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Abstract

One of the main goals of analyzing a high-dimensional time series is to identify structures in
it. Some of these structures correspond to important dynamical features in the underlying
system, like different dynamical states and the transitions between these.

In this thesis we introduce two new methodologies for the identification of different dynamical
features in a system from the analysis of a real-world time series. We focus in the dynamical
features corresponding to the different dynamical metastable states (in a system with multiple
and well distinguished time scales, these can be understood as the attractors associated to
each of the different time scales) in a system and the transitions between dynamical regimes
in a system.

Our first method is designed for the identification of different dynamical metastable states,
and takes a recurrence analysis approach. The results provided by this method seem to be
robust to the introduction of noise and missing points.

Our second method is designed for the identification of transitions between different dynam-
ical regimes, and takes an algebraic topological approach. It seems that our second method
is, by construction, also robust to the noise and outliers in the data. However, it is still
not sensitive enough to identify dynamical transitions where the shape of the attractors in a
system suffer small changes.

Given that both methods introduced in this thesis rely on the geometrical analysis of the
state space, another issue treated in this thesis is the reconstruction of the state space from
a complex time series.

In this thesis, our criteria for an adequate state space reconstruction are given in terms of
the gain or loss of geometrical information. These criteria are specifically developed for each
of the approaches taken for every method: recurrence analysis and persistent homology.






Zusammenfassung

Die Identifizierung der Strukturen ist ein der Hauptziele der Analyse einer hochdimensionalen
Zeitreihe. Finige dieser Strukturen entsprechen wichtigen dynamischen Eigenschaften in
einem System, wie verschiedene dynamische Zustdnde und die Ubergénge zwischen denen.

In dieser Dissertation stellen wir zwei neue Methoden fiir die Analyse des Real-World-
Zeitreihen dar, die verschiedene dynamische Eigenschaften in einem System identifizieren.
Wir fokussieren uns auf die Identifizierung der unterschiedlichen dynamischen metastabilen
Zusténden in einem System (in einem System mit mehreren, unterscheidbaren Zeitskalen,
kann jede Zeitskala mit verschiedenen Attraktoren verbunden sein) und auf die Ubergiinge
zwischen verschiedenen dynamischen Regimen in einem System.

Unsere erste Methode identifiziert verschiedene dynamische metastabile Zustédnde. Diese
Methode ist in dem Rekurrenz-Analyse-Ansatz geankert. Die Ergebnisse dieser Methode
sind scheinbar gegen die Rauscheneinfiihrung und fehlende Datenpunkte robust.

Unsere zweite Methode identifiziert, die Ubergénge zwischen verschiedenen dynamischen
Regimen. Diese Methode ist auf einer algebraischen topologischen Ansatz basiert. Es scheint,
dass unsere zweite Methode gegen die Rauschen-Einfiihrung und Ausreisser in den Daten
robust ist. Es ist jedoch immer noch nicht empfindlich genug, dynamische Ubergéngen, wo
die Form der Attraktoren in einem System kleine Anderungen ausweist, zu identifizieren.

Da beide in dieser Arbeit vorgestellte Methoden auf die geometrische Analyse des Phasen-
raums beruhen, wird in dieser Arbeit des Weiteren die Rekonstruktion des Phasenraums von
komplexen Zeitreihen behandelt.

In dieser Dissertation, beziehen sich unsere Kriterien fiir eine angemessene Phasenraumrekon-
struktion auf den Gewinn oder Verlust der geometrischen Informationen. Diese Kriterien sind
speziell fiir jeden Ansatz bei den jeweiligen Methoden entwickelt worden: Rekurrenz-Analyse
und persistente Homologie.
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On Time

And an astronomer said, ”Master, what of Time?”
And he answered:
You would measure time the measureless and the immeasurable.

You would adjust your conduct and even direct the course of your spirit according to hours
and seasons.

Of time you would make a stream upon whose bank you would sit and watch its flowing.
Yet the timeless in you is aware of life’s timelessness,
And knows that yesterday is but today’s memory and tomorrow is today’s dream.

And that that which sings and contemplates in you is still dwelling within the bounds of that
first moment which scattered the stars into space.

Who among you does not feel that his power to love is boundless?

And yet who does not feel that very love, though boundless, encompassed within the centre
of his being, and moving not form love thought to love thought, nor from love deeds to other
love deeds?

And is not time even as love is, undivided and spaceless?

But if in your thought you must measure time into seasons, let each season encircle all the
other seasons,

And let today embrace the past with remembrance and the future with longing.

Khalil Gibran, The Prophet
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1. Introduction

One of the main goals of analyzing a time series is to identify structures in it. These structures
usually correspond to important dynamical features of the underlying system, like different
dynamical states and the transitions between these.

There are several methods for the identification of dynamical features in a system. Each
of these makes different assumptions about the underlying dynamical system: stationarity,
determinism, the existence of a certain number of attractors, a certain dominant time scale
in the dynamics, and so on. However, given that the dynamical properties of an analyzed
system are often not known a priori when analyzing real-world! (or complex) time series,
many of the assumptions of these methods are not satisfied.

Some of the most robust methods used to extract dynamical features from complex high-
dimensional data, also known as methods for dimensionality reduction or manifold learn-
ing methods, are PCA [63], Isomap [117], Classical Multi-dimensional Scaling [75] (MSD),
Stochastic Neighbor Embedding [59] (SNE), Locally Linear Embeddings [107] (LLE) and
Hessian eigenmaps [75]. These methods aim to find a reduced representation of the data and
are widely used for the visualization and classification of complex data. For further infor-
mation about these methods, we refer the reader to the book of Wang on high-dimensional
data and dimensionality reduction [123].

Among the main assumptions of these methods are that the data lies in a manifold (a
locally Euclidean or smooth closed surface without self-intersections) and that the sampling
of the state space is sufficiently dense and respects the local feature size of the state space.
For example, PCA assumes that the state space is a linear subspace; Isomap, that it is
intrinsically flat but isometrically embedded; and the method of Hessian eigenmaps, that it
is isometrically embedded but has more relaxed topological restrictions.

According to van der Maaten et al. [120], each of these assumptions implies some drawbacks.
For example, not preserving both the local and the global scale properties of complex data.
Additionally, many of these methods depend on many undetermined parameters, leaving
large part of the analysis open to subjective interpretation.

Despite the assumptions and drawbacks of these methods, they have provided important
insights to many research fields. By mentioning these, we simply want to emphasize the im-
portance of selecting an adequate method of analysis that better adapts to the characteristics
of our time series.

Much of the attention in the development of new methods for the analysis of time series is

'Real-world time series may be high-dimensional, non-linear, noisy, sparse or have different time scales
ruling its dynamics.
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focused on reducing the number of their working assumptions and on making them robust
to the presence of noise, outliers and other features common in real-world time series.

But in order to identify the different dynamical states or regimes in a time series, one
must first remember that a time series does not show directly the features of the dynamical
system governing its behavior. Actually, a time series is the result of applying an unknown
measurement function to the states of the dynamical system. This measurement function is
typically a projection of the space containing all the states of a dynamical system, or state
space, into a subspace of lower dimension.

Therefore, in order to identify the different dynamical states in a time series, one must first
adequately reconstruct the state space of the underlying dynamical system.

A commonly used reconstruction of the state space from a time series is provided by a delay-
coordinate map. This type of mapping depends on two embedding parameters: the time delay
and the embedding dimension. Many geometric, algebraic and topological tests, based on the
embedding theorems of Takens [115] and Whitney [124], have been developed to determine
these embedding parameters [106] for deterministic time series. For time series coming
from some types of stochastic systems, Stark, Broomhead, Davies and Huke [112, 113, 114]
have extended Takens’ theorems. However, the implementation of these theorems is hard
and requires knowing a priori the sequence of stochastic influences acting on the analyzed
system.

In this thesis, we introduce two new methods for the identification of different dynamical
features in complex time series. The first method is designed for the identification of different
dynamical metastable states (in a system with multiple and well distinguished time scales,
these can be understood as the attractors associated to each of the different time scales),
and the second is designed for the identification of transitions between different dynamical
regimes. Both methods rely on the geometrical analysis of the space containing all the states
of a dynamical system, or state space. However, each of these is based on a different approach
depending on its aim.

Given that the relevance of the results obtained by both of our methods depends on an
adequate reconstruction of the state space, we discuss the many criteria used to obtain an
adequate state space reconstruction form a complex time series in many parts of this thesis.
We cover the general criteria in Chapter 2. And we put especial attention to this discussion
within the frameworks of recurrence analysis and persistent homology analysis in Sections 3.2
and 4.4.

Our first method, for the identification of metastable states in a complex time series, is based
on recurrence analysis. In Chapter 3 we first introduce the recurrence analysis approach and
then present this method in Section 3.3.

In general terms, a recurrence is defined as the return of a state space trajectory to a state
arbitrarily close to a previously visited state. The closeness between state space vectors is
determined by a parameter called the recurrence threshold. Recent studies have provided
ways to set the recurrence thresholds for uniformly distributed vector spaces [34] but for
different cases, its selection remains a subjective matter. The graph representation of the
recurrences in state space for a given recurrence threshold is called a recurrence network.
Every module in a recurrence network can be associated to a different dynamical state.

Thus, our method for the identification of different dynamical states in a time series can be
summarized as follows. Given an adequate state space reconstruction, we create a filtration
of recurrence thresholds and construct the recurrence networks associated to these set of
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parameters. Then, we identify those recurrence thresholds that produce a sub-collection of
networks with similar modular structures. That is, those with the same number of mod-
ules and similar number of nodes in each module. Assuming that such range of parameters
captures the main dynamics of the analyzed system, any recurrence threshold in such range
is adequate, but we select the middle value in the identified range as the ‘final’ recurrence
threshold. The modules identified in the recurrence network associated to this final recur-
rence threshold are said to correspond to the different metastable states in the time series.

We provide an adequate state space reconstruction within the framework of recurrence anal-
ysis by repeating the previous steps for different embedding parameters and selecting those
parameters that obey the criteria on Shannon entropy and recurrence rate? mentioned in
Section 3.1.3. This methodology is fully described in Section 3.4.

The results provided by this method seem to be robust to the introduction of a considerable
amount of noise and missing points.

Among the advantages of using recurrence networks to identify the different dynamical states
in a system are that these networks give information about the local, medium and global
scales in high-dimensional, non-linear time series [35]. Besides, these depend on one param-
eter only, and require making few assumptions about the time series analyzed. Additionally,
several studies on climate, financial and medical data [86], suggest the recurrence networks
analysis approach is as a good candidate to deal with non stationary time series. This ap-
proach has also shown remarkable robustness for the analysis of time series with noise and
missing data points.

However, we face two problems related to the assumptions made to construct recurrence
networks. First, that there is one dominant scale in the analyzed time series. This assumption
justifies the selection of a single recurrence threshold for its analysis, but might not be true
for many real-world time series. And second, that all the relevant dynamical information of
the analyzed system is contained in the graph structure of the associated recurrence network.
Additionally, for analyzing a recurrence network, one usually has to provide a guess on the
number of attractors in the dynamical system.

Since these assumptions might be too restrictive for many real-world time series, we devel-
oped a different method, following a path that allowed us to overcome these problems.

This way, our second method, which identifies transitions between different dynamical regimes,
is based on persistent homology, an algebraic topological approach. In Chapter 4 we intro-
duce the persistent homology approach and then present our second method of analysis in
Section 4.3.

The main idea of persistent homology is to create a filtration from a data set depending on
a parameter of proximity between data points, €, and to identify the topological features
(homology; see Section 4.1.3) surviving over different ranges of such parameter. Intuitively,
those topological features surviving longer ranges may correspond to interesting signals,
whereas short persisting features may correspond to noise or indicate inadequate sampling.
This way, the second method does not assume the existence of a main scale in the dynamics
of the system and seems to be robust, by construction, to the presence of noise and outliers
in the data.

This method for the identification of transitions between different dynamical regimes can

ZShannon entropy and recurrence rate are two recurrence quantification analysis measures (RQA). The
RQA measures quantify the information contained in the adjacency matrix of a recurrence network and are
introduced in Section 3.1.3
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be summarized as follows. Given an adequate state space reconstruction, we divide a time
series into several windows of measurements of equal length, procuring that each window of
measurements has enough data points as for capturing the dynamics of the system in the
time elapsed by the window. We compute a topological summary for each window (using
persistent homology) and then compare the results between different windows. We say that
there is a change in the dynamics of a system if the topological summaries of two windows
of measurements are significantly different in a scale of time related to the length of the
windows of measurements.

Within the framework of persistent homology, we also introduce another method for the selec-
tion of a pair of embedding parameters that provide an adequate state space reconstruction,
in Section 4.5. We look for embedding parameters that create a state space reconstruc-
tion whose persistent homology analysis produces similar results when analyzing different
subsamples from a same time series.

The use of persistent homology allows the incorporation of higher-order geometrical infor-
mation to the analysis of data, which constitutes an advantage when analyzing data with
higher-dimensional or multiple attractors. In principle, this approach is also suitable for
data where the use of a specific metric is not fully justified [9, 44]. Put in these terms, this
approach seems to be the solution to all our problems. However, problems appear during
its implementation, since it is generally very costly in computational terms. For this reason,
we incorporated in our method the use of sampling and statistics to estimate the persistence
homology of data [8, 18].

Nevertheless, our method is not sensitive enough to identify dynamical transitions where
the shape of the attractors in a system suffer small changes. And even more challenging
is the analysis of stochastic systems. However, in Conclusions (Chapter 5) we make some
suggestions for future work, aiming to overcome these problems.



2. The state space of a dynamical
system: states and evolution

When we analyze a time series data set, u(t) € Rd,, one of our aims is to identify the different
states of the dynamical system underlying it.

Any dynamical system can be defined by its state space (or phase space) and an evolution
operator. The state space of a dynamical system is the space containing all the states
available for that system. A state for a dynamical system at a given time t, &(t) € RY, is
commonly defined as a vector in a d-dimensional manifold usually assumed compact and
smooth, A C R<.

Therefore, it is indispensable to understand that
time series measurements do not constitute direct .

b R f th fad cal Definition 2.0.1 (MANIFOLD). In
observations o t.e stz.xtes o] .a ynamical system. the context of topology, a manifold is a
What we observe in a time series u(t) are thle effects topological space provided with a family
of a measurement function, A : R4 — RA , where of pairs {(Us, ¢i)}, where {U;} is a fam-
usually d’ < d, applied to the states of a dynamical ily of open sets covering M and ¢; is a

. homeomorphism from U; onto an open
system described by £<t) Thus, u(t) - h(f(t)) subset U] of R™. It satisfies that, given

Depending on the properties of such measurement U; and U; such that Ui N U; # 0, the
function, a time series might contain, or not, all map ti; = ¢; 0 ¢;* from ¢;(U; N Uj) to
the dynamical information of a system. ¢i(Ui NU;) is infinitely differentiable.

In this thesis, we introduce two methods, one for the identification of metastable states in
a complex time series, and another for the identification of transitions between dynamical
regimes in a complex time series. The relevance of the results provided by these methods
relies on providing an adequate reconstruction of the state space from a time series. This
means, a reconstruction that “hides” the effects of the measurement function and “shows”
the states and dynamics of a system.

The difficulty of reconstructing the state space of a system from a time series depends on
the dynamical properties of the system. Whether a system is deterministic or stochastic, is
of major importance.

When the future states of a system are uniquely determined by an initial state £(0), then
the system is said to be deterministic. For a deterministic system, the evolution operator
is a function of time which determines the change of state and dynamics of the system. It
can be defined as a continuous or as a discrete function. When the evolution operator is
continuous, one can identify trajectories in the state space. Deterministic systems described
by continuous evolution operators have been analyzed widely, and the reconstruction of their
state spaces is fairly understood.
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On the other hand, if the future states of a system are not uniquely determined by an initial
state, such system is said to be stochastic. The reconstruction of the state space of stochastic
systems from a time series is not always possible. Such reconstruction is possible for some
types of stochastic systems, as specified by the theorems of Stark [113] and Stark, Broomhead,
Davies and Huke [112, 114]. However, the applicability of these theorems requires knowing
a priori the sequence of stochastic influences acting on the system [101].

In this Chapter we will first review, in Section 2.1, the theorems and methods most com-
monly used to reconstruct the state space from a time series, assuming that the underlying
dynamical system is deterministic. Then, in Section 2.2 we will comment on the consid-
erations necessary to reconstruct the state space from specific types of stochastic systems.
In Section 2.3 we will discuss the current criteria used to determine whether a state space
reconstruction is adequate or not. And finally, in Section 2.4, we will briefly motivate our
focus on two approaches for the analysis of the state space: recurrence analysis and persistent
homology analysis.

2.1 State space reconstruction from a time series — Deterministic
systems

When the time series of a dynamical system is
mapped into a space of adequate dimension, this
space contains all the dynamical information of the
system, preserves determinism and creates a diffeo-
morphism for the attractors [106].

Topological dimension

For topological spaces, there are different
definitions of topological dimension, like
the small inductive dimension, the large
inductive dimension and the Lebesgue

Then, the state space of a dynamical system de-
fined on R? can be reconstructed by finding an
appropriate mapping of a time series. This recon-
struction can be understood as finding an embed-
ding delay-coordinate map , ¢ : U — R?, where U
is the space of measurements (see Section 2.1.1).

However, it may occur that U is only locally d'-
dimensional. This means that its topological di-
mension might be different to d’. In this case, U

or topological dimension. For separable
metrizable spaces, the three take the same
value.

Definition 2.1.1 (LEBESGUE DI-
MENSION). The Lebesgue dimension of a
topological space X is the minimum value
d such that any open cover in X has a re-
finement (second open cover where each
of its sets is a subset of a set in the first
open cover) in which no point is included
in more than d + 1 elements.

it is not necessarily a subset of Rd/; Instead, one )
should assume that U C R?, where d > d'. And then, the reconstructed vectors, x € R?, are
given by x(t) = ¢/(h(£(t))), where ¢’ : U — R%.

How do we know whether an embedding map is adequate for reconstructing the state
space or not?

The research conducted with the aim of replying to this question is vast. In this section we will
simply summarize the main results used for the development of the delay-coordinate maps,
the type of state space reconstruction that we later use in the development of the methods
for the identification of different dynamical states or regimes in a complex time series. Let
us begin stating some of the restrictions a map ¢ has in order to be an embedding.

One of these is that the map must preserve the differential information. This means that
it must not collapse any point or tangent direction. Thus, an embedding, ¢, of a compact

6



2.1. State space reconstruction from a time series— Deterministic systems

smooth (C!) differentiable manifold, A4, is a smooth diffeomorphism from the manifold onto its
image. This definition of an embedding is equivalent to ask ¢ to be a one-to-one immersion.

In order to find the dimension of an embedding of
a compact smooth manifold, we can use a theorem Definition 2.1.2 (IVMERSION). A
proved by Whitney in 1936 [124]. This theorem | _ (C') map ¢ on a compact smooth
states that if A is a smooth manifold of dimen- differentiable manifold A is an immersion
sion d, then the set of maps into R2%*! that are if the derivative map D¢(z) represented
embeddings of A is an open and dense set in the by the Jacobian matrix of ¢ at x is one-
C'-topology of maps. This theorem derives from to-one at every point  of A.

the fact that two hyperplanes of dimensions d; and de embedded in an d dimensional space
will typically intersect if dy + da > d.

Given that such set of embeddings of A is open, any arbitrarily small perturbation of an
embedding will still be an embedding. And given that it is dense, every smooth map (wether
an embedding or not) is arbitrarily near to an embedding.

However, open dense subsets can be thin in terms of probability and this theorem is not
sufficient to find the embedding dimension.

In 1980, Packard et al. [96] proved that the geometry of a dynamical system can be obtained
from the time series of one of its observables. Therefore, the state space can be reconstructed
using other measurements taken at different times. This discovery could then be used to
overcome the fact that a time series might not represent all the degrees of freedom of the
manifold containing all the states of the dynamical system.

Just a year later, Takens [115] proved a theorem that would later allow to reconstruct the
state space of a system in more general situations.

Theorem 2.1.3 (TAKENS EMBEDDING THEOREM). Let A be a d-dimensional manifold.
For pairs (¢, h), where ¢ : A — A is a smooth diffeomorphism and h : A — R a smooth
function, it is a generic property that the observation map ®[¢, h] : A — R?¥*! defined by:

z = (h(@), (B(@)), .., h(*(2)) ) (2.1)

Is an immersion.

This theorem can be applied to time series when ¢ is a time 7 map on the underlying
dynamical system. In this case, it holds when there are no periodic orbits of period 7 or 27
and at most finitely many orbits of higher period. It also assumes that the measurements
are taken with infinite precision.

In the presence of periodic orbits of period 27, ®(h, f,7) cannot be one-to-one for any
observation function h. When A is a periodic orbit of period 37, or any period not equal to
T or 27, there is no such problem. In this case, the delay-coordinate map is an embedding
for almost every h, as long as the reconstruction dimension is at least 2d + 1.

This theorem is the foundation for the recon-
struction of the state space of deterministic (and .

] . ) Definition 2.1.4 (PREVALENCE).
stochastic) systems, but it gives no estimate on A Borel subset S of a normed linear
the lowest dimension for which almost every map space V is prevalent if there is a finite-
is an embedding. The search for an estimation of dimensional subspace E of V' (called the

an adequate embedding dimension dominated the probe space) such that for each v in V,
following years v + e belongs to S for (Lebesgue) almost

every e € E.
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In 1991, Sauer et al. [106] introduced the concept of prevalence and strengthened Whitney’s
theorem, in the aim of finding boundaries for the embedding dimension.

They found that if a subset of a finite-dimensional vector space is prevalent, then the com-
plement of this subset has zero measure. This also holds for a union or intersection of a finite
number of prevalent subsets. Taking prevalence into account, they proved Theorem 2.1.5,
which implies that almost all maps near an embedding are also embeddings.

Theorem 2.1.5 (WHITNEY EMBEDDING PREVALENCE THEOREM). Let A be a com-

pact smooth manifold of dimension d contained in R¥. Then almost every smooth map
RF — R24+1 js an embedding of A.

Additionally, they proved Theorem 2.1.6, an extension of the prevalence theorem to fractal
sets that are not smooth manifolds. This was achieved by introducing the box-counting di-
mension (see definition in Section 2.1.2), or capacity dimension, and requiring the embedding
maps to be immersions.

Theorem 2.1.6 (FRACTAL WHITNEY EMBEDDING PREVALENCE THEOREM). Let A
be a compact subset of R¥ of box-counting dimension d, and let n be an integer greater than
2d. Then, for almost every smooth map ¢ : R¥ — R™, a) ¢ is one-to-one on A, and b) ¢ is
an immersion on each compact subset C' of a smooth manifold contained in A.

However, one can only have an immersion on compact subsets of a smooth manifold contained
in the compact fractal set A. And even when one knows the box-counting dimension of an
attractor A, this theorem still does not give an estimate of the lowest embedding dimension.

Nevertheless, Sauer et al. later expanded Theorem 2.1.6 and this led to the development of
delay-coordinate maps, which are explained in the following section. This mappings depend
on only two parameters, the embedding dimension and the embedding delay, and have some
nice properties. For example, there exists, with probability one, a delay-coordinate map
which is an embedding. Eventually, some measures were developed in order to set the two
embedding parameters and, finally, there was a way to create a reliable reconstruction of the
state space of a dynamical system from a time series.

2.1.1 Delay-coordinate maps

One of the maps most commonly used to reconstruct the state space of a deterministic system
from a time series is a delay-coordinate map. This is also the type of map we use for the
reconstruction of the state space in the two new methods presented in this thesis.

Delay-coordinate maps, or time delay embeddings, are based on Takens’ result stated in The-
orem. 2.1.3. For these maps, only two embedding parameters have to be set: the embedding
dimension, m, and the time delay 7. Later on, in Section 2.1.2, we comment on the selection
of the parameters it depends on.

A delay-coordinate map for the reconstruction of the state space of a dynamical system,
¢(h, f,7) : A — R™, is given by:

¢(h7 8 T) = (h(€)7 h(fT(s))v h(f27(5>)7 SRR) h(f(m_1)7(5)>)—r =X (2'2)

where h is a measurement function, 7 > 0 is called the delay and f is a flow in the manifold
A. Ideally, the delay-coordinate map would be an embedding for almost every h: A — R.

8



2.1. State space reconstruction from a time series— Deterministic systems

This map can also be created with lagged observations, considering that f is a diffeomorphism
on an open subset U such that A is a compact subset of U. Then, according to Eq. 2.2,
the reconstructed vectors x(t) for a time series u(t) are obtained by gathering m adjacent
measurements delayed by 7:

T

x(t) = (u(t), u(t + 1), ut + 27), ..., u(t + (m — 1)7)) (2.3)

This means that if we have N measurements in our time series, we would obtain N* =
N — 7(m — 1) reconstructed vectors. These vectors are no longer localized in time, but
somewhere in between a time interval of length 7(m — 1).

The state space vectors reconstructed via a delay-coordinate map have some interesting
properties which imply that delay-coordinate maps fold the smooth manifold hiding all de-
terministic behavior on length scales larger than the typical lengths of the foldings. This
might in turn make the dynamics of the attractor seem stochastic when it actually is not.

One of such properties is that, since any two consecutive reconstructed vectors will differ
in only one component, the time evolution in an delay embedding space is trivial but in
one component. This is a rotation in m — 1 components and contains only one nontrivial
scalar function that contains all nonlinearities in the flow and produces all entropy: u(t+7) =
F7(x(t)) [68]. This way, entropy must increase with 7. Another property is that this mapping
uses the same measurements to reconstruct all the directions of the state space. This might
introduce an artificial isotropy [53].

According to Vlachos and Kugiumtzis [122] and Palit et al. [97], to overcome such induced
artificial isotropy, one may use non-uniform delay-coordinate map, or non-uniform time-delay
embeddings. This type of embedding was introduced by Judd and Mees [67], who used it to
obtain global reduced autoregressive models.

Considering a time series u(t) and m different embedding delays, 71, 7o, ..., T, a non-uniform
delay-coordinate map of u(t) is given by:

x(t) = (u(t), u(t +71),u(t + 72), s u(t + Tm_l))T (2.4)

Additionally, one might wonder whether all functions A in Eq. 2.2 guarantee that the delay-
coordinate map ¢(h, f,7) from A into R™ is an embedding.

To answer this question, one can refer to Theorem 2.1.7, a stronger version of Whitney’s
embedding theorem also proven by Sauer et al. in [106].

Theorem 2.1.7 (FRACTAL DELAY EMBEDDING PREVALENCE THEOREM (taken from [106])).

Let f be a flow on an open subset U C R? and A be a compact subset of U of box-counting
dimension dc, where dg < d. Let n > 2d¢ be an integer and T > 0. Assume that A
contains at most a finite number of equilibria, no periodic orbits of f of period T or 2T,
at most finitely many periodic orbits of period 3T,47T,...nT, and that the linearizations of
those periodic orbits have distinct eigenvalues. Then for almost every smooth function h on
U, the delay-coordinate map ¢(h, f,T) : U — R"™ is one-to-one on A and an immersion on
each compact subset C' of a smooth manifold contained in A.

Theorem 2.1.7 allows the transit from delay-coordinate maps generically giving embeddings
of smooth manifolds of dimension d, to delay-coordinate maps being prevalent on giving
embeddings on compact sets of box-counting dimension d¢. In other words, this theorem
states that, with probability one, there is a delay-coordinate map ¢(h, f,7) : U — Reeil(2dc)
which is an embedding.
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In the following section, now that we have revisited the main theorems around delay-
coordinate maps, we will expand on some of the measures, based in such theorems, used
to set the embedding parameters necessary for an adequate state space reconstruction of a
deterministic dynamical system. We will distinguish between the two types of embedding
mentioned above: uniform and non-uniform.

2.1.2 Embedding parameters

As stated in the theorems mentioned above, for a uniform embedding of a deterministic
dynamical system, one must set the time delay 7 and the embedding dimension m. And for
a non-uniform embedding, one must select a set of delays 7, ..., Tip—1.

Setting the embedding parameters for either of these embeddings implies the geometrical, dy-
namical and topological analysis of the time series analyzed [79]. In the following paragraphs
we will review the most commonly used measures to set these parameters.

Embedding delay for uniform embedding

An adequate embedding delay, 7, is the one that guarantees that the components of the state
space vectors are as uncorrelated or independent as possible. This means, that the vector
built with all the i-th entries of the state space trajectories is linearly independent from the
vector built with all the j-th entries of the state space trajectories, for all ¢ # j.

Typically, the embedding delay, 7, is chosen either as the first minimum of linear autocorre-
lation function or as the first minimum of the average mutual information [52]. In the two
following sections we briefly review these measurements.

Autocorrelation. For a time series u(t) with N time points and zero mean and a time
delay 7, the amount of linear correlation within this time series is given by the variation from
zero of the product u(t)u(t 4+ 7), measured in units of sampling time, on average over the
entire time series. Thus, the second-order autocorrelation function [53], or autocovariance
function, is given by

1 N—-1—1
Alr) = =1 tg u(t)u(t +7) (2.5)

For smoothly decaying autocorrelation functions, the autocorrelation time 7, can be consid-
ered a measure of the time scale for which there are significant linear correlations within a

time series. This time is given by A(7,) = @.

The linear autocorrelation function cannot be applied to any given time series because we
would need to know in advance that the time series is not nonlinear. However, one can
use nonlinear autocorrelation functions, higher-order correlation functions or a generalized
approach based in mutual information[53].

Average mutual information. A non-linear generalization of the linear autocorrelation
is considered to be given by the average mutual information (AMI). This measurement tells
us how much information about u(i + 7) we get when we observe u(i).

10



2.1. State space reconstruction from a time series— Deterministic systems

For a time series u(t), time delay 7 and p(u(t),u(t + 7)) the estimated joint probability
distribution of the bivariate time series (u(t),u(t + 7), the average mutual information is
given by:

AMI() = 3 (0l i+ 7) og, LU 7)
T) = plu(i),u(i + 7)) logy —————

= B(u(®)p(uli +7))
Since any two measurements are completely independent when the mutual information is
zero, the time delay 7 can be chosen as the one for which we obtain the first minimum in
average mutual information. However, for some systems, the average mutual information
might not have a minimum. In these cases, a deeper analysis is required. For an extended
discussion on this topic, see the work of H. D. I. Abarbanel [1].

(2.6)

Even when the average mutual information can be applied to nonlinear time series, it still has
some drawbacks. One of them is that, since it is computed in terms of two variables only, it
fails on giving information about high-dimensional relations between all attractor values [97].
Another drawback is that it provides a unique time delay in terms of two-dimensional infor-
mation, which is problematic when we analyze a system with multi-dimensional attractors.
A solution to these problems would imply selecting a different time delay for every variable
in the reconstructed state space that contains the attractors.

Embedding delays for non-uniform embedding

There are several methods to set adequate delays for a non-uniform embedding. In general,
the first methods focused on the use of high-dimensional mutual information estimators.
Among these are the methods of Judd and Mees [67], Boccaletti et al. [5], Kraskov et al. [72],
and Simon and Verleysen [111]. Unfortunately, these estimators did not vary with changes
on the dynamical system analyzed and depended on the dimension of the time series. For
these reasons, these could not be used to reconstruct the state space of general dynamical
systems.

More recently, the methods focused on being system dependent and on depending less
on the dimension of the time series. Among these is the method of I. Vlachos and D.
Kugiumtzis [122], which introduced the use of conditional mutual information. And the
method of Palit et al. [97], which introduced the use of high-dimensional cross auto-correlation,
which apart from being system dependent, varies for uniform and non-uniform embedding
delays. In these two approaches, the delay (or non-uniform delays) is chosen as the one
providing the cross auto-correlation value closest to zero.

In Section 4.3 we will come back to the use of non-uniform embeddings for the reconstruction
of the state space. There, we will introduce a methodology, which uses topological mea-
surements and the idea of finding the lowest cross-correlation, for setting the non-uniform
embedding delays.

Embedding dimension

In order to set the embedding dimension, m, one can perform different geometrical, dynam-
ical or topological tests. The geometrical tests indicate the variations in distance between
two close points when the embedding dimension increases. These typically involve the com-
putation of the boz-counting dimension (often called the fractal dimension) or of the false
nearest neighbors (FNN) [69].

11
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The dynamical tests look for an embedding dimension that provides a unique future for
every data point. These involve the implementation of predictability tests or the estimation
of Lyapunov exponents.

The topological tests look for an m that avoids the intersections of stable periodic orbits.
Generally, for an n-dimensional dynamical systems with an attractor of fractal dimension
da, the embedding dimension is m > 2d4. Additionally, according to Whitney et al. [124],
m < 2n. One-dimensional chaotic data, for example, have embedding dimension m > 3.

Box-counting dimension. The box counting dimension gives information about the
“fractal” dimension of the attractors and therefore can be used to estimate the embedding
dimension using Theorem 2.1.7.

For a positive number ¢, let A. be the set of all points within distance € of A, such that
Ac ={z € R": |z —a|] <€ for some a € A}. And let vol(A¢) denote the n-dimensional outer
volume of A.. Then the box-counting dimension of A is given by:

1 1(Ae
boxdim(A) = lim log vol(A)
e—0 logl/e

If d = boxdim(A) exists, then vol(A.) ~ "¢,

(2.7)

False nearest neighbors. The false nearest neighbors approach is the test most common
tool for setting the embedding dimension.

For a given vector y(t) € R” and y®)(t) a k-th nearest neighbor, the square of the Euclidean
distance between them is given by
n—1
Ao (y(),y® (1) =yt + i) —y® (t+ jr)*. (2.8)
§=0

When moving to a space of dimension n+1 via a delay-coordinate embedding with embedding
parameters 7 and m, we add a coordinate to each vector. In this case, diﬂ(y(t)7 y® (1)) =

A (yt),y® () + [zt +n7) — 2B (t + n7)]2.

Then, a way to identify that the embedding in a lower dimension did not capture all the
dynamical information in the state space is by finding a large increase in d2 (y(t), y*)(t)) for
a large percentage of k-th nearest neighbors when moving to a higher dimension. The ratio
of false nearest neighbors (FNN) is a measurement of such increase in distance. This way, a
correct selection of the embedding dimension would eliminate all false nearest neighbors.

According to Kennel et al. [69], for y(t) € R", y(¥)(t) its k-th nearest neighbor and d2 (y(t), y¥)(t))
the square of the Euclidean distance between them, the rate of false nearest neighbors is given

by:
dp 1 (y(1),y™) = di(y (1), y P (1)) v _ z(t+nr) — 2Pt +n7)

a2 (y(t), y®(t)) o da(y(8),yW(1))
Given an arbitrary threshold Ry, a false nearest neighbor is one for which this rate is larger
than Rtol-

(2.9)

A drawback of using the FNN approach to set the embedding dimension has been recently
exposed by C. Nichkawde [94]: for uniform time delay embeddings, this does not constitute a
minimal approach. However, this drawback could be overcome by using a non-uniform time
delay approach.

12
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Lyapunov exponents. The use of Lyapunov exponents is not widely used for setting the
embedding dimension of real-world time series, given that their computation is very sensitive
to noise. However, it is an important theoretical reference for the study of nonlinear systems
and therefore we will comment on it.

Being f : R™ — R™ a dynamical system and x;41 = f(x;), where t = 0,1, ..., a trajectory of
the system, there are n Lyapunov exponents, \; > A > --- > \,, that measure the average
rate of divergence of a trajectory.

If f is continuous, the Lyapunov exponents can be related to the long term evolution of an
infinitesimal n-sphere in its state space. An n-sphere defined with given initial conditions
will transform in time into an n-ellipsoid due to the deformation induced by the flow. Then,
the i-th Lyapunov exponent (out of n) can be defined in terms of the length of the i-th
ellipsoidal principal axis at time ¢, p;(t), by:

(2.10)

This way, Lyapunov exponents can give information about the rate of divergence or conver-
gence of nearby trajectories in state space [42].

The Jacobian of the reconstructed attractor can also be used to compute the Lyapunov ex-
ponents of a system with unknown dynamics [43]. However, for this, the exponents must be
computed in the tangent space of the attractor in the embedding space and the dimension
of the embedding space must be equal to the dimension of the original dynamics [27]. These
restrictions can clearly become troublesome but one must stick to them because, otherwise,
“spurious” Lyapunov exponents [27] appear when the reconstructed state space has dimen-
sion larger than the dimension of the attractor. These spurious exponents can be even larger
that the largest exponent of the true system.

As mentioned by J. P. Eckmann and Ruelle [43], other quantities related to the Lyapunov
exponents are the entropy (or Kolmogorov-Sinai invariant) and the amount of information.
These relationships occur because the entropy is related to how chaotic a system is. And
how chaotic a system is, is in turn related to the degrees of freedom involved in the dynamics
of a system and on their sensitivity to initial conditions.

There are linear and nonlinear methods to compute the Lyapunov exponents from a time
series. Nonlinear methods produce more accurate results for negative exponents and when the
time series are noisy, but pose bigger computational problems especially when the system has
a high embedding dimension [126]. However, there is a growing number of ways to overcome
these problems, like the one provided by Yang, Wu and Zhang [127].

2.2 State space reconstruction from a time series — Stochastic
systems

Previously, in Section 2.1, we show Takens’ theorem in its most common formulation: that
applicable to nonlinear deterministic dynamical systems where the dynamics and the data
are both autonomous (i.e. independent of time and any other external force) [112], and data
have no noise. However, there are some types of stochastic systems for which the state space
can be reconstructed using extended versions of this theorem.

13
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In a series of articles between 1997 and 2003, Stark, Broomhead, Davies and Huke [112,
113, 114] extended Takens’ theorem to deterministically, arbitrarily and stochastically forced
systems. In addition, the authors also analyzed iterated function systems and noisy data. In
the following paragraphs we will summarize the main results of these articles.

In a discrete time dynamical system, the forcing at time ¢ € Z can be given by a variable
w; € N, for N an appropriate space (we will specify it later on). Then, the state of the
system at time i can be denoted by z; € M, for M a smooth compact manifold [112] (M can
also be noncompact, as shown in [65, 115]). The state in the next time step is thus given by

riy1 = f(xi, wi) (2.1)

Considering w; a parameter, then Fq. 2.1 describes a noisy system or a system with forcing
on the parameters. For f = f, (x;) denoting the application of a different map (evolution)
at a different time step, one can describe a deterministic system with additive dynamical
noise by

Joi (@) = f(@i) + wi (2.2)
In noisy systems, w; is randomly chosen w.r.t. a probability measure p on N.

For the general case where M is compact, N can
be the space of all maps on M. But N can also
be a discrete space consisting of a finite number of Definition  2.2.1  (PropucCTt
points, such that f,,. is selected from a finite set of | TOPOLOGY). Let (Xx)ier be a family

maps. Or N can be a compact manifold. of topological spaces indexed by A € L,
px : X — X, a canonical projection

To deal with arbitrarily forced systems, one pos- and X = [[, X the cartesian product
of (Xx)aer. Then, a product topology is

sible approach to enl'arge the state'space of non- the topology with the fewest open sets
autonomous systems like those described by Eq. 2.1 such that all p are continuous V.
is to use shift spaces.

Definition 2.2.2 (CANONICAL PRO-

Let ¥ = NZ be the space of bi-infinite sequences, JECTION). Let ¥ be a subspace of a vec-
tor space X and f € X. Then, the canon-

w = (\.,w_1,wp, w1, ...), of elements in N with the ical projection of X onto X/M, 7: X —
product topology. Assuming that IV is compact, X/M, is given by

then ¥ is also compact due to the Tychonoff theo- m(f)=f+M

rem.

Theorem 2.2.3 (TYCHONOFF THEOREM). If (X))xer is a family of compact spaces,
then the cartesian product X =[], X, is compact.

Then, one can define a shift map o : ¥ — X,
[o0(w)]i = wit1, where w; is the i-th component Definition  2.2.4  (CARTESIAN
of w € ¥. Then, the evolution of z; € M (Eq. 2.1) PRODUCT). Let X and Y be two sets.
can be expressed by a skew product T : M x 3 — Then, the Cartesian product X x 'Y is:
M x %, where XxY={(z,y)|zeX,yeY}

T(x,w) = (f(;wo),0(w)) (2.3)

This describes a general model of systems driven by arbitrary sequences.

This approach can also be applied to irregularly sampled data. In this case, w; represents
the time between two consecutive samples z; and z;11.

Random dynamical systems are a type of arbitrarily forced systems. For T" a delay recon-
struction of a random dynamical system 7', then T” is equivalent to the original dynamical
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system T under an invertible coordinate change H : M x ¥ — M x X, if
T'=HoToH ! (2.4)

This equivalence might not hold for all w € 3. In this case, one may ask Eq. 2.4 to hold for
px-almost every w, in the probabilistic setting where uy; is a o-invariant measure. One may
also ask for only generic w in a topological setting.

Since, in general, the space defined by M x ¥ is infinitely dimensional, Stark et al. [112]
restrict the reconstruction of the dynamical system to the reconstruction of M only, which
can be understood like asking the ¥ component of H to be the identity. This means,
considering H = (h, Id), where Id is the identity map and h: M x ¥ — M.

Additionally, Eq. 2.4 might hold for only typical w. This means, for puy-almost every forcing
w in the probabilistic setting or for generic w in the topological setting. In these cases,
hy, = h(,w) : M — M is an invertible map and this coordinate change is called a bundle
conjugacy.

In the standard Takens’ theorem, a delay map ® : M — R? is generically an embedding
and it thus defines a coordinate change F' = ® o f o ®~! on ®(M). For forced systems, a
delay map ¥ depends on w and thus, for every w, U,, : M x ¥ — R? This means that
¥ is a bundle embedding and V¥, is an embedding for typical w. in this case, the range of
H = (U, Id) is the reconstruction space R? x ¥ and T' (Eq. 2.4) is defined on H(M x ¥,
which is bundle diffeomorphic to M x 3.

If observing T'(z,w) (Eq. 2.3) with a measurement function ¢ : M — R, such that ¢; = 9 (z;),
then a delay map is given by

g (@, 0) = (), ¥ (Farg (), Y oo () o0 sy (2))), (2.5)

where fu, wo = fu; 00 fu, and Uy y(x,w) : M x 3 — R?, is a bundle embedding for typical
w in the case where we have finitie-dimensional deterministic forcing.

Let D"(M x N,M) be the space of maps f :
M x N — M such that f, : M — M is a C" dif-
feomorphism of M for any y and f,(z) = f(z,y). Definition 2.2.5 (LEBESGUE MEA-
Then, the Takens’ theorem for stochastic systems 2[;1};)13 iﬁfjé R, the Lebesgue measure
and the Takens’ theorem for iterated function sys-

tems can be formulated as follows. w(E) = inf {Z iLl:Ec I]} :
j=1 j=1
Theorem 2.2.6 (TAKENS, THEOREM FOR where I; are bounded intervals, if for ev-
STOCHASTIC SYSTEMS [114]). Let M be a com- | ery ACR:
pact manifold of dimension m < 1 and N a 1w(A) = u(AN E) + p(An E°)

compact manifold of dimension n. Suppose that
d < 2m + 1 and let us be an invariant measure on ¥ = N? which is absolutely contin-
uous w.r.t. the Lebesgue measure on N~ '. Then, for r < 1, there is a residual set of
(f,) € D'(M x N, M)xC"(M,R) such that for any (f,) in this set, ¢, , is an embedding
for pux-almost every w.

Theorem 2.2.7 (TAKENS’ THEOREM FOR ITERATED FUNCTION SYSTEMS [114]). Let
M and N be compact manifolds of dimension m < 1 and n = 0 respectively. If d < 2m + 1
and r < 1, then there exists an open dense set of (f,1) € D"(M x N, M) x C"(M,R) such
that for any (f,+) in this set, W, ., is an embedding for w € 3.
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In summary, just as in the standard Takens’ theorem, all of these results are only valid for
generic f and . In theory, it is possible to reconstruct the dynamics of a random dynamical
system using successive observations of . Although, in these cases, it is necessary to know
w, which makes the reconstruction mostly impossible.

For more information about the stochastic extensions of Takens’ theorem, see [112, 113, 114].
For an extension of Takens’ theorem to non-uniformly sampled dynamical systems, see [64].

2.3 Current criteria for a good state space reconstruction

Let us consider the scenario in which we observe partial information of a system and we want
to use it to recover the full dynamics of the system. In this case, we may use delay-coordinate
maps to obtain a reconstruction of the state space from the partial information.

To illustrate this situation, we will use the widely studied Lorentz system, a non-linear, de-
terministic system introduced by Edward Lorentz in 1963 in order to model the phenomenon
of atmospheric convection. This simple system may show chaotic or stationary behavior de-
pending on the parameters and initial conditions selected. It is described by the following
system of ordinary differential equations:

dx dy dz
w=oy—a), —=alp—2) -y, zy — Bz (2.1)

dt

Taking 0 = 10, § = 8/3 and p = 28 in Eq. 2.1, the system shows chaotic behavior. In
Figure 2.1 we show a time series generated using these parameters and taking some random
initial conditions (z yo, z0) with values between 0 and 1. This time series contains all the
dynamical information of the system.

i
v rectaty
Yaaw"

+

Figure 2.1: A three-dimensional time series for the Lorentz system given by Eq. 2.1, taking parameters o = 10,
B =8/3 and p = 28. For these parameters, the system has chaotic solutions.

Now, consider the case in which we only observe the x-component of the time series, shown
in Fig 2.2.

One may use delay-coordinate maps to create a state space reconstruction that recovers the
dynamical information contained in the three-dimensional time series. Let us for example
consider the state space reconstruction from the x-component time series using embedding
delay 7 = 15 and embedding dimension m = 3, shown in Fig. 2.3.
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Figure 2.2: x-component of the time series shown in Fig. 2.1, which describes of a Lorentz system showing
chaotic behavior.

Figure 2.3: A state space reconstruction of the Lorentz system described in Fig. 2.1. This was done using the
x-component time series, shown in Fig. 2.2, and a delay-coordinate map with embedding delay T = 15 and
embedding dimension m = 3. This reconstruction seem to be adequate since it recovers the two attractors of
the system, shown in Fig. 2.1.

This reconstruction seems to be adequate, since the two attractors contained in the orig-
inal time series, shown in Fig. 2.1, are recovered. But how can we assess how good this
reconstruction is?

There are several criteria to identify adequate embeddings. Some of the initial criteria were
developed considering the simplest scenario in which the true state space of a system is
known and we want to measure how good a state space reconstruction is.

In 2009, Cross and Gilmore [24] introduced a topological notion of equivalence of represen-
tations, such that two embeddings are equivalent if they are isotopic. This means that one
embedding must be a smooth deformation of the other and thus go to the other through
a continuous sequence of embeddings. If two embeddings are not equivalent (non-isotopic),
they will not provide equivalent representations of the attractor.

Formally, given two embeddings of a same manifold M € RY, fo(z) and fi(z), these embed-
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dings are isotopic if there is a smooth map F(z,s) on M X [0,1] such that F(z,0) = fo(z)
and F(z,1) = fi(x), and F(z,s) = fs(x) is an embedding for each fixed s [24].

The smoothness of the transformation between an embedding and the true state space can
been measured in different ways. For example, Rulkov et al. [102] developed the “mutual
false nearest-neighbor statistic”, a measurement of smoothness between the reconstructions
of two synchronized chaotic time series.

In 2013 Nichkawde [94] stated that a transformation is smooth if both the Lyapunov exponent
and the fractal dimension are well evaluated. However, one may not look at these quantities
when the true state space is unknown because, as Lettelier et al. [79] showed in 2008, not
the Lyapunov exponent nor the fractal dimension can predict whether a mapping is an
embedding or not. Additionally, one could face the problem of having spurious Lyapunov
exponents.

In the same year, Palit et al. [97] measured how well a state space reconstruction is using
a shape distortion parameter. This way, when the true state space is known, a good re-
construction will be the one providing the lowest shape distortion. In general terms, they
determine the best reconstruction as the one for which the reconstructed attractor is more
dense and has less outliers.

However, the most common case is not knowing the true state space. In these cases, to the
best of our knowledge, the best attempt to set criteria for a good state space reconstruction
is the one provided by Uzal et al. [119] in 2011. They propose a cost function, Ly, which mea-
sures the conditional probability of the future state given the present state. Their measure
has the advantage of not needing to know the true state space. This idea originated from the
proposition of Casdagli et al. [13] from 1991, which stated that for a good reconstruction,
given an original state s and a reconstructed state x(t), the conditional probability p[s|x(t)]
should be well defined.

In this thesis, our criteria for an adequate state space reconstruction are given in terms of
the gain or loss of geometrical information. This is measured in different ways, depending
on the approach followed for the reconstruction of the state space: recurrence analysis (see
Section 3.4) or topological data analysis (see Section 4.4).

2.4 Two approaches for the analysis of the state space: recur-
rence analysis and persistent homology

In this thesis we introduce two methods for the identification of different dynamical states or
regimes in a complex time series. Both methods rely on the geometrical analysis of different
state space reconstructions in order to select an adequate state space reconstruction and
later identify the different dynamics of a system.

Given our focus on the geometric analysis of the state space, we first follow the recurrence
analysis approach in order to identify different dynamical states in a time series.

A recurrence denotes the return of a state space trajectory, given sufficiently long time, to
a state arbitrarily close to a former state. The study of recurrences in state space can be
traced back to Poincaré’s recurrence theorem, which states the conditions of a system for
recurrences to occur. The regions in state space to which a system recurs the most can be
associated to the existence of attractors or different dynamical states.
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2.4. Two approaches for the analysis of the state space: recurrence analysis and persistent
homology

The first method we introduce in this thesis is designed to the identify different metastable
states in a complex time series. This method is robust to noise and missing points. In
this method we make a state space reconstruction from a time series and then analyze the
recurrences in this reconstruction for a filtration of proximity values for the reconstructed
state space vectors. We say that a state space reconstruction is adequate if there is a large
range of proximity values for which the geometrical structure of the state space is similar.
For the analysis of the structure of the state space we make use of network representations
and module finding algorithms.

Later, in our second method, we follow the topological analysis approach of persistent ho-
mology. In this, we aim to identifying transitions between different dynamical regimes in a
system. We introduce this method following the idea of analyzing the state space for different
proximity values but overcoming the use of module finding algorithms for the identification
of the geometrical structure of the state space.

Persistent homology is an algebraic topological approach theoretically suitable for the anal-
ysis of time series where the use of a specific metric and coordinates is not fully justified. It
consists on creating a filtration depending on a parameter of proximity between points in a
data set, €, and identifying the topological features that survive over different ranges in the
filtration.

The main idea for using this approach is that, for a system showing metastability, there will
be different topological features of the state space surviving over different ranges of proximity
between state space vectors. And those features surviving for longer ranges of proximity may
correspond to large scale geometric features, or interesting signals, whereas short ranges may
correspond to noise or inadequate sampling.

Within this framework, we say that a state space reconstruction is adequate if the persistent
homology results of different subsamples from a same time series are similar. We say that
this guarantees the silencing of noise effects and having dense state space reconstructions.

Both of these approaches, as well as the criteria developed for obtaining adequate state space
reconstructions within each approach, will be properly introduced in the following chapters.
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3. A new method for identifying
metastable dynamical states in real-
world time series via recurrence net-
works

In this chapter we introduce a new method for the identification of different metastable
dynamical states in a complex time series; this means, in a time series with at least one
of the following features: different time scales in its dynamics (or metastability), noise and
missing data.

Our method is based on the recurrence analysis of the state space reconstructed from a
time series. We follow the idea that the regions in state space to which state space vectors
recur the most, correspond to different attractors in the system. Therefore, we construct a
recurrence network associated to a given proximity parameter that measures the closeness
between reconstructed state space vectors—the recurrence threshold—, and finally we use a
fuzzy algorithm to identify the modules in this network. We suggest that these modules
correspond to different metastable dynamical states in the system (see Section 3.2.3 for an
extended discussion on metastability).

Before presenting our method, we first need to introduce the concepts in which this is based.
In Section 3.1 we introduce the concepts of recurrence analysis, recurrence plots and recur-
rence networks. We also comment on two recurrence quantification analysis measures we
use in our method: Shannon entropy and recurrence rate. Then, in Section 3.2, we com-
ment on the additional considerations needed within the framework of recurrence analysis
for analyzing complex time series.

Once a theoretical foundation has been provided, we introduce our method, in Section 3.3.
This is divided into three main steps: 1) given a pair of embedding parameters for the
state space reconstruction, set an adequate recurrence threshold for the construction of a
recurrence network, 2) identify the different modules in such network, and 3) repeat the
two previous steps for different embedding parameters in order to select those that provide
an adequate state space reconstruction, following the criteria and algorithm mentioned in
Section 3.4.

To test the robustness of our method, we analyze the difference in results for time series with
different levels of noise and missing points. The methodologies followed for these tests are
described in Section 3.5.
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Finally, we show the performance of our method with two examples. The first time series
analyzed, in Section 3.6, describes a double-well potential system to which a one-dimensional
diffusion process has been added. For this example we include the robustness tests and a few
comments on modularity. The second example, in Section 3.7, consists on the analysis of a
time series describing the changes in the molecular configurations of a molecule of trialanine
at low temperature.

As the results of these examples suggest, our method is robust for the analysis of complex
time series with considerable levels of noise and missing data.

The method introduced in this chapter, the analysis of the two examples that illustrate it
and the tests on robustness, are part of [121], an article written in collaboration with T.O.F.
Conrad and Ch. Schiitte.

3.1 Introduction to recurrence analysis

The study of recurrences in measure preserving dynamical systems dates back to the phase
space studies of Poincaré. Recurrence analysis can be summarized as the study of the regions
that the state space trajectories reconstructed from a time series (see Section 2.1.1) cross
the most.

As mentioned in Section 1, any dynamical system can be defined by its state space and an
evolution operator. When the system underlying a time series is deterministic, even when it
might be very difficult, it is feasible to determine its evolution equations and, given an initial
point (state space vector), all its future states. In a dissipative dynamical system, on the other
hand, any small perturbation of the state at a given time can cause an exponential divergence
in its future state. However, as stated by Poincaré in his famous recurrence theorem from
1890 [99], for sufficiently long time, the system will return to a state arbitrarily close to a
former state and this return is called a recurrence.

Theorem 3.1.1 (POINCARE’S RECURRENCE THEOREM (3, 99]). If a flow preserves
volume and has only bounded orbits then, for each open set, exist orbits that intersect the
set infinitely often.

This way, to identify different dynamical states in a system, one may analyze the regions in
state space that the dynamical trajectories of a system cross the most. These regions are
called recurrence regions.

The recurrence analysis approach for studying the state space is interesting because it can
help distinguish between deterministic and stochastic systems, transitions to chaos and num-
ber of attractors, among other features.

3.1.1 Recurrence plots
Inspired by the work of Poincaré and with the aim of understanding the dynamics of complex
data sets, Eckmann et al. [41] developed in 1987 the concept of recurrence plot.

A recurrence plot is a tool useful to represent recurrences of state space trajectories to the
neighborhood of a set of states. It is defined by a square binary matrix where rows represent
each of the state space vectors associated to a time series, and every entry j of row ¢ represents
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3.1. Introduction to recurrence analysis

the closeness between state space vectors x(i) and x(j):
Rij(e) :@(5—d(x(z),x(]))) —51‘]‘ (31)

In this expression, ©(-) is a Heaviside function and d(x(i),x(j)) = d;; is a metric. Along
this document, we will use a Euclidean metric. For a detailed explanation of the effects of
choosing a different metric, see [35].

The parameter € is called the recurrence threshold. It determines the size of a recurrence
neighborhood in state space. This way, choosing different recurrence thresholds may reveal
different scales of structure in the state space.

In Fig. 3.1(a) we show a recurrence plot associated to the z-component time series of a
Lorentz attractor shown in Fig. 2.2 (for details about this system see Section 2.3). This is
computed from the state space vectors reconstructed using embedding parameters m = 3
and 7 = 5, and recurrence threshold € = 5.

3.1.2 Recurrence networks

The concept of a recurrence network was introduced in 2008, seemingly independently, by
Krishnan et al. [73, 74], Xu et al. [125] and Yang and Yang [128], as the graph representation
of a recurrence matrix. Since then, many different definitions of a recurrence network have
emerged, differing on the way the recurrence matrix is constructed [37].

The development of recurrence networks introduced the tools of graph theory to the study
of recurrences and helped analyze complex time series.

We define a recurrence network, G(e), as the graph associated to a recurrence plot R;;(e)
constructed using Eq. 3.1 to which the diagonal line has been removed. According to this
definition, a recurrence network is unweighted and undirected.

Consider a time series with N data points and a state space reconstruction from it using
a delay-coordinate map, with embedding delay 7 and embedding dimension m. Then, the
recurrence network associated to this time series will have N* = N — 7(m — 1) nodes, each
representing a state space vector reconstructed from the time series. And each of its edges will
represent the belonging of a pair of state space vectors to a same recurrence neighborhood.

The structure of a recurrence network depends on the closeness between state space vectors,
which is measured by the recurrence threshold. This way, variations in this parameter will
produce changes in the network connectivity, characterized by the size and number of its
dense groups of interacting nodes, or modules [62]. We assume that modules in a recurrence
network correspond to recurrence regions in the state space.

A path in a recurrence network can be interpreted in state space as a trajectory. It means, a
sequence of mutually overlapping balls of radius e, where each ball is defined as B.(x(i)) =
{y e R™ : ||x(i) — y|| < e}, for m the dimension of the state space.

The local, medium and global geometric information of a system can also be recovered from a
recurrence network. Donner et al. [36] have provided the definition and meaning of different
path- and neighborhood-based measures for recurrence networks.

A drawback of the recurrence networks approach is that all complex network approaches
based on the proximity of different parts of the trajectory do not preserve information about
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the temporal order of the respective state vectors. This means that complex network ap-
proaches are invariant with respect to random permutations of state space vectors. Addi-
tionally, considering only the information of a system provided by a recurrence network, one
is blinded to higher order topological features of the state space (this problem is addressed
in Chapter 4).

However, Donges et al. have suggested that recurrence networks can be adequate for the
analysis of non stationary real-world time series [31, 32, 33]. This way, we insist on analyzing
them and present in Chapter 3 a method that uses them for identifying different dynamical
states in complex time series data.

In Fig. 3.1(b) we show the recurrence network representation of the recurrence plot mentioned
in Section 3.1.1, associated to the xz-component time series of a Lorentz attractor shown in
Fig. 2.2. Here it is interesting to see the similarity between the structure of the recurrence
network and the complete three-dimensional time series of the system shown in Fig. 2.1.

(a) Recurrence plot (b) Associated recurrence network

Figure 3.1: (a) Recurrence plot associated to the x-component time series of the Lorentz attractor shown in
Fig. 2.2 (for details and parameters, see Section 2.8). This is computed with embedding parameters m = 3,
7=>5 and e =5. (b) Recurrence network representation of such recurrence plot.

3.1.3 Recurrence quantification analysis (RQA)

The study of recurrence plots started being mostly qualitative. One of the main subjects
of study was the recovery of dynamical information of a system through the existence of
diagonal, vertical or horizontal lines in its recurrence plot. It turned out that it is possible
to know wether a system has limit cycles, is stochastic or chaotic from its visual analysis.

One of the results from these qualitative studies is that the diagonal lines in a recurrence
plot are associated with the divergence of phase space trajectory segments. A diagonal line
of length [ in a recurrence plot indicates that two state space trajectories, corresponding to
different evolution times, run almost parallel for a time lapse of [ time units. This means,
X RXj, Xi+1 Xy X Xjly -

In Fig. 3.2, we show the different diagonal line structures of recurrence plots associated to
a periodic, a chaotic and a stochastic dynamical system. There, we represent the stochastic
system by pure white noise; the periodic, by a sinusoidal time series with period 5.6; and the
chaotic, by a humped Mackey Glass process.
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3.1. Introduction to recurrence analysis

Eventually, the study of recurrences became more
quantitative and in 1992, J. P. Zbilut and C. L.
Webber Jr. [130] introduced the recurrence quan-
tification analysis (RQA) measures. These were
either based on the amount of recurrences in a re-
currence plot—recurrence density-dependent mea-
sures—, or on the length and width of diagonal
and vertical lines in it—path-dependent measures—.
The RQA measures broadened the concept of re-

Mackey Glass process The Mackey

Glass equation is given by:

dx . 0™
& - 2
p ﬂaz;‘—l—@" vy (3.2)

where 2, = z(t — 7) and 7,v,n > 0.

This nonlinear time delay differential
equation describes a process in which the
state at a given time depends on the state

at a previous time delayed by time 7. It
produces either periodic or chaotic time
series depending on the values chosen for
the parameters.

currence and opened the door to the potential anal-
ysis of high-dimensional time series [35, 86].

Path-dependent RQA measures based on the diagonal lines of a recurrence plot are computed
using the histogram of diagonal lines of length [ [83], given by

N -1
P(e,l) = > (1-=Ri1;-1()) (1 = Ripu i) [ Risvwjan(e) (3.3)
7,7=1 k=0

If one decided to use vertical lines instead, the RQA measures are computed using the
histogram of vertical lines of length v [83], given by

N v—1
P(e,v) = Y (1-Ri;(e)) (1 = Rijn(e)) [ Rijen(e) (3-4)
i,j=1 k=0

An interesting characteristic of RQA measures based on vertical lines is that these are able
to identify chaos-chaos transitions [85].

Around a decade after the introduction of the RQA measures, Marwan et al. [84, 87] had
provided a comprehensive geometrical interpretation of these in phase space. Their results
were later used to show that recurrence plots were a convenient tool to analyze non-linear [85]
and non-stationary [19, 31, 82] time series as well.

A selection of the most commonly computed RQA measures, their definition and interpre-
tation in state space, is given in table 3.1. However, for more measures we refer the reader
to the PhD Thesis of N. Marwan [82]. Two of the RQA measures included in Table 3.1 are
necessary for the understanding of the following chapters: the recurrence rate and the Shan-
non entropy. The former is a recurrence density dependent measure and the latter depends
on the diagonal lines of a recurrence plot. We will expand on these in the following sections.
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Figure 8.2: Three different time series and their associated recurrence plots (RP). These represent a periodic,
a stochastic and a chaotic system. In (a) we see a time series corresponding composed of pure white noise and
in (b) its associated RP. (c) shows a periodic sinusoidal time series, with period p = 5.6 and (d) its associated
RP. Finally, in (e) and (f) we see, respectively, the time series and RP of a Mackey-Glass humped system
showing chaotic dynamics (see text), where we set the parameters in Eq. 3.2 to v = 0.8, § = 1.2, n = 10,
0=1andT=".
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3.1. Introduction to recurrence analysis

Table 3.1: RQA measures more commonly analyzed

MEASURE EXPRESSION INTERPRETATION IN STATE SPACE
- i, 1PLe) . . . :
Determinism DET = W Percentage of diagonal points creating di-
nIm agonal hyper-surfaces.
NP, )
Average diago- L= % Average time two segments of state space
nal length hmin T trajectory are close. Mean prediction time.
Divergence DIV = L : Inverse of the maximum diagonal length,
Linaz. Exponential divergence go a state
space trajectory.
N P
Laminarity LAM = W Percentage of diagonal points creating ver-
vt 7 tical hyper-surfaces.
N
- P(v, . .
Trapping time TT = M Mean time the system will stay (be
Y= min P9 trapped) at a specific state.
Recurrence rate RR(e) = &= Z?fj:l R, ;(e) Fraction of recurrences of a state to its e-
neighborhood in a recurrence plot.
Shannon  en- S(e) =-— Zl:*lnlin %’f)) In %f) Measure of complexity that characterizes
tropy distributions of statistical variables®.

# For details about this measure, see text in subsection “Shannon entropy”.

Recurrence rate

One of the two RQA measures we will use in our method, described in Section 3.3, is the
recurrence rate.

The recurrence rate indicates the fraction of recurrences of a state to its e-neighborhood in
a recurrence plot R; ;(e). It is given by

1 N
RR() = 15 ) Rij(o) (3.5)

1,j=1

As can be seen from Eq. 3.5, when the number of time points N tends to infinity, the
recurrence rate approximates the probability that a state recurs to a neighborhood of radius
¢ in state space. Therefore, it has be thought as an estimation of the correlation integral [57].

In terms of the recurrence network, the recurrence rate indicates the average contribution
of a node to the relative frequency of edges [36]. This way, higher values in this measure
indicate that the nodes are more connected. Or, in other words, that a larger number of
state space vectors are inside a same state space neighborhood.

Shannon entropy

The second RQA measures we will use in our method, described in Section 3.3, is the
Shannon entropy. As classically defined, it is a measure of complexity expected to increase
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with the development of chaotic behavior in a system. Therefore, it is expected to indicate
the transitions between non-chaotic and chaotic regimes.

There are various definitions of entropy besides the Shannon entropy, for example the
Kolmogorov-Sinai (K S) entropy and the second order Renyi entropy (K3). For more in-
formation, we refer the reader to references [2, 49, 77, 78, 129]. In geometric terms, entropy
indicates the rate with which nearby trajectories diverge. This way, one can see that it
should be closely related to the largest Lyapunov exponent.

The K S entropy is an invariant measure of complexity and was defined in terms of recurrence
plots by Baptista et al in 2010. [2]. However, one of the aims of entropy measures is for
these to positively correlate with the larges Lyapunov exponent, and the KS entropy only
constitutes a lower boundary for the sum of all positive Lyapounov exponents. Additionally,
calculating the KS entropy for complex systems is sometimes an extremely complicated task.

The second order Renyi entropy, or correlation entropy Ks, has the advantage of being easier
to calculate, since it can be computed from the correlation integral of a time series data [49].
It indicates the existence of periods of time in which some trajectories evolve almost parallel
in a tube of radius equal to the recurrence threshold, or e-tube, and can thus be related
to the cumulative frequency distribution of the lengths of the diagonal lines in a recurrence
plot. However, the K5 entropy is a lower bound to the K S entropy and, therefore, is also
related to the lower limit of the sum of the positive Lyapunov exponents [85], instead as to
the largest Lyapunov exponent.

The original definition of Shannon entropy from a recurrence plot, R;;(¢), is given by

.
S(e) ==Y p()logp(l), (3.6)
l

min

where Ny =3, P(l,e) and p(l) = P(l,€)/N,, for P(l, ) the histogram of diagonal lines

of length [, as defined in Section 3.1.3.

The length [, is a lower boundary for the diagonal lines. The introduction of this boundary
is intended to exclude all diagonal lines formed by short-time correlations between state space
trajectories. A good selection of l,,,;, should preserve only those diagonal lines created by
correlations due to the geometry of the attractor in the state space. In addition, it is intended
to remove the effects of noise, since in words of Marwan et al. [85], noisy time series produce
recurrence plots with many short and thin diagonal lines and single points. For simplicity, we
define Iy, as the first local maximum in the frequency distribution of diagonal line lengths.

According to Eckman et al. [41], the lengths of the diagonal lines in a recurrence plot should
be related with the inverse of the largest positive Lyapunov exponent. However, the Shannon
entropy as defined in Eq. 3.6 does not always increase in the presence of chaotic behavior.
In addition, it does not show a consistent behavior in its correlation with the largest Lya-
punov exponent: it tends to be positively correlated but in many cases it is negatively
correlated. This makes this measure unreliable to indicate transitions between different dy-
namical regimes. Additionally, having a finite number of data points in a time series largely
affects the probability of occurrence of diagonal line segments of different lengths. These
issues are largely discussed in [47].

To overcome the problem of anti-correlation with the Lyapunov exponent, Letellier [78]
introduced a new definition of entropy. Instead of using the relative frequency of occurrence of
diagonal lines of length [ of recurrent points in a recurrence plot in Eq. 3.6, Letellier redefined
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3.1. Introduction to recurrence analysis

this relative frequency in terms of the “non-recurrent points”. However, this definition does
not correspond to the classical statistical physics definition of entropy for physical systems.

Therefore, Eroglu et al. [47] introduced another definition based on weighted recurrence
plots that do not require the selection of a recurrence threshold. For discrete systems, this
definition correlates positively with the largest Lyapunov exponent and seems to adequately
identify transitions between different dynamical regimes. For continuous systems, it shows
better results than Letellier’s entropy for the identification of transitions between different
dynamical regimes, and similar results to those obtained using the classically defined Shannon
entropy, although in this case, Eroglu’s entropy is better correlated to the behavior of the
largest Lyapunov exponent.

3.1.4 Recurrence threshold selection

The problem of selecting the recurrence threshold that originates the recurrence plot or
network providing more dynamical information of a system has been largely studied. When
the recurrence threshold is not well set, the fine geometry of the dynamical system is not
well represented neither by the neighborhood- nor by the path-measures. A summary of the
problems associated to the selection of the recurrence threshold is given by Donner et al.
in [38]. An example of such sensitivity is shown in Fig. 3.3.

Initially, the recurrence threshold was set “using rules of thumb” [38] based on the diameter of
the state space [90, 130], the recurrence rate [131] or the derivative of the recurrence rate [54].
However, the recurrence structure obtained with these approaches was very sensitive to small
variations of the threshold.

In [35, 36], Donner et al. select a recurrence threshold based on previous studies over
dynamical measures such as the correlation integrals [132], correlation dimensions [57] or
second order Renyi entropy [109, 118], and attractor dimensions [38]. They arrive to some
restrictions for the recurrence threshold which can be summarized as requesting it to be as
small as possible while preserving a low edge density in its associated recurrence network
(even in the presence of noise), given that higher edge density values tend to hide important
dynamical features.

Feldhoff et al. [50] also selected recurrence thresh-

olds that produced recurrence networks with low
edge densities, but additionally selected recurrence
thresholds that guaranteed that a small variation
in the recurrence threshold did not produce no-
ticeable differences in the dynamical analysis re-
sults. These restrictions led to use lower recur-
rence thresholds since they implied using smaller
neighboring distances for the analysis of the state
space.

In 2012, Donges et al. [34] introduced an analyti-
cal framework for the study of recurrence networks
based on random geometric graphs (RGG) the-
ory. This way, they addressed the problem of se-

Random geometric graph (RGG)

According to J. Dall and M. Chris-
tensen [25], a random geometric graph,
g(X£">;r), is a graph whose nodes’ lo-
cations are denoted by independent and
identically distributed (i.i.d.) variables
in R™, with common probability density
f. The undirected links or edges between
nodes in a random graph are determined
by geometric proximity r > 0, measured
with a particular norm.

The giant component of a random geo-
metric graph is its unique largest con-
nected component containing a constant
fraction of the nodes.

lecting an appropriate recurrence threshold for one-dimensional, non-noisy time series with
uniform probability density distribution. By introducing RGG theory, they found that the
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(c)e=5

Figure 3.3: Difference in structure between the recurrence networks produced with different recurrence thresh-
olds for a same state space reconstruction of the Lorentz system described by Eq. 2.1 in Section 2.3. The
embedding parameters used for the state space reconstruction are m = 3 and T = 5. An adequate recur-
rence threshold selection should have an associated recurrence network resembling the structure of the three-
dimensional time series shown in Fig. 2.1, which capture the entire dynamics of the system. In these terms,
we see that the recurrence threshold used in Fig. 3.3(a) is not adequate, since its associated recurrence network
has no structure. The recurrence threshold used in Fig. 8.3(b) is better, but the one used in Fig. 3.3(c) is
much more similar to the structure of the time series shown in Fig. 2.1.

recurrence threshold, €, can be set in terms of the the percolation threshold €. of the associ-
ated recurrence network.

The percolation threshold, e., points out the limit in which the network’s giant component
breaks down and makes impossible to recover information about mesoscopic and path-based
measures [98]. For ¢ < €, the recurrence network becomes too dense, and for ¢ < €., the
recurrence network’s giant component breaks down into smaller disconnected components.

Donges et al. also approached the problem of the metric selection for the construction
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of a recurrence plot. For this, they used the average path length of a RGG, which is a
global path-based measure that gives the geodesic distance (in e units) between two state
space vectors chosen randomly according to a specific probability distribution p. Despite the
promising results provided by the introduction of RGG theory, this could only be used to
analyze one-dimensional, non-noisy time series with uniform probability density distribution.
Unfortunately, since there are still no exact analytical results for d-dimensional random
geometric graphs of arbitrary d, Donges et al. [34] had to return to the results of Donner et
al. [36, 38] for general cases.

A possible extension of the work of Donges et al. could be provided by considering the
results of Kong and Yeh [70]. These authors have investigated the problem of characterizing
the critical density and critical mean degree of random geometric graphs with non-uniform
probability distributions and, based on probabilistic methods and clustering analysis, have
provided lower bounds for the critical density of a Poisson RGG in an m-dimensional Eu-
clidean space.

Other approaches to the analysis of networks computed from time series with non-uniform
distributions are the study of changes in connectivity of recurrence networks by Hsing and
Rootzé [60], and more recently by Cooper and Frieze [23].

However, despite the studies mentioned above, the problem of analyzing time series with
non-uniform probability distribution has not been fully addressed. This, in turn, implies
that selecting an appropriate recurrence threshold for real-world time series is still an open
problem [38, 108], since real-world time series do not tend to have uniform probability dis-
tributions.

3.2 Considerations for the analysis of complex time series—
With recurrence analysis

Real-world time series tend to have noise, miss some measurement points and show metasta-
bility. In the following sections we will comment on the consequences of these features on
the recurrence analysis of dynamical systems.

3.2.1 Noise

According to J. P. Zbilut and C. L. Webber Jr. [130], having noise in a time series tends
to inflate the embedding dimension when reconstructing the state space. We suggest that
this could in turn derive in an increase of the recurrence threshold adequate to analyze a
dynamical system.

In an article of 2007, Marwan et al. [85] proposed some conditions to choose the thresh-
old when analyzing one-dimensional noisy time series. Their reasoning was based on the
distinction of false positive and false negative recurrences.

A false negative is a recurrence point which is not identified as such with probability 1 — py,
where p; is the percentage of recurrence points that are properly identified in the presence
of noise. A false positive is a non-recurrence point which is recognized as a recurrence point
with probability 1 — p,,, where p,, is the percentage of properly recognized non-recurrence
points. This way, Marwan et al. proposed that an adequate recurrence threshold, €, should
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maximize p, and p,, simultaneously. According to numerical simulations, they concluded
that € should be at least five times the standard deviation of the observational noise.

Later, in an article from 2013, Marwan et al. [86] established some boundaries for the recur-
rence threshold when analyzing high-dimensional time series data with noise.

3.2.2 Missing points

This problem can also be understood as the one of not having uniform sampling when
obtaining a time series. In general, the construction of recurrence networks for this type of
data follows the typical procedures of omitting the missing measurements or, when the time
series is long, subsampling the time series in order to produce a uniformly measured process.

To this respect, Donges et al. [32, 33] have analyzed the ability to detect nonlinear dynamical
transitions in time series with irregular sampling with recurrence networks.

3.2.3 Metastable dynamical states

When a system or physical phenomena has multiple and well distinguished time scales, it
is said to show metastability. This means, that for short time scales, the system appears
to be in equilibrium, which makes possible to identify the so called metastable states. And
for longer time scales, it seems to transit between different metastable states, which makes
possible to identify the so called transition region.

The study of metastability as a phenomenon occurring in stochastic processes was introduced
by H. A. Kramer in 1940 [71]. The time series he used to analyze metastability in the context
of chemical reactions, corresponds to a double-well potential to which a one-dimensional
diffusion process is added (we analyze this system in Section 3.6). For more information on
metastability, see the work of A. Bovier [6, 7].

One can expect metastability in the systems underlying several real-world time series. How-
ever, the analysis of this characteristic in recurrence networks—to the best of our knowledge —
had not been addressed yet.

A natural question when analyzing metastability with recurrence networks is how to dis-
tinguish between trajectory bundles and metastable states. To answer this, we refer to
the analysis of the topological structure of a network via random walks done by Maila and
Shi [81], Deuflhard and Weber [28] and Sarich et al. [30, 104], among others.

According to this approach, by running random walks in a modular network, it is possible
to analyze both its local and its global topological structure. Considering that modules in a
network correspond to metastable states of a random walk, then the metastable states can
be identified via the spectral properties of the Markov processes.

This way, to identify metastable states in a time series, we analyze the modular structure of
the constructed recurrence network using the fuzzy clustering method developed by Sarich
et al. [30, 62, 104, 105].
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Module finding algorithm of Sarich et al. [104].

This algorithm is based on the spectral analysis of time-continuous random walks on modular networks
and uses transition rules of the random walk which increase the spectral gaps.

It also considers modules as groups of densely connected nodes that do not partition the network
completely and do not overlap, which gives rise to the identification of a transition region with contains
all nodes which are not assigned to a specific module. Contrary to other density based clustering
methods, this module finding method distinguishes between dense state space regions corresponding to
metastable states and dense state space regions corresponding to the passage between them.

The quality of the results of this method for module identification rely on the quality of the approxima-
tion of the dominant eigenvalues. Its error is analytically defined and therefore the reproducibility of its
results guarantee the reproducibility of our method for selecting embedding parameters and identifying
metastable states in a time series.

In computational terms, this algorithm scales linearly with the size of the network, making it also useful
for analyzing large networks. In order to keep the sum of nodes assigned to all modules equal to N, we
assign all nodes identified as part of the transition region to an additional module. One consideration
when using this method is that it does not work for disconnected or fully connected networks.

This method does not work for disconnected or fully connected networks. However, this fact was taken
into account for defining the recurrence threshold values in the filtration.

3.3 A new method for identifying metastable states in real-
world time series

As we have seen in the previous sections, recurrence analysis has been used in some cases
for the identification of different dynamical regimes—from chaotic to non-chaotic or chaotic-
chaotic transitions—in complex time series. However, given the constrains of sensitivity of
the RQA measures, this approach has not been widely used for the identification of the
different dynamical states within a same regime.

In this section we introduce our method for selecting adequate embedding parameters and
recurrence threshold that, we suggest, allows the better identification of metastable states in
real-world time series data.

Assuming we have already reconstructed the state space from a time series data (we use a
new method described in Section 3.4, based on the methods described in Section 2.1.2), we
first create a filtration defined by the recurrence threshold. This filtration ranges from the
50th to the 95th percentiles of the distances between state space vectors in the reconstructed
state space.

We analyze the modular structure of the recurrence networks associated to the recurrence
thresholds in the filtration. The modular structure in the recurrence networks is identified
with the method of Sarich et al. [104], which performs a fuzzy clustering of the state space
with respect to metastability (for details see [30, 62, 105]).

Then, we assume that an adequate recurrence threshold should belong to a region in the
filtration for which the associated recurrence networks are less dissimilar. Therefore, we
identify those networks whose modular structure, meaning their number and size of modules,
is within some boundaries of similarity given by Eq. 3.2, Eq. 3.3 and Eq. 3.4.

We set an adequate recurrence threshold as the average of recurrence thresholds belonging
to the region of the filtration satisfying such expressions.
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3.3.1 Setting an appropriate recurrence threshold

It is known that even small variations in the recurrence threshold can lead to very different
modular structure in its associated recurrence network. For this reason, some recurrence
threshold selections can hide important dynamical features in a system.

We suggest that an adequate recurrence threshold should lie in a region of values producing
recurrence networks with less dissimilar modular structures. Since this region of values
varies according to the distribution of our data, we propose a methodology, summarized in
Algorithm 1 to set the recurrence threshold that adapts to it.

Our approach is inspired by the analysis of data with persistent homology [9, 12]. Persistent
homology has been briefly explained in Sections 2.4 and 4.1.4, and is presented in depth later
on, in Chapter 4. This approach arose from the problem of computing the homotopy type
of an underlying topological space from point cloud data that does not uniformly sample
the space. Thus, persistence homology captures the persistence of topological entities in a
filtration. The connections between persistent homology and delay-coordinate embeddings
have been recently investigated, for example by Emrain et al. [46].

In our case, the state space can be understood as the topological space of interest and the
recurrence threshold as the one-parameter defining the filtration. The modular structure
of the recurrence networks can be thought as the topological entity whose persistence is
analyzed.

This way, in order to set an appropriate recurrence threshold, we first construct a filtration:
a set of recurrence thresholds and its associated networks. Then, we analyze the modular
structure of each network in the filtration. Finally, we identify a subset of thresholds for
which the modular structure of their associated recurrence networks is the least dissimilar.
The similarity in modular structure depends on the number and size of the modules identified
in every recurrence network. Finally, we select a recurrence threshold equal to the average
value of the recurrence thresholds in such subset of thresholds.
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Algorithm 1 - SETTING AN APPROPRIATE RECURRENCE THRESHOLD

1. Construct set of recurrence networks, {G,}:
for v =0 to v = vy do
> Compute recurrence threshold ¢, according to Eq. 3.1
> Compute associated recurrence plot R(e,) and recurrence network G, = G(g,).
end for

2. Find modular structure in all recurrence networks in {G, }: {C(G.)} and {|Cx(G.)|}
for v =0 to v =vy do
> Perform modular structure analysis of associated recurrence network G, = G(g,).
> Compute number of modules, C(G, ), and number of nodes in each module, |Cx (G )|, on
Gy.
end for

3. Select subset of networks {G, }~ with the same number of cluster, satisfying Eq. 3.2, {e,}":
for x; = xo to x; = x;* (defined in Eq. 3.4) do
for all ey € {e,}~ do
if |Ck(Gas1)| = |Ck(Gr)| < x; then
Add recurrence threshold ey to subset {g, }X9.
end if
end for
if {e,}*9 =0 then
X;t = X(-1) and {e,}" = {e, }'4*
else {e,}" = {e, }¥
end if
end for

4. Set final recurrence threshold, €, as the average value of thresholds in {e, }".

Constructing a filtration of recurrence networks

The initial step of our method consists on constructing a filtration defined by the recurrence
threshold and its associated recurrence networks.

We want this set of recurrence thresholds to span a large set of distances in state space, so
that we can see different structures in the associated recurrence networks. However, we want
to avoid negligible recurrence rates or disconnected recurrence networks.

This way, even at the cost of having very high recurrence rates for some recurrence thresholds
in the filtration, we compute the initial recurrence threshold, g, as the 95th percentile of the
distances between state space vectors. The smaller scale information we analyze is the one
visible when the recurrence threshold is set as the 50th percentile of the distances between
state space vectors, denoted by c;.

Let us denote the set of recurrence thresholds in the filtration by {e,}, where v = [0, v¢] and
vs = 14. Then, the v-th element of {¢,} is given by

e, =co+v (M) (3.1)
vy

The set of recurrence thresholds given by Eq. 3.1 is a suggestion. The range and number of
thresholds in the set could be modified according to information on the distribution of the
state space vectors. In particular, if the data is uniformly distributed, the initial threshold
could be given in terms of the five percent of the standard deviation, as proposed by Marwan
et al. [85]. For multidimensional time series, we propose to use the largest standard deviation.
In that case, we propose to construct the set of recurrence thresholds as ¢, = (1.5 — 0.1v) &o.
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Finally, we compute a recurrence plot for every recurrence threshold in {¢,}, R, = Ry;(e,),
as well as the associated recurrence networks, G, = G(g,). We denote the set containing
these recurrence networks by {G,}.

Analyzing modular structure of the filtration

Every recurrence network in {G,} may have a different modular structure. We analyze the
number and size of their modules with the aim of finding a subset with similar structure.

The problem of finding modules (or clusters) in complex networks has been approached in
several ways and many clustering algorithms exist for this purpose [62]. However, we use the
algorithm of Sarich et al. [104] (see Section 3.2.3) because it is specifically developed for the
case in which a system shows metastability.

The differences in modular structure between every recurrence network in {G,} can be rep-
resented with a flow diagram called the Sankey diagram. A Sankey diagram is a visualization
tool we use to show the number of clusters and the nodes’ distribution for each of the different
recurrence networks computed from the set {e,}.

In a Sankey diagram, every network is represented by a column and every column is divided
into blocks. The number of blocks in a column represents the number of modules identified
in a network. The size of a block in a column corresponds to the number of nodes such
module contains.

Let G, and G,4+1 be two consecutive recurrence networks. Then, if a group of nodes initially
assigned to module A in G, is assigned to module B in G,41, this fluz will be represented as
an arrow in a Sankey diagram, with a thickness determined by the number of nodes flowing.
In Fig. 3.7 we show the Sankey diagram for a filtration of recurrence networks from the
double-well potential time series analyzed in Section 3.6.

The first similarity requirement on {G,} is to have the same number of modules. The subset
of recurrence networks satisfying this restriction is denoted by {G, }~ and {e, } ™ is the subset
of recurrence thresholds generating these networks.

Let G, € {G,} have C(G,) modules. Then, this network will satisfy the restriction on
similarity in number of modules if, given three consecutive networks G,—1, G, Gu41 € {G.},
the following holds

C(GIL+1) = C(Gufl) = C(Gu) >1 (3.2)

The next similarity requirement is applied on {G,}~. It consists on asking the recurrence
networks to have modules of similar size, where the level of similarity is expressed by a
tolerance value, x; € [xo,x;+]. The subset satisfying this restriction is denoted by {G,}Xs
and the subset of recurrence thresholds producing these networks is denoted by {g, }X7.

Let Cx(G)) be the k-th module of Gy € {G,}~, and |Ck(G))| the number of nodes in such
module. Then, the size of the k-th module in a pair of consecutive recurrence networks
G, Gry1 € {G,}~ varies less than yx; if

[Ce(Gar1)| = [Cr(GH)] < x5 (3.3)

The tolerance value depends on the number of nodes in the recurrence networks, N*. Initially,
we say that two modules have similar size if the number of nodes they contain is different in
no more than ten percent of N*. This means that yo(N*) = 0.1N*.
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By decreasing the tolerance value, we strengthen the condition of similarity between modules.
We say that complete similarity is reached when the number of nodes in two modules is
different in no more than one percent of N*, which means that x;«(N*) = 0.01N*. This
way, we define a ten steps procedure, where the tolerance value for each step is given by

Xi = Xo(1 - j/10), for j = [0, 7] (3.4)

If the subset of recurrence networks satisfying the maximum decrease of tolerance is not
empty, it is denoted by {G,}* = {G,}X3*. Then, the subset of recurrence thresholds pro-
ducing these networks is denoted by {e,}* = {&,}X5*. However, it is possible that no subset
of {G,}~ satisfies the maximum tolerance decrease and that {G,}Xi is empty for a certain
Xj > x;t- In this case, we define {G,}* = {G,}"5" and {e,}* = {e,}".

Finally, we assume that the modular structure of the recurrence networks associated to all
values in the range of {e,}* is the least dissimilar, not only the values that we tested. This
way, we set the final recurrence threshold, €*, as the average value of the recurrence thresholds
in {e, }*. Alternatively, €* could be set as the minimum threshold in {¢, }*, in order to avoid
irregularities in case the average value of {¢,}* does not belong to such set.

It is worth mentioning that this procedure is equivalent to finding the minimum in the
differences of Eq. 3.3 for all lambda, but introducing a tolerance. This tolerance would
allow us to include a larger range of values within the recurrence thresholds filtration for the
computation of the final recurrence threshold.

3.3.2 Identifying metastable states

Once that the final recurrence threshold €* has been set, we generate the recurrence network
associated to it, G, = G(¢*). The analysis of the modular structure of this network will
lead to the identification of metastable states (and transition region) in the time series. The
methodology followed to assign every data point in a time series into different metastable
states (or transition region), is summarized in Algorithm 2.

For simplicity, if node i of G, has been assigned to a specific module C}, we will assign the
data point u; in the first component of state space vector x(7) to the k-th metastable state.

This metastable state assignment approach is naive because, when using the time delay
embedding method to construct the state space, every data point appears in a different
number of state space vectors. Let M (u;) denote the number of state space vectors in which
data point u; appears, 7 and m be the embedding parameters, and « be an integer such that
0<a<m-—1. Then, M(w;)=a+1lifar<i<(a+1l)7rorif N—(a+1)7 <i< N —ar,
and M (u;) = m for any other data point.

Alternatively, the metastable state a data point u; is assigned to, could be determined by
its dominant module. This means, the module to which u; has been assigned the most. Let
mg(u;) denote the number of state space vectors in which u; appears and that are assigned
to module Ck(Gy). Then u; belongs to

aékg(gii)n <M(uz) - mk(ul)) (3.5)

If there are more than one module satisfying Condition 3.5 for this data point, then there is
no dominant module for u; and we consider it part of the transition region.
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Algorithm 2 - IDENTIFYING METASTABLE STATES IN A TIME SERIES

1. Perform modular structure analysis of recurrence network G, = G(e*). This is done with the fuzzy
clustering method of Sarich et al. [104].

2. Classify every data point in the time series into metastable states or transition region, according
to any of the following two criteria:
(a) According to the assignment of the state space vector for which the data point constitutes the
first component, or
(b) According on the dominant module, as given in Eq. 3.5 (see text).

3.4 A new method for state space reconstruction — Based on
recurrence analysis

In this section we show a new methodology, based on recurrence analysis, for choosing a pair
of embedding parameters that provide an adequate state space reconstruction.

As mentioned in the introduction to this chapter, this is intertwined with the method
described in Section 3.3—which selects an adequate recurrence threshold for a state space
reconstruction—.

This methodology, summarized in Algorithm 3, consists on the following steps. First, for
a given embedding dimension, we select the embedding delay that has a simultaneous first
local minima in Shannon entropy (defined with respect to diagonal lines, as in Eq. 3.6) and
first local maxima in recurrence rate (defined as in Eq. 3.5). Then we choose the pair of
parameters which additionally has the lowest Shannon entropy.

Our two main ideas for selecting the embedding parameters are the following. First, that
a minima in Shannon entropy indicates the recovery of more dynamical features from a
recurrence network. And second, that higher recurrence rate values indicate that the nodes
in the recurrence network are more connected, or that a larger number of state space vectors
fall inside a same state space neighborhood.

Algorithm 3 - RECONSTRUCTING THE STATE SPACE

1. Given a state space reconstruction and a recurrence threshold, compute RR(¢) and S(g):
for =1 to7=17Fr do
for m = mg to m = mr do
> For embedding parameters 7 and m, construct N* = N — (m — 1)1 state space vectors
using the time delay embedding method (see Eq. 2.3) from the normalized time series.
> Compute recurrence threshold, €, as explained in Section 3.3.1.
> Compute its associated recurrence plot R;;(e).
> Compute RR(e) and S(g) for the associated recurrence plot, as given in Egs. 3.5 and
3.6 respectively.
end for
end for

2. Select m and 7 that first provide a simultaneous local minima in entropy and local maxima in
recurrence rate, and that also give the lowest minimum in entropy.
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3.5 Robustness tests

We define robustness as the similarity between the metastable states (or modules in the
associated recurrence network) identified in two time series: the original and a modified
time series. The modified time series is created by adding artifacts (noise or missing data
points) to the original time series.

As we mentioned before, we analyze the modular structure of a recurrence network using the
algorithm developed by Sarich et al. [104] (see Section 3.2.3), which divides the nodes into a
fuzzy partition consisting of modular and transition regions. The assignment of every state
space vector into a different module or to the transition region constitutes a partition.

Then, we measure the similarity between the partitions associated to the original and the
modified time series with a modified version to the Adjusted Rand Index [61, 103] (ARI).

The ARI was developed by Hubert and Arabie in 1985 to measure the agreement between
two partitions. When the partitions are not similar at all it is equal to zero, and when
the partitions are equivalent it is equal to one. This index offers the advantage of being
computable even when the number of modules in the two partitions compared is not the same.
Additionally, its results are meaningful even if the labeling of the partitions is switched. For
more details see Appendix A.

In order to account for the division into modular and transition regions, we use the modifi-
cation to the ARI proposed by Hueffner et al. [62]. This modified ARI assigns every state
space vector identified as part of the transition region into an independent module in order
to create a full partition. This can be measured either considering only the modules or
considering the modules together with the transition region.

However, this is not the only index that can be used to measure the similarity between par-
titions. For fuzzy (or soft) partitions in which every object is assigned to various clusters
with different weight values, one may use adaptations of the normalized mutual informa-
tion (NMI) or of the Jaccard index to fuzzy partitions. These measures could potentially
substitute the use of the modified ARI of Hueffner et al. in our method.

We measure the robustness of our method for identifying metastable states in two scenarios:
when a percentage of noise is added and when a percentage of time points is removed from
a time series.

3.5.1 Noise

We use the definition of noise given by Hassona [58] for the analysis of variations in RQA
measures. According to this, a noisy time series is created by adding Gaussian white noise,
with mean equal to zero and standard deviation equal to one, to the time series.

The amplitude of the noise added is equal to a percentage un of the amplitude of the original
time series. This means that the amplitude of the noise is uy% the amplitude of the time
series. We vary py from 0 to 20 in intervals Auy = 1.

We generate 50 different noisy time series for every uy and calculate the ARI as the average
of the ARI obtained for every noisy time series with a same amplitude of noise. The aim of
this procedure is to remove the bias induced by the selection of noise.
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3.5.2 Missing points

One of the typical features of real-world time series is having observations irregularly taken.
This irregularities can be understood as if a percentage of measurement points, randomly
distributed in the time series, had been removed from a time series containing a set of
measurements regularly taken.

We produce the original time series, with regularly spaced measurements. The modified time
series is then obtained by assigning a “null” value to a percentage g of randomly distributed
data points in the original time series. We vary pg from 0 to 19, in intervals Auy = 1. Since
we are not ignoring time points but only assigning a new value to some time points, the
length of the original and the modified time series is the same.

Again, in order to remove the bias induced by the selection of data points to remove, we
analyze 50 different time series with the same number of missing points.

3.6 Example 1: Double-well potential

To illustrate the ability of our method to identify metastable states in complex time series,
we analyze the time series shown in Fig. 3.5. It describes the motion of a particle in a heat
bath with temperature T', under the gradient of a double-well potential and a random force.

3.6.1 The system

The double-well potential model was proposed by Kramer in 1949 [71], during his studies on
chemical reactions and is one of the first models for metastability. It is described by

dX; = —VV(z)dt + \/2edB;, (3.1)

where B; is a Brownian motion, v > 0 is a friction parameter and ¢ = vT.

Due to its formulation, this model corresponds to one of the stochastic systems that can be
analyzed with the extended Takens theorem proposed by Stark. [112]. But instead of going
through the procedure that such analysis requires, we analyze this system with our proposed
method.

2 _ a2)2, has two local minima at ;1 = a and z9 = —a.

The potential, given by V(z) = (=
Fig. 3.4 shows a representation of the double-well potential we use, where a = 1: V(z) =
(x2 — 1)2. In this figure, AV is the trap depth difference between the potential wells which

controls how metastable the system is.

Our one-dimensional time series, shown in Fig. 3.5, results integrating the system’s Langevin
dynamical equations. For this, we use the Euler-Maruyama integrator with friction v =
0.001, 7500 iterations, initial positions gini; = (0,1) and temperature 7' = 100K . Addition-
ally, we sample this time series every 10 time points. Therefore, the length of our time series
is N = 750 data points.

In this time series, we expect to find two metastable dynamical states and their transition
region. Every metastable state corresponds to each of the wells in the potential. Besides the
potential wells, we expect to identify a transition region. This indicates the moments when
the system is neither in one well nor in the other.
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Figure 8.4: Scheme representing a double-well potential V (x) = (2% — 1)2, with two wells centered in x = —1
and x = 1. AV =1 is the trap depth difference between wells.
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Figure 3.5: Time series for a particle in a double-well potential. This is obtained by normalizing the time
series computed by integration of the Langevin equations 3.1 and sampling every 10 data points. For the
integration we use an Fuler Maruyama integrator with friction v = 0.001, 7500 iterations, initial positions
Ginit = (0,1) and temperature T = 100.

3.6.2 Analysis results

As mentioned in Sec. 3.3.1, our method starts by constructing the state space from the time
series. In this case, we use embedding parameters 7 = 7 and m = 2. These were determined
as explained in Algorithm 3 (Section 3.4) taking 79 = 2, 7 = 10, mg = 2 and mp = 8.

In Fig. 3.6 we show in circles the embedding parameters that first provide a simultaneous
local minima in Shannon entropy and recurrence rate, for embedding delay 7 € [2,7] and
embedding dimension m € [1, 5].

The next step consists on defining a set of recurrence thresholds, using Eq. 3.1, and analyzing
the modular structure of the recurrence networks associated to each of the recurrence thresh-
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Figure 3.6: Variation in Shannon entropy (Eq. 3.6) and recurrence rate (Eq. 8.5) for different embedding
parameters, obtained from the recurrence plots associated to a time series describing the dynamics of a double-
well potential (this system is introduced in Section 3.6). Circles indicate the embedding parameters that first
provide a simultaneous local minima in Shannon entropy and recurrence rate. The threshold values used are
set according to the methodology described in Section 8.3.1.

olds in this set. The visualization of the results from the analysis of the modular structure
of a filtration (constructed with the embedding parameters mentioned above), is shown in
the Sankey diagram in Fig. 3.7.
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Figure 8.7: Sankey diagram showing the subgroup of recurrence networks (columns) with the same number
of modules (see Eq. 3.2) and similar number of nodes (see Eq. 3.3). Networks are computed from tuning
set {e,} (see Eq. 3.1) on the state space constructed from a two well potential time series and embedding
parameters T = 7 and m = 2. We suggest that this group of networks determines the recurrence threshold
giving robust results about the dynamics of the time series analyzed.

In this particular diagram, we observe that the sizes of the metastable modules (and tran-
sition region) of the recurrence networks (columns) associated with recurrence thresholds
g4 < € < eg, vary the least. This means, these have the same number of modules (size of
sections of a column) and the number of nodes in each module is almost the same (low flux
of nodes from one column to another), given that these satisfy the dissimilarity restrictions
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of Eq. 3.3 for x* = 0.01N* =~ 7. This is the set of thresholds from which we compute the final
recurrence threshold used for the identification of metastable states in the two well potential
time series: €* ~ (0.29.

Every module identified in the recurrence network constructed using €* ~ 0.29 indicates a
different metastable state in the time series. These metastable states are indicated in Fig. 3.8
by modules 0 and 1, and may correspond to each of the two potential wells. The transition
region, on the other hand, is indicated by ‘Module -1’.
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Figure 3.8: Metastable states identified on the time series in Fig. 3.5. The state space is reconstructed using
a delay mapping with embedding parameters T = 7 and m = 2. And the recurrence network is associated to
recurrence threshold €* ~ 0.29. The grayscale color code shows the different metastable states in a time series,
corresponding to the different modules in the associated recurrence network.

3.6.3 A note on modularity

In this section we will show an example that supports our suggestion that our recurrence
threshold selection coincides with having an associated recurrence network with higher mod-
ularity.

To illustrate this, we take the time series shown in Fig. 3.9(a), which describes the dynamics
of a double-well potential (this dynamical system is described in Section 3.6).

This time we reconstruct the state space of this time series using the delay-coordinate method
with classical methods: average mutual information for the embedding delay and false nearest
neighbors for the embedding dimension.

Then we construct a filtration on recurrence threshold, which ranges from the 50th to the
95th percentile statistic of the distances between state space vectors. Then, in Fig. 3.9(b)
we show the modularity for the different recurrence thresholds in this filtration.

The recurrence threshold selected with the method described in this section is € ~ 0.52. The
recurrence network associated to this recurrence threshold has the highest modularity from
all the networks associated to the filtration.
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Figure 3.9: (a) Time series analyzed, describing the dynamics of a double-well potential. To reconstruct its
state space, we use a delay-coordinate method with embedding parameters T = 166 and m = 3. Such state space
vectors were reconstructed using classical methods for setting embedding parameters: false nearest neighbors
and average mutual information. (b) Modularity of every recurrence network associated to the recurrence
thresholds in a filtration that ranges from the 50th to the 95th percentile statistic of the distances between state
space vectors. Observe that the peak in modularity occurs for € >~ 0.52, which is the recurrence threshold set
with our methodology.

3.6.4 Robustness tests

In this section we perform the robustness tests described in Section 3.5 on the double well
potential time series.

As mentioned before, we define robustness as the similarity between two partitions, one cor-
responding to the module identification on the recurrence network associated to the original
time series, and the other corresponding to the module identification in the recurrence net-
work associated to a modified time series. A modified time series is created either by adding
noise or by removing a percentage of data points to the original time series.
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The similarity between partitions is measured using the modified version of the Adjusted
Rand Index (ARI) proposed by Hueffner et al. [62]. The parameters we use to analyze all
modified time series are ¢* ~ 0.39, 7 = 3 and m = 2.

Noise

As mentioned in Section 3.5.1, we define noise as a percentage of the amplitude of the original
time series. We vary the amplitude of noise from 0 to 20% in intervals of 1%.

Our results, in Figs. 3.10(a) and 3.10(b), show that our method is robust (ARI of around 0.6)
to noise with amplitude of up to 6% the amplitude of the original time series when the ARI
is measured only in the modules, and to noise with up to 2% the amplitude of the original
time series when the ARI is measured in the modules and transition region.

As mentioned by Zbilut in 1992 [130], having noise in a time series has an effect of inflation of
the embedding dimension when reconstructing the state space. Therefore, we could expect
our method to be robust for noise with larger amplitudes if we considered different recurrence
threshold and embedding parameters for the analysis of every noisy time series. However,
this analysis is not done in this thesis.

Missing points

For this test, we create the modified time series by removing from 0% to 19% of the data
points, in intervals of 1%.

Our results, in Figs. 3.11(a) and 3.11(b), show that our method is robust (ARI of around 0.6)
to the removal of up to 7% of randomly distributed data points when the ARI is measured
only in the modules, and up to 3% of randomly distributed data points when the ARI is
measured in the modules and transition region.

Interpreting the case of missing data points as another case of noise, we could expect our
method to be robust for a larger percentage of missing points if we considered different
recurrence threshold and embedding parameters for the analysis of every time series with
missing points. This analysis is not done in this thesis.

3.7 Example 2: Molecular configurations of trialanine

In this section we analyze a time series describing the changing molecular configurations of a
molecule of trialanine at low temperature. In other words, the variation of two of the three
torsion angles describing its conformation, shown in Fig. 3.12.

The conformation of a molecule is a mean geometric structure which is conserved on a large
time scale compared to the fastest molecular motions, such that the associated subset of
configurations is metastable.

The aim of this analysis is to identify the main molecular conformations of trialanine from a
time series. For this, we analyze the time series using the method described in Section 3.3,
which identifies metastable states in real-world data using recurrence networks.
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Figure 8.10: Robustness to noise. Similarity between the metastable states identified in a time series and in
its modified version, where noise has been added. The noisy time series is created by adding white Gaussian
noise with amplitude equal to a percentage, un, of the amplitude of the original time series. (a) Shows the
similarity measured with the modified Adjusted Rand Index (ARI) considering only the modules. (b) Shows
the similarity measured considering both modules and transition region. Error bars show confidence interval

of 90%.

3.7.1 The system
Trialanine is one of the simplest systems exhibiting the typical feature of biomolecules: having
a backbone with various stable conformations.

Characterizing a molecule with its central peptide dihedral angles, or torsion angles, has
the advantage of producing a reference system invariant to translations and rotations of the
molecule, reducing this way the dimensionality of the description.

At low temperatures, for example T' = 300K, the different molecular conformations of tri-
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Figure 3.11: Robustness to missing data points. Similarity between the metastable states identified in a time
series and in its modified version, where a percentage of randomly distributed data points has been removed.
(a) Shows the similarity measured with the modified Adjusted Rand Index (ARI) considering only the modules.
(b) Shows the similarity measured considering both modules and transition region. Error bars show confidence
interval of 90%.

alanine can be sufficiently characterized by the two central peptide dihedral angles, ¢ and 1.
At higher temperatures, for example T'= 700K, one should also consider the changes in the
peptide bond angle, 2. A ball-and-stick diagram of trialanine and its three torsion angles is
shown in Fig. 3.12.

According to Prei et al.[100] and Metzner, Putzig and Horenko[89], clustering the state space
of trialanine at high temperatures results in the identification of five metastable states. This
is the number of modules we will guess in the module finding algorithm when analyzing the
modular structure of our recurrence networks.

We simulate a time series for the torsion angles of trialanine at low temperature, T' = 300K,
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Figure 3.12: Ball-and-stick representation of a trialanine dipeptide molecule and its torsion angles ¢, ¥ and
Q. At low temperatures, its stable molecular conformations can be sufficiently characterized by the central
peptide dihedral angles, ¢ and 1. At higher temperatures, one should also consider the peptide bond angle, Q).

and in vacuum using JGromacs [93], in which trialanine is represented by 21 united atoms.
This simulation consists of 5000 steps. The resulting time series can be considered stationary.
Finally, we obtain a time series of 500 data points by sampling the simulated time series with
rate At = 10. This sampling rate does not hide transitions between states for any torsion
angle. For more details about this type of simulation, see the article of Prei et al. from
2004 [100].

Since the time series is simulated at low temperature, the following analysis considers only
the two central peptide dihedral angles, ¢ and . Thus, the molecular conformations of
trialanine can be shown in a two-dimensional plot, called the Ramachandran plot, which
contains the dependency between ¢ and v only and is shown in Fig. 3.13.
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Figure 3.13: Ramachandran plot containing a sample of the molecular conformations of trialanine, simulated

in vacuum at T = 300K (for details go to the text). Conformations are given by the dependency between
torsions angles ¢ and ).

3.7.2 Analysis results

The state space associated to trialanine’s molecular conformations is constructed using the
time delay embedding, with embedding parameters m = 2 and 7 = 7. The final recurrence
network is computed with final recurrence threshold £* ~ 0.2796.
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Figure 3.14: Ramachandran plot containing a sample of the normalized molecular conformations of trialanine
shown in Fig. 8.13. The grayscale color code identifies the five different metastable states (or main molecular
conformations) identified in the final recurrence network with €* ~ 0.2796, 7 = 7 and m = 2. For each module
we show an example of molecular conformation of trialanine belonging to it.

The analysis of the modular structure of the final recurrence network, performed analogously
to the analysis of the double well potential in Section 3.6, leads to the identification of the
five modules. These modules are shown in Fig. 3.14.

Due to the location in the Ramachandran plot of the three larger metastable states iden-
tified, one can identify the three main sets with the three main molecular conformations
for trialanine mentioned by Fischer et al. in 2006 [51]. The two smaller sets could be a
consequence to the way we assign data points to a metastable state (Section 3.3.2).

3.8 Final remarks

In this Chapter, we introduced our new method for the identification of metastable states in
real-world time series. We analyzed two examples with it and obtained results robust to the
introduction of noise and missing data.

This suggest that the geometrical analysis of a filtration of recurrence networks, constructed
from the reconstructed state space, is adequate for the identification of an adequate recur-
rence threshold. In addition, as shown in the modularity analysis of the double-well potential
example in Section 3.6.3, our selected recurrence threshold produces the recurrence network
with highest modularity.

However, this method cannot be followed as such when there is more than one main scale in
the state space of the analyzed system. In those cases, one should identify all the ranges in
the recurrence networks filtration satisfying the restrictions in Eqgs. 3.2 and 3.3.

We also introduced a new method for the reconstruction of the state space from a time
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series, based on the analysis of filtrations of recurrence networks constructed from the state
space vectors of different state space reconstructions via delay-coordinate maps with different
embedding parameters.

This method consists on the geometrical analysis of several recurrence networks. Therefore,
its results are heavily dependent on the specific module finding algorithm selected for the
analysis of the recurrence networks.

For dynamical systems whose attractors have high-order topologies, due to module finding
algorithms generally considering only low-order topological information, this method for the
reconstruction of the state space may not be sufficient to identify all the metastable states.

These drawbacks motivate the method presented in the following chapter, where we introduce
an algebraic topological approach to the analysis of complex data.
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4. A new method for identifying tran-
sitions between dynamical regimes
in real-world time series via persis-
tent homology

Previously, in Chapter 3, we introduced a method for the identification of metastable states
in real-world time series. In such method we make use of recurrence networks analysis to
obtain an adequate state space reconstruction (see discussion in Section 2.3) via a delay-
coordinate map. Later, we set an adequate recurrence threshold imposing some restrictions
on two recurrence quantification measures—recurrence rate and entropy— and using a fuzzy
clustering algorithm on a recurrence network constructed with such threshold over the re-
constructed state space vectors, we identify modules that correspond to different metastable
states in the underlying system.

Despite the first method being robust to the introduction of low levels of noise or missing
data points (see Section 3.6 for details), it has some drawbacks. One of these is the implicit
assumption of having one main scale in the state space of the analyzed system. Another
drawback arises from the heavy dependence on the specific module finding algorithm selected
for the analysis of recurrence networks. In general, module finding algorithms consider only
low-order topological information. Therefore, the results of our analysis are only reliable for
time series whose reconstructed state spaces have low-order topology.

In order to overcome these limitations and analyze time series whose reconstructed state
spaces have high-order topologies, in this chapter we introduce a new method for topolog-
ical data analysis (TDA) that uses an algebraic topological approach: persistent homology
(introduced in Section 4.3). Persistent homology can be understood as the analysis of topo-
logical features (homology; see Section 4.1.3) that persist in a set of coverings with different
fixed radius e (a filtration depending on ).

The main aim of performing topological data analysis (TDA) over the reconstructed state
space vectors is to find a representation of such vectors that allows the robust computation of
topological invariants (see Section 4.1). Our particular selection of the persistent homology
approach is based in the fact that this is, in principle, suitable for the analysis of time series
data where the use of a specific type of metric and coordinates is not fully justified, or when
one wants to study the behavior of a system for a wide range of parameters and not only for
a single selection of parameters [9, 44].

Another advantage of this approach is the existence of several theorems on the stability of
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persistence (see Section 4.1.5), which provide equivalent persistent homology results regard-
less of the filtration function and provide some confidence boundaries when the data has
noise or when persistence is computed from a sample of the entire data. In Section 4.2 we
present some of the results on how to estimate persistence when considering the existence of
noise or outliers in data.

This way, we suggest that this new method is adequate for the identification of transitions
between different dynamical regimes, given that it includes higher-order topological informa-
tion into the analysis of a time series. Additionally, due to the existence of stability theorems,
the confidence in the results it provides is bounded, and these results are robust to noise and
missing data. In Section 4.6 we illustrate these results by identifying dynamical transitions
in the time series of a two-dimensional double-well potential with this method.

However, during the development of this method, we faced several difficulties associated to
the state space reconstruction from a time series. This led to the review of the conditions that
guarantee an adequate state space reconstruction (see Section 4.4) and to the development
of a new method for the reconstruction of the state space from a real-world time series based
on persistent homology (see Section 4.5). In Section 4.7 we use the two methods introduced
in this chapter to analyze the time series of a logistic map whose dynamics vary from non-
stochastic to stochastic, according to the parameters selected for the simulation of a segment
of such time series.

4.1 Introduction to topological data analysis (TDA)

Whenever a metric, or distance function, and a coordinated system are introduced for the
analysis of a system, and when the topological information of the system is of lower-order, it
is possible to use geometric tools specific for the analysis of sets of data points, like clustering.

When a data set is clustered, it is partitioned into different subsets, or modules. Every
module, given a similarity measure, is distinguishable from another. This way, the process of
identifying the modular structure of data can be thought as “the statistical counterpart to the
geometric construction of the path-connected components of a space”[9]. The methodology
presented in Chapter 3 is based on this approach.

However, it is often the case that the intrinsic features of a data set do not justify the use of
metrics and coordinated systems. In these cases one may perform topological data analysis

(TDA).

Topology can be defined as the study of the geometric properties of data, without being
sensitive to specific choices of metric, coordinates or curvature (unlike recurrences analysis).
Fig. 4.1 illustrates the common saying that, in topological terms, a teacup and a bagel are
the same.

Figure 4.1: ”Topology is the branch of mathematics which cannot distinguish between a teacup and a bagel” [10].

The topological analysis of a finite data set sampled from an unknown topological space X,
S C X, is meant to recover the topology of such space.
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Definition 4.1.1 (TOPOLOGICAL SPACE). A topological space is a pair X = (X,U)
where X is a set of points and U is a topology on X. The topology U is defined as a collection
of open sets of X such that:

1. If 51,55 € U, then S1 NSy € U.

2. For S; € {S;}jes, where J is an index set that can be infinite or uncountable, if
S; € UVj then Uij ceu.

3. 0, Xel.

A data set can be, for example, a point cloud data (PCD). This means, an unordered
collection of points in a Euclidean d-dimensional space, E¢. A PCD can also be a sample of
points from a lower dimensional subset. In this case, the topological features of the space
can be inferred by reconstructing it from the sample.

This reconstruction is frequently done by performing planar projections. However, this
approach may not be adequate when the space of the system underlying the PCD is not a
manifold; for example, when it is curved.

To study the topological features of a PCD, the first step usually consists on transforming
the PCD into a family of simplicial complexes by defining a proximity parameter, €. This
step, as we will later see, resembles the construction of a recurrence plot by determining a
metric and a recurrence threshold, ¢.

The characteristics of these simplicial complexes are analyzed via the theory of persistent
homology. Finally, the results from this analysis are summarized in either a so called barcode
or a so called persistence diagram (defined below). Both of these summaries contain the same
information as the Betti numbers.

4.1.1 Simplicial complexes

Let us consider every data point in a PCD as a vertex in a combinatorial graph, with
edges indicating the proximity between data points, measured by a distance parameter, e.
Considering this graph as the structure for a higher dimensional object, intstead of proceeding
to cluster it as in the previous chapter, we analyze its higher order topological features. For
this, we first transform the graph into a collection of simplices in order to obtain a simplicial
complex.

Definition 4.1.2 (SIMPLICES). A k-simplex is the convex hull of k + 1 affinely inde-
pendent points, 0 = conv{ug, Uy, ..., U}

The diameter of a simplex o € K, diam(o), is given by the maximum distance between the

images of any two points z,y € o. This means, diam(c) = max, e, d(f(2), f(y)).

For k from zero to three, the k-simplices have particular names: a 0O-simplex is called a
vertex; a 1-simplex, an edge; a 2-simplex, a triangle; and a 3-simplex, a tetrahedron.

Therefore, a simplicial complex can be understood as a collection of vertices, edges, triangles,
tetrahedron and polyhedra of higher orders.

Definition 4.1.3 (SIMPLICIAL COMPLEX). A simplicial complex is a finite collection of
simplices, K, such that:

e Ifoe KandT <o, thent € K,
e Ifo,00 € K, then 0 N oy Is either empty or a face of both.

53



Chapter 4

The underlying space of a simplicial complex, denoted by |K]|, is the union of its simplices
with the topology inherited from the Euclidean ambient space where the simplices are con-
tained. The dimension of a simplicial complex is equal to the maximum dimension of its
simplices.

Definition 4.1.4 (TOPOLOGICAL SPACE OF A SIMPLICIAL COMPLEX.). Associated to
a simplicial complex, K, there is a topological space |K| = |(V,X)|, where V is a finite set,
and ¥ is a family of non-empty subsets of V.. Let ¢ : V. — {1,2,..., N} be a bijection and
c(o) be the convex hull of the set {ey(s) }ses, Where e; denotes the i-th standard basis vector.
Then, the topological space |K| may be defined as the subspace of R given by the union

UUEE C(U)'

A topological space X is said to be triangulable if there exists a simplicial complex K and
a homeomorphism f : |[K| — X. The pair (K, f) is called a triangulation of X. This
way, a simplicial complex can serve as a simple combinatorial way to describe a triangulable
topological space and a lot of effort has been put in approximating topological spaces with
simplicial complexes [11, 9, 44].

The simplices in a simplicial complex can be constructed in different ways and the simplicial
complexes can thus have a geometric realization or not. However, a desired property in any
simplicial complex is to preserve the homotopy type of the underlying topological space.

In the case where a simplicial complex does not have a geometric realization, the concept of
abstract simplicial complex is useful.

Definition 4.1.5 (ABSTRACT SIMPLICIAL COMPLEX.). An abstract simplicial complex
is a pair (V,X), where V is a finite set, and X is a family of non-empty subsets of V' such
that o € ¥ and 7 C ¢ implies that 7 € 3.

The nerve is a construction of an abstract simplicial complex that, under certain conditions,
has the important property of being homotopy equivalent to the underlying space.

Definition 4.1.6 (NERVE). Let X be a topological space and U = {Uy }aca be an open
covering of X, where the sets in the collection U are not necessarily convex. The nerve of U,
N(U), is the abstract simplicial complex associated to U. N(U) has a vertex set A = {va},
with a vertex for every Uy, such that k + 1 vertices span a k-simplex if and only if there are
k + 1 sets of U whose intersection is non-empty; i.e. Uy N ...N Uy, # 0.

As stated in the following theorem, if the sets in U are convex, then the nerve preserves the
homotopy type.

Theorem 4.1.7 (NERVE THEOREM). Suppose that U, the covering of X, consists of
open sets and is numerable and that for all ) # S C A, we have that (\,.qUs is either
contractible or empty. Then N (U) is homotopy equivalent to X .

sES

Interestingly, another way to guarantee that N (U) preserves the homotopy type is by requir-
ing |J,, Ua to be triangulable. This way, all sets in the collection are closed and all non-empty
common intersections are contractible, and then N(U) ~ J, Ua.

There are other constructions that create simplicial complexes with geometric realizations
and also preserve the homotopy type of the underlying topological space.

Later on, when we introduce our method for obtaining an adequate state space reconstruction
following the persistent homology approach, we will make use of the witness complex con-
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struction. This construction can be applicable to real-world data since it is robust to noise
and outliers. In the following paragraphs we will describe the Vietoris-Rips complex and
the Cech complex, given that these constructions motivate the introduction to the witness
complex construction.

In Fig. 4.2 we illustrate three different geometric realizations: the Nerve, the Cech and the
Vietoris-Rips complex for a given collection of three points.

(a) Nerve (b) Cech complex (c) Vietoris-Rips complex

Figure 4.2: The nerve, Cech and Vietoris-Rips complexes for a collection of three data points.

Cech complex

When a topological space, X, is a metric space, a type of covering of X is given by B¢(X) =
{B()}zex, where € > 0. This way, a Cech complex is an abstract simplicial complex (which
not always has a geometric realization) created by considering the sets in the covering U as
closed geometric balls with the same radius.

Definition 4.1.8 (CECH COMPLEX). Let S = {us}aca be a finite set of points in
Euclidean space E?. Let B (ug) = uq + eB? be a closed ball with center in u, and radius e.
Then, the Cech complex of S is defined as the nerve of the collection of balls {Be(ua)}aca
and substituting the center of each ball:

Cle) = {ogm N Belua) 7&@} (4.1)

U €0

The Cech theorem states that a Cech complex has the homotopy type of the union of closed
balls with radius equal to €/2 about S = {uq }aca, the finite set of points in Euclidean space
E?. This implies that the Cech complex behaves exactly like E?, even when it can produce
simplices in dimensions much higher than the dimension of the space.

However, the homology computation with these complexes is very sensitive to outliers and
noise [4]. This way, it is desirable to use alternative constructions of simplices when the PCD
is suspected to have these characteristics, for example, the Vietoris-Rips construction.

Vietoris-Rips complex

As mentioned before, the Cech construction is sensitive to outliers and noise. Additionally,
computing the homotopy via the Cech construction is computationally expensive. An alter-
native construction to overcome these drawbacks is provided by the Vietoris-Rips complex.
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Definition 4.1.9 (VIETORIS-RIPS COMPLEX.). For X a metric space with metric d(-,-),
the Vietoris-Rips complex for X, attached to the parameter €, is denoted by V R(X,¢€). This
VR(X,¢€) is the simplicial complex whose vertex set is X and where {xg, 1, ..., X} spans a
k-simplex if and only if d(z;,x;) < e for all 0 <1, j < k.

Even when the Vietoris-Rips complex is computationally less expensive than the Cech con-
struction, it may have more simplices than a Cech complex, given that it is maximal among
all simplicial complexes with a same 1-skeleton.

Definition 4.1.10 (K-SKELETON OF A SIMPLICIAL COMPLEX). The k-skeleton of a
simplicial complex consists of all simplices of dimension k or less:

K (k) ={o € K|dimo < k} (4.2)

This way, a Vietoris-Rips complex can be recovered completely from a graph. This implies
another computational advantage over the Cech complex, which requires to store the entire
boundary operator. However, contrary to the Cech complex, the Vietoris-Rips does not have
the same homotopy type of EZ. Even more, it might not be similar to a d-dimensional space.

Witness complexes

A drawback of the Cech and the Vietoris-Rips complexes is that they depend on the precision
with which the distances between data points are measured. These also tend to produce
simplices in dimensions much higher than the dimension of the space [9].

Therefore, one would like to recover the topology of a space in a way such that it is robust to
the introduction of noise in the measurements. With this idea in mind, and introducing a set
of landmark points (see Definition 4.1.11), one can construct the so called witness complexes.
These produce smaller simplicial complexes than the Cech or the Vietoris-Rips complexes
and are divided into strong and weak witness complexes.

According to V. de Silva and G.Carlsson [11], some of the main advantages of constructing
witness complexes are that these are adaptable to arbitrary metrics, do not suffer from curse
of dimensionality and show good results for topological data analysis (TDA) with persistent
homology, even for noisy data.

The computational cost of constructing a witness complex may be high. Silva and Carlsson
introduced the lazy witness construction [10] in order to reduce it. These simplex are able to
robustly reconstruct the same stream created using Vietoris-Rips complexes, but with lower
computational cost. However, the quality of their reconstruction depends on selecting an
appropriate number of landmark points [11]. Therefore, despite being less expensive than
regular witness complexes, we did not use them in any of the methods introduced in this
thesis.

Definition 4.1.11 (STRONG WITNESS COMPLEX). Let X be any metric space and
{loy...,.x} = £ C X a finite set of points in X called the landmark set. For every point
x € X, denote by m, the minimum distance from x to any point in L.

Then, given a parameter ¢, the strong witness complex is the complex, W*(X, L, ¢), whose
vertex set is £ and where {lo, ..., 1}, } spans a k-simplex if and only if there is a point x € X,
called the witness, such that d(z,l;) < (my + €) Vi.

Definition 4.1.12 (WEAK WITNESS COMPLEX). Let A = {lo,...,lx} be a finite subset
of a metric space X. Then, a weak witness for A is a point * € X such that d(xz,l) >
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d(z,l;) Vi and ¥l ¢ A. And an e-weak witness for A is a point x € X such that d(z,l) + € >
d(z,l;) Vi, VI ¢ A.

Then, the weak witness complex W™ (X, L, €) is obtained by declaring that a family A =
{lo, ..., lx} spans a k-simplex if and only if A and all its faces admit e-weak witnesses.

Strong and weak witness complexes have an inclu-

sion property that makes them interesting when Definition 4.1.13 (INCLUSION).
analyzing a filtration. An inclusion map A — Bisamap A — B
where A C B. 2 fig,

Let W(X,L,¢e) and W(X, L,€') be two different
strong (or weak) witness complexes originated from the same metric space and landmark
set, but using different parameters ¢ and € such that 0 < e < ¢’. Then, the following holds:

W (X, L,e) = W(X,L,¢) (4.3)

Landmark points. In witness complexes, the landmark points are assumed to be well
distributed over the PCD and the remaining points are used to construct the simplicial
complex. Under this assumption, if the set of landmark points is fixed, when the number
of data points increases, the simplicial complex constructed should approximate an “ideal”
complex in which every data point is a witness. However this will not be the case if the
selection of the landmark points or the definition of a witness is not appropriate.

As can be understood from Definition 4.1.11, every landmark point determines a Voronoi
cell in the graph metric. Ideally, each of these cells will correspond to convex, convexly
intersecting regions in the underlying space, and their size is A = || Z||/||L||, where Z is the
vertex set and L is the set of landmark points. If the distribution of the landmark points is
appropriate, every Voronoi cell should contain approximately A points.

The two typical types of landmark points selection are the random and sequential min-
maz [10]. The random selection is self-explained so we will proceed to explain the second
way of selection.

The sequential minmaz landmark point selection, or minmaz selection, starts by selecting a
landmark point at random. Then, we continuing selecting landmark points until producing
the desired collection, L = {{1, /s, ..., ¢, }, where {; € Z \ {{; ;;%).

For the selection of additional landmark points, we need to consider a metric d, which may
be the Euclidean or the shortest-paths metric'!. Then, every additional landmark point is
selected as the data point which maximizes the following function:

z — min{d(z,01),...,d(z,4;—1)} (4.4)

According to G. Carlsson and V. de Silva [9], randomly selected landmark points tend to be
selected from high-density regions of the data and minmaz selected landmark points tend to
be well separated. However, the minmazx selector tends to take outliers as landmarks, which
implies that in some cases, some preprocessing of the data should be done. Nevertheless, these
authors report good results when using a minmaz selector. Fig. 4.3 illustrates the differences
in persistent homology results due to the selection of landmark points for constructing witness
complexes, suggesting that the minmax selector provides better results.

!The shortest-paths metric is used for the generation of landmark points for the combinatorial Delaunay
triangulation. This triangulation was introduced by Carlsson and de Silva in [11], and is defined as the nerve
of a covering of X made with Voronoi cells. Such triangulation has the advantage of producing very small
simplicial complexes of dimension usually equal to the one of the manifold of X. However, we do not cover
it here since it tends to produce degenerate complexes for finite metric spaces [9].
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4.1.2 Homotopy

One can use simplicial maps to provide a notion of equivalence between topological spaces.
This can in turn be encoded into an equivalence relation. The first notion of equivalence we
will review is the so called homotopy.

Definition 4.1.14 (HomoToPY). Two continuous maps f, g : X — Y are homotopic
if there is a continuous map H : X x [0,1] — Y such that H(z,0) = f(z) and H(z,1) =
g(x)Vx € X. This defines an equivalence relation, f ~ g. One says that f and g are
homotopic if there is a homotopy between them.

Two topological spaces X and Y are said to be homotopy equivalent if there are two con-
tinuous maps f: X — Y and ¢ : Y — X such that f and g are homotopy equivalences of
homotopy inverses of each other.

That means that f o g is equivalent to the identity map on Y (f og ~ idy) and that go f is
equivalent to the identity map on X (go f ~idy).

The definition of homotopy equivalence provides an equivalence relation, X ~ Y. This way,
X and Y have the same homotopy type if they are homotopy equivalent.

4.1.3 Homology

Despite the insights that homotopy provides, it has high computational costs. For this reason,
homology, another notion of equivalence between topological spaces, is more practical. This
formalism, however, does not capture as much topological information as homotopy.

Homology describes quantitatively the connectivity of a topological space. The connectivity
of a space consists of its number of k-dimensional chain complexes.

Definition 4.1.15 (CHAIN COMPLEX). A k-dimensional chain, c, is a formal sum of
k-simplices in a simplicial complex K. Let {o;} be the collection of k-dimensional simplices
and {a;} the collection of coefficients, where a; are typically modulo 2 coefficients, meaning
that they take values 0 or 1. This way, ¢ is defined by:

Cc = Zaidi (45)

Given two chains, ¢ = ZZ a;o; and ¢ = ZZ bjo;, their addition is defined by ¢ + ¢ =
> ;(a; + b;)o;, where a; +b; = 0 if a; = 1 and b; = 1. Introducing the neutral element,
0 = >, 00;, and the inverse of a k-chain, —c = ¢, the pair of k-chains and sum operation,
Cr(K) = (Ck,+), forms the Abelian group of k-chains.

Cycles and boundaries

The k-dimensional chain complexes divide into cycles and boundaries. The boundary of a
k-chain is the sum of the boundaries of its simplices. A k-cycle is a k-chain with empty
boundary.

Definition 4.1.16 (BOUNDARY OF A k-SIMPLEX). Given a k-simplex o = [ug, u1, ..., U],
its boundary is the object that relates the groups of k-chains created for every k < dim(K).
The boundary of o, denoted by Oyo, is defined as the sum of the (k — 1)-dimensional faces
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of o. If [ug, ..., Uj, ..., u] denotes the simplex where u; is omitted, then one can define linear

operators O such that
k

Opo = > U1, ooyl ooy U] (4.6)

=0

Definition 4.1.17 (k-CyCLE). A k-cycle is a k-chain, ¢ € Cy, where dc = 0. This
means, it has an empty boundary.

Definition 4.1.18 (k-BOUNDARY). A k-boundary, ¢, is the boundary of a (k+1)-chain,
d, where ¢ = 0d for d € Cgy1.

From Def. 4.1.16, we see that 0, : Cp — Ci_1. Besides, taking the boundary commutes
with the addition. The k-cycles group inherits being Abelian from the group of k-chains.
This way, one can also define the Abelian group of k-cycles, denoted by Zj = Z;(K). The
group of k-cycles is a subgroup of the group of k-chains and the kernel of the k-boundary
homomorphism, Z; = ker Jy.

Since O (c+c') = Orc+ 0k, the boundary is a homomorphism and can therefore be called the
boundary map for chains. This way, a chain complex can also be understood as a sequence
of chain groups connected by boundary maps:

p) B
- Oy —— Cr 25 Gy - (4.7)

The group of k-boundaries, By = By(K), is also Abelian and can be also understood as
a subgroup of k-chains. It constitutes the image of the (k + 1)-boundary homomorphism,
Bk =im 8k+1.

An important property of boundaries is that the boundary of a boundary is zero. This result
constitutes the Fundamental lemma of homology.

Lemma 4.1.19 (FUNDAMENTAL LEMMA OF HOMOLOGY). For every k € Z and (k+1)-
chain

d(dcpir) =0 (4.8)

Given a k-chain, the boundary J; can be expressed as matrices which represent the boundary
homomorphisms. These matrices can be reduced? and used to compute homology. However,
this process can be computationally expensive.

Homology groups

From Lemma 4.1.19, one can derive that every k-boundary is a subgroup of a k-cycle group:
By C Zi. This property allows the construction of homology groups.

Definition 4.1.20 (HOMOLOGY GROUP). The k-homology group is the quotient of the
k-cycle group modulo and the k-boundary group:

Hy(K) = Hy = Zy/ By, (4.9)

2The reduction typically consists on bringing them to the so called Smith normal form, which we will not
explain here. For details about the Smith normal form and its construction, see [40]
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An homology group, Hj, is an Abelian group. It indicates the number of k-dimensional
subspaces of the topological space X which have no boundary in X and, at the same time,
which are not boundary of any (k + 1)-dimensional subspace. Taking continuous maps
between topological spaces will induce maps on homology as well.

An element of Hy, can be obtained by adding all k-boundaries, By, to a given k-cycle, ¢ € Zj.
This cycle is called a coset of By in Zj.

Let ¢’ be another k-cycle such that ¢ = ¢+ ¢”’, where ¢’ € Bj. Then, ¢ returns the same
class: ¢+ By, = ¢ + By, because ¢’ + By, = Byj,. Such class is a coset of H}, and is called a
homology class. Since ¢ and ¢’ are in the same homology class, they are said to be homologous,
which is denoted by ¢ ~ /. Besides, the addition of two classes is also well defined, since
(¢+ Bg) + (¢ + Bg) = (c+ ) + By.

The cardinality, or order, of a homology group Hj is determined by the number of cycles in
it:
ordHy, = ordZy /ord By. (4.10)

The rank of a k-homology group Hy, denoted by S, is called its Betti number. Intuitively,
the k-th Betti number corresponds to the number of independent k-dimensional surfaces in
H.

Equivalently to the computation of the order of Hy, the rank of a k-homology group is given
by
B, = rankH;, = rankZ;, — rank By, (4.11)

An important result on algebraic topology is that homology groups do not depend on the
triangulation of a topological space.

Considering that homotopy equivalent spaces have isomorphic homology groups, then we
have that the homotopy equivalence between two spaces can also be measured in terms of
their Betti numbers. This means that all their Betti numbers are equal. For this reason,
despite the loss of topological resolution, being able to compute homology groups using linear
algebra methods constitutes a big advantage.

4.1.4 Persistent homology

It is often the case that a set of data points does not precisely recover the topology of the
subspace X C R™. This may occur because the set of data points constitutes a sample,
possibly with noise.

An important question is thus, how much of the homology of X (measured not only by its
Betti numbers) can be obtained from the sample?

To answer this question, one might use methods of manifold learning, like the one of Niyogi
et al. [95]. These authors assume working with Riemannian manifolds and consider that the
Cech complex associated to a covering by balls of a fixed radius e, is homotopy equivalent
to the underlying manifold. However, this approach relies in the assumption that the data
lies in a submanifold, which is often not true in experimental settings.

Another approach is analyzing the behavior of homology for several values of €, the parameter
used to construct the simplices (see section 4.1.1). This approach should provide a notion
of the topological resolution of the data points. The main idea underlying this approach is
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that some topological features will exist over ranges of ¢ of different length, the so called
“surviving” features. Those features surviving longer ranges may correspond to large scale
geometric features, or interesting signals, whereas short ranges may correspond to noise or
inadequate sampling.

Persistent homology is a computational scheme that provides a summary of homology under
the the entire range of e.

Recalling that Cech and Vietoris-Rips complexes grow as e grows, the chain maps of a k-
persistence complex can be understood as inclusion maps.

Definition 4.1.21 (k-PERSISTENCE COMPLEX, according to R. Ghrist [55]). A k-
persistence complex is defined as a sequence of chain complexes, C = (C’,’C)i, together with

chain maps, z : C} — C’}:’l.

Then, the inclusion map going from the underlying space of K; to the one of K, for i < j,
induces an homomorphism f;” : Hy(K;) — Hp(Kj) for every dimension k. This way, a
filtration of f corresponds to a sequence of homology groups connected by homomorphisms.

Definition 4.1.22 (FILTRATION). Let K be a simplicial complex and f : K — R a
monotonic function. Then, a subcomplex of K can be obtained from K, = f~'(—o0,a], for
every a € R. And if K contains m simplices, then there are n +1 < m + 1 subcomplexes,
which can be arranged in a filtration of f. The filtration of f is the sequence:

l=KyCK C--CK,=K (4.12)

The homomorphisms corresponding to the filtration of f given in expression 4.12 are:
OZHk(Ko)’—)Hk(Kl)I—) %Hk(Kn):Hk(K) (4.13)

These constritute the so called k-homology groups, which indicate the k-classes of K; that
survive in Kj.
Definition 4.1.23 (k-PERSISTENT HOMOLOGY, according to [44]). The k-persistent

homology groups are the images of the homomorphisms induced by the inclusion f,i’] :

Consider the birth point of a homology class as the
point where it is created, and the death point as Definition  4.1.24  (CRITICAL
the point where it becomes trivial or identical to VALUE). Let X be a topological space
The birth and and f : X — R an inclusion function.

some class that was born before. Then, a homological critical value is

death points of a homology class are called the ho- a number a € R for k € Z, such that
mological critical values. for all sufficiently small ¢ > 0, the

map Hy(Kq—e) — Hi(Kate) is not an
According to Cohen-Steiner et al. [21], a homology | isomorphism.

class a € Hyp(K;) is born in point i if a did not
exist in the image of the filtration function féz_éﬂ)

j if f,ii’j_a) () is not in the image of f,ii_(s’j_é) for any § > 0 but féi’j) () is in the image of
I

, for any 6 > 0. And it dies entering point
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Persistence diagram

From now on we will denote the birth point of the k-homology class « by b(«) = i and its
death point by d(a) = j. Then, the persistence of « is equal to the difference between the
parameter value where it dies and the parameter value where it is born:

Pers(a) = d(a) = b(a) = j — i (4.15)

The k-persistent Betti numbers, ﬂk , are the ranks of the k-persistent homology groups.
These contain all the information about the k-persistent homology groups.

Lemma 4.1.25 (FUNDAMENTAL LEMMA OF PERSISTENT HOMOLOGY). Given a filtra-
tion as in Eq. 4.12, for every 0 < | < m < n and every dimension k, one can express the

k-persistent Betti numbers as:
Y S (416

i<l j>m

where ui’j denotes the multiplicity, defined as the number of k-classes that are born with K;
and that die with K;. The multiplicity is given by:

wd =BT =B = (BT =B ) Vi< g, Yk (4.17)

The k-persistent diagram, Dy = Dy (fx), is a visualization of the k-persistent Betti numbers,
developed by Edelsbrunner, Letscher and Zomorodian [45]. It consists on a plot of the birth-
versus the death- points of the independent k-homology classes along a filtration.

Definition 4.1.26 (PERSISTENCE DIAGRAM, according to Cerri et al. [15]). The k-
persistence diagram, Dy, is the set of all points {(i,j) € R x R : i < j} such that uy S|
(counted with their own multiplicity), union the set of all points {(i,j) € R x R : i = j}
(counted with infinite multiplicity).

In Fig. 4.3 we show two different persistence diagrams for a same PCD obtained from sam-
pling a torus. This PCD is included in the default examples of the JavaPlex library [116]. The
different persistence diagrams illustrate how the differences that the selection of landmark
points can produce, in the case of computing persistent homology using witness complexes.
It suggests that the minmax selector is better to recover the homology of the PCD.

Barcodes

A barcode of a k-homology group H,ZCJ is a plot containing a collection of horizontal line
segments, where the z-axis indicates the values of parameter ¢ and the y-axis indicates an
ordering of the homology generators. This visualization tool was developed by A. Collins,
A. Zomorodian, G. Carlsson and L. J. Guibas in 2004 [22].

In a barcode, the number of intervals between two given e values, i and j, is equal to the
rank of H; “J This way, it provides the same homology information as a Betti number.

The length of every interval in a barcode can be intuitively related to the persistence of
topological features. Again, long intervals would correspond to large scale geometric features
and short intervals to noise. However, whether an interval is considered long or short depends
on the system analyzed.
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(a) PCD: 2000 points sampling a torus.

Dim 0 Dim 1 Dim 2
0169 0.16 0.16 A
0.14 0.14, 0.14
0.12 0.12 0.12
0.1 0.1 0.1
2 2 2
£ 008 Zo.08 £ 0.08
0.086 0.06 0.06
0.04 0.04 0.04
0.02 0.02 0.02
4] 0 o]
0 0.05 0.1 0.15 0.05 0.1 0.15 0 0.05 0.1 0.15
Start Start Start
(b) Persistence diagram produced with minmaz selected landmark points.
" Dim 0 Dim 1 Dim 2
1 1 1
L]
08 08¢ 0.8 e &
-
506 5 0.6 5 0.6
= = =
w W w
$
0.4 0.4 0.4
02 02 0.2
o
0 0 0 -
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Start Start Start

(c) Persistence diagram produced with randomly selected landmark points.

Figure 4.3: (a) A point cloud data (PCD) of 2000 points sampling a torus, following a uniform distribution. (b)
Persistence diagram associated to this PCD when using a minmax landmark point selector. (c) Persistence diagram
associated to this PCD when using randomly selected landmark points. Both persistence diagrams were computed for
mazimum homology group 2, selecting 150 landmark points to construct a witness complez (see Section. 4.1.1), and
considering 50 intervals for the filtration. Every circle in the plot indicates the birth (z-axis) and death point (y-axis)
of a topological feature in a homology group (Dim). The triangular points indicate features whose death point is at

infinity.
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This way, the information of a barcode is more meaningful when we are interested on ana-
lyzing different scales of representation of a space.

In Fig. 4.4 we show two different barcodes for the same PCD shown in Fig. 4.3(a). This
illustrates the differences originated by the different selection of landmark points used to
compute witness complexes.

Torus Example (dimension 0) Torus Example 3 (dimension 0)

0 0.05 0.1 0.15 0.2 0.2 0.4 0.6 0.8 1

Torus Example (dimension 1) Torus Example 3 (dimension 1)
' ; ' : 0 0.2 0.4 0.6 0.8 1
0 0:03 04 015 0rd Torus Example 3 (dimension 2)
Torus Example (dimension 2) —
. =
. | , ! 0 02 0.4 0.6 0.8 1
0 0.05 01 0.15 0.2
(a) Barcode produced using minmax selector. (b) Barcode produced using random selector.

Figure 4.4: Consider the same point cloud data and parameters of Fig. 4.3. Then, (a) shows the barcode associated to
this PCD when using a minmax landmark point selector and (b) shows the barcode associated to this PCD when using
randomly selected landmark points. Intervals with a triangular end are those that die at infinity. We can see that the
random landmark points selector produces clearer intervals in Hy but several additional intervals in Ho. Considering
the PCD that originates them, the minmax selector seems to be more adequate.

4.1.5 Stability thorems

An important question in the study of persistence is how much the computations are affected
by the presence of noise and approximations (inherent to the measurement process). For
persistent homology to be stable, perturbations in the data should not produce big variations
in its computations.

As proven by Cohen-Steiner, Edelsbrunner and Harer [20], persistence diagrams are stable.
This means that a small variation in the filtration function will produce small changes in the
points out of the diagonal in the persistence diagrams.

Proving stability is in general a complicated task. To deepen into this topic, we refer the
reader to the articles of A. Cerri et al. [14, 16]; Cohen-Steiner, Edelsbrunner, Harer and
Mileyko [20, 21]; P. Bendich, T. Gulkovskyi and J. Harer [4]; B. T. Fasy et al. [48]; or P.
Niyogi, S. Sale and S. Weinberger [95].

In order to know how much a perturbation in the data affects the persistent homology
results, it is necessary to measure the similarity between two given persistence diagrams
or barcodes. There are different measures to compute similarity between distributions; for
example, the Kullback-Leibler divergence, the matching distance, the bottleneck distance
and the Wasserstein distance.

The Kullback-Leibler divergence measures the loss of information when transiting from one
distribution to the other. It is commonly used to measure the similarity between two prob-
ability distributions. However, this measure is generally non-symmetric and therefore is not
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a true metric [88]. A common approach to overcome this, consists on symmetrizing it [110].

In the following sections we will comment further on the matching, the bottleneck and
the Wasserstein distances. These measurements are relevant in the persistent homology
literature; see for example [17]. Following the chronological order of their development,
we start describing the matching distance. Later, the bottleneck distance, which reduced
the computational complexity of the matching distance computations, while maintaining
the same boundaries in accuracy. Since this measure shows no sensitivity to differences in
bijection beyond the furthest pair of corresponding points in the persistence diagram, the
Wasserstein distance was developed. However, since there is no general stability theorem for
the Wasserstein distance, the bottleneck distance is still the most widely used measure of
similarity between persistence diagrams or barcodes.

Later on, in Section 4.2, where we analyze additional considerations for the analysis of com-
plex time series, we will refer again to the bottleneck and the Wasserstein distances to define
confidence sets [48], the stability of “persistence landscapes” [18]—a tool introduced by P.
Bubenik [8] in order to reduce the computational cost of persistent homology calculations—,
and the Kernel density estimation (KDE) approach [48].

The KDE approach is used in our new method for the identification of transitions between
dynamical regimes in real-world data (see Section 4.3), where we estimate the “mean persis-
tence” (Eq. 4.1) from multiple samples of a data set in the same fashion as in [48].

Matching distance

Given two k-persistence diagrams Dy, and D), the matching distance dpqaten(Dg, D)) mea-
sures the minimum between the cost of moving a point in Dy, to a point in D) and the cost
of moving these two points onto the diagonal.

Let us define the domain of points in a persistence diagram, A+, in terms of those points
lying in the diagonal and those out of this. This way, At = ATUA = {(i,j) e RxR:i <

JrU{(i,j) ERxR:i=j}
Then, given two points (i,7), (i, j') € A+, the distance between them is given by

.. N _ . s . ,]_7/ j/_/l:/
d((%])?@ 7] )) = min max{\z 1 ’7‘] ] |},max 2 ) 2

Considering o a function that varies over all bijections between Dy and D), the matching
distance can be expressed by

dmaten (D, D},) = min max d(p, o(p)) (4.18)
o pEDy

As proved by Cohen-Steiner, Edelsbrunner and Harer [20], the matching distance between
two persistence diagrams computed with different filtration functions is bounded by the Lqo-
norm between these functions. This way, the matching distance preserves the stability of
persistence diagrams: a small variation in the filtration function will produce small changes
in the persistence diagrams and in the matching distance. For this reason, this distance is a
very good descriptor of stability.

However, if M is the total number of proper points in a persistence diagram, the computa-
tional complexity of the matching distance is O(M?%) [26]. This makes it hard to compute
for large data sets. Coarse approximations to this distance have been provided, for example
by Cerri et al. in [15], for cases where not too much refinement is needed.
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Bottleneck distance

Let X and Y be two barcodes (or persistence diagrams) computed with different filtration
functions. Then, the bottleneck distance is the infimum over all bijections n : X — Y, of
all the distances measured with L..-norm between birth and death points in every bar, x,
in the barcodes (for a given homology group) associated to any two steps in the process. In
other words, it is given by

Weo(X,Y) = infysup |z — n(x)||0o (4.19)

n:X—=Y pex

As can be seen from Eq. 4.19, the bottleneck distance is a metric because W (X,Y) = 0 iff
X =Y, W (X,)Y) =Wy (Y, X) and Wy (X, Z) < Wo(X,Y) + W (Y, Z).

The stability theorem for filtrations, states that for
a dimension k, the bottleneck distance between the
persistence diagrams generated with two different

Definition 4.1.27 (TAME FUNC-
TION). A function f : X — R is
tame if it has a finite number of ho-

tame filtering functions is upper bounded by the mological critical values and the homol-
L norm of the difference between the two filtering ogy groups, Hy(f '(—o0,a)),arefinite
functions [44]. dimensional for all k € 7 and a € R.

Theorem 4.1.28 (BOTTLENECK STABILITY FOR PERSISTENT DIAGRAMS [44]). Let X
be a triangulable space with continuous, tame functions f,g: X — R. And let Di(f) and
Dy (g) their respective associated k-persistence diagrams. Then the following is satisfied:

Weo (Di(f), Di(9)) < If = glloo (4.20)

This stability theorem can also be thought in terms of finite point clouds.

Let X and Y € R? be two point clouds. These have induced tame distance functions, dx
and dy, where dx(a) = infzex ||z — al| and dy'(—00, a) is homotopic to the filtration of Cech
complexes of X. Then, thanks to Theorem 4.1.28, one obtains that [92]:

Weo (D(dx), D(dy)) < [|dx — dy/loo (4.21)

Now, considering that H(X,Y) = ||dx — dy||cc and Theorem 4.1.28, one obtains the following
corollary [92].

Corollary 4.1.29. Given two finite point clouds, X,Y € R%:
Wao(D(dx), D(dy)) < H(X,Y) (4.22)

Wasserstein distance

Despite its stability and being easily computable, a drawback of the bottleneck distance
is that it is not sensitive to small differences in the bijection beyond the furthest pair of
corresponding points in the persistence diagram. The Wasserstein distance overcomes this
drawback.

For a given degree ¢, persistence diagrams X and Y and bijections n : X — Y, the ¢-
Wasserstein distance between X and Y is given by:

1/q
W,(X,Y) = 1nf ZHx— z)||%, (4.23)
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Intuitively, the Wasserstein distance can be understood as the physical work needed to
transform a pile of earth with shape equal to the filtration function f, to a pile of earth
with the shape of g. This interpretation motivates the other name by which this distance is
known for ¢ = 1: the earth movers distance (EMD).

The Wasserstein distance, W,(X,Y), also constitutes a true metric. And, as can be seen
from Eq. 4.23 the bottleneck is equal to the Wasserstein distance in the limit when ¢ — oo.

A stability theorem as the one proven for the bottleneck distance is, in general, not possible
for the g-Wasserstein distance. However, Cohen-Steiner et al. [21] have proven that there
exist constants, k < ¢ and C, in the case when the filtration functions f and g are Lipschitz,
such that:

Wy(f,9) < CIIf =gl (4.24)

These authors have also proven that, for every ¢ > k+1, the degree-g total persistence which
expresses the sum of ¢g-th powers of persistences, denoted by Pers,(f), satisfies

[Persy (f) — Persy(9)] < Cllf — gl (4.25)

In practice, given the constrains needed to state a stability theorem for the Wasserstein
distance, the Bottleneck distance is more commonly used for topological data analysis.

4.2 Considerations for the analysis of complex time series—
With persistent homology

As mentioned before, some of the problems found when analyzing real-world data are its
length, noise and existence of outliers.

In order to solve the problems of noise and outliers when computing the persistent homol-
ogy of real-world data, the use of more robust simplicial complex constructions is crucial.
However, the computational cost of these constructions is always problematic when dealing
with large data sets.

An approach to solve the problem of the high computational cost of persistent homology
calculations, is to subsample the data. With this idea in mind, P. Bubenik [8] introduced
in 2012 the concepts of persistence landscape, p-landscape distance and mean persistence
landscape.

A persistence landscape is a function, A : N x R — R, , where R = [~o0, 00], created by
taking a data sample and transforming its persistence diagram information into an additive
function.

). Being b the birth and d the death
b

Definition 4.2.1 (PERSISTENCE LANDSCAPE [8
of a persistence module, define t = # and m = dT. Then, a persistence landscape can
also be defined as a sequence of functions A\, : R — R, where \,(t) = \(k,t) = sup{m >0 |
ptmttm > k1 and B = dim(im(M (t — m < t +m))).

Once a persistence landscape is calculated, it is interesting to distinguish it from another
persistence landscape. This difference is measured by the p-landscape distance.
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Definition 4.2.2 (p-LANDSCAPE DISTANCE [8]). Given two persistence diagrams D
and D', the p-landscape distance between them is given by

Ap(D, D) = A= X]lp (4.1)

Two important results are that persistence landscapes are stable with respect to the co-norm,
and that the co-landscape norm is bounded by the bottleneck distance.

These definitions are useful to deal with the problem of analyzing a large data set, X. As
mentioned before, this problem is approached by taking subsamples of X. By adding the
persistence landscapes associated to different data samples, one may compute the mean
persistence landscape. This then provides a topological statistical summary of the metric
measure space.

Definition 4.2.3 (MEAN PERSISTENCE LANDSCAPE [8]). Consider Xi,..., X, i.i.d.
distributed copies of a data set X, and their associated persistence landscapes A', ..., A™.
Then the mean landscape is given by A" (w) = X", where

N (k1) = :LG:x'(k,t) (4.2)
=1

By the strong law of large numbers and the central limit theorem on Banach spaces, persis-
tence landscapes convergence can be proven. Additionally, it is possible to define confidence
intervals for the statistical approximation of persistence landscapes.

In 2014, Chazal et al. [18] added on the methodology of P. Bubenik for approximating
the persistence landscape of a metric measure space. They found that a mean persistence
landscape is stable to perturbations of the measure in the Wasserstein metric.

All their results consider that every data sample lies in a metric space (M, p) and is drawn
i...d. from an unknown measure p supported in a compact subset of X, € M. For any
a,b>0,x € X, and r > 0, then u(B(z,7)) < min(ar®, 1).

In the same year, Fasy et al. [48] provided a way to separate the noise in a data set. They
defined confidence sets for different topological quantities. Their main idea was that the
points within a certain band around the diagonal in a persistence diagram constitute noise.

Definition 4.2.4 (CONFIDENCE SETS [48]). Consider S = {X3, ..., X;,} a sample from
a distribution P concentrated on or near M € R* € RP. Let P be the persistence diagram
defined by the lower level sets {z : dy(x) < €}, and P be the persistence diagram of
{z :dg,(z) <e}. Given o € (0,1), define ¢, = ¢p (X1, ..., Xy) by

lim sup P(Woo(P,P) > ¢,) < a (4.3)

n—oo
Then, the confidence set C,, is a subset of all persistence diagrams whose distance to P is

almost c¢,,. This means

Cp = {P : WaolP,P) > ¢n} (4.4)

For their theoretical calculations while subsampling, given a data point cloud with n data
points, Fasy et al. [48] take N = (Tbl) subsamples with b,, = O(%) data points each, where
b, — o0. These theoretical number of samples and their length, are sometimes costly to
compute. However, it is sufficient to take a large number of samples.
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4.3. A new method for the identification of transitions between dynamical regimes in
real-world data

However, there is another contribution within the same article of Fasy et al. [48] which is
more interesting for us. They introduce a density-based method which is very insensitive to
outliers and noise. Therefore, this approach seems to be more adequate when dealing with
real-world data.

The main idea behind such density-based approach is to construct a density estimator out
of the data. Then, taking a filtration of the upper level sets of such density estimator, it
is possible to define a persistence diagram. For this approach, they consider the standard
kernel density estimator (KDE).

Let pp, be the density of the probability measure P, = P x K}, a smooth version of P, where
Kp(A) = hPK(h™'A) and K(A) = [, K(t)dt, for K a smooth symmetrical kernel. Then
an estimator of py, is given by the KDE, py(x), where E(pp(x)) = pr(x).

Definition 4.2.5 (KERNEL DENSITY ESTIMATION APPROACH [48]). Let Xi,...,X,, be
a sample from a distribution P concentrated on or near M C R”. Then the kernel density
estimator of py, is given by

o) = 3 > gt (125502 (15)

4.3 A new method for the identification of transitions be-
tween dynamical regimes in real-world data

In this section we introduce a new method for the identification of transitions between
different dynamical regimes in a system. This means, identifying the emergence of more
attractors or a strong deformation of the attractors in the state space of a system.

Our method is summarized as follows. Let U = {ug,uy,...,uy} be a time series data
describing a non-stationary process and X the state space reconstructed from U. Let X be
the state space already reconstructed from U. We proceed to divide X it into W windows of
equal length. The time lapse of a window should be enough to capture a dynamical regime of
the system. We then compute the topological summary for each window (mean h-persistence
in the (r, ¢)-space, see Eq. 4.1) and compare these summaries between all windows using the
so called total overlap (see Egs. 4.2 and. 4.3).

This way, we can identify the topological differences between windows of measurements,
which indicate the dynamical transitions in the time series data in a scale of time related to
the length of the windows of measurements.

4.3.1 Estimating the mean h-persistence: a summary of the topological
information of a time series

Let us start by assuming that the state space of a time series has already been reconstructed
(in Section 4.4 we introduce a new method for state space reconstruct based on persistent
homology), and denote this by X. Then, as mentioned above, we divide X into W windows
of length M < N: {Xg, ..., Xw }.

Every window should to include enough state space vectors to capture the dynamics of a
given configuration of the state space. This means, enough state space vectors to sample all
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the attractors existent at a certain moment of a possibly non-stationary process. However,
to satisfy this condition, M may be large and we may face high computational costs for
estimating the associated persistent homology of every window of state space vectors.

To solve this problem, we consider the statistical approach of Fasy et al. [48] to estimate a
mean persistence diagram, containing the birth and death points, b and d respectively, of

every h-homology group. However, we use variables r = % and ¢ = %, instead of b and

2
d, as done by P. Bubenik [8]. Thus, we estimate a mean (r, ¢)-persistence diagram for every

window of state space vectors.

Let Pp(Xy) denote the mean persistence for the h-th homology group of the w-th window
of state space vectors X,,. Then, to estimate Pp(X,,) we take S random data samples of
length L < M from X,: {Y9,...,Y5}. The computational details of how to obtain P}, (X,,)
are contained in Algorithm 4.

Let us denote by P (Y:) the h-persistence of the s-th sample of the w-th window of state
space vectors. This is estimated using the Kernel density approach (see Section 4.2, Eq. 4.5),
as the probability density function of the centers and radii in the persistence diagram asso-
ciated to the s-th sample. For this estimation we use the multi-dimensional kernel density
estimator (KDE) from the BEAST library [39].

This way, the mean persistence for the h-th homology group of the w-th window of state
space vectors is then given by

Pr(Xa) = = 3 Pu(Y3) (4.1)

Algorithm 4 - PERSISTENCE STATISTICS

1. Take a window of state space vectors of length M, X,,.

2. Compute the h-persistence for S random data samples from X,,:

for s=0to S do
> Take a random data sample of length L < M from X,,, Y5,.
> Compute the persistence diagram of Y5, D(Y5,).
> Obtain the maximum homology group populated in D(Y5,), H.
> Obtain the maximum filtration value of D(Y73,), fo-

for h =0 to H do
> Obtain birth and death points in Dy (Y5,), (b, d).
> Compute radii, r = (d 4+ b)/2, and centers ¢ = (d — b)/2.
> Compute a two-dimensional KDE over the (r, c)-space to estimate the h-persistence
of Y, Pr(Yy)-
end for
end for

3. Compute the mean h-persistence for X.,, Pn(Xw), according to Eq. 4.1, for h = [0, H].

4.3.2 Identifying dynamical transitions

In an analogy to the use of linear correlation, we define the overlap between the mean h-
persistence of different windows of state space vectors, Xy, and Xy, OVi(Xy,, Xu;) by

OVy, (X, s ij) = ‘min (,Ph(Xwi), Py, (ij)) | (4.2)

This definition corresponds to the definition of Lee et al. [76] for the overlapping area between
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4.4. Our criteria for an adequate state space reconstruction

two joint probability distribution functions, but adapted to the comparison of the mean h-
persistence estimations.

By using persistent homology, we incorporate high-order topological information to the com-
parison between windows of measurements. This way we approach one of the general prob-
lems associated to the use of correlation measurements to compare data: their use of low-
dimensional information of single attractors.

We define the total overlapping between these two windows of state space vectors by

H
OV (X, Xuy) = Y OViy(Xuy,, X)) (4.3)
h=0

We say that those pairs of windows of state space vectors having larger overlap are associated
to state space configurations with similar dynamics: similar geometry of their attractors, for
example. The definition of boundaries for determining whether the overlap is low of high
will not be covered for now, but left for future work.

Therefore, whenever two neighboring windows of state space vectors have low overlap, we
say there is a dynamical transition.

4.4 Our criteria for an adequate state space reconstruction

As we mentioned in Section 2.3, there are various definitions of what a good embedding is. In
general, an adequate reconstruction of the state space of a system from a time series should
provide all the dynamical information of such system.

Now, considering the concepts of homotopy and homology reviewed in Sections 4.1.2 and
4.1.3, it turns inevitable to ask wether persistent homology can say anything about the
embedding parameters necessary to produce an adequate state space reconstruction from a
time series.

The definition of equivalence of embeddings of Cross and Gilmore [24] states that in an
adequate state space reconstruction, there is a smooth map going from the reconstructed
space to the true state space. This relates to the definition of homotopy, in which two
continuous maps f, g : X — Y are homotopic if there is a continuous map H : X x [0,1] — Y
such that H(z,0) = f(z) and H(x,1) = g(z)Vz € X (see Def. 4.1.14). This way, we would
expect a good embedding to be homotopy equivalent to the true state space.

In terms of persistent homology, this means that the persistence diagrams (or barcodes) of
the true and the reconstructed state spaces should be the same or almost the same. Thus,
the distance between them, measured with any of the distances given in Section 4.1.5, should
be either zero or very small.

Additionally, the largest non-trivial homology class in the reconstructed space, should also
be equal to the one of the true state space. This statement derives from the results of Niyogi,
Smale and Weinberger [95], who have stated that, when identifying the homology of a sub-
manifold of dimension d from a data sample, one would see the j-th Betti number be zero
for all j > d.

However, when we analyze real-world data, the most common situation is not knowing what
the true state space of the system underlying a time series is. In this case, the definition
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of equivalence of embeddings is not enough. We suggest that an alternative approach could
follow the definition of good state space reconstruction given by Palit et al. [97]. According
to these authors, a good reconstruction not only has the smallest shape distortion of the
attractor but also has a more dense reconstructed attractor, with less outliers.

Recently, Dey, Fan and Wang [29] have approached the problem of the state space reconstruc-
tion and provided a way to estimate the embedding dimension. Their topological methodol-
ogy uses Vietoris-Rips complexes to detect the dimension of a hidden manifold from a data
sample using local homology. Its computation depends on what they call the “reach”, which
means the minimum distance from any point in the sample to its medial axis. This method-
ology has the advantage of being less sensitive than other methods to the local distribution
of points, since it does not require uniformity. However, since it depends on the computation
of the medial axis transform (a shape descriptor), it is very sensitive to small perturbations.
Our suggestion to alleviate the sensitivity to perturbations in this approach is to replace the
medial axis by the “scale axis transform”, introduced by Giesen et al [56], in the definition
of reach of Dey, Fan and Wang. The scale axis transform is a scale adaptive skeletal shape
representation based in the medial axis transform. The investigation of the use of the scale
axis transform for the computation of the embedding dimension is an interesting topic for
future research.

Another interesting topic for future investigation is the estimation of the embedding delay
using k-order combinatorial Laplacians [91]. These Laplacians are the generalization of
the graph Laplacian to simplicial complexes and relate to the existence of k-dimensional
bottlenecks in a graph. Their spectrum indicate how far from having a non-trivial k-th
homology class a simplicial complex is. To the best of our knowledge, the behavior of the
k-order combinatorial Laplacians spectrum is not well studied yet.

In our new method for the reconstruction of the state space, introduced in Section 4.5, we
consider that, in terms of persistent homology, a good state space reconstruction satisfies
the following condition:

e When reconstructing the state space from a subsample of the data, its associated
persistence diagram (or barcode) will be “similar” to the one obtained from another
subsample.

By similar we mean that the main topological features should be recovered, within a con-
fidence interval. And that the existing differences should be additional points close to the
diagonal in the persistence diagram (or short intervals in the barcode) created from the
sample.

This implies that the reconstructed attractor taking the full data set is dense. And that if a
sample of the data is sufficiently long, it should be able to reconstruct the same attractor.
This assumption is inspired by the criteria of Palit et al. [97] for an adequate state space
reconstruction in terms of shape distortion (see Section 2.3).

4.5 A new method for state space reconstruction —Based in
persistent homology

In Section 4.3 we introduced our new method for the identification of transitions between
dynamical regimes in complex data. For this, we assumed having an adequate state space
reconstruction from a time series. Such reconstruction could be performed with the method
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presented in Section 3.4 or with classical methods, like false nearest neighbors and autocor-
relation (see Section 2.1.2).

However, we want to make use of higher-order topological information for the reconstruction
of the state space with the aim of uncovering dynamical features like different time-scales in
the dynamics.

In this section we describe a new methodology for identifying adequate embedding parameters
for the reconstruction of the state space of deterministic dynamical systems using persistent
homology. This method uses the concepts defined in Section 4.3 and the ideas presented
in Section 2.1.2 for the selection of adequate non-uniform embedding delays and embedding
dimension. This methodology is described in Algorithm 5 and summarized as follows.

Given a time series U, we start by creating a two-dimensional 7-delayed time series, X(7),
where 7 € [0, Tinaz]. And we take an initial window of state space vectors of length M < N,

Xo(T).

As mentioned before, determining the size of M is a problem itself and will depend on
the specific characteristics of the analyzed system, but it should be enough to capture a
dynamical regime of the system.

Following the steps described in Section 4.3.1, we estimate a mean h-persistence diagram for
the initial window Xg(7), using variables r = %2 and ¢ = %3°, instead of b and d (where
b and d denote the birth and death points, respectively, of every h-homology group). We
denote this h-persistence diagram by Pp(Xo(7)).

For the estimation of the mean h-persistence diagram for the initial window, we use S random
data samples of length L < M from Xo(7): {YJ(7),..., Y5 (7)} (see Algorithm 4 for details).

Then, to obtain the embedding delays necessary for a non-uniform embedding, we follow
the idea of selecting embedding delays in terms of local minima in linear autocorrelation,

assuming that there is some similarity in their behavior?.

This way, we select all embedding delays 7 € [1, Tyq,] that provide a local minima in the
associated total overlapping (Eq. 4.3), OV (X (7), Xo(7)). These constitute the so-called set
of candidate embedding delays, which we denote by T.

The relation between the autocorrelation function and the total overlap is illustrated in
Section 4.5.1.

Finally, we set the embedding dimension by using the embedding delays in T for the method
of false nearest neighbors (see Section 2.1.2).

3 As mentioned in Section 2.1.2, autocorrelation is one of the most common measurements used to determine
the delays required for the reconstruction of a state space via the uniform embedding of a time series.
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Algorithm 5 - STATE SPACE RECONSTRUCTION
1. Set maximum embedding delay to test, Tmaz-

for 7 =1 to Tymae do
> Create a two-dimensional 7-delayed time series, X(7).
> Compute mean persistence for the h-th homology group of X(7), Pn(Xo(7)). This is done
according to Algorithm 4.
> Measure associated total overlapping, OV (Xo(7), Xo(7)), according to Eq. 4.3.
end for
2. Select the set of candidate embedding delays, T, containing the embedding delays that provide
local minima in total overlapping (Eq. 4.3).
3. Set embedding dimension using the embedding delays in the set of candidate embedding delays,
T, in the false nearest neighbors (FNN) method®.

“To do a uniform embedding instead, use the first candidate embedding delay in T for the FNN
method.

4.5.1 Total overlap vs. Autocorrelation function

To illustrate our assumption about the existence of a relation between the autocorrelation
function (defined in Eq. 2.5) and the total overlap (defined in Eq. 4.3), let us use a second
order autoregressive model, AR(2).

An AR(2) model is described by the following stochastic difference equation
Tip1 = 01T qy + Q2T gy + & (4.1)

2

When the roots of the characteristic equation given by 1 — aju — asu® = 0 are complex

conjugate, then x, is a stationary process.

For 11 =3, 1 =5, g = 0.7 and as = 0.3, &; corresponds to white Gaussian noise. The time
series corresponding to these parameters is shown in Fig. 4.5.
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Figure 4.5: Time series for a second order autoregressive model, AR(2), given by Eq. 4.1, using 1 = 3,
72 =5, a1 = 0.7 and a2 = 0.3.

We calculate the autocorrelation and the total overlap over the time series shown in Fig. 4.5.
These results are shown in Figure 4.6(a). This figure shows that the topological comparison
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4.6. Example 1: Two-dimensional double-well potential with varying depth in the potential
wells

is better suited to identify the embedding parameters necessary to perform non-uniform state
space reconstructions. This means, that it is better suited to analyze dynamical systems with
more than one time scale in its dynamics.
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(a) Autocorrelation (blue) vs Total overlap (red). (b) Selected embedding delays.

Figure 4.6: (a) Plot that shows the relationship between the autocorrelation function and the total overlap
between the persistence diagrams associated to the time series and their corresponding delayed time series.
(b) Embedding delays that have persistence diagrams whose total overlap (see Eq. 4.3) from the non-delayed
persistence diagram is a local minima.

In Fig. 4.6(b) we show the delays that, according to Figure 4.6(a), have local minima in total
overlap. This plot shows the recovery of delay 7 = 5 and of other delays which are common
multiples of 7 = 3.

4.6 Example 1: Two-dimensional double-well potential with
varying depth in the potential wells

In this section we analyze a time series that shows a process in which the z-component of
the barriers between the potential wells of a two-dimensional double-well potential increase
and then decrease. The goal of analyzing this time series is to identify the increase in depth
of the potential wells. This in turn, illustrates that the method introduced in Chapter 4 is
a tool for the identification of dynamical transitions.

For all the computations of persistent homology we use JavaPlex [116]. And for all ker-
nel estimations, we use a multi-variate kernel density estimator (KDE) from the BEAST
library [39], using 30 intervals for the kernel approximation.

4.6.1 The system

An introduction to the standard one-dimensional double-well potential system was provided
in Section 3.6. This time, we analyze a time series associated to a system describing the
motion of a particle in a heat bath at temperature T', under the gradient of a two-dimensional
double-well potential plus a random force (or Wiener process).
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The starting configuration of the two-dimensional double-well potential is described by:

1 9 1
Viw,y,t) = 5 (2(t) = 1)" + y(t)* (4.1)
The configuration of this system changes over time following a process of W steps, during
which the z-component of the barriers dividing the two potential wells increases. Let T
denote the time step in such process.
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Figure 4.7: Plot of A(T), the function defining the change in height of the barriers dividing the two potential
wells of a two-dimensional potential. For the first ten steps of this process, A(T) = 0. For the following
twenty steps, it changes according to Eq. 4.2.

During the first Z < W steps of the process, the configuration of the potential remains as in
Eq. 4.1. However, during the remaining steps of the process, the height of the wall dividing
these wells changes according to

1 1 2
Vi Tot) = 5al) = 1)+ gut0? (1 ATy 0-)) (42)
where A(T) indicates the height of the wall dividing the potential wells and is given by:
—9un2 (™~
A(T) = 2sin? 207) (4.3)

The variations in A(7) for every step in the process are shown in Fig. 4.7. Consequently, we
expect the total overlap to show a similar behavior to the change in potential barriers.

We construct a two-dimensional time series for a process with W = 30 steps, setting Z = 10,
setting Eq. 4.2 to a = 50. This produces the potential shown in Fig. 4.7.

For producing the two-dimensional time series, we proceed as in Section 3.6. This means, we
integrate the double-well potential’s Langevin dynamical equations using an Euler Maruyama
integrator with lag time A\ = 0.001, initial positions (xg,yo) = (0,1) and temperature 7' =
400K .

We create 5000 data points for every step in the process. And the time series for the entire
process results from merging the time series simulated for every process step. This way, our
full time series has 150000 data points.
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4.6.2 Analysis results

Given the length of our time series, the calculation of its persistence homology is too costly
in computational terms.

Therefore, we analyze it using the approach introduced in Section 4.3, which consists on
dividing the time series into W different windows of measurements and estimating their
mean (r, c)-persistence via subsampling.

We divide the time series into 30 windows of measurements; every window of measurements
has 5000 data points. This way, every window corresponds to a different dynamical regime,
well described by the two-dimensional time series it contains. By doing this, we are able to
show empirically that the proposed method recovers the changes in dynamical regime.

This way, we can estimate a mean persistence diagram for every window of measurements,
following the strategy described in Section 4.3 but substituting state space vectors by mea-
surements data in it. We measure the differences in total overlap (see Eq. 4.3) between
windows. Large differences in total overlap should correspond with transitions between dy-
namical regimes.

For the estimation of the mean (r,c)-persistence we use Algorithm 4, taking S = 30 random
samples from every window of measurements. Each of these samples has M = 700 data
points, corresponding to a 14% of the data points in a window. This is clearly a small
number of samples and the results could be improved by taking a larger number of samples
(see Section 4.2).

The persistence diagram is obtained by constructing a filtration of simplicial complexes and
analyzing the topology of these simplicial complexes. The filtration we consider consists
of 30 filtration intervals equally spaced. The simplicial complex construction we use is the
witness complex with sequential minmaz landmark selector, using L landmark points. The
maximum homology group for which persistence is calculated is H = 3.

In order to stay within reasonable computational time when the number of data points
used to compute a simplicial complex increases, we design the following heuristics to set the
number of landmark points, L:

SM
L=— (e_Ml/m —e 4 1) (4.4)

In Fig. 4.8 we see the overlapping for homology groups 0 and 1. The homology group Hy was
not populated. And in Fig. 4.9 we see the total overlap between the 30 different windows of
measurements.

As seen in Fig. 4.9, total overlap is lower for windows of measurements 19 to 24 in relation
to the other windows and the total overlap is high between all other windows. However, the
total overlap is not high between windows of measurements 19 to 24.

Even when our results indicate changes in the configuration of the state space between the
windows of measurements, there is no full match between the indicated overlap and the
change in potential barriers.

Some explanations to why these results do not have a higher quality may be found in the
implementation of our method. For example, by increasing the number of samples S taken
for the calculation of the mean persistence, could provide some improvement.
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Figure 4.8: Owverlapping for homology groups 0 and 1 measured for the 30 windows of measurements taken
from the time series describing a two-dimensional double-well potential whose potential barriers change as
shown in Fig. 4.7.

However, there are other possible explanations to the quality of our results. One immediate
observation is that the dynamics of our system are stochastic and therefore the state space
vectors do not for trajectories the way they would for a deterministic dynamical system.
In this case, the state space vectors will more likely create objects with a certain fractal
structure.

In such case, considering other variables, different to r and ¢, could provide some improve-
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Figure 4.9: Total overlap between the 30 windows of measurements taken from the time series describing a
two-dimensional double-well potential whose potential barriers change as shown in Fig. 4.7. Accordingly, we
expect the total overlap to show a similar behavior.

ments in our results. For example, we could use the variables introduced by R. MacPherson
and B. Schweinhart [80] to estimate fractal dimensions using persistence homology. The
variables they introduce, called ratio and aspect, can be used to estimate the amount of
empty space around an object. Therefore, these could potentially identify the increase or
decrease in depth of a potential well. In Appendix B we provide a detailed explanation on
the estimation of fractal dimensions using persistence homology.

4.7 Example 2: Logistic map with changing parameters

The time series we analyze in this section contains the dynamics of a logistic map where
the parameter that determines whether the system shows non-chaotic or chaotic behavior
varies in time. This illustrates the possibility of using the method described in Section 4.3 to
identify transitions between dynamical regimes in a time series associated to a non-stationary
deterministic system.

4.7.1 The system

A logistic map is a one-dimensional non-linear map given by Eq.4.1 where the value of
parameter a determines whether the system shows non-chaotic or chaotic behavior.

Ti—1 = a:ni(l — :L'i), (4.1)
We generate a time series by merging 20 different logistic map time series, each computed
with a different parameter a in Eq. 4.1. The set of parameters taken for these simulations is

A = {32, 3.3, 3.4494, 3.4495, 3.45, 3.48, 3.51, 3.53, 3.5440, 3.5441, 3.55, 3.56995, 3.7, 3.75,
3.79, 3.82843, 3.8285, 3.83, 3.85, 3.9}.
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In order to produce the time series associated to the initial parameter, a = 3.2, we take a
random initial value between zero and one, xg, and simulate 5000 data points. Then, the
final value of this time series is used as initial value for the simulation of a time series with
the second parameter a = 3.3. This procedure continues until we have simulated the time
series for all the parameters in A. Fig. 4.10 shows the resulting time series.
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Figure 4.10: Time series describing the change in dynamics of a logistic map according to changes in parameter
a (see Eq. 4.1). This time series with 100000 data points is obtained by gluing together 20 different time series
generated by taking each of the values in set A (see text). Fvery time series associated to a parameter in A
has 5000 data points.

As can be seen in the time series, for a = 3.2 and a = 3.3 the time series oscillates between
two attractors.

The next 8 values, until a = 3.56995, are supposed to belong to a region of parameters that
is supposed to produce time series oscillating between four attractors.

However, for a = 3.4495, a =3.45 and a = 3.48, we observe that two of these attractors are
almost indistinguishable from two others, so we would expect the dynamics of this range in
the time series to be more similar to the dynamics associated with the first two values of a.

For a = 3.55 we observe time series oscillating between eight attractors and for a = 3.56996
we observe a larger number of attractors.

For a = 3.7, a = 3.75 and a = 3.79, the system shows chaotic behavior. For a = 3.82843, a =
3.8285, a = 3.83 and a = 3.85, we again observe non-chaotic behavior. But chaotic behavior
reappears for a = 3.9.

According to this, we expect three different degrees of overlapping. First, a group with large
overlapping, containing the state space vectors windows 0 to 4, 5 to 9, and 16 to 18. A second
group, containing windows 11, 12, and 16 to 19, should show a medium degree of overlapping
with the windows of the first group. And finally, a third group containing windows 13 to
15 and 19, which should be reconstructed with the segments of time series showing chaotic
behavior. This last group should show different measurements of overlapping with the first
two groups and probably a larger overlapping with the windows in it.
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4.8. Example 2: Logistic map with changing parameters

4.7.2 Analysis results

To start the analysis of this system, we first need to reconstruct the state space from the
time series. For this, we first divide the time series into 20 windows of measurements. Then
we use the method described in Algorithm 5 on the first window of measurements.

The implementation of Algorithm 5 involves the estimation of mean (r, ¢)-persistence as in
Algorithm 4.

For these calculations we take S = 50 random samples from the first window of measure-
ments, with 700 data points each. Then we construct witness complexes using a minmax
landmark selector with L landmark points, where L is set as in Eq. 4.4. And we estimate
up to the H = 3 homology group.

This results in the estimation of embedding delays 79 = 5 and 7 = 8 for a non-uniform
embedding. The state space is then reconstructed using these embedding parameters on the
entire time series.

Once the state space has been reconstructed, we proceed to identify differences in the dy-
namics of the time series. For this, we divide the reconstructed state space vectors into 20
windows and measure the overlapping between windows.

The overlap results for homology groups 0 and 1 are shown in Fig. 4.11. The homology group
H, was not populated but the plot of overlapping for H; is a nice surprise.

The plot of overlapping for H; plot is particularly interesting because it shows a clear dis-
tinction in behavior for the windows of state space vectors reconstructed with the segments
of time series showing chaotic behavior (or the expected third group of overlapping behav-
ior mentioned above). For these windows of measurements, the first homology group is
populated and the total overlap between these windows is large.

The total overlap results are shown in Fig. 4.12. This plot does not show the existence of
the three expected overlapping groups but of two, distinguishing between the windows of
state space reconstructed with segments of time series showing chaotic behavior and those
showing non-chaotic behavior.

In general, our results suggest that the methods presented in Sections 4.3 and 4.5 allow the
identification of transitions between dynamical regimes in deterministic systems.

Additionally, these results give us information about the reasons why we obtained results
with low quality in the example analyzed in Section 4.6.

The main differences between that example and the one analyzed in this section lie in the
dynamical properties of the time series. In the first example there is no variation in the
number of attractors, but in the shape of those. Additionally, the equations describing the
dynamics of the system analyzed in the first example are stochastic, whereas the dynamics
of the current example are deterministic.

In terms of implementation, the only difference between these two examples was an increase
in the number of random samples used to estimate the persistence of every window of state
space vectors. However, this increase in number of samples is not drastic. We are still in the
same order of magnitude.

Thus, we suggest that the quality in results provided by our method of analysis does not
reside in the implementation but in the dynamical properties of the system analyzed. Our
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Figure 4.11: Overlapping for homology groups 0 and 1 measured for the 20 windows into which the recon-
structed state space vectors from the time series describing a logistic map with changing dynamics are divided.
The state space vectors are reconstructed from the time series using embedding delays 7o =5 and 71 =8 in a
non-uniform embedding.

method might be adequate for the identification of differences in dynamical regimes but not
when the transitions imply small deformations of the attractors.
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B

4.8 Final remarks

In this Chapter, we introduced our new method for the identification of transitions between
dynamical regimes in real-world time series via persistent homology. We analyzed two ex-
amples with it.

In the first example, consisting in a time series describing a double-well potential with varying
depth in its potential wells, we divide the reconstructed state space vectors into a given
number of windows and measure the total overlap (Eq. 4.3) between the mean h-persistence
of different windows (Eq. 4.1).

Even when our results indicate changes in the configuration of the state space between, our
results did not show a full match between the changes in total overlap and the changes in
potential barriers.

In the second example, the time series corresponds to the merge of thirty logistic map time
series produced with different parameters.

The results of this analysis suggests that our new method for the identification of transitions
in dynamical regime is adequate for analyzing systems with this type of transitions.

In terms of implementation, the only difference between the analysis of these two examples
was an increase in the number of random samples used to estimate the mean h-persistence
of different windows, but the number of samples did not increase dramatically.

Thus, we suggest that our method might be better suited for the identification of transitions
between dynamical regimes in systems where the transitions imply large deformations of the
attractors.

In the future, in order to better understand the type of transitions between dynamical regimes
that we can identify with our method, we intend to study the differences in results when
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increasing the number of samples in the estimation of the mean h-persistence significantly
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5. Conclusions

In this thesis we introduce two new methodologies for the identification of different dynamical
features in a system from the analysis of a real-world time series. We focus in the dynamical
features corresponding to the different dynamical (metastable) states in a system and the
transitions between dynamical regimes in a system.

For the identification of dynamical features in a system from a time series, we first need to
reconstruct the state space, which is the space containing all the states of a system. The state
space, together with an evolution operator, entirely describe a dynamical system. Analyzing
the geometry of the state space, one is able to identify the different attractors of a system.

Having an adequate reconstruction of the state space is fundamental for obtaining robust
results from the analysis of dynamical features. Many criteria to identify an adequate state
space reconstruction rely on the comparison of the reconstructed space with the true state
space. However, when analyzing real data, the true state space of a system is almost never
known. Few criteria have been developed for the case where the true state space is unknown.
Among these we find the criteria of Uzal et al. [119], where an adequate state space is
identified in terms of the probability of predicting future states.

In this thesis, we consider delay-coordinate maps for the reconstruction of the state space.
Delay-coordinate maps are commonly used to reconstruct the state space for deterministic
dynamical systems, but its use has also been extended to some types of stochastic systems.
In Section 2.1.1 we specifically talk about delay-coordinate maps. These maps depend on
two embedding parameters: the time delay and the embedding dimension. Thus, our general
criteria for the identification of an adequate state space reconstruction consists on measuring
the gain or loss of geometrical information when varying the embedding parameters for a
delay-coordinate map. Chapter 2 is entirely dedicated to the general criteria considered for
obtaining an adequate state space reconstruction.

Once the state space of a system has been adequately reconstructed, the identification of
dynamical features can be performed in many ways. We decided to approach this problem
from a geometrical and topological perspective.

Initially, we took a recurrence analysis approach; explained in Section 3.1. A recurrence
is the return of a state space trajectory, given sufficiently long time, to a state arbitrarily
close to a former state. The regions in state space to which a system recurs the most can
be associated to the existence of attractors, which indicate different dynamical states in the
system.

Additionally, we introduce the concept of metastability to emphasize the possibility of a
system having different and well distinguished time scales in its dynamics. This concept, to
the best of our knowledge, had not been previously introduced to the analysis of recurrences,
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despite being a common characteristic of physical phenomena. A discussion on metastability
can be found in Section 3.2.3.

This way, we introduced a new method for the identification of different metastable states in a
real-world time series, described in Section 3. It consists on the construction of a recurrence
network (see Section 3.1.2) using the reconstructed state space vectors of a system and
a parameter of proximity. From the analysis of this network with a fuzzy module finding
algorithm specifically developed for the identification of metastability, we identify metastable
modules which correspond to metastable states in the system.

We also introduce a new method for the reconstruction of the state space from a time
series, based on the analysis of filtrations of recurrence networks constructed from the state
space vectors of different state space reconstructions via delay-coordinate maps with different
embedding parameters. This method is described in Section 3.4, and the specific criteria
necessary for an adequate state space reconstruction within this approach are described in
Section 3.2.

We illustrate the performance of our new method with two different complex time series.
The first time series describes the motion of a particle in a heat bath with temperature
T = 100K, under the gradient of a double-well potential and a random force. The second
time series describes the changing molecular configurations of a molecule of trialanine at low
temperature, T' = 300K .

The results of these analysis suggest that our method is suitable for the identification of
metastable states in real-world time series data. And that this is robust (see Section 3.6.4)
to the addition of noise with an amplitude of up to 6% the amplitude of the original time
series, and to the removal of up to 7% of the data measurements.

However, this method has some restrictions, imposed to by the use of recurrence networks
and a module finding algorithm. This way, it is only suitable for the analysis of time series
coming from dynamical systems with clearly distinguishable attractors, having one clearly
dominant time scale in the dynamics and being entirely described by low-order topological
information.

In order to overcome these drawbacks and analyze complex time series whose reconstructed
state spaces have high-order topologies, we took a different approach for the identification
of dynamical features in a system: persistent homology. This is an algebraic topological
approach which consists on the analysis of high-order topological features that persist in a
set of coverings with different fixed radius (proximity parameter) €, this means, in a filtration
depending on e. Persistent homology is introduced in Section 4.1.

Our method is described in Section 4.3. In this, from the state space adequately reconstructed
from a time series, we select a given number of windows of state space vectors of equal length.
The time lapse of a window should be enough to capture a dynamical regime of the system.
We then compute the topological summary for each window, called the mean h-persistence
in the (r, ¢)-space (see Eq. 4.1) and compare these summaries between all windows using the
so called total overlap (see Egs. 4.2 and. 4.3). The differences in overlap between windows
of measurements indicate dynamical transitions in the time series.

As done with the previous approach, we also introduce a method for the state space recon-
struction from a time series, now based in the persistent homology approach. This method
is described in Section 4.5, and the specific criteria necessary for an adequate state space
reconstruction within this approach are described in Section 4.4.
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We illustrate the performance of our new method with two different complex time series.
The first time series describes a process in which the z-component of the barriers between
the potential wells of a two-dimensional double-well potential increase and then decrease.
The second time series describes the dynamics of a logistic map where the parameter that
determines whether the system shows non-chaotic or chaotic behavior varies in time.

From the results of these analysis, we suggest that our method is able to identify dynamical
transitions in deterministic systems where there is a change in the number of attractors, or
where the dynamical transitions do not correspond to small deformations in the attractors.

However, we have some suggestions for future work to overcome this problems. First, for
the identification of changes in the shape of attractors of deterministic systems, it may be
possible to get good results by using other variables, like the ones mentioned in Appendix B.
For the ever more challenging analysis of stochastic dynamical systems, it might be necessary
to try a completely new approach and introduce state space reconstructions that implement
the embedding theorems presented in Section 2.2. This way, the possibilities to expand this
research topic are vast and exciting.

Other topics for future research include improvements in the state space reconstruction
using the suggestions mentioned in Section 4.4. Or the improvement in the computation of
persistent homology for large data sets and higher-order topological features. The application
of our method based in persistent homology to real time series is also an exciting project for
the future.
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A. The adjusted rand index (ARI)

There are various measures to quantify the distance between either crisp or fuzzy partitions.
A crisp partition, or hard partition, is one in which every object is assigned to only one
cluster in a binary way. A fuzzy partition, or soft partition, is one in which every object is
assigned to various clusters with different weight values.

In general, the distance between partitions can be measured in three ways: based on counting
pairs of elements, on summations of overlaps, or on differences in mutual information or
entropy—like the normalized mutual information (NMI) or the Jaccard index—. Depending
on the way the partitions we analyze are created, one may use different types of measures.

The adjusted rand index (ARI), as defined by Hubert and Arabie in 1985 [61], measures
the agreement between two partitions. When the partitions are not similar at all it is equal
to zero, and when the partitions are equivalent it is equal to one. This measure is based
on counting pairs of objects classified simultaneously in the same cluster for two clustering
partitions. It has a generalized hypergeometric distribution as null hypothesis [66], where
the partitions are drawn randomly considering a fixed number of clusters and elements in
each cluster, even when the number of clusters in both partitions might differ.

The use of the ARI for evaluating classification can be read in the work of Santos and
Embrechts [103]. Their results show that this measure is meaningful even in the cases where
the labeling of the partitions is switched. According to these authors, the ARI is defined as
follows.

Let us imagine a set of objects S = {O1,...,On}. There are (];) combinations of pairs of
elements of set S. Set two partitions of S, P = {p1,p2,...,pa} and @ = {q1, ¢2, ...,¢B}, such
that U 1po = U2 gy = S, pa Npar = 0 for any a # o/, and g, N gy = O for any b # V. Let
tqp be the number of objects in S that were classified in the a-th subset of P and in the b-th
subset of @) simultaneously. Then, ARI = F}/F,, where:

A ()3 (9 ()5 ()
OB S SH50

In 2013, Hueffner et al. [62] introduced a modification to the ARI of Arabie and Hubert in
order to compare fuzzy partitions as obtained by the MSM clustering algorithm [104] (see
Section 3.6.4).
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B. Fractal dimension estimation with
persistence homology

The importance of estimating the fractal dimension of an attractor was commented in Sec-
tion 2.1.2. In short, this can be used, considering Whitney’s theorems of Section 2.1, for
estimating an embedding dimension which is adequate to reconstruct the state space from a
time series.

Some recent investigations have shown the use of persistence homology to estimate the fractal
dimension. For example, R. MacPherson and B. Schweinhart introduced in 2012 [80] two
variables called the ratio, r, and the aspect, 2z, and used them to define a persistent homology
dimension, dpyy.

r=(b+d)/2 (B.1a)

z = arcsec (%) (B.1b)

Given a barcode where every interval has a birth point b and death point d, the ratio and
aspect are given respectively by Eqgs. B.1b.

Inw

dpH (B.2)

:m

Considering two parameters: w > 0 and p > 1, such that for n(r, z) denoting the number of
pairs (7, z) in a barcode, w and p satisfy that n(r, z) = wn(pr, z). This way, dpgy is given by
Eq. B.2.

In 2014, M&té and Heermann [88] found that, for fractals which are not exactly self similar,
such persistence homology dimension estimates how the empty space around an object de-
fined by the data sample scales. This way, dpgy can be understood as the fractal dimension
of such empty space.

The radius is easily understandable as the life time of a topological feature, but for under-
standing what the aspect indicates let us imagine that, while creating e-balls around every
state space vector, some n-dimensional holes will be created. Then, the aspect can be in-
terpreted as “the angular opening at the edge of a gulf in the structure” [80]. Additionally,
according to R. MacPherson and B. Schweinhart, the dependency of the distribution of per-
sistence homology points on the aspect may show differences in the statistical shape of the
state space vectors which are not related to the fractal dimension.
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Appendix B

For these clear relations to the fractal dimension, is that we use the radius and the aspect
variables in Chapter 4 to define the persistence homology.

Nevertheless, we consider important to mention a different approach to measure the fractal
dimension of an object using persistence homology. This approach is the one introduced by
Maté and Heermann in [88]. For exactly self-similar fractal objects, these authors extract
the fractal dimension directly from the barcode. They base this on the fact that the missing
parts or holes of a fractal, scale in the same way as its volume.

dp = (B.3)

This way, considering a scale constriction factor s and the number of self-similar copies on
the smaller scale (or multiplicity) m, a generic fractal dimension, dr, is given as by Eq. B.3.

Because of self similarity, the death point of an interval and the number of intervals ending
at that point, n(d), change according to a power law when going from one scale to the other.
Then, there is a constant ¢ such that the following equation holds:

In[n(d)] = aln[d] + ¢ (B.4)

Considering two different scales d; and dj, such that d; < d; and n(d;) > n(d;), then

In[n(d;)] —In[n(d;)]  In[n(d;)/n(d;)]
T fd] - inld]  Infdi/dj] (B.5)

Now, in the case when the underlying dynamical process is random, it is likely that no two
intervals in the barcode will have the same length. Then, if the death points concentrate
around a set of values, it is possible to compute averages on every scale d;. This way, an
assignment function a;(€) can be created, such that a;(e) = 1 only if an interval of length €

! (8) g, (d(F)
()i ”Kd%lggd i(d") (B.6)
nl(d)] =Y ai(d®), (B.7)
BeB

appears in scale d;. With this function, one can define a characteristic scale (d); for a barcode
B. This characteristic scale is given as in Eq. B.6, where d®) denotes the endpoint of an
interval 8 in B and n[(d);] denotes the number of intervals belonging to scale d; and is given
by Eq. B.7.

This way, expression B.4 can be rewritten as In[n({d))] = aIn[{d)] + c.

This estimation of the fractal dimension could be used to estimate an adequate embedding
dimension for the reconstruction of the state space from a time series. However, we have
found (although not reported here) that the o estimates are very sensitive to noise. Therefore,
we have not followed this approach for the analysis of real-world time series.
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