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Abbreviations 

ACTH  Adrenocorticotropic hormone  

AUC    Area under the curve 

CBG  Cortisol binding globulin  

DAG  Diacyl glycerol  

DHEA Dehydroepiandrosterone  

DHEAS Dehydroepiandrosterone sulphate 

FFA   Free fatty acid  

GC  Glucocorticoids 

GH  Growth hormone 

G6Pase Glucose-6-phosphatase 

HDL  High density lipoprotein  

HPA  Hypothalamic-pituitary-adrenal 

11ß-HSD 11ß-hydroxysteroid dehydrogenase  

IL  Interleukin 

ISI  Insulin sensitivity index  

IRS-1  Insulin receptor substrate-1 

LDL  Low density lipoprotein  

LHI  Lipid/heparin infusion 

NFκB   Nuclear Factor κΒ 

ß-OHB ß-hydroxybutyrate  

PAI-1  Plasminogen activator inhibitor-1 

PCO  Polycystic ovary syndrome 

PPAR  Peroxisome proliferator-activated receptor  

PEPCK Phosphoenolpyruvate carboxykinase 

SHI  Saline/heparin infusion 

TGF-ß Transforming growth factor ß 

THE   Tetrahydrocortisone  

THF   5ß-tetrahydrocortisol 

αTHF  5α-tetrahydrocortisol 
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TNFα   Tumor necrosis factor α 

TZD  Thiazolidinediones 

UFF   Urinary free cortisol 

UFE   Urinary free cortisone  
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1. Introduction 

1.1.  The burden of obesity 

The increased prevalence of obesity and its co-morbidities results predominantly from 

multifactorial changes in lifestyle (1). In that context, low physical activity and 

hyperalimentation especially with energy-dense food are the two major environmental 

factors currently leading to the epidemic of obesity. Specifically, social and 

environmental circuits have a fundamental impact on the obesity risk, although a 

genetic susceptibility of this phenomenon is also well known. 

Obesity is regarded as one of the main factors causing metabolic disorders like 

metabolic syndrome, insulin resistance and type 2 diabetes. The impact of obesity on 

insulin resistance, type 2 diabetes and cardiovascular diseases was demonstrated in 

several epidemiological trials (2-5). The growing incidence of obesity over the last 

decades is alarming (6) given that overweight and obesity increase mortality by its 

numerous co-morbidities. Consequently a substantial increase in the number of 

individuals diagnosed with diabetes worldwide was observed in the last years (1).  

Apart from the increased risk of type 2 diabetes numerous further disorders are 

associated with obesity (2). Thus hypertension is up to three times more frequently 

observed in obese subjects (7). The obesity associated lipid phenotype with increased 

levels of triacylglycerols and low density lipoprotein (LDL), with particularly a high 

portion of small close LDL particles, as well as decreased high density lipoprotein 

(HDL) levels is characterized by a huge atherogenic potential (8). 

In summary obesity is a substantial health problem worldwide. However despite more 

than millions of patients affected worldwide, the link between obesity and type 2 

diabetes is not yet completely understood.  
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1.2.  The impact of adipose tissue as hormonal active organ 

Insulin resistance, which leads together with impaired beta-cell function to the onset of 

type 2 diabetes (9), is a common feature of obesity (10). Even if it is not completely 

understood, how obesity is linked to insulin resistance, several mechanisms have been 

suggested. Adipose tissue has been acknowledged to be an active participant in energy 

homeostasis and other physiological functions rather than simply being a fat storage 

organ. It is recognized as a highly active secretory organ secreting a large number of 

hormonally active factors (11). These factors mediate several effects on whole body 

metabolism. Thus, adipocyte-derived factors have been shown to be involved in the 

regulation of inflammatory processes, arterial blood pressure and fibrinolysis. In that 

context adipose tissue is well known to express and secrete a variety of novel 

adipocytokines and metabolic products which have been implicated in the 

development of insulin resistance and atherosclerosis (12,13). Dysregulation of 

adipocytokine production has been shown to cause the development of specific 

features of the metabolic syndrome and vice-versa normalization or elevation of 

plasma concentrations of some adipocytokines reversed characteristics of the 

metabolic syndrome (14,15).  

A remarkably high portion of these secretion products belong to the class of cytokines 

such as tumor necrosis factor α (TNFα), plasminogen activator inhibitor-1 (PAI-1), 

interleukin-1 (IL-1), IL-4, IL-6, IL-8, IL-10 and transforming growth factor ß (TGF-ß). 

Some of these cytokines are also involved in the impairment of local and systemic 

insulin sensitivity. In that context TNFα is a potent inhibitor of the insulin signaling 

(16) whereas IL-6 blunted insulin's ability to suppress hepatic glucose production as 

well as reduced insulin-stimulated glucose uptake in skeletal muscle (17). IL-6 also 

appears to suppress the expression of the insulin sensitizing cytokine adiponectin in 

adipose tissue (18). Adiponectin inhibits hepatic glucose output and suppresses the 

inflammatory Nuclear Factor κ B (NFκB) pathway (19). In addition to adiponectin, 

several other adipokines like leptin and resistin originate predominantly from the 

adipocytes within the adipose tissue. These adipokines play a crucial role in the 

regulation of food intake (20) as well as glucose and lipid metabolism (21-23). 
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1.3.  Metabolic effects of FFAs 

Although it is well known, that these cytokines may link obesity and insulin resistance, 

it has become increasingly clear that metabolites such as free fatty acids (FFAs) may 

also play a crucial role with respect to insulin signaling (24). FFAs are released from 

adipose tissue and are increased in states of obesity (25,26) and diabetes mellitus (27). 

Especially abdominal adipose tissue secretes a high amount of FFAs due to the higher 

lipolytic activity compared to other fat depots. Elevation of FFAs induces peripheral 

and hepatic insulin resistance (28-31). The effect on hepatic insulin resistance is 

mediated at least in part via an increased hepatic gluconeogenesis (28,31-34) as 

phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) 

are up-regulated by FFA (31,35-37). Peripheral effects of FFAs are induced by an 

increase of intramyocellular lipid content and inhibition of glucose uptake in skeletal 

muscle (38). FFA-based metabolites like diacyl glycerol (DAG) activate protein kinase 

C, which has been shown to inhibit the insulin action via phosphorylation of the 

insulin receptor and of the insulin receptor substrate-1 (IRS-1) (24). FFAs also inhibit 

the insulin mediated stimulation of glycogen synthase activity in skeletal muscle (28) 

leading to a decreased glycogen synthesis. Physiologically the increase of hepatic and 

peripheral insulin resistance is partially neutralized by FFAs mediated elevation of 

insulin secretion (29,33,38-46). Taken together the metabolic effects of FFAs are 

investigated in numerous studies.  

Notably, various data support that metabolic parameters themselves modulate the 

circulating levels of hormones and adipokines (47-49). Thus we aimed to analyze, 

whether apart from the known metabolic actions, FFAs have additional effects on 

several circulating hormones, which may play a role in obesity, insulin resistance and 

type 2 diabetes. Although this manuscript will primarily focus on previously published 

data of the applicant, some yet unpublished results will also be presented. 



 8 

2. Impact of FFAs on hyperandrogenemia 

2.1. Impact of androgens on insulin resistance and metabolic 

changes in  Polycystic Ovary Syndrome  

Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in 

women. PCOS is characterized by hyperandrogenism, chronic anovulation and 

polycystic ovaries (50). About 40% of women with PCOS have been described to have 

a metabolic syndrome (51). Insulin resistance, a central feature of the metabolic 

syndrome, has been suggested to be a major driver of hyperandrogenemia in these 

subjects (52,53). Thus, androgen levels are positively correlated with hyperinsulinemia 

(53). In addition, basal and ACTH-stimulated adrenal androgens are elevated in 

patients with PCOS and type 2 diabetes mellitus compared to PCOS women with 

normal glucose tolerance and controls (54). Treatment with insulin-sensitizing agents 

improved androgenic features in obese and non obese PCOS patients (55-58). A 

potential mechanism was suggested by in vitro studies demonstrating that insulin 

increases the adrenal sulfotransferase activity, and thereby stimulating 

dehydroepiandrosterone sulphate (DHEAS) secretion (59). However, although there is 

no doubt that a considerable amount of data link insulin resistance and androgen 

production, other mechanisms affecting circulating androgen levels may exist.   

2.2. Effects of FFAs on androgens and androgen precursors 

Elevated FFAs, which are also associated with insulin resistance, have been described 

in women with PCOS (60). Interestingly, a cumulating set of data suggests a 

regulation of androgens by dietary fat (61-63). Black South African men with a 

customary low-fat diet had lower levels of urinary androgens than North American 

black or white men on high-fat diets (64). An elevation of testosterone levels was 

described during a high-fat, low-fiber diet in healthy men (65). Vice versa, a decrease 

of DHEAS, androstenedione, testosterone and 5α-dihydrotestosterone was 

demonstrated during a low-fat, high-fiber diet (62). In contrast to long-term effects of 

a diet, a single complex meal results in an acute post-prandial reduction of FFA levels. 
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Interestingly, this was associated with reduced testosterone levels, while LH secretion 

was not modified. These data suggest that changes in fatty acids may also modulate 

androgens (61). Thus, it is reasonable to speculate whether primarily FFAs itself may 

induce hyperandrogenemia. Therefore we aimed to analyze the effect of FFAs on 

androgen levels. 

Making thinks more complex, regulation of androgen production may be tissue 

specific and FFAs might have different effects on adrenal or ovarian androgen 

production. It is well accepted, that both ovary and adrenal androgens contribute to 

hyperandrogenemia in PCOS (66). Although the adrenal cortex is the primary source 

of androgens in women, dehydroepiandrosterone (DHEA), DHEAS and 

androstenedione are also produced in relevant amounts in the ovaries (67,68). In 

contrast, in men at least the androgen precursors DHEA, DHEAS and androstenedione 

are nearly exclusively (if not completely) produced in the adrenal gland (69,70). To 

exclude potentially opposed effects of FFAs in ovary and adrenal gland and to 

exclusively investigate the effects of FFAs on the adrenal androgen production, we 

decided to investigate healthy men in a first study, while women were analysed in a 

separate second study.  

2.2.3. Effects of FFAs on androgens and androgen precursor in men 

8 healthy male volunteers were investigated in this randomised controlled cross-over 

trial analyzing the effects of a 4h-lipid/heparin infusion (LHI) and a 4h-saline/heparin 

infusion (SHI) on sexual steroid hormones. After 4 hours an euglycemic 

hyperinsulinemic clamp was performed in 6 of these men to estimate the impairment 

of insulin sensitivity during LHI.  

There was an increase of FFA levels during LHI (Figure 1). This induced an increase 

of androstenedione, which can be synthesized from 17-hydroxyprogesterone or from 

DHEA (Figure 2 and 3). 17-hydroxyprogesterone levels were not differently 

influenced by LHI or SHI, suggesting that androstenedione production was not 

increased via this pathway.  
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Figure 1:  FFAs during LHI (filled squares) vs. SHI (open squares); *p < 0.005 vs. 

saline/heparin infusion. Results are expressed as means ± S.E.M.. 

 

 

 

 

 

 

 

 

Figure 2:  Androstenedione during LHI (filled squares) vs. SHI (open squares); *p 

< 0.05 vs. SHI. AUC was 479±33 ng/ml*min during LHI vs. 397±23 

ng/ml*min during SHI (p<0.05). Results are expressed as means ± 

S.E.M.. 
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Figure 3:  Metabolic pathway of sexual steroid hormones. 

 

We observed increased DHEA levels during lipid infusion, which suggests that 

elevation of androstenedione is induced by increased levels of its precursor DHEA 

(Figure 4). 

In summary, this was the first study presenting reasonable evidence that elevation of 

FFAs increases adrenal androgen precursor production in vivo in men (71). Given that 

PCOS is a female disease, we speculated that comparable mechanisms might modulate 

androgen levels in women and contribute to the development of PCOS.  
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Figure 4:   17-hydroxyprogesterone (A) and DHEA (B) during LHI (filled squares) 

vs. SHI (open squares). p< 0.05 for LHI and SHI. AUCs were 619±85 

and 4263±461 ng/ml*min during LHI vs. 526±39 and 3459±380 

ng/ml*min during SHI for 17-hydroxyprogesterone and DHEA, 

respectively (p=n.s. and p<0.05, respectively). Results are expressed as 

means ± S.E.M.. 
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2.2.2. Effects of FFAs on androgens and androgen precursor in women 

We enrolled 12 healthy young women with regular menstrual cycles and no signs of 

hirsutism (72) in a randomized controlled trial (73). The LHI and SHI were performed 

in the early follicular phase of two subsequent menstrual cycles (d 4–6). Briefly, 

women were 25.5 ± 1.0 years old, BMI was 21.9 ± 0.8 kg/m2, had a WHR of 0.76 ± 

0.01 and the body surface area (74) was 1.71 ± 0.04 m2.  

In analogy to the findings in men an elevation of the adrenal androgen precursors 

DHEA, DHEAS and androstenedione could be detected during LHI, whereas 

progesterone and 17-hydroxyprogesterone did not differ between LHI and SHI. 

Androstenedione is known to be the precursor of both testosterone and estrone in 

women. Indeed, the elevated androstenedione levels during lipid/heparin infusion 

resulted in an increase of testosterone and DHT. As expected, elevated levels of 

estrone (AUC: 27074±1819 vs. 12869±1527 pg/ml*min; p<0.05) and 17β-estradiol 

were also detected (Figure 5).  

In contrast to the findings in women, estrone but not testosterone was enhanced by 

LHI in men (71). This is in agreement with the well described sexually dimorphic 

conversion pattern of DHEA in humans, with predominant conversion into estrogens 

in men (71,75) and conversion into estrogens and androgens in women (76).  

These data strongly suggest that FFAs con modify androgens and androgen precursors 

in men as well as in women. However, although the here studied intervention is a well 

described model to investigate a FFA induced effects (77-81), FFAs and triglycerides 

are both increased by LHI (82-84). Thus, the respective effects are difficult to separate. 

Given that triglycerides and FFAs are elevated in patients with PCOS, both, a FFA or 

a triglyceride induced effect would be comparably relevant within the pathogenesis of 

elevated androgens in those women. 
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Figure 5:  DHEA, DHEAS, androstenedione, testosterone, DHT and 17β-estradiol 

during LHI (filled squares) vs. SHI (open squares); *p<0.05; **p<0.01; 
xp=0.117; #p=0.136 vs. SHI. The AUCs were DHEA: 3631±610 vs. 

2341±284 ng/ml*min; p<0.05; DHEAS: 538275±100611 vs. 

420300±63471 ng/nl*min; p<0.01; androstenedione: 546±44 ng/ml*min 

vs. 471±44 ng/ml*min; p<0.05; testosterone: 1030±112 vs. 412±62 

nmol/l*min, p<0.005; DHT: 57771±5640 vs. 46636±3974 pg/ml*min, 

p<0.005; 17β-estradiol: 23505±2840 vs. 11462±2811 pg/ml*min, 

p<0.05. Results are expressed as means ± S.E.M.. 
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2.2.3. Mechanisms of hyperandrogenemia during LHI 

These data imply a novel physiological mechanism linking fat metabolism and 

regulation of circulating androgens, although the detailed mechanism is not yet clear. 

Generally elevated circulating androgen levels can result from increased synthesis or 

reduced excretion of androgens and its precursors. Modification of central control 

mechanisms might be a relevant aspect. However ACTH levels were not affected by 

hyperlipidemia in men and women, suggesting no ACTH mediated effect on adrenal 

androgen secretion (73). In accordance with these findings reduced androgens after a 

low-fat diet were not mediated by inhibition of ACTH (62). 

While FSH and LH were unchanged in men, both gonatropines were reduced in female 

subjects (85). Actually, the decrease of gonadotrophine levels during LHI may be the 

result of the elevated estrogen levels rather than a primary lipid induced effect, 

although the nature of this study does not allow separation of these effects (86,87). 

Anyway, reduced FSH and LH concentrations would result in lower levels of sexual 

hormones, thus suggesting that the effects of intravenous LHI on circulating androgens 

may have been underestimated.  

However, the urinary excretion of DHEA, DHEAS and androstenediol were decreased 

during LHI. Androstenediol represents a direct metabolite of DHEA, which can be 

considered as a marker of the urinary excretion of the adrenal secreted DHEA. 

Interestingly, the urinary excretion of androstenedione and its metabolites, which were 

strongly affected by gonadal androgen secretion (88), was not substantially decreased. 

This suggests that the effect predominantly exists for adrenal androgen precursors 

(Figure 6) (85).  
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Figure 6:  Urinary excretion rates of DHEA, DHEAS, androstenediol and all 

metabolites of DHEA during LHI and SHI. Results are expressed as 

means ± S.E.M.. 

 

The mechanism linking elevated FFAs (and triglycerides) and urinary excretion of 

androgen precursors is unclear yet. As discussed by Remer (89) DHEA, DHEAS and 

androstenedione are largely bound to albumin. Therefore interaction of FFAs (and 

triglycerides) with the binding of circulating androgens to albumin may substantially 

modulate the free hormone concentration and thereby the metabolic clearance rate of 

these hormones. Future studies are desirable to investigate this question in more detail.   

 

Copyright 
 



 24 

In addition to the reduced excretion of androgen precursors, changes in the hepatic 

DHEA sulfotransferase activity may also increase serum DHEA levels. However, the 

activity of hepatic DHEA sulfotransferase was not affected in the here investigated 

subjects, as demonstrated by an unchanged DHEAS to DHEA ratio. As the calculated 

5α-reductase activity was also not different, we did not found any reasonable evidence 

for a modification of hepatic androgen metabolism. 

Elevation of circulating FFAs is well known to induce insulin resistance and 

hyperinsulinemia (28,29,45). Thus, FFA induced hyperinsulinemia and insulin 

resistance and not FFAs itself, might be responsible for the observed changes during 

LHI. Even if no association between physiological androgen concentration and insulin 

sensitivity was found in healthy men (90), the findings on insulin sensitivity and 

androgen production are somewhat controversial. Given the used study design, we 

were unable to definitely differentiate the effect of hyperinsulinemia / insulin 

resistance and the effect of FFAs on androgens. However, although an elevation of 

FFAs is able to induce insulin resistance, this effect usually occurs not earlier than 

about 210 minutes after lipid infusion (38) (Figure 7).  
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Figure 7:  Peripheral insulin sensitivity (GIR) in healthy men during LHI (filled 

circles), SHI (open triangles) and during combined LHI (0-2h)/SHI (2-

4h) (open circles); *p < 0.05 (38). 

 

In our studies elevated androgens and androgen precursors were already found after 1-

2 hours of lipid infusion. Therefore any effect of LHI seems to appear before the FFA 

induced decrease in insulin sensitivity occurred. This suggests an insulin sensitivity-

independent effect of the FFAs on adrenal androgen production. In accordance with 

these findings, the elevation of insulin by LHI was detectable after the elevation of 

androgen levels. Although this time course also suggests that LHI induced effects on 

androgens may be independent of a subsequently induced hyperinsulinemia or 

peripheral insulin resistance, this interpretation should not be overemphasized. There 

is no doubt that a considerable amount of data suggests that insulin sensitivity directly 

affects synthesis of androgen precursors. Thus, future studies on this interrelation 

between hyperlipidemia, insulin sensitivity, and androgens are desirable. 

Nevertheless these data present reasonable evidence that LHI induced elevation in 

FFAs and triglycerides increases adrenal androgen precursors and circulating 

androgens due to lowering their urinary excretion in vivo in healthy young women. 

Increased levels of DHEA subsequently result in hyperandrogenemia with elevated 

levels of testosterone and DHT. This novel mechanism linking fat metabolism and 

androgens might contribute to the development of hyperandrogenism in women with 

PCOS.  

Clearly it is tempting to speculate that the here described mechanism might be of 

therapeutic relevance in women with PCOS. However, the implied therapeutic option 

cannot be directly transferred, on the basis of these results, to the treatment of patients 

with PCOS. Therefore future intervention studies investigating this question are 

desirable. However, PCOS might be a heterogenous disorder and given this scenario 

the here presented mechanism of FFAs and triglycerides induced hyperandrogenemia 

may be relevant at least in a subcohort of women with PCOS (60). 
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3. Effects of FFAs on glucocorticoid metabolism 

3.1. Metabolic impact of the HPA axis 

Hypertension, central obesity, dyslipidaemia, glucose intolerance and insulin 

resistance are symptoms of the „metabolic syndrome“ (91,92). These features are also 

typical for Cushing‘s syndrome (93-96), which is characterized by high circulating 

glucocorticoid (GC) levels. There is considerable evidence that glucocorticoids 

decrease insulin sensitivity (97-99), suggesting a pathogenic role of cortisol in insulin 

resistance too. Two underlying mechanisms are currently discussed. First, 

gluconeogenesis is enhanced by glucocorticoids by transactivation of genes of key 

enzymes for gluconeogenesis, including PEPCK and G6Pase, leading to increased 

hepatic glucose output (100-102). Otherwise glucocorticoid excess causes also 

peripheral insulin resistance (103). 

Adrenal GC secretion is regulated by the pituitary hormone ACTH. Free fatty acids 

(FFAs) are known to modulate pituitary function. An example for such a regulation is 

growth hormone (GH). GH secretion is reduced by FFAs in men and women 

(104,105). Given that GH has direct lipolytic effects on adipose tissue (106), this 

might be a potential negative feedback mechanism on somatotropic function. 

Comparably a lipolytic function of glucocorticoids is also well established (107). 

Furthermore several data suggest an increased activity of the hypothalamic-pituitary-

adrenal (HPA) axis particularly in central obesity. Both, increased plasma ACTH and 

cortisol concentrations were observed in response to a corticotropin-releasing hormone 

(CRH) stimulation in women with abdominal obesity compared to normal-weight 

controls (108,109). Equally, 24 h urinary cortisol levels were found to be increased in 

obese women and were associated with visceral adiposity (108,110). Such a higher 

sensitivity of the HPA axis was associated with estimates of insulin resistance (111). 

Human studies have demonstrated hyperlipidemia with enhanced triglyceride and FFA 

levels particularly in abdominal obesity and diabetes mellitus (112-116), suggesting 

that hyperlipidemia could link dysregulation of the HPA activity with central obesity 

or diabetes mellitus (108,115,117,118). Accordingly a hyperactivity of the 
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hypothalamic-pituitary-adrenal (HPA) axis is associated with an elevation of 

circulating FFA levels (119,120).  

One action of FFAs in rats seems to be at the hypothalamic or pituitary level of the 

HPA axis (121). In addition, FFA´s, especially long-chain unsaturated FFAs, directly 

stimulate the steroidogenesis from cultured rat adrenocortical cells (122). Comparably, 

lipids seem to modulate HPA activity in humans. Kok and co-workers demonstrated a 

blunted ACTH release in obese women after reduction of circulating FFAs by 

acipimox treatment (118). Thus, one might assume that FFAs may induce the 

activation of the HPA axis in the metabolic syndrome. However, FFA lowering 

treatment with nicotinic acid did not decrease circulating cortisol levels in men 

compared to controls (123), suggesting a potential gender specific regulation. Such a 

gender-specific aspect was further supported by a study demonstrating higher cortisol 

levels after CRH-stimulation in women compared to men (124), suggesting a higher 

stimulatory sensibility of the HPA axis only in women. 

In contrast, studies evaluating the effects of meal composition on the HPA axis 

showed that oral fat load did not modify the cortisol response to stress in normal 

subjects (125). Some data even suggest an inhibitory action of FFAs on the 

adrenocortical steroidogenic response to ACTH stimulation in cell culture (122,126). 

Lanfranco and co-workers demonstrated decreased ACTH and cortisol levels in young 

lean female volunteers (127) and in women with anorexia nervosa (128) during lipid 

infusion compared to saline infusion. A hypothalamic down-regulation of the HPA 

axis by FFAs was suggested, given that the lipids did not affect the ACTH and cortisol 

responses to hCRH in those healthy women (127). 

Given the controversial data regarding the effect of FFA on HPA axis activity in 

humans, we aimed to evaluate lipid-induced effects on corticotrope function. We 

investigated, whether FFAs modify ACTH and cortisol secretion or metabolism in-

vivo in both, men and women. 
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3.2. Effects of FFAs on glucocorticoid metabolism in men and 

women 

We performed two randomized controlled trials in 8 male (129) and 13 female (130) 

healthy normal weight subjects undergoing LHI or SHI to investigate, whether 

hyperlipidemia has any effect on ACTH secretion and glucocorticoid metabolism. We 

included lean subjects in this study to estimate the effect of an isolated hyperlipidemia 

without further confounding of central obesity associated phenotypes. As the precise 

mechanism linking hyperlipidemia and the HPA axis is not clear, we aimed to estimate 

the changes in metabolic glucocorticoid pattern and several steroid generating 

enzymes, including activities of whole body 11β-hydroxysteroid-dehydrogenase (11β-

HSD) type 1 and 2.  

In men, the levels of ACTH and cortisol declined during both lipid and saline infusion, 

which reflects the circadian rhythm in HPA activity. However, there was no difference 

between saline and lipid infusion (Figure 8 A and B) (129).  

In contrast to these findings in men, we demonstrated that a lipid and heparin induced 

increase of triacylglycerols and FFAs modifies cortisol levels in lean and apparently 

healthy women. Actually, while ACTH declined during both LHI and SHI, cortisol 

declined only during SHI. Substantial higher circulating cortisol levels were detectable 

during LHI (Figure 8 C and D). These data were independent of any change of 

circulating insulin and were also confirmed by calculating the area under the curve and 

the free cortisol index (cortisol-to-CBG ratio (131)) (130). 

This observation suggests a gender specific effect of FFAs, which is supported by 

previous findings of Kok and co-workers, who demonstrated, that a drug induced 

reduction of FFAs is associated with an impaired ACTH secretion in women only 

(118).  
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Figure 8:  ACTH and Cortisol in men (A and B) and women (C and D) during 

lipid/heparin infusion (filled squares) vs. saline/heparin infusion (open 

squares). Results are expressed as means ± S.E.M.. 

 

Most interestingly, the high cortisol levels during LHI were correlated with the parallel 

elevation of circulating FFAs (Figure 9). This was not observed for any other 

metabolic parameter such as insulin, triglycerides or glucose. We therefore assume 

that the cortisol changes during LHI were most likely a result of FFA changes rather 

than by LHI associated modulation of insulin or triglycerides. The fact that cortisol did 

not correlate to the FFAs during SHI otherwise indicates that alterations of the HPA 
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activity are particularly important in states of elevated FFAs, such as in individuals 

with abdominal obesity.  

It should be mentioned, that our findings were in some contrast to the inhibitory effect 

of LHI on ACTH and cortisol secretion in six young lean women, as shown by 

Lanfranco and colleagues (127). However, Lanfranco and co-workers did add heparin 

only to the lipid but not to the saline infusion, which makes results difficult to 

compare. Thus, heparin per se might have an inhibitory effect on adrenal function 

(132,133), which may have affected the non-controlled findings of Lanfranco and 

colleagues. 

 

 

 

 

 

 

 

 

 

Figure 9:  Correlation between the individuals AUCs for FFAs and cortisol levels 

during LHI.  

 

In general, elevated cortisol levels within the here proposed setting may be either the 

result of an increased central HPA stimulation, an improved sensitivity of the adrenal 

glands to central stimulation or a changed cortisol metabolism during LHI. Due to the 

comparable decline in ACTH during LHI and SHI in both men and women (Figure 8), 
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an effect on central stimulatory activity of HPA axis seems rather unlikely. We 

analysed, whether changes of cortisol metabolism might explain the observed effect. 

Daily urinary excretion rates were determined for the major cortisone metabolites 

(urinary free cortisone (UFE), tetrahydrocortisone (THE), ß-cortolone and α-

cortolone) and the major cortisol metabolites (urinary free cortisol (UFF), α-

tetrahydrocortisol (αTHF), tetrahydrocortisol (THF), ß-cortol and α-cortol). 

Furthermore, the seven quantitatively most important urinary glucocorticoid 

metabolites (THE, THF, αTHF, α-cortol, ß-cortol, α-cortolone and ß-cortolone) were 

summed to the major glucocorticoid metabolites (C21) as previously described (134). 

The findings were not suggestive for any change of cortisol metabolism, as urinary 

excretion of glucocorticoid metabolites and the 5α-reductase activity were not 

modified (Table 1) (130). Remarkably, the urinary secretion of all glucocorticoids and 

glucocorticoid metabolites tended to be decreased by LHI. Although those trends 

slightly failed statistical significance, we can not entirely exclude, that the increase of 

serum cortisol was at least in part the result of a decreased urinary glucocorticoid 

excretion. This would be comparable to our data on the regulation of adrenal 

androgens (85). 

Theoretically, a hyperlipidemia induced increase of 3β-HSD, 11-, 17- or 21-

hydroxylase activity might also result in elevated adrenal cortisol generation (Figure 

3). Given that the enzyme activities (calculated by urinary excretion of GC 

metabolites) were not modified during LHI, such mechanism is unlikely to exist 

(Table 1).  
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Table 1:  Urinary glucocorticoid metabolites during SHI and LHI. Results are 

expressed as means ± S.E.M.. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Given that neither the central stimulation nor peripheral metabolism or urinary 

excretion of cortisol was substantially modified, our results indicate an increased 

sensitivity of the adrenal glands to ACTH stimulation during LHI in women. The 

existence of a primary adrenal hypersensitivity to ACTH has been previously 

hypothesized by some authors in the context of abdominal obesity and elevated 
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triacylglycerols and FFAs (110,112-114). Indeed, the cortisol increase after ACTH 

stimulation was found to be higher in women with abdominal obesity compared to 

women with predominantly subcutaneous fat depots or lean controls 

(108,110,135,136). Cortisol levels were normal in individuals with abdominal obesity 

despite lower ACTH levels (114). These data support a higher sensitivity of the 

adrenals to ACTH stimulation in addition to the well known central modulation of the 

HPA activity in abdominal obesity. Our findings support a comparable effect of 

hyperlipidemia independent of abdominal obesity and suggest that hyperlipidemia may 

represent at least in part a link between abdominal obesity and increased adrenal 

sensitivity. The mechanism of a lipid induced sensitization of the adrenal gland to 

ACTH is completely unclear. Some authors observed an increased response of the 

adrenal gland to stimulation by ACTH during testosterone treatment in female-to-male 

transsexual patients (137). Therefore the improved adrenal sensitivity during LHI 

might be mediated by a hyperlipidemia induced increase in testosterone levels. As 

already mentioned above, we indeed observed such a lipid induced elevation of 

testosterone in women, but not in men (71,85).  

Taken together, the current data support a gender-specific effect of hyperlipidemia on 

adrenal ACTH-sensitivity. Given that hyperlipidemia and increased cortisol levels are 

both associated with abdominal obesity, hyperlipidemia might represent at least in part 

a link between abdominal obesity and the increased cortisol levels in women. 
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3.3. Effects of FFAs on 11ß-HSD1 

Circulating glucocorticoids do not reflect the concentration of cortisol in the target 

tissues (e.g. liver, adipose tissue and muscle). The tissue-concentration of cortisol is 

controlled by two enzymes: 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) 

acts in vivo predominantly as an oxo-reductase. It catalyzes the conversion of inactive 

cortisone to active cortisol (138), thereby significantly regulating intracellular levels of 

active glucocorticoids. 11ß-hydroxsteroid dehydrogenase type 2 (11ß-HSD2) 

inactivates cortisol to cortisone in the human kidney, colon and placenta [for review 

see (139)]. It was hypothesized, that a tissue-specific elevation of cortisol 

concentrations in target tissues, due to locally increased activity of the 11ß-HSD1 in 

these tissues, may play a pathogenic role in the metabolic syndrome (139-142). This 

was supported by Kotelevtsev and Alberts, who demonstrated reduced hepatic 

transcription of hepatic gluconeogenic enzymes, accompanied by an increased hepatic 

insulin sensitivity after treatment with a selective 11ß-HSD1-inhibitor (143,144) and 

in 11ß-HSD1 gene knock-out mice (140).   

As already mentioned key enzymes of the gluconeogenesis are up-regulated by 

increased FFAs (31,35-37). Similarly, enhanced hepatic 11ß-HSD1 activity might 

increase gluconeogenesis by induction of the gluconeogenic enzymes (102). Studies in 

11ß-HSD1 gene knock-out mice or treatment with a selective 11ß-HSD1-inhibitor in 

models of type 2 diabetes, demonstrated a reduced hepatic transcription of PEPCK and 

G6Pase mRNA and an improvement in hepatic insulin sensitivity (140,143-145). 

Concordant results were found in humans treated with carbenoxolone, an unselective 

inhibitor of both 11ß-HSDs (146). These data imply that FFA induced hepatic insulin 

resistance in humans could be mediated by local elevated cortisol levels due to 

increased hepatic or whole body 11ß-HSD1 activity. 

Examples for such a local regulation of 11ß-HSD1 are obesity and treatment with 

thiazolidinediones (TZD). Human studies in obesity, which is often associated with 

insulin resistance, have shown an increased expression of 11β-HSD1 in subcutaneous 
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(147-149) and visceral adipose tissue (147). In contrast hepatic 11β-HSD1 activity was 

found to be decreased in obese patients (142,150).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10:  Hepatic 11ß-HSD1 activity expressed as cortisol/cortisone ratio (A), 11ß-

HSD1 expression in skeletal muscle (B) and adipose tissue (C), whole 

body 11β-HSD1 activity (D) and whole body 11ß-HSD2 activity (E) 
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before (open symbols) and after (filled symbols) rosiglitazone treatment 

in 7 male and 9 female subjects with impaired glucose tolerance. Results 

are expressed as means ± S.E.M.. 

We demonstrated in 7 male (151) and 9 female (unpublished data) volunteers with 

impaired glucose tolerance, that an amelioration of total body (HOMA-IR; 3.10±0.48 

vs. 2.30±0.48; p<0.05) and muscular (ISIclamp; 0.05±0.01 vs. 0.09±0.01; p<0.001) 

insulin sensitivity by the PPARγ agonist rosiglitazone is accompanied by an 

improvement of 11ß-HSD1 in human skeletal muscle and subcutaneous adipose tissue, 

while hepatic 11ß-HSD1 is enhanced by rosiglitazone treatment (Figure 10).  

This opposed regulation of 11ß-HSD1 in different insulin target tissues suggests a 

tissue specific effect of rosiglitazone. This might at least in part explain the unchanged 

whole body 11ß-HSDactivity (Figure 10). Even if this was no placebo-controlled 

randomized cross-over trial, these data suggest, that 11β-HSD1 may be regulated by 

activation of PPARγ. Thus some of the insulin sensitizing effects of rosiglitazone may 

be partially caused by inhibition of the local cortisone-cortisol shuttle 11β-HSD1.  

FFAs activate PPARα as well as PPARγ (152). Given the mentioned data concerning 

the PPARγ agonist rosiglitazone, a possible role of FFAs in the regulation of 11ß-

HSD1 in the liver and throughout the whole body was hypothesized. This might 

eventually explain the observed elevation of cortisol during LHI in women. 

The metabolic effects of the LHI in our participants were in agreement with other 

reports showing that FFAs induce peripheral and hepatic insulin resistance (28-31). 

However, we did not find any modulation of whole body activities of 11ß-HSDs, 

neither in men (153) nor in women (130). This was meanwhile partly confirmed by 

another group (154). Despite the comparable effects on hepatic glucose metabolism, 

hepatic 11ß-HSD1 was not modulated by LHI in the smaller cohort of 6 men (Table 1 

and Figure 11). Accordingly, both short-term and chronic high fat diet, which 

increases FFAs (155), did not change the hepatic 11ß-HSD1 activity in mice (156). 

Even if some data suggest an inhibitory (156) or stimulatory effect of FFAs on adipose 

11ß-HSD1 (154), an alteration of only adipose but not whole body 11ß-HSD1 is 
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unlikely to induce a change of circulating cortisol levels, as those are predominantly 

determined by the sum of the 11ß-HSD1 activities of all human tissues (=whole body 

11ß-HSD1 activity). This may be most adequately estimated by the urinary ratio of 

steroid ring A-reduced metabolites of cortisol (THF and α-THF) and of cortisone 

(THE) (157,158). We suggest that changes in 11ß-HSD1 are unlikely to be responsible 

for the elevation of cortisol by FFAs. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11:  Whole body 11β-HSD1 (A) and 11ß-HSD2 activity (B) in n 6 men and 

13 women. Hepatic 11ß-HSD1 activity expressed as cortisol/cortisone 

ratio (C) during lipid/heparin infusion (filled squares) and during 

saline/heparin infusion (open squares) in 6 men. Results are expressed as 

means ± S.E.M.. 
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4. Effects of FFAs on Fibroblastic Growth Factor 21 

4.1. Metabolic characteristics of Fibroblastic Growth Factor 21  

Fibroblastic Growth Factors (FGFs) are known to be involved in the regulation of cell 

differentiation, cell growth and angiogenesis. Some of these FGFs play a crucial role 

in bone, liver and adipose tissue metabolism. This includes FGF-19 which regulates 

energy expenditure, FGF-23 which is involved in phosphate metabolism and FGF-21. 

FGF-21 is a recently discovered metabolic regulator of fasting metabolism. FGF-21 

activates glucose uptake in adipocytes and skeletal muscle cells, protects animals from 

diet-induced obesity, lowers blood glucose and triglyceride levels, and increases 

energy expenditure (159-163). Comparably, glucose and triglyceride lowering effects 

were found in diabetic rhesus monkeys during chronic FGF-21 treatment over a period 

of 6 weeks (164). Therefore FGF-21 was assumed to be a novel target with potential 

anti-diabetic properties, which might be useful in the treatment of hyperglycemia, 

insulin resistance and hyperlipidemia. Furthermore FGF-21 was recently described to 

be involved in lipolysis (165) and increased hepatic ketone body production (160). 

However, human data did not directly support these assumptions, since serum FGF-21 

levels were found to be increased in obesity, type 2 diabetes mellitus and metabolic 

syndrome (166-169). Circulating FGF-21 levels correlated positively with estimates of 

adiposity but also with several parameters of the metabolic syndrome like fasting 

insulin and triacylglycerol levels (166). Furthermore increased FGF-21 mRNA 

expression was found in obese individuals, at least in visceral adipose tissue (168). 

The effects and regulation of FGF-21 appeared to differ between animal models and 

humans. A recent study reported a significant increase of FGF-21 levels during 

prolonged fasting (161). This process was suggested to be PPARα-dependent 

(160,161) although exact mechanisms of the fasting induced FGF-21 elevations 

remained unclear. As both obesity and starvation are characterized by elevated FFAs, 

which activate PPARα, we speculated, that FFAs might regulate FGF-21. This 

hypothesis is supported by recent data demonstrating that FGF-21 levels are positively 

associated with FFAs in humans (170). Although the direction of that relation is 
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unclear in such a cross-sectional study, it offers a potential mechanism linking 

starvation and obesity to the increased levels of FGF-21.  

4.2. Fatty acid dependent regulation of FGF-21 in-vitro 

We investigated the effect of several fatty acids on FGF-21 secretion in HepG2 cells in 

vitro. Incubation of HepG2 cells with a mixture of palmitic, linoleic or oleic acid 

induced an increase of FGF-21 expression and secretion compared to BSA control 

(171).  

The analysis of the individual fatty acids revealed that this increase was not detectable 

for palmitic acid, while stimulation with oleic or linoleic acid resulted in a significant 

elevation of the FGF-21 secretion. Within those experiments linoleic acid had the 

strongest effect at about 4 to 8 hours (Figure 12 A-D). The dose response experiments 

using different oleate to BSA ratios suggested an increase in FGF-21 secretion in a 

dose dependent manner (171). 

We also observed an increase of FGF-21 mRNA expression (Figure 13). The 

maximum of these effects was observed after 2 to 4 hours for FGF-21 expression and 

after 4 to 8 hours for protein secretion. 
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Figure 12:  Protein levels of FGF-21 in the supernatant of HepG2 cells after 

stimulation with palmitate (A), oleate (B), linoleate (C) and a FFA 

mixture (D) for 1, 2, 4, 8 and 24 h. Results are expressed as means ± 

S.E.M., *p<0.05 compared to BSA at the same time point, p=0.072 for 

FGF-21 protein levels during linoleate stimulation at 2 h compared to 

BSA, p=0.069 for FGF-21 protein levels during linoleate stimulation at 8 

h compared to BSA, respectively.  
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Figure 13: Expression of FGF-21 in HepG2 cells after stimulation with linoleate for 

1, 2, 4 and 8 h. Results are expressed as means ± S.E.M., *p<0.05 

compared to BSA at the same time point. 

 

A PPARα-specific siRNA induced knock-down of PPARα (about 60% knock-down 

of PPARα) abolished the increase in FGF-21 secretion and mRNA expression during 

stimulation with linoleate and FFA mixture (Figure 14). These data indicate that the 

FFA-induced effect depends on PPARα stimulation.  
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Figure 14:  (A) FGF-21 mRNA expression in HepG2 cells during linoleate or FFA 

mixture stimulation after siRNA knockdown of PPARα (compared to 

control siRNA and linoleate or FFA mixture stimulation (100%)). 

Results are expressed as means ± S.E.M., *p<0.05 compared to 

expression during control siRNA, respectively. (B) Concentration of 

FGF-21 in the supernatant of HepG2 cells after siRNA knockdown of 

PPARα and subsequent stimulation by linoleate or FFA mixture 

compared to control siRNA and BSA medium. Results are expressed as 

means ± S.E.M., *p<0.05 compared to control siRNA and BSA medium. 

 

4.3. Effects of FFAs on FGF-21 in-vivo 

Based on these in-vitro data we performed a randomized controlled trial to explore 

whether an increase in circulating free fatty acids and triacylglycerols modifies FGF-

21 levels in humans. 

Comparable to our in-vitro findings a substantial increase of FGF-21 was found during 

LHI induced increase of FFAs (Figure 15 A). This effect was significant after about 4 

hours of hyperlipidemia, a time course being in line with our in vitro experiments 

demonstrating a maximum of the effects at 2 to 4 hours for FGF-21 expression and 4 
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to 8 hours for protein secretion. Interestingly, the change of FGF-21 levels was 

positively correlated to the change of FFA levels (Figure 15 B), even after adjustment 

for additional confounders. Taken together, our experimental data and the results of 

this controlled, randomised cross-over human trial strongly characterized free fatty 

acids as stimulators of FGF-21 secretion in humans, an effect which was mediated via 

PPARα. Physiologically, such a FFA-induced increase of FGF-21 might contribute to 

the observed adaption of the organism to starvation or prolonged fasting.  

 

 

 

 

 

 

 

Figure 15:  (A) Concentrations of FGF-21 during SHI (open circles) and LHI (filled 

circles). Results are expressed as means ± S.E.M., *p<0.05 (treatment-

vs.-time interaction: p<0.05.; AUC: 1191±91 vs. 1090±86 ng/ml*min, 

p<0.05). (B)  Correlation between changes of FGF-21 and FFAs. The 

saline group (open circles) and the lipid group (filled circles) were 

included in the correlation analysis. Correlations after adjustment for sex, 

age, BMI and change in insulin levels (r=0.474, p<0.005). 

 

Although our findings were supported by various recent cross-sectional studies 

describing a positive correlation between FGF-21 levels and parameters of lipid 

metabolism, specifically FFAs and triacylglycerols (166,167,170), it is noteworthy that 

FFA levels used in this study were in a marked supra-physiological range. Thus, it was 
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still unclear, whether physiological levels of FFAs also regulate FGF-21 in humans. 

We therefore aimed to investigate the effect of physiological enhanced FFA levels on 

circulating FGF-21 levels in 14 healthy humans in a novel randomized controlled trial. 

Metabolic changes during LHI and SHI are presented in table 2. As expected, the 

increase of FFAs and triacylglycerol levels during this modified LHI containing a 

lower heparin concentration was comparable to a physiological FFA and 

triacylglycerol elevation as observed during starvation (172,173) and postprandially in 

obesity (174).  

 

Table 2:  Hormonal and metabolic changes during LHI and SHI. 

 

 

 

 

 

 

 

This more physiological elevation of FFAs during LHI also resulted in the 

characteristic decline of insulin sensitivity compared to SHI (ISIClamp: 0.14±0.02 vs. 

0.10±0.09 (mg*kg-1*min-1)/(mU*L -1); p<0.005). In accordance with our previous 

findings under supra-physiological FFA levels (171), a significant increase of FGF-21 

was also detected during physiologically elevated FFAs (Figure 16), although the 

relative increase of FGF-21 was smaller. We were not able to confirm our previously 

described relation between the relative change of FFAs and FGF-21 within this “low 

FFA” trial. Given that the only difference between those two studies was the range of 

FFAs, which was clearly higher in the initial study (171), we speculated that a linear 
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relation between FFAs and FGF-21 may be observed only above a certain threshold of 

FFAs, while changes below that threshold may have no effect. Indeed after exclusion 

of the individuals within the lowest quartile of FFAs a strong correlation between 

changes of FFAs and FGF-21 was found in the remaining individuals (r=0.608; 

p<0.05), supporting that a linear relation between FFAs and FGF-21 exists only above 

a certain threshold, which appears to be biologically plausible. 

 

 

 

 

 

 

 

 

 

Figure 16:  FGF-21 levels in healthy subjects at baseline and after 3 hours of either 

LHI or SHI.  

 

In fact the FFA-induced effects on FGF-21 are moderate within the low FFA trial 

(about 10 to 12 %). Although other studies demonstrated, that FGF-21 levels might be 

up to 50 % higher in obese compared to lean subjects (166,168), the here observed 

elevation of FGF-21 levels may still have biological relevance. Comparable moderate 

differences of FGF-21 levels were found between different stages of insulin resistance 

(167,170,175). Thus FGF-21 levels were elevated by approximately 13 % in subjects 

with impaired fasting glucose (175) and 19 to 23 % in diabetics compared to healthy 
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subjects (167,170). Moreover FGF-21 levels declined by approximately 20% during 

fenofibrate treatment in hypertriglycerimic subjects (161). Although all those studies 

demonstrate that moderate differences of circulating FGF-21 exist and may be the 

consequence of different metabolic phenotypes, those studies and our data cannot 

finally prove that these difference have biological consequences. This issue clearly 

requires future studies with detailed dose-response analyses. 

Although the here performed intervention is a well established model investigating 

metabolic effects of FFAs (77-81), FFAs and triacylglycerols are both increased by 

LHI (82-84) and the respective effects are difficult to dissociate. Recent human data 

indicate a specific role of FFAs on FGF-21 secretion by showing a positive correlation 

between both parameters in healthy subjects within cross sectional studies (167). 

Dostalova and coworkers observed not only reduced FGF-21 levels but also lower 

FFAs in anorectic women compared to controls (176), while no difference in insulin, 

triacylglycerols and fasting glucose was detected between anorectic and healthy 

women in this study. Those data suggest FFAs to be an important regulator of FGF-21 

levels, which is supported by our in-vitro data and the correlation between changes in 

FFAs and FGF-21 found during our experiments. Although FFAs modify FGF-21, we 

cannot entirely exclude a role of triacylglycerols or other compounds within the 

applied infusions.  In that context we also analysed the effect of lecithin and glycerol 

on FGF-21 secretion in HepG2 cells, as lipid infusion contains a mixture of different 

fatty acids, glycerol and lecithin. Compared to controls no significant effect of both 

substances on FGF-21 was detectable in HepG2 cells.  

FFAs are known to activate PPARα as well as PPARγ (152). We aimed to analyse, 

whether PPARγ is involved in the regulation of FGF-21. Therefore we evaluated the 

effect of the PPARγ agonist rosiglitazone on FGF-21 in the already mentioned human 

trial including male and female overweight subjects with impaired glucose tolerance 

(151,171). Notably recent animal data suggested a regulation of FGF-21 by PPARγ 

(177). However, no change of FGF-21 levels was detected during treatment with the 

PPARγ agonist in humans (Figure 17). Although PPARγ agonists may recruit different 

nuclear co-factors, which may explain different biological effects, our data do not 
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support (but also not entirely exclude) that the observed effects on FGF-21 levels 

during LHI were mediated by PPARγ stimulation.   

 

 

 

 

 

 

 

 

 

Figure 17:  Effect of PPARγ stimulation by rosiglitazone treatment on FGF-21 levels 

in subjects with impaired glucose tolerance. Results are expressed as 

means ± S.E.M. 

 

4.4. Effects of insulin on FGF-21 

Lipid infusion is usually accompanied by a mild elevation of insulin. The effects of 

FFAs and insulin on FGF-21 are difficult to separate. Cross sectional studies 

demonstrated a negative correlation between fasting insulin and FGF-21 in diabetic 

subjects (167,170), while this association was reported to be positive in obese 

individuals (166). Given this discrepancy, the relationship between insulin and FGF-21 

is unclear. To delineate a potential interaction of lipid- and insulin-induced effects on 

FGF-21, we analysed the effect of an euglycemic hyperinsulinemia in 17 subjects with 

impaired glucose tolerance (171). An about 700% increase of insulin levels was 
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observed during this protocol (p<0.005). Under those conditions, a small, but 

significant increase in FGF-21 levels was observed (Figure 18).  

 

 

 

 

 

 

 

 

 

Figure 18:  Effect of insulin on FGF-21 levels in subjects with impaired glucose 

tolerance. Results are expressed as means ± S.E.M. 

 

This indicates that insulin increases circulating FGF-21 (171). However these data 

were not based on a controlled randomized trial and therefore it was unclear, whether 

these findings were the direct result of insulin or any other confounders, i.e. circadian 

effects. Furthermore this protocol induced supraphysiological levels of insulin. 

Notably, insulin levels did not differ between SHI and LHI within the study using the 

“low FFA” protocol (Table 2) and no correlation was found between the change of 

FGF-21 levels and the change of insulin levels within all lipid trials. Even if these 

findings argue against an indirect effect of LHI (e.g. resulting from hyperinsulinemia), 

an additional role of insulin on FGF-21 could not be entirely excluded. We therefore 

performed another randomized controlled trial analyzing FGF-21 levels in patients 

with type 1 diabetes after withdrawal of their insulin treatment or during ongoing 
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insulin supply in an attempt to dissect these two potential mechanisms. The metabolic 

changes during hypoinsulinemia are presented in table 3.  

 

Table 3:  Hormonal and metabolic changes during insulin withdrawal and 

continued subcutaneous (s.c.) insulin infusion in type 1 diabetics. 

 

 

 

 

 

 

 

 

Notably, a significant increase in FGF-21 was detected during hypoinsulinemia 

(Figure 19), while no change was detected during continuous insulin infusion. These 

data argue against a stimulating effect of insulin on FGF-21 under physiologic 

conditions. 

However hypoinsulinemia itself is known to change several other metabolites, 

including FFAs and ketone bodies. The rise in FFAs seen under hypoinsulinemia was 

comparable to the increase during the “low FFA” protocol (Table 2). Remarkably, 

FGF-21 levels were also enhanced to a similar extent during both experiments (about 

10 to 12 %). This suggests that the elevation of FFAs (and not insulin or triglycerides) 

might be responsible for the up-regulation of FGF-21, independent whether the 

increase of FFAs is induced by LHI with relative hyperinsulinemia or by 

hypoinsulinemia.  
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Changes of FFAs failed to be significantly correlated to changes of FGF-21 during 

insulin withdrawal, which may be due to the complex metabolic changes during 

fasting under absolute insulin deficiency.  

 

 

 

 

 

 

 

 

 

Figure 19:  FGF-21 levels in subjects with type 1 diabetes mellitus after insulin 

withdrawal.  

 

The studies do not exclude that supra-physiological insulin levels, as observed during 

a hyperinsulinemic clamp, may affect FGF-21 levels, as discussed above and also 

observed by others (178). Notably, only obese subjects with impaired glucose 

tolerance were investigated in our study with supra-physiological insulin levels (BMI 

32.8±2.2 kg/m2), whereas the investigated individuals with type 1 diabetes were lean 

(BMI 24.6 ± 0.6 kg/m2). Differences in body weight might also account for the 

observed difference. Such a variable effect of insulin on FGF-21 levels in obese and 

lean subjects was suggested by Mraz and colleagues (168), who observed unchanged 

FGF-21 levels during hyperinsulinemic clamp in lean subjects, whereas an insulin 

induced increase in FGF-21 was found in obese subjects. Even if our lean subjects 
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were no healthy volunteers, the effect of insulin on FGF-21 might depend on body 

weight. On the other hand we detected an increase during insulin withdrawal, 

suggesting that insulin might even suppress FGF-21 levels in lean individuals. Even if 

those data suggest in summary that the FGF-21 response on insulin may depend on 

confounders such as existing obesity or existing insulin resistance, our experiments 

indicate a direct effect of FFAs on FGF-21, which is independent of insulin. As 

mentioned, this offers a potential mechanism linking regulation of FGF-21 to the 

switch of metabolism during starvation.  
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4.5. Effects of weight loss on FGF-21 

The function of FGF-21 in lipid metabolism and energy balance was underlined by 

Potthoff and co-workers, who described the effect of FGF-21 on fatty acid oxidation 

and on peroxisome proliferator-activated receptor gamma coactivator protein-1alpha, a 

key regulator of energy homeostasis (179). Transgenic mice overexpressing FGF-21 

gained significant less weight under a high fat diet (159) and FGF-21 administration 

resulted in a slight reduction in body weight as well as an improved metabolic pattern 

in monkeys (164). Given the existing data, it seems reasonable to hypothesize that 

FGF-21 might influence body fat stores or vice versa might itself be affected by the 

degree of obesity, which is closely related to lipid metabolism. Therefore human data 

regarding the relationship between body weight and FGF-21 would also improve the 

knowledge of the FFA-FGF-21-interaction. Despite several studies suggesting that 

FGF-21 may contribute to energy balance and body weight at least in animals, data in 

humans were basically missing and specifically regarding the relationship of FGF-21 

and weight reduction no data existed in humans.  

An association of FGF-21 levels and BMI was found in some (166,169,175) but not all 

(167,170) human studies. Even if such a relation exists, the direction of that relation 

would be unclear. Thus, circulating FGF-21 might affect body weight, but vice versa, 

body weight might also affect circulating FGF-21. Given this partially unclear 

situation in humans, we evaluated the effects of moderate weight reduction by a life-

style intervention program on FGF-21 levels. A total of 30 obese individuals (24 

female, 6 male) participated in a weight reduction program for 6 months. As expected, 

the weight loss was accompanied by an improvement of several metabolic and 

anthropometric parameters including lipid metabolism (Table 4), which was 

comparable to previous findings (180,181). Despite previous animal and human data, 

which suggested a strong correlation between BMI and FGF-21, FGF-21 levels were 

not modified by a moderate weight reduction. This was more recently confirmed in a 

randomized controlled trial investigating hormonal effects of a more pronounced 

weight loss induced by different bariatric surgery methods (182).  
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Table 4:  Baseline characteristics of the 30 participants. Results are expressed as 

mean ± S.E.M. 
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One study demonstrated a decrease in FGF-21 of 42% during a ketogenic diet which 

was accompanied by weight loss (183). However the diet used in our intervention was 

not designed to induce pronounced ketosis, a fact that might also contribute to the 

differences between ours and those data, as FGF-21 seems to be regulated by ketosis 

(184). Otherwise the study of Christodoulides was small and therefore type 1 error 

may have been a problem. Considering the sample size of our study, theoretically a 

difference of 12 % of FGF-21 levels was detectable. Therefore the 42 % difference of 

FGF-21 observed by Christodoulides and co-workers should have been detectable, 

which was not observed. Notably, a trial analyzing the effects of a ketogenic diet in 

children did not induce changes in FGF-21 levels (161). 

Mraz and colleagues observed increased circulating FGF-21 levels after 3 weeks of 

very low calorie diet (VLCD), an intervention which was also accompanied by a 

moderate weight loss (168). However VLCD usually leads to a pronounced catabolism 

which may be responsible for the observed changes in FGF-21. Due to those catabolic 

conditions the results might not be directly comparable to our data. 

 

In summary current data indicate that circulating FGF-21 levels are unchanged after a 

moderate weight reduction without periods of excessive negative energy balance. 

FGF-21 may not be directly regulated by a moderate change in fat mass and body 

weight and otherwise FGF-21 does not substantially contribute to the endocrine 

response counterbalancing a reduction of fat mass. In contrast, mechanisms related to 

the degree of negative energy balance may contribute to the regulation of FGF-21 

rather than fat mass per se. Accordingly multiple linear regression analysis suggests, 

that FGF-21 levels at baseline did not predict weight loss.  

Even if FFAs were also reduced by weight reduction, the unchanged FGF-21 levels 

did not contradict the model, that FFAs regulate FGF-21 levels. A significant 

correlation was found at baseline to several metabolic and anthropometric parameters, 

including FFAs. Eventually the slightly decreased FFAs in our subjects do account for 

the unchanged FGF-21 levels after weight loss. This is supported by the already 

mentioned fact that an effect of FFAs on FGF-21 may only exist above a certain 

threshold of FFAs, while changes below that threshold may have no effect. 
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4.6. Physiological impact of the relationship between FFAs and 

FGF-21  

Recently FGF-21 was characterized as a novel metabolically active protein, which 

improves glucose uptake, increases energy expenditure and inhibits lipolysis. FGF-21 

is predominately secreted by the human liver. The secretion is directly stimulated by 

FFAs. Especially unsaturated FFAs have a substantial impact on FGF-21 expression 

and secretion. This effect is mediated by FFA induced activation of the nuclear 

receptor PPARα, especially in hepatocytes. In addition, circulating FGF-21 levels are 

responsible for the inhibition of lipolysis (Figure 20). This seems to be mediated by 

attenuating the hormone-stimulated lipolysis in human adipocytes probably due to 

reduced expression of perilipin, a phosphoprotein that is thought to recruit several 

lipases to the surface of the lipid droplets for subsequent triglyceride hydrolysis (165). 

Physiologically, the FFA-induced increase of FGF-21 might counterbalance a 

permanent FFA release by inhibition of lipolysis. 

Insulin has antilipolytic properties and impaired inhibition of lipolysis is one common 

feature of insulin resistance. In that context the effects of FFAs on FGF-21 may 

counter-regulate the impaired inhibition of lipolysis during insulin resistance. This 

mechanism may partially explain the elevated levels of FGF-21 in obese or diabetic 

patients and could represent a physiological attempt to diminish lipid induced insulin 

resistance in obesity and type 2 diabetes. Such an insulin sensitizing effect of FGF-21 

has been convincingly demonstrated within several animal experiments. 

As current data suggest differential effects of saturated and unsaturated fatty acids, and 

especially polyunsaturated fatty acids, on glucose metabolism (185), it is also tempting 

to speculate that some of those effects might by mediated by FGF-21. Various studies 

suggested that the FFA-induced activation of PPARα depends on the degree of 

saturation of those FFAs (186). Therefore the different effects on FGF-21 secretion 

may be caused by different PPARα binding of saturated and unsaturated fatty acids. 
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Figure 20: Physiological impact of FFAs and FGF-21 

 

FGF-21 is also thought to induce hepatic ketogenesis (179), even if this was not 

consistently found in all studies (187). These biological properties suggest that FGF-21 

may also contribute to the anabolic switch of the organism under conditions of 

starvation, a situation also associated with a moderate increase in FFA levels. 

Together these mechanisms may cause the induction of FGF-21 seen in the fasting 

situation, but also in type 2 diabetes and obesity. 
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5. Summary 

The metabolic effects of FFAs on peripheral and hepatic insulin resistance were well 

demonstrated in numerous studies (28-31). FFAs additionally act as endocrine 

mediators regulating on the levels of several circulating hormones. Potential 

mechanisms include different expression, but also modified excretion of affected 

hormones. These effects might play an important role in obesity, insulin resistance and 

type 2 diabetes. The work of the applicant focused on the role of FFAs in the 

regulation of androgens, glucocorticoids and FGF-21.  

The effects of FFAs on both adrenal steroids were investigated using randomized 

controlled lipid infusion trials in men and in women. FFAs were found to regulate 

androgens and androgen precursors. This effect was induced by a reduced urinary 

excretion of androgens and was observed predominantly for secreted adrenal androgen 

precursors. The effect was independent of FFA induced hyperinsulinemia and insulin 

resistance.  

Hyperandrogenemia in women with PCOS is usually thought to result from impaired 

insulin sensitivity and subsequent hyperinsulinemia. The here presented data indicate a 

novel physiological mechanism linking fat metabolism and regulation of circulating 

androgens, which might be relevant in the pathogenesis PCOS in women. This 

mechanism might have therapeutic relevance in women with PCOS. Antilipolytic 

nicotinic acid analogues decrease FFAs (188,189) and such drugs might lead to an 

improvement of hyperandrogenism. However, the implied therapeutic option cannot 

be directly transferred to the treatment of PCOS. PCOS is a heterogeneous disorder. 

Thus, the link of FFAs and androgens might be relevant in a subcohort of women with 

PCOS (60), although future intervention studies investigating this question are 

required.  

The clinical features of the metabolic syndrome are comparable to those observed in 

patients with hypercortisolism (91-96). Accordingly, several data support an 

involvement of HPA axis particularly in insulin resistance and other features of the 

metabolic syndrome. We here investigated the effects of FFAs, which play a crucial 
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role in several metabolic disorders, on HPA axis. The here presented data support a 

pathogenic role of FFAs on adrenal ACTH-sensitivity leading to increased cortisol 

levels. Such a primary adrenal hypersensitivity to ACTH in the context of abdominal 

obesity and elevated FFAs and triacylglycerols is supported by several studies 

(110,112-114), even if the specific effect of FFAs was not demonstrated so far. 

Notably this effect is apparently gender-specific and was observed in women only. 

The gender-specific regulation of HPA activity is also supported by previous studies 

(118,123,124). Thus hyperlipidemia with elevated FFAs might represent a link 

between the increased cortisol levels and abdominal obesity in women. In contrast to 

these effects on circulating cortisol levels, FFAs did not modulate hepatic 11ß-HSD1 

activity, which was found to play a role in obesity and type 2 diabetes (140,142-

145,150). FFAs therefore may not act via changes in 11ß-HSD1 activity, even if the 

results regarding adipose 11ß-HSD1 are conflicting yet (154,156). 

FGF-21 was assumed to be a novel target with potential anti-diabetic properties. FGF-

21 was also characterized as an important regulator of fasting metabolism. However 

the exact regulation was not known in humans, as elevated serum FGF-21 levels were 

detected in obesity, type 2 diabetes mellitus and metabolic syndrome (166-169). We 

aimed to evaluate the regulation of FGF-21 in humans and investigated the modulation 

of FGF-21 by FFAs in- vivo and in-vitro. Free fatty acids increased the expression and 

secretion of FGF-21 in HepG2 cell cultures, an effect which was found to depend on 

the degree of saturation of FFAs. This effect was PPARα dependent, as demonstrated 

in knock-down experiments. This PPARα dependent regulation of FGF-21 is also 

supported by others (160,161). The in-vitro effects were confirmed in human trials. 

Supraphysiological as well as physiological FFA levels were investigated in two 

human trials. A randomized insulin withdrawal was performed in subjects with type 1 

diabetes mellitus to separate insulin and FFA mediated effects. According to those 

trials, insulin is unlikely to directly regulate FGF-21. 

A human trial using the PPARγ agonist rosiglitazone suggested that any effects of 

FFAs on FGF-21 do not depend on PPARγ. Physiologically, an FFA-induced increase 

of FGF-21 might contribute to the adaption of the organism to starvation or prolonged 
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fasting. Furthermore the stimulation of FGF-21 by FFAs might counter-balance the 

impaired inhibition of lipolysis during insulin resistance. This mechanism may 

partially explain the elevated levels of FGF-21 in obese or diabetic patients and could 

represent a physiological mechanism to diminish lipid induced insulin resistance in 

obesity and type 2 diabetes.  

In summary, the applicant has demonstrated that FFAs regulate several endocrine 

circuits involved in energy homeostasis, but also glucose and lipid metabolism. Those 

endocrine systems being modified by FFAs include adrenal steroids, but also proteins 

such as FGF-21. Other examples such as the reduction of circulating adiponectin 

levels (190) and the inhibition of growth hormone secretion (104,105) have been 

demonstrated previously, supporting the complex interplay of FFAs and other 

hormonal factors in several metabolic states.  
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