the correlation between the over- or underestimation of the teaching mo-

tivation by the school principal with respect to the teacher’s self-report (reference method)

at T1 and the change in the over- or underestimation by the student ratings with respect to

the teacher’s self-report.

8. The correlations [Cor(Mtjk1, CM
BC
tj′2l), and Cor(CMtj21,M

BC
tj′kl)] can be estimated for method

factors at T1 and method difference factors pertaining to different constructs j and j′ and dif-

ferent methods k and k′. For most applications these correlations will not differ significantly

from zero.

9. The correlations [Cor(MBC
tjkl,M

BC
tjkl′), Cor(CMBC

tj2l , CM
BC
tj2l′), and Cor(UMBC

rtj2l, UM
BC
rtj2l′)] be-

tween method difference factors pertaining to the same construct and method represent the

association between the method specific deviation in change scores pertaining to different

measurement occasions (see Geiser, 2008). High positive values would indicate, for exam-

ple, that the change scores of the method specific deviation of the student ratings from the

teacher’s self-rating at time l correlate with the change scores of the method specific devia-

tion of the student ratings from the teacher’s self-rating at time l′. In other words, the true

change of method bias for a particular method k follows the same direction (i.e., increase or

decrease in method bias) across different time points l and l′.

10. The correlations [Cor(MBC
tjkl,M

BC
tj′kl′), Cor(CMBC

tj2l , CM
BC
tj′2l′), and Cor(UMBC

rtj2l, UM
BC
rtj′2l′)]

can be estimated for method difference factors pertaining to the same method k, but different

constructs j and j′. These correlations can be interpreted as discriminant validity of change

corrected for the influence of the reference method (see Geiser, 2008).

11. The correlations Cor(MBC
tjkl, CM

BC
tj2l) between method difference factors belonging to the same

construct j, but different methods k and k′ can be interpreted as the convergent validity of

change. For instance, students and the school principal may agree in their ratings of the
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teacher’s development over the course of time, above what can already be predicted by the

teacher’s self-report. High positive correlations indicate that the non-reference methods share

a “common view in change” that is not shared with the reference method (see Geiser, 2008).

12. The correlations between method difference factors pertaining to different constructs j and j′,

different methods k and k′, and different time points l and l′ characterize the “common view

in change” shared by different method difference factors but not shared with the reference

method with respect to different constructs j and j′. In most applications these correlations

will not significantly differ from zero (see Geiser, 2008).

3.7.4 Correlations that should be set to zero for parsimony

The following correlations are permissible by definition, but shall be set to zero for parsimony

in empirical applications. It is most likely that these correlations will not substantially differ from

zero, and thus will be negligible:

1. The correlations between initial state factors of the reference method and any latent method

difference factor.

Cor(Stij11,M
BC
tj′k′l), ∀ k > 2 ∧ ∀ j 6= j′ ∧ ∀ l > 1

Cor(Stij11, CM
BC
tj′2l), ∀ j 6= j′ ∧ ∀ l > 1

2. The correlations between any initial latent method factor and latent reference state difference

factor.

Cor(Mtjk1, S
BC
ti′j′1l), ∀ i 6= i′ ∧ ∀ j 6= j′ ∧ ∀ k > 2 ∧ ∀ l > 1

Cor(CMtj21, S
BC
ti′j′1l), ∀ i 6= i′ ∧ ∀ j 6= j′ ∧ ∀ l > 1

3. The correlation between latent reference state difference factors and any latent method dif-

ference factors.

Cor(MBC
tjkl, S

BC
ti′j′1l′), ∀ i 6= i′ ∧ ∀ j 6= j′ ∧ ∀ k > 2 ∧ ∀ l 6= l′ ∧ ∀ l > 1

Cor(CMBC
tj2l , S

BC
ti′j′1l′), ∀ i 6= i′ ∧ ∀ j 6= j′ ∧ ∀ l 6= l′ ∧ ∀ l > 1
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3.8 General measurement equations and variance decompo-
sitions

In the following section the general measurement equations of extended latent baseline LC-COM

models are discussed. Again, based on the definition of the extended latent baseline LC-COM

model different variance coefficients can be defined. In Theorem 3.3 it has already been shown

that these variance coefficients can be meaningfully interpreted. Again, the independence among

latent variables discussed in Theorem 3.4 as well as Theorem 2.4 are important requirements for

defining different variance coefficients. The next Definition 3.3 defines an extended latent baseline

LC-COM model with common latent change method factors. On the basis of this definition the

general measurement equations of extended latent baseline LC-COM models are introduced. In

the next step, different variance coefficients are discussed.

Definition 3.3
Let M≡ 〈(Ω,A, P ),Srt,St,SBC

t ,UMrt,UMBC
rt ,CMt,CMBC

t ,Mt,MBC
t ,Ert,Et, αtijk,

λSijk, λUMij2, λCMij2, λMijk, 〉 be an extended baseline LC-COM model according to Definition
3.2 and Theorem 3.1, and:

SBC
t ≡ (SBC11112 · · ·SBCtijkl · · ·SBCbcdef )T,

UMBC
rt ≡ (UMBC

11112 · · ·UMBC
rtj2l · · ·UMBC

abd2f )T,
CMBC

t ≡ (CMBC
1112 · · ·CMBC

tj2l · · ·CMBC
bd2f )T,

MBC
t ≡ (MBC

1112 · · ·MBC
tjkl · · ·MBC

bdef )]T.

All other latent variables of the LS-COM model (see Definition 2.3) remain unaltered.

Remarks. In the above Definition 3.3 an extended latent baseline LC-COM model with common
latent difference method factors is defined. Note that the latent difference variables were construed
by the following tautological equations:

Stij1l = Stij11 + (Stij1l − Stij11),
CMtij2l = CMtij21 + (CMtij2l − CMtij21),
UMtij2l = UMtij21 + (UMtij2l − UMtij21),
Mtijkl = Mtijk1 + (Mtijkl −Mtijk1), ∀ k > 2,

where (Stij1l−Stij11) ≡ SBCtij1l, (CMtij2l−CMtij21) ≡ CMBC
tij2l, (UMrtij2l−UMrtij21) ≡ UMBC

rtij2l,

and (Mtijkl −Mtijk1) ≡MBC
tijkl. Furthermore, according to the statements in Definition 3.2 it was

shown (see Theorem 3.1) that latent difference method variables (CMBC
tij2l, UM

BC
rtij2l, M

BC
tijkl) per-

taining to the same construct j, same non-reference method k, and same occasion of measurement
l are positive linear transformations of each other, respectively. Hence, it was assumed that these
latent difference variables only differ by a multiplicative constant. Consequently, latent difference
method factors (CMBC

tj2l , UM
BC
rtj2l, M

BC
tjkl) were construed. According to Theorem 3.4 as well as 2.4

the measurement equations for the observed variables are given by:

Ytij1l =Stij11 + SBCtij1l + Etij1l, ∀ l > 1, (3.89)

Ytijkl =αtijk + λSijkStij11 + λSijkS
BC
tij1l+

λMijkMtjk1 + λMijkM
BC
tjkl + Etijkl,

∀ k > 2, l > 1, (3.90)

Yrtij2l =αtij2 + λSij2Stij11 + λSij2S
BC
tij1l+

λCMij2CMtj21 + λCMij2CM
BC
tj2l+

λUMij2UMrtj21 + λUMij2UM
BC
rtj2l + Ertij2l,

∀ l > 1. (3.91)
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3.8.1 Variance decomposition

Based on the above Equations 3.89 to 3.91, the variance of the observed variables can be

decomposed as follows:

V ar(Ytij1l) =V ar(Stij11) + V ar(SBStij1l)+

2Cov(Stij11, S
BC
tij1l) + V ar(Etij1l),

∀ l > 1, (3.92)

V ar(Ytijkl) =λ2
SijkV ar(Stij11) + λ2

SijkV ar(SBCtij1l)+

2(λ2
Sijk)Cov(Stij11, S

BC
tij1l) + λ2

MijkV ar(Mtjk1)+

λ2
MijkV ar(MBC

tjkl) + 2(λ2
Mijk)Cov(Mtjk1,M

BC
tjkl)+

V ar(Etijkl),

∀ k > 2,∀ l > 1, (3.93)

V ar(Yrtij2l) =λ2
Sij2V ar(Stij11) + λ2

Sij2V ar(SBCtij1l)+

2(λ2
Sij2)Cov(Stij11, S

BC
tij1l)+

λ2
CMij2V ar(CMtj21) + λ2

CMij2V ar(CMBC
tj2l)+

2(λ2
CMij2)Cov(CMtj21, CM

BC
tj2l)+

λ2
UMij2V ar(UMrtj21) + λ2

UMij2V ar(UMBC
rtj2l)+

2(λ2
UMij2)Cov(UMrtj21, UM

BC
rtj2l) + V ar(Ertij2l),

∀ l > 1. (3.94)

According to the above Equations 3.92 to 3.94 the variance decomposition of the observed variables

implies not only additive variance components, but also the latent covariances between the initial

state Stijk1 and the latent difference variables SBCtij1l. Given that researchers might find it difficult to

interpret different variance components with regard to this variance decomposition, an alternative

variance decomposition is proposed. The following variance decomposition is based on the observed

difference scores, given that the observed difference scores are of particular interest for researchers

studying true interindividual differences in intraindividual change. A convenient side effect of

this variance decomposition is that no covariance structure between the initial state and latent

difference (change) variables has to be considered (see also Geiser, 2008). In order to decompose

the total variance of the observed difference (change) scores, strong measurement invariance has

to be assumed. Only if strong measurement invariance holds, the total variance of any observed

difference score [Y BCtijkl ≡ (Ytijkl − Ytijk1) as well as Y BCrtij2l ≡ (Yrtij2l − Yrtij21), ∀ l > 1] can be



CHAPTER 3. THE BASELINE LATENT CHANGE (LC-COM) MODEL 85

decomposed as follows (see Proof 10):

V ar(Y BCtij1l) =V ar(SBCtij1l) + V ar(Etij11)+

V ar(Etij1l),
∀ l > 1, (3.95)

V ar(Y BCtijkl) =λ2
SijkV ar(SBCtij1l) + λ2

MijkV ar(MBC
tjkl)+

V ar(Etijk1) + V ar(Etijkl),
∀ k > 2, l > 1, (3.96)

V ar(Y BCrtij2l) =λ2
Sij2V ar(SBCtij1l)+

λ2
CMij2V ar(CMBC

tj2l)+

λ2
UMij2V ar(UMBC

rtj2l)+

V ar(Ertij21) + V ar(Ertij2l),

∀ l > 1. (3.97)

With respect to the Equations 3.95 to 3.97, it is clear that the amount of “true”change with respect

to reference state or method variables can be investigated. However, it is important to note that

the error variances at both time points are part of the equation (see Geiser, 2008). This is a direct

consequence of the rules of variances and covariances (see Steyer & Eid, 2001, Box F.1., p. 343). On

the basis of this additive variance decomposition, it is possible to define the consistency coefficient

of true change:

CON(τBCtijkl) =
λ2
SijkV ar(SBCtij1l)

V ar(Y BCtijkl)− V ar(Etijk1)− V ar(Etijkl)
, ∀ k > 2,

CON(τBCrtij2l) =
λ2
Sij2V ar(SBCtij1l)

V ar(Y BCrtij2l)− V ar(Ertij21)− V ar(Ertij2l)
.

The consistency coefficient of true change represents the proportion of true variance of the observed

change scores that is determined by the change of the reference method. The consistency coefficient

of true change may also be interpreted as index of true convergent validity of change (Geiser,

2008). In addition, different coefficients of method specificity indicating true method change can

be calculated. These coefficients represent the proportion of true variance of an observed change

score that is determined by “pure” method change. The term “pure” refers to the fact that the

proportion of true change of an observed change score is investigated that is not explained by the

true change of the reference method. This amount of true variance is free of change of the reference

method, but solely due to the change of a non-reference method. In total, three method specificity

coefficients of “true” method change can be defined: the method specificity coefficient of the non-

reference structurally different method MS(τBCtijkl), the common method specificity coefficient of

the non-reference interchangeable methods CMS(τBCrtij2l) and the unique method coefficient of the
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non-reference interchangeable methods UMS(τBCrtij2l):

MS(τBCtijkl) =
λ2
MijkV ar(MBC

tjkl)
V ar(Y BCtijkl)− V ar(Etijk1)− V ar(Etijkl)

, ∀ k > 2,

CMS(τBCrtij2l) =
λ2
CMij2V ar(CMBC

tj2l)
V ar(Y BCrtij2l)− V ar(Ertij21)− V ar(Ertij2l)

,

UMS(τBCrtij2l) =
λ2
UMij2V ar(UMBC

rtj2l)
V ar(Y BCrtij2l)− V ar(Ertij21)− V ar(Ertij2l)

.

Moreover, the total method change coefficient TMS(τBCrtij2l) with respect to the true change scores

of the interchangeable methods is given by:

TMS(τBCrtij2l) =
λ2
UMij2V ar(UMBC

rtj2l) + λ2
CMij2V ar(CMBC

tj2l)
V ar(Y BCrtij2l)− V ar(Ertij21)− V ar(Ertij2l)

Finally, the reliability coefficient for the observed change scores can be defined as follows:

Rel(Y BCtijkl) = 1−
V ar(Etij11) + V ar(Etij1l)

V ar(Y BCtij1l)
, ∀ k > 2,

Rel(Y BCrtij2l) = 1−
V ar(Etijk1) + V ar(Etijkl)

V ar(Y BCtijkl)
.

Subsequently, the unreliability coefficients are defined as follows:

Unrel(Y BCtijkl) = 1−Rel(Y BCtijkl) =
V ar(Etijk1) + V ar(Etijkl)

V ar(Y BCtijkl)
, ∀ k > 2,

Unrel(Y BCrtij2l) = 1−Rel(Y BCrtij2l) =
V ar(Ertij21) + V ar(Ertij2l)

V ar(Y BCrtij2l)
.

Proofs. 10 If and only if the conditions of strong factorial invariance hold, the observed variables
can be decomposed in the following way:

Ytij11 =Stij11 + Etij11

Ytij1l =Stij1l + Etij1l, ∀ l > 1,

Ytijk1 =αtijk + λSijkStij11 + λMijkMtjk1 + Etijk1, ∀ k > 2,
Ytijkl =αtijk + λSijkStij1l + λMijkMtjkl + Etijkl, ∀ k > 2, l > 1,

Yrtij21 =αtij2 + λSij2Stij11 + λCMij2CMtj21+
λUMij2UMrtj21 + Ertij21,

Yrtij2l =αtij2 + λSij2Stij1l + λCMij2CMtj2l+
λUMij2UMrtj2l + Ertij2l

, ∀ l > 1.
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The observed difference scores are then given by:

(Ytij1l − Ytij11) =(Stij1l + Etij1l)− (Stij11 + Etij11)
=(Stij1l − Stij11) + Etij1l − Etij11,

(Ytijkl − Ytijk1) =(αtijk + λSijkStij1l + λMijkMtjkl + Etijkl)−
(αtijk + λSijkStij11 + λMijkMtjk1 + Etijk1)

=λSijk(Stij1l − Stij11) + λMijk(Mtjkl −Mtjk1)+
Etijkl − Etijk1,

(Yrtij2l − Yrtij21) =(αtij2 + λSij2Stij1l + λCMij2CMtj2l + λUMij2UMrtj2l + Ertij2l)−
(αtij2 + λSij2Stij11 + λCMij2CMtj21 + λUMij2UMrtj21 + Ertij21)

=λSij2(Stij1l − Stij11) + λCMij2(CMtj2l − CMtj21)+
λUMij2(UMrtj2l − UMrtj21) + Ertij2l − Ertij21.

Let (Ytijkl−Ytijk1) be Y BCtijkl, (Yrtij2l−Yrtij21) be Y BCrtij2l and (Stij1l−Stij11) be SBCtij1l, (Mtjkl−Mtjk1)
be MBC

tjkl, (CMtj2l −CMtj21) be CMBC
tj2l , and (UMrtj2l −UMrtj21) be UMBC

rtj2l, then the equations
yield:

Y BCtij1l =SBCtij1l + Etij1l − Etij11, (3.98)

Y BCtijkl =λSijkSBCtij1l + λMijkM
BC
tjkl + Etijkl − Etijk1, ∀ k > 2, (3.99)

Y BCrtij2l =λSij2SBCtij1l + λCMij2CM
BC
tj2l + λUMij2UM

BC
rtj2l + Ertij2l − Ertij21. (3.100)

If and only if strong measurement invariance holds, then Equations 3.98 to 3.100 follow, given
that the intercepts αtijk drop out and all variables on the right hand side of the equations are
uncorrelated with each other.

�

3.9 Mean structure

With respect to longitudinal studies many researcher seek to investigate mean change over time.

In this section, the latent variable mean structure of the LC-COM model is discussed. The following

theorem shows the consequences of the model definition for the observed and latent variables.

Theorem 3.5 (Mean structure)
If M≡ 〈(Ω,A, P ),Srt,St,SBC

t ,UMrt,UMBC
rt ,CMt,CMBC

t ,Mt,MBC
t ,Ert,Et, αtijk,

λSijk, λUMij2, λCMij2, λMijk, 〉 is called an extended baseline LC-COM change model and with-
out loss of generality, k=1 method is chosen as reference method, then the following mean
structure holds for all r ∈ R ≡ {1, . . . , a}, t ∈ T ≡ {1, . . . , b}, i ∈ I ≡ {1, . . . , c},
j ∈ J ≡ {1, . . . , d}, k ∈ K ≡ {1, . . . , e}, l ∈ L ≡ {1, . . . , f}:

E(Y BCrtij2l) = λtij2E(SBCtij1l), ∀ l > 1, (3.101)

E(Y BCtijkl) = λtijkE(SBCtij1l), ∀ k > 2,∧∀ l > 1, (3.102)
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E(SBCtij1l) = E(Y BCtij1l), ∀ l > 1, (3.103)

E(CMBC
tj2l) = 0, ∀ l > 1, (3.104)

E(UMBC
rtj2l) = 0, ∀ l > 1, (3.105)

E(MBC
tijkl) = 0, ∀ k > 2,∧ ∀ l > 1, (3.106)

E(Etijkl) = 0, ∀ k 6= 2, (3.107)

E(Ertij2l) = 0, (3.108)

where E(.) denotes expected value (mean).

Proofs. 11 According to Equation 3.99 the measurement equation of the observed difference vari-
ables Y BCtijkl is given by:

Y BCtijkl = λSijkS
BC
tij1l + λMijkM

BC
tjkl + Etijkl − Etijk1.

Therefore, the equation above can be rewritten as follows:

E(Y BCtijkl) = E(λSijkSBCtij1l) + E(λMijkM
BC
tjkl) + E(Etijkl)− E(Etijk1).

According to Equation 3.106 and 3.107, the expected values of the latent method change as well as
the measurement error variables equal zero. This is a direct consequence of the definition of these
variables, given that these variables (MBC

tjkl, Etijkl, and Etijk1) are defined as residuals and residual
variables always have an expected value of zero (Steyer, 1989; Steyer & Eid, 2001). Hence, the
equation above simplifies to Equation 3.102:

E(Y BCtijkl) = E(λSijkSBCtij1l) = λSijkE(SBCtij1l).

Similarly, according to Equation 3.100 the measurement equation of the observed difference vari-
ables Y BCrtij2l is given by:

Y BCrtij2l = λSij2S
BC
tij1l + λCMij2CM

BC
tj2l + λUMij2UM

BC
rtj2l + Ertij2l − Ertij21.

Again, the above equation can be rewritten in terms of expected values as follows:

E(Y BCrtij2l) = E(λSij2SBCtij1l) + E(λCMij2CM
BC
tj2l) + E(λUMij2UM

BC
rtj2l) + E(Ertij2l)− E(Ertij21).

As a consequence of the definition of the latent variables (CMBC
tj2l , UM

BC
rtj2l, Ertij2l, and Ertij21) as

latent residual variables, the conditions stated in Equation 3.104, 3.105, and 3.108 hold. Therefore,
Equation 3.101 follows, given that

E(Y BCrtij2l) = E(λSij2SBCtij1l) = λSij2E(SBCtij1l).

Finally, according to Equation 3.98 the measurement equation of the observed difference variables
Y BCtij1l is given by:

Y BCtij1l = SBCtij1l + Etij1l − Etij11.

With respect to the definition of the latent variables, this equation can be rewritten as follows:

Y BCtij1l = E(SBCtij1l),

given that the measurement error variables are again defined as latent residuals, and thus have an
expected value of zero (Steyer, 1989; Steyer & Eid, 2001).

3.10 Identifiability

As mentioned before, both change models (baseline LC-COM as well as extended baseline LC-

COM model) represent an alternative parametrization of the LS-COM model (see Chapter 2).

Thus, the parameters of any latent LC-COM model are identified for at least two indicators, one

construct, two methods, and two occasions of measurement and correlated latent state as well as

change method factors as described in Theorem 2.6 of Chapter 2.
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Box 3.1 (Baseline latent change Model)
Latent variables of the baseline LS-COM model

SBCtij1l target-specific latent change variables of the reference
(here: structurally different, k = 1) method of con-
struct j on measurement occasion l assessed by in-
dicator i (e.g., “true” intraindividual change of the
leadership quality of a particular target assessed by
indicator i from the initial state to occasion of mea-
surement l)

UMBC
rtij2l rater-target-specific latent unique method change

variables of the non-reference method k = 2 of con-
struct j on measurement occasion l assessed by indi-
cator i (e.g., “true” change of the unique rater bias
of the leadership quality assessed by indicator i from
the initial state to occasion of measurement l)

CMBC
tij2l target-specific latent common method change vari-

ables of the non-reference method k = 2 of construct
j on measurement occasion l assessed by indicator i
(e.g., “true” change of the common rater bias of the
leadership quality assessed by indicator i from the ini-
tial state to occasion of measurement l)

MBC
tijkl target-specific latent method change variables of other

non-reference methods k > 2 of construct j on mea-
surement occasion l assessed by indicator i (e.g., the
“true” change of method bias of the leadership quality
assessed by indicator i on occasion of measurement
l)



Chapter 4

Formal definition of the latent
state-trait (LST-COM) model

4.1 A gentle introduction

In the following chapter, a longitudinal multitrait-multimethod (MTMM) latent state-trait

model for the combination of structurally different and interchangeable methods is formally de-

fined. The model will be abbreviated LST-COM model. Latent state-trait (LST) models (Eid,

Schneider, & Schwenkmezger, 1999; Steyer et al., 1992) are commonly used to study “true” (i.e.,

measurement error free) stable interindividual differences, true occasion-specific interindividual dif-

ferences, as well as occasion-specific influences due to measurement error (Geiser, 2008). The basic

principle of LST-theory is the decomposition of the latent state variables Sil into a latent trait

variables ξil and an occasion-specific residual variables ζil (Eid et al., 1999; Steyer et al., 1992).

For the sake of simplicity, the general decomposition of the latent state variables of a LST model

is presented for monoconstruct-monomethod measurement designs first. That is, only two indices

are needed: i for indicator (item) and l for occasion of measurement. Later in this chapter, this

general decomposition is extended to multiconstruct-multimethod measurement designs combin-

ing structurally different and interchangeable methods. The latent variables in a LST model are

defined as follows (Courvoisier, 2006; Eid, 1995; Eid et al., 1999; Steyer et al., 1992):

Sil ≡ E(Yil|pu, pSitl),

Eil ≡ Yil − E(Yil|pu, pSitl),

ξil ≡ E[E(Yil|pu, pSitl)|pu] = E(Yil|pu),

ζil ≡ E(Yil|pu, pSitl)− E(Yil|pu).

E(·|·) is the conditional expectation, (pu) represents the projection into a set of persons and (pSitl)

denotes the projection into a set of situations. The total measurement equation of any observed

variable in a LST model can be therefore written as:

Yil = E(Yil|pu) + [E(Yil|pu, pSitl)− E(Yil|pu)] + [Yil − E(Yil|pu, pSitl)]

= ξil + ζil + Eil.

90
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The latent state variables Sil are defined as conditional expectations of Yil given the person (pu)

and the situation (pSitl). The measurement error variables Eil are defined as differences between

the observed variables Yil and the latent state variables. The latent trait variables ξil are defined

as conditional expectations of the latent state variable Sil (or the observed variables Yil) given the

person (pu). Consequently, the latent trait variables reflect “true” person-specific influences. The

latent state residual variables ζil are defined as differences between the latent state variables Sil and

the latent trait variables ξil. Hence, the latent state residual variables represent measurement error

free influences due to the situation (pSitl) and/or due to the interaction between the person (pu)

and the situation (pSitl). As a consequence of the definition of ζil as latent residuals with respect

to ξil, both latent variables are uncorrelated with each other. For a detail description of the LST

theory see Steyer et al. (1992) as well as Eid (1995). In the following sections, the definition of the

latent variables of a LST model for multiconstruct-multimethod measurement designs combining

structurally different and interchangeable methods is given. This model is called LST-COM model,

given that it combines LST-theory and multiconstruct-multimethod analysis for a combination of

different types of methods. Again, the abbreviation LST denotes that a LST model is defined. The

abbreviation COM stands for combination of structurally different and interchangeable methods.

Step 1: Definition of the latent trait and state-residual variables

In a similar way, the latent variables (i.e., the latent state, trait, state-residuals, and measure-

ment error variables) of the LST-COM model are defined:

Srtij2l ≡ E(Yrtij2l|pT , pTSl , pR, pRSl),

Stijkl ≡ E(Ytijkl|pT , pTSl),

Ertij2l ≡ Yrtij2l − E(Yrtij2l|pT , pTSl , pR , pRSl),

Etijkl ≡ Ytijkl − E(Ytijkl|pT , pTSl),

ξtijkl ≡ E(Stijkl|pT ),

ζtijkl ≡ Stijkl − E(Stijkl|pT ).

Again, E(·|·) is the conditional expectation. However, (pT ) stands for the projection into a set of

targets, (pTSl) represents the projection into a set of target-specific situations, (pR) refers to the

projection into a set of raters, (pRSl) denotes the projection into a set of rater-specific situations.

The latent variables (Srtij2l, Ertij2l) represent the latent state variables as well as their corre-

sponding measurement error variables on level-1 (rater-level), whereas the latent variables (Stijkl,

ξtijkl, ζtijkl, Etijkl) denote the latent state, trait, state-residual and measurement error variables

on level-2 (i.e., the target-level). Note that six indices are used in order to define a LST model for

multitrait-multimethod measurement designs combining different types of methods: Again, k = 2

represents the non-reference interchangeable method (e.g., multiple student ratings for teaching

quality). The index r indicates that multiple ratings for target t are measured on the rater-level.

Conversely, any latent variable without the index r is measured on the target-level. The remaining

indices (i, j, l) stand for i = item or indicator, j = construct, and l = occasion of measurement.



CHAPTER 4. THE LATENT STATE-TRAIT (LST-COM) MODEL 92

In order to define level-2 (target-specific) latent state variables Stij2l on the basis of the level-1

(rater-specific) latent state variables Srtij2l pertaining to the interchangeable methods (k = 2), the

target- and occasion-specific expectations of the level-1 latent state variables Srtij2l are considered

once again:

Stij2l ≡ E(Srtij2l|pT , pTSl) (4.1)

= E
[
E(Yrtij2l|pT , pTSl , pR, pRSl)|pT , pTSl

]
(4.2)

= E(Yrtij2l|pT , pTSl). (4.3)

According to the above Equation 4.1, the latent state variables Stij2l are defined as conditional

expectations of Srtij2l given the target (pT ) in a situation (pTSl). Hence, these latent variables

may be interpreted as expected values of the interchangeable ratings Stij2l for a particular target t

on occasion of measurement l. The residuals of the latent regression analysis are defined as unique

method variables UMrtij2l:

UMrtij2l ≡ Srtij2l − E(Srtij2l|pT , pTSl).

The latent residual variables UMrtij2l represent the occasion-specific unique method bias for a

particular rater. In other words, the latent unique method variables UMrtij2l reflect the true over-

or underestimation of the true ratings of the interchangeable raters by a particular rater on occasion

of measurement l. Given that these latent variables are defined as residuals and given the fact that

the expectations of residual variables are always zero (Steyer, 1988, 1989; Steyer & Eid, 2001), the

expectations of the UMrtij2l residual variables are also zero by definition. Another consequence is

that the latent unique method variables are uncorrelated with any other latent state variable Stij2l

on the target-level. In order to defined level-2 latent trait as well as level-2 latent state-residual

variables on the basis of the latent state variables Stij2l, the target- and occasion-specific latent

state variables Stij2l are decomposed as follows:

ξtij2l ≡ E(Stij2l|pT ) (4.4)

= E
[
E(Yrtij2l|pT , pTSl)|pT

]
(4.5)

= E(Yrtij2l|pT ). (4.6)

With respect to the Equation 4.4, the latent trait variables ξtij2l for the non-reference interchange-

able method represent the conditional expectations of the latent state variables Stij2l given the

target (pT ). Thus, the latent trait variables ξtij2l represent the “true” and consistent view of the

interchangeable raters for a particular target. Note that the latent trait variables for the remaining

methods (k = 1 and k > 2) can be defined in a similar way:

ξtij1l ≡ E(Ytij1l|pT ),

ξtijkl ≡ E(Ytijkl|pT ), ∀ k > 2.
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However, the latent trait variables (ξtij1l, ξtijkl) represent the “true” consistent view of the ref-

erence or non-reference method (e.g., teacher’s self-ratings, rating of the school principle). That

means that the index k indicates whether the “true” and consistent view of the target’s behavior

is measured with regard to the reference method (k=1; self-report), the non-reference method be-

longing to the interchangeable method (k=2; peer reports), or the non-reference method belonging

to a structurally different method (k>2; parent report). The residuals of these latent regression

analyses are once again defined as occasion-specific latent residual variables (ζtij1l, ζtij2l, ζtijkl):

ζtij1l ≡ Stij1l − ξtij1l,

ζtij2l ≡ Stij2l − ξtij2l,

ζtijkl ≡ Stijkl − ξtijkl, ∀ k > 2.

The latent state-residual variables (ζtij1l, ζtij2l, ζtijkl) are defined as difference between latent state

variables and the latent trait variables. Again, these variables are defined as residual variables.

Therefore, these variables have expectations of zero and are uncorrelated with their corresponding

latent trait variables. The latent state-residual variables ζtij2l represent the occasion-specific devia-

tions of the“true”common view of the interchangeable methods from the“true”time-invariant (i.e.,

trait) common view of the interchangeable methods. In contrast to that, the latent state-residual

variables ζtij1l represent the occasion-specific deviations of the“true”rating of the reference method

(e.g., teacher’s self-rating) from the occasion-unspecific (time-invariant) “true” rating of the refer-

ence method. The latent state-residual variables ζtijkl represent the occasion-specific deviations of

the“true” ratings of the structurally different non-reference method (e.g., ratings of the school prin-

ciple) from the occasion-unspecific “true” rating of the structurally different non-reference method.

Step 2: Definition of the latent trait and state-residual method variables on the rater-

level

One of the main advantages of the LST-COM model is that trait (ξUMrtij2l, ξ
CM
tij2l, ξ

M
tijkl) as

well as state-residual (ζUMrtij2l, ζ
CM
tij2l, ζ

M
tijkl) method variables can be defined. With respect to the

definition of these latent method variables it is possible to analyze consistent as well as occasion-

specific method bias on different measurement levels (rater- and target-level). With respect to the

definition of the latent trait and state method variables (ξCMtij2l, ξ
M
tijkl, ζ

CM
tij2l, ζ

M
tijkl) it is also possible

to investigate “pure” trait or state method effects (i.e., not shared with the reference method).

In the following, the latent trait unique method variables ξUMrtij2l on the rater-level (level-1) are

considered first. In the next step, the latent trait method variables ξCMtij2l and ξMtijkl on the target-

level (level-2) are discussed. The latent trait unique method variables ξUMrtij2l are defined as follows:

ξUMrtij2l ≡ E(UMrtij2l|pT , pR). (4.7)

With respect to the Equation 4.7, it is not easy to see what the latent trait unique method variables

ξUMrtij2l mean, given that the occasion-specific unique method variables UMrtij2l (on the right side

of the equation) can be further decomposed. For the sake of clarity, this decomposition shall be
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illustrated briefly:

ξUMrtij2l ≡E(UMrtij2l|pT , pR)

=E[(Srtij2l − Stij2l)|pT , pR]

=E(Srtij2l|pT , pR)− E(Stij2l|pT , pR)

=E[E(Yrtij2l|pT , pTSl , pR, pRSl)|pT , pR]− E[E(Yrtij2l|pT , pTSl)|pT , pR).

With respect to one additional assumption (called: conditional regressive independence with re-

spect to Stij2l), the equation [E[E(Yrtij2l|pT , pTSl , pR, pRSl)|pT , pR]−E[E(Yrtij2l|pT , pTSl)|pT , pR)]

can be simplified to (see Proof 12):

ξUMrtij2l ≡ E(Yrtij2l|pT , pR)− E(Yrtij2l|pT ).

Hence, if this additional assumption holds, the latent trait unique method variables ξUMrtij2l can

be interpreted as “true” and consistent unique method bias of a particular rater. The additional

assumption assumes that the latent state variables Stij2l are conditionally regressive independent

from the raters (pR) given the target (pT ). Another consequence of this additional assumption

is that the latent state-residual unique method variables ζUMrtij2l can be defined as residuals with

respect to the latent trait unique method variables:

ζUMrtij2l ≡ UMrtij2l − ξUMrtij2l.

Given that the latent state-residual unique method variables ζUMrtij2l are defined as residuals, they

have expectations of zero and are uncorrelated with their corresponding ξUMrtij2l variables. The latent

state-residual unique method variables ζUMrtij2l can be interpreted as “true” momentary rater-bias

with respect to the interchangeable methods.

Step 3: Definition of the latent trait and state-residual method variables on the target-

level

The consistent as well as occasion-specific method variables on the target-level can be defined

with respect to the following latent regression analyses:

E(ξtijkl|ξtij1l) = αtijkl + λξijklξtij1l, (4.8)

E(ζtijkl|ζtij1l) = λζijklζtij1l. (4.9)

Note that this latent regression approach relates to the general CTC(M -1) modeling framework

(see Courvoisier, 2006; Eid, 2000; Eid et al., 2003). The LST-COM model therefore combines the

advantages of the CTC(M -1) modeling framework as well as the longitudinal modeling approach

of LST models. The residuals of the regression above (see Equation 4.8 and 4.9) can be defined as
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the latent trait (common) method effects (ξCMtij2l, ξ
M
tijkl):

ξCMtij2l ≡ ξtij2l − E(ξtij2l|ξtij1l),

ξMtijkl ≡ ξtijkl − E(ξtijkl|ξtij1l), ∀ k > 2.

The latent trait common method variables ξCMtij2l represent the common and consistent (time-

invariant) part of method bias pertaining to the interchangeable methods (e.g., peer ratings, col-

league ratings) that is not shared with the reference method (e.g., target’s self-report). The term

“common” refers to the fact that this consistent method bias is common to all interchangeable

raters and thereby reflects the consistent view of the interchangeable raters that is not shared with

the reference method. The latent trait method variables ξMtijkl reflect the consistent deviation of a

non-reference structurally different method (e.g., parent rating, supervisor rating) from the refer-

ence method (e.g., self-report). With respect to the correlations of these two latent trait method

variables (ξCMtij2l, ξ
M
tijkl), the generalizability of consistent method biases across indicators, methods

and/or constructs can be studied. As a consequence of the definition of the latent trait method

variables (namely as latent residual variables), it follows that these variables have a expected values

of zero and are uncorrelated with all latent trait variables pertaining to the same indicator and

construct.

According to the Equation 4.9, the latent state-residual (common) method variables (ζCMtij2l,

ζMtijkl) can be also defined as latent residual variables:

ζCMtij2l ≡ ζtij2l − E(ζtij2l|ζtij1l),

ζMtijkl ≡ ζtijkl − E(ζtijkl|ζtij1l), ∀ k > 2.

The latent state-residual common method ζCMtij2l variables represent the occasion-specific (not con-

sistent or time-invariant) part of method bias of the interchangeable methods (e.g., peer ratings,

colleague ratings) that is not shared with the consistent view of the reference method (e.g., tar-

get’s self-report). In other words, the latent ζCMtij2l variables capture the amount of occasion-specific

and common method influences of the set of interchangeable methods/raters that is not shared

with occasion-specific influences of the reference method (target’s self-report). In contrast, the

ζMtijkl variables represent the occasion-specific deviation of the non-reference structurally differ-

ent method (e.g., parent rating, supervisor rating) from the occasion-specific view of the reference

method (e.g., target’s self-report). Again, due to the definition of these variables as latent residuals,

the general properties of residuals apply as well (Steyer & Eid, 2001).

According to the LST-theory it is possible to define different variance coefficients such as con-

sistency and specificity (Eid et al., 1999; Steyer et al., 1992). However, for simplicity reasons these

coefficients are not discussed in this gentle introduction, but rather in Section 4.7.1 after the LST-

COM model has been formally defined. Besides, in order to define all of these variance coefficients

properly, additional assumptions have to be introduced (see Section 4.6.1). In the next step, the

gentle introduction ends with the general measurement equations of the observed variables in the

LST-COM model.
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Step 4: Definition of common trait and method variables

In the fourth step, additional homogeneity assumptions are imposed with regard to the latent

trait variables. These assumptions are important for defining latent trait factors (see also Cour-

voisier, 2006; Eid, 1995; Eid et al., 1999; Geiser, 2008; Steyer et al., 1992). For a detailed discussion

of how these latent trait factors can be formally defined based on the homogeneity assumptions

see Section 4.3.

The first homogeneity assumption concerns the latent trait variables ξtij1l as measured by the

reference method. Specifically, it is assumed that the latent trait variables pertaining to the same

indicator i, construct j, the reference method k = 1, but different occasions of measurement l

and l′ are homogeneous and only differ with respect to an additive αtij1l as well as multiplicative

λξtij1l constant. With respect to this assumption, common item- and construct-specific latent trait

factors (i.e., item- and construct-specific latent trait factors) can be defined:

ξtij1l = αtij1l + λξtij1lξtij1.

Note that the index k = 1 with respect to the latent trait variable ξtij1 may also be dropped,

given that all the latent trait variables belonging to the non-reference methods ξtijkl are regressed

on the reference latent trait variables ξtij1l and thus all latent trait variables are measured by a

general latent trait factor ξtij . In a similar way, it is assumed that the latent trait method variables

pertaining to the same indicator i, construct j, method k, but different occasion of measurement

l and l′ are homogeneous. Thus, latent trait method factor maybe defined as well:

ξUMrtij2l = λUMξij2lξ
UM
rtij2, (4.10)

ξCMtij2l = λCMξij2lξ
CM
tij2 , (4.11)

ξMtijkl = λMξijklξ
M
tijk, ∀ k > 2. (4.12)

(4.13)

Finally, it is assumed that the latent occasion-specific method variables pertaining to the same

occasion of measurement l, construct j and method k, but different indicators i and i′ are homo-

geneous and only differ by a multiplicative constant:

ζUMrtij2l = λUMζij2lζ
UM
rtj2l, (4.14)

ζCMtij2l = λCMζij2lζ
CM
tj2l , (4.15)

ζMtijkl = λMζijklζ
M
tjkl, ∀ k > 2. (4.16)

(4.17)

Again, with respect to the Equations 4.14 to 4.16, it is possible to construe latent trait as well

as latent method factors. The demonstrations of the existence, uniqueness as well as admissible

transformations of these common latent variables are provided in the following sections. Finally,
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the complete measurement equation of the observed variables of the LST-COM model is given by:

Ytij1l =ξtij + ζtijl + Etij1l, (4.18)

Ytijkl =αtijkl + λξijklξtij + λMξijklξ
M
tijk+

λζijklζtijl + λMζijklζ
M
tjkl + Etijkl,

∀ k > 2, (4.19)

Yrtij2l =αtij2l + λξij2lξtij + λCMξij2lξ
CM
tij2 + λUMξij2lξ

UM
rtij2+

λζij2lζtijl + λCMζij2lζ
CM
tj2l + λUMζij2lζ

UM
rtj2l + Ertij2l.

(4.20)

Figure 4.1 illustrates the LST-COM model that was explained in this gentle introduction. However,

due to the complexity of this model a more restrictive variant of the LST-COM model with common

latent state, trait, and method factors is presented in Figure 4.1. Both models are presented for a

complete measurement design of three indicators, two constructs, three methods (two structurally

different and one set of interchangeable methods), and two occasions of measurement.
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Figure 4.1: Path diagram of LST-COM model with indicator-specific latent trait factors.
Path diagram of LST-COM model for three indicators (i=1,2,3), two constructs (j=1,2), three methods (k=1,2,3) and two occasions of measurement (l=1,2). All
correlations between latent variables as well as factor loading parameters were omitted for clarity. Measurement error variables Ertijkl and Etijkl are only depicted for
the first indicator pertaining to method 1 and 2.
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Figure 4.2: Path diagram of the LST-COM model with common latent trait factors.
Path diagram of the LST-COM model with common latent state, trait, and method factors incorporating for three indicators (i=1,2,3), two constructs (j=1,2), three
methods (k=1,2,3) and two occasions of measurement (l=1,2). All correlations between latent variables were omitted for clarity. Measurement error variables Ertijkl
and Etijkl are only depicted for the first indicator pertaining to method 1 and 2.
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4.2 Definition of the LST-COM model

The following chapter the LST-COM model is formally defined based on the stochastic mea-

surement theory by Steyer (1989) as well as Steyer and Eid (2001). Moreover, the LST-COM

model incorporates the CTC(M -1) modeling framework by Eid (2000) as well as Eid et al. (2003).

Definition 4.1 (LST-COM model)
The random variables {Y111111, . . . , Yrtijkl, . . . , Yabcdef} and {Y11111, . . . , Ytijkl, . . . , Ybcdef} on
a probability space (Ω,A,P) are variables of a LST-COM model if and only if the conditions
(a to e) of Definition 2.1 [i.e., LS-COM model] and the conditional regressive independence
assumption made in Definition 2.2 hold:

(a) Then, the variables

Rater-level (level-1):

ξUMrtij2l ≡ E(UMrtij2l|pT , pR), (4.21)

ζUMrtij2l ≡ UMrtij2l − ξUMrtij2l, (4.22)

Target-level (level-2):

ξtijkl ≡ E(Stijkl|pT ), (4.23)

ζtijkl ≡ Stijkl − ξtijkl, (4.24)

ξCMtij2l ≡ ξtij2l − E(ξtij2l|ξtij1l), (4.25)

ξMtijkl ≡ ξtijkl − E(ξtijkl|ξtij1l), ∀ k > 2, (4.26)

ζCMtij2l ≡ ζtij2l − E(ζtij2l|ζtij1l), (4.27)

ζMtijkl ≡ ζtijkl − E(ζtijkl|ζtij1l), ∀ k > 2, (4.28)

(4.29)

are random variables on (Ω,A,P) with finite and positive variance.

(b) With respect to the same indicator i, same construct j, and same occasion of measure-
ment l, it is assumed that the regression of the trait variable belonging to a non-reference
method k on the latent trait variable belonging to the reference method (k = 1) is linear.
For each construct j, measured by a non-reference method k on occasion of measurement
l and for each pair (i, i′) ∈ I × I ′, (i 6= i′) there is a constant αtijkl ∈ R as well as a
constant λξijkl ∈ R+, such that

E(ξtijkl|ξtij1l) = αtijkl + λξijklξtij1l. (4.30)

(c) Definition of common trait variables. For each indicator i, construct j, measured by the
reference method k (k = 1) and for each pair (l, l′) ∈ L×L′, (l 6= l′) there is a constant
αtij1ll′ as well as a constant λξij1ll′ , such that

ξtij1l = αtij1ll′ + λξij1ll′ξtij1l′ . (4.31)

(d) For each indicator i, construct j, measured by a non-reference method k (k 6= 1) on
occasion of measurement l there is a constant λζijkl ∈ R+, such that

E(ζtijkl|ζtij1l) = λζijklζtij1l. (4.32)
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(e) Definition of common method trait variables. For each indicator i, construct j, measured
by the non-reference method k (k 6= 1) and for each pair (l, l′) ∈ L × L′, (l 6= l′) there
are constants λCMξij2ll′ , λ

UM
ξij2ll′ , as well as λMξijkll′ , such that

ξCMtij2l = λCMξij2ll′ξ
CM
tij2l′ , (4.33)

ξUMrtij2l = λUMξij2ll′ξ
UM
rtij2l′ , (4.34)

ξMtijkl = λMξijkll′ξ
M
tijkl′ , ∀ k > 2. (4.35)

(f) Definition of common method state residual variables. For each construct j, measured
by the non-reference method k (k 6= 1) and for each pair (i, i′) ∈ I × I ′, (i 6= i′) there
are constants λCMζii′j2l, λ

UM
ζii′j2l, as well as λMζii′jkl, such that

ζCMtij2l = λCMζii′j2lζ
CM
ti′j2l, (4.36)

ζUMrtij2l = λUMζii′j2lζ
UM
rti′j2l, (4.37)

ζMtijkl = λMζii′jklζ
M
ti′jkl, ∀ k > 2. (4.38)

Remarks. According to the above definition the latent trait variables ξtijkl in the LST-COM
model are defined as conditional expectations of the latent state variables given the target E(Stijkl|pT ).
The latent trait variables are free of situational or rater-specific influences and are only due to
target-specific influences. Note that Equation 4.23 also implies the formal definition of the (non)-
reference latent trait variables, indicated by k = 2. The latent occasion-specific variables ζtijkl
(called: state-residuals) are defined as differences between the latent state and the latent trait vari-
ables (see Equation 4.24). The latent state-residual variables are defined as residuals with respect
to the latent trait variables pertaining to the same indicator i, construct j, method k and occasion
of measurement l. Consequently, both latent variables are uncorrelated by definition. According
to Definition 4.1 the latent trait unique method variables ξUMrtij2l are defined as conditional expec-
tations of UMrtij2l given (pT ) and (pR). The latent state-residual unique method variables are

defined as difference between UMrtij2l and ξUMrtij2l. The latent trait (common) method variables

(ξCMtij2l and ξMtijkl) are defined as residuals with respect to the latent regression of the non-reference
trait variables on the reference trait variables [see Equations 4.25-4.26]. Therefore, these latent
variables reflect the consistent bias of the other ratings which is not shared with the consistent view
of the target’s self-perception [see Equations 4.25 and 4.26]. Hence, with respect to the latent trait
method components it is possible to investigate the stability or consistency of method bias. The
latent state method variables are again defined as difference between the latent method variables
and the latent trait method variables [see Equations 4.28-4.22]. These latent variables represent
the occasion-specific (momentary) rater bias which is not shared with the occasion-specific (mo-
mentary) view of the target (reference method). According to the Conditions (b) and (d) of the
above definition latent linear regressions are assumed. With respect to the Conditions (e) and (f)
in the above definition homogeneity assumptions regarding the latent trait and latent state method
variables are postulated.

4.2.1 Definition of the LST-COM model with conditional regressive in-
dependent latent state variables

In order to interpret the unique trait variables ξUMrtij2l as difference between the conditional

expectations of Yrtij2l given the target (pT ) and the rater (pR) from the the conditional expectations

of Yrtij2l given the target (pT ), it is necessary to impose an additional assumption. This assumption

is called conditional regressive independence assumption with respect to the latent state variables

Stij2l. This assumption postulates that the level-2 latent state variables Stij2l are conditionally

regressive independent from (pR) given (pT ). LST-COM models that fulfill this assumption will
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be called LST-COM model with CRI latent state variables Stij2l.

Definition 4.2 (Conditional regressive independence of the latent state variables)
Let M≡ 〈(Ω,A,P), ξt, ξUM

rt , ξCM
t , ξM

t , ζt, ζ
UM
rt , ζCM

t , ζM
t ,Ert,Et, αt, λξ, λ

UM
ξ , λCM

ξ , λM
ξ , λζ ,

λUM
ζ , λCM

ζ , λM
ζ 〉 be a LST-COM model according to the above Definition 4.1. If and only if,

E(Stij2l|pT , pR) = E(Stij2l|pT ) (4.39)

holds, then M is called LST-COM model with conditionally regressive independent Stij2l-
variables.

Remarks. In the above Definition 4.2, a LST-COM model with conditionally regressive inde-
pendent Stij2l-variables is formally defined. With respect to Equation 4.39 in Definition 4.2 it is
assumed that the latent state variables Stij2l on the target-level are conditionally independent from
the rater pR, given the target pT . This additional assumption corresponds to the commonly known
i.i.d. (independent and identically distributed random variables) assumption of level-1 residuals
made in multilevel regression analysis. Therefore, this additional assumption is relatively “weak”
and common in multilevel analysis. However, this assumption might be violated in cross-classified
data structures, where interchangeable raters evaluate multiple targets.

Theorem 4.1 (Consequences of the Definition 4.2)
Let M≡ 〈(Ω,A,P), ξt, ξUM

rt , ξCM
t , ξM

t , ζt, ζ
UM
rt , ζCM

t , ζM
t ,Ert,Et, αt, λξ, λ

UM
ξ , λCM

ξ , λM
ξ , λζ ,

λUM
ζ , λCM

ζ , λM
ζ 〉 be a LST-COM model with conditional regressive independent latent state

Stij2l-variables according to Definition 4.2, then the ξUMrtij2l variables can be defined as follows:

ξUMrtij2l ≡ E(Yrtij2l|pT , pR)− E(Yrtij2l|pT ). (4.40)

Remarks. According to Theorem 4.2 the latent trait unique method variables ξUMrtij2l can be
defined as the difference between the conditional expectation of Yrtij2l given target and the rater
(pT , pR) and the conditional expectation of Yrtij2l given the target (pT ). With respect to this

definition, the latent trait unique method variables ξUMrtij2l can be interpreted as consistent over-
or underestimation of the trait of a target with respect to a particular rater. Hence, the latent
trait unique method ξUMrtij2l variables reflect the consistent bias of a particular rater that is free of
measurement error and occasion-specific influences.

Proofs. 12 According to Definition 4.1 the latent trait unique method ξUMrtij2l variables can be de-
fined as follows:

ξUMrtij2l ≡E(UMrtij2l|pT , pR)
=E[(Srtij2l − Stij2l)|pT , pR]
=E(Srtij2l|pT , pR)− E(Stij2l|pT , pR).

If and only if, the statement in Definition 4.2 holds (see Equation 4.39), then E(Srtij2l|pT , pR)−
E(Stij2l|pT , pR) can be rewritten as follows:

E(Srtij2l|pT , pR)− E(Stij2l|pT )
E[E(Yrtij2l|pT , pTSl , pR, pRSl)|pT , pR]− E[E(Yrtij2l|pT , pTSl)|pT )
E(Yrtij2l|pT , pR)− E(Yrtij2l|pT ).

�
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4.3 Existence

Theorem 4.2 (Existence)
The random variables {Y111111, . . . , Yrtijkl, . . . , Yabcdef} and {Y11111, . . . , Ytijkl, . . . , Ybcdef} are

(ξtij, ξ
CM
tij2 , ξUMrtij2, ξMtijk, ζtijl, ζ

CM
tj2l , ζUMrtj2l, ζ

M
tjkl)-congeneric variables of a LST-COM model

with conditional regressive independent latent state variables if and only if the statements in
Definition 4.2 hold and for each r ∈ R, t ∈ T , i,∈ I, j ∈ J , k ∈ K, l ∈ L, there are
real-valued random variables ξtij, ξ

CM
tij2 , ξUMrtij2, ξMtijk, ζtijl, ζ

CM
tj2l , ζUMrtj2l, ζ

M
tjkl on a probability

space (Ω,A,P) and (αtij1l, λξij1l, λ
CM
ξij2l, λ

UM
ξij2l, λ

M
ξijkl, λζij1l, λ

CM
ζij2l, λ

UM
ζij2l, λ

M
ζijkl) ∈ R+, such

that:

ξtij1l = αtij1l + λξij1lξtij , (4.41)

E(ξtijkl|ξtij1l) = αtijkl + λξijklξtij , (4.42)

ξCMtij2l = λCMξij2lξ
CM
tij2 , (4.43)

ξUMrtij2l = λUMξij2lξ
UM
rtij2, (4.44)

ξMtijkl = λMξijklξ
M
tijk, ∀ k > 2, (4.45)

E(ζtijkl|ζtij1l) = λζij1lζtijl, (4.46)

ζCMtij2l = λCMζij2lζ
CM
tj2l , (4.47)

ζUMrtij2l = λUMζij2lζ
UM
rtj2l, (4.48)

ζMtijkl = λMζijklζ
M
tjkl, ∀ k > 2. (4.49)

Proofs. 13 Existence of the latent variables.

4.42 Inserting Equation 4.31 into Equation 4.30 of the above definition, yields Equation 4.42:

E(ξtijkl|ξtij1l) = αtijkl + λξijkl(αtij1ll′ + λξij1ll′ξtij1l′),

if αtijkl is defined as αtijkl + λξijklαtij1ll′ and if λξijkl is defined as λξijklλξij1ll′ hold. Simi-
larly, according to Equation 4.41, two different latent trait variables ξtij1l and ξtij1l′ can be
expressed as

ξtij =
ξtij1l − αtij1l

λξij1l
, and ξtij =

ξtij1l′ − αtij1l′
λξij1l′

.

Setting both equations equal, yields:

ξtij1l = αtij1l +
λξij1l
λξij1l′

(ξtij1l′ − αtij1l′).

Let αtij1ll′ ≡ αtij1l − αtij1l′(
λξij1l
λ
ξij1l′

) and λξij1ll′ ≡
λξij1l
λ
ξij1l′

, then Equation 4.31 is obtained:

ξtij1l = αtij1ll′ + λξij1ll′ξtij1l′ (repeated).

4.43 For all i, j, l, assume that ξCMtij2 ≡ ξCMtij2l′ as well as λCMξij2l ≡ λCMξij2ll′ . Inserting ξCMtij2l′ as well as

λCMξij2ll′ in Equation 4.33 of the above Definition 4.1, yields Equation 4.43:

ξCMtij2l = λCMξij2lξ
CM
tij2 (repeated).

According to Equation 4.43, ξCMtij2 can be expressed as

ξCMtij2 =
ξCMtij2l
λCMξij2l

, as well as ξCMtij2 =
ξCMtij2l′

λCMξij2l′
.

By setting both equations equal, it follows ξCMtij2l = λCMξij2l
λCM
ξij2l′

ξCMtij2l′ . Let λCMξij2ll′ ≡
λCMξij2l
λCM
ξij2l′

, then

Equation 4.33 is obtained:

ξCMtij2l = λCMξij2ll′ξ
CM
tij2l′ (repeated).
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4.44 For all i, j, l, assume that ξUMrtij2 ≡ ξUMrtij2l′ as well as λUMξij2l ≡ λUMξij2ll′ . Inserting ξUMrtij2l′ as well

as λUMξij2ll′ into Equation 4.34 of the above Definition 4.1, yields Equation 4.44:

ξUMrtij2l = λUMξij2lξ
UM
rtij2 (repeated).

According to Equation 4.44, ξUMrtij2 can be expressed as

ξUMrtij2 =
ξUMrtij2l
λUMξij2l

, as well as ξUMrtij2 =
ξUMrtij2l′

λUMξij2l′
.

By setting both equations equal, it follows

ξUMrtij2l =
λUMξij2l
λUMξij2l′

ξUMrtij2l′ .

Let λUMξij2ll′ ≡
λUMξij2l
λUM
ξij2l′

, then Equation 4.34 is obtained:

ξUMrtij2l = λUMξij2ll′ξ
UM
rtij2l′ (repeated).

4.45 For all i, j, k > 2, l, assume that ξMtijk ≡ ξMtijkl′ as well as λMξijkl ≡ λMξijkll′ . Inserting ξMtijkl′

as well as λMξijkll′ in Equation 4.35 of the above Definition 4.1, yields Equation 4.45:

ξMtijkl = λMξijklξ
M
tijk (repeated).

According to Equation 4.45, ξMtijk can be expressed as

ξMtijk =
ξMtijkl
λMξijkl

, as well as ξMtijk =
ξMtijkl′

λMξijkl′
.

By setting both equations equal, it follows ξMtijkl = λMξMijkl
λM
ξMijkl′

ξMtijkl′ . Let λMξijkll′ ≡
λMξijkl
λM
ξijkl′

, then

Equation 4.35 is obtained:

ξMtijkl = λMξijkll′ξ
M
tijkl′ (repeated).

4.47 For all i, j, l, assume that ζCMtj2l ≡ ζCMti′j2l as well as λCMζij2l ≡ λCMζii′j2l. Inserting ζCMti′j2l as well

as λCMζii′j2l in Equation 4.36 of the above Definition 4.1, yields Equation 4.47:

ζCMtij2l = λCMζij2lζ
CM
tj2l (repeated).

According to Equation 4.47, ζCMtj2l can be expressed as

ζCMtj2l =
ζCMtij2l
λCMζij2l

, as well as ζCMtj2l =
ζCMti′j2l
λCMζi′j2l

.

By setting both equations equal, it follows ζCMtij2l = λCMζij2l
λCM
ζi′j2l

ζCMti′j2l. Let λCMζij2ll′ ≡
λCMζij2l
λCM
ζi′j2l

, then the

Equation 4.36 is obtained:

ζCMtij2l = λCMζii′j2lζ
CM
ti′j2l (repeated).

The demonstrations of Equations 4.48 and 4.49 follow the same principle and are straight-
forward. Therefore will be left to the reader.

Remarks. The above Theorem 4.2 shows that common (1) indicator-specific and occasion-
unspecific latent trait factors ξtij , (2) common indicator-specific and occasion-unspecific latent

trait method factors (ξCMtij2 , ξUMrtij2, ξMtijk), (3) common indicator- and occasion-specific state-residual
factors (ζtijl), as well as (4) common indicator-unspecific and occasion-specific latent state-residual

method factors (ζCMtj2l , ζUMrtj2l, ζ
M
tjkl) exist.
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4.4 Uniqueness

According to the statements in Theorem 4.2 it is clear that the latent factors (trait, trait-specific

method, occasion-specific and occasion-specific method) are not uniquely defined in LST-COM

models. If such models are defined with (ξtij , ξ
CM
tij2 , ξUMrtij2, ξMtijk, ζtijl,ζ

CM
tj2l , ζUMrtj2l, ζ

M
tjkl)-congeneric

variables, all of the parameters are defined up to positive linear or similarity transformation. The

next theorem concerns the uniqueness and admissible transformations of the latent factors and

their corresponding factor loadings in LST-COM models.

Theorem 4.3 (Admissible transformations & uniqueness)
1. Admissible transformations
M≡ 〈(Ω,A,P), ξt, ξUM

rt , ξCM
t , ξM

t , ζt, ζ
UM
rt , ζCM

t , ζM
t ,Ert,Et, αt, λξ, λ

UM
ξ ,

λCM
ξ , λM

ξ , λζ , λ
UM
ζ , λCM

ζ , λM
ζ 〉 is a LST-COM model with:

ξt ≡ (ξ111 · · · ξtij · · · ξbcd)T, (4.50)

ξUM
rt ≡ (ξUM11111 · · · ξUMrtij2 · · · ξUMabcd2)T, (4.51)

ξCM
t ≡ (ξCM1111 · · · ξCMtij2 · · · ξCMbdc2)T, (4.52)

ξM
t ≡ (ξM1111 · · · ξMtijk · · · ξMbcde)T, (4.53)

ζt ≡ (ζ1111 · · · ζtijl · · · ζbcdf )T, (4.54)

ζUM
rt ≡ (ζUM11111 · · · ζUMrtj2l · · · ζUMabd2f )T, (4.55)

ζCM
t ≡ (ζCM1111 · · · ζCMtj2l · · · ζCMbd2f )T, (4.56)

ζM
t ≡ (ζM1111 · · · ζMtjkl · · · ζMbdef )T, (4.57)

Ert ≡ (E111111 · · ·Ertij2l · · ·Eabcd2f )T, (4.58)

Et ≡ (E11111 · · ·Etijkl · · ·Ebcdef )T, (4.59)

αt ≡ (α1111 · · ·αtijkl · · ·αbcdef )T, (4.60)

λξ ≡ (λξ1111 · · ·λξijkl · · ·λξcdef )T, (4.61)

λUM
ξ ≡ (λUMξ1111 · · ·λUMξij2l · · ·λUMξcd2f )T, (4.62)

λCM
ξ ≡ (λCMξ1111 · · ·λCMξij2l · · ·λCMξcd2f )T, (4.63)

λM
ξ ≡ (λMξ1111 · · ·λMξijkl · · ·λMξcdef )T, (4.64)

λζ ≡ (λζ1111 · · ·λζijkl · · ·λζcdef )T, (4.65)

λUM
ζ ≡ (λUMζ1111 · · ·λUMζij2l · · ·λUMζcd2f )T, (4.66)

λCM
ζ ≡ (λCMζ1111 · · ·λCMζij2l · · ·λCMζcd2f )T, (4.67)

λM
ζ ≡ (λMζ1111 · · ·λMζijkl · · ·λMζcdef )T, (4.68)

and if for all r ∈ R, t ∈ T , i ∈ I, j ∈ J , k ∈ K, l ∈ L:

ξ
′

tij = γξij + βξijξtij , (4.69)

ξUM
′

rtij2 = βUMξij2ξ
UM
rtij2, (4.70)

ξCM
′

tij2 = βCMξij2ξ
CM
tij2 , (4.71)

ξM
′

tijk = βMξijkξ
M
tijk, ∀ k > 2, (4.72)

ζ
′

tijl = βζijlζtijl, (4.73)

ζUM
′

rtj2l = βUMζij2lζ
UM
rtj2l, (4.74)

ζCM
′

tj2l = βCMζij2lζ
CM
tj2l , (4.75)

ζM
′

tjkl = βMζijklζ
M
tjkl, ∀ k > 2, (4.76)
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α
′

tijkl = αtijkl − γξij
λξijkl
βξij

, (4.77)

λ
′

ξijkl = λξijkl/βξij , (4.78)

λUM
′

ξij2l = λUMξij2l/β
UM
ξij2 , (4.79)

λCM
′

ξij2l = λCMξij2l/β
CM
ξij2 , (4.80)

λM
′

ξijkl = λMξijkl/β
M
ξijk, ∀ k > 2, (4.81)

λ
′

ζijkl = λζijkl/βζijl, (4.82)

λUM
′

ζij2l = λUMζij2l/β
UM
ζij2l, (4.83)

λCM
′

ζij2l = λCMζij2l/β
CM
ζij2l, (4.84)

λM
′

ζijkl = λMζijkl/β
M
ζijkl, , ∀ k > 2, (4.85)

where γξij, βξij, β
UM
ξij2 , βCMξij2 , βMξijk, βζijl, β

UM
ζij2l, β

CM
ζij2l, and βMζijkl ∈ R+, ’ then M′ ≡

〈(Ω,A,P), ξ′t, ξUM′
rt , ξCM′

t , ξM′
t , ζ

′

t, ζ
UM′
rt , ζCM′

t , ζM′
t ,E′rt,E

′

t, α
′

t, λ
′

ξ,

λUM′
ξ , λCM′

ξ , λM′
ξ , λ

′

ζ , λ
UM′
ζ , λCM′

ζ , λM′
ζ 〉 is a LST-COM model, too, with:

ξ
′

t ≡ (ξ
′

111 · · · ξ
′

tij · · · ξ
′

bcd)T, (4.86)

ξUM′
rt ≡ (ξUM

′

11111 · · · ξUM
′

rtij2 · · · ξUM
′

abcd2)T, (4.87)

ξCM′
t ≡ (ξCM

′

1111 · · · ξCM
′

tij2 · · · ξCM
′

bdc2 )T, (4.88)

ξM′
t ≡ (ξM

′

1111 · · · ξM
′

tijk · · · ξM
′

bcde)T, (4.89)

ζ
′

t ≡ (ζ
′

1111 · · · ζ
′

tijl · · · ζ
′

bcdf )T, (4.90)

ζUM′
rt ≡ (ζUM

′

11111 · · · ζUM
′

rtj2l · · · ζUM
′

abd2f )T, (4.91)

ζCM′
t ≡ (ζCM

′

1111 · · · ζCM
′

tj2l · · · ζCM
′

bd2f )T, (4.92)

ζM′
t ≡ (ζM

′

1111 · · · ζM
′

tjkl · · · ζM
′

bdef )T, (4.93)

E
′

rt ≡ (E
′

111111 · · ·E
′

rtij2l · · ·E
′

abcd2f )T, (4.94)

E
′

t ≡ (E
′

11111 · · ·E
′

tijkl · · ·E
′

bcdef )T, (4.95)

α
′

t ≡ (α
′

1111 · · ·α
′

tijkl · · ·α
′

bcdef )T, (4.96)

λ
′

ξ ≡ (λ
′

ξ1111 · · ·λ
′

ξijkl · · ·λ
′

ξcdef )T, (4.97)

λUM′
ξ ≡ (λUM

′

ξ1111 · · ·λUM
′

ξij2l · · ·λUM
′

ξcd2f )T, (4.98)

λCM′
ξ ≡ (λCM

′

ξ1111 · · ·λCM
′

ξij2l · · ·λCM
′

ξcd2f )T, (4.99)

λM′
ξ ≡ (λM

′

ξ1111 · · ·λM
′

ξijkl · · ·λM
′

ξcdef )T, (4.100)

λ
′

ζ ≡ (λ
′

ζ1111 · · ·λ
′

ζijkl · · ·λ
′

ζcdef )T, (4.101)

λUM′
ζ ≡ (λUM

′

ζ1111 · · ·λUM
′

ζij2l · · ·λUM
′

ζcd2f )T, (4.102)

λCM′
ζ ≡ (λCM

′

ζ1111 · · ·λCM
′

ζij2l · · ·λCM
′

ζcd2f )T, (4.103)

λM′
ζ ≡ (λM

′

ζ1111 · · ·λM
′

ζijkl · · ·λM
′

ζcdef )T. (4.104)

2. Uniqueness
If both M≡ 〈(Ω,A,P), ξt, ξUM

rt , ξCM
t , ξM

t , ζt, ζ
UM
rt , ζCM

t , ζM
t ,Ert,Et, αt, λξ,

λUM
ξ , λCM

ξ , λM
ξ , λζ , λ

UM
ζ , λCM

ζ , λM
ζ 〉 and M′ ≡ 〈(Ω,A,P), ξ′t, ξUM′

rt , ξCM′
t , ξM′

t , ζ
′

t,

ζUM′
rt , ζCM′

t , ζM′
t ,E′rt,E

′

t, α
′

t, λ
′

ξ, λ
UM′
ξ , λCM′

ξ , λM′
ξ , λ

′

ζ , λ
UM′
ζ , λCM′

ζ , λM′
ζ 〉 are LST-COM

models, then there are for each i ∈ I, j ∈ J , k ∈ K, l ∈ L, γξij, βξij, β
UM
ξij2 , βCMξij2 , βMξijk,

βζijl, β
UM
ζij2l, β

CM
ζij2l, and βMζijkl ∈ R+ such that Equations 4.69 to 4.104 hold.

Proofs. 14 Admissible Transformations & Uniqueness

A. Latent trait variables
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A1. Admissible transformations
If ξ

′

tij ≡ γξij + βξijξtij, α
′

tijkl ≡ αtijkl − γξij λξijklβξij
, and λ

′

ξijkl = λξijkl/βξij, then (ξtij =
ξ
′

tij−γξij)/βξij, αtijkl = α
′

tijkl+γξijλ
′

ξijkl, and λξijkl = λ
′

ξijklβξij. Inserting these parameters

in Equation 4.42, this yields E(ξtijkl|ξtij1l) = α
′

tijkl + λ
′

ξijklξ
′

tij.

A2. Uniqueness
If both M≡ 〈(Ω,A,P), ξt, ξUM

rt , ξCM
t , ξM

t , ζt, ζ
UM
rt , ζCM

t , ζM
t ,Ert,Et, αt, λξ,

λUM
ξ , λCM

ξ , λM
ξ , λζ , λ

UM
ζ , λCM

ζ , λM
ζ 〉 and M′ ≡ 〈(Ω,A,P), ξ′t, ξUM′

rt , ξCM′
t , ξM′

t , ζ
′

t,

ζUM′
rt , ζCM′

t , ζM′
t ,E′rt,E

′

t, α
′

t, λ
′

ξ, λ
UM′
ξ , λCM′

ξ , λM′
ξ , λ

′

ζ , λ
UM′
ζ , λCM′

ζ , λM′
ζ 〉

are LST-COM models, then αtijkl + λξijklξtij = α
′

tijkl + λ
′

ξijklξ
′

tij. As a consequence, it
follows for all i ∈ I, j ∈ J , k ∈ K, and l ∈ L:

ξ
′

ij =
[
αtijkl − α

′

tijkl

λ
′
ξijkl

]
+ λξijkl
λ
′
ξijkl

ξtij .

Given the fact that the ratio of the parameters λξijkl and λ
′

ξijkl as well as the term[
αtijkl − α

′

tijkl

λ
′
ξijkl

]

have to be the same real value for each i ∈ I, j ∈ J , k ∈ K, and l ∈ L, one can also define
constants, namely:

γξij ≡
αtijkl − α

′

tijkl

λ
′
ξijkl

,

βξij ≡
λξijkl
λ
′
ξijkl

.

B. Latent trait method variables

B1. Admissible transformations
Let

ξUM
′

rtij2 ≡ βUMξij2ξUMrtij2, λUM
′

ξij2l ≡ λUMξij2l/βUMξij2 ,

ξCM
′

tij2 ≡ βCMξij2ξCMtij2 , and λCM
′

ξij2l ≡ λCMξij2l/βCMξij2 ,

ξM
′

tijk ≡ βξijkMξMtijk, ∀ k > 2, λM
′

ξijkl ≡ λMξijkl/βMξijk, ∀ k > 2.

By simple manipulation of these equations, it follows:

ξUMrtij2 = ξUM
′

rtij2/β
UM
ξij2 , λUMξij2l = λUM

′

ξij2lβ
UM
ξij2 ,

ξCMtij2 = ξCM
′

tij2 /βCMξij2 , and λCMξij2l = λCM
′

ξij2lβ
CM
ξij2 ,

ξMtijk = ξMM ′

tijk/β
M
ξijk, ∀ k > 2, λMξijkl = λM

′

ξijklβ
M
ξijk, ∀ k > 2.

Inserting these parameters back into Equations 4.43, 4.44, and 4.45, the following equations
are received:

ξUMrtij2l = λUM
′

ξij2lξ
UM ′

rtij2,

ξCMtij2l = λCM
′

ξij2lξ
CM ′

tij2 ,

ξMtijkl = λM
′

ξijklξ
M ′

tijk, ∀ k > 2.

B2. Uniqueness
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Let both M and M′
be LST-COM models. Logically, for all i ∈ I, j ∈ J , k ∈ K, l ∈ L

λUMξij2lξ
UM
rtij2 = λUM

′

ξij2lξ
UM ′

rtij2 = ξUM
′

rtij2 =
λUMξij2l
λUM

′
ξij2l

ξUMrtij2,

λCMξij2lξ
CM
tij2 = λCM

′

ξij2lξ
CM ′

tij2 = ξCM
′

tij2 =
λCMξij2l
λCM

′
ξij2l

ξCMtij2 ,

λMξijklξ
M
tijk = λM

′

ξijklξ
M ′

tijk = ξM
′

tijk =
λMξijkl
λM

′
ξijkl

ξMtijk, ∀ k > 2.

Given that, for each i ∈ I, j ∈ J , k ∈ K, l ∈ L the parameters of the three ratios
λUMξij2l

λUM
′

ξij2l
,

λCMξij2l

λCM
′

ξij2l
, and

λMξijkl

λM
′

ξijkl

must be the same real values, the following real constants can be defined for

each i ∈ I, j ∈ J , k ∈ K, l ∈ L:

βCMξij2 ≡
λCMξij2l
λCM

′
ξij2l

,

βUMξij2 ≡
λUMξij2l
λUM

′
ξij2l

,

βMξijk ≡
λMξijkl
λM

′
ξijkl

, ∀ k > 2.

C. Latent state variables

C1. Admissible transformations

Let ζ
′

tijl be equal to βζijlζtijl as well as λ
′

ζijkl be equal to λζijkl/βζijl. Then, ζtijl = ζ
′
tijl

βζijl
and

λζijkl = λ
′

ζijklβζijl. Substituting both parameters in Equation 4.46 yields: E(ζtijkl|ζtijkl) =
λ
′

ζijklζ
′

tijl.

C2. Uniqueness
If both M and M′

are LST-COM models, then λζijklζtijl = λ
′

ζijklζ
′

tijl. Thus,

ζ
′

tijl = λζijkl
λ
′
ζijkl

ζtijl.

Given that the ratio of the parameters λζijkl and λ
′

ζijkl have to be the same for all i ∈ I,
j ∈ J , k ∈ K, l ∈ L, a real constant can be defined for all i ∈ I, j ∈ J , k ∈ K, l ∈ L:

βζijl ≡
λζijkl
λ
′
ζijkl

.

D. Latent state method variables

D1. Admissible transformations
Again, let

ζCM
′

tj2l ≡ βCMζij2lζCMtj2l , λCM
′

ζij2l ≡ λCMζij2l/βCMζij2l,

ζUM
′

rtj2l ≡ βUMζij2lζUMrtj2l, and λUM
′

ζij2l ≡ λUMζij2l/βUMζij2l,

ζM
′

tjkl ≡ βMζijklζMtjkl, ∀ k > 2, λM
′

ζijkl ≡ λMζijkl/βMζijkl, ∀ k > 2.

Then, by simple manipulation of the above equation:

ζCMtj2l =
ζCM

′

tj2l

βCMζij2l
, λCMζij2l = λCM

′

ζij2lβ
CM
ζij2l,

ζUMrtj2l =
ζUM

′

rtj2l

βUM
′

ζij2l
, and λUMζij2l = λUM

′

ζij2lβ
UM
ζij2l,

ζMtjkl =
ζM
′

tjkl

βMζijkl
, ∀ k > 2, λMζijkl = λM

′

ζijklβ
M
ζijkl, ∀ k > 2.
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Finally, by substituting these parameters back into Equations 4.47, 4.48, and 4.49, yields:

ζCMtij2l = λCM
′

ζij2lζ
CM ′

tj2l ,

ζUMrtij2l = λCM
′

ζij2lζ
UM ′

rtj2l ,

ζMtijkl = λM
′

ζijklζ
M ′

tjkl, ∀ k > 2.

D2. Uniqueness
Again, let both M and M′

be LST-COM models. Then, for all i ∈ I, j ∈ J , k ∈ K, l ∈ L:

λCMζij2lζ
CM
tj2l = λCM

′

ζij2lζ
CM ′

tj2l = ζCM
′

tj2l =
λCMζij2l
λCM

′
ζij2l

ζCMtj2l ,

λUMζij2lζ
UM
rtj2l = λUM

′

ζij2lζ
UM ′

rtj2l = ζUM
′

rtj2l =
λUMζij2l
λ
′
ζij2l

ζUMrtj2l,

λMζijklζ
M
tjkl = λM

′

ζijklζ
M ′

tjkl = ζM
′

tjkl =
λMζijkl
λM

′
ζijkl

ζMtjkl, ∀ k > 2.

As stated before, the ratios of the parameters λCMζij2l and λCM
′

ζij2l, λ
UM
ζij2l and λUM

′

ζij2l, as well as

λMζijkl and λM
′

ζijkl must have the same real values for each i ∈ I, j ∈ J , k ∈ K, l ∈ L.
Therefore, the following real constants can be defined for each i ∈ I, j ∈ J , k ∈ K, l ∈ L:

βCMζij2l ≡
λCMζij2l
λCM

′
ζij2l

,

βUMζij2l ≡
λUMζij2l
λUM

′
ζij2l

,

βMζijkl ≡
λMζijkl
λM

′
ζijkl

, ∀ k > 2.

�

Remarks. The above Theorem 4.3 concerns the level of measurement of the latent variables in
the LST-COM model. The latent trait variables are measured on an interval scale, whereas the
latent trait method variables as well as the latent state variables and latent state method variables
are measured on ratio scale. In other words, the latent trait variables are only uniquely defined up
to linear transformation, whereas the remaining latent variables are only defined up to similarity
transformations (i.e., multiplication with a real constant).

4.5 Meaningfulness

According to Theorem 4.3 it was shown that the parameters in the LST-COM model are

only uniquely defined up to positive linear or similarity transformations. The following theorem

addresses the question whether statements regarding LST-COM model parameters remain mean-

ingful (true), if the particular parameter has been subject to one of the admissible transformations.

The most important and meaningful statements of LST-COM model parameters are summarized

in Theorem 4.4.

Theorem 4.4 (Meaningfulness)
If both M≡ 〈(Ω,A,P), ξt, ξUM

rt , ξCM
t , ξM

t , ζt, ζ
UM
rt , ζCM

t , ζM
t ,Ert,Et, αt, λξ, λ

UM
ξ , λCM

ξ , λM
ξ ,

λζ , λ
UM
ζ , λCM

ζ , λM
ζ 〉 and M′ ≡ 〈(Ω,A,P), ξ′t, ξUM′

rt , ξCM′
t , ξM′

t , ζ
′

t, ζ
UM′
rt , ζCM′

t , ζM′
t ,E′rt,E

′

t,
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α
′

t, λ
′

ξ, λ
UM′
ξ , λCM′

ξ , λM′
ξ , λ

′

ζ , λ
UM′
ζ , λCM′

ζ , λM′
ζ 〉 are LST-COM models, then for ω1, ω2 ∈ Ω;

r, r′ ∈ R, t, t′ ∈ T , i, i′ ∈ I, j, j′ ∈ J , k, k′ ∈ K, and l, l′ ∈ L:

λξijkl
λξijkl′

=
λ
′

ξijkl

λ
′
ξijkl′

, (4.105)

λζijkl
λζi′jkl

=
λ
′

ζijkl

λ
′
ζi′jkl

, (4.106)

λUMξij2l
λUMξij2l′

=
λUM

′

ξij2l

λUM
′

ξij2l′
, (4.107)

λCMξij2l
λCMξij2l′

=
λCM

′

ξij2l

λCM
′

ξij2l′
, (4.108)

λMξijkl
λMξijkl′

=
λM

′

ξijkl

λM
′

ξijkl′
, ∀ k > 2, (4.109)

λUMζij2l
λUMζi′j2l

=
λUM

′

ζij2l

λUM
′

ζi′j2l
, (4.110)

λCMζij2l
λCMζi′j2l

=
λCM

′

ζij2l

λCM
′

ζi′j2l
, (4.111)

λMζijkl
λMζi′jkl

=
λM

′

ζijkl

λM
′

ζi′jkl

, ∀ k > 2, (4.112)

λUMξij2l
λUMξi′j2l

−
λUMξij2l′

λUMξi′j2l′
=
λUM

′

ξij2l

λUM
′

ξi′j2l
−
λUM

′

ξij2l′

λUM
′

ξi′j2l′
, (4.113)

λCMξij2l
λCMξi′j2l

−
λCMξij2l′

λCMξi′j2l′
=
λCM

′

ξij2l

λCM
′

ξi′j2l
−
λCM

′

ξij2l′

λCM
′

ξi′j2l′
, (4.114)

λMξijkl
λMξi′jkl

−
λMξijkl′

λMξi′jkl′
=

λM
′

ξijkl

λM
′

ξi′jkl

−
λM

′

ξijkl′

λM
′

ξi′jkl′
, ∀ k > 2, (4.115)

λUMζij2l
λUMζi′j2l

−
λUMζij2l′

λUMζi′j2l′
=

λUM
′

ζij2l

λUM
′

ζi′j2l
−
λUM

′

ζij2l′

λUM
′

ζi′j2l′
, (4.116)

λCMζij2l
λCMζi′j2l

−
λCMζij2l′

λCMζi′j2l′
=

λCM
′

ζij2l

λCM
′

ζi′j2l
−
λCM

′

ζij2l′

λCM
′

ζi′j2l′
, (4.117)

λMζijkl
λMζi′jkl

−
λMζijkl′

λMζi′jkl′
=

λM
′

ζijkl

λM
′

ζi′jkl

−
λM

′

ζijkl′

λM
′

ζi′jkl′
, ∀ k > 2, (4.118)

αtijkl − αtijkl′
αtijkl′′ − αtijkl′′′

=
α
′

tijkl − α
′

tijkl′

α
′
tijkl′′ − α

′
tijkl′′′

, (4.119)

for αtijkl′′ − αtijkl′′′ and α
′

tijkl′′ − α
′

tijkl′′′ 6= 0,

ζtijl (ω1)
ζtijl (ω2) =

ζ
′

tijl (ω1)
ζ
′
tijl (ω2)

, (4.120)

for ζtijl (ω2) and ζ
′

tijl (ω2) 6= 0,

ξUMrtij2 (ω1)
ξUMrtij2 (ω2)

=
ξUM

′

rtij2 (ω1)
ξUM

′
rtij2 (ω2)

, (4.121)
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for ξUMrtij2 (ω2) and ξUM
′

rtij2 (ω2) 6= 0,

ξCMtij2 (ω1)
ξCMtij2 (ω2)

=
ξCM

′

tij2 (ω1)
ξCM

′
tij2 (ω2)

, (4.122)

for ξCMtij2 (ω2) and ξCM
′

tij2 (ω2) 6= 0,

ξMtijk (ω1)
ξMtijk (ω2)

=
ξM
′

tijk (ω1)
ξM
′

tijk (ω2)
, ∀ k > 2, (4.123)

for ξMtijk (ω2) and ξM
′

tijk (ω2) 6= 0,

ξtij (ω1)− ξtij (ω2)
ξtij (ω3)− ξtij (ω4) =

ξ
′

tij (ω1)− ξ′tij (ω2)
ξ
′
tij (ω3)− ξ′tij (ω4)

, (4.124)

for ξtij (ω3)− ξtij (ω4) and ξ
′

tij (ω3)− ξ′tij (ω4) 6= 0,

ζtijl (ω1)
ζtijl (ω2) −

ζtijl′ (ω1)
ζtijl′ (ω2) =

ζ
′

tijl (ω1)
ζ
′
tijl (ω2)

−
ζ
′

tijl′ (ω1)
ζ
′
tijl′ (ω2)

, (4.125)

for ζtijl (ω2), ζtijl′ (ω2), ζ ′tijl (ω2), ζ
′

tijl′ (ω2) 6= 0,

ξUMrtij2 (ω1)
ξUMrtij2 (ω2)

−
ξUMrti′j2 (ω1)
ξUMrti′j2 (ω2)

=
ξUM

′

rtij2 (ω1)
ξUM

′
rtij2 (ω2)

−
ξUM

′

rti′j2 (ω1)
ξUM

′
rti′j2 (ω2)

, (4.126)

for ξUMrtij2 (ω2), ξUMrti′j2 (ω2), ξUM
′

rtij2 (ω2), ξUM ′rti′j2 (ω2) 6= 0,

ξCMtij2 (ω1)
ξCMtij2 (ω2)

−
ξCMti′j2 (ω1)
ξCMti′j2 (ω2)

=
ξCM

′

tij2 (ω1)
ξCM

′
tij2 (ω2)

−
ξCM

′

ti′j2 (ω1)
ξCM

′
ti′j2 (ω2)

, (4.127)

for ξCMtij2 (ω2), ξCMti′j2 (ω2), ξCM
′

tij2 (ω2), ξCM
′

ti′j2 (ω2) 6= 0,

ξMtijk (ω1)
ξMtijk (ω2)

−
ξMti′jk′ (ω1)
ξMti′jk′ (ω2)

=
ξM
′

tijk (ω1)
ξM
′

tijk (ω2)
−
ξM
′

ti′jk′ (ω1)
ξM
′

ti′jk′ (ω2)
, ∀ k > 2, (4.128)

for ξMtijk (ω2), ξMti′jk′ (ω2), ξM
′

tijk (ω2), ξM ′ti′jk′ (ω2) 6= 0,

ζUMrtij2l (ω1)
ζUMrtij2l (ω2)

−
ζUMrti′j2l (ω1)
ζUMrti′j2l (ω2)

=
ζUM

′

rtij2l (ω1)
ζUM

′
rtij2l (ω2)

−
ζUM

′

rti′j2l (ω1)
ζUM

′
rti′j2l (ω2)

, (4.129)

for ζUMrtij2l (ω2), ζUMrti′j2l (ω2), ζUM
′

rtij2l (ω2), ζUM
′

rti′j2l (ω2) 6= 0,

ζCMtij2l (ω1)
ζCMtij2l (ω2)

−
ζCMti′j2l (ω1)
ζCMti′j2l (ω2)

=
ζCM

′

tij2l (ω1)
ζCM

′
tij2l (ω2)

−
ζCM

′

ti′j2l (ω1)
ζCM

′
ti′j2l (ω2)

, (4.130)

for ζCMtij2l (ω2), ζCMti′j2l (ω2), ζCM ′tij2l (ω2), ζCM
′

ti′j2l (ω2) 6= 0,

ζMtijkl (ω1)
ζMtijkl (ω2)

−
ζMti′jk′l (ω1)
ζMti′jk′l (ω2)

=
ζM
′

tijkl (ω1)
ζM
′

tijkl (ω2)
−
ζM
′

ti′jk′l (ω1)
ζM
′

ti′jk′l (ω2)
, ∀ k > 2, (4.131)

for ζMtijkl (ω2), ζMti′jk′l (ω2), ζM ′tijkl (ω2), ζM
′

ti′jk′l (ω2) 6= 0,

λ2
ξijklV ar(ξtij) = λ

′2
ξijklV ar(ξ

′

tij), (4.132)

λ2
ζijklV ar(ζtijl) = λ

′2
ζijklV ar(ζ

′

tijl), (4.133)

(λUMξij2l)2V ar(ξUMrtij2) = (λUM
′

ξij2l)2V ar(ξUM
′

rtij2), (4.134)

(λCMξij2l)2V ar(ξCMtij2 ) = (λCM
′

ξij2l)2V ar(ξCM
′

tij2 ), (4.135)
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(λMξijkl)2V ar(ξMtijk) = (λM
′

ξijkl)2V ar(ξM
′

tijk), ∀ k > 2, (4.136)

(λUMζij2l)2V ar(ζUMrtj2l) = (λUM
′

ζij2l)2V ar(ζUM
′

rtj2l ), (4.137)

(λCMζij2l)2V ar(ζCMtj2l ) = (λCM
′

ζij2l)2V ar(ζCM
′

tj2l ), (4.138)

(λMζijkl)2V ar(ζMtjkl) = (λM
′

ζijkl)2V ar(ζM
′

tjkl), ∀ k > 2, (4.139)

Corr(ξtij , ξti′j′) = Corr(ξ
′

tij , ξ
′

ti′j′), (4.140)

Corr(ζtijl, ζti′j′l) = Corr(ζ
′

tijl, ζ
′

ti′j′l), (4.141)

Corr(ξUMrtij2, ξUMrti′j′2) = Cor(ξUM
′

rtij2, ξ
UM ′

rti′j′2), (4.142)

Corr(ξCMtij2 , ξCMti′j′2) = Cor(ξCM
′

tij2 , ξCM
′

ti′j′2), (4.143)

Corr(ξMtijk, ξMti′j′k′) = Cor(ξM
′

tijk, ξ
M ′

ti′j′k′), ∀ k > 2, (4.144)

Corr(ζUMrtj2l, ζUMrtj′2l) = Cor(ζUM
′

rtj2l , ζ
UM ′

rtj′2l), (4.145)

Corr(ζCMtjk2l, ζ
CM
tj′2l) = Cor(ζCM

′

tj2l , ζ
CM ′

tj′2l ), (4.146)

Corr(ζMtjkl, ζMtj′k′l) = Cor(ζM
′

tjkl, ζ
M ′

tj′k′l), ∀ k > 2, (4.147)

where Var(.) denotes variance and Corr(.) denotes correlation.

Proofs. 15 Meaningfulness
The proofs for Equations 4.105, 4.113, 4.120, 4.121, 4.126, 4.132, 4.134, 4.140, 4.142 are provided

as examples. The remaining proofs for the other statements follow the same principle and are
straightforward. Therefore these proofs will not be reported here.

4.105 Replacing λξijkl by

(
λ
′
ξijkl

βξijkl

)
and λξijkl′ by

(
λ
′
ξijkl′

βξijkl

)
in Equation 4.105 verifies the equality

λξijkl
λξijkl′

=
λ
′
ξijkl

βξijkl

λ
′
ξijkl′

βξijkl

=
λ
′

ξijkl

λ
′
ξijkl′

.

4.113 Replacing λUMξij2l by

(
λUM

′
ξij2l
βUM
ξj2l

)
, λUMξi′j2l by

(
λUM

′
ξi′j2l
βUM
ξj2l

)
, λUMξij2l′ by

(
λUM

′
ξij2l′

βUM
ξj2l

)
and λUMξi′j2l′ by

(
λUM

′
ξi′j2l′

βUM
ξj2l

)
verifies the equality

λUMξij2l
λUMξi′j2l

−
λUMξij2l′

λUMξi′j2l′
=

λUM
′

ξij2l
βUM
ξj2l

λUM
′

ξi′j2l
βUM
ξj2l

−

λUM
′

ξij2l′

βUM
ξj2l

λUM
′

ξi′j2l′

βUM
ξj2l

=
λUM

′

ξij2l

λUM
′

ξi′j2l
−
λUM

′

ξij2l′

λUM
′

ξi′j2l′
.

4.120 Replacing ζtijl by βζijlζ
′

tijl in Equation 4.120 verifies the equality

ζtijl (ω1)
ζtijl (ω2) =

βζijlζ
′

tijl (ω1)
βζijlζ

′
tijl (ω1)

=
ζ
′

tijl (ω1)
ζ
′
tijl (ω2)

.
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4.121 Replacing ξUMrtij2 by βUMξij2ξ
UM ′

rtij2 in Equation 4.121 verifies the equality

ξUMrtij2 (ω1)
ξUMrtij2 (ω2)

=
βUMξij2ξ

UM ′

rtij2 (ω1)
βUMξij2ξ

UM ′
rtij2 (ω2)

=
ξUM

′

rtij2 (ω1)
ξUM

′
rtij2 (ω2)

.

4.126 Replacing ξUMrtij2 by βUMξij2ξ
UM ′

rtij2 and ξUMrti′j2 by βUMξi′j2ξ
UM ′

rti′j2 in Equation 4.126 verifies the equality

ξUMrtij2 (ω1)
ξUMrtij2 (ω2)

−
ξUMrti′j2 (ω1)
ξUMrti′j2 (ω2)

=
βUMξij2ξ

UM ′

rtij2 (ω1)
βUMξij2ξ

UM ′
rtij2 (ω2)

−
βUMξi′j2ξ

UM ′

rti′j2 (ω1)
βUMξi′j2ξ

UM ′
rti′j2 (ω2)

=
ξUM

′

rtij2 (ω1)
ξUM

′
rtij2 (ω2)

−
ξUM

′

rti′j2 (ω1)
ξUM

′
rti′j2 (ω2)

.

4.132 Replacing λ2
ξijkl by λ

′2
ξijklβ

2
ξij and V ar(ξtij) by V ar

(
ξ
′
tij−γξij
βξij

)
in Equation 4.132 verifies

the equality

λ2
ξijklV ar(ξtij) = λ

′2
ξijklβ

2
ξijV ar

(
ξ
′

tij − γξij
βξij

)

= λ
′2
ξijklβ

2
ξijV ar

(
ξ
′

tij

βξij
− γξij
βξij

)

= λ
′2
ξijklβ

2
ξij

1
β2
ξij

V ar
(
ξ
′

tij − γξij
)

= λ
′2
ξijklV ar(ξ

′

tij).

4.134 Replacing (λUMξij2l)2 by (λUM ′ξUMij2l)2(βUMξij2l)2 and V ar(ξUMrtij2) by V ar

(
ξUM

′
rtij2

(βUM
ξij2l)2

)
in Equation

4.132 verifies the equality

(λUMξij2l)2V ar(ξUMrtij2) = (λUM
′

ξUMij2l)2(βUMξij2l)2V ar

(
ξUM

′

rtij2

(βUMξij2l)2

)

= (λUM
′

ξij2l)2(βUMξij2l)2 1
(βUMξij2l)2V ar

(
ξUM

′

rtij2

)
= (λUM

′

ξij2l)2V ar(ξUM
′

rtij2).

4.140 Replacing ξtij by

(
ξ
′
tij−γξij
βξij

)
and ξti′j′ by

(
ξ
′
ti′j′−γξij
βξij

)
in Equation 4.140 verifies the equality

Corr(ξtij , ξti′j′) = Corr

(
ξ
′

tij − γξij
βξij

,
ξ
′

ti′j′ − γξij
βξij

)

= Corr

(
ξ
′

tij

βξij
− γξij
βξij

,
ξ
′

ti′j′

βξij
− γξij
βξij

)

= Corr

(
ξ
′

tij

βξij
,
ξ
′

ti′j′

βξij

)
= Corr(ξ

′

tij , ξ
′

ti′j′).

4.142 Replacing ξUMrtij2 by

(
ξUMrtij2
βUM
ξij2l

)
and ξUMrti′j′2 by

(
ξUM
rti′j′2
βUM
ξij2l

)
in Equation 4.142 verifies the equality

Corr(ξUMrtij2, ξUMrti′j′2) = Corr

(
ξUMrtij2
βUMξij2l

,
ξUMrti′j′2
βUMξij2l

)
= Corr(ξUM

′

rtij2, ξ
UM ′

rti′j′2).
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�

Remarks. According to the Theorem 4.4, statements regarding the ratios of differences regarding
the values of the common latent trait variables as well as the ratios regarding the values of the
common latent state variables are meaningful. In contrast, statements regarding the absolute
values of the LST-COM model parameters (such as values of the latent trait or state variables) are
not meaningful. For example, it is meaningful to say that the difference of the latent trait values
of two targets t1 and t2 is n-times the difference between the values of two other targets on the
same latent trait variable. Similarly, it is meaningful to say that the latent state value of a target
t1 is n-times greater or smaller than the latent state value of a target t2 at the same occasion of
measurement (Courvoisier, 2006). However, statements regarding the change of the targets’ latent
state values from occasion of measurement l to l′ are only meaningful, if these statements refer
to the ratio of the differences of the latent state values. Moreover, statements regarding (i) the
ratio of factor loadings, (ii) the variance components defined above as well as (iii) the permissible
correlations between latent variables are meaningful. In the next section permissible as well as
non-permissible covariances and correlations among the latent variables of the LST-COM model
are described in detail.

4.6 Testability

In order to derive testable consequences for the covariance structure of the LST-COM model, it

is necessary to introduce an additional assumption. Again, with respect to this assumption a more

restrictive variant of the LST-COM model is defined. LST-COM models that fulfill this assumption

will be called LST-COM model with conditional regressive independence (CRI). Based on the

additional assumption, it is possible to demonstrate that not all covariances between latent variables

in the LST-COM are permissible. These non-permissible (zero) covariances between the latent

variables of the LST-COM are discussed in Theorem 4.5. The total variance-covariance structure

of the LST-COM model is provided in Section 4.6.2. In addition, permissible covariances that

should be fixed to zero for parsimony are discussed. Finally, the interpretations of the admissible

(freely estimated) covariances of the latent variables in the LST-COM model are given.
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Definition 4.3 (The LST-COM model with conditional regressive independence)
M≡ 〈(Ω,A,P), ξt, ξUM

rt , ξCM
t , ξM

t , ζt, ζ
UM
rt , ζCM

t , ζM
t ,Ert,Et, αt, λξ, λ

UM
ξ , λCM

ξ , λM
ξ ,

λζ , λ
UM
ζ , λCM

ζ , λM
ζ 〉 is called a LST-COM model of (ξtij, ξ

UM
tij2 , ξCMtij2 , ξMtijk, ζtijl, ζ

UM
rtj2l, ζ

CM
tj2l ,

ζMtjkl)-congeneric variables with conditional regressive independence if and only if Definition
4.2 and Theorem 4.2 hold and

E
(
Ytijkl|pT , pTS1 , ..., pTSS , (Yt(ijkl)′), (Yrt(ij2l)′)

)
= E(Ytijkl|pT , pTSl), (4.148)

E
(
Yrtij2l|pT , pTS1 , ..., pTSS , pR, pRS1 , ..., pRSS , (Yt(ijkl)′), (Yrt(ij2l)′)

)
= E(Yrtij2l|pT , pTSl , pR, pRSl),

(4.149)

E
(
Yrtij2l|pT , pTS1 , ..., pTSS , (Yt(ijkl)′), (Yrt(ij2l)′)

)
= E(Yrtij2l|pT , pTSl),

(4.150)

E
(
Stijkl|pT , pTS1 , ..., pTSS−1 , pTSS+1 , ..., pTSl

)
= E(Stijkl|pT ), (4.151)

E
(
Srtijkl|pT , pTS1 , ..., pTSS−1 , pTSS+1 , ..., pTSl , pR, pRS1 , ..., pRSS−1 , pRSS+1 , ..., pRSl

)
= E(Srtijkl|pT , pR),

(4.152)

where (i, j, k, l)′ 6= (i, j, k, l).

Remarks. The assumptions made in the above theorem (see Equations 4.148 to 4.150) can be
interpreted in the same way as the assumptions made in Theorem 2.2 in Chapter 2. The two
additional assumptions (see Equations 4.151-4.152) have important consequences for the uncor-
relatedness of the latent state-residual variables on both levels (rater- and target-level). Ac-
cording to Equation 4.151, it is assumed that the target-specific latent state variables Stijkl
are conditionally independent from other target-situations on different occasions of measurement
(pTS1 , ..., pTSS−1 , pTSS+1 , ..., pTSl) given the target (pT ). In other words, different target-situations
that could be realized on other measurement occasions do not contain any additional informations
with respect to the expectations of the latent state variables Stijkl above the target (pT ) itself
(see also Eid, 1995; Steyer, 1988). Similarly, it is assumed that the rater-specific latent state
variables Srtijkl are conditionally independent from other rater- or target-situation on different
occasions of measurement, given the target (pT ) and the rater (pR). The assumptions stated in
Equation 4.151 and 4.152 have important consequences for the independence of the latent state-
residual variables measured on different occasions of measurement l and l′ (see also Eid, 1995;
Steyer, 1988).

4.6.1 Zero covariances based on model definition

By definition of the LST-COM model the following covariances are zero. Note that these
covariances/correlations must be fixed to zero in empirical applications.

Theorem 4.5 (Testability: consequences of model definition)
If M≡ 〈(Ω,A,P), ξt, ξUM

rt , ξCM
t , ξM

t , ζt, ζ
UM
rt , ζCM

t , ζM
t ,Ert,Et, αt, λξ, λ

UM
ξ , λCM

ξ , λM
ξ ,

λζ , λ
UM
ζ , λCM

ζ , λM
ζ 〉 is called a LST-COM model with CRI, then for r ∈ R, t ∈ T , i, i′ ∈ I,

j, j′ ∈ J , k, k′ ∈ K, l, l′ ∈ L where i can be equal to i′, j to j′, k to k′ and l to l′ but
(ijkl) 6= (ijkl)′.
Uncorrelateness of latent residual variables:
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Cov(Ert(ij2l), Ert(ij2l)′) = 0, (4.153)

Cov(Et(ijkl), Et(ijkl)′) = 0, (4.154)

Cov(Ert(ij2l), Et(ijkl)′) = 0. (4.155)

Uncorrelateness of latent variables and latent residual variables:

Cov(ξti′j′ , E(r)tijkl) = 0, (4.156)

Cov(ξUMrti′j′2, E(r)tijkl) = 0, (4.157)

Cov(ξCMti′j′2, E(r)tijkl) = 0, (4.158)

Cov(ξMti′j′k′ , E(r)tijkl) = 0, (4.159)

Cov(ζti′j′l′ , E(r)tijkl) = 0, (4.160)

Cov(ζUMrtj′2l′ , E(r)tijkl) = 0, (4.161)

Cov(ζCMtj′2l′ , E(r)tijkl) = 0, (4.162)

Cov(ζMtj′k′l′ , E(r)tijkl) = 0. (4.163)

Uncorrelateness of latent trait variables and latent trait method variables:

Cov(ξtij , ξUMrti′j′2) = 0, (4.164)

Cov(ξtij , ξCMtij2 ) = 0, (4.165)

Cov(ξtij , ξMtijk) = 0. (4.166)

Uncorrelateness of latent trait variables and latent state (method) variables:

Cov(ξtij , ζti′j′l′) = 0, (4.167)

Cov(ξtij , ζUMrtj′2l′) = 0, (4.168)

Cov(ξtij , ζCMtj′2l′) = 0, (4.169)

Cov(ξtij , ζMtj′k′l′) = 0. (4.170)

Uncorrelateness of latent trait method variables and latent state (method)
variables:

Cov(ξMtijk, ζti′j′l′) = 0, (4.171)

Cov(ξMtijk, ζMtj′k′l′) = 0, (4.172)

Cov(ξMtijk, ζCMtj′2l′) = 0, (4.173)

Cov(ξMtijk, ζUMrtj′2l′) = 0, (4.174)

Cov(ξCMtij2 , ζti′j′l′) = 0, (4.175)

Cov(ξCMtij2 , ζMtj′k′l′) = 0, (4.176)

Cov(ξCMtij2 , ζCMtj′2l′) = 0, (4.177)

Cov(ξCMtij2 , ζUMrtj′2l′) = 0, (4.178)

Cov(ξUMrtij2, ζti′j′l′) = 0, (4.179)

Cov(ξUMrtij2, ζMtj′k′l′) = 0, (4.180)

Cov(ξUMrtij2, ζCMtj′2l′) = 0, (4.181)

Cov(ξUMrtij2, ζUMrtj′2l′) = 0. (4.182)

Uncorrelateness of latent trait method variables:

Cov(ξMtijk, ξUMrti′j′2) = 0, (4.183)

Cov(ξCMtij2 , ξUMrti′j′2) = 0. (4.184)
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Uncorrelateness of latent state and state method variables:

Cov(ζtijl, ζMtjkl′) = 0, (4.185)

Cov(ζtijl, ζCMtj2l′) = 0, (4.186)

Cov(ζtijl, ζUMrtj′2l′) = 0. (4.187)

Uncorrelateness of latent state method variables:

Cov(ζtijl, ζtijl′) = 0, ∀ l 6= l′, (4.188)

Cov(ζMtjkl, ζMtjkl′) = 0, ∀ l 6= l′, (4.189)

Cov(ζCMtj2l , ζCMtj2l′) = 0, ∀ l 6= l′, (4.190)

Cov(ζUMrtj2l, ζUMrtj2l′) = 0, ∀ l 6= l′. (4.191)

Remarks. Note that in Equations 4.188 to 4.191 of the above theorem it was necessary to indicate
that both latent state-residual variables ζtijl and ζtijl′ were measured on different occasions l and
l′. Hence, latent state-residual variables are only uncorrelated with each other if they pertain
to the same indicator i, same construct j, but different occasions of measurement l and l′. For
example, latent state-residual variables may be correlated, if they belong to same indicator i and
same occasion of measurement l, but different constructs j and j′. In contrast to that, latent state-
residual variables are uncorrelated with any latent state-residual (common or unique) method
variable belonging to the same construct j, regardless whether or not both latent variables were
measured on the same or different occasions of measurement (see Equation 4.185 to 4.187).

Proofs. 16 Testability
Again, the following proofs are based on the above Definition 4.3 as well as the principle properties

of residual variables, namely that any expression of the form Cov[f(X), f(Y −E(Y |X)] equals zero
(see Steyer, 1988, 1989; Steyer & Eid, 2001; Steyer et al., in press).

4.153-4.153 The uncorrelateness of the latent residual variables has been already demonstrated in Chapter
2.6. Thus, the proofs will not be repeated again.

4.156-4.163 In Section 2.6 it was demonstrated that the latent state variables (Stijkl and Srtij2l) are
uncorrelated with any latent error variable (Eti′j′k′l′ and Erti′j′2l′). By definition of the LST-

COM, the following non-error variables (i.e., ξtijkl, ξtij2l, ξ
UM
rtij2l, ξ

CM
tij2l, ξ

M
tijkl, ζtijkl, ζtij2l,

ζUMrtij2l, ζ
CM
tij2l, ζ

M
tijkl) are functions of their corresponding latent state variables pertaining to the

same indicator i, construct j, method k, and occasion of measurement l (see Definition 4.1).
Consequently, these latent non-error variables of the LST-COM model are also uncorrelated
with any latent error variable (Eti′j′k′l′ and Erti′j′2l′). A similar proof of the uncorrelatedness
between measurement error and latent non-error variables is shown by Steyer (1988).

4.164 (a) The latent trait variables measured by the reference method ξtij are functions of ξtij1l,
given that:

ξtij = ξtij1l − αtijkl
λξijkl

.

(b) The latent trait unique method variables ξUMrti′j′2 are functions of ξUMrti′j′2l′ , given that:

ξUMrti′j′2 =
ξUMrti′j′2l′

λUMξi′j′2l′
.

(c) Hence, Cov(ξtij , ξUMrti′j′2) equals zero, if Cov(ξtij1l, ξUMrti′j′2l′) equals zero.

(d) The covariance Cov(ξtij1l, ξUMrti′j′2l′) can be expressed as follows:

Cov(ξtij1l, ξUMrti′j′2l′) = Cov
[
E
(
E(Ytij1l|pT , pTSl)|pT

)
, E(Yrti′j′2l′ |pT , pR)− E(Yrti′j′2l′ |pT )

]
= Cov

[
E(Ytij1l|pT ), E(Yrti′j′2l′ |pT , pR)− E(Yrti′j′2l′ |pT )

]
.
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(e) Therefore, ξtij1l is a (pT )-measurable function and ξUMrti′j′2l′ is a residual with respect to
the regressor pT . Given that residuals are always uncorrelated with their regressors (see
Steyer, 1988; Steyer & Eid, 2001), it follows that ξtij1l and ξUMrti′j′2l′ are uncorrelated.

4.165-4.166 (a) Similarly, the latent trait method variables (i.e., ξCMtij2 and ξMtijk) are functions of ξCMtij2l
and ξMtijkl, given that:

ξCMtij2 =
ξCMtij2l
λCMξij2l

, ξMtijk =
ξMtijkl
λMξtijkl

.

(b) Thus, Cov(ξtij , ξCMtij2 ) and Cov(ξtij , ξMtijk) equal zero, if Cov(ξtij1l, ξCMtij2l) and Cov(ξtij1l, ξMtijkl)
equal zero.

(c) Given that ξCMtij2l and ξMtijkl are defined as

ξCMtij2l ≡ ξtij2l − E(ξtij2l|ξtij1l) = E(Yrtij2l|pT )− E[E(Yrtij2l|pT )|E(Ytij1l|pT )],
ξMtijkl ≡ ξtijkl − E(ξtijkl|ξtij1l) = E(Ytijkl|pT )− E[E(Ytijkl|pT )|E(Ytij1l|pT )],

and the latent trait variables ξtij1l are defined as E(Ytij1l|pT ), it is clear that the latent

trait method variables ξCMtij2l as well as ξMtijkl are defined as residuals with respect to

E(Ytij1l|pT ). Therefore, the covariances Cov(ξtij , ξCMtij2 ) and Cov(ξtij , ξMtijk) equal zero.

4.167 (a) Again, ξtij is a function of ξtij1l (see proofs above).

(b) The latent state-residual variables ζti′j′l′ are functions of ζti′j′k′l′ , given that

ζti′j′l′ = ζti′j′k′l′

λζi′j′k′l′
.

(c) Thus, Cov(ξtij , ζti′j′l′) equal zero, if Cov(ξtij1l, ζti′j′k′l′) equal zero.

(d) Again, ξtij1l is a (pT )-measurable function (as explained in Proof 4.164).

(e) ζti′j′k′l′ is defined as residual with respect to pT , given that

ζti′j′k′l′ ≡Sti′j′k′l′ − ξti′j′k′l′
=E(Yti′j′k′l′ |pT , pTSl′ )− E(Yti′j′k′l′ |pT ).

(f) Hence, the latent state-residual variables ζti′j′k′l′ are defined as residuals with respect to
pT and ξtij1l is a (pT )-measurable function. Given that residuals are always uncorrelated
with their regressors as well as with numerically measurable functions of their regressors
(see Steyer, 1988; Steyer & Eid, 2001), it follows that ζti′j′k′l′ and ξtij1l are uncorrelated.

4.168 (a) ξtij is a function of ξtij1l and ζUMrtj′2l′ is a function of ζUMrti′j′2l′ , given that

ζUMrtj′2l′ =
ζUMrti′j′2l′

λUMζi′j′2l′
.

(b) Thus, Cov(ξtij , ζUMrtj′2l′) equal zero, if Cov(ξtij1l, ζUMrti′j′2l′) equal zero.

(c) The covariance Cov(ξtij1l, ζUMrti′j′2l′) can be rewritten as follows

Cov(ξtij1l, UMrti′j′2l′ − ξUMrti′j′2l′)
Cov(ξtij1l, UMrti′j′2l′)− Cov(ξtij1l, ξUMrti′j′2l′).

(d) As explained above (see Proofs 4.156-4.163), ξtij1l is a function of Stij1l and it has been
already shown that Stij1l is uncorrelated with all unique method variables UMUM

rti′j′2l′
(see Proof 2.94). In addition, it has been demonstrated that ξtij1l is uncorrelated with
all latent unique method variables ξUMrti′j′2l′ (see Proof 4.164). According to Proof 4.164

it has also been shown that Cov(ξtij1l, ξUMrti′j′2l′) = 0. Therefore, it follows that ζUMrti′j′2l′
is also uncorrelated with ξtij1l.

4.169-4.170 (a) ξtij is a function of ξtij1l and ζCMtj′2l′ as well as ζMtj′k′l′ are functions of

ζCMtj′2l′ =
ζCMti′j′2l′

λCMζi′j′2l′
, ζMtj′k′l′ =

ζMti′j′k′l′

λMζi′j′k′l′
.
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(b) Therefore, Cov(ξtij , ζCMtj′2l′) and Cov(ξtij , ζMtj′k′l′) equal zero, if Cov(ξtij1l, ζCMti′j′2l′) and

Cov(ξtij1l, ζMti′j′k′l′) equal zero.

(c) The latent variables ζCMti′j′2l′ and ζMti′j′k′l′ are defined by:

ζCMti′j′2l′ ≡ζti′j′2l′ − E(ζti′j′2l′ |ζti′j′1l′),
ζMti′j′k′l′ ≡ζti′j′k′l′ − E(ζti′j′k′l′ |ζti′j′1l′).

(d) Therefore, ζCMti′j′2l′ and ζMti′j′k′l′ are functions of ζti′j′2l′ and ζti′j′k′l′ , respectively. Thus,

the covariances Cov(ξtij1l, ζCMti′j′2l′) and Cov(ξtij1l, ζMti′j′k′l′) equal zero, if Cov(ξtij1l, ζti′j′2l′)
and Cov(ξtij1l, ζti′j′k′l′) equal zero.

(e) According to Proof 4.167, it has already been shown that the covariances Cov(ξtij1l, ζti′j′2l′)
and Cov(ξtij1l, ζti′j′k′l′) must equal zero.

(f) Hence, the statements Cov(ξtij , ξCMtij2 ) = 0 and Cov(ξtij , ξMtijk) = 0 are true as well.

4.171 (a) ξMtijk is a function of ξMtijkl, given that

ξMtijk =
ξMtijkl
λMξijkl

.

(b) ζti′j′l′ is a function of ζti′j′k′l′ (see proofs above).

(c) Therefore, Cov(ξMtijk, ζti′j′l′) equals zero, if and only if Cov(ξMtijkl, ζti′j′k′l′) equals zero.

(d) The covariance Cov(ξMtijkl, ζti′j′k′l′) can be rewritten as follows:

Cov
[
ξtijkl − E(ξtijkl|ξtij1l), Sti′j′k′l′ − ξti′j′k′l′

]
.

(e) Given that ξMtijkl is a function of ξtijkl, the covariance Cov(ξMtijkl, ζti′j′k′l′) is zero, if

Cov(ξtijkl, Sti′j′k′l′ − ξti′j′k′l′) = 0,
Cov

[
E(Ytijkl|pT ), E(Yti′j′k′l′ |pT , pTSl′ )− E(Yti′j′k′l′ |pT )

]
= 0.

(f) Given that the latent trait variable ξtijkl is defined as (pT )-measurable function and
the latent state-residual variables ζti′j′k′l′ are defined as residuals with respect to the
regressor pT , it follows that ξMtijkl is also uncorrelated with ζti′j′k′l′ . The proofs for
Equations 4.175 and 4.179 follow the same principle and thus will not be demonstrated
here.

4.172 (a) Again, ξMtijk is a function of ξMtijkl and ζMtj′k′l′ is a function of ζMti′j′k′l′ (see proofs above).

(b) Therefore, Cov(ξMtijk, ζMtj′k′l′) equals zero, if Cov(ξMtijkl, ζMti′j′k′l′).

(c) Again, ξMtijkl is defined as ξtijkl − E(ξtijkl|ξtij1l), and ζMti′j′k′l′ is defined as ζti′j′k′l′ −
E(ζti′j′k′l′ |ζti′j′1l′).

(d) That means that ξMtijkl is a function of ξtijkl. In addition, ζMti′j′k′l′ is a function of
ζti′j′1l′ :

ξtijkl = E(ξtijkl|ξtij1l) + ξMtijkl

ζti′j′1l′ = E(ζti′j′k′l′ |ζti′j′1l′) + ζMti′j′k′l′ .

(e) Hence, the covariance Cov(ξMtijkl, ζMti′j′k′l′) is zero, if the covariance Cov(ξtijkl, ζti′j′k′l′)
is zero. In Proof 4.167 it has been already been shown that the covariance Cov(ξtijkl, ζti′j′k′l′)
must equal zero. It follows that the Cov(ξMtijkl, ζMti′j′k′l′) must also equal zero. Hence,
Equation 4.172 holds. The proofs for Equation 4.173, 4.174, 4.176, 4.177, 4.178, 4.180,
4.181, and 4.182 follow the same principle and thus are not demonstrated here.

4.183 (a) ξMtijk is a functions of ξMtijkl and ξUMrti′j′2 is a function of ξUMrti′j′2l′ (see proofs above).

(b) Accordingly, Cov(ξMtijk, ξUMrti′j′2) equals zero, if Cov(ξMtijkl, ξUMrti′j′2l′) equals zero. The co-

variance Cov(ξMtijkl, ξUMrti′j′2l′) can be expressed as follows:

Cov
{
ξtijkl − E(ξtijkl|ξtij1l), ξUMrti′j′2l′

}



CHAPTER 4. THE LATENT STATE-TRAIT (LST-COM) MODEL 120

(c) According to Equation 4.30 in Definition 4.1, it is possible to replace E(ξtijkl|ξtij1l) by

αtijkl + λξijklξtij1l.

(d) Given that the covariances Cov(ξtijkl, ξUMrti′j′2l′) as well as Cov(ξtij1l, ξUMrti′j′2l′) must equal

zero, according to Proof 4.164, it follows that the latent covariances Cov(ξMtijkl, ξUMrti′j′2l′)
must also be zero. The proof for Equation 4.184 follow the same principles and is
straightforward. Hence, this proof will not be demonstrated here.

4.188 (a) For all l 6= l′, ζtijl is a function of ζtijkl and ζtijl′ is a function of ζtijkl′ (see proofs
above).

(b) Therefore, for all l 6= l′ Cov(ζtijl, ζtijl′) = 0, if Cov(ζtijkl, ζtijkl′) = 0.

(c) The latent variables ζtijkl and ζtijkl′ are defined as follows:

ζtijkl ≡ Stijkl − E(Stijkl|pT ),
ζtijkl′ ≡ Stijkl′ − E(Stijkl′ |pT ).

(d) According to Equation 4.151 of the above Definition 4.3, it is possible to replace E(Stijkl|pT )
by:

E
(
Stijkl|pT , pTS1 , ..., pTSS−1 , pTSS+1 , ..., pTSl

)
.

(e) Therefore, the latent state-residual variables ζtijkl and ζtijkl′ are defined as residual
variables with respect to the same regressor pT (see also Steyer, 1988, p. 403). Thus,
ζtijkl and ζtijkl′ are uncorrelated.

4.189 (a) For all l 6= l′, ζMtjkl is a function of ζMtijkl and ζMtjkl′ is a function of ζMtijkl′ (see proofs
above).

(b) Therefore, for all l 6= l′ Cov(ζMtjkl, ζMtjkl′) = 0, if Cov(ζMtijkl, ζMtijkl′) = 0.

(c) The latent variables ζMtijkl and ζMtijkl′ are defined as follows:

ζMtijkl ≡ ζtijkl − E(ζtijkl|ζtij1l),
ζMtijkl′ ≡ ζtijkl′ − E(ζtijkl′ |ζtij1l′).

(d) Given that ζMtijkl is a function of ζtijkl and ζMtijkl′ is a function of ζtijkl′ , the latent state-

residual method variables ζMtijkl and ζMtijkl′ are uncorrelated with each other (for all l 6=
l′), if the latent state-residual variables ζtijkl and ζtijkl′ uncorrelated with each other
(for all l 6= l′).

(e) In the above Proof 4.188 it has been already been shown that the latent state-residual
variables ζtijkl and ζtijkl′ pertaining to different occasions of measurements l and l′ are

uncorrelated with each other. Thus, the latent state-residual method variables ζMtijkl and

ζMtijkl′ are also uncorrelated with each other for all l 6= l′.

The Proof for Equation 4.190 follow the same principle and is straightforward. Thus, this
proof is not demonstrated here.

4.191 (a) For all l 6= l′, ζUMrtj2l is a function of ζUMrtij2l and ζUMrtj2l′ is a function of ζUMrtij2l′ (see proofs
above).

(b) Therefore, for all l 6= l′ Cov(ζUMrtj2l, ζUMrtj2l′) = 0, if Cov(ζUMrtij2l, ζUMrtij2l′) = 0.

(c) The latent variables ζUMrtij2l and ζUMrtij2l′ are defined as follows:

ζUMrtij2l ≡ UMrtij2l − ξUMrtij2l,
ζUMrtij2l′ ≡ UMrtij2l′ − ξUMrtij2l′ .

(d) Hence, the latent variables ζUMrtij2l and ζUMrtij2l′ are defined as residuals with respect to the

latent variables ξUMrtij2l and ξUMrtij2l′ , respectively. These regressor variables can be defined
as follows:

ξUMrtij2l ≡ E(Srtij2l|pT , pR)− E(Stij2l|pT ),
ξUMrtij2l′ ≡ E(Srtij2l′ |pT , pR)− E(Stij2l′ |pT ).
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(e) According to Equation 4.151 of the above Definition 4.3, it is possible to replace E(Stijkl|pT )
by:

E
(
Stijkl|pT , pTS1 , ..., pTSS−1 , pTSS+1 , ..., pTSl

)
.

(f) Similarly, according to Equation 4.152 of the above Definition 4.3, it is possible to replace
E(Srtij2l|pT , pR) by:

E
(
Srtijkl|pT , pTS1 , ..., pTSS−1 , pTSS+1 , ..., pTSl , pR, pRS1 , ..., pRSS−1 , pRSS+1 , ..., pRSl

)
.

(g) Therefore, the latent variables ζUMrtij2l and ζUMrtij2l′ are defined as residual variables with

respect to the same regressor ξUMrtij2l (see also Steyer, 1988, p. 403). Thus, Equation
4.191 holds as well.

4.185 (a) For all l 6= l′, ζtijl is a function of ζtijkl and ζMtjkl′ is a function of ζMtijkl′ (see proofs
above).

(b) Therefore, for all l 6= l′, Cov(ζtjkl, ζMtjkl′) = 0, if Cov(ζtijkl, ζMtijkl′) = 0.

(c) The latent variables ζtijkl and ζMtijkl′ are defined as follows:

ζtijkl ≡ Stijkl − ξtijkl,
ζMtijkl′ ≡ ζtijkl′ − E(ζtijkl′ |ζtij1l′).

(d) Given that ζMtijkl′ is a function of ζtijkl′

ζtijkl′ = E(ζtijkl′ |ζtij1l′) + ζMtijkl′ ,

it follows the latent state-residual method variables ζMtijkl′ are uncorrelated with all latent
variables ζtijkl pertaining to different measurement occasions (l and l′), if the latent
state-residual variables ζtijkl are uncorrelated with the latent variables ζtijkl′ .

(e) According to the above Proof 4.188, it has already been shown that the latent state-
residual variables ζtijkl and ζtijkl′ pertaining to different occasions of measurements l

and l′ are uncorrelated with each other. Thus, for all l 6= l′, the latent variables ζMtijkl′
and ζtijkl are also uncorrelated with each other.

The Proofs for Equations 4.186 and 4.187 follow the same principle and are straightforward.
Thus, these proofs are not shown here.

�

4.6.2 Covariance structure: LST-COM model with conditional regres-
sive independence

In the following section the total variance-covariance matrix of the LST-COM model for three

indicators × two traits × two methods × three occasions of measurements is described. Similar

to the previous chapters, the total covariance matrix
∑

T of size 36×36 (i.e., ijkl × ijkl) can be

decomposed into a within
∑

W and a between
∑

B matrix:

∑
T

=
∑
W

+
∑
B

.

As a consequence of the definition of the model, each of these matrices
∑

W and
∑

B can be further

decomposed into a trait, state and residual matrix. This decomposition follows directly, given that

latent trait variables are uncorrelated with latent state-residual variables (see above Theorem 4.5).

Thus, the within
∑

W and between
∑

B variance-covariance matrices may be represented as

∑
W

=
∑
ξW

+
∑
ζW

+
∑
θW

, and
∑
B

=
∑
ξB

+
∑
ζB

+
∑
θB

.
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∑
ξW refers to the within trait matrix,

∑
ζW refers to the within state matrix,

∑
θW refers to

the within residual matrix,
∑
ξB refers to the between trait matrix,

∑
ζB refers to the between

state matrix, and
∑
θB is the between residual matrix. The within and between residual matrices∑

θW and
∑
θB are structurally equivalent to the residual matrices of the LS-COM and LC-COM

model. Therefore, the residual matrices of the LST-COM model are not represented in this section.

The within and between trait and state matrices
∑
ξW,

∑
ζW,

∑
ξB, and

∑
ζB are then further

decomposed into:

∑
ξW

= ΛξWΦξWΛT
ξW, and

∑
ζW

= ΛζWΦζWΛT
ζW,

∑
ξB

= ΛξBΦξBΛT
ξB, and

∑
ζB

= ΛζBΦζBΛT
ζB.

ΛξW refers to the factor loading matrix for the trait-specific latent variables on the within level,

with ΛT
ξW being its transpose, ΦξW is the variance and covariance matrix of the latent trait-specific

variables on the within level, ΛζW is the factor loading matrix for the latent state-residual variables

on the within level, with ΛT
ζW being the transposed matrix, ΦζW is the variance and covariance

matrix of the latent state-residual variables on the within level. In a similar way, the target-level

matrices are denoted by the subscript B for between level. Again, a two-dimensional index (j, l) is

defined similarly as described in Section 2.6.2. The index can take the following values in the given

ordering (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3). In addition, the function Pos((j, l)) which maps the

two-dimensional index (j, l) on its position p is defined. Then, the matrix ΛξW of size 36×6 (i.e.,

ijkl × ij) containing the factor loadings of the latent trait unique method variables ξUMrtij2 is

given by:

ΛξW =
6∑

p=1
Ip
Λξ ⊗ΛξWp ,

∑6
p=1 refers to the sum over all constructs j and measurement occasions l. Ip

Λξ is a contrast or

dummy matrix for a particular combination of construct and occasion of measurement (e.g., j = 1

and l = 1). ⊗ is the Kronecker product and ΛξWp is the within trait unique method factor loading

matrix of size 6×3 (i.e., ik × i). The contrast matrix Ip
Λξ , where p ∈ N = {1, ..., 6} is defined as

6×2 matrix (i.e., jl × j):

I1
Λξ =



1 0

0 0

0 0

0 0

0 0

0 0


, I2

Λξ =



0 0

0 0

1 0

0 0

0 0

0 0


, I3

Λξ =



0 0

0 0

0 0

0 0

1 0

0 0


,
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I4
Λξ =



0 0

0 1

0 0

0 0

0 0

0 0


, I5

Λξ =



0 0

0 0

0 0

0 1

0 0

0 0


, I6

Λξ =



0 0

0 0

0 0

0 0

0 0

0 1


.

Then, the within trait unique method factor loading matrix ΛξWp of size 6×3 (i.e., ik × i), where

the elements λUMξ1j2l, λ
UM
ξ2j2l, λ

UM
ξ3j2l > 0 and all other elements are zero, is given by:

ΛξWp =



0 0 0

0 0 0

0 0 0

λUMξ1j2l 0 0

0 λUMξ2j2l 0

0 0 λUMξ3j2l


.

Similarly, the within state unique method factor loading matrix ΛζW of size 36×6 (i.e., ijkl × jl)

can be defined:

ΛζW =
6∑

p=1
Ip
Λζ ⊗ΛζWp .

Ip
Λζ refers to a contrast matrix of size 6×6 (i.e., jl × jl) where p ∈ N = {1, ..., 6} with a one on

the pth diagonal element and zeros elsewhere, e.g. for p=2:

I2
Λζ =



0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


.

Again, the the within state unique method factor loading vector ΛζWp of size 6×1 (i.e., ik × 1) is

given by

ΛζWp =



0

0

0

λUMζ1j2l

λUMζ2j2l

λUMζ3j2l


.



CHAPTER 4. THE LATENT STATE-TRAIT (LST-COM) MODEL 124

1 2 3 4 5 6

1

2

3

4

5

6

Figure 4.3: Within variance-covariance matrix ΦξW of the LST-COM, where 1=ξUMrt112, 2=ξUMrt212,

3=ξUMrt312, 4=ξUMrt122, 5=ξUMrt222, 6=ξUMrt322. Cells colored in dark gray indicate permissible and inter-
pretable variances and covariances among the latent variables.

The complete within covariance matrix of the latent trait variables ΦξW of size 6×6 (i.e., ij × ij)

can be represented as follows (see Figure 4.3):

ΦξW = E
[
(VΦξW −E[VΦξW ])(VΦξW −E[VΦξW ])T] ,

where VΦξW refers to the vector of size 6×1 (i.e., ij × 1) including all latent trait unique method

factors on the within level, namely
(
ξUMrt112, ξ

UM
rt212, ξ

UM
rt312, ξ

UM
rt122, ξ

UM
rt222, ξ

UM
rt322

)T
. Note that all covari-

ances and correlations between latent trait unique method variables are permissible (see Theorem

4.5). Consequently, ΦξW does not contain zero-elements. In a similar way, ΦζW is given by:

ΦζW = E
[
(VΦζW −E[VΦζW ])(VΦζW −E[VΦζW ])T] ,

where VΦζW refers to the vector of size 6×1 (i.e., jl × 1) including all latent state unique method

factors on the within level, namely
(
ζUMrt121, ζ

UM
rt221, ζ

UM
rt122, ζ

UM
rt222, ζ

UM
rt123, ζ

UM
rt223

)T
. Note that ζUMrtij2l

are assumed to be homogeneous across items, therefore the index i was dropped. In contrast to

ΦξW, the within variance and covariance matrix ΦζW of the latent state-residual variables ζUMrtj2l

of size 6×6 (i.e., jl × jl) contains zero-elements. The zero-elements (see Theorem 4.5) refer to the

correlations among the latent state unique method variables pertaining to the same construct j, but

different occasions of measurement l and l′, that is Cov(ζUMrtj2l, ζUMrtj2l′) = 0, ∀ l 6= l′ (see white cells

in Figure 4.4). Furthermore, it is also recommended to fix all of the following correlations referring

to associations between latent state unique method factors pertaining to different constructs j 6= j′

and different occasions of measurement l 6= l′ to zero as well: Cov(ζUMrtj2l, ζUMrtj′2l′) = 0, ∀ j, l 6= j′, l′

(see light gray cells in Figure 4.4). In most empirical applications these correlations will be close

to zero, and therefore may be fixed to zero for parsimony.

The target-level matrices can be defined following a similar logic. First, the between latent

trait factor loadings matrix ΛξB of size 36×12 (i.e., ijkl × jkl) containing the latent factor loading

onto the latent trait variables ξtij and ξCMtij2 is given by:

ΛξB =
6∑

p=1
Ip
Λξ ⊗ΛξBp ,
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Figure 4.4: Within variance-covariance matrix ΦζW of the LST-COM, where 1=ζUMrt121, 2=ζUMrt221,

3=ζUMrt122, 4=ζUMrt222, 5=ζUMrt123, 6=ζUMrt223. Cells colored in dark gray indicate permissible and inter-
pretable variances and covariances among the latent variables. Cells colored in light gray refer to
covariances that can be fixed to zero for parsimony. White cells refer to non-permissible covariances
among the latent variables.

for which the elements λξ1j1l, λξ2j1l, λξ3j1l, λξ1j2l, λξ2j2l, λξ3j2l, λ
CM
ξ1j2l, λ

CM
ξ2j2l, λ

CM
ξ3j2l > 0 and all

other elements are necessarily zero. Ip
Λξ refers to a contrast matrix of size 6 × 2 (i.e., jl × j)

described above. Then, ΛξBp is the matrix of the between factor loadings of size 6×6 (i.e., ik ×

ik) which is given by:

ΛξBp =



λξ1j1l 0 0 0 0 0

0 λξ2j1l 0 0 0 0

0 0 λξ3j1l 0 0 0

λξ1j2l 0 0 λCMξ1j2l 0 0

0 λξ2j2l 0 0 λCMξ2j2l 0

0 0 λξ3j2l 0 0 λCMξ3j2l


.

In a similar way, the matrix ΛζB of size 36×12 (i.e., ijkl × jkl) containing the between latent

state factor loadings of the common latent state variables ζtjl and ζCMtj2l is given by:

ΛζB =
6∑

p=1
Ip
Λζ ⊗ΛζBp .

Again, Ip
Λζ refers to the contrast matrix of size 6 × 6 (i.e., jl × jl) described above and ΛζBp is

the between factor loadings matrix1, represented by:

ΛζBp =



λζ1j1l 0

λζ2j1l 0

λζ3j1l 0

λζ1j2l λCMζ1j2l

λζ2j2l λCMζ2j2l

λζ3j2l λCMζ3j2l


.

1Note that for the sake of simplicity, it is assumed that the latent state-residual variables ζtijl are homogeneous
across items. Hence, it is assumed that the latent state-residual variables ζtijl are measured by a common latent

state-residual factor ζtjl. The matrix ΛζBp refers therefore to the factor loading matrix of common ζtjl and ζCMtj2l
variables. Note that this model differs slightly from the model in Definition 4.1.
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Figure 4.5: Between variance-covariance matrix ΦξB of the LST-COM model, where 1=ξt11,

2=ξt21, 3=ξt31, 4=ξCMt11 , 5=ξCMt21 , 6=ξCMt31 , 7=ξt12, 8=ξt22, 9=ξt32, 10=ξCMt12 , 11=ξCMt22 , 12=ξCMt32 .
Cells colored in white indicate zero-covariances, cells colored in gray indicate permissible and in-
terpretable variances and covariances. Cells in light gray indicate covariances that should be fixed
to zero for parsimony.

The between variance and covariance matrix of the latent trait variables ΦξB of size 12×12 (i.e.,

ijk × ijk) is given by:

ΦξB = E
[
(VΦξB −E[VΦξB ])(VΦξB −E[VΦξB ])T] ,

where VΦξB refers to the vector of size 12×1 including all latent trait unique method factors

on the between level, namely
(
ξt11, ξt21, ξt31, ξ

CM
t11 , ξ

CM
t21 , ξ

CM
t31 , ξt12, ξt22, ξt32, ξ

CM
t12 , ξ

CM
t22 , ξ

CM
t32
)T

. As

a consequence of the definition of the model, all elements referring to Cov(ξtij , ξCMtij2 ) = 0 are

zero-elements. For parsimony reasons, it is recommended to also fix the elements referring to

Cov(ξti′j′ , ξCMtij2 ) = 0, ∀ i, j 6= i′, j′ to zero. In Figure 4.5 the structure of the variance-covariance

matrix ΦξB is depicted.

The between variance and covariance matrix of the latent state factors ΦζB of size 12×12 (i.e.,

jkl × jkl) is given by:

ΦζB = E
[
(VΦζB −E[VΦζB ])(VΦζB −E[VΦζB ])T] ,

where VΦζW refers to the vector of size 12×1 including all latent state factors on the between

level, namely
(
ζt11, ζ

CM
t121 , ζt21, ζ

CM
t221 , ζt12, ζ

CM
t122 , ζt22, ζ

CM
t222 , ζt13, ζ

CM
t123 , ζt23, ζ

CM
t223

)T
. By definition, all

elements referring to Cov(ζtjl, ζtjl′) = Cov(ζtjl, ζCMtj2l′) = Cov(ζCMtj2l , ζCMtj2l′) = 0, ∀ l 6= l′ are

zero elements. Again, for parsimony reasons, it is recommended to fix the elements referring

to Cov(ζtjl, ζCMtj′2l′) ∀ j, l 6= j′, l′ to zero as well. Figure 4.6 illustrates the complete between

variance-covariance matrix for the latent state variables.
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Figure 4.6: Between variance-covariance matrix ΦζB of the LST-COM model, where 1=ζt11,

2=ζCMt121 , 3=ζt21, 4=ζCMt221 , 5=ζt12, 6=ζCMt122 , 7=ζt22, 8=ζCMt222 , 9=ζt13, 10=ζCMt123 , 11=ζt23, 12=ζCMt223 .
Cells colored in white indicate zero covariances, cells colored in gray indicate permissible and
interpretable variances and covariances among the latent variables. Cells in light gray indicate
covariances among the latent variables that should be fixed to zero for parsimony.

4.6.3 Interpretation of non-zero correlations and correlations

In the following section permissible covariances between latent variables in the LST-COM model

with CRI are discussed. Some of the correlation coefficients may be interpreted as discriminant

validity or the generalization of trait and/or state method effects. Therefore, these latent cor-

relations are of practical significance. The interpretation of some of these correlations will be

illustrated briefly in the next section. Note that the correlation coefficients described below refer

to the LST-COM model illustrated in Figure 4.1. Hence, indicator-specific latent trait variables

(ξtij , ξ
CM
tij2 , ξUMrtij2, and ξMtijk) as well as indicator-specific latent state-residual (ζtijl) variables are

assumed.

1. The correlations Cor(ξtij , ξti′j) between latent trait factors belonging to the same trait j, but

different indicators i and i′ can be interpreted as degree of homogeneity of the indicators. If

these correlations differ from 1, then it can be concluded that the items measure different

facets or aspects of the construct. The correlations between the latent trait factors belonging

to the same indicator, but different constructs j and j′ indicate discriminant validity with

respect to the reference method. Two different correlations can be distinguished: (A) The

latent correlations Cor(ξtij , ξtij′) between trait factors of the reference method belonging to

the same indicator i across different constructs j and j′. High correlations indicate low dis-

criminant validity with respect to the reference method. (B) The correlations Cor(ξtij , ξti′j′)

between latent trait factors of the reference method belonging to different indicators i and

i′ as well as different constructs j and j′. These correlations can be interpreted as dis-

criminant validity coefficients with respect to the reference method that are corrected for

indicator-specific effects.

2. The correlations Cor(ξCMtij2 , ξCMti′j2) between the latent trait common method factors of the

same construct j, but different indicators i and i′ can be interpreted as generalization of
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common rater bias with respect to different indicators. If these correlations are close to

one, it is reasonable to define latent trait common method factors ξCMtj2 . The correlations

Cor(ξCMtij2 , ξCMtij′2) between the latent trait common method variables belonging to the same

indicator i, but different constructs j and j′ indicate to which extent the common trait bias of

the interchangeable methods (that is not shared with the trait bias of the reference method)

generalizes across different constructs. For example, it might be interesting to know whether

or not peers consistently under- or overestimate the students self-ratings over time with regard

to two different constructs (e.g., depression and anxiety). The correlations Cor(ξCMtij2 , ξCMti′j′2)

between latent trait common method variables pertaining to different indicators i and i′ as

well as different constructs j and j′ represent the generalization of the latent trait common

method bias across different indicators and different constructs.

3. The correlations Cor(ξUMrtij2, ξUMrti′j2), Cor(ξUMrtij2, ξUMrtij′2), and Cor(ξUMrtij2, ξUMrti′j′2) between the

latent trait unique method variables can be interpreted in a similar way as the correlations

described before. However, these correlations reflect the generalization of stable unique rater

bias (i.e., the consistent deviation of a particular interchangeable rater from the common

view of the interchangeable raters) across different indicators, different constructs, or different

indicators and different constructs.

4. If other structurally different methods (e.g., teacher or parent ratings) are used, then the

generalization of stable common method effects (e.g., common peer bias) and stable method

effects (e.g., parent or teacher rating) can be investigated with respect to the following cor-

relations: Cor(ξCMtij2 , ξMtijk), Cor(ξCMtij2 , ξMti′jk), Cor(ξCMtij2 , ξMtij′k), and Cor(ξCMtij2 , ξMti′j′k). For

example, it might be interesting to know, whether or not teachers and peers consistently

converge in their judgments, and whether or not, these rater agreement can be generalized

across different constructs j and j′, and/or indicators i and i′.

5. The correlations [Cor(ξtij , ξCMtij′2), Cor(ξtij , ξMtij′k), Cor(ξtij , ξCMti′j′2), and Cor(ξtij , ξMti′j′k)] be-

tween the latent trait variables and the latent trait (common) method variables are admissible

by definition of the LST-COM model, if and only if both latent variables pertain to different

constructs j and j′. Therefore, these correlations may be estimated in empirical applications.

Nevertheless, these correlations are rather difficult to interpret and will be rather low in em-

pirical applications. Therefore, the correlations should be set to zero if possible. With respect

to the simulation study (see Chapter 6) these correlations were fixed to zero for parsimony.

6. The correlations between the latent state-residual variables may be investigated as well.

The correlations Cor(ζtijl, ζti′jl) between the latent state-residual variables pertaining to the

same construct j, but different indicators i and i′, reflect the homogeneity of indicators with

respect to occasion-specific (momentary) influences. If these correlations are close to 1, this

indicates that the occasion-specific (momentary) influences are homogeneous across different

indicators i and i′. Hence, a latent state-residual factor may be construed. For parsimony,

latent state-residual factors were assumed for the simulation of this model. The correlations

Cor(ζtijl, ζtij′l) between latent state-residual variables belonging to different constructs j
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and j′ indicate whether or not occasion-specific influences of the reference method can be

generalized across different constructs. These correlations can also be interpreted as degree of

discriminant validity on the state-level. For example, it may be interesting to know whether

or not the child’s self-rated depression level at the first occasion of measurement is associated

with the self-rated anxiety level at the same occasion of measurement. The correlations

Cor(ζtijl, ζti′j′l) between latent state-residual variables of different indicators i and i′ and

different constructs j and j′ represent to what extent occasion-specific (momentary) influences

can be generalized across different indicators and different constructs.

7. The correlations [Cor(ζUMrtj2l, ζUMrtj′2l), Cor(ζCMtj2l , ζCMtj′2l), Cor(ζMtjkl, ζMtj′kl), Cor(ζMtjkl, ζMtjk′l), and

Cor(ζMtjkl, ζMtj′k′l)] between the occasion-specific and the method-specific effects might be stud-

ied as well. The correlations Cor(ζUMrtj2l, ζUMrtj′2l) between the latent state-residual unique

method factors belonging to different constructs j and j′, indicate to what extent occasion-

specific and rater-specific effects can be generalized across different constructs. For example,

a particular peer may over- or underestimate a child’s depression level rated by all peers on

the first measurement occasion in a similar way as the child’s anxiety level rated by all raters

on the same occasion of measurement. In a similar way, the correlations Cor(ζCMtj2l , ζCMtj′2l)

between latent state-residual common method factors pertaining to different constructs j

and j′ can be interpreted as generalization of the occasion-specific common view of the in-

terchangeable raters across different constructs. Of course, these kind of correlations (see

correlations above) may be also investigated with respect to structurally different methods

(k > 2) of different constructs j and j′.

8. Moreover, the occasion-specific common method effects of a set of interchangeable methods

may be related to the occasion-specific method effects of a structurally different method

[i.e., Cor(ζCMtj2l , ζMtjkl)]. Again, these correlations between occasion-specific method vari-

ables pertaining to a set of interchangeable methods and occasion-specific method variables

pertaining to structurally different methods may generalize across different constructs [i.e.,

Cor(ζCMtj2l , ζMtj′kl)].

9. Finally, the correlations [Cor(ζtijl, ζCMtj′2l) and Cor(ζtijl, ζMtj′kl)] between the occasion-specific

effects of the reference method and occasion-specific effects of non-reference methods should

be fixed to zero for parsimony. Again, these correlations are difficult to interpret and will

often not differ significantly from zero. However, substantial correlations would indicate,

for example, that the momentary self-rated anxiety level of a child is associated with the

momentary peer-rated depression level of the child corrected for the self-reported momentary

depression level.
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4.7 General measurement equations and variance decompo-
sitions

In the following section the general measurement equations of the LST-COM models are derived.

Based on the definition of the LST-COM model different variance coefficients can be calculated.

In Theorem 4.4 it has been shown that these variance coefficients can be meaningfully interpreted.

As already discussed in the previous chapters the covariance structure of the latent variables of the

LST-COM model is essential for the decomposition of different variance components. In Theorem

4.5 non-permissible covariances that must be fixed to zero in empirical applications were discussed.

Based on these conditions the measurement equations as well as the variance decomposition of

LST-COM models are presented next.

Definition 4.4
M≡ 〈(Ω,A,P), ξt, ξUM

rt , ξCM
t , ξM

t , ζt, ζ
UM
rt , ζCM

t , ζM
t ,Ert,Et, αt, λξ, λ

UM
ξ , λCM

ξ , λM
ξ , λζ ,

λUM
ζ , λCM

ζ , λM
ζ 〉 is a LST-COM model with conditional regressive independent latent state

variables if and only if the statements in Definition 4.2 as well as the statements 4.41 to 4.49
of Theorem 4.2 hold, and:

ξt ≡ (ξ111 · · · ξtij · · · ξbcd)T,
ξUM
rt ≡ (ξUM11111 · · · ξUMrtij2 · · · ξUMabcd2)T,
ξCM
t ≡ (ξCM1111 · · · ξCMtij2 · · · ξCMbdc2)T,
ξM
t ≡ (ξM1111 · · · ξMtijk · · · ξMbcde)T,
ζt ≡ (ζ1111 · · · ζtijl · · · ζbcdf )T,

ζUM
rt ≡ (ζUM11111 · · · ζUMrtj2l · · · ζUMabd2f )T,
ζCM
t ≡ (ζCM1111 · · · ζCMtj2l · · · ζCMbd2f )T,
ζM
t ≡ (ζM1111 · · · ζMtjkl · · · ζMbdef )T,

Ert ≡ (E111111 · · ·Ertij2l · · ·Eabcd2f )T,
Et ≡ (E11111 · · ·Etijkl · · ·Ebcdef )T,
αt ≡ (α1111 · · ·αtijkl · · ·αbcdef )T,
λξ ≡ (λξ1111 · · ·λξijkl · · ·λξcdef )T,

λUM
ξ ≡ (λUMξ1111 · · ·λUMξij2l · · ·λUMξcd2f )T,
λCM
ξ ≡ (λCMξ1111 · · ·λCMξij2l · · ·λCMξcd2f )T,
λM
ξ ≡ (λMξ1111 · · ·λMξijkl · · ·λMξcdef )T,
λζ ≡ (λζ1111 · · ·λζijkl · · ·λζcdef )T,

λUM
ζ ≡ (λUMζ1111 · · ·λUMζij2l · · ·λUMζcd2f )T,
λCM
ζ ≡ (λCMζ1111 · · ·λCMζij2l · · ·λCMζcd2f )T,
λM
ζ ≡ (λMζ1111 · · ·λMζijkl · · ·λMζcdef )T.

Remarks. According to the above Definition 4.4, all indicators Ytij1l belonging to the reference
method (k = 1), the same construct j, and the same measurement occasion l measure a latent
trait ξtij , a latent state residual ζtijl, and an occasion-specific measurement error Etij1l. All
indicators Ytijkl belonging to a non-reference method (k > 2) as well as construct j, and occasion
of measurement l measure also a latent trait ξtij , a latent state residual ζtijl as well as an occasion-
specific measurement error Etijkl. In addition, these variables also measure a latent trait method
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factors ξMtijk as well as a latent state method factors ζMtjkl. All indicators Yrtij2l belonging to a non-
reference method (k = 2) as well as to the same construct j, and the same measurement of occasion
l measure a latent trait ξtij , a latent state residual ζtijl and an occasion-specific measurement error
Ertij2l. Moreover, these observed variables also measure two indicator- and construct-specific

latent trait method factors, namely ξCMtij2 and ξUMrtij2, as well as two construct- and occasion-specific

latent state-residual method variables, namely ζCMtj2l and ζUMrtj2l. The measurement equations of the
observed variables are given by:

Ytij1l =ξtij + ζtijl + Etij1l, (4.192)

Ytijkl =αtijkl + λξijklξtij + λMξijklξ
M
tijk+

λζijklζtijl + λMζijklζ
M
tjkl + Etijkl,

∀ k > 2, (4.193)

Yrtij2l =αtij2l + λξij2lξtij + λCMξij2lξ
CM
tij2 + λUMξij2lξ

UM
rtij2+

λζij2lζtijl + λCMζij2lζ
CM
tj2l + λUMζij2lζ

UM
rtj2l + Ertij2l.

(4.194)

4.7.1 Variance decomposition

Based on the above Equations 4.192 and 4.194, the variance of the observed variables can be

additively decomposed into the variance of the indicator-specific trait factors (ξtij), variance of

the indicator- and trait-specific method factors (ξUMrtij2, ξCMtij2 , ξMtijk), variance of the indicator- and

occasion-specific factors (ζtijl), variance of the common indicator-occasion-specific method factors

(ζUMrtj2l, ζ
CM
tj2l , ζMtjkl) as well as the variance of the measurement error variables (Etijkl, Ertij2l):

V ar(Ytij1l) =V ar(ξtij) + V ar(ζtijl) + V ar(Etij1l), (4.195)

V ar(Yrtij2l) =(λξij2l)2V ar(ξtij) + (λCMξij2l)2V ar(ξCMtij2 )+

(λUMξij2l)2V ar(ξUMrtij2) + (λζij2l)2V ar(ζtijl)+

(λCMζij2l)2V ar(ζCMtj2l ) + (λUMζij2l)2V ar(ζUMrtj2l) + V ar(Ertij2l),

(4.196)

V ar(Ytijkl) =(λξijkl)2V ar(ξtij) + (λMξijkl)2V ar(ξMtijk)+

(λζijkl)2V ar(ζtijl) + (λMζijkl)2V ar(ζMtjkl)+

V ar(Etijkl),

∀ k > 2. (4.197)

Moreover, it is possible to define different variance components. First, the true intraclass coefficient

(ICC) can be defined on the basis of true-score variables pertaining to the interchangeable method

(τrtij2l):

ICC(τrtij2l) =
(λξij2l)2V ar(ξtij) + (λCMξij2l)2V ar(ξCMtij2 ) + (λζij2l)2V ar(ζtijl) + (λCMζij2l)2V ar(ζCMtj2l )

V ar(Yrtij2l)− V ar(Ertij2l)
.

The true ICC coefficient represents the proportion of true-score variance that is determined by

consistent (stable) as well as momentary rater influences on the target-level. In other words, the

true ICC coefficient reflects the amount of true (stable as well as momentary) rater-congruency on

the target-level. That means that these true rater effects are free of single rater-specific influences.

Hence, the true ICC coefficients can also be interpreted as true amount of rater-consistency on

the target-level. Note that the true rater-consistency coefficient is calculated on the level of the

true-score variables and corresponds to the classical intraclass correlation (Hox, 2010; Luke, 2004;

Snijders & Bosker, 2011; Raudenbrush & Bryk, 2002). The true rater-consistency coefficient on the
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target-level can be further decomposed into a consistent [trait; ξRC(τrtij2l)] as well as a momentary

[state; ζRC(τrtij2l)] rater-consistency coefficient:

ξRC(τrtij2l) =
(λξij2l)2V ar(ξtij) + (λCMξij2l)2V ar(ξCMtij2 )

V ar(Yrtij2l)− V ar(Ertij2l)
,

ζRC(τrtij2l) =
(λζij2l)2V ar(ζtijl) + (λCMζij2l)2V ar(ζCMtj2l )

V ar(Yrtij2l)− V ar(Ertij2l)
.

The true trait (ξ) rater-consistency coefficient reflects the amount of true stable rater-consistency

(i.e., free of rater-specific and occasion-specific influences). In contrast to that the true state

(ζ) rater-consistency coefficient reflects the amount of true occasion-specific (momentary) rater-

consistency (i.e., free of rater-specific and trait-specific influences). In addition, it is possible to

define different trait or state specificity coefficients: (1) the true trait (ξ) specificity coefficient

and (2) true state (ζ) specificity coefficient. The true trait (ξ) specificity coefficient represents the

proportion of true-score variance that is determined by stable (not occasion-specific or momentary)

influences and is given by:

ξS(τtij1l) =
V ar(ξtij)

V ar(Ytij1l)− V ar(Etij1l)
,

ξS(τtijkl) =
(λξijkl)2V ar(ξtij) + (λMξijkl)2V ar(ξMtijk)

V ar(Ytijkl)− V ar(Etijkl)
, ∀ k > 2,

ξS(τrtij2l) =
(λξij2l)2V ar(ξtij) + (λCMξij2l)2V ar(ξCMtij2 ) + (λUMξij2l)2V ar(ξUMrtij2)

V ar(Yrtij2l)− V ar(Ertij2l)
.

These coefficients may be of particular interest for researchers who seek to determine how much

variance of the true-score variables is due to stable (trait) influences. Conversely, researchers

may calculate the true state (ζ) specificity coefficient in order to investigate how much true-score

variance is due to occasion-specific or momentary influences:

ζS(τtij1l) =
V ar(ζtijl)

V ar(Ytij1l)− V ar(Etij1l)
,

ζS(τtijkl) =
(λζijkl)2V ar(ζtijl) + (λMζijkl)2V ar(ζMtjkl)

V ar(Ytijkl)− V ar(Etijkl)
, ∀ k > 2,

ζS(τrtij2l) =
(λζij2l)2V ar(ζtijl) + (λCMζij2l)2V ar(ζCMtj2l ) + (λUMζij2l)2V ar(ζUMrtj2l)

V ar(Yrtij2l)− V ar(Ertij2l)
.

The true occasion-specific (ζ) specificity coefficient reflects the proportion of true-score variance

that is due to occasion-specific or momentary influences. The true trait (ξ) specificity coefficients

can be further decomposed into a trait consistency and a trait method specificity coefficient. In
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a similar way, the true occasion-specific (ζ) specificity coefficients can be further decomposed

into an occasion-specific consistency and an occasion-specific method specificity coefficient. With

regard to the trait consistency coefficients it is possible to investigate the degree of true convergent

validity on trait level, whereas the occasion-specific consistency coefficients reflects the degree of

true convergent validity on state level. The true trait (ξ) consistency coefficients are given by:

ξCON(τtijkl) =
(λξijkl)2V ar(ξtij)

V ar(Ytijkl)− V ar(Etijkl)
, ∀ k > 2,

ξCON(τrtij2l) =
(λξij2l)2V ar(ξtij)

V ar(Yrtij2l)− V ar(Ertij2l)
.

Note that the trait consistency coefficients are only shown for the true-score variables belonging

to the non-reference methods. The square root of these true trait (ξ) consistency coefficients

[
√
ξCON(·)] can be interpreted as degree of true convergent validity on trait level. In a similar

way, the true occasion-specific (ζ) consistency coefficients are defined as follows:

ζCON(τtijkl) =
(λζijkl)2V ar(ζtijl)

V ar(Ytijkl)− V ar(Etijkl)
, ∀ k > 2,

ζCON(τrtij2l) =
(λζij2l)2V ar(ζtijl)

V ar(Yrtij2l)− V ar(Ertij2l)
.

The square root of these true occasion-specific (ζ) consistency coefficients [
√
ζCON(·)] represent

the degree of true convergent validity on state level. The true trait (or occasion-specific) method

specificity coefficients represent the true (measurement error free) stable (or momentary) amount

of method bias. These coefficients are defined by:

ξMS(τtijkl) =
(λMξijkl)2V ar(ξMtijk)

V ar(Ytijkl)− V ar(Etijkl)
, ∀ k > 2,

ξCMS(τrtij2l) =
(λCMξij2l)2V ar(ξCMtij2 )

V ar(Yrtij2l)− V ar(Ertij2l)
,

ξUMS(τrtij2l) =
(λUMξij2l)2V ar(ξUMrtij2)

V ar(Yrtij2l)− V ar(Ertij2l)
,

ζMS(τtijkl) =
(λMζijkl)2V ar(ζMtjkl)

V ar(Ytijkl)− V ar(Etijkl)
, ∀ k > 2,

ζCMS(τrtij2l) =
(λCMζij2l)2V ar(ζCMtj2l )

V ar(Yrtij2l)− V ar(Ertij2l)
,

ζUMS(τrtij2l) =
(λUMζij2l)2V ar(ζUMrtj2l)

V ar(Yrtij2l)− V ar(Ertij2l)
.

ξMS(τtijkl) represents the proportion of true-score variance of Ytijkl that is determined by con-

sistent method-specific influences due to the non-reference method k. For example, with respect

to this coefficient it is possible to investigate the proportion of true variance that is due to con-

sistent (stable) over- or underestimations of the non-reference structurally different method (e.g.,
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supervisor) with respect to the reference method (e.g., employee’s self-report). ξCMS(τrtij2l)

reflects the proportion of true-score variance of an observed variable Yrtij2l that is determined

by consistent method-specific influences common to the non-reference interchangeable methods

k = 2. In empirical applications, ξCMS(τrtij2l) represents the amount of true consistent (sta-

ble) over- or underestimations of the general view of the interchangeable raters (e.g., colleagues)

with respect to the target’s self-report (reference method). In contrast, ξUMS(τrtij2l) denotes

the proportion of true-score variance that is due to stable single rater-specific influences. That

means that ξUMS(τrtij2l) represents the amount of true and consistent over- or underestimation

of a particular rater (e.g., colleague A) with respect to the general and consistent view of all in-

terchangeable raters (e.g., all colleagues for the particular target). This rater influence is unique

(specific) to a particular rater, thus not shared with other raters. The coefficients ζMS(τtijkl),

ζCMS(τrtij2l), and ζUMS(τrtij2l) can be calculated in an analogous way. These coefficients reflect

pure measurement-error free occasion-specific method bias. Finally, the reliability coefficients of

the observed variables are defined as follows:

Rel(Ytij1l) =1−
V ar(Etij1l)
V ar(Ytij1l)

,

Rel(Ytijkl) =1−
V ar(Etijkl)
V ar(Ytijkl)

, ∀ k > 2,

Rel(Yrtij2l) =1−
V ar(Ertij2l)
V ar(Yrtij2l)

.

Consequently, the unreliability coefficients are given by:

Unrel(Ytij1l) =
V ar(Etij1l)
V ar(Ytij1l)

,

Unrel(Ytijkl) =
V ar(Etijkl)
V ar(Ytijkl)

, ∀ k > 2,

Unrel(Yrtij2l) =
V ar(Ertij2l)
V ar(Yrtij2l)

.

4.8 Mean structure

This section concerns the latent variable mean structure of the LST-COM model. The following

theorem shows the consequence of the model definition for the observed and latent variables.

Theorem 4.6 (Mean structure)
If M≡ 〈(Ω,A,P), ξt, ξUM

rt , ξCM
t , ξM

t , ζt, ζ
UM
rt , ζCM

t , ζM
t ,Ert,Et, αt, λξ, λ

UM
ξ , λCM

ξ , λM
ξ ,

λζ , λ
UM
ζ , λCM

ζ , λM
ζ 〉 is a LST-COM model of (ξtij, ξ

UM
tij2 , ξCMtij2 , ξMtijk, ζtijl, ζ

UM
rtj2l, ζ

CM
tj2l , ζMtjkl)-

congeneric variables and without loss of generality, k = 1 method is chosen as reference method,
then the following mean structure holds for all r ∈ R ≡ {1, . . . , a}, t ∈ T ≡ {1, . . . , b},
i ∈ I ≡ {1, . . . , c}, j ∈ J ≡ {1, . . . , d}, k ∈ K ≡ {1, . . . , e}, l ∈ L ≡ {1, . . . , f}:



CHAPTER 4. THE LATENT STATE-TRAIT (LST-COM) MODEL 135

E(Ytijkl) =αtijkl + λξijklE(ξtij), ∀ k > 2, (4.198)

E(Yrtij2l) =αtij2l + λξij2lE(ξtij). (4.199)

E(Ytij1l) =E(ξtij), (4.200)

E(ζtijl) =0, (4.201)

E(ξUMrtij2) =0, (4.202)

E(ξCMtij2 ) =0, (4.203)

E(ξMtijk) =0, ∀ k > 2, (4.204)

E(ζUMrtj2l) =0, (4.205)

E(ζCMtj2l ) =0, (4.206)

E(ζMtjkl) =0, ∀ k > 2, (4.207)

E(Etijkl) =0, ∀k 6= 2, (4.208)

E(Ertij2l) =0, (4.209)

where E(.) denotes expected value.

Proofs. 17 Mean structure
According to Equation 4.192, the observed variable Ytij1l measured by the reference method is

decomposed into:
Ytij1l = ξtij + ζtijl + Etij1l.

The expected value of Ytij1l is

E(Ytij1l) = E(ξtij) + E(ζtijl) + E(Etij1l).

According to the Equations 4.201 and 4.208 in the above Theorem 4.6, it follows:

E(Ytij1l) = E(ξtij).

Equations 4.201 and 4.208 in the above Theorem 4.6 state that the latent state-residual variables
ζtijl as well as the measurement error variables Etij1l are defined as residuals. As a consequence of
this definition, it follows directly that these variables have expectations of zero (Steyer, 1989; Steyer
& Eid, 2001). Similarly, according to Equation 4.193, the observed variable Ytijkl is decomposed
into:

Ytijkl = αtijkl + λξijklξtij + λMξijklξ
M
tijk + λζijklζtijl + λMζijklζ

M
tjkl + Etijkl.

The expected value of Ytijkl is

E(Ytijkl) = E(αtijkl) + E(λξijklξtij) + E(λMξijklξMtijk)
+ E(λζijklζtijl) + E(λMζijklζMtjkl) + E(Etijkl).

According to the Equations 4.201, 4.204, 4.207, and 4.208 of the above Theorem 4.6, it follows that
the expected values of the residual variables ζtijl, ξ

M
tijk, ζMtjkl and Etijkl are zero. Thus, the above

equation simplifies to (see Equation 4.198):

E(Ytijkl) = αtijkl + λξijklE(ξtij).

Equations 4.201, 4.204, 4.207 and 4.208 follow by definition, given that ζtijl, ξ
M
tijk, ζMtjkl and Etijkl

are defined as residuals (Steyer, 1989; Steyer & Eid, 2001). In a similar way, according to Equation
4.194 the observed variable Yrtij2l is

Yrtij2l =αtij2l + λξij2lξtij + λCMξij2lξ
CM
tij2 + λUMξij2lξ

UM
rtij2+

λζij2lζtijl + λCMζij2lζ
CM
tj2l + λUMζij2lζ

UM
rtj2l + Ertij2l.
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Therefore, the expected value of Yrtij2l is

E(Yrtij2l) =E(αtij2l) + E(λξij2lξtij) + E(λCMξij2lξCMtij2 ) + E(λUMξij2lξUMrtij2)+
E(λζij2lζtijl) + E(λCMζij2lζCMtj2l ) + E(λUMζij2lζUMrtj2l) + E(Ertij2l).

Again, the expected values of the latent variables ξCMtij2 , ξUMrtij2, ζtijl, ζ
CM
tj2l , ζUMrtj2l, and Ertij2l are

zero with respect to the above theorem, then the Equation simplifies to (see Equation 4.199):

E(Yrtij2l) = αtij2l + λξij2lE(ξtij).

Again, Equations 4.201, 4.203, 4.202, 4.206, 4.205 and 4.209 follow by definition, given that the
latent variables ξCMtij2 , ξUMrtij2, ζtijl, ζ

CM
tj2l , ζUMrtj2l, and Ertij2l are defined as residuals, and residuals

have always an expected value of zero.

�

Remarks. Equations 4.198 and 4.199 clarify that the means of the observed variables are equal
to αtijkl + λξijklE(ξtij) and αtij2l + λξij2lE(ξtij), respectively. According to Equation 4.200, the
mean of the latent trait variable is identical to the mean of the indicator pertaining to the reference
method. Equations 4.201 to 4.207 reveal the latent state residuals as well as the trait-specific and
state-specific method factors are defined as residuals and therefore have an expected value of zero.
The same holds for the measurement error variables (see Equation 4.208 and 4.209).

4.9 Identifiability

According to the following theorem, the parameter of the LST-COM model are uniquely iden-

tified for at least two indicators, two traits, two methods, and three occasions of measurement (i.e.,

2× 2× 2× 3 measurement design). Again, the between covariance matrix of any LST-COM model

is identical to a restricted covariance matrix of the MM-LST (Multitrait-Multimethod latent state-

trait model by Courvoisier (2006) for the same dimension, and for which the measurement error

variances of the observed variables pertaining to the second method Ytij2l have been fixed to zero.

Hence, the between variance-covariance matrix of the LST-COM model is a special case of the

variance-covariance matrix of the MM-LST model by Courvoisier (2006). The minimal condition

of parameter identification with respect to a MM-LST model is a 2×2×2×3 measurement design.

Thus, the parameter of a LST-COM model are also uniquely identified for a 2 × 2 × 2 × 3 mea-

surement design, if and only if the indicator specific latent state (method) variables on the rater-

and target-level are correlated. In cases of two indicators, two constructs, two sets of methods,

and two occasions of measurement (2× 2× 2× 2 measurement design) the model is not identified

without further restrictions. As Courvoisier (2006) pointed out this model would be only identified

if the factor loading parameters of the latent trait variables are fixed to one, and the latent state

variables are homogeneous across items and substantially correlated.

Theorem 4.7 (Identification of the LST-COM covariance structure)
Let M≡ 〈(Ω,A,P), ξt, ξUM

rt , ξCM
t , ξM

t , ζt, ζ
UM
rt , ζCM

t , ζM
t ,Ert,Et, αt, λξ, λ

UM
ξ , λCM

ξ , λM
ξ ,

λζ , λ
UM
ζ , λCM

ζ , λM
ζ 〉 be a LST-COM model of (ξtij, ξ

UM
tij2 , ξCMtij2 , ξMtijk, ζtijl, ζ

UM
rtj2l, ζ

CM
tj2l , ζMtjkl)-

congeneric variables with conditional regressive independence, then the parameters of the ma-
trices µξB, ΛξW, ΦξW, ΛζW, ΦζW,

∑
θW, ΛξB, ΦξB, ΛζB, ΦζB,

∑
θW are identified, if

either one factor loading λξijkl, λ
M
ξijkl, λ

CM
ξij2l, λ

UM
ξij2l, λζijkl, λ

M
ζijkl, λ

CM
ζij2l, λ

UM
ζij2l for each factor

ξtij, ξ
CM
tij2 , ξUMrtij2, ζtijl, ζ

CM
tj2l , ζUMrtj2l or the variance of these factors are set to any real value

larger than 0, and
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(a) iff i = 2, j ≥ 2, k ≥ 2, l ≥ 3 and ΦξW, ΦζW, ΦξB, ΦζB contain permissible in-
tercorrelations among the latent variables (i.e., nonzero elements in the off-diagonal),
otherwise

(b) iff i ≥ 3, j ≥ 1, k ≥ 3, l ≥ 3.

Remarks. According to the above Theorem 4.7 the LST-COM model parameter are uniquely
identified for the minimal condition of two indicators, two constructs, two sets of methods (one
structurally different and one set of interchangeable methods) and three occasions of measurement.
Given that the between covariance matrix

∑
B of the LST-COM can be seen as restrictive variant of

the total covariance matrix of the MM-LST model by Courvoisier (2006), the model identification
for the parameter with respect to the between covariance matrix

∑
B is shown by Courvoisier

(2006, chapter 5.4.11). The identification for the parameters of the within covariance matrix
∑

W
is demonstrated for the case of a 2× 2× 2× 3 measurement design.

Proofs. 18 (Identification of
∑

W) The following proofs concern the identification of the pa-
rameters of the within (rater-level) variance-covariance matrix

∑
W. The identification of the

LST-COM model parameters on the target-level is demonstrated by Courvoisier (2006). Therefore,
it will be assumed that these parameters are known throughout the subsequent proofs. Note that
the parameters measured on the target-level will be used for identification without replacing them
by parameters of the observed variables. Moreover, parameters that are identified in previous iden-
tification steps will also not be replaced by parameters of the observed variables. As starting point
for the identification of the within variance-covariance matrix

∑
W, the measurement equation of

any observed variable pertaining to the interchangeable method is considered:

Yrtij2l =αtij2l + λξij2lξtij + λCMξij2lξ
CM
tij2 + λUMξij2lξ

UM
rtij2+

λζij2lζtijl + λCMζij2lζ
CM
tj2l + λUMζij2lζ

UM
rtj2l+

Ertij2l.

For the subsequent proofs the zero-covariances among the latent variables of the LST-COM are
used (see Theorem 4.5).

Identification of λUMξij2l:

For any observed variables pertaining to the set of non-reference (interchangeable) methods Yrtij2l
measured on the rater-level:

Cov(Yrtij21, Yrtij2l′) = λUMξij21λ
UM
ξij2l′V ar(ξUMrtij2),

Cov(Yrtij2l, Yrtij2l′) = λUMξij2lλ
UM
ξij2l′V ar(ξUMrtij2).

According to Theorem 4.7 the first factor loadings of any latent factor in the LST-COM model is
set to one for identification purposes (see also Bollen, 1989, 2002). Hence, λUMξij21 = 1. Substituting
this parameter value in the equations above as well as setting above equations equal, yields:

Cov(Yrtij21, Yrtij2l′) = Cov(Yrtij2l, Yrtij2l′)
λUMξij2l

.

The equation above can be reformulated as follows:

λUMξij2l = Cov(Yrtij2l, Yrtij2l′)
Cov(Yrtij21, Yrtij2l′)

.

Identification of V ar(ξUMrtij2):

Given that, λUMξij2l = Cov(Yrtij2l,Yrtij2l′ )
Cov(Yrtij21,Yrtij2l′ )

and λUMξij21 = 1 (see Theorem 4.7), it follows from that:

Cov(Yrtij21, Yrtij2l) =λUMξij21λ
UM
ξij2lV ar(ξUMrtij2)

=Cov(Yrtij2l, Yrtij2l′)
Cov(Yrtij21, Yrtij2l′)

V ar(ξUMrtij2).
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Consequently,

V ar(ξUMrtij2) = Cov(Yrtij21, Yrtij2l)Cov(Yrtij21, Yrtij2l′)
Cov(Yrtij2l, Yrtij2l′)

.

Identification of Cov(ξUMrtij2, ξUMrti′j′2), where (i, j) 6= (i′, j′):

Because of the zero-covariances between latent state-residual unique method variables ζUMrtj2l and

ζUMrtj′2l′ for all (j, l) 6= (j′, l′), it follows that

Cov(Yrtij21, Yrti′j′2l′) = λUMξij21λ
UM
ξi′j′2l′Cov(ξUMrtij2, ξUMrti′j′2).

Given that, λUMξij2l′ = Cov(Yrtij2l′ ,Yrtij2l′′ )
Cov(Yrtij21,Yrtij2l′′ )

and λUMξij21 = 1 (see Theorem 4.7), it follows from that

Cov(ξUMrtij2, ξUMrti′j′2) = Cov(Yrtij21, Yrti′j′2l′)Cov(Yrtij21, Yrtij2l′′)
Cov(Yrtij2l′ , Yrtij2l′′)

.

Identification of Cov(ζUMrtj2l, ζUMrtj′2l):
Given that λUMζ1j2l = 1, λUMζ1j′2l = 1, λUMξ1j2l = 1, λUMξ1j′2l′ = 1 (see Theorem 4.7) and given that the

covariance Cov(ξUMrt1j2, ξUMrt1j′2) has been identified (see previous steps), it follows from that:

Cov(Yrt1j2l, Yrt1j′2l) = λUMζ1j2lλ
UM
ζ1j′2lCov(ζUMrtj2l, ζUMrtj′2l) + λUMξ1j2lλ

UM
ξ1j′2l′Cov(ξUMrt1j2, ξUMrt1j′2).

Rearrangement of the equation above, yields:

Cov(ζUMrtj2l, ζUMrtj′2l) = Cov(Yrt1j2l, Yrt1j′2l)− Cov(ξUMrt1j2, ξUMrt1j′2).

Identification of λUMζij2l:

For two observed variables Yrt112l and Yrtij2l measured on the rater-level, it follows that:

Cov(Yrt112l, Yrtij2l) = λUMζ112lλ
UM
ζij2lCov(ζUMrt12l, ζ

UM
rtj2l) + λUMξ112lλ

UM
ξij2lCov(ξUMrt112, ξ

UM
rtij2).

Given that all parameters of the above equation are known, with the exception of λUMζij2l, it follows
that:

Cov(Yrt112l, Yrtij2l) = λUMζij2lCov(ζUMrt12l, ζ
UM
rtj2l) + λUMξij2lCov(ξUMrt112, ξ

UM
rtij2),

λUMζij2l =
Cov(Yrt112l, Yrtij2l)− λUMξij2lCov(ξUMrt112, ξ

UM
rtij2)

Cov(ζUMrt12l, ζ
UM
rtj2l)

.

Note that the parameters λUMξij2l, Cov(ξUMrt112, ξ
UM
rtij2), and Cov(ζUMrt12l, ζ

UM
rtj2l) have been already iden-

tified in the previous steps.

Identification of V ar(ζUMrtj2l):
For two observed variables Yrt1j2l and Yrtij2l measured on the rater-level, it follows that:

Cov(Yrt1j2l, Yrtij2l) = λUMζ1j2lλ
UM
ζij2lV ar(ζUMrtj2l) + λUMξ1j2lλ

UM
ξij2lCov(ξUMrt1j2, ξUMrtij2).

Rearrangement of the above equation yields,

V ar(ζUMrtj2l) =
Cov(Yrt1j2l, Yrtij2l)− λUMξij2lCov(ξUMrt1j2, ξUMrtij2)

λUMζij2l
.

Note that the parameters λUMξij2l, Cov(ξUMrt1j2, ξUMrtij2), and λUMζij2l have been already identified in the
previous steps.

Identification of V ar(Ertij2l):
For any observed variable Yrtij2l,

V ar(Yrtij2l) =(λξij2l)2V ar(ξtij) + (λCMξij2l)2V ar(ξCMtij2 )+
(λUMξij2l)2V ar(ξUMrtij2) + (λζij2l)2V ar(ζtijl)+
(λCMζij2l)2V ar(ζCMtj2l ) + (λUMζij2l)2V ar(ζUMrtj2l)+
V ar(Ertij2l).
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Therefore, V ar(Ertij2l) is identified by:

V ar(Ertij2l) =V ar(Yrtij2l)− (λξij2l)2V ar(ξtij)− (λCMξij2l)2V ar(ξCMtij2 )−
(λUMξij2l)2V ar(ξUMrtij2)− (λζij2l)2V ar(ζtijl)−
(λCMζij2l)2V ar(ζCMtj2l )− (λUMζij2l)2V ar(ζUMrtj2l),

given that all other parameters are identified.

�

4.10 Measurement Invariance

Testing measurement invariance is crucial when fitting LST models to empirical data (see Geiser,

Keller, Lockhart, Eid, et al., 2012). In the next theorem, a LST-COM model with conditional

regressive independence (RCI) and strong measurement invariance (MI) is therefore defined.

Definition 4.5 (LST-COM model with RCI and strong MI)
M≡ 〈(Ω,A,P), ξt, ξUM

rt , ξCM
t , ξM

t , ζt, ζ
UM
rt , ζCM

t , ζM
t ,Ert,Et, αt, λξ, λ

UM
ξ , λCM

ξ , λM
ξ , λζ , λ

UM
ζ ,

λCM
ζ , λM

ζ 〉 is called a LST-COM model of (ξtij, ξ
CM
tij2 , ξUMrtij2, ξMtijk, ζtijl, ζ

CM
tj2l , ζUMrtj2l, ζ

M
tjkl)-

congeneric variables with conditional regressive independence and with strong measurement
invariance if and only if Definition 4.1, Theorem 4.2, Definition 4.3 hold and for each
indicator i, construct j, method k and for each pair (l, l′) ∈ L×L′, (l 6= l′) there is a constant
αtijk ∈ R, a constant λξijk ∈ R+, a constant λCMξij2 ∈ R+, a constant λUMξij2 ∈ R+, a constant

λMξijk ∈ R+, a constant λζijk ∈ R+, a constant λCMζij2 ∈ R+, a constant λUMζij2 ∈ R+, a constant

λMζijk ∈ R+, such that

αtijk ≡ αtijkl = αtijkl′ , (4.210)

λξijk ≡ λξijkl = λξijkl′ , (4.211)

λCMξij2 ≡ λCMξij2l = λCMξij2l′ , (4.212)

λUMξij2 ≡ λUMξij2l = λUMξij2l′ , (4.213)

λMξijk ≡ λMξijkl = λMξijkl′ , ∀ k > 2, (4.214)

λζijk ≡ λζijkl = λζijkl′ , (4.215)

λCMζij2 ≡ λCMζij2l = λCMζij2l′ , (4.216)

λUMζij2 ≡ λUMζij2l = λUMζij2l′ , (4.217)

λMζijk ≡ λMζijkl = λMζijkl′ , ∀ k > 2. (4.218)
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Box 4.1 (LST-COM Model)
ξtijkl target-specific latent trait variable of the (non-)reference (structurally different) method

ξtij2l rater-target-specific latent trait variable of the non-reference (interchangeable) method

ζtijkl target-specific latent state-residual variable of the (non-)reference (structurally different)
method

ζtij2l target-specific latent state-residual variable of the non-reference (interchangeable) method

ξUMrtij2l rater-target-specific latent trait unique method variable of the non-reference (inter-
changeable) method

ζUMrtij2l rater-target-specific latent state-residual unique method variable of the non-reference
(interchangeable) method

ξCMtij2l target-specific latent trait common method variable of the non-reference (interchangeable)
method

ζCMtij2l target-specific latent state-residual common method variable of the non-reference (inter-
changeable) method

ξMtijkl target-specific latent trait method variable of the non-reference (structurally different)
method

ζMtijkl target-specific latent state-residual method variable of the non-reference (structurally dif-
ferent) method

ξtijkl ≡ E(Stijkl|pT ),
ζtijkl ≡ Stijkl − ξtijkl,
ξUMrtij2l ≡ E(UMrtij2l|pT , pR),
ξCMtij2l ≡ ξtij2l − E(ξtij2l|ξtij1l),
ξMtijkl ≡ ξtijkl − E(ξtijkl|ξtij1l), ∀ k > 2,
ζUMrtij2l ≡ UMrtij2l − ξUMrtij2l,
ζCMtij2l ≡ ζtij2l − E(ζtij2l|ζtij1l),
ζMtijkl ≡ ζtijkl − E(ζtijkl|ζtij1l), ∀ k > 2.



Chapter 5

Formal definition of the latent
growth curve (LGC-COM) model

5.1 A gentle introduction

Over the last decades, latent growth curve (LGC) models have been increasingly applied to

social and behavioral data (Bollen & Curran, 2006; Ferrer, Balluerka, & Widaman, 2008; Hancock,

Kuo, & Lawrence, 2001; McArdle & Epstein, 1987; McArdle, 1988; Meredith & Tisak, 1990).

One of the main advantages of LGC models is that the shape of true intraindividual change

can be directly modeled, rather than modeled indirectly, as for instance with respect to latent

change models (Geiser, 2012). LGC models also allow relating true interindividual differences in

intraindividual change to manifest or latent background variables (e.g., gender, age, treatment

groups etc.) in order to explain interindividual differences in growth. Many researchers have

noticed the methodological similarities between models for measuring change (LC models), growth

(LGC models) and variability processes (LST models) in the past (Cole, Martin, & Steiger, 2005;

Eid & Hoffmann, 1998; Geiser, 2012; Tisak & Tisak, 2000). However, the methodological link

between LGC models and LST theory (Eid, 1995; Steyer et al., 1992) has just been recently

formalized in a work by Geiser, Keller, and Lockhart (2012). In particular, Geiser, Keller, and

Lockhart (2012) showed that first and second order LGC models represent a restrictive variant

of LST change models, where the change of the latent trait variables is modeled by a linear or

nonlinear function. Moreover, Geiser, Keller, and Lockhart (2012) showed analytically as well as

empirically (with simulation studies) why second order LGC models often outperform first order

LGC models. That is that in second order LGC models “true” change can be studied separately

from “true” occasion-specific as well as measurement error influences, which is not possible with

respect to first order LGC models (c.f Geiser, Keller, & Lockhart, 2012).

It is worth noting that the terms “first order LGC model” and “second order LGC model” can

be quiet misleading. The reason for that is that first order LGC models are generally based on one

single observed variable measured repeatedly over time (e.g., Hancock et al., 2001), whereas second

order LGC models require multiple (at least two) observed variables measured repeatedly over time

(e.g., Geiser, Keller, & Lockhart, 2012; Tisak & Tisak, 2000). Moreover, second order LGC models

do not always have to be specified as second order CFA models. For example, in Figure 5.1, model

F is graphically presented as first order CFA model. However, under specific conditions, model F

141



CHAPTER 5. THE LATENT GROWTH CURVE (LGC-COM) MODEL 142

becomes equivalent to model D, a second order LGC models. Hence, in this work the distinction

between single vs. multiple indicator LGC models is preferred rather than the general distinction

between first vs. second order LGC models. Many researchers have emphasized the advantages of

multiple indicator (or second order) LGC models (e.g., Chan, 1998; Geiser, Keller, & Lockhart,

2012; Ferrer et al., 2008; Leite, 2007; Murphy, Beretvas, & Pituch, 2011; von Oerzen, Hertzog,

Lindenberger, & Ghisletta, 2010). According to Geiser, Keller, and Lockhart (2012, pp. 3-4) the

main advantages of multiple indicator LGC models can be summarized as follows:

� Multiple indicator LGC models allow separating different variances components from one an-

other. That is, multiple indicator LGC models allow separating measurement error variance

from true change as well as reliable time-specific variance (see also Sayer & Cumsille, 2001).

� Multiple indicator LGC models allow testing crucial assumptions such as measurement in-

variance assumptions in longitudinal data analysis (see also Chan, 1998; Ferrer et al., 2008).

� Multiple indicator LGC models are more sensitive than single indicator LGC models for the

investigation of individual differences in change (see also von Oerzen et al., 2010).

� Multiple indicator LGC models allow separating indicator-specific (or method) variance from

construct variance.

In order to understand why multiple indicator LGC models often outperform single indicator LGC

models, the methodological links between latent change (LC) models, latent state-trait (LST)

models and latent growth curve (LGC) models are summarized again. The key steps for defining

second order LGC models are depicted in Figure 5.1. Model A in Figure 5.1 represents a latent

state model with strong measurement invariance, which is often used as baseline model. Strong

measurement invariance requires equivalence restrictions on the intercepts αil and factor loading

parameters λil for each indicator belonging to different occasions of measurement (Meredith, 1993;

Widaman & Reise, 1997). As already shown in Chapter 3, any latent state (LS) model with strong

measurement invariance can be reparametrized into a latent change (LC) model. A data equivalent

latent change model is given in B of Figure 5.1. Latent change models allow studying the true

interindividual differences in intraindividual change with respect to the initial status. The formal

tautological restatement of a latent state model into a latent baseline (BC) change model is given

by the following equation:

S2 = S1 + (Sl − S1) = S1 + SBCl

Again, with respect the latent difference or change variables SBCl it is possible to study true

interindividual differences in intraindividual change. The term “true” refers to the fact that the

latent difference variables are free of measurement error influences. In order to define a latent

growth curve model, it is necessary to assume that the latent change (difference) variables SBC2

pertaining to different measurement occasions l and l′ follow a particular linear or non-linear

function. For example, if the true intraindividual change for each individual is assumed to be

linear for each individual, the relationship between the latent change (difference) variables maybe

rewritten as SBCl = (l − 1) · SBC(l−1). Hence, LGC models can also be seen as special case (or more
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restrictive variant) of latent change (LC) models, where researchers specify a particular function

for the true intraindividual change. The function of these individual growth curves can be linear

(l − 1) or non-linear [e.g., quadratic (l − 1)2 or cubic (l − 1)3]. In order to define a second order

LGC model, it is useful to consider the basic concept of LST theory. According to LST-theory

(Eid, 1995; Steyer et al., 1992), latent state variables can be decomposed into a latent trait as well

as a latent state-residual variable. Generally, this decomposition can be expressed as follows:

Yil = Sil + Eil,

Sil = ξil + ζil,

Yil = ξil + ζil + Eil.

The index i denotes the observed variables, whereas the index l refers to the occasion of measure-

ment. Furthermore, ξil refers to the latent trait variables, ζil to the latent state-residual variables,

and Eil the measurement error variables. The main advantage of LST models is that person-specific

influences (ξil), occasion-specific or momentary (ζil) influences and measurement error influences

(Eil) can be separated from one another. This is not possible with respect to latent state (LS)

models, given that latent state variables in LS models consist of both stable as well as momentary

influences. Of course, LST-models may be reformulated into latent state-trait change version:

Yil = Sil + Eil,

Sil = ξil + ζil,

ξil = ξi1 + (ξil − ξi1),

Yil = ξi1 + (ξil − ξi1) + ζil + Eil.

With respect to latent state-trait change (LSTC) models it is possible to investigate true trait

change with respect to initial trait, while accounting for occasion-specific and measurement error

influences. In order to define a second order LGC model (that allows the separation of measurement

error variance from true change and reliable time-specific variance), it is assumed that the trait

change follows some linear or nonlinear function:

ξil = ξi1 + (ξil − ξi1),

(ξil − ξi1) = (l − 1) · (ξi2 − ξi1),

Yil = ξi1 + (l − 1) · (ξi2 − ξi1) + ζil + Eil.

The structural similarities of LGC and LST models become obvious, if ξi1 is replaced by Ii1 (for

intercept) and (ξi2 − ξi1) is replaced by Sil (for slope):

Yil = Ii1 + (l − 1) · Sil + ζil + Eil. (5.1)

Again, the second order LGC model given in Equation 5.1 allows separating measurement error

influence from true trait change and occasion-specific influences. In addition to that, it is possible
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to test measurement invariance with χ2 difference tests. In summary, the model above encompasses

all advantages of a second order LGC model. Moreover, the model given in Equation 5.1 allows the

specification of indicator-specific intercept and slope factors. This is not possible for the models C

and D in Figure 5.1. In fact, these models implicitly make the rather restrictive assumption that

the intercept and slope variables belonging to different indicators i and i′ are perfectly correlated

with each other. However, if these assumptions hold, one may derive a second order LGC model

according to the following equations (see Geiser, Keller, & Lockhart, 2012):

Yil = αil + λilSl + Eil,

Sl = ξl + ζl,

ξl = ξ1 + (ξl − ξ1),

(ξl − ξ1) = (l − 1) · (ξ2 − ξ1),

Yil = αil + λil[ξ1 + (l − 1) · (ξ2 − ξ1) + ζl] + Eil.

Therefore,

Yil = αil + λil[I1 + (l − 1) · Sl + ζl] + Eil. (5.2)

Note that the index i has been dropped from the latent variables I1, Sl, and ζl in Equation 5.2 in

order to express that these latent variables are unidimensional. The model given in Equation 5.2

is represented in model D of Figure 5.1. Again, it is important to note that the model F in Figure

5.1 is data equivalent to model D and therefore also implies that the latent intercept and slope

variables pertaining to different indicators i and i′ are linear functions of each other. Nevertheless,

this restriction can be relaxed, which is not possible with respect to model D in Figure 5.1. In the

following chapter, a latent growth curve model with indicator specific intercept and slope variables

for longitudinal MTMM data combining structurally different and interchangeable methods is

formally defined. This model will be called LGC-COM model and represents a restrictive variant

of the LST-COM model discussed in Chapter 4.

Measurement invariance and other necessary restrictions

Again, measurement equivalence across time is a crucial prerequisite for the application of

LGC models. If strong measurement invariance holds “true” interindividual differences in change

can be investigated with respect to the same latent variables (i.e., ensuring no changes of the

measurement with regard to the latent variables over time). The latent intercept variables in

the LGC-COM model represent the “true” average of the measured attribute at the first occasion

of measurement l = 1. The variance of the latent intercepts variables represents the amount

of “true” interindividual differences with respect to the attribute measured at the first occasion

of measurement l = 1. Analogously, the mean of the latent slope variables may be interpreted

as general (average) growth of the measured attribute across different occasions of measurement.

The variance of the latent slope variables indicate the degree of “true” interindividual differences
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in intraindividual change of the measured attribute. Furthermore, the correlations between the

latent intercept and slope variables may be investigated. In order to estimate the latent means of

the intercept and slope variables, it is necessary to fix all intercepts of the observed variables αil

to zero and fix the latent factor parameters of the latent intercept variables λIil to one. Figure 5.1

shows a LGC-COM model with common latent intercept, slope, trait, and state (method) factors.

Note that this figure does not incorporate indicator-specific latent variables for simplicity.
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A Latent State Model B Latent Change Model

C Latent State-Trait Model D Latent Growth Curve Model

E Latent State-Trait Model F Latent Growth Curve Model
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Figure 5.1: Possible ways of defining LGC models on the basis of multiple indicator LST and LC
models. Yil = observed variables (i = indicator, l= occasion of measurement). Sl = latent state
variables, ξ = latent trait variable, ζl = latent state-residual variable, I = latent intercept variable,
S = latent slope variable, Eil. For all model strong measurement invariance is assumed. Detailed
explanations are given in the text.
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Figure 5.2: Path diagram of the LGC-COM model with common latent intercept, slope, trait, state (method) factors.
The LGC-COM model with common latent factors incorporating three indicators (i=1,2,3), two constructs (j=1,2), two methods (k=1,2) and three occasions of
measurement (l=1,2,3). For the sake of clarity, all latent variables of the model are represented by common latent factors. All factor loadings as well as correlations
between latent variables were omitted for clarity. Measurement error variables Ertijkl and Etijkl are only depicted for the first indicator pertaining to method 1 and 2.
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5.2 Definition of the LGC-COM model

Definition 5.1 (LGC-COM model)
The random variables {Y111111, . . . , Yrtijkl, . . . , Yabcdef} and {Y11111, . . . , Ytijkl, . . . , Ybcdef} on
a probability space (Ω,A,P) are variables of a LGC-COM model if and only if the conditions
(a to f, except for c) of Definition 4.1 with conditional regressive independence (see Definition
4.3) and strong measurement invariance (see Definition 4.5) hold.

(a) Then, without any loss of generality the latent trait variables ξtij1l pertaining to the ref-
erence method k = 1 and measurement occasion l, where l > 0 can be further decomposed
into an initial trait variable ξtij11 and a latent trait change variable (ξtij1l − ξtij11):

ξtij1l ≡ ξtij11 + (ξtij1l − ξtij11), (5.3)

which are also random variables on (Ω,A,P) with finite first- and second order moments.

(b) For each indicator i, construct j, measured by method k and for each l ∈ L, where l > 0
there is a constant δijk(l−1) = (l − 1), such that

(ξtij1l − ξtij11) ≡ δijk(l−1)(ξtij12 − ξtij11), (5.4)

and for all indicators pertaining to ξtij1l (see condition b in Definition 4.1), the intercepts
αtijkl are constrained to zero and the factor loadings λξijkl are constrained to one.

(c) Finally, let ξtij11 ≡ Itij and (ξtij12 − ξtij11) ≡ Stij.

Remarks. According to the conditions made in Definition 5.1, it is clear that the LGC-COM
model is defined as a restrictive variant of a LST-COM baseline change model. With respect
to Equation 5.3 each latent trait variable can be decomposed into an initial latent trait variable
ξtij11 and a latent trait change or latent trait difference variable (ξtij1l − ξtij11). This tautological
decomposition cannot be falsified empirically. With respect to Equation 5.4 it is assumed that any
latent trait change variable (ξtij1l − ξtij11) is a linear function of (ξtij12− ξtij11). For example, the
latent trait change from the first to the third measurement occasion is two times the latent trait
change from the first to the second measurement occasion:

(ξtij13 − ξtij11) = 2 · (ξtij12 − ξtij11).

For simplicity, it is assumed that the shape of the true intraindividual change (δijk(l−1)) is linear
for the remaining chapter. However, non-linear (quadratic or cubic) growth functions may also be
defined as follows:

(ξtij1l − ξtij11) = δijk(l−1)(ξtij12 − ξtij11) + δ2
ijk(l−1)(ξtij12 − ξtij11),

(ξtij1l − ξtij11) = δijk(l−1)(ξtij12 − ξtij11) + δ2
ijk(l−1)(ξtij12 − ξtij11) + δ3

ijk(l−1)(ξtij12 − ξtij11).

Moreover, it is important to constrain each intercept αtijkl to zero and each factor loading λξijkl
to 1. As a direct consequence of these constraints, the latent regression simplifies as follows:

E(ξtijkl|ξtij1l) = αtijkl + λξijkl[ξtij11 + δijk(l−1)(ξtij12 − ξtij11)].

If αtijkl = 0 and λξijkl = 1 as well as ξtij11 ≡ Itij and (ξtij12 − ξtij11) ≡ Stij , then

E(ξtijkl|ξtij1l) = Itij + δijk(l−1)Stij .

Given that the LGC-COM model can be derived from the LST-COM baseline change model by
imposing additional constraints with respect to the intercept and factor loadings, all psychometric
statements with respect to existence, uniqueness, admissible transformations or meaningfulness
follow directly from the definition of the LST-COM model.
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5.3 Testability

As stated above, the LGC-COM model represents a restrictive variant of the LST-COM model

with conditional regressive independence (CRI) and strong measurement invariance (MI) (see Def-

inition 5.1). Therefore, the covariance structure of the LGC-COM model is almost equivalent to

the covariance structure of the LST-COM model provided in Section 4.6.2. The only differences

between the covariance structure of the LST-COM and the LGC-COM model refer to the addi-

tional restrictions made with respect to the covariance matrix
∑
ξB in the LGC-COM model. The

following theorem summarizes the additional restrictions of the LGC-COM model. Figure 5.3 illus-

trates the latent covariance matrix ΦξB of the LGC model. For simplicity, the following covariance

matrix is solely discussed for LGC-COM models with two methods (i.e., a structurally different

method k = 1 and a set of interchangeable methods k = 2). The extension of the LGC-COM

models to three or more methods can be easily done as discussed in the previous chapters.
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Figure 5.3: Between variance-covariance matrix ΦξB of the LGC-COM model, where 1=It11,

2=It21, 3=It31, 4=St11, 5=St21, 6=St31, 7=ξCMt112, 8=ξCMt212, 9=ξCMt312, 10=It12, 11=It22, 12=It32,
13=St12, 14=St22, 15=St32, 16=ξCMt122, 17=ξCMt222, 18=ξCMt322. Cells colored in white indicate zero
correlations, cells colored in gray indicate permissible and interpretable correlations. Cells in light
gray indicate correlations that should be fixed to zero for parsimony.

Theorem 5.1 (Covariance structure)
Let M≡ 〈(Ω,A,P), It,St, ξ

UM
rt , ξCM

t , ξM
t , ζt, ζ

UM
rt , ζCM

t , ζM
t ,Ert,Et, δ, λ

UM
ξ , λCM

ξ , λM
ξ ,

λζ , λ
UM
ζ , λCM

ζ , λM
ζ 〉 be a LGC-COM model of (ξUMtij2 , ξCMtij2 , ξMtijk, ζtijl, ζ

UM
rtj2l, ζ

CM
tj2l , ζMtjkl)-

congeneric variables with conditional regressive independence and strong measurement invari-
ance (see Definition 4.5). Then, with respect to a 3×2×2×3 measurement the total variance-
covariance matrices of the LGC-COM model is equivalent to the variance-covariance matrices
of the LST-COM model, expect for the between trait matrix

∑
ξB, which is constraint such
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that: ∑
ξB

= ΛξBΦξBΛT
ξB.

ΛξB refers to the between factor loading matrix of size 36×18, ΛT
ξB is the transposed matrix

and ΦξB refers to the between covariance matrix of size 18×18. Furthermore, ΛξB is given
by:

ΛξB =
∑

Ip
Λξ ⊗ΛξB,

where
∑

refers to the sum over all constructs j and measurement occasions l. Ip
Λξ refers to

the contrast matrix of size 6×2 equivalent to the contrast matrix presented in Section 4.6.2, ⊗
refers to the Kronecker product and ΛξB refers to the factor loading matrix of size 6×9, which
is given by

ΛξB =



1 0 0 δ1j1(l−1) 0 0 0 0 0
0 1 0 0 δ2j1(l−1) 0 0 0 0
0 0 1 0 0 δ3j1(l−1) 0 0 0
1 0 0 δ1j2(l−1) 0 0 λCMξ1j2l 0 0
0 1 0 0 δ2j2(l−1) 0 0 λCMξ2j2l 0
0 0 1 0 0 δ3j2(l−1) 0 0 λCMξ3j2l

 .

The latent between variance-covariance matrix ΦξB of size 18×18 is given by:

ΦξB = E
[
(VΦξB −E[VΦξB ])(VΦξB −E[VΦξB ])T] ,

where VΦξB refers to the vector of size 18×1 including all latent intercept, slope, and trait
common method factors on the between level. Specifically, VΦξB is then given by:(

It11, It21, It31,St11,St21,St31, ξ
CM
t112, ξ

CM
t212, ξ

CM
t312,

It12, It22, It32,St12,St22,St32, ξ
CM
t122, ξ

CM
t222, ξ

CM
t322.

)T

.

Furthermore, ∀ r ∈ R, t ∈ T , i ∈ I, j ∈ J , k ∈ K:

Cov(Itij , ξCMtij2 ) = 0, (5.5)

Cov(Stij , ξCMtij2 ) = 0. (5.6)

All other matrices of the LST-COM model (i.e., ΛξW, ΦξW, ΛζW,
∑
θW, ΛζB, ΦζB,

∑
θB)

remain unchanged.

Remarks. According to the above theorem, the covariance structure of the LGC-COM model
differs from the covariance structure of the LST-COM only with respect to the covariance matrix∑
ξB. Specifically, it is stated that the LST-COM model matrix of the loading parameters ΛξB

is restricted in such a way that the latent trait factors ξtij are decomposed into a latent intercept
factor It11 and a latent slope factor St11. Note that the covariance matrix of the LGC-COM model
is only represented for two method, not three. However, if another structurally different method
k = 3 would be present, the covariance matrix of the LGC-COM model could be easily extended in
a similar way as discussed in the previous chapters. The covariances (correlations) among the latent
intercept and latent slope factors are permissible in the LGC-COM model. However, the covariances
between the latent intercept and/or latent slope factors and the latent trait method factors ξCMtij2
pertaining to the same indicators and same constructs are not permissible (see Equation 5.5 and
5.6). In addition to that, the covariances between the latent intercept and slope factors and any
other latent trait method factor ξMtijk are zero as well. For parsimony, it is recommended to fix the
covariances between the latent intercept and slope factors and the latent trait (common) method
factors pertaining to different indicators i and i′ as well as different constructs j and j′ to zero as
well.
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Proofs. 19 Testability: consequences of model definition

5.5 Given that Itij is a function of ξtij11, and Cov(ξtij11, ξ
CM
ti′j′2l′) is necessarily zero (see Proof

4.165), it follows that Cov(Itij , ξCMti′j′2) = 0.

5.6 Similarly, given that Stij is a function of ξtij1l, and Cov(ξtij1l, ξCMti′j′2l′) is necessarily zero

(see Proof 4.165, it follows that Cov(Stij , ξCMti′j′2) = 0.

In a similar way, the proofs for Cov(Itij , ξMti′j′k) = 0 and Cov(Stij , ξMti′j′k′) = 0 can be shown,

given that Itij as well as Stij are functions of ξtij1l, and Cov(ξtij1l, ξMti′j′k′) is necessarily zero
(see Proof 4.166).

5.3.1 Interpretation of non-zero covariances and correlations

In the following section, the permissible non-zero correlations in LGC-COM models are dis-

cussed.

1. The correlations Cor(Itij , Iti′j) between the latent intercept variables belonging to the same

construct j, but different indicators i and i′ can be interpreted as degree of homogeneity

with respect to the indicators at the first measurement occasion (the initial status). If these

correlations are close to one, a common intercept factor may be defined. The correlations

between the latent intercept variables belonging to different constructs j and j′ indicate

discriminant validity with respect to the reference method at the first measurement occa-

sion (initial status). Again, two different correlations can be distinguished: (A) The latent

correlations Cor(Itij , Itij′) between the latent intercept variables of the reference method be-

longing to the same indicator i across different constructs j and j′. And (B) the correlations

Cor(Itij , Iti′j′) between the latent intercept variables of the reference method belonging to

different indicators i and i′ as well as different constructs j and j′. Both correlations indi-

cate the generalization of the true initial status as measured by the reference method across

different items and/or constructs. A vivid example may be that the level of self-reported lead-

ership quality measured on the first occasion of measurement may be significantly correlated

with the level of self-reported communication skills on the first occasion of measurement.

Thus, high leadership quality as measured by the reference method on the first occasion of

measurement might be positively associated with high communication skills as measured by

the reference method on the first occasion of measurement.

2. In a similar way, the correlations Cor(Stij ,Sti′j) between latent slope variables belonging to

the same trait j, but different indicators i and i′ can be interpreted as degree of homogene-

ity with respect to the indicators. Again, correlations close to one indicate that a general

slope factor may be specified instead for parsimony reasons. The correlations Cor(Stij ,Stij′)

between latent slope variables belonging to different constructs j and j′ indicate discrimi-

nant validity with respect to the reference method across different occasions of measurement.

High positive correlations would indicate low discriminant validity in the growth among two

constructs. For example, the linear (or non linear) growth of leadership quality as measured

by the reference method might be positively related to the linear (or non linear) growth of
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social competencies as measured by the reference method. Again, it is also possible that

these correlations may generalize across different items and constructs [i.e., Cor(Stij ,Sti′j′)].

3. The correlations between the latent intercept and slope variables Cor(Itij ,Stij) of the same

indicator and same construct can be interpreted as the strength of the association between

the initial status at T1 as measured by the reference method and the linear (or non linear)

growth of a construct across time measured by the reference method. For example, high

positive correlations indicate that higher initial statuses are significantly associated with a

stronger increases in the linear (or non linear) growth as measured by the reference method.

Negative correlations indicate that higher initial statuses are associated with stronger declines

in the linear growth as measured by the reference method. With respect to the previous ex-

ample, it might be reasonable assuming that higher leadership quality measured by the refer-

ence method (e.g., self-report) at T1 are negatively associated with the linear (or non linear)

growth of leadership quality measured by the reference method. Again, these correlations may

be also be investigated for latent intercept and slope variables that pertain to different indi-

cators, or different constructs, or both [i.e., (Itij ,Sti′j), Cor(Itij ,Stij′), Cor(Itij ,Sti′j′)]. For

example, it might be interesting investigating whether or not low communication skills mea-

sured by the reference method at T1 are on average significantly associated with a stronger

increase of leadership quality as measured by the reference method (e.g., self-report).

5.4 General measurement equations and variance decompo-
sitions

In the following section the general measurement equations of LGC-COM models are discussed.

Again, based on the definition of the LGC-COM model different variance coefficients can be defined.

Given that the LST-COM model is a special case of the LGC-COM model the meaningfulness of

these coefficients has already been demonstrated in Theorem 4.4. In addition, the independence of

the LST-COM latent variables has already been shown in Theorem 4.5. In the following Definition

5.2 a LGC-COM model is defined based on the definition of the LST-COM model. Next, additional

variance coefficients that could be studied by researchers are discussed.

Definition 5.2 (Definition 2)
Let M≡ 〈(Ω,A,P), ξt, ξUM

rt , ξCM
t , ξM

t , ζt, ζ
UM
rt , ζCM

t , ζM
t ,Ert,Et, αt, λξ, λ

UM
ξ , λCM

ξ , λM
ξ , λζ ,

λUM
ζ , λCM

ζ , λM
ζ 〉 be a LST-COM model with conditional regressive independence, strong mea-

surement invariance, and:

It ≡ (I111 · · · Itij · · · Ibcd)T,
St ≡ (S111 · · · Stij · · · Sbcd)T,
δ ≡ (δ1111 · · · δijk(l−1) · · · δcde(f−1))T.

Then, M≡ 〈(Ω,A,P), It,St, ξ
UM
rt , ξCM

t , ξM
t , ζt, ζ

UM
rt , ζCM

t , ζM
t ,Ert,Et, δ, λ

UM
ξ , λCM

ξ , λM
ξ ,

λζ , λ
UM
ζ , λCM

ζ , λM
ζ 〉 is called a LCG-COM model, if and only if the statements a to c in
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Definition 5.1 hold. Note that all other latent variables of the LST-COM model (see Definition
4.4) remain unaltered.

Remarks. According to the above Definition 5.2, all indicators Ytij1l belonging to the reference
method (k = 1), the same construct j, and measurement occasion l measure a latent intercept
factor Itij , a latent slope factor Stij weighted by a constant δij1(l−1), a latent state residual ζtijl
and an occasion-specific measurement error Etij1l. All indicators Ytijkl belonging to a non-reference
method (k > 2), construct j, and occasion of measurement l measure also a latent intercept factor
Itij , a latent slope factor Stij weighted by a constant δijk(l−1), a latent state residual ζtijl as well
as an occasion-specific measurement error Etijkl. Besides that, all of these indicators also measure
a latent trait method factors ξMtijk as well as a latent state method factors ζMtjkl. All indicators
Yrtij2l belonging to the non-reference method (k = 2) as well as to the same construct and same
measurement of occasion l measure a latent intercept factor Itij , a latent slope factor Stij weighted
by a constant δij2(l−1), a latent state residual ζtijl and an occasion-specific measurement error Etij1l
and above that, two indicator-and construct specific latent trait method factors, namely ξCMtij2 and

ξUMrtij2, as well as two construct and occasion-specific latent method state variables, namely ζCMtj2l
and ζUMrtj2l. Therefore, the measurement equations of the observed variables are given by:

Ytij1l =Itij + δij1(l−1)Stij + ζtijl + Etij1l, (5.7)

Ytijkl =Itij + δijk(l−1)Stij + λξMijklξMtijk+
λζijklζtijl + λζMijklζMtjkl + Etijkl,

∀ k > 2, (5.8)

Yrtij2l =Itij + δij2(l−1)Stij + λCMξij2lξ
CM
tij2 + λUMξij2lξ

UM
rtij2+

λζij2lζtijl + λCMζij2lζ
CM
tj2l + λUMζij2lζ

UM
rtj2l + Ertij2l.

(5.9)

Note that δijk(l−1) equals zero for indicators pertaining to the first measurement occasion.

5.4.1 Variance decomposition

According to the above measurement Equations (see Equation 5.7 to 5.9) as well as the state-

ments in Theorem 4.6.1, the variance of the observed variables (indicators) can be decomposed as
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follows:

V ar(Ytij1l) =V ar(Itij) + (δij1(l−1))2V ar(Stij)+

2(δij1(l−1))Cov(Itij ,Stij)+

V ar(ζtijl) + V ar(Etij1l),

(5.10)

V ar(Ytijkl) =V ar(Itij) + (δijk(l−1))2V ar(Stij)+

2(δijk(l−1))Cov(Itij ,Stij)+

(λMξijkl)2V ar(ξMtijk)+

(λζijkl)2V ar(ζtijl) + (λMζijkl)2V ar(ζMtjkl)+

V ar(Etijkl),

∀ k > 2, (5.11)

V ar(Yrtij2l) =V ar(Itij) + (δijk(l−1))2V ar(Stij)+

2(δijk(l−1))Cov(Itij ,Stij)+

(λCMξij2l)2V ar(ξCMtij2 ) + (λUMξij2l)2V ar(ξUMrtij2)+

(λζij2l)2V ar(ζtijl) + (λCMζij2l)2V ar(ζCMtj2l )+

(λUMζij2l)2V ar(ζUMrtj2l) + V ar(Ertij2l).

(5.12)

Similar to the coefficients proposed in Section 4.7.1 of the previous chapter, it is possible to define

different variance components such as true ICC coefficients, reliability coefficients etc. In fact, most

of the coefficients presented in the previous chapter remain unaltered, given that the LGC-COM

model represents a restrictive variant of the LST-COM model. However, given that latent growth

curve models assume that the variance of any observed variable increases in a non-linear form

[due to the expression (δijk(l−1))2V ar(Stij) + 2(δijk(l−1))Cov(Itij ,Stij)], it is not recommended to

compare different variance ratios across time points. For example, the reliability coefficients of an

observed variable may increase over time, given that latent growth curve models implicitly assume

that the interindividual differences in intraindividual change increase over time points. This can

be seen by computing the variance of reference indicators pertaining to different time points, while

holding the error variance of the indicators [e.g., V ar(Etij1l)] constant:

V ar(Ytij11) = V ar(Itij) + 0 · V ar(Stij) + (2 · 0)Cov(Itij ,Stij)+

V ar(ζtijl) + V ar(Etij1l),

V ar(Ytij12) = V ar(Itij) + 1 · V ar(Stij) + (2 · 1)Cov(Itij ,Stij)+

V ar(ζtij2) + V ar(Etij12),
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V ar(Ytij13) = V ar(Itij) + (22)V ar(Stij) + (2 · 2)Cov(Itij ,Stij)+

V ar(ζtij3) + V ar(Etij13).

Researchers who are interested in investigating the psychometric properties of their measures

across time points may rather compare the amount of residual variance of the observed variables

[V ar(Etij1l), V ar(Etijkl), V ar(Ertij2l)] than compute reliability coefficients.

Nevertheless, in addition to the coefficients proposed in the previous chapter, an additional

coefficient for studying true consistency and true trait change is introduced:

CC(τtij1l) =
V ar(Itij) + (δij1(l−1))2V ar(Stij) + 2(δij1(l−1))Cov(Itij ,Stij)

V ar(Ytij1l)− V ar(Etij1l)
,

CC(τtijkl) =
V ar(Itij) + δ2

ijk(l−1)V ar(Stij) + 2(δijk(l−1))Cov(Itij ,Stij)
V ar(Ytijkl)− V ar(Etijkl)

, ∀ k > 2,

CC(τrtij2l) =
V ar(Itij) + (δij2(l−1))2V ar(Stij) + 2(δij2(l−1))Cov(Itij ,Stij)

V ar(Yrtij2l)− V ar(Ertij2l)
.

The consistency and trait change coefficient CC(Ytij1l), CC(Ytijkl), and CC(Yrtij2l) reflect the

proportion of true-score variance that is accounted by trait and trait change effects.

5.5 Mean structure

This section concerns the latent variable mean structure of the LST-COM model. The following

theorem shows the consequence of the model definition for the observed and latent variables.

Theorem 5.2 (Mean structure)
Let M≡ 〈(Ω,A,P), It,St, ξ

UM
rt , ξCM

t , ξM
t , ζt, ζ

UM
rt , ζCM

t , ζM
t ,Ert,Et, δ, λ

UM
ξ , λCM

ξ , λM
ξ ,

λζ , λ
UM
ζ , λCM

ζ , λM
ζ 〉 be a LGC-COM model. Then the mean structure of the LGC-COM holds

for all r ∈ R ≡ {1, . . . , a}, t ∈ T ≡ {1, . . . , b}, i ∈ I ≡ {1, . . . , c}, j ∈ J ≡ {1, . . . , d},
k ∈ K ≡ {1, . . . , e}, l ∈ L ≡ {1, . . . , f}:

E(Ytij1l) =E(Itij) + δij1(l−1)E(Stij), for k = 1, (5.13)

E(Ytijkl) =E(Itij) + δijk(l−1)E(Stij), ∀ k > 2, (5.14)

E(Yrtij2l) =E(Itij) + δij2(l−1)E(Stij), (5.15)



CHAPTER 5. THE LATENT GROWTH CURVE (LGC-COM) MODEL 156

E(Ytijk1) =E(Itij), (5.16)

E(ζtijl) =0, (5.17)

E(ξUMrtij2) =0, (5.18)

E(ξCMtij2 ) =0, (5.19)

E(ξMtijk) =0, ∀ k > 2, (5.20)

E(ζUMrtj2l) =0, (5.21)

E(ζCMtj2l ) =0, (5.22)

E(ζMtjkl) =0, ∀ k > 2, (5.23)

E(Etijkl) =0, ∀ k 6= 2, (5.24)

E(Ertij2l) =0, (5.25)

where E(.) denotes expected value.

Proofs. 20 Mean structure
Due to the measurement equations 5.7 to 5.9, it follows that:

E(Ytij1l) =E(Itij) + δij1(l−1)E(Stij) + E(ζtijl) + E(Etij1l),
E(Ytijkl) =E(Itij) + δijk(l−1)E(Stij) + λξMijklE(ξMtijk)+

λζijklE(ζtijl) + λζMijklE(ζMtjkl) + E(Etijkl),
∀ k > 2,

E(Yrtij2l) =E(Itij) + δij2(l−1)E(Stij) + λCMξij2lE(ξCMtij2 ) + λUMξij2lE(ξUMrtij2)+
λζij2lE(ζtijl) + λCMζij2lE(ζCMtj2l ) + λUMζij2lE(ζUMrtj2l) + E(Ertij2l).

According to the Equations 5.17 to 5.25 of the above Theorem 5.2, it follows that the expectations
of the latent residual variables ζtijl, ξMtijk, ζMtjkl, Etijkl, ξCMtij2, ξUMrtij2, ζtijl, ζCMtj2l,
ζUMrtj2l, and Ertij2l are zero. These statements follow directly by the definition of these variables
as latent residuals, and given the fact that residual variables always have expectations of zero
(see e.g., Steyer & Eid, 2001). Researchers must therefore fix the expected values of these variables
to zero in empirical applications. As a consequence of these zero expectations, the above Equations
can be simplified as follows:

E(Ytij1l) =E(Itij) + δij1(l−1)E(Stij),
E(Ytijkl) =E(Itij) + δijk(l−1)E(Stij), ∀ k > 2,
E(Yrtij2l) =E(Itij) + δij2(l−1)E(Stij).

Because of δij1(l−1) = δijk(l−1) = δij2(l−1) = 0, for l=1 (see Equation 5.16), if follows

E(Ytijk1) = E(Itij).

Given that E(Itij) can be identified with respect to the first occasion of measurement E(Ytijk1), the
expected values of the latent slope variables E(Stij) are identified for l > 1:

E(Stij) =E(Ytij1l)− E(Ytij11)
δij1(l−1)

,

E(Stij) =E(Ytijkl)− E(Ytijk1)
δijk(l−1)

, ∀ k > 2,

E(Stij) =E(Yrtij2l)− E(Yrtij21)
δij2(l−1)

.

�

Remarks. Equations 5.14 and 5.15 clarify that the expected values of the observed variables
are equal to the expected values of the latent trait variable ξtij . According to Equation 5.16, the
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expected values of the latent trait variables are identical to the expected values of the indicators
pertaining to the reference method. Equations 5.17 to 5.23 reveal that the latent state residuals
as well as the trait-specific and state-specific method factors are defined as residuals and therefore
the expected values of these latent residual variables are necessarily zero. The same holds for the
measurement error variables (see Equation 5.24 and 5.25).

5.6 Identifiability

In this section, the identification of the LGC-COM model parameters is addressed. The iden-

tification of the mean structure of the latent variables in the LGC-COM model has been already

demonstrated in Theorem 20 and will not be repeated again. This section only concerns the iden-

tification of the variance-covariance structure of the LGC-COM model. Given that the LGC-COM

model is a special case (or restrictive variant) of the LST-COM model, the parameters of the

LGC-COM model are identified whenever the parameters of the LST-COM model are identified.

According to Theorem 4.7 the parameters of the LST-COM model are uniquely determined under

the minimal condition of a 2 × 2 × 2 × 3 measurement design (see Courvoisier, 2006, p. 73-130).

The following theorem states that this condition holds also for the identification of the LGC-COM

model parameters. For the sake of simplicity, it will be assumed that all parameters of the LST-

COM model are known and thereby only the identification of the remaining parameters of the

LGC-COM model is shown. Note that the known parameters of the LST-COM will be used for

identification without replacing them by parameters of the observed variables. Furthermore, con-

ditions concerning the independence (uncorrelatedness) of the latent variables in LGC-COM model

will be used for identification (see Theorem 5.1 and 4.5). By definition of the LGC-COM model,

it is assumed that for all t ∈ T , i ∈ I, j ∈ J , k ∈ K, and l ∈ L αtijkl = 0 and δijk(l−1) = (l − 1).

Theorem 5.3 (Identification of the LGC-COM covariance structure)
Let M≡ 〈(Ω,A,P), It,St, ξ

UM
rt , ξCM

t , ξM
t , ζt, ζ

UM
rt , ζCM

t , ζM
t ,Ert,Et, λI , δ, λ

UM
ξ , λCM

ξ ,

λM
ξ , λζ , λ

UM
ζ , λCM

ζ , λM
ζ 〉 be a LGC-COM model of (ξUMtij2 , ξCMtij2 , ξMtijk, ζtijl, ζ

UM
rtj2l, ζ

CM
tj2l , ζMtjkl)-

congeneric variables with conditional regressive independence, then the parameters of the ma-
trix ΦξB are identified, if either one factor loading λMξijkl, λ

CM
ξij2l, λ

UM
ξij2l, λζijkl, λ

M
ζijkl, λ

CM
ζij2l,

λUMζij2l for each factor, ξCMtij2 , ξUMrtij2, ζtijl, ζ
CM
tj2l , ζUMrtj2l or the variance of these factors are set to

any real value larger than 0, and

(a) iff i = 2, j ≥ 2, k ≥ 2, l ≥ 3 and ΦξW, ΦζW, ΦξB, ΦζB contain intercorrelations (i.e.,
nonzero elements in the off-diagonal).

Proofs. 21 (Identification) Assuming that all elements of the matrices ΛξW, ΦξW, ΛζW,
∑
θW,

ΛξB, ΛζB, ΦζB,
∑
θB are identified and the parameters are known for a LST-COM model with 2

indicators, 2 constructs, 2 methods (one structurally different method and one set of interchange-
able methods), and 3 occasions of measurement, except for the elements of ΦξB. Then, for any
observed variable Yrtij2l and Ytij1l in a LGC-COM model with the same dimension (i.e., 2×2×2×3)
the expected values are:

E(Ytij1l) =E(Itij) + δij1(l−1)E(Stij) + E(ζtijl) + E(Etij1l),
E(Yrtij2l) =E(Itij) + δij2(l−1)E(Stij) + λCMξij2lE(ξCMtij2 ) + λUMξij2lE(ξUMrtij2)+

λζij2lE(ζtijl) + λCMζij2lE(ζCMtj2l ) + λUMζij2lE(ζUMrtj2l) + E(Ertij2l).
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Identification of V ar(Itij):

V ar(Itij) can be directly identified by the variance of the first indicator measured on the first
measurement occasion.

V ar(Ytij11) = V ar(Itij) + V ar(ζtij1)− V ar(Etij11).
V ar(Itij) = V ar(Ytij11)− V ar(ζtij1)− V ar(Etij11).

Presuming that V ar(ζtij1) and V ar(Etij11) are known.

Identification of Cov(Itij ,Stij):
Cov(Itij ,Stij) is identified with respect to the covariance of Ytij11 and Ytij12.

Cov(Ytij11, Ytij12) = Cov
{

(Itij + ζtij1 + Etij11), (Itij + δij1(2−1)Stij + ζtij2 + Etij12)
}

= Cov(Itij , Itij) + Cov(Itij ,Stij)
= V ar(Itij) + Cov(Itij ,Stij).

Hence, Cov(Itij ,Stij) = Cov(Ytij11, Ytij12)− V ar(Itij).

Identification of V ar(Stij):

V ar(Stij) is identified with respect to the covariance of Ytij1l and Yrtij2l, for l>1.

Cov(Ytij1l, Yrtij2l) =Cov


(Itij + δij1(l−1)Stij + ζtijl + Etij1l),
(Itij + δij2(l−1)Stij + λCMξij2lξ

CM
tij2 + λUMξij2lξ

UM
rtij2+

λζij2lζtijl + λCMζij2lζ
CM
tj2l + λUMζij2lζ

UM
rtj2l + Ertij2l)

 .

Cov(Ytij1l, Yrtij2l) =V ar(Itij) + δij1(l−1)Cov(Itij ,Stij)+
δij2(l−1)Cov(Itij ,Stij) + δij1(l−1)δij2(l−1)V ar(Stij)+
λ2
ζij2lV ar(ζtijl).

V ar(Stij) =


Cov(Ytij1l, Yrtij2l)− V ar(Itij)−
δij1(l−1)Cov(Itij ,Stij)− δij2(l−1)Cov(Itij ,Stij)−
λ2
ζij2lV ar(ζtijl)


δij1(l−1)δij2(l−1)

.

For example, with respect to measurement occasion l = 2 (i.e., δij1(l−1) and δij2(l−1) equal one),
the variance of the latent slope variables is given by:

V ar(Stij) = Cov(Ytij12, Yrtij22)− V ar(Itij)− 2Cov(Itij ,Stij)− λ2
ζij2lV ar(ζtij2).

Identification of Cov(Itij , Iti′j′):
Cov(Itij , Iti′j′) is identified with respect to the covariance between Ytij11 and Yti′j′11, where (i,j)
6= (i′,j′).

Cov(Ytij11, Yti′j′11) = Cov

{
(Itij + ζtij1 + Etij11),
(Iti′j′ + ζti′j′1 + Eti′j′11)

}

= Cov(Itij , Iti′j′) + Cov(ζtij1, ζti′j′1).

Cov(Itij , Iti′j′) = Cov(Ytij11, Yti′j′11)− Cov(ζtij1, ζti′j′1).

Identification of Cov(Itij ,Sti′j):
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Cov(Itij ,Sti′j) is identified with respect to the covariance between Ytij11 and Yti′j1l, where i 6= i′

as well as l > 1.

Cov(Ytij11, Yti′j1l) = Cov

{
(Itij + ζtij1 + Etij11),
(Iti′j′ + δi′j1(l−1)Sti′j + ζti′jl + Eti′j1l)

}

= Cov(Itij , Iti′j) + δi′j1(l−1)Cov(Itij ,Sti′j).

Cov(Itij ,Sti′j) =
Cov(Ytij11, Yti′j1l)− Cov(Itij , Iti′j)

δi′j1(l−1)
.

Identification of Cov(Stij ,Sti′j):
Cov(Stij ,Sti′j) is identified with respect to the covariance between Ytij1l and Yti′j1l, where i 6= i′

and l > 1.

Cov(Ytij1l, Yti′j1l) = Cov

{
(Itij + δij1(l−1)Stij + ζtijl + Etij1l),
(Iti′j + δi′j1(l−1)Sti′j + ζti′jl + Eti′j1l)

}
.

Cov(Ytij1l, Yti′j1l) = Cov(Itij , Iti′j) + δij1(l−1)Cov(Itij ,Sti′j)+
= δi′j1(l−1)Cov(Stij , Iti′j) + δij1(l−1)δi′j1(l−1)Cov(Stij ,Sti′j)+
= Cov(ζtijl, ζti′jl).

Cov(Stij ,Sti′j) =


Cov(Ytij1l, Yti′j1l)− Cov(Itij , Iti′j)−
δij1(l−1)Cov(Itij ,Sti′j)− δi′j1(l−1)Cov(Stij , Iti′j)−
Cov(ζtijl, ζti′jl)

 .

δij1(l−1)δi′j1(l−1)

Identification of Cov(Itij ,Sti′j′):
Cov(Itij ,Sti′j′) is identified with respect to the covariance between Ytij11 and Yti′j′11, where (i,j)
6= (i′,j′) and l > 1.

Cov(Ytij11, Yti′j′1l) = Cov

{
(Itij + ζtij1 + Etij11),
(Iti′j′ + δi′j′1(l−1)Sti′j′ + ζti′j′l + Eti′j′1l)

}

= Cov(Itij , Iti′j′) + δi′j′1(l−1)Cov(Itij ,Sti′j′).

Cov(Itij ,Sti′j′) =
Cov(Ytij11, Yti′j′1l)− Cov(Itij , Iti′j′)

δi′j′1(l−1)
.

Identification of Cov(Stij ,Sti′j′):
Cov(Stij ,Sti′j′) is identified with respect to the covariance between Ytij1l and Yti′j′1l, where (i,j)
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6= (i′,j′) and l > 1.

Cov(Ytij1l, Yti′j′1l) =Cov
{

(Itij + δij1(l−1)Stij + ζtijl + Etij1l),
(Iti′j′ + δi′j′1(l−1)Sti′j′ + ζti′j′l + Eti′j′1l)

}

=Cov(Itij , Iti′j′) + δi′j′1(l−1)Cov(Itij ,Sti′j′)+
δij1(l−1)Cov(Stij , Iti′j′) + δij1(l−1)δi′j′1(l−1)Cov(Sti′j′ ,Stij)+
Cov(ζtijl, ζti′j′l).

Cov(Sti′j′ ,Stij) =


Cov(Ytij1l, Yti′j′1l)− Cov(Itij , Iti′j′)−
δi′j′1(l−1)Cov(Itij ,Sti′j′)− δij1(l−1)Cov(Stij , Iti′j′)−
Cov(ζtijl, ζti′j′l)


δij1(l−1)δi′j′1(l−1)

.

For the second measurement occasion l = 2, where δij1(2−1) = δi′j′1(2−1) = 1 the equation above
simplifies to:

Cov(Ytij12, Yti′j′12) =Cov(Itij , Iti′j′) + Cov(Itij ,Sti′j′)+
Cov(Iti′j′ ,Stij) + Cov(Sti′j′ ,Stij)+
Cov(ζtij1, ζti′j′l).

Cov(Stij ,Sti′j′) =Cov(Ytij12, Yti′j′12)− Cov(Itij , Iti′j′)−
Cov(Itij ,Sti′j′)− Cov(Iti′j′ ,Stij)−
Cov(ζtij2, ζti′j′2).

Identification of Cov(Itij , ξCMti′j′2):
Cov(Itij , ξCMti′j′2) is identified with respect to the covariance between Ytij11 and Yrti′j′2l, where (i,j)
6= (i′,j′) and l > 1.

Cov(Ytij11, Yrti′j′2l) =Cov


(Itij + ζtij1 + Etij11),
(Iti′j′ + δi′j′2(l−1)Sti′j′ + λCMξi′j′2lξ

CM
ti′j′2 + λUMξi′j′2lξ

UM
rti′j′2+

λζi′j′2lζti′j′l + λCMζi′j′2lζ
CM
tj′2l + λUMζi′j′2lζ

UM
rtj′2l + Erti′j′2l)


=Cov(Itij , Iti′j′) + δi′j′2(l−1)Cov(Itij ,Sti′j′) + λCMξi′j′2lCov(Itij , ξCMti′j′2).

Cov(Itij , ξCMti′j′2) =
Cov(Ytij11, Yrti′j′2l)− Cov(Itij , Iti′j′)− δi′j′2(l−1)Cov(Itij ,Sti′j′)

λCMξi′j′2l
.
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Identification of Cov(Stij , ξCMtij′2):
Finally, Cov(Stij , ξCMti′j′2) is identified with respect to the covariance between Ytij1l and Yti′j′2l′ ,
where (i,j,l) 6= (i′,j′,l′) and l, l′ > 1.

Cov(Ytij1l, Yrti′j′2l′) =Cov


(Itij + δij1(l−1)Stij + ζtijl + Etij1l),
(Iti′j′ + δi′j′2(l′−1)Sti′j′ + λCMξi′j′2l′ξ

CM
ti′j′2 + λUMξi′j′2l′ξ

UM
rti′j′2+

λζi′j′2l′ζti′j′l′ + λCMζi′j′2l′ζ
CM
tj′2l′ + λUMζi′j′2l′ζ

UM
rtj′2l′ + Erti′j′2l′)


=Cov(Itij , Iti′j′) + δi′j′2(l′−1)Cov(Itij ,Sti′j′) + λCMξi′j′2l′Cov(Itij , ξCMti′j′2)+
δij1(l−1)Cov(Stij , Iti′j′) + δij1(l−1)δi′j′2(l′−1)Cov(Stij ,Sti′j′)+
δij1(l−1)λ

CM
ξi′j′2l′Cov(Stij , ξCMti′j′2).

Cov(Stij , ξCMti′j′2) =


Cov(Ytij1l, Yrti′j′2l′)− Cov(Itij , Iti′j′)−
δi′j′2(l′−1)Cov(Itij ,Sti′j′)− λCMξi′j′2l′Cov(Itij , ξCMti′j′2)−
δij1(l−1)Cov(Stij , Iti′j′)− δij1(l−1)δi′j′2(l′−1)Cov(Stij ,Sti′j′)


δij1(l−1)λ

CM
ξi′j′2l′

.

�
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Box 5.1 (LGC-COM Model)
Itij target-specific latent intercept factor of the reference (structurally different) method

Stij target-specific latent slope factor of the reference (structurally different) method

δijk(l−1) latent slope factor loading for modeling the shape of trait change

ξtij11 ≡ Itij ,
(ξtij12 − ξtij11) ≡ Stij ,

δijk(l−1) ≡ (l − 1).



Part III

Monte Carlo Simulation Studies
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Chapter 6

Rationale and Aims of the Monte
Carlo simulation studies

Some statistical questions that cannot be answered analytically (e.g., questions concerning the

limits of the applicability of a statistical model) may be better answered by conducting Monte Carlo

simulations studies (Geiser, 2008; Harwell, Stone, Hsu, & Kirisci, 1996). There are numerous rea-

sons for doing so. First, Monte Carlo (MC) simulation studies enable researchers to investigate the

performance of a given statistical model under experimental conditions (see Li, Boos, & Gumpertz,

2001). For example, Monte Carlo simulation studies allow researchers to predetermine a set of true

population parameters (i.e., population model), to randomly generate numerous data sets (usually

500 to 1000 MC replications) based on the population model, and to compare the true population

parameters with the average parameter estimates from the MC samples after fitting the model (or

even different models) of interest to the generated MC samples (Geiser, 2008). In real data appli-

cations, it is often not possible to achieve such controlled conditions, where only specific conditions

(e.g., sample size, skewness, misspecification) are varied and others are held constant. Moreover,

in real data applications, the true population parameters are usually unknown and large sample

sizes are rather difficult to obtain. Therefore, MC simulation studies are more efficient than real

data applications, given that they require less time, money, and man power. Second, numerous

criteria can be used for evaluating the performance of a given model in MC simulation studies.

For example, researchers may calculate the bias in parameter estimates (peb) and standard errors

(seb) in order to scrutinize the consistency of parameter estimates. They can furthermore count

the number of improper solutions (i.e., Heywood cases) as well as the number of convergence prob-

lems, and/or they can study the trustworthiness of fit statistics (for more details see Bandalos,

2006; L. K. Muthén & Muthén, 2002). If researchers are interested in investigating the minimal

required sample size for valid parameter estimates, they may either perform a power analysis by

conducting a MC simulation study (L. K. Muthén & Muthén, 2002), or relate different types of

biases (e.g., peb or seb) to different MC conditions (e.g., different sample sizes, model misspeci-

fication etc.). Thereby, researchers may be able to identify favorable and unfavorable conditions

for proper estimation of parameters, standard errors, fit statistics etc. (Geiser, 2008). For more

details concerning the basic principles of MC simulation studies as well as their implementation

see Bandalos (2006) as well as L. K. Muthén and Muthén (2002).

In the following chapters the results of four extensive simulation studies are presented. Each
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simulation study refers to a different model presented in the previous chapter:

1. Simulation study I : latent state (LS-COM) model (see Chapter 7)

2. Simulation study II : latent change (LC-COM) model (see Chapter 8)

3. Simulation study III : latent state-trait (LST-COM) model (see Chapter 9)

4. Simulation study IV : latent growth curve (LGC-COM) model (see Chapter 10).

The results of the following simulation studies reveal new insights to multilevel structural equa-

tion modeling of complex MTMM-MO data. To my knowledge no simulation study has yet been

conducted investigating the performance of such complex structural equation models (i.e., lon-

gitudinal multilevel MTMM-SEMs). However, several simulation studies have been carried out

investigating the performance of less complex SEMs. For example, the performance of single level

SEMs under various conditions has been scrutinized by numerous researchers (Chen, Bollen, Pax-

ton, Curran, & Kirby, 2001; Beauducel & Herzberg, 2006; Boomsma, 1982; Gerbing & Anderson,

1985; Jackson, 2001; Marsh, Hau, Balla, & Grayson, 1998; MacKenzie, Podsakoff, & Jarvis, 2005).

In general, the results of these simulation studies suggest that the parameter estimates in SEMs

become more reliable with increasing sample size and an increasing number of unidimensional in-

dicators per factor (Anderson & Gerbing, 1984; Boomsma, 1982; Marsh et al., 1998). For example,

according to the results of simulation studies by Boomsma (1982) the minimal required sample size

for proper parameter estimates in single level SEM is 100. According to Bentler and Chou (1987)

the minimal required sample size depends on the ratio between the number of observations and

the number of parameters should be above 5:1. Bollen (1989, 2002) recommends a ratio of 10:1

for more complex models instead. With respect to two-level SEMs, Julian (2001) suggests to sam-

ple at least 100 level-2 units (observations) for proper parameter estimates when using maximum

likelihood estimation. In addition, simulation studies by Maas and Hox (2005) indicate that the

sample size on the cluster (between) level is more important for proper parameter estimates than

the sample size on the individual (within) level with respect to general multilevel models.

The performance of cross-sectional MTMM-SEMs has also been investigated by various simu-

lation studies (Conway, Lievens, Scullen, & Lance, 2004; Marsh & Bailey, 1991; Nussbeck, Eid, &

Lischetzke, 2006; Tomas, Hontangas, & Oliver, 2000). According to Nussbeck et al. (2006) even

relatively complex MTMM-MO models with categorical items [CTC(M)-1 model] perform well

using the WLSMV (weighted least square mean and variance adjusted) estimator implemented in

Mplus. Important contributions to the field of longitudinal MTMM-SEMs are the simulation stud-

ies by Crayen (2008) and Geiser (2008). In both simulation studies, the authors investigated the

performance of multiple indicator SEMs for longitudinal MTMM measurement designs. However,

the authors focused on the performance of longitudinal MTMM-SEMs for structurally different

methods, and not on the performance of longitudinal MTMM-SEMs for a combination of struc-

turally different and interchangeable methods. The main findings of both simulation studies can

be summarized as follows:

� Estimates of parameters as well as standard errors are well recovered even in small sample

sizes (N = 125) for longitudinal CTC(M)-1 model models.
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� Estimation of standard errors are more sensitive to bias than the estimations of parameters.

� Longitudinal CTC(M)-1 model models perform better (i.e., less bias, less improper solutions,

higher convergence rates) with an increasing amount of empirical information (e.g., sample

size, number of indicators per factor, number of occasions).

� An increase of method specificity (i.e., higher convergent validity) was related to an decrease

in estimation accuracy.

� The empirical χ2-distribution was not well approximated for complex models. In general,

an increase of type I error was found with increasing model complexity and decreasing small

sample size. Only in extremely large data sets the χ2-distribution could be approximated

correctly.

6.1 Aims of the simulation studies

The main goals of the simulation studies are investigating

(a) the appropriateness of parameter and standard error estimates via coefficients of parameter

estimate bias (peb) and standard error bias (seb),

(b) the amount of improper solutions (estimation problems) with respect to the latent covariance

matrix Ψ and latent error covariance matrix Θ (so called Heywood cases),

(c) the robustness of the χ2-fit statistics,

(d) the amount of convergence problems, and

(e) the limits of the applicability of presented models by relating different types of biases (i.e.,

average peb and seb) to different MC conditions.

In the subsequent chapters, the terms “possible”, “actual” and “negligible” improper solution are

distinguished. Throughout this thesis, “actual” improper solutions refer to out of-range parameter

estimates, also known as Heywood cases (Chen et al., 2001; Geiser, 2008). It is important to note

that the term “actual” improper solution is only used to refer to negative variances (< 0) of the

latent variables in the model and/or permissible correlations among the latent variables in the

model that are greater than |1|. However, improper solutions referring to higher order (partial)

correlations among the latent variables in the model (that have no substantive meaning with respect

to the definition of the model, but will still count as improper solution in Mplus outputs) will be

treated as“negligible” improper solutions, and not as“actual”or“real” improper solutions. In other

words, “actual” or “real” improper solutions refer to out of-range parameter estimates that can be

investigated by the TECH4 output option in Mplus. The sum of “actual” and “negligible” improper

solutions equals the amount of “possible” improper solutions. Therefore, the amount of “possible”

improper solutions represents the total amount of Mplus warning messages. Again, it shall be re-

emphasized that the total amount of Mplus warning messages does not necessarily corresponds to

the total amount of “actual” improper solution or Heywood cases. With regard to the subsequent
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simulation studies, models with“possible” improper solutions were first refitted to their specific MC

sample(s). Afterwards the TECH4 outputs of the specific model(s) were investigated for “actual”

improper solutions.

6.2 Simulation designs

The simulation designs of the latent state (LS-COM) and the latent change (LC-COM) model

are given in Table 6.1. Note that the simulation designs for both models are identical. The maxi-

mum number of conditions for each of these models was 232 with 500 replications (56 conditions

were not simulated due to identification problems1). In total, 116,000 data sets were simulated

and saved for LS-COM and LC-COM model simulations.

Table 6.1: Simulation design of simulation study I & II
Multiconstruct Condition

High Consistency Low Consistency
k=2 k=3 k=2 k=3

nL1 nL2 N l=2 l=3 l=4 l=2 l=3 l=4 l=2 l=3 l=4 l=2 l=3 l=4
100 200 X n.s. n.s. n.s. n.s. n.s. X n.s. n.s. n.s. n.s. n.s.

2 250 500 X X X X X n.s. X X X X X n.s.
500 1000 X X X X X X X X X X X X
100 500 X n.s. n.s. n.s. n.s. n.s. X n.s. n.s. n.s. n.s. n.s.

5 250 1250 X X X X X n.s. X X X X X n.s.
500 2500 X X X X X X X X X X X X
100 1000 X n.s. n.s. n.s. n.s. n.s. X n.s. n.s. n.s. n.s. n.s.

10 250 2500 X X X X X n.s. X X X X X n.s.
500 5000 X X X X X X X X X X X X
100 2000 X n.s. n.s. n.s. n.s. n.s. X n.s. n.s. n.s. n.s. n.s.

20 250 5000 X X X X X n.s. X X X X X n.s.
500 10000 X X X X X X X X X X X X

Monoconstruct Condition
100 200 X X X X X n.s. X X X X X n.s.

2 250 500 X X X X X X X X X X X X
500 1000 X X X X X X X X X X X X
100 500 X X X X X n.s. X X X X X n.s.

5 250 1250 X X X X X X X X X X X X
500 2500 X X X X X X X X X X X X
100 1000 X X X X X n.s. X X X X X n.s.

10 250 2500 X X X X X X X X X X X X
500 5000 X X X X X X X X X X X X
100 2000 X X X X X n.s. X X X X X n.s.

20 250 5000 X X X X X X X X X X X X
500 10000 X X X X X X X X X X X X

Notes. Simulation design of the LS-COM and LC-COM model. The symbol n.s. refers to conditions
that were not simulated and thus not part of the simulation design. The checkmark sign X refers
to conditions for which 500 data sets of a particular model were simulated. nL1 = number of raters
per target (level-1 units); nL2 = number of targets (level-2 units).

Five conditions were manipulated in simulation study I and II (see Table 6.1):

1The term “identification problems” refers to a general warning message in Mplus 6.1. Note that these warning
messages do not indicate a problem of the model per se or that the model is not identified. Instead these error
messages refer to the fact that the number of parameters to be estimated is larger than the number of observations
on the between level. In many cases, these warning messages may be ignored and will not necessarily lead improper
parameter estimates (L. K. Muthén & Muthén, 1998-2010). Given that the results of these MC conditions constitute
another condition in the simulation design that was not of interest here, these conditions were not simulated in the
first place.
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1. the degree of convergent validity (i.e., High vs. Low Con),

2. the number of methods (i.e., k = 2, 3),

3. the number of occasions of measurement (i.e., l = 2, 3, and 4),

4. the number of level-1 units or the number of raters per target (i.e., nL1 = 2, 5, 10, or 20),

5. the number of level-2 units or the number of targets (i.e., nL2 = 100, 250, or 500).

The main reason for choosing small sample sizes (N = 200) was to investigate the model under

minimal and realistic conditions. For example, previous simulation studies have shown that at

least 100 level-2 units (here: targets) are required for valid parameter estimates (see Julian, 2001).

Therefore, the minimum sample size in the simulation studies I and II was set to 200 observations

(nL1 = 2, nL2 = 100). The simulation designs of study III and IV were similar to the simulation

designs of the latent state and latent change model. However, given that the LST-COM and LGC-

COM model more complex (i.e., more parameters) than the LS-COM model, the sample size on

the between (target) level was increased to 350, 500, or 700 in the LST-COM simulation study,

and to 400, 600, or 800 observations in the LGC-COM simulation study. With respect to these

adjustments all cells in the simulation designs in Table 6.1 could be simulated. In total, 288 (232

+ 56) conditions were simulated for the simulation study III and IV. Again, for each condition 500

MC sample were simulated (500 x 288 = 144,000 data sets). Finally, the number of measurement

occasions was set to 3, 4 or 5 in the LGC-COM model simulation, given that latent growth curve

models require at least 3 occasions of measurement to be identified (see e.g., Geiser, 2012).

6.3 General procedure

Due to the complexity of the simulation designs and models, it was necessary to assign different

MC conditions to multiple computers (max. 28 PCs). All simulations were carried out in the com-

puter lab of the Freie Universität Berlin. By this procedure, it was possible to reduce the duration

of estimation notably (approximately 6 days for each simulation study). Numerous automation

syntaxes and R-functions were written. The R-functions were used for creating Mplus inputs as

well as for extracting different simulation results after the simulation was done. All simulation

results were then analyzed in R (see syntaxes in the appendix CD).

The general procedure for running one simulation study encompassed the following steps:

1. Set up the simulation design for a given model and predetermine the population parameters.

2. Specify the correlation matrix of the observed variables for the given model using OpenMx

(Boker et al., 2011).

3. Check whether or not the correlation matrix and/or subsets of the correlation matrix are

positive definite and invertible.

4. Transform the correlation matrix into a variance-covariance matrix of the observed variables

using the R package corcounts (Erhardt, 2009) and use the unstandardized parameters in

order to create Mplus input files with the true population model.
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5. Create Mplus input templates for all conditions of the simulations design using the package

MplusAutomatation (Hallquist, 2011).

6. Run a test simulation and fix syntax errors, estimate the approximate duration of estimation,

and organize the simulation study.

7. Run the simulation study and save all data files and outputs.

8. Write R functions and syntaxes to automate the extraction of the simulation results, (e.g.,

parameter estimation bias, standard error bias etc.). Extract all needed informations.

9. Re-run part of the simulation in order to calculate the number of “actual” Ψ-problems.

10. Analyze the results of the simulation study.

All models were simulated using Mplus 6.1 (L. K. Muthén & Muthén, 1998-2010), the free software

R 2.14.0 (R Development Core Team, 2008), as well as various R packages such as MplusAutomation

(Hallquist, 2011), OpenMx (Boker et al., 2011), and corcounts (Erhardt, 2009).

6.3.1 Estimators

The LS-COM and LC-COM model were estimated using two different estimators: 1) the max-

imum likelihood (ML) estimator and 2) the robust maximum likelihood (MLR) implemented in

Mplus 6.1. Because of this additional condition, it was possible to compare the simulation results of

both estimators. With respect to the LST-COM and LGC-COM model only one estimator, the ro-

bust maximum likelihood (MLR) estimator was used. This was done, because the MLR-estimator

is the default estimator for multilevel analyses in Mplus and is also generally recommended for

this type of analysis (L. K. Muthén & Muthén, 1998-2010). However the ML and MLR results

should only differ to a small extent, given that the standard errors as well as the χ2 fit statistics are

adjusted under MLR (see Satorra & Bentler, 1994, 2001; Yuan & Bentler, 2000). The parameter

estimates as well as the parameter estimate biases are unaffected and remain the same for both

estimators.

6.3.2 Criteria for evaluating the performance of the models

The performance of the models was evaluated according to the similar criteria used by Crayen

(2008) and Geiser (2008):

Rate of non-convergence

The term “convergence” refers to the ability of a particular SEM-software (e.g., Mplus) to find

an unique solution for the parameters of the model after a certain number of iterations (Geiser,

2008). The default number of iterations in Mplus 6.1 is 1000. If a software (e.g., Mplus) is unable

to find a unique solution for the parameter of the model after a certain number iterations, the

estimation process has not converged. According to previous simulation studies complex models

usually require a larger number of iterations (Geiser, 2008). It is important to distinguish between
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the convergence of the H0 and the H1 model. The H0 model represents the specified model,

whereas the H1 model represents the saturated model. In the current simulation studies the

number of replications in which the H0 model (i.e., specified model) did not converge was recorded.

According to Geiser (2008) the non-convergence rate should be below 1 %.

Improper solutions

Improper solutions indicate estimation problems of particular model parameters, for example

the residual covariance matrix (so-called: Θ-problems) or the variance-covariance matrix of the

latent variables (so-called Ψ-problems). In the current simulation studies the number of Θ-problems

as well as the number of “actual” Ψ-problems was recorded. No more than 5 % of all replications

should refer to “actual” improper solutions (Crayen, 2008; Geiser, 2008).

Relative parameter estimation bias (peb)

The accuracy of the parameter estimation was investigated according to the absolute value

of the relative parameter estimation bias (peb). The peb coefficient can be seen as standardized

indicator of parameter bias and is calculated by the following formula:

peb = |Mp − ep|
ep

. (6.1)

Mp is the average of the MC parameter estimates (over all replications) and ep is the true

population value. The absolute value of the standardized peb was taken in order to average across

different sets of parameters (e.g., factor loadings, latent covariances, residual variances etc.). The

parameter estimation bias should not exceed 10 percent of any parameter of the model.

Relative standard error bias (seb)

The accuracy of the standard errors was evaluated with respect to the absolute value of the

relative standard error bias. The seb can be considered as standardized indicator of standard error

bias. Significant standard error bias can lead to serious bias in significant testing (Geiser, 2008).

The seb is calculated by the following formula:

seb = |MSE − SDp|
SDp

. (6.2)

The cutoff value of the seb in the present simulation studies is .10. The absolute value of the

relative seb was taken, in order to average across different sets of parameters.

χ2-Test

The adequacy of χ2 fit statistics in multilevel structural equation modeling is a delicate and

ongoing research topic. Recently, researchers provided methods in order to obtain level-specific

χ2 fit statistics for multilevel structural equation models (Yuan & Bentler, 2003, 2007; Ryu &

West, 2009). Besides, the results of previous simulation studies suggests that the χ2 fit statistic

are not trustworthy for complex structural equation models (Crayen, 2008; Geiser, 2008). In the
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present study, the adequacy of the χ2 fit statistic was only evaluated for the LS-COM and LC-

COM model, given that these models represent the least complex models (with respect to the

number of parameters). This analysis was not repeated for the LST-COM and LGC-COM model,

because the computing time for obtaining the additional χ2 fit statistics would have increased to

an unacceptable amount. By not computing the χ2 fit statistics for these models the elapsed time

of computation was reduced by 80 %. In order to evaluate the robustness of the χ2 fit statistic the

observed Monte Carlo χ2 distribution was compared to the theoretical χ2 distribution. A large

discrepancy between both distributions would indicate a biased χ2 fit statistic. The adequacy of

the χ2 fit statistic was evaluated according to the following criterion: The proportion of models

that would be rejected at a nominal 5 % alpha level on the basis of the theoretical χ2 distribution

should not be larger than .10 according to the MC χ2 distribution (see Crayen, 2008; Geiser, 2008).

6.4 General expectations

Simulation studies are mainly considered as an exploratory method. Therefore, it is not very

common to explicitly formulate statistical hypothesis. However, in the next section a list of general

expectations will be provided. These expectations can be seen as “working hypothesis” which may

be formulated based on the findings of previous simulation studies.

Convergence

All specified models (i.e., LS-COM, LC-COM, LST-COM, LGC-COM) should converge. Ac-

cording to previous simulations studies, complex models require a higher number of iterations in

order to converge (see Geiser, 2008). The main focus of the subsequent simulation studies concerns

the convergence rate of the specified (H0) model, not of the saturated (H1) model.

Improper solutions

In general, the number of “actual” improper solutions should be low across all conditions and

across all four simulated studies. However, it is assumed that more Mplus error messages (potential

improper solutions) will be encountered for the Ψ matrix than for the Θ matrix. There are several

reasons for that: First, Mplus error messages referring to Ψ-problems do not necessarily indicate

“actual” Heywood cases (as indicated above), whereas Θ error messages generally do. Second,

the Ψ-problems may result from higher order partial correlations among latent variables. Many

previous simulation studies indicate that improper solutions with respect to variance-covariance

matrix Ψ of the latent variables occur frequently in complex MTMM-SEM models (Crayen, 2008;

Geiser, 2008; Lance, Noble, & Scullen, 2002; Marsh & Bailey, 1991; Marsh, Byrne, & Craven, 1992).

It can be expected, that the amount of Mplus error messages referring to Ψ-problems increases

with an increase of the model complexity (e.g., increasing number of constructs, items, methods)

but decreases with an increase of the number of empirical information (e.g., sample size, number

of measurement waves). Moreover, it can be assumed that the number of Ψ-problems is greater

in the high consistency than in the low consistency conditions. The reason for this assumption is

that the amount of method variance in the high consistency condition is very low compared to the
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low consistency condition. In fact, a higher degree of convergent validity (i.e., high consistency)

was chosen in the simulation studies than usually present in real data applications. This was done,

to put the models through an endurance test and investigate the performance of the models under

extreme (but rather unlikely) data conditions. Therefore, a greater number of “actual” improper

solutions is expected in the high than in the low consistency condition.

Parameter estimate bias and standard error bias

Overall, the amount of bias of parameter estimates (peb) as well as standard errors (seb) should

be low. With respect to findings of previous simulation studies it can be expected that the bias

of parameter estimation is lower than the bias of standard errors. Moreover, it can be assumed

that the amount of bias (peb or seb) increases with increasing model complexity (e.g., number

of parameters or constructs) and decreases with an increasing number of empirical information

(e.g., sample size, occasions of measurement). Furthermore, it is expected that bias of parameter

estimates and standard errors occur more often in the high consistency condition than in the low

consistency condition.

χ2-fit statistics

In general, it is expected that the observed χ2-distribution does not approximate well the

theoretical χ2-distribution well for complex models or in conditions with few observations. Unfor-

tunately, Mplus 6.1 only reports unscaled (uncorrected) χ2 fit statistics (i.e., ML χ2 fit statistics)

in the Monte Carlo option, even when using the MLR estimator (L. K. Muthén & Muthén, 1998-

2010). Hence, all χ2 fit statistics will be based on maximum likelihood estimation.

ML vs. MLR estimator

Many researchers recommend to use maximum likelihood estimator with robust standard er-

rors (MLR) instead of the regular maximum likelihood estimator (ML) when modeling multilevel

(hierarchical) data structures (see L. K. Muthén & Muthén, 1998-2010; Satorra & Bentler, 1994,

2001; Yuan & Bentler, 2000). However, it is important to note that the MLR estimator is based

on the regular ML estimator and solely adjusts the χ2 fit-statistics and the standard errors for

the parameter estimates (L. K. Muthén & Muthén, 1998-2010). It can be expected that both

estimators (ML and MLR) yield similar results, if (a) the sample size is relatively large, (b) the

data multivariate is normally distributed and (c) the multilevel structure is explicitly modeled (i.e.,

no additional clustering or dependency). With respect to the subsequent simulation studies, all of

these assumptions are met. Therefore, it is assumed that the difference between the ML and the

MLR estimates will be negligible. However, it is expected that the MLR estimator outperforms

the regular ML estimator, when one or more of the assumptions above are not met.
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6.5 Statistical analyses

In order to determine favorable or unfavorable conditions for the applicability of the models

different types of biases (peb and seb) were related to different MC conditions (i.e., number of

constructs, method, measurement occasions, sample size, consistency condition). It is very com-

mon to use analyses of variance (e.g., ANOVA or MANOVA) for analyzing simulation results.

When conducting an analysis of variance (ANOVA) different MC conditions are regarded as fixed

factors. However, sometimes it is more reasonable to consider different MC conditions as random

factors. For example, in cases in which (a) the number of MC conditions is large (above 100),

(b) the amount of bias varies across different conditions and/or different parameters (i.e., multiple

crossed random effects), (c) the simulated models contain numerous parameters (e.g., covariances,

variances, factor loadings etc.) with varying degree of bias, and (d) different MC conditions can be

seen as random samples of data conditions which might occur in real data applications. In these

cases, considering the different MC conditions as random may be beneficial, given that a multilevel

model can be used for the analysis instead of a general ANOVA. In fact, multilevel analysis has

many advantages, for instance less strict assumptions and higher flexibility, prevention of standard

error bias, inflated type 1 error (see Geiser, 2012). For the analysis of the simulation studies in

the present work, a multilevel model with two crossed random effects was specified. The reason

for using multilevel analysis with crossed random effects was that both types of biases (peb and

seb) varied across different conditions and different types of parameters (e.g., factor loadings, la-

tent covariances etc.). With this procedure, it was possible investigating which MC conditions are

most (un)favorable and which set of parameters (e.g., latent covariance, factor loadings, intercepts,

etc.) is most sensitive to bias in a single analysis. Given that the absolute values of the peb and

seb coefficients were calculated, the pep and seb (dependent variables) were extremely positive

skewed. For that reason, the absolute peb and seb values were log-transformed before entering in

the model. In addition to that, a small constant (.00001) was added to the peb and seb coefficients,

given that some peb and seb values approached zero. This log-transformation was done according

to the recommendations of Cohen, Cohen, West, and Aiken (2003, p. 235). The different types

of MC conditions (e.g., consistency, sample size on level-1 and level-2, number of methods, num-

ber of constructs, number of occasions) were dummy coded and used as independent variables for

the prediction of bias in parameter estimates (peb) and standard errors (seb). The unstandard-

ized regression coefficients were then back-transformed by taking an exponential function. As a

consequence of the exponential transformation, the unstandardized regression weights (βi) of the

dummy coded independent variables (Ci) can be interpreted as the percentage impact of Ci on Y

(i.e., peb or seb) controlling for all other independent variables in the model (see Giles, 2011). The

back-transformation formula can be expressed as follows: 100 ∗ [exp(βi) − 1]. The analyses was

performed in R using lme4 (D. Bates, Maechler, & Bolker, 2011). For more information concerning

multilevel regression with crossed random effects see D. M. Bates (in press).



Chapter 7

Simulation I : Latent state

(LS-COM) model

7.1 Specification of the population model

Table 7.1 provides informations regarding the specification of the population LS-COM model.

As indicated in Chapter 2 (see Figure 2.4), a LS-COM model with common latent state factors

was simulated. In other words, it was assumed that the indicator-specific latent state variables

are perfectly correlated. The reliability was set to .8 and portioned into the variance due to con-

sistency and method specificity. In the low consistency (low convergent validity) condition the

common and unique method specificity coefficient was set to .25, whereas the method specificity

coefficient of the third method was set to .5. The consistency coefficient was set to .3. In em-

pirical applications items do not often have equal reliability coefficients. In order to achieve most

realistic conditions in the simulation studies, all model parameters varied across items per CMOU

(construct-method-occasion unit). That is, for each item per CMOU a constant of .025 (.05) was

either subtracted or added to the coefficients given in table 7.1. For example, the reliability co-

efficients for the indicators per construct-method-occasion-unit (CMOU) was .775, .8, and .825.

Moreover, strong measurement invariance was assumed with respect to the simulation of the LS-

COM model (Meredith, 1993; Widaman & Reise, 1997). Again, strong measurement invariance

implies restrictions on the latent intercepts and latent factor loadings for each item belonging to

the construct j, method k, but different occasions of measurement l and l′. Furthermore, the H1

iterations were set to 7500 for all models in order to provide goodness-of-fit statistics. Note that

the H1 model refers to the saturated and not to the specified model. A complete Mplus Monte

Carlo input of a LS-COM model is given on the appendix CD-ROM.

7.2 Results

7.2.1 Convergence

All models converged.

174
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Table 7.1: Consistency, method specificity & reliability of the LS-
COM model

low consistency high consistency

consistency .30 (±.025) .60 (±.025)
unique method specificity .25 (±.025) .10 (±.025)
common method specificity .25 (±.025) .10 (±.025)
method specificity .50 (±.050) .20 (±.050)
reliability .80 (±.025) .80 (±.025)

Note. The values for the remaining items per CMOU varied by
.025.

7.2.2 Improper solutions

Across all 232 conditions, 65 (28.0 %) conditions contained replications with improper solu-

tions with respect to the latent covariance matrix Ψ. Most of these Ψ-warning messages were

encountered in the multiconstruct conditions (37 out of 65 conditions, 56.9 %) compared to the

monoconstruct conditions (28 out of 65 conditions, 43.0 %). In addition, more Ψ-warnings mes-

sages were encountered in high consistency (56 out of 65 conditions, 86.2 %) conditions (see Table

7.2) for both multiconstruct as well as monoconstruct measurement designs.

Table 7.2: Amount of Ψ-Problems in Multi- and Monoconstruct Designs for High
and Low Consistency Condition.

Multiconstruct Monoconstruct Total
High consistency condition 32 (86.4 %) 24 (85.7 %) 56 (86.2 %)
Low consistency condition 5 (13.5 %) 4 (14.3 %) 9 (13.8 %)
Total 37 (56.9 %) 28 (43.0 %) 65 (100.0 %)

Note. Results do not represent the “actual” amount of Ψ-problems.

It is important to note that these results do not represent the amount of “actual” Ψ-problems,

but rather the total amount of Mplus warning messages (i.e., “possible” Ψ-problems). In fact,

only 69 (3.09 %) out of 2231 Mplus warning messages referred to “actual” Ψ-problems. Hence,

the amount of “actual” Ψ-problems was below the cut-off value of 5 %. According to Figure

7.1, the “potential” Ψ-problems occurred more often in high than low consistency conditions and

decreased substantially with increasing level-1 as well as level-2 units (number of raters and targets).

Moreover, the number of level-1 units (i.e., number of raters per target) seems to be especially

important for the reduction of “potential” Ψ- problems. For example, in Figure 7.1 it can be

noticed that the amount of “potential” Ψ- problems decreases substantially with more than 2

raters per target. However, in Figure 7.1 it is not yet clear how many observations are sufficient for

proper parameter estimates. In order to get a better understanding of how many observations are

needed for reducing the amount of “potential” Ψ-problems, the ratio “observation per parameter”

was calculated and related to the amount of Ψ-problems (see Bentler & Chou, 1987; Bollen, 1989,

2002).

Figure 7.2 shows the relationship between the amount of Ψ-problems and the amount of observa-

tions per parameter. According to the Figure 7.2 the amount of Ψ-problems decreased substantially

as the amount of observations per parameter increased. As potential cutoff value, at least five (bet-
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ter ten) observations per parameter are needed to reduce the amount of “potential” Ψ-problems

notably. This recommendation is in line with the findings of previous simulation studies by Bentler

and Chou (1987) (see straight line in Figure 7.2) and Bollen (1989, 2002) (see dashed line in Figure

7.2). Moreover, the Figure 7.2 reveals that more “potential” Ψ-problems are more likely to occur

in the high consistency condition than in the low consistency condition. Most of these “potential”

Ψ-problems refer to improper solutions with regard to the correlations among the latent method

factors (common as well as unique method factors). This might be explained by the fact that

a higher amount of consistency implies a lower a amount of method variance (i.e., lower method

bias). Therefore the LS-COM model is over-factorized in these MC conditions. However, if method

bias exists (low consistency condition) almost no Ψ-problems occur. Overall, only 2 out of 232

conditions contained Θ-problems. Both of these errors occurred in conditions referring to LS-COM

models in the high consistency condition incorporating 1 or 2 constructs, 2 methods, 2 occasions of

measurement and a total sample size of 200 (nL1 = 2, nL2 = 100). Thus, the Θ-problems occurred

only in conditions of low sample sizes on the rater- as well as target-level. These results show the

importance of level-1 and level-2 units for the reduction of improper solutions.

Figure 7.1: Average number of Ψ-problems in high and low consistency conditions. nL1
= number of level-1 units; nL2 = number of level-2 units.
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Figure 7.2: Relation between Ψ-problems and observations per number of parameters.
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7.2.3 Bias of parameter estimates and standard errors

Across all 232 conditions the absolute parameter estimation bias (peb) was below .1 and thereby

did not exceed the critical cutoff value of .1. However, the standard error bias (seb) exceeded the

cutoff value of .1 in 21 out of 232 (9.1 %) conditions. Higher standard error biases (seb above

.1) were more often encountered in the monoconstruct (14 out of 21 conditions, 66.7 %) than in

the multiconstruct (7 out of 21 conditions, 33.3 %) condition. In addition, higher standard error

biases (seb above .1) were more often found in the high than in the low consistency condition (see

Table 7.3). These results indicate that bias of standard errors (seb) are more likely to occur if

the amount of method bias is low (i.e. high convergent validity). Again, this might be partially

explained by the fact that the LS-COM model implicitly assumed substantial method bias that can

be modeled. If the different types of method (i.e., structurally as well as interchangeable raters)

perfectly converge in their ratings, the LS-COM model would be over-factorized for the data.

Amount of seb in Multi- and Monoconstruct Designs for High and Low Consistency
Conditions.

Table 7.3: Amount of seb in LS-COM model

Multiconstruct Monoconstruct Total
High consistency condition 4 (57.1 %) 10 (71.4 %) 14 (66.6 %)
Low consistency condition 3 (42.9 %) 4 (28.6 %) 7 (33.3 %)
Total 7 (33.3 %) 14 (66.6 %) 21 (100.0 %)

Figure 7.3 illustrates the average peb and seb values with regard to the high and low consistency

condition. The two figures in the upper row refer to the average peb values in the high and low

consistency condition, whereas the two figures in the lower half refer to the average seb values in

the high and low consistency condition. According to the figures, peb as well as seb values are

lower in the low consistency condition than in the high consistency condition (i.e., high convergent

validity). Interestingly, the peb as well as seb values decrease substantially with increasing sample

size. Again, the sample size on level-1 (raters per targets) seems to be important for the reduction

of parameter as well as standard error bias. The major drop in the average seb can be noticed for

five instead two raters per target. It can also be seen in Figure 7.3 that the average peb and seb

values did not exceed the critical cut-off value of .1.

In order to investigate possible reasons for bias in parameter estimates (peb) as well as standard

errors (seb), a multilevel regression analysis with two random effect terms (one for the parameters

types and one for the condition types) was carried out. The two random effect terms were specified,

given that the amount of bias in parameter estimates and standard errors varied across different

types of parameters (e.g., factor loadings of latent factors, covariances among latent factors, vari-

ances of latent factors etc.) as well as across conditions (i.e., in total 232). The multilevel analysis

with cross random effects was carried out using the package lme4 (D. Bates et al., 2011). The

results are given in Table 7.4. Note that the dependent variables (i.e., peb and seb values) were

first log-transformed and afterwards back-transformed as explained in section 6.5. Therefore, the

unstandardized regression weights may be interpreted as average percentage increase or decrease

in bias in the given group (e.g., 500 targets) with respect to the reference group (e.g., 100 targets)
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Figure 7.3: Average peb and seb values with respect to sample size in high and low consistency
conditions in the LS-COM model. nL1 = number of level-1 units; nL2 = number of level-2 units.

holding everything else constant (ceteris paribus). According to the results given in Table 7.4,

the bias in parameter estimates (peb, see model 1) increased significantly with an increase of the

number of constructs (32 % increase of bias), but decreased significantly with an increase in the

number of measurement occasions (8-10 % decrease of bias), number of raters (36-51 % decrease of

bias) and targets (50-64 % decrease of bias). Again, bias in parameter estimates was rather found

in high consistency than in low consistency conditions (21 % increase of bias). Interestingly, the

number of methods was not significantly associated with bias in parameter estimates. This implies

that an increase of methods (e.g., parents, teacher, self-ratings etc.) does not lead to more bias of

the parameter estimates. According to the results regarding model 2, the standard error bias (seb)

decreased significantly with increasing number of raters (20-28 % decrease of bias) and number of

targets (21-29 % decrease of bias). The seb also increased with model complexity (i.e., number of

constructs and measurement waves; 12-19 % increase of bias). Moreover, bias in standard error was

significantly more often found in the high convergent validity condition than in the low convergent

validity condition (6 % increase of bias). According to these results, the amount of parameter as

well as standard error bias can be substantially reduced with increasing sample size on both levels.

With respect to the variability of the peb as well as seb-values across different types of param-

eters, it is possible to evaluate which class of parameter (e.g., factor loadings, latent variances,

covariances) is most sensitive to bias. The variability of peb and seb-values across different types

of parameters is displayed in Figure A.1 and A.2 in the appendix. The 95 % prediction intervals

of the random effects confirm that the conditional distribution of the parameter estimation bias
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Table 7.4: Estimates for the prediction of bias in parameter estimates (peb)
and standard errors (seb) in the LS-COM model.

Parameter Model1(peb) Model2(seb)
−2∗LL 6085.64 5560.64
AIC 6164.33 5643.85
BIC 6246.72 5726.23

Fixed effects
Constant 0.01∗∗∗ 0.03∗∗∗

(0.22) (0.06)
Level-2 (conditions)

Methods 3 vs 2 0.04ns 0.17∗∗∗
(0.03) (0.03)

Constructs 2 vs 1 0.32∗∗∗ 0.19∗∗∗
(0.03) (0.03)

Occasion 3 vs 2 −0.08∗ 0.12∗∗∗
(0.03) (0.03)

Occasion 4 vs 2 −0.10∗∗ 0.15∗∗∗
(0.04) (0.04)

Rater 5 vs 2 −0.36∗∗∗ −0.23∗∗∗
(0.04) (0.04)

Rater 10 vs 2 −0.45∗∗∗ −0.28∗∗∗
(0.04) (0.04)

Rater 20 vs 2 −0.51∗∗∗ −0.20∗∗∗
(0.04) (0.04)

Target 250 vs 100 −0.50∗∗∗ −0.21∗∗∗
(0.04) (0.04)

Target 500 vs 100 −0.64∗∗∗ −0.29∗∗∗
(0.04) (0.04)

Cond low vs high −0.21∗∗∗ −0.06∗
(0.03) (0.03)

Random effects
Level-1
σ2
r 0.57 0.47

Level-2
σ2
u01 (con) 0.00 0.00
σ2
u02 (par) 0.56 0.01

Note. Reference group is a LS-COM model with 3 indicators, 1 construct,
2 methods, 2 occasions of measurement, 2 raters per target, 100 targets in
the high consistency condition. standard errors are in parentheses. peb=
log-transformed parameter estimation bias; seb = log-transformed standard
error bias; LL = log likelihood; N= 2656; (con) = condition type (232);
(par) = parameter type (12).
∗p < .05; ∗∗∗p < .001; ns not significant.

for different parameters showed less variability than the conditional distribution of standard error

bias of different parameters. Moreover, bias in parameter estimates seem to be more sensitive with

respect to the estimation of latent covariances on the rater- and target-level, whereas the stan-

dard error bias was rather associated with the factor loadings of different kinds of method factors

(λCMij2l, λUMij2l, λMijkl) as well as the variance of the unique method factor [V ar(UMrtj2l)].
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7.2.4 Appropriateness of χ2 fit statistics

In Table 7.5 and 7.6 the expected and observed proportions of the χ2 fit-statistics for different

sample sizes and different models are given. The results of Table 7.5 refer to the χ2 fit statistics

of a monotrait LS-COM model with 3 indicators, 1 construct, 2 methods and 2 occasions of

measurement. The monotrait LS-COM model represents the least complex LS-COM model. The

results given in Table 7.6 refer to the χ2 fit statistics of a multitrait LS-COM model with 3

indicators, 2 constructs, 2 methods and 2 occasions of measurement. The values in the first column

refer to the probability of observing a χ2-value greater than the corresponding percentile values

from a theoretical χ2 distribution with the degrees of freedom given by the model (L. K. Muthén

& Muthén, 1998-2010). The bold values of .05 in the first columns of Table 7.5 and 7.6 indicate

the nominal alpha level of 5 % for the theoretical χ2 distribution with the degrees of freedom given

by the model. The bold values (in columns 2 to 12) correspond to the observed values in the MC

replications. According to the results given in Table 7.5 and 7.6 the theoretical χ2-values were

well recovered by the observed χ2-values on a nominal alpha level of 5 % (see bold value in Table

7.5 and 7.6). The discrepancies between the observed and theoretical proportions on a nominal

alpha level of 5 % vary between .01 und .05. However, in all of these cases, the observed χ2-values

were lower than the theoretical χ2-values, implying a downward bias in asymptotic type I errors.

This means that to many specified models would be accepted according to the observed χ2 test

statistics, which results in too liberal χ2 model fit tests. As expected the χ2 fit statistics were

less downward biased in the monotrait condition (i.e., for less complex models) compared to the

multitrait condition. Interestingly, there is no clear-cut interpretation with regard the relationship

between χ2 fit statistics and different samples sizes (cf. Crayen, 2008; Geiser, 2008). A graphical

representation of these results is given in Figures B.1 and B.2 in the appendix). Given that these

results refer to the general maximum likelihood χ2 values, a scaling (correction) factor of the χ2

values may be appropriate (see Yuan & Bentler, 2000).



C
H
A
P
T
E
R

7.
S
IM

U
L
A
T
IO

N
I
:
L
A
T
E
N
T

S
T
A
T
E

(L
S
-C

O
M
)
M
O
D
E
L

182

Table 7.5: Expected and observed proportions of the χ2-statistic for different sample sizes in the low consistency condition for
a monotrait LS-COM model.

Observed proportions
Expected
proportions

2x100 2x250 2x500 5x100 5x250 5x500 10x100 10x250 10x500 20x100 20x250 20x500

.99 .97 .96 .95 .97 .96 .96 .96 .98 .97 .97 .96 .98

.98 .95 .94 .93 .94 .93 .93 .93 .94 .94 .94 .94 .96

.95 .87 .88 .84 .89 .87 .86 .87 .89 .88 .87 .87 .92

.90 .78 .79 .77 .78 .76 .77 .80 .79 .78 .78 .78 .86

.80 .62 .60 .65 .62 .61 .62 .67 .63 .64 .64 .67 .71

.70 .51 .50 .49 .49 .48 .51 .55 .50 .52 .52 .57 .60

.50 .33 .30 .30 .29 .30 .32 .36 .34 .30 .33 .37 .39

.30 .21 .16 .13 .14 .14 .15 .18 .17 .16 .18 .18 .18

.20 .13 .09 .07 .08 .08 .09 .09 .10 .08 .10 .11 .11

.10 .06 .03 .03 .04 .03 .04 .03 .04 .04 .04 .05 .07

.05 .04 .01 .01 .02 .01 .02 .01 .02 .01 .01 .02 .03

.02 .01 .00 .00 .00 .01 .01 .00 .00 .00 .00 .01 .01

.01 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

Note. LS-COM model with one construct, two methods, two occasions of measurement, and three indicators per CMOU
(3 x 1 x 2 x 2 version) and with 37 degrees of freedom; Expected proportions = proportions based on the theoretical
chi-square distribution; 2 x 100, 10 x 250, etc. indicate the sample size on level-1 and level-2.
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Table 7.6: Expected and observed proportions of the χ2-statistic for different sample sizes in the low consistency condition for
a multitrait LS-COM model.

Observed proportions
Expected
proportions

2x100 2x250 2x500 5x100 5x250 5x500 10x100 10x250 10x500 20x100 20x250 20x500

.99 .98 .93 .91 .94 .90 .95 .95 .93 .93 .95 .95 .95

.98 .95 .89 .87 .91 .88 .89 .91 .88 .89 .91 .91 .93

.95 .90 .83 .78 .82 .78 .78 .81 .79 .80 .82 .82 .85

.90 .79 .69 .68 .71 .68 .65 .71 .67 .69 .72 .71 .74

.80 .65 .51 .50 .56 .51 .50 .55 .49 .53 .55 .54 .58

.70 .52 .38 .36 .43 .35 .38 .42 .35 .40 .41 .41 .43

.50 .34 .23 .19 .23 .20 .20 .27 .20 .22 .20 .23 .21

.30 .18 .09 .08 .12 .09 .08 .12 .10 .10 .10 .09 .11

.20 .10 .06 .03 .06 .05 .04 .07 .06 .04 .05 .05 .05

.10 .04 .03 .02 .02 .01 .02 .03 .03 .02 .01 .02 .01

.05 .02 .00 .00 .01 .01 .01 .01 .01 .01 .01 .01 .00

.02 .01 .00 .00 .00 .00 .00 .01 .00 .00 .01 .00 .00

.01 .00 .00 .00 .00 .00 .00 .01 .00 .00 .00 .00 .00

Note. LS-COM model with two construct, two methods, two occasions of measurement, and three indicators per CMOU
(3 x 2 x 2 x 2 version) and with 86 degrees of freedom; Expected proportions = proportions based on the theoretical
chi-square distribution; 2x100, 10x250, etc. indicate the sample size on level-1 and level-2.
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7.3 Results based on the MLR estimator

In line with the general expectations, the average parameter bias (peb) was identical for all sets

of parameters regardless of the type of estimator (ML or MLR) used (see Table 7.7). Moreover,

the average standard error bias differed negligibly (second and third decimal place) with respect to

the different estimators used (see Table 7.8). In contrast to the general expectations, the average

standard error bias was higher in the MLR condition than in the ML condition. This might be

partially explained by the fact that the MLR estimator corrects the standard errors (by adding a

constant) which may be not necessary for the simulated data structure, given that all assumptions

of the general maximum likelihood estimator (e.g., multivariate normality, no additional clustering,

sufficient sample size) were met. Finally, it is rather encouraging to see that the average peb and

seb values are relatively small for all parameters across all MC conditions (see Table 7.7 and 7.8).

Table 7.7: Average absolute peb values for different
LS-COM model parameters and different maximum
likelihood estimators.

Peb ML MLR
State factor loadings 0.001 0.001

Common method factor loadings 0.005 0.005
Between covariances 0.016 0.016

Between latent means 0.005 0.005
Between intercepts 0.002 0.002
Between variances 0.007 0.007
Between residuals 0.005 0.005

Unique method factor loadings 0.004 0.004
Within covariances 0.013 0.013

Within variances 0.003 0.003
Within residuals 0.003 0.003

Note. ML= maximum likelihood estimator;
MLR=robust maximum likelihood estimator;
peb= average parameter estimate bias.

Table 7.8: Average absolute seb values for different
LS-COM model parameters and different maximum
likelihood estimators.

Seb ML MLR
State factor loadings 0.029 0.032

Common method factor loadings 0.048 0.055
Between covariances 0.029 0.032

Between latent means 0.026 0.026
Between intercepts 0.026 0.026
Between variances 0.031 0.035
Between residuals 0.029 0.033

Unique method factor loadings 0.036 0.038
Within covariances 0.031 0.033

Within variances 0.032 0.034
Within residuals 0.025 0.027

Note. ML= maximum likelihood estimator;
MLR=robust maximum likelihood estimator;
seb= average standard error bias.



Chapter 8

Simulation II : Latent change

(LC-COM) model

8.1 Specification of the population model

The population parameters of the LC-COM model were set to the same values as the population

parameters of the LS-COM model (see Table 7.1). For the sake of simplicity, a baseline LC-COM

model with common latent change factors for the reference method, but without latent method

change factors was specified. In other words, with respect to the simulated LC-COM model only

“true” change with respect to the reference method was assumed. Given that the LS-COM and the

baseline LC-COM are statistically equivalent, the results will be identical, except for variations due

to the different Monte Carlo sampling processes. The results regarding the ML-χ2 fit statistics are

not presented here. Results with respect to the amount of improper solutions, bias in estimation of

parameter and standard error etc. are provided for reasons of completeness and comparability of

the LS-COM model. In addition, all parameter restrictions such as strong measurement invariance,

number of H1 iterations (7,500) were set to the same values of the simulation study I (i.e., LS-

COM model). An example of the Mplus input for the simplest LC-COM model is provided in the

appendix CD-ROM.

8.2 Results

8.2.1 Convergence

All models converged.

8.2.2 Improper solutions

In total, 65 out 232 (28.0 %) conditions contained warning messages with respect to “pos-

sible” Ψ-problems, whereas only 3 (1.3 %) conditions contained error messages referring to Θ-

problems. Again, more Ψ-warning messages were encountered in multi-construct designs than in

185
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mono-constructs designs as well as in the high consistency condition compared to the low consis-

tency condition (see Table 8.1).

Table 8.1: Amount of Ψ-problems in multi- and monoconstruct designs for high
and low consistency condition.

Multiconstruct Monoconstruct Total
High consistency condition 32 (86.4 %) 24 (85.7 %) 56 (86.2 %)
Low consistency condition 5 (13.5 %) 4 (14.3 %) 9 (13.8 %)
Total 37 (56.9 %) 28 (43.0 %) 65 (100.0 %)

Note. Results do not represent the “actual” amount of Ψ-problems.

The maximum number of replications with warning messages was 333. This MC replication

referred to LC-COM models in the high consistency condition with 2 constructs, 3 methods, 3

occasions of measurements and a sample size of N = 500 (2 × 250). The percentage of replications

with “actual” Ψ-problems was below the 5 % cutoff value (3.0 %, 69 out of 2311).

Figure 8.1: Average number of Ψ-problems in high and low consistency conditions. nL1
= number of level-1 units; nL2 = number of level-2 units.

Figure 8.1 confirms that the amount of “possible” Ψ-problems is higher in the high consistency

conditions than in the low consistency condition. Moreover, the amount of “possible” Ψ-problems

decreased substantially with increasing sample size on both levels. The majority of improper so-

lutions referred to the estimation of the latent correlations among unique and common method

factor (e.g., UMrtj2l, CMtj2l), indicating that these parameter estimates are most prone to im-

proper solutions if the sample size on both levels is small and/or only a small amount of method

bias is present. The amount of “possible” Ψ-problems decreased exponentially with an increasing

number of observations per parameter (see Figure 8.2). Again, a ratio of five observations per

parameter reduces the amount of improper solutions notably.
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Figure 8.2: Relationship between Ψ-problems and observations per number of parame-
ters.
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8.2.3 Bias of parameter estimates and standard errors

Similar to the previous results, no bias of parameter estimates greater than .1 (10 %) was found

across all 232 conditions. However, the standard error bias (seb) exceeded the critical cutoff value

of .1 in 15 out of 232 (6.5 %) conditions (see Table 8.2). Therefore, the amount of bias with

regard to standard errors greater than .1 occurred less frequently in the change than in the state

parametrization of the model. However, similar to the LS-COM simulation, it was more likely

to find higher standard error bias (seb) in the monoconstruct (11 out of 15, 73.3 %) than in the

multiconstruct (4 out of 15, 26.7 %) condition. Besides that, more standard error bias (seb) above

|1| were encountered in the high consistency (i.e., high convergent validity) condition.

Amount of seb in multi- and monoconstruct designs for high and low consistency
condition.

Table 8.2: Amount of seb in LC-COM model.

Multiconstruct Monoconstruct Total
High consistency condition 3 (75.0 %) 6 (54.5 %) 9 (60.0 %)
Low consistency condition 1 (25.0 %) 5 (45.5 %) 6 (40.0 %)
Total 4 (26.7 %) 11 (73.3 %) 15 (100.0 %)

The average peb and seb values with regard to the high and low consistency condition are

illustrated in Figure 8.3. The two figures in the upper row show the average peb values in the high

and low consistency condition, whereas the two figures in the bottom row present the average seb

values in the high and low consistency condition. Similar to the previous results of the LS-COM

model, the peb as well as seb values are lower in the low consistency condition than in the high

consistency condition and decrease substantially with increasing sample size.

Figure 8.3: Average peb and seb values with respect to sample size in high and low consistency
conditions in the LC-COM model. nL1 = number of level-1 units; nL2 = number of level-2 units.
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The results of multilevel regression analysis with two crossed random effects are shown in Table

8.3. According to these results, the bias in parameter estimates (peb, see model 1) increases

significantly with an increase of model complexity (i.e., number of constructs, 39 % increase of

bias), but decreases significantly with increasing sample size (number of raters, 36-47 % and targets,

51-65 %). However, the amount of bias in parameter estimates was not significantly associated

with the number of measurement occasions or methods. Again, the average amount peb decrease

substantially in the low consistency conditions (10 % decrease of bias). The amount of standard

error bias (seb) decreases significantly with increasing samples size (number of raters, 18-25 % and

targets, 25-33 %). Similar to the previous results the number of constructs as well as methods was

significantly associated with an increase of standard error bias (16 %). Interestingly, the average

amount of standard error bias was not significantly associated with the consistency conditions (high

vs. low).

The variability of peb and seb-values across different types of parameters is displayed in Figure

A.3 and A.4 in the appendix. Again, the estimates of latent covariances on the within (rater) and

between (target) level were most sensitive to parameter bias (peb) as well as standard error bias

(seb).
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Table 8.3: Estimates for the prediction of bias in parameter estimates (peb)
and standard errors (seb) in the LC-COM model.

Parameter Model1(peb) Model2(seb)
−2∗LL 6116.40 5206.02
AIC 6195.23 5290.88
BIC 6277.66 5373.31

Fixed effects
Intercept 0.01∗∗∗ 0.03∗∗∗

(0.21) (0.05)
Level-2 (conditions)

Methods 3 vs 2 0.04ns 0.16∗∗∗
(0.03) (0.03)

Constructs 2 vs 1 0.39∗∗∗ 0.16∗∗∗
(0.03) (0.03)

Occasion 3 vs 2 −0.02ns 0.09∗∗
(0.04) (0.04)

Occasion 4 vs 2 −0.07ns 0.12∗∗∗
(0.04) (0.03)

Rater 5 vs 2: −0.36∗∗∗ −0.21∗∗∗
(0.04) (0.04)

Rater 10 vs 2 −0.44∗∗∗ −0.25∗∗∗
(0.04) (0.04)

Rater 20 vs 2 −0.47∗∗∗ −0.18∗∗∗
(0.04) (0.04)

Target 250 vs 100 −0.51∗∗∗ −0.25∗∗∗
(0.04) (0.04)

Target 500 vs 100 −0.65∗∗∗ −0.33∗∗∗
(0.04) (0.04)

Cond low vs high −0.10∗∗ −0.01ns
(0.03) (0.03)

Random effects
Level-1
σ2
r 0.57 0.41

Level-2
σ2
u01 (con) 0.00 0.00
σ2
u02 (par) 0.48 0.01

Note. Reference group is a LC-COM model with 3 indicators, 1 construct,
2 methods, 2 occasions of measurement, 2 raters per target, 250 targets in
the high consistency condition. standard errors are in parentheses. peb=
log-transformed parameter estimation bias; seb = log-transformed standard
error bias; LL = log likelihood; N= 2664; (con) = condition type (232);
(par) = parameter type (12).
∗p < .05; ∗∗∗p < .001; ns not significant.



Chapter 9

Simulation III : Latent state-trait

(LST-COM) model

9.1 Specification of the population model

Table 9.1 summarizes the amount of variance due to trait/state specificity as well as trait/state

method specificity that was manipulated in the study. In contrast to the LS-COM and LC-COM

simulation studies, the values were not varied across items for reasons of simplicity. The amount

of variance due to trait/occasion-specific (unique/common) method influences is rather low in the

high consistency condition, varying between 4 and 6.25 %. Parameter restrictions with regard

to strong measurement invariance were imposed (see Geiser, Keller, Lockhart, Eid, et al., 2012;

Meredith, 1993; Widaman & Reise, 1997). The covariance matrix of the simulated LST-COM

model is represented in Chapter 4.6.2. A Mplus input of the LST-COM model is provided on the

appendix CD-ROM.

Table 9.1: Consistency, method specificity and reliability in the LST-COM population
model.

Low consistency High consistency

Trait specificity coefficient
Reference method 49.00 49.00
Non-reference method 12.25 30.25
Trait-specific unique method coefficient 16.00 06.25
Trait-specific common method coefficient 12.25 04.00
Trait-specific method coefficient 30.25 12.25
Occasion specificity coefficient
Reference method 36.00 36.00
Non-reference method 12.25 30.25
Occasion-specific unique method coefficient 16.00 06.25
Occasion-specific common method coefficient 12.25 04.00
Occasion-specific method coefficient 30.25 12.25
Reliability coefficient
Reliability (within) 85.00 85.00
Reliability (between) 81.00 81.00

Note. Exact values of the amount of trait/state (method) specificity and reliability
in percent. The values did not vary across items.
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9.2 Results

9.2.1 Convergence

All H0 models converged. However, the number of iterations for the H1 models was set to 1.

Therefore, none of the H1 models converged and no χ2 fit statistics were produced. This was done

in order reduce to computation time of these complex models (see Section 6.3). With respect to

this restriction the elapse time of the entire simulation could be reduced by 80 %. This also shows

that the software Mplus needs a lot of time for the estimation of the H1 (saturated) model.

9.2.2 Improper solutions

The percentage of warning messages referring to “possible” improper solution was relatively

low across all conditions. In total, 58 out of 288 conditions (20.1 %) contained replications with

“possible” improper solutions concerning the latent covariance matrix Ψ. The majority of these

warning messages were encountered in the multiconstruct condition (38 out of 58). Less warning

messages were given in the monoconstruct condition (20 out of 58). Furthermore, more Ψ-warnings

messages were found in the high consistency (convergent validity) condition (see Table 9.2.2). No

warning messages were found concerning Θ-problems.

Table 9.2: Amount of “possible” Ψ-problems in multi- and monoconstruct designs
for high and low consistency condition.

Multiconstruct Monoconstruct Total
High consistency condition 32 (84.2 %) 19 (95.0 %) 51 (87.9 %)
Low consistency condition 6 (15.8 %) 1 (5.0 %) 7 (12.1 %)
Total 38 (65.5 %) 20 (34.5 %) 58 (100.0 %)

Note. Results do not represent the “actual” amount of Ψ-problems.

It is important to note that these results do not represent the amount of “actual” Ψ-problems.

In fact, only 379 (10.8 %) out of 3517 Mplus warning messages referred to “actual” Ψ-problems.

Regarding the absolute number of replications (144,000), the percentage of real Ψ-problems was

below 1 %.

More than 90 % of the “actual” Ψ-problems were encountered in high consistency conditions.

According to Figure 9.1 the amount of “possible” Ψ-problems decreased substantially with increas-

ing sample size on both levels (i.e., number of targets and raters). Again, a ratio of 5 (better

10) observations per parameter reduces the amount of Ψ-warning messages substantially in the

low consistency condition (see Figure 9.2). Note that this ratio incorporates the total number of

observations (targets and raters).
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Figure 9.1: Average number of Ψ-problems in high and low consistency conditions. nL1
= number of level-1 units; nL2 = number of level-2 units.

Figure 9.2: Relationship between Ψ-problems and observations per number of parame-
ters.
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9.2.3 Bias of parameter estimates and standard errors

The parameter estimation bias (peb) exceeded the cutoff value of .1 (10 %) in 1 out of 288

conditions. This condition referred to LST-COM models with 3 indicators, 2 constructs, 2 methods,

2 occasion of measurement in the high consistency condition with a sample size of 700 (350 targets

and 2 raters per target). The peb value of .125 in this MC condition referred to the covariance

among two latent unique state factors pertaining to the same occasion of measurement, but different

constructs. This high parameter bias may result from the small sample size on level-1 (only 2 raters

per target). The standard error bias (seb) exceeded the cutoff value in 2 out of 288 conditions.

Both of these MC conditions referred to LST-COM models in the high consistency condition with

also few level-1 observations (i.e., 2 raters per target). The increased seb values referred to the

standard errors of the covariance between occasion-specific method factors on the between level

and to the latent factor loadings of the occasion-specific common method factors. The maximum

seb value was .109. As indicated above, bias of parameter estimates and/or standard errors were

encountered solely in conditions with 2 rater per target. Figure 7.3 illustrates the average peb and

seb values with regard to the high and the low consistency condition. Again, a multilevel analysis

Figure 9.3: Average peb and seb values with respect to sample size in high and low consistency
conditions in the LST-COM model. nL1 = number of level-1 units; nL2 = number of level-2 units.

with crossed random effects was carried out in order to investigate possible reasons for bias of

parameter estimates as well as standard errors. The results of this analysis are given in Table 9.3.

The bias of parameter estimates (see Model 1) decreased substantially with increasing sample size

on level-1 (rater, 31-53 % decrease of bias) as well as level-2 (targets, 20-36 % decrease of bias).

Moreover, the amount of peb decreased significantly with an increasing number of measurement

occasions (25-31 % decrease of bias). This may be partially due to the fact that the number of

observations as well as the number of measurement occasions constitute more empirical information.
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Furthermore, LST-models are more restrictive than LS-models given that the covariances that

would be freely estimated in LS-models are restricted in LST-models (Geiser, 2012). Therefore,

additional occasions of measurement should not lead to more bias or improper solutions. Similar

to the previous results, the amount of parameter bias increased significantly with an increasing

number of constructs (25 % increase of bias) and methods (12 % increase of bias). Again, the

amount of parameter bias was higher in the high convergent validity condition than in the low

convergent validity condition (21 % of bias). The amount of standard error bias (seb) increased

significantly with an increasing number of constructs (17 % increase of bias). However, in contrast

to the previous results the amount of standard error bias was neither significantly associated with

the number of measurement occasions, methods, targets nor the condition type (high vs. low).

Nevertheless, the average amount of seb reduced significantly with an increasing number of raters

per target (6-17 %).

The variability of peb and seb values across different types of parameters is displayed in Figure

A.5 and A.6 in the appendix. The 95 % prediction intervals of the random effects confirm that

the conditional distribution of the parameter estimation bias of different parameters has much

less variability than the conditional distribution of the standard error bias of different parameters.

Furthermore, bias in parameter estimates seem to be more sensitive to covariances among latent

factors on the within (rater) and between (target) level. In particular, higher peb values are more

often found with respect to the estimation of the covariance between latent trait method factors

and the latent factor loading of the occasion-specific method factors. The standard error bias (seb)

is rather associated with the latent covariance of the unique method state factors ζUMrtj2l.
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Table 9.3: Estimates for the prediction of bias in parameter estimates (peb)
and standard errors (seb) in the LST-COM model.

Parameter Model1(peb) Model2(seb)
−2∗LL 10920.67 11876.36
AIC 11009.00 11964.81
BIC 11100.94 12056.75

Fixed effects
Intercept 0.01∗∗∗ 0.02∗∗∗

(0.18) (0.05)
Level 2 (conditions)

methods 3 vs 2 0.12∗∗∗ 0.00ns
(0.02) (0.02)

constructs 2 vs 1 0.25∗∗∗ 0.17∗∗∗
(0.02) (0.02)

occasion 3 vs 2 −0.27∗∗∗ 0.04ns
(0.02) (0.03)

occasion 4 vs 2 −0.31∗∗∗ 0.04ns
(0.02) (0.02)

rater 5 vs 2: −0.31∗∗∗ −0.03ns
(0.03) (0.03)

rater 10 vs 2 −0.42∗∗∗ −0.06∗
(0.03) (0.03)

rater 20 vs 2 −0.53∗∗∗ −0.17∗∗∗
(0.03) (0.03)

target 500 vs 350 −0.20∗∗∗ −0.04ns
(0.03) (0.03)

target 750 vs 350 −0.36∗∗∗ −0.05ns
(0.03) (0.03)

cond low vs high −0.21∗∗∗ 0.02ns
(0.03) (0.03)

Random effects
Level 1
σ2
r 0.45 0.55

Level 2
σ2
u01 (con) 0.00 0.00
σ2
u02 (par) 0.63 0.02

Note. Reference group is a LST-COM model with 3 indicators, 1 construct,
2 methods, 2 occasions of measurement, 2 raters per target, 350 targets in
the high consistency condition. Standard errors are in parentheses. peb =
log-transformed parameter estimation bias; seb = log-transformed standard
error bias; LL = log likelihood; N = 5256; (con) = condition type (288);
(par) = parameter type (21).
∗p < .05; ∗∗∗p < .001; ns not significant.



Chapter 10

Simulation IV : Latent growth

curve (LGC-COM) model

10.1 Specification of the population model

The parameter specification of the population model is given in Table 10.1. Note that the

LGC-COM is a special variant of the the LST-COM. Therefore, only the additional variance

decomposition of the latent intercept and slope variables are provided in Table 10.1. Again, these

values were not varied across items, and strong measurement invariance was assumed for all LGC-

COM models. A Mplus input file can be found on the appendix CD-ROM.

Table 10.1: Variances of the intercept and slope factors in the LGC-COM population
model.

low consistency high consistency

Intercept Variance
Reference method indicator .672 .672
Non-reference method indicator .336 .528
Slope Variance
Reference method indicator (linear growth) .196 .196
Non-reference method indicator (linear growth) .098 .154

Note. Exact values of the variance coefficients of the intercept and slope factors in
the LGC-COM population model. The values did not vary across items. All other
coefficients in the LGC-COM model were set to the same values as proposed for the
LST-COM model.

10.2 Results

10.2.1 Convergence

All H0 models converged. However, the number of iterations for the H1 models was set to 1.

Therefore, non of the H1 models converged and no χ2 fit statistics were produced.
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10.2.2 Improper solutions

Overall, 110 out of 288 conditions (38.2 %) contained replications with warming messages indi-

cating possible estimation problems with respect to the latent covariance matrix Ψ. More warning

messages were encountered in the multiconstruct condition (61, 55.5 %) than in the monoconstruct

condition (49, 45.5 %). The amount of “possible” Ψ-problems was almost equally distributed across

high and low consistency condition (see Table 10.2). In the worst case, 400 out of 500 replications

entailed Ψ-warning messages. However, the amount of real Ψ-problems was relatively low (5237

of 144,000 replication, 3.6 %). That means that only 58.7 % (5237 out of 8922) of Mplus warning

messages referred to “actual” Ψ-problems. The rest of the warning messages referred to estimation

problems concerning higher order partial correlations. All of the 5237 “actual” Ψ-problems were

associated with the estimation of between (target) level parameters.

Table 10.2: Amount of “possible” Ψ-problems in multi- and monoconstruct designs
for high and low consistency condition.

Multiconstruct Monoconstruct Total
High consistency condition 32 (52.5 %) 25 (51.0 %) 57 (51.8 %)
Low consistency condition 29 (47.5 %) 24 (49.0 %) 53 (48.2 %)
Total 61 (55.5 %) 49 (45.5 %) 110 (100.0 %)

Note. Results do not represent the “actual” amount of Ψ-problems.

In Figure 10.1 the average amount of Ψ-warning messages for different samples sizes is given.

As the figure illustrates, the average amount of Ψ-warning messages decreased with an increasing

number of observations on both levels (number of targets, number of rater per targets). Note that

the average amount of Ψ-warning messages is almost equal in the high and low consistency condi-

tion. This might be explained by the fact that the LGC-COM model implies the decomposition of

an observed variable (of the interchangeable method) into eight different components (see Chapter

5). In addition to that, according to Figure 10.2 the average number of Ψ-warning messages de-

creases with an increasing number of observations per parameter. However, due to the complexity

of the LGC-COM model, a higher ratio of observations per parameter is needed in order to reduce

the amount of improper solutions. It can be seen from Figure 10.2 that even a ratio of 10:1 is not

sufficient for reducing the amount of Ψ-warning messages. However, it is important to note that

both Figures 10.1 and 10.2 refer to the total amount of Mplus warning messages (hence: “possible”

improper solutions) and not to the amount of “actual” improper solutions.

Bias of parameter estimates and standard errors

The amount of parameter estimate bias and standard errors bias was relatively low. Across all

288 conditions the parameter estimation bias (peb) was below .1 and thereby did not exceed the

critical cutoff value of .1. Nevertheless, the standard error bias (seb) exceeded the cutoff value in 4

cases of the low consistency condition and once in the high consistency conditions. In all of these

MC conditions only 2 raters per target (few level-1 observation) were given. The maximum seb

value of 1.88 was associated with the standard error estimation of slope covariances. Nonetheless,

the average amount of bias (peb as well as seb) was relatively low across all simulation studies.
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Figure 10.1: Average number of Ψ-problems in high and low consistency conditions. nL1
= number of level-1 units; nL2 = number of level-2 units.

According to the results of the multilevel analysis with crossed-random effects (see Table 10.3), the

average amount of peb decreased significantly with an increasing number of measurement waves

(13-27 % reduction), raters (25-45 %) as well as targets (19-30 %). Moreover, the average peb

was higher in the high consistency condition than in the low consistency condition (11 %). Only

with respect to the number of constructs (i.e., model complexity) the average amount of bias (peb)

increased significantly (26 %). The average percentage increase or decrease of the standard error

bias with respect the MC conditions was relatively low (1-13 %). The average amount standard

error bias (seb) was related to an increase of the number of constructs (13 % increase of bias). In

contrast to that, the number of rater (1-8 %) as well as targets (2-6 %) were negatively associated

with the average amount of standard error bias.
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Figure 10.2: Relationship between Ψ-problems and observations per number of parame-
ters.
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Table 10.3: Estimates for the prediction of bias in parameter estimates (peb)
and standard errors (seb) in the LGC-COM model.

Parameter Model1(peb) Model2(seb)
−2∗LL 13592.21 13717.57
AIC 13683.17 13809.89
BIC 13778.50 13905.22

Fixed effects
Intercept 0.01∗∗∗ 0.02∗∗∗

(0.21) (0.21)
Level 2 (conditions)

Methods 3 vs 2 0.06∗∗∗ 0.02ns
(0.02) (0.02)

Constructs 2 vs 1 0.26∗∗∗ 0.13∗∗∗
(0.02) (0.02)

Occasion 3 vs 2 −0.13∗∗∗ 0.07∗∗
(0.02) (0.02)

Occasion 4 vs 2 −0.27∗∗∗ 0.02ns
(0.02) (0.02)

Rater 5 vs 2 −0.25∗∗∗ −0.01ns
(0.02) (0.02)

Rater 10 vs 2 −0.29∗∗∗ −0.07∗∗
(0.02) (0.02)

Rater 20 vs 2 −0.45∗∗∗ −0.08∗∗
(0.02) (0.02)

Target 600 vs 400 −0.19∗∗∗ −0.02ns
(0.02) (0.02)

Target 800 vs 400 −0.30∗∗∗ −0.06∗∗
(0.02) (0.02)

Cond low vs high −0.11∗∗∗ 0.05∗∗
(0.02) (0.02)

Random effects
Level 1
σ2
r 0.44 0.45

Level 2
σ2
u01 (con) 0.00 0.01
σ2
u02 (par) 1.08 0.07

Note. Reference group is a LGC-COM model with 3 indicators, 1 construct,
2 methods, 2 occasions of measurement, 2 raters per target, 400 targets in
the high consistency condition. Standard errors are in parentheses. peb =
log-transformed parameter estimation bias; seb = log-transformed standard
error bias; LL = log likelihood; N= 6696; (con) = condition type (288);
(par) = parameter type (26).
∗p < .05; ∗∗∗p < .001; ns not significant.
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10.3 Summary of the Monte Carlo simulation studies and

general recommendations

The results of these four extensive simulation studies indicate that the presented models (LS-

COM model, LC-COM model, LST-COM model, and LGC-COM model) perform well in general.

No convergence problems with respect to the specified H0 model were encountered in any of the

simulation studies. With respect to the H1 (saturated) model, researchers should increase the

number of iterations to at least 7,500 for the LS-COM and LC-COM model and to 15,000 for the

LST-COM and LGC-COM model in order to obtain χ2 fit statistics. The convergence difficulties

of the H1 model may be partially explained by the fact that Mplus tries to estimate the saturated

model, which may be computational extremely demanding for complex ML-SEM models when

random MC sampling is involved. Nevertheless, further research needs to be done in order to

scrutinize the convergence issues related to the estimation of complex Ml-SEMs.

The amount of “actual” improper solutions (Ψ- and/or Θ-problems) was below 5 % in any of

the MC simulation studies. Moreover, the average parameter bias (peb) as well as standard error

bias (seb) was relatively small for most parameters and only exceeded the critical cutoff value

of 10 % in rare cases. Therefore, it can be concluded that the model parameters are generally

well recovered by the presented models. Moreover, the amount of improper solutions as well as

bias can be substantially reduced by an increasing number of observations on both levels. Most

sensitive to bias (peb and seb) as well as improper solutions were the latent covariances among the

latent variables as well as the factor loadings of the latent factors. More specifically, the estimation

problems involved common as well as unique method factors, especially in high consistency (i.e.,

low method variance) conditions. However, with respect to an increase of empirical information

(e.g., sample size as well as occasions of measurement) the amount of bias and improper solutions

can be significantly reduced. Based on these findings, at least five (better ten) observations per

parameter are needed for proper parameter estimates. These recommendations are in line with the

results of previous simulation studies (Bentler & Chou, 1987; Bollen, 1989, 2002). Moreover, the

results of the simulation study suggest that the number of level-1 (rater per target) observations

are important for proper parameter estimates. Specifically, the number of improper solutions as

well as the amount of bias decreased significantly with increasing number of raters per target.

Therefore, it is recommended to sample at least 5 raters per target.

High standard error bias (seb) occurred more often in conditions with few level-1 observations

(e.g., 2 raters per target), low method bias (i.e., high consistency conditions) and high model

complexity (i.e., number of parameters). In general, the standard error bias (seb) may be therefore

reduced

� by increasing the number of level-1 units (more than 2 raters per target),

� by reducing the number of free estimated parameters (e.g., by reducing the number of con-

structs, inducing more restrictions), and/or

� by increasing the total number of observations per parameter.
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As a rule of thumb, a minimal ratio of 5:1 (better 10:1) observations per parameter is recommended

for proper standard errors. Across all simulation studies, the sample size on level-2 (target) and

level-1 (rater) are equally important for proper parameter estimates. In line with the simulation

study by Julian (2001) the number of level-2 units (number of targets) should be above 100. Based

on the simulation results it is however recommended to sample at least as many targets (level-2

units) as parameters are estimated by the model, given that Mplus produces warning messages

and it is yet not clear, whether or not parameters will be biased under these circumstances.

In contrast, to previous simulation studies on multilevel models (see e.g., Maas & Hox, 2005),

the number of level-1 units (i.e., raters per target) is extremely important for valid parameter

estimates. In regard to the χ2 test of model fit, it was found that the observed χ2 distribution

approximates the theoretical χ2 distribution well under maximum likelihood (ML) estimation.

These results are quiet interestingly, given that previous simulation studies show that the χ2 fit

statistics are often not trustworthy for complex MTMM-MO structural equation models (Crayen,

2008; Geiser, 2008). However, researcher should be aware that the observed χ2 distribution is

downward biased compared to the theoretical χ2 distribution, meaning that the χ2 model fit test

is too liberal. Unfortunately, no clear cut trends with respect to sample size and the χ2 test of

model fit could be made with regard to the presented simulation studies. Consequently, more

research is needed in order to scrutinize adequacy and robustness of χ2 fit statistics in longitudinal

multilevel MTMM-SEMs. Future research should especially focus on level-specific χ2 fit statistics.
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Chapter 11

Final discussion

11.1 Practical guidelines for empirical applications

In the subsequent section, practical guidelines for empirical applications of the presented mod-

els are provided. The guidelines are divided into the following topic-related parts: (a) selection

strategies for choosing an appropriate MTMM-MO model, (b) selection of the reference method,

(c) selection of the indicators (e.g., items vs. item-parcels), (d) selection of the methods and deal-

ing with complex hierarchical data structures (e.g., three-level data structures, multiple sets of

interchangeable methods, cross-classification of raters etc.), and (e) choosing the optimal sample

size.

11.1.1 Model selection

In the present work, four longitudinal multilevel structural equation models for complex MTMM

measurement designs combining structurally different and interchangeable methods have been pro-

posed. Specifically, a latent state (LS-COM) model, two latent baseline change (LC-COM) models,

a latent state-trait (LST-COM) model, and a latent growth curve (LGC-COM) model have been

formally defined. Depending on the substantive research questions that researchers may seek to

answer, the presented models may be more or less useful. In the following section the strength and

weaknesses of the presented models are briefly summarized in order to provide a basic guideline to

researchers for choosing the appropriate MTMM-MO model.

The latent state (LS-COM) model can be used as baseline model for modeling complex MTMM-

MO measurement designs combining structurally different and interchangeable methods, given that

the LS-COM model implies less restrictions on the latent variance-covariance matrix than, for ex-

ample, the LST-COM or the LGC-COM model. The LS-COM model can be used for testing crucial

assumptions of longitudinal analysis such as the degree of measurement invariance (see also Geiser,

2008, 2012). By applying the LS-COM model it is also possible (a) to investigate the stability and

change of construct as well as method effects across time, (b) to analyze the true convergent and

discriminant validity of the given measures, and (c) study the latent mean structure. However, with

LS-COM models it is only possible to investigate the stability and change of construct as well as

method effects indirectly by examining the correlations among the latent variables. In other words,

it is neither possible to model the stability nor the true change of method effects directly with re-

spect to latent state models (see Geiser, 2012). Researchers who are interested in modeling true
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interindividual differences in intraindividual change via latent difference variables, should therefore

rather apply one of the LC-COM models or the LGC-COM model. The simple baseline LC-COM

model is useful for studying true interindividual differences in intraindividual change with respect

to the reference method. The simple baseline LC-COM model allows analyzing true change of con-

struct effects, but not of method effects. The extended latent baseline LC-COM model also enables

the investigation of true change in construct as well as method effects. Both LC-COM models are

particular useful for analyzing longitudinal MTMM intervention studies, given that it is possible

to relate external variables (e.g., intervention group) to the latent differences variables. By includ-

ing these additional variables into the LC-COM model, researcher may predict the true change

of leadership quality as measured by the reference method. For example, researchers may explain

why leadership quality is over- or underestimated by colleagues and/or the supervisor across time.

Researchers can also conduct an intervention study in order to establish more congruency between

the different raters (e.g., self-report, colleagues reports, supervisor reports). Geiser et al. (2010)

provide a detailed description of how true change can be investigated via MTMM-MO-SEMs for

structurally different methods.

The LGC-COM model can be used for modeling the shape of the true intraindividual change

as measured by the reference method. That means, researchers can test whether or not the growth

in leadership quality as measured by the reference method increases (or decreases) in a linear

or in a non-linear form. In addition, researchers may also investigate whether or not the true

interindividual differences in growth and the initial status as measured by the reference method

can be predicted by external variables. The main advantage of the LGC-COM model is that growth

can be studied free of stable method influences, occasion-specific as well as occasion-specific method

influences, and measurement error influences. In other words, the LGC-COM model combines the

advantages of multiple indicator latent growth curve models and MTMM modeling approaches

(specifically the CT-C(M -1) modeling approach).

The LST-COM model is useful for studying variability processes in MTMM-MO designs in-

corporating a combination of structurally different and interchangeable methods. Specifically,

researchers can investigate (a) to which degree the constructs are stable or occasion-specific, (b)

to which degree the method effects are stable or occasion-specific, (c) to which degree the consis-

tency (congruency) between different methods (e.g., raters) are stable or occasion-specific. The

latter allows investigating the convergent validity of different measures on trait as well as state

level. Moreover, the LST-COM model allows researchers to examine (d) whether or not stable

(trait) method effects generalize across different constructs and (e) whether or not momentary

(occasion-specific) method effects generalize across different constructs.

Measurement designs do not always incorporate a combination of structurally different and

interchangeable methods. Measurement designs that just use structurally different methods (e.g.,

self-report, parent report, and physiological measures), researchers can apply the models presented

by Geiser (2008) or Courvoisier (2006). With respect to measurement designs that just incorporate

interchangeable methods (e.g., multiple peer reports for teaching quality), researchers can apply a

longitudinal version of the ML-CFA-MTMM model proposed by Eid et al. (2008).

In summary, researchers should be aware of the fact that substantive research questions as well
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as the type of methods used in the MTMM measurement design should guide the model selection

process (see Eid et al., 2008).

11.1.2 Choice of the reference method

The choice of the reference (gold standard) method is crucial for the interpretation of the model

parameters. It is, therefore, strongly recommended selecting the reference method based on the-

oretical considerations (Geiser et al., 2008). In many cases, researchers will be able to select an

appropriate reference method by considering their substantive research questions. For example,

researchers may select the reference method considering whether the attribute of interest is observ-

able (or properly measurable) by peer reports. Social competencies may be more closely linked to

peer evaluations than to self-evaluations. Moreover, if researchers are interested in explaining why

particular students over- or underestimate their level of social competencies with respect to the

peer reports (here: gold standard) then the peer reports should be taken as the reference method.

Pham et al. (2012) showed how the set of interchangeable methods may be used as a reference

method for evaluating teaching quality (performance) of teachers rated by their corresponding stu-

dents. In cases where researchers struggle with a theory-driven selection of the reference method,

it may be appropriate to choose the most reliable method as the reference method or impose addi-

tional restrictions on the factor loading parameters so that the model fit of the specified CTC(M -1)

model is not affected by the choice of the reference method (Geiser et al., 2008; Geiser, Eid, West,

Lischetzke, & Nussbeck, 2012).

11.1.3 Item selection

Researchers should use reliable (homogeneous) items (e.g., self-report, peer report, other re-

port). First, it has been shown that the number of homogeneous (unidimensional) items are ben-

eficial for the proper parameter estimates (Marsh et al., 1998). Second, if the items per factor are

homogeneous (unidimensional), it is possible to specify common, instead of indicator-specific latent

factors. Hence, homogeneous items are useful for specifying a more parsimonious model. If scales

with numerous items are used (e.g., Large Scale Assessments), it is recommended to build item

parcels following the recommendations by Little, Cunningham, Shahar, and Widaman (2002). By

using item parcels (e.g., test halves) it is possible to reduce the complexity of the models (number

of parameters) as well as the computational burden with respect to maximum likelihood estima-

tion. For example, the computational burden for the estimation of complex multilevel structural

equation models with categorical items increases exponentially with an increasing number of items

(integration points) (L. K. Muthén & Muthén, 1998-2010). Therefore, it is strongly recommended

to reduce the complexity of the given model as much as possible. In summary, this can be done by

� specifying common latent factors instead of item-specific latent factors,

� using item parcels in case of many categorical or not normally distributed items, and/or

� imposing as many permissible and reasonable restrictions as possible:

– establishing the highest degree of measurement invariance,



CHAPTER 11. FINAL DISCUSSION 208

– specifying latent factors that are common to all indicators

– fixing correlations to zero for parsimony

11.1.4 Complex hierarchical data structures

The presented models in this thesis can be considered as two-level longitudinal structural equa-

tion models, where interchangeable methods (e.g., raters) are modeled on the within-level and

structurally different methods are modeled on the between-level. Researchers who seek to apply

these models should follow the general guidelines of designing multilevel studies (e.g., Hox, 2010;

Luke, 2004; Raudenbrush & Bryk, 2002; Snijders & Bosker, 2011). Researchers should note that

measurement designs with more complex hierarchical data structures, including:

� three-level multilevel structural equation models (ML-SEMs),

� ML-SEMs with multiple sets of interchangeable raters,

� ML-SEMs with cross-classified methods,

imply different random experiments. The random experiment as well as the probability spaces for

the presented models have been explicitly characterized throughout this work. In order to extend

these models to more complex multilevel measurement designs, additional research (e.g., simulation

studies) is needed (see Section 11.4 for more details).

11.1.5 Optimal sample size

According to the extensive simulation designs in Chapter 7 to 10, the minimum required sample

size depends on the particular model (LS-COM, LC-COM, LST-COM, LGC-COM) and the specific

MTMM-MO measurement design (i.e., number of items, constructs, methods, occasions of mea-

surement). Under realistic circumstances (i.e., low convergent validity), the parameter estimates

will be well recovered by the models in samples with a ratio of five observations per parameter,

which corresponds to the general recommendation of Bentler and Chou (1987). In addition, it is

recommended to use more than two level-1 units (interchangeable raters per target), given that the

results of the simulation studies indicate that the sample size on level-1 is extremely important for

the reduction of parameter as well as standard error bias. As a rule of thumb, it is recommended to

(a) sample at least as many level-2 units (i.e., targets) as parameters are estimated by the model,

and to (b) multiply the number by five (for the number of raters per target) in order to obtain the

total minimal sample size for proper parameter estimates. Given that the presented models can

easily become quiet complex (if multiple traits and multiple methods are used). Additionally, it is

suggested to sample at least 100 level-2 units (i.e., targets). Under unrealistic circumstances (i.e.,

high convergent validity and low method variance) a larger sample size is required for proper pa-

rameter estimates. This is especially the case for the more complex models such as the LST-COM

or LGC-COM model.
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11.2 Advantages

The models presented in this thesis encompass many advantages. Most of all, the models (i.e.,

LS-COM model, LC-COM model, LST-COM model, LGC-COM model) combine the strengths and

benefits of (a) longitudinal modeling approaches, (b) multimethod-multitrait (MTMM) modeling

approaches, (c) multilevel modeling approaches and (d) structural equation modeling approaches.

To my knowledge, the combination of all of these modeling approaches is unique. A similar

general but different modeling framework represents the generalized linear latent and mixed mod-

eling (GLLAMM) approach by Rabe-Hesketh and Skrondal (2004). However, in contrast to the

GLLAMM approach, the presented models are formally defined based on stochastic measurement

theory (Steyer, 1989; Steyer & Eid, 2001; Suppes & Zinnes, 1963; Zimmermann, 1975). By this

mathematical formalization, the psychometric meaning as well as the psychometric properties of

the latent variables (e.g., existence, uniqueness, admissible transformations, etc.) were clearly

shown. The major advantage of these models is that they allow investigating complex (multilevel)

MTMM-MO matrices by estimating one single model, instead of running multiple models sepa-

rately. In other words, researchers will no longer have to aggregate the ratings per target or have

to specify different MTMM models for different waves of measurement. As a consequence, research

questions concerning the study of

� level-specific method bias at each occasion of measurement,

� the generalizability of method effects across constructs,

� the stability and/or occasion-specificity of method effects,

� the degree of true convergent and discriminant validity,

� true intraindividual change as well as the degree of stable or occasion-specific influences due

to interindividual differences,

� potential causes for method bias or the change of method bias,

can be answered properly without losing any relevant information. In addition, the presented

models are formulated based on four main longitudinal modeling frameworks:

� latent state modeling,

� latent difference/change variables modeling,

� latent state-trait modeling,

� latent growth curve modeling.

The methodological similarities of all of these frameworks have been explained and the appropri-

ateness of each modeling framework for different substantive research questions has been discussed.

In addition to that, the presented models may be considered as extensions of the models presented

by Geiser (2008) and Courvoisier (2006) to measurement designs with structurally different and

interchangeable methods. Therefore, the presented models will also encompass the advantages
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of these models. Finally, important assumptions such as measurement invariance can be directly

tested with χ2 model fit statistics.

11.3 Limitations

Despite the numerous advantages, the presented models are limited in some aspects. First,

the major limitations relate to the complexity of the models. For example, a general LS-COM

model with 3 indicators, 2 methods, 2 constructs and 3 occasions of measurement incorporates

133 parameters in case of strong measurement invariance and 189 parameter estimates in case of

configural measurement invariance (see Table 11.1). According to the general recommendation

given above, at least five observations per parameter are needed for proper parameter estimates.

Therefore, the required sample size for this 3x2x2x3 MTMM-MO measurement design ranges

between 665 and 945 observations. Evidently, the presented models are not appropriate for small

samples. However, there are many things that researchers can do in order to reduce the complexity

of the models (see Section 11.1).

Table 11.1: Number of parameters of the LS-COM model depending on
different degrees of measurement invariance and the dimension of the
model.

Model dimension configural MI weak MI strong MI strict MI
2x1x2x2 35 30 27 23
3x1x2x2 51 42 37 31
2x1x3x2 56 48 43 37
3x1x3x2 80 66 58 49
2x1x2x3 57 47 41 33
3x1x2x3 81 63 53 41
2x1x3x3 93 77 67 55
3x1x3x3 129 101 85 67
2x2x2x2 82 72 66 58
3x2x2x2 114 96 86 74
2x2x3x2 136 120 110 98
3x2x3x2 184 156 140 122
2x2x2x3 141 121 109 93
3x2x2x3 189 153 133 109
2x2x3x3 240 208 188 164
3x2x3x3 312 256 224 188

Note. Model dimension = items×constructs×methods×occasions;
MI = measurement invariance.

First of all, researchers should impose as many restrictions as possible (e.g., strong measure-

ment invariance restrictions, restrictions of theoretical meaningless factor correlations etc.). The

additional restrictions are beneficial for reducing the model complexity and introducing additional

hypotheses for a more stringent model test (Geiser, 2008). Second of all, homogeneous items should

be selected in order to to specify common latent factors instead of indicator-specific latent factors

(Geiser, 2008). Researchers may also reduce the complexity of the model by specifying the models

for each construct separately (i.e., monoconstruct measurement design). For example, with regard

to the LS-COM model mentioned above, the required sample size reduces to 265 (strong MI) and

465 (configural MI) observations in the monoconstruct measurement design (see Table 11.1). This



CHAPTER 11. FINAL DISCUSSION 211

corresponds to a reduction of the model complexity by 51% to 60%. Note that complex struc-

tural equation models do not always lead to more problems in SEMs (Geiser, 2008; Marsh et al.,

1998). For example, according to the results of simulation studies a relatively small sample size

(2x100=200) maybe sometimes beneficial for the appropriateness of the χ2 fit statistics (see Table

7.5 and 7.6 in Section 7.2.4). Finally, researchers may use parcels when it is reasonable to reduce

the number of indicators per CMOU. Generally, it is recommended to use three rather than two

indicators (items or parcels) per CMOU for model identification reasons.

Another limitation of the model concerns the scale level of the items. All of the models are

defined using continuous observed variables. Even though it is straightforward to define the models

for ordered categorical observed variables, it may be computationally demanding to estimate these

models. Researchers who want to apply these models to categorical observed variables should

conduct additional simulation studies in order to investigate efficient ways with respect to the

estimation and the required samples size for such models. An appropriate estimator for SEMs with

categorical observed variables is the WLSMV (weighted least square mean and variance adjusted)

or MLR (maximum likelihood robust) estimator implemented in Mplus (L. K. Muthén & Muthén,

1998-2010). Given that both estimators require numerical integration, which is computationally

demanding, researchers should specify a sufficiently large number of Monte Carlo integration points

in order to receive proper parameter estimates. An alternative estimation procedure may involve

Bayesian estimation techniques (Asparouhov & Muthén, 2010b; B. Muthén & Asparouhov, 2012;

Asparouhov & Muthén, 2010a; B. O. Muthén, 2010). In general, additional research is needed in

order to develop appropriate estimation techniques and algorithms for complex structural equation

models.

The presented models are also limited by the fact that only one set of interchangeable methods

can be modeled. However, it is possible to extend the models to multiple sets of interchangeable

methods. In a recent work by Mahlke et al. (2012) it is shown how multilevel SEMs with multiple

sets of interchangeable methods can be specified for cross-sectional MTMM data. The presented

models also may be extended to three-level clustered data. With respect to the new version of Mplus

(version 7.0) it will be possible to directly specify three-level SEMs. The new version of Mplus also

allows one to model cross-classified multilevel data structures. Modeling cross-classified multilevel(-

rater) data is especially interesting, given that in many empirical applications it is neither realistic

nor feasible to sample different raters per target. Note that these extensions to categorical, three-

level, or cross-classified data will necessarily lead to more complex models. I therefore hope that

the above mentioned limitations will inspire researchers to overcome these limitations.

11.4 Future research

In this section, possible directions for future research are discussed. An important area of

research concerns the extension of the presented models to ordered categorical (ordinal) response

variables. This area of research is essential as well as challenging. It is essential given that the scale

level of many response variables in the behavioral sciences (e.g., items of a given questionnaire)

is not continuous, but rather (ordered) categorical (Agresti, 2007). It is also often not feasible or
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advisable to use item parcels instead of the raw items (Crayen et al., 2011; Little et al., 2002).

Extending the presented models to categorical (ordinal) observed variables is also very challenging.

The main difficulties associated with this extension concern the general estimation of such models

rather than their psychometric formalization. With respect to the work by Eid (1995), the math-

ematical formalization and extension of the presented models to ordered categorical indicators is

straightforward. However, relatively few attempts have been made to estimate complex multi-

level structural equation models with categorical items (Rabe-Hesketh & Skrondal, 2004). One

possible explanation may be that the estimation process is extremely computationally demanding

(L. K. Muthén & Muthén, 1998-2010). Therefore, future research is needed to develop appropriate

and efficient estimation techniques for complex multilevel SEMs with ordered categorical (ordinal)

items. With respect to Bayesian estimation techniques, the estimation of complex multilevel SEMs

with categorical indicators can be done (Asparouhov & Muthén, 2010b; B. Muthén & Asparouhov,

2012; Asparouhov & Muthén, 2010a; B. O. Muthén, 2010). In addition to that, Bayesian estima-

tion techniques may also improve the applicability of complex multilevel SEMs to small sample

sizes.

Additional research is needed for developing adequate, robust and level-specific model fit statis-

tics for complex multilevel structural equation models. Important contributions to this field have

been made by Yuan and Bentler (2003), Yuan and Bentler (2007) as well as Ryu and West (2009).

However, many of the presented solutions for producing level-specific and unbiased χ2 fit statistics

are cumbersome and require more observations than necessary for the actual model identification.

Correct fit statistics are important for testing specific model restrictions (e.g., measurement invari-

ance) and for comparing alternative models. Again, Bayesian fit indices represent an alternative

way for calculating adequate fit statistics (Levy, 2011).

In many empirical applications of longitudinal multirater designs, multiple targets often are

rated by the same raters. These so called cross-classified data structures violate the assumptions of

uncorrelated error terms in general multilevel analyses. Further research is needed to investigate the

statistical consequences of ignoring the additional dependencies in such data structures. Moreover,

additional psychometric work is required for defining appropriate multilevel MTMM-MO-SEMs

with crossed classified interchangeable raters. With respect to the new developments in Mplus

(version 7.0), it will be possible to model and estimate the effects of such cross-classifications.

Another important research direction concerns the statistical examination of the interchange-

ability of different raters per target. Nussbeck et al. (2009) showed how the interchangeability

assumption for an equal number of raters per target can be tested empirically by introducing

additional restrictions on the parameters. However, additional research is needed for testing the

interchangeability of methods when the number of raters per target differs. It may also be inter-

esting to study why particular raters do not fulfill the interchangeability assumption. Alternative

ways for scrutinizing the interchangeability of raters may be latent mixture models (e.g., latent

class analysis) or the specification of random latent factors in multilevel SEMs. Finally, future

research may be directed to the calculation of confidence intervals for the variance coefficients

proposed throughout this thesis or the estimation of latent mediation and moderation effects in

complex multilevel MTMM-SEMs.
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11.5 Summary and Conclusion

In this thesis the flexibility, versatility, and advantages of longitudinal modeling, multitrait-

multimethod modeling, structural equation modeling, and multilevel modeling have been combined

to one general modeling approach. In particular, four new multilevel structural equation models

for complex MTMM longitudinal data have been proposed. In the first part of this thesis, the

formal (psychometric) soundness of the models was demonstrated. All of the presented models

were defined based on the stochastic measurement theory (Steyer, 1989; Steyer & Eid, 2001;

Suppes & Zinnes, 1963; Zimmermann, 1975). The meaning and the level of measurement (i.e.,

scale level) of the latent variables was shown. Meaningful statements with regard to the model

parameters were discussed. Finally, it was shown under which conditions the parameter of the

models are identified. In the second part of this thesis, the empirical applicability of the models was

scrutinized. As the results of four extensive simulation studies reveal, the model parameters were

generally well recovered by the models, the amount of actual improper solutions (Heywood cases)

were low, and the standard error bias decreased notably with increasing sample size. Based on the

results of these simulation studies, practical guidelines have been provided for how to design and

model complex longitudinal MTMM data. Finally, the advantages and limitations of the models

have been discussed. Many of the listed limitations lead to new directions for future research

and may be temporal as the development of new estimation techniques and software packages

increases. The main purpose of this thesis was to provide appropriate structural equation models for

multilevel longitudinal MTMM data that are flexible, general, and powerful for complex empirical

applications. Complex measurement designs are increasingly found in educational, developmental,

and organizational research.
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Appendix A

Dotplots for the random effects

Figure A.1: 95 % prediction intervals of random effects for different parameters of model 1 (peb)
for the LS-COM model.
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Figure A.2: 95 % prediction intervals of random effects for different parameters of model 2 (seb)
for the LS-COM model.

Figure A.3: 95 % prediction intervals on the random effects for different parameters of model 1
(peb) for the LC-COM model.
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Figure A.4: 95 % prediction intervals on the random effects for different parameters of model 2
(seb) for the LC-COM model.

Figure A.5: 95 % prediction intervals of the random effects for different parameters of model 1
(peb) for the LST-COM model.
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Figure A.6: 95 % prediction intervals of the random effects for different parameters of model 2
(seb) for the LST-COM model.

Figure A.7: 95 % prediction intervals of the random effects for different parameters of model 1
(peb) for the LGC-COM model.
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Figure A.8: 95 % prediction intervals of the random effects for different parameters of model 2
(seb) for the LGC-COM model.



Appendix B

χ2-Approximation

Figure B.1: PP-plot of the observed and theoretical proportions of the χ2 values for the monotrait
LS-COM model.
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Figure B.2: PP-plot of the observed and theoretical proportions of the χ2 values for the multitrait
LS-COM model.



Appendix C

Appendix CD-ROM

All files of the appendix CD-ROM can be downloaded from the following website:

http://www.ewi-psy.fu-berlin.de/einrichtungen/arbeitsbereiche/psymeth/mitarbeiter/

tkoch/index.html
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Appendix D

German Appendix (Anhang in
deutscher Sprache)

D.1 Zusammenfassung in deutscher Sprache

In der vorliegenden Arbeit werden insgesamt vier Mehrebenen-Strukturgleichungsmodelle für

multimethodale Längsschnittsuntersuchungen (multitrait-multimethod-multioccasion, MTMM-MO

Designs) vorgestellt. Insbesondere werden in dieser Arbeit folgende Modelle vorgestellt:

� Multimethod-Latent-State-Modelle (LS-COM-Modelle),

� Multimethod-Latent-Change-Modelle (LC-COM-Modelle),

� Multimethod-Latent-State-Trait-Modelle (LST-COM-Modelle) und

� Multimethod-Latent-Growth-Curve-Modelle (LGC-COM-Modelle).

Ein wesentlicher Vorteil der neu definierten Modelle ist, dass sie für die Analyse von MTMM-MO

Forschungsdesigns mit einer Kombination von strukturell unterschiedlichen und austauschbaren

Methoden eingesetzt werden können. Gemäß Eid et al. (2008) sind austauschbare Methoden (z.B.

Peer-Berichte) Methoden, die zufällig aus einer Population gleichartiger Methoden gezogen wer-

den können. Im Gegensatz dazu, können strukturell unterschiedliche Methoden (z.B. Eltern- und

Schülerberichte) nicht zufällig aus einer Population von gleichartigen Methoden gezogen werden,

sondern liegen a priori für den zu Beurteilenden (Target) fest (Eid et al., 2008). So liegt der El-

ternbericht beispielsweise für jeden Schüler und jede Schülerin fest. Ferner werden die in dieser Ar-

beit vorgestellten Modelle für unterschiedliche Längsschnittanalysen definiert. Das bedeutet, dass

Forscher die neuen Modelle für Latent-State-, Latent-Change-, Latent-State-Trait-, oder Latent-

Growth-Curve-Modellierungen verwenden können. Die Definitionen der Modelle erfolgen dabei

auf der Basis der stochastischen Messtheorie (Steyer, 1989; Steyer & Eid, 2001; Suppes & Zinnes,

1963; Zimmermann, 1975). Das heißt, es wurden in dieser Arbeit die wesentlichen psychometrischen

Eigenschaften der Modelle (Fragen bzgl. der Existenz, Eindeutigkeit, Bedeutsamkeit, Identifizier-

barkeit) im Detail geklärt. Darüber hinaus, wurden alle Modelle mittels aufwendigen Monte-

Carlo-Simulationsstudien in Hinblick auf ihre statistische Performanz untersucht. Im Rahmen der

Simulationsstudien zeigte sich, dass die neu definierten Modelle generell für komplexe MTMM-

Modellierungen geeignet sind und zu zuverlässigen Parameter- sowie Standardfehlerschätzungen
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führen. Ebenso war die Anzahl von wahren unzulässigen Parameterschätzungen (sog. Heywood

cases) gering. Außerdem zeigte sich, dass mit zunehmender Anzahl von Level-1 Einheiten (d.h.

Anzahl der austauschbaren Rater pro Target) der Standfehlerbias sowie die Anzahl von wahren

unzulässigen Parameterschätzungen deutlich reduziert werden kann. Eine Erhöhung der Anzahl

der Level-2 Einheiten (d.h. Anzahl von Targets) zeigte ähnliche, aber weniger stark ausgeprägte

Ergebnisse in Bezug auf die Reduktion von Standardfehlerverzerrungen.

Die beiliegende Arbeit ist wie folgt gegliedert: Im ersten Teil der Arbeit wird eine generelle

Einführung zum Thema MTMM-Analysen gegeben, wobei die zentralen Vorteile von Strukturgle-

ichungsmodellen für die Analyse von MTMM-Daten hervorgehoben werden. Ferner werden die

längschnittlichen MTMM-Modelle von Geiser (2008) sowie von (Courvoisier, 2006) vorgestellt, da

diese als Spezialfälle aus den vorgestellten Modellen hervorgehen. Im zweiten Teil der Arbeit

werden die neu vorgestellten Modelle in einzelnen Kapiteln formal definiert und deren psychome-

trischen Eigenschaften mathematisch bewiesen. Im dritten Teil der Arbeit werden die Ergebnisse

der Monte-Carlo-Simulationsstudien vorgestellt. Abschließend werden die Ergebnisse dieser Arbeit

im vierten Teil nochmals zusammengefasst und diskutiert.

D.2 Erklärung

Hiermit versichere ich, dass ich die vorgelegte Arbeit selbständig verfasst habe. Andere als

die angegebenen Hilfsmittel habe ich nicht verwendet. Die Arbeit ist in keinem früheren Promo-

tionsverfahren angenommen oder abgelehnt worden.

Berlin, 3. Februar 2013 (Unterschrift)
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