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Introduction

Overview

This dissertation treats questions about the de�nition of �simplices� inside Riemannian
manifolds, the comparison between those simplices and Euclidean ones, as well as
Galerkin methods for variational problems on manifolds.
During the last three years, the �Riemannian centre of mass� technique described by

Karcher (1977) has been successfully employed to de�ne the notion of a simplex in
a Riemannian manifold M of non-constant curvature by Rustamov (2010), Sander
(2012) and others. This approach constructs, for given vertices pi ∈ M , a uniquely
de�ned �barycentric map� x : ∆→M from the standard simplex ∆ into the manifold,
and calls x(∆) the �Karcher simplex� with vertices pi.
However, the question whether x is bijective and hence actually induces barycentric

coordinates on x(∆) remained open for most cases. We show that under shape regu�
larity conditions similar to the Euclidean setting, the distortion induced by x is of the
same order as for normal coordinates: dx is almost an isometry (of course, this can
only work if ∆ is endowed with an appropriately-chosen Euclidean metric), and ∇dx
almost vanishes. The estimate on dx could have already been deduced from the work
of Jost and Karcher (1982), but it is the combination with the ∇dx estimate which
paves the ground for applications of Galerkin �nite element techniques.
For example, the construction can be employed to triangulateM and solve problems

like the Poisson problem or the Hodge decomposition on the piecewise �at simplicial
manifold instead of M . This leads to analogues of the classical estimates by Dziuk
(1988) and subsequent authors in the �eld of surface pde's (we only mention Hilde-
brandt et al. 2006 and Holst and Stern 2012 at this point), but as no embedding
is needed in our approach, the range of the surface �nite element method is extended
to abstract Riemannian manifolds without modi�cation of the computational scheme.
Second, one can approximate submanifolds S inside spaces other than Rm (for exam�
ple, minimal submanifolds in hyperbolic space), for which the classical �normal height
map� or �orthogonal projection� construction from the above-mentioned literature di�
rectly carries over, and the error term generated by the curvature of M is dominated
by the well-known error from the principal curvatures of S.
Apart from classical conforming Galerkin methods, there are other discretisation

ideas, e. g. the �discrete exterior calculus� (dec, see Hirani 2003) in which variational
problems such as the Poisson problem or the Hodge decomposition can be solved
without any reference to some smooth problem. Convergence proofs are less developed
in this area, mainly because albeit there are interpolation operators from discrete
k-forms to L2Ωk, these interpolations do not commute with the (di�ering) notions
of exterior derivative on both sides. We re-interpret dec as non-conforming Galerkin
schemes.
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Results

Let (M, g) be a smooth compact Riemannian manifold. Concerning the simplex de��
nition and parametrisation problem, we obtained the following (for German readers,
we also refer to the o�cial abstract on page 113):

<1> For given points p0, . . . , pn ∈ M inside a common convex ball, we consider the
�barycentric mapping� x : ∆ → M from the standard simplex into M de�ned by
the Riemannian centre of mass technique. Its image s := x(∆) is called the (possibly
degenerate) n-dimensional �Karcher simplex� with vertices pi. If ∆ is equipped with a
�at metric ge de�ned by edge lengths d(pi, pj) ≤ h, where d is the geodesic distance in
(M, g), and if vol(∆, ge) ≥ αhn for some α > 0 independent of h (�shape regularity�),
we give a estimate for the di�erence ge − x∗g between the �at and the pulled-back
metric of order h2, as well as a �rst-order estimate for the di�erence ∇ge − ∇x∗g
between the Euclidean and the pulled-back connection (6.17, 6.23).

<2> We give estimates for the interpolation of functions s→ R and s→ N , where N
is a second Riemannian manifold (7.4, 7.15).

<3> Starting from the already existing theory of Voronoi tesselations in Riemannian
manifolds by Leibon and Letscher (2000) and Boissonnat et al. (2011), we de�ne
the Karcher�Delaunay triangulation for a given dense and �generic� vertex set (8.8).

<4> Concerning the Poisson problem on the space of weakly di�erentiable real-valued
functions H1(M,R), weakly di�erentiable real-valued di�erential forms H1Ωk(M), and
weakly di�erentiable mappings into a second manifold H1(M,N), we prove error es�
timates for their respective Galerkin approximations (10.13, 10.17, 13.14). The same
method gives estimates for the Hodge decomposition in H1Ωk(M) if appropriate trial
spaces as in Arnold et al. (2006) are chosen (10.15).

<5> We give proximity and metric comparison estimates for the �normal height map� or
�orthogonal projection map� between a smooth submanifold and its Karcher-simplicial
approximation, which is the classical tool for �nite element analysis on surfaces in R3,
but this time for submanifolds inside another curved manifold (11.3, 11.18).

<6> We show that the di�erential of a Karcher simplex' area functional with respect
to variations of its vertices is well-approximated by the area di�erential of the �at
simplex (∆, ge) with ge as above (12.12).

Concerning the convergence analysis of discrete exterior calculus schemes for a simpli�
cial complex:

<7> We de�ne a (piecewise constant) interpolation ik : Ck → P−1Ωk from discrete
di�erential forms to a subspace of L2Ωk, which turns the discrete exterior derivative
into a �di�erential� d : P−1Ωk → P−1Ωk+1 with Stokes' and Green's formula for sim�
plicial domains. This reduces convergence issues for dec from simplicial (co-)chains
to approximation estimates between the non-conforming trial space (P−1Ωk, d) and
(H1Ωk, d). We estimate the approximation quality of P−1 forms in H1Ωk (9.19, 9.20)
and compare the solutions of variational problems in P−1Ωk and H1Ωk (10.26�28).
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Structure and Method

All the thesis is divided into three parts, one of which introduces notation, the main
constructions another, its applications to standard problems in numerical analysis of
geometric problems and surfaces pde's (changing the usual setting from embedded
surfaces to abstract (sub-)manifolds) the third. Having in mind that �the introduction
of numbers as coordinates [...] is an act of violence� (Weyl 1949, p. 90), we try to stay
inside the absolute Riemannian calculus as far as possible. Our main tool are Jacobi
�elds, which naturally occur when taking derivatives of the exponential map and its
inverse. Whereas the standard situation for estimates on a Jacobi �eld J(t) are given
values J(0) and J̇(0), see e. g. Jost (2011, chap. 5), we will deal with Jacobi �elds
with prescribed start and end value, which is convered by (fairly rough, but satisfying)
growth estimates 6.6 and 12.4.
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Symbol List

We listed here those symbols which occur in several sections without being introduced
every time. Symbols with bracketed explanation are also used with a di�erent meaning,
which then will be de�ned in the section. Where it is useful, we added a reference to
the de�nition.

M manifold, Mg is shortcut for (M, g)
m dimension of M
g Riemannian metric on M
P parallel transport (beside in section 3)
R curvature tensor of M (1.3)
Γ Christo�el symbols (1.2), Christo�el operator (1.14)
d geodesic distance function in M
Xp gradient of 1

2 d(p, · ) (1.22)
x barycentric mapping (5.4)
inj, cvr injectivity and convexity radius (5.2)
C0, C1 global bound for ||R|| and ||∇R|| resp.
h mesh size
ϑ fullness parameter (3.3)
C0,1 := C0 + hC1

C ′0,1 := C0,1ϑ
−2

K simplicial complex (4.1)
n dimension of K
e, f, s, t elements, facets, simplices
r (realisation operator for simplicial complexes, 4.2)
. ≤ up to a constant that only depends on n

∆ standard simplex, Laplace�Beltrami operator
ei Euclidean basis vector
1n = (1, . . . , 1) ∈ Rn
1 unit matrix
Br(U) set of points with distance < r from U

d di�erential, exterior derivative
δ (exterior coderivative, Kronecker symbol)
∂ partial / coordinate derivative, boundary of sets
∇ covariant derivative
D covariant derivative along curves (except section 3)
L (weak Laplacian, 2.7), curve length functional

| · |`2 canonical Euclidean norm of Rn

| · | pointwise norm on bundles induced by g, volume of sets
|| · || pointwise operator norm (1.1)
· integrated (or supremum) pointwise g-norm (2.3)
· integrated (or supremum) pointwise operator norm
· operator norm in function spaces (10.3)
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Ck k-times continuously di�erentiable functions
Lr functions whose r'th power is Lebesgue-integrable
Wk,r functions that have k covariant di�erentials in Lr (2.3)
Hk := Wk,2 (except section 13)
Hk0 etc. functions in Hk etc. with vanishing trace on the boundary
H1,0,H0,1 forms α with weak dα or δα of class L2 resp.
H1,1 forms α with weak dα and δα of class L2

H1+1 forms with weak dα and δα of class H1,1

P polynomial forms (9.6), functions (10.3), vector �elds (12.7)
X vector �elds of class C∞

Ωk di�erential k-forms of class C∞

Ωkt , Ωkn di�. forms with vanishing tangential/normal trace on the boundary
L2X etc. vector �elds of class L2 etc.

S submanifold
TM |S vector bundle over S with �bres TpM
TS⊥ normal bundle of S in M
ν normal on S in M
π projection
n projection onto normal part
t projection onto tangential part
Φ normal height map p 7→ expp Z for normal vector �eld Z
Φt geodesic homotopy p 7→ expp tZ
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A. Preliminaries

Let us brie�y recapitulate basic notions and concepts of the concerned mathematical
�elds: Riemannian manifolds and variational problems on these, simplex geometry and
simplicial complexes. For the quick reader with experience in numerics on surfaces, a
short look on the simplex metric in barycentric coordinates (3.11) and our de�nition
of simplicial complexes (4.2) might be of interest.

1. Riemannian Geometry

For this section, we will keep close to the notations of Jost (2011) and Lee (1997).�
Let (M, g) orMg for short be anm-dimensional Riemannian manifold. We write 〈X,Y 〉
or g〈X,Y 〉 instead of g(X,Y ) for X,Y ∈ TpM , mainly to prevent the use of too many
round brackets. Whereas charts map open sets in M into Rm, we will mostly use
coordinates (U, x), i. e. maps x from open sets U ⊂ Rm into M that are locally
homeomorphisms.
Throughout this thesis, we apply Einstein convention for computations in local co�

ordinates or any other upper-lower index pair. Only when it explicity helps to clarify
our statements, we note the evaluation of a vector �eld X or the metric g at a speci�c
point p ∈M as X|p or g|p respectively.

1.1Tangent Bundle and Norms. Coordinates (U, x) around p give rise to a basis ∂
∂xi

or shortly ∂i of TpM , and a dual basis dxi on T ∗pM . The tangent-cotangent isomorphism
is denoted by [ and its inverse by ]. The natural extension of g to T ∗M has coe�cients
gij with gijgjk = δik (Kronecker symbol). On higher tensor bundles, g also naturally
induces scalar products by g〈v ⊗ v̄, w ⊗ w̄〉 := g〈v, w〉g〈v̄, w̄〉 and similar for covector
and mixed tensors. The space of smooth vector �elds is denotes as X, the spaces of
smooth alternating k-forms as Ωk. With ·, we denote the Euclidean scalar product in
R
n.
We will denote the norm on all these bundles simply by | · | or | · |g, because we do

not see ambiguity here. However, it di�ers from the operator norm of a tensor denoted
as || · ||. Both are equivalent, || · ||g ≤ | · |g ≤ c|| · ||g with a constant c that only depends
on the dimension m and the rank of the tensor (Golub and van Loan 1983, eqn.
2.2-9). In particular, operator and induced norm agree on 1-forms.

Curvature

I 1.2n local coordinates (U, x), the metric g is a smooth �eld of positive de�nite m ×
m-matrices over U . A connection ∇ on Mg is given in local coordinates by some

1



A. Preliminaries

Christo�el symbols Γkij = Γkji via

∇∂i∂j = Γkij∂k, ∇XY = (Xi∂iY
k +XiY jΓkij)∂k (1.2a)

for vector �elds X,Y around p with coordinates X = Xi∂i and Y = Y i∂i respectively.
It naturally induces a connection on higher tensor bundles, e. g. on the bundle of linear
maps A : TpM → TpM , by (∇VA)(W ) = ∇V (AW ) − A(∇VW ). There is a unique
connection that is symmetric and compatible with g, the Levi�Cività connection
of Mg, whose Christo�el symbols can be computed by

Γkij = gk`(∂jgi` + ∂igj` − ∂`gij). (1.2b)

T1.3 he Riemann curvature tensor R of Mg is de�ned by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z. (1.3a)

In local coordinates, it has coe�cients

R`ijk = ∂iΓ
`
jk − ∂jΓ`ik + ΓnjkΓ`ni − ΓnikΓ`nj , R(∂i, ∂j)∂k = R`ijk∂` (1.3b)

and obeys the following (anti-)symmetries:

〈R(X,Y )Z,W 〉 = −〈R(Y,X)Z,W 〉,
〈R(X,Y )Z,W 〉 = −〈R(X,Y )W,Z〉,
〈R(X,Y )Z,W 〉 = 〈R(Z,W )X,Y 〉.

(1.3c)

Let us agree that ∇ and D bind weaker than linear operators, so DtAW as above
always means Dt(AW ), not (DtA)W = ȦW .
A1.4 long smooth curves c : [a; b] → M, t 7→ c(t), any connection uniquely induces a

covariant di�erentiation Dt along c by

V̇ (t) := DtV (t) = (V̇ k + ċiV jΓkij)∂k. (1.4a)

A geodesic is a curve with vanishing covariant derivative, i. e. Dtċ = 0 or, slightly
inprecise, ∇ċċ = 0. In coordinates,

ck,tt = −ċiċjΓkij (1.4b)

(note that we use the symbol c̈ only for the covariant derivative of ċ, and we denote
the coordinate derivative by a comma-separated subscript). If the parametrisation does
not matter, we denote a curve c with endpoints p, q ∈ M as c : p ; q. The geodesic
distance d(p, q) is the length of the shortest geodesic p; q. A Riemannian manifold is
complete if any two points can be joined by a geodesic. For some neighbourhood B of
p, we say that B is convex if each two points q, r ∈ B have a unique shortest geodesic
q ; r in M which lies in B (Karcher 1968).
Along a geodesic c : [a; b] → M , there is a parallel translation P t,s : Tc(s)M →

Tc(t)M for every s, t ∈ [a; b], de�ned by P t,sV = W (t) for the vector �eld W along γ

2



1. Riemannian Geometry

withW (s) = V and Ẇ = 0. Parallel translation is an isometry, as d
dt |W |

2 = 〈Ẇ ,W 〉 =
0. The derivative of P with respect to a variation of c is computed in 7.8.
As geodesics are unique inside a convex ball B, we will also write P q,p for q, p ∈ B.

The unintuitive order of the evaluation points is inspired by the fact that some vector
in TpM enters on the right, and a vector in TqM comes out on the left.�We remark
that in general P r,qP q,p 6= P r,p, but instead P p,rP r,qP q,p is the holonomy of the loop
p; q ; r ; p.

1.5Assumption. Throughout the whole thesis, we will assume that Mg is a compact
smooth m-dimensional manifold (without boundary, if not speci�ed) with curvature
bounds ||R|| ≤ C0 and ||∇R|| ≤ C1 everywhere. To keep de�nitions together, we give
a �forward declaration�: When a radius (or a mesh size) r and a fullness parameter ϑ
are de�ned, we will also use C ′0 := C0ϑ

−2 and C0,1 := C0 + rC1, analogously C ′0,1 (C ′1
will not be used).

Remark. Up to a factor of 4
3
, the bound ||R|| ≤ C0 is the same as requiring that the sectional

curvature is bounded, because if all sectional curvatures are bounded by ±K, then ||R|| ≤ 4
3
K

(Buser and Karcher 1981, 6.1.1), which is the usual assumption in the works of Karcher,
Jost et al. Of course, on the other hand K ≤ C0.

Second Derivatives

Let Nγαβ and Mgij be two smooth Riemannian manifolds with coordinates uα and
vi respectively and f : N → M be a smooth mapping. Its �rst derivative is, at each
p ∈ N , a linear map dpf : TpN → Tf(p)M . Of course, the Levi Civita connections of
M and N induce a unique way to de�ne the Hessian ∇df . For this purpose, df has
to be considered as a section in E := T ∗N ⊗ f∗TM , a bundle over N with �bres
Ep = T ∗pN × Tf(p)M . We want to give a coordinate expression for this.

De�nition. Let M and N be two Riemannian manifolds, f : N → M smooth. The
Hessian of f is ∇Edf , a section of T ∗N ⊗ T ∗N ⊗ f∗TM .

1.6Fact. The connection on the cotangent bundle T ∗N is de�ned by

d
(
ω(X)

)
= ω(∇TMX) + (∇T

∗Mω)(X) for ω ∈ Ω1(N), X ∈ X(N),

cf. Jost (2011, eqn. 4.1.20). This gives

0 = d
(
duα(∂β)

)
(∂γ) = duα(∇∂γ∂β) + (∇∂γduα)(∂β)

= duα(Γδβγ∂δ) + (∇∂γduα)(∂β),

and with duα(∂δ) = 1 if α = δ and 0 else, this gives that ∇∂γduα maps a vector ∂β to
−Γαβγ , so

∇∂γduα = −Γαβγdu
β . (1.6a)

Vector �elds V on M pull back to vector �elds f∗V by (f∗V )|p = V |f(p). The
connection ∇TM then induces a connection on f∗TM by

∇f
∗TM
X f∗V = f∗∇TMdfXV. (1.6b)

3



A. Preliminaries

Let us abbreviate ∂α := ∂
∂uα as before, and additionally ∂i := f∗ ∂

∂vi , and f
i
,α := ∂fi

∂uα .
For example, the usual coordinate representation of df is df(∂α) = f i,α

∂
∂vi . Therefore,

∇f
∗TM
∂α

∂j = f∗(∇TM
fi,α

∂

∂vi
∂j) = f∗(f i,αΓkij

∂
∂vk

) = f i,αΓkij∂k. (1.6c)

The connections on T ∗N and f∗TM induce a connection on the product bundle, cf.
Jost (2011, eqn. 4.1.23):

∇E(ω⊗V ) = (∇T
∗Nω)⊗V +ω⊗(∇f

∗TMV ) for ω ∈ Ω1(N), V ∈ f∗X(M). (1.6d)

1.7 Lemma. Let f : N → M be a smooth mapping between Riemannian manifolds, and
let V,W ∈ TpN . Then consider a variation of curves γ(s, t) in N with ∂tγ = W ,
∂sγ = V and Ds∂tγ = 0 (everything is evaluated at s = t = 0). Let c := f ◦ γ
be the corresponding variation of curves in M . Then ∂tc = dfV , ∂sc = dfW and
(∇Edf)(V,W ) = Ds∂tc. If dfV 6= 0 this is

(∇Edf)(V,W ) = ∇TMdfW dfV,

where V and W are extended such that ∇WV = 0.

Proof. Inserting df = f i,αdu
α ⊗ ∂i in 1.6d, we have

∇E∂βdf = ∇T
∗N

∂β
(f i,αdu

α)⊗ ∂i + f i,αdu
α ⊗∇f

∗TM
∂β

∂i.

By 1.6a,
∇T

∗N
∂β

f i,αdu
α = f i,αβdu

α − f i,αΓαβγdu
γ

and together with 1.6c, this gives

∇E∂βdf = (f i,αβdu
α − f i,αΓαβγdu

γ)⊗ ∂i + f i,αdu
α ⊗ f j,βΓkij∂k

(cf. Jost 2011, eqn. 8.1.19). We conclude that∇df , taken as bilinear map TpN×TpN →
Tf(p)M , acts on vectors ∂β and ∂δ as

∇df(∂β , ∂δ) = [f i,αβdu
α(∂δ)− f i,αΓαβγdu

γ(∂δ)]∂i + f i,αdu
α(∂δ)f

j
,βΓkij∂k

= (f i,δβ − f i,αΓαβδ)∂i + f i,δf
j
,βΓkij∂k

= (f i,δβ − f i,αΓαβδ + f j,δf
k
,βΓijk)∂i.

This is, as it should be, symmetric in β and δ by the symmetry of f i,βδ and the
Christo�el symbols.
On the other hand, let us compute Ds∂tc. The derivatives of γ are given by ∂tγ =

γα,t∂α and ∂sγ = γβ,s∂β . By the chain rule, ∂tc = ci,t∂i = γα,tf
i
α∂i and ∂sc = γβ,sf

j
β∂j . By

1.4a,
Ds∂tc =

(
(γα,tf

i
,α),s + γα,tf

j
,αγ

β
,sf

k
,βΓijk

)
∂i.
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1. Riemannian Geometry

Now (γα,tf
k
,α),s = γα,tsf

k
,α + γα,tf

k
,αβγ

β
,s again by the chain rule. As we have assumed

Ds∂tγ = 0, we get γα,ts = −γβ,tγδ,sΓαβδ for every α, so

Ds∂tc = (−f i,αγ
β
,tγ

δ
,sΓ

α
βδ + f i,αβγ

α
,tγ

β
,s + γα,tf

j
,αγ

β
,sf

k
,βΓijk)∂i,

= V δW β(−f i,αΓαβδ + f i,δβ + f j,δf
k
,βΓijk)∂i,

q. e. d.

1.8Corollary (Jost 2011, eqns. 4.3.48, 4.3.50). IfM = R, then the Hessian of a function
f : N → R, applied twice to the tangent of a geodesic γ, is the second derivative of
f ◦ γ, and it holds

∇df(V,W ) = 〈∇V grad f,W 〉 = 〈∇W grad f, V 〉 = V (Wf)− df(∇VW ). (1.8a)

Scalings

In most situations, we will try to prove scale-aware estimates, i. e. estimates for co�
ordinate expressions or absolute terms where both sides of the inequality scale similar
when the coordinates or the diameter of the manifold is scaled (if both sides of the
inequality even remain unchanged under rescaling, we call the estimate scale-invari�
ant). Therefore, we will need to know the scaling behaviour of vectors and tensors.

1.9Coordinate change, �xed absolute manifold. First, consider the case where the
abstract (absolute) geometry ofMg is �xed and only coordinates are changed. A useful
application is when coordinates (U, x) are given and the eigenvalues of the matrix guij
lie between ϑ2µ2 and µ2, but one would like to have eigenvalues in the order of 1 (i. e.
between ϑ2 and 1). This is achieved by coordinates

yi = µxi, ∂
∂yα =

1

µ
∂
∂xi .

Components of vectors always scale like the coordinates: If W = wi,x ∂
∂xi = wi,y ∂

∂yi ,
then wi,y = µwi,x. This scaling indeed ful�lls our requirements:

gyij = g
〈
∂
∂yi ,

∂
∂yj

〉
=

1

µ2
g
〈
∂
∂xi ,

∂
∂xj

〉
=

1

µ2
gxij

The inverse matrix obviously scales with (gij)y = µ2(gij)x.�The Christo�el symbols
and the components of the curvature tensor scale with

(Γkij)
y =

1

µ
(Γkij)

x, (R`ijk)y =
1

µ2
(R`ijk)x.
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A. Preliminaries

1.10 Fixed coordinates, manifold scaling. Consider a new Riemannian manifold Mḡ
with ḡ = µ2g. Then diam(Mḡ) = µdiam(Mg) and d̄(p, q) = µd(p, q). The norm of
a tensor that is covariant of rank k and contravariant of rank ` scales with µ`−k. For
example, a vector W , a linear form ω and the curvature tensor R scale with

|W |ḡ = µ|W |g, |ω|ḡ =
1

µ
|ω|g, ||R||ḡ =

1

µ2
||R||g.

If coordinates (U, x) remain the same, then ḡij = µ2gij and ḡij = 1
µ2 g

ij , and the
Christo�el symbols and tensor components remain �xed:

Γ̄kij = Γkij , R̄`ijk = R`ijk. (1.10a)

Now suppose two manifolds Mg and Nγ with a mapping f : N → M . Consider a
scaling µ for M and ν for N . As df can be regarded as a linear form on TN , resulting
in a vector in TM , it is natural that the norm of df and ∇df scale as

||df ||γ̄,ḡ =
µ

ν
||df ||γ,g, ||∇df ||γ̄,ḡ =

µ

ν2
||∇df ||γ,g. (1.10b)

The scaling behaviour of ||R|| is the reason why we never suppress curvature bounds
as �hidden constants�. In fact, most of our results could be simply worked out in balls
of radius 1, and their scaling behaviour could be recovered from the curvature bounds
and the scaling behaviour of left- and right-hand side operator norms.

1.11 Coordinate change with manifold scaling. It might also be useful to use coordi�
nates for (M,µ2g) where the components gij remain unchanged, for example because
they had previously been normalised to have eigenvalues in the order of 1. If a chart
(U, x) is known, such coordinates are given by yi = µxi, because vector components
also scale as wα,v = µwα,u and then

|W |2ḡ = wα,vwβ,vgαβ = µ2wα,uwβ,ugαβ = µ2|W |2g,

as it should. The Christo�el symbols and curvature tensor components scale as

(Γ̄γαβ)v =
1

µ
(Γγαβ)u, (R̄δαβγ)v =

1

µ2
(Rδαβγ)u.

If two manifold Nγαβ andMgij are scaled with factors µ and ν in this way, resulting
in coordinate expressions vα = νuα forN and yi = µxi forM , then the coordinate form
of f , which was a mapping Uu → Ux, becomes a mapping f̄ : νUu → µUx, v 7→ µf(v/ν),
so by chain rule

f̄ i,α =
µ

ν
f i,α, f̄ i,αβ =

µ

ν2
f i,αβ

for the components in

df = f i,αdu
α ⊗ ∂

∂xi , df̄ = f̄ i,αdv
α ⊗ ∂

∂yi

and ∇df = (f i,δβ − f i,αΓαβδ + f j,δf
k
,βΓijk)duβ ⊗ duδ ⊗ ∂

∂xi as in the proof of 1.7.
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1. Riemannian Geometry

The Exponential Map and Special Coordinates

On a point p ∈ M (interior, if M has boundary), there is, at least for some small
intervall [−ε; ε], a unique geodesic for each initial velocity X ∈ TpM . As the geodesic
equation 1.4b is homogenous and the unit ball in TpM is compact, this is equivalent
to the fact that for some small ball Bε around 0 ∈ TpM , the geodesic cX with initial
velocity X ∈ Bε exists on [−1; 1]. As the unit sphere in TpM is compact, there is
some ε that works for any direction X. The exponential map is de�ned to map
Bε → M , expp(X) := cX(1). From this mapping, normal and Fermi coordinates can
be constructed. The former construction can be found in every Riemannian geometry
textbook (e. g. Lee 2003, p. 78).

1.12Normal coordinates around p ∈ M are coordinates (U, x) with x(0) = p in which
straight lines t 7→ tv are geodesics (arclength-parametrised for |v|`2 = 1), which implies
gij(0) = δij , ∂kgij(0) = 0 and Γkij(0) = 0 for all i, j, k.

Lemma. Any orthonormal basis Ei of TpM induces normal coordinates (Bε, x) around
p via x : (u1, . . . , um) 7→ expp(u

iEi), where ε must be so small that geodesics through
p are unique.

Proof. By homogenity of the geodesic equation 1.4b, the geodesic starting with initial
velocity ċ(p) = V with V = Eiv

i has coordinates

ck(t) = tvk, so ċk(t) = vk and ck,tt(t) = 0

for all t in the de�nition interval of c. At the same time, ck,tt = −ċiċjΓkij . As both
equalities must hold for every V ∈ TpM , this already implies Γkij = 0. The correspon�
dence between Γkij and ∂kgij is linear and of full rank, so the latter have to vanish,
too, q. e. d.

1.13Corollary. d expp = id at 0 ∈ TpM , that means d0(expp)V = V .

Proof. Consider a geodesic c starting from p with velocity V . As the di�erential
operator d(expp) applied to V can be computed as tangent of this integral curve,
d(expp)V = ċ(0) = V , q. e. d.

1.14Observation. Then the metric gij in the parameter domain is

gij |u = 〈dx ei, dx ei〉 = 〈dU (expp)Ei, dU (expp)Ej〉, (1.14a)

where U = uiEi. Likewise, the Christo�el operator Γ : (v, w) 7→ Γkijv
iwj∂k (which

is bilinear, but does not behave tensorial under coordinate changes) is computable
as pull-back of the connection to the parameter domain: The coordinate expression
∇vw = ∇eucl

v w + Γ(v, w) given in 1.2a can be understood as pull-back ∇x∗g of the
connection onto Rm (not to be confused with the connection x∗∇g on x∗TM from
1.6b), and such a pull-back is de�ned by dx(∇x∗gv w) = ∇dx vdxw. The right-hand side
was identi�ed to be ∇dx(v, w) in 1.7, and so we have

dU (expp)(Γ(ei, ej)) = ∇dU (expp)(Ei, Ej). (1.14b)
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A. Preliminaries

1.15 Jacobi Fields. Let c(s, t) be a smooth variation of geodesics t 7→ c(s, t). Denote
T := ∂tc = ċ and J := ∂sc. As T and J are coordinate vector �elds, [J, T ] = 0, so
∇JT = ∇TJ or, in other words, Ds∂tc = Dt∂sc. Di�erentiating the geodesic equation
Dtċ = ∇TT = 0 gives, by 1.3a,

0 = ∇J∇TT = ∇T∇JT +R(J, T )T = ∇T∇TJ +R(J, T )T,

which is the de�ning equation for Jacobi �elds:

J̈ = R(T, J)T (1.15a)

Conversely, every vector �eld J along c ful�lling 1.15a gives rise to a variation of
geodesics by

c(s, t) := expexp sJ(0) t(P ċ(0) + sP J̇(0)), (1.15b)

where P is the parallel transport from c(0) to exp sJ(0) (Jost 2011, thm. 5.2.1).

1.16 Proposition (cf. Karcher 1989, eqn. 1.2.5). Let c : I → M be a smooth curve
and Z be a vector �eld along c. Then the map ϕt : s 7→ expc(s) tZ(s) has derivative

ϕ̇t(s) = J(t) for a Jacobi �eld J with initial values J(0) = ċ(s), J̇(0) = Ż(s). In
particular, dV (expp)W is the value J(1) of a Jacobi �eld along t 7→ expp tV with

initial values J(0) = 0 and J̇(0) = W .

Proof. c(s, t) := ϕt(s) is a variation of geodesics t 7→ c(s, t) for every �xed s, so
∂sc = ϕ̇t is a Jacobi �eld, and the values for t = 0 are J(0) = ∂sc(s, 0) = ċ(s), and
J̇(0) = Dt∂sc(s, 0) = Ds∂tc(s, 0) = DsZ(s) again by 1.13, q. e. d.

1.17 Fermi Coordinates. Let c : ]a; b[ → M be an arclength-parametrised geodesic.
Then Fermi or geodesic normal coordinates along c are an open neighbourhood U
of 0 ∈ Rn−1 and coordinates x : ]a; b[ × U → M , in which x(t, 0) = c(t) and straight
lines s 7→ c(t) + sv with �rst component v0 = 0 are geodesics (arclength-parametrised
for |v|`2 = 1) perpendicular to c. This implies

gij(t, 0) = δij , Γkij(t, 0) = 0 for all t ∈ ]a; b[. (1.17a)

If c is not a geodesic, then one can still �nd coordinates with gij(t, 0) = δij , but the
Christo�el symbols cannot be controlled. In classical surface geometry, those are called
�parallel coordinates� along c (we will not use them).

1.18 Lemma. Let c : ]a; b[→M be a geodesic in M . Any orthonormal basis E2, . . . , Em of
ċ(0)⊥ induces Fermi coordinates along c by x : (t, u2, . . . , um) 7→ expc(t) (uiP t,0Ei).

Proof. x is injective because the orthogonal projection onto c is well-de�ned in a small
tube around c, and if a point q ∈ M projects to c(t), then the connecting geodesic
c(t) ; q determines the components u2, . . . , um by use of normal coordinates ċ(t)⊥ →
M .
By de�nition of normal coordinates, the claim gij = δij and Γkij = 0 along (t, 0, . . . , 0)

is clear for i, j, k ≥ 2. Because c is arclength-parametrised, g11 = 1, the orthogonality of
ċ and Ei at every c(t) gives g1i = 0 for all i. Because P t,0 is parallel, ∇∂1∂i = ∇ċEi = 0
proves the vanishing of the remaining Christo�el symbols, q. e. d.
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1. Riemannian Geometry

1.19Corollary. If P is the parallel transport along a geodesic in Mg running through
p ∈ M , then for any vector V ∈ TpM and a vector �eld W around p, we have
P∇VW = ∇PV PW , and for a vector �eld V along a geodesic t 7→ c(t), the fun�

damental theorem of calculus holds:

V (t) = P t,0V (0) +

tˆ

0

P t,rV̇ (r) dr. (1.19a)

The Distance and the Squared Distance Function

The following properties already occur in Karcher (1989) and Jost and Karcher
(1982), but sometimes only hidden inside their proofs. For the same calculations in
coordinates, see Ambrosio and Mantegazza (1998).
T 1.20he geodesic distance d( · , p) is a smooth convex function in some small neighbour�

hood B of p, excluded in p itself. It therefore has a gradient Yp, and its length is the
Lipschitz constant of d( · , p), namely 1 everywhere. Additionally,

0 = V 〈Yp, Yp〉 = 2〈∇V Yp, Yp〉 = 2〈∇YpYp, V 〉 for all V ∈ TqM, q ∈ B,

by symmetry 1.8a of the Hessian ∇dd, so Yp is autoparallel everywhere. The integral
curves of Yp are hence geodesics emanating from p with dd(γ̇) = 1, so d(γ(t), p) = t
for each such curve. On the other hand, d( · , p) is constant on the distance spheres of p,
so Yp is perpendicular to them (Gauss Lemma). In normal coordinates (u1, . . . , um)
around p, we have d( · , p) = |u|`2 and hence

d( · , p)Yp = ui∂i.

1.21Observation. Base and evaluation point can be reversed, and the vector �eld only
changes sign: Yp|q = −P q,pYq|p, because both are velocities of the arclength-parametri-
sed geodesic p; q or q ; p respectively.

1.22Lemma. In a small neighbourhood of p,

Xp := grad 1
2 d2(p, · ) = d(p, · )Yp

is an everywhere smooth vector �eld, its integral lines are (quadratically parametrised)
geodesics emanating from p, and expq(−Xp|q) = p, equivalently

−Xq|p = P p,qXp|q = (expp)
−1q

for all q in a convex neighbourhood of p. Loosely speaking, one also writes this as
PXp = exp−1 p.

Proof. Let c be the arclength-parametrised geodesic with c(0) = p and c(τ) = q. By
de�nition of exp, we have expp ċ(0) = q, as well as ċ(t) = P t,0ċ(0) and ċ(t) = Yp|c(t)
for all t by the Gauss lemma. The switch of base and evaluation point is justi�ed by
1.21, q. e. d.
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1.23 Lemma. For V ∈ TqM , where q is in a convex neighbourhood of p, let J be the Jacobi
�eld along p; q with J(0) = 0 and J(τ) = V . Then

∇VXp = τ J̇(τ), ∇2
V,VXp = τDsJ̇(τ).

In particular, if V is parallel to Xp, then ∇VXp = V and ∇2
V,VXp = 0.

Proof. Let s 7→ δ(s) be a geodesic with δ(0) = q and δ̇(0) = V . De�ne a variation of
geodesics by

c(s, t) := expp
(
t(expp)

−1δ(s)
)
.

Then ∂tc is an autoparallel vector �eld and J := ∂sc a Jacobi �eld along t 7→ c(s, t)
for every s with boundary values J(s, 0) = 0 and J(s, 1) = δ̇(s). The t-derivative is

∂tc(s, t) = P t,0(expp)
−1δ(s) = P t,1Xp|δ(s)

and hence J̇(t) = Dt∂sc(0, t) = Ds∂tc(0, t) = DsXp|c(0,t) = ∇J(t)Xp. Di�erentiating
this once more gives the claim for the second derivative. If V is parallel to Xp, then
use ∇Y Y = 0, q. e. d.

Remark. <a> Variations of Xp with respect to the base point p will be considered in
12.3.

<b> Analogously to (expp)
−1 = PXp, the derivatives of Xp and expp correspond:

∇VXp is the derivative of some Jacobi �eld with prescribed start and end value,
whereas dV (expp)W = J(1) for a Jacobi �eld with J(0) = 0 and J̇(0) = W .

<c> Although Yp is not di�erentiable at p, we have ∇Xp = id at p, similar to d0 expp =
id.

<d> In the notation of Grohs et al. (2013), our vector �eld Xp and its derivative are Xp|a =

log(a, p) and ∇Xp|a = ∇2 log(a, p).

Submanifolds

1.24 Extrinsic Curvature. For a smooth k-dimensional submanifold S ⊂ M , we treat
TpS as a linear subspace of TpM , denote the orthogonal projection TpM → TpS as t
and the projection onto the normal space TpS⊥ as n . The bundle over S with �bres
TpM is denoted as TM |S = TS⊕TS⊥ (meaning a �bre-wise sum of vector spaces). The
Weingarten map or shape operator with respect to a normal �eld ν is Wν := ∇ν,
that means U 7→ ∇Uν. The second fundamental form with respect to ν is

IIν(U, V ) := −〈WνU, V 〉 = 〈∇UV, ν〉 (1.24a)

because 〈ν, V 〉 = 0 and hence U〈ν, V 〉 = 0. In particular, IIν(U, V ) is in fact tensorial
in ν, U and V . Sometimes II(U, V ) := n∇UV is also called the second fundamental
form in the literature, although it is a bilinear map, not a form. If the orthonormal
parallel normal �elds νk+1, . . . , νm locally span TS⊥, it holds II(U, V ) = νi IIνi(U, V ).
The covariant derivative induced by g|S is ∇S = t∇, hence II = ∇−∇S .
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1.25Generalised Fermi or Graph Coordinates. The �tubular neighbourhood theo�
rem� states that a small neighbourhood Bε(S) of S is di�eomorphic to S × Bε with
an open ε-ball Bε ⊂ Rm−k around 0 (Bredon 1993, thm. II.11.4). By explicitely
constructing this di�eomorphism, upper bounds on ε can be derived: For t ∈ [0; 1], let

Φt : TS⊥ →M, (p, Z) 7→ expp tZ. (1.25a)

If p moves with velocity ṗ, we know by 1.16 that dΦt(ṗ) = J(t) for a Jacobi �eld with
J(0) = ṗ, J̇(0) = ∇ṗZ.
The case where Z = ν is parallel along p is particularly interesting. Then Φt

parametrises the level sets of the distance function from S; we have J̇(0) = Wν ṗ,
and the parallel transport of ν along t is normal to the image of Φt, so the whole curve
ful�lls J̇ = WνJ . Therefore, the pull-back metric Φ∗t g(ṗ, ṗ) changes with respect to t
as d

dtΦ
∗
t g〈ṗ, ṗ〉 = 2g〈J, J̇〉 = 2g〈J,WνJ〉, see Karcher (1989, eqn. 1.2.7). Hence the

maximal eigenvalue of Wν over ν ∈ Sm−k ⊂ TS⊥ and over t bounds ε. We will pursue
this more explicitely in 11.8. By J̈ = d

dt (WJ) = ẆJ + WJ̇ = ẆJ + W 2J , one then
obtains a Riccati-type equation for the Weingarten map (Karcher 1989, eqn. 1.3.1)

Ẇ = Rν −W 2 for Rν = R(ν, · )ν. (1.25b)

Generally, a tangent vector U ∈ T(p,Z)TS
⊥ is induced by a curve s 7→ expp(s) tZ(s),

where ṗ is tangential to S and Ż = t Ż + nŻ. The above-mentioned Jacobi �eld J can
be split into two Jacobi �elds Jp(s) + Jν(t) with initial values

Jp(0) = ṗ Jν(0) = 0

J̇p(0) = t Ż J̇ν(0) = nŻ.
(1.25c)

The part t Ż is in fact t∇ṗZ (if we assume Z to be extended parallel along t), so it is
uniquely determined by ṗ, and thus U has the representation (ṗ, nŻ) in the chart Φt.
Let ψ be the orthogonal projection Bε(S)→ S. As Jacobi �elds with orthogonal initial
values and velocities stay orthogonal, we have an orthogonal splitting V = Vp +Vν for
V ∈ TpM , p ∈ Bε(S), with Vp = Jp(1), Vν = Jν(1). This gives a simple representation
of dψ, namely dψ(Vν) = 0 and dψ(Vp) = ṗ. The geometric interpretation of the splitting
is

Vp = P p,ψ(p)tPψ(p),pV, Vν = P p,ψ(p)nPψ(p),pV, (1.25d)

that means Vp and Vν are the orthogonal projections onto PTS and PTS⊥ respectively.

This is proven by d2

dt2 〈Jp, Z〉 = 0 (if Z is extended parallel along t) and the initial
conditions 〈Jp(0), Z〉 = 0 and 〈J̇p(0), Z〉 = 0.

2. Functional Analysis and Exterior Calculus

We will quickly review the Dirichlet problem and the Hodge decomposition in this
section. All proofs are reformulations from Schwarz (1995), but we tried to take
special care that not the vector bundle structure of Ωk, but only its functional analytical
nature has been use (the only exception is 2.16).
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Notation. <a> We have de�ned X and Ωk as the spaces of smooth vector �elds and
k-forms onM . The pointwise scalar product g on all tensor products of TM and T ∗M
naturally induces an L2 product on them:

〈〈〈v, w〉〉〉 :=

ˆ

M

g〈v, w〉

The completion X with respect to the L2 norm will be called L2X, analogously L2Ωk for
the di�erential forms. The notation 〈〈〈 · , · 〉〉〉 will only be used for the L2 scalar product,
so all indices like 〈〈〈 · , · 〉〉〉L2 , 〈〈〈 · , · 〉〉〉L2(Mg) and 〈〈〈 · , · 〉〉〉L2X or 〈〈〈 · , · 〉〉〉L2Ωk are only added for
ease of reading.

<b> Let M have a boundary ∂M . The projections t and n from TM |∂M onto T∂M
and T∂M⊥ pull back k-forms as t∗v(V1, . . . , Vk) = v(tV1, . . . , tVk) and similarly n∗ω.
The spaces of k-forms with vanishing tangential part on ∂M are called Ωkt .
Together with the usual exterior derivative d, the Ωk form the smooth de Rham

cochain complex
Ω0 → · · · → Ωn → 0

The exterior coderivative δ is, for forms with appropriate boundary conditions,
adjoint to d with respect to the L2 scalar product:

〈〈〈v, dw〉〉〉L2Ωk+1 = 〈〈〈δv, w〉〉〉L2Ωk for all v ∈ Ωk+1, w ∈ Ωkt

and all v ∈ Ωk+1
n , w ∈ Ωk

(2.1)

The image and the kernel of d in Ωk are called the spaces of boundaries and cycles,
Bk := im d|Ωk−1 and Ck := ker d|Ωk . The space of harmonic forms is Hk := Ck ∩
d(Ωk−1

t )⊥. For δ, we have B∗k and C∗k de�ned analogously, so Hk = Ck ∩ C∗k by 2.1.
Denote

Lap(v, w) := 〈〈〈dv, dw〉〉〉+ 〈〈〈δv, δw〉〉〉, Dir(v) := Lap(v, v). (2.2)

2.3 De�nition. De�ne the following six norms on each Ωk:

v 2
H1,0 := v 2

L2 + dv 2
L2

v 2
H0,1 := v 2

L2 + δv 2
L2

v 2
H1,1 := v 2

L2 + dv 2
L2 + δv 2

L2 = v 2
L2 + Dir(v)

v 2
H1+1 := v 2

H1,1 + dδv 2
L2 + δdv L2

v 2
H1 := v 2

L2 + ∇v 2
L2

v 2
H2 := v 2

H1 + ∇2v 2
L2.

Let H1,0Ωk etc. be the completion of Ωk with respect to these norms. The Lr, W1,r

and W2,r norms are the usual modi�cation of the L2, H1 and H2 norms for exponents
r 6= 2.

2.4 Observation. <a> (H1,0Ω, d) is a cochain and (H0,1Ω, δ) is a chain Hilbert complex,
that means that d or δ are bounded linear operators with d2 = 0 or δ2 = 0 respec�
tively (to be notationally precise, a Hilbert complex requires d or δ only to be closed
operators).

12



2. Functional Analysis and Exterior Calculus

<b> The H1 norm dominates the H1,0 and the H0,1 norm; the H2 norm dominates all
the other norms. For functions, H0,1 = L2 and H1,0 = H1,1 = H1.

Remark. Schwarz (1995, sec. 1.3) uses a di�erent de�nition of H2 which depends on local
choices of orthonormal bases. He then uses the H1 and H2 norms to control the exterior
(co-)derivatives. We consider the use of H1,0 and similar norms a sharper tool for this, as only
the actually needed derivatives have to exist. Jost (2011, eqn. 3.4.4) writes H2 for what we
call H1+1.

2.5Fact (Brüning and Lesch 1992, corr. 2.6). The spaces H1,1Bk are closed in H1,1Ωk

if and only if H1,1B∗k are closed in H1,1Ωk. If this is the case, and if Hk is �nite-dimen�
sional, then (H1,1Ωk, d) is called a Fredholm complex.

Laplace Operator and Dirichlet Problem

2.6Observation. Directly from Green's formula 2.1, one gets for v ∈ H1+1, w ∈ H1,1

Lap(v, w) = 〈〈〈(dδ + δd)v, w〉〉〉

in either of these four cases:

t∗w = 0, n∗w = 0 t∗w = 0, t∗δv = 0

n∗w = 0, n∗dv = 0 n∗dv = 0, t∗δu = 0.

2.7De�nition. The strong Laplacian is ∆ := dδ + δd : H1+1Ωk → L2Ω. The weak
Laplacian is L : H1,1Ωk → (H1,1Ωk)∗, v 7→ Lap( · , v). The strong Dirichlet prob�
lem is to �nd u ∈ H1+1Ωk with

∆u = f, t∗u = 0, t∗δu = 0. (2.7a)

The weak Dirichlet problem is to �nd u ∈ H1,1Ωkt with Lu = f in (H1,1Ωkt )∗, that
means

〈〈〈du, dv〉〉〉+ 〈〈〈δu, δv〉〉〉 = 〈〈〈f, v〉〉〉 for all v ∈ H1,1Ωkt . (2.7b)

Such a u is called a Dirichlet potential for f .

Fact (Dirichlet principle). A form u ∈ H1,1Ωkt is a solution of the weak Dirichlet
problem if and only if it minimises Dir(v)− 〈〈〈f, v〉〉〉 over all v ∈ H1,1Ωkt .

Remark. For sections of smooth vector bundles over M , the trace of the second
covariant derivative gives a �metric� Laplace operator tr∇2, connected to our Laplacian
or �Laplace�Beltrami� operator by the Weizenböck formula (Jost 2011, thm 4.3.3.),
which we do not use, and only mention to avoid confusion. They agree if and only if
Mg is �at.

2.8Proposition. If u ∈ H1,1Ωkt is a solution of the weak Dirichlet problem and is in
addition contained in H1+1Ωk, then it solves the strong Dirichlet problem.

13
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Proof. Suppose Lap(u, v) = 〈〈〈f, v〉〉〉 for all v ∈ H1,1Ωkt . Then a fortiori this holds for
v ∈ H1,1Ωkt ,n and so, by 2.6, 〈〈〈∆u, v〉〉〉 = 〈〈〈f, v〉〉〉 for all v ∈ H1,1Ωkt ,n , which shows ∆u = f
by the fundamental lemma. As the vanishing boundary values for v were only needed
in the use of Green's formula, not in the L2 testing, we can infer 〈〈〈∆u, v〉〉〉 = 〈〈〈f, v〉〉〉 for
all v ∈ H1,1Ωk by continuity. But as H1,1Ωk contains functions whose normal trace
does not vanish, 〈〈〈∆u, v〉〉〉 = Lap(u, v) can only hold if tδu = 0, q. e. d.

Remark. If we had used, for the weak Dirichlet problem, H1+1Ωk for the space of
test functions instead of H1,1Ωkt , then the space of Dirichlet potentials for f = 0
would agree with H1,1Hkt . But by our de�nition, this requires the additional assumption
u ∈ H1+1Ωk.

2.9 Observation. By de�nition of the spaces involved and Green's formula 2.1, one di�
rectly obtains:

d(H1,0Ωk−1
t ) ⊂ δ(H1+1Ωk+1)⊥ δ(H0,1Ωk+1

n ) ⊂ d(H1+1Ωk−1)⊥

H1,0Ck ⊃ δ(H1+1Ωk+1
n )⊥ H0,1C∗k ⊃ d(H1+1Ωk−1

t )⊥

H1,1Hkn ⊥ H0,1Bk H1,1Hkt ⊥ H1,0B∗k

(2.9a)

As H1,0Ωk and H0,1Ωk are completions of spaces with d2 = 0 and δ2 = 0, this property
carries over:

d(H1,0Ωk) ⊂ H1,0Ck, δ(H0,1Ωk) ⊂ H0,1C∗k. (2.9b)

2.10 Proposition (Poincaré inequality). Let (H1Ωk, d) be a Fredholm complex where the
inclusion map H1Ωk → L2Ωk is compact. Then:

<a> Dir is H1-coercive on H1(Hk)⊥, that means there is C� > 0 with

v 2
H1 ≤ C� Dir(v) for all v ∈ H1Ωk, v ⊥ Hk.

<b> If the trace operator v 7→ t∗v is a continuous mapping H1Ωk(M) → L2Ωk(∂M),
then Dir is H1-coercive on (Hkt )⊥t , that means there is C� > 0 with

v 2
H1 ≤ C� Dir(v) for all v ⊥ Hkt , t∗v = 0.

<c> If A is a closed a�ne subspace in H1Ωk that does not include constant forms 6= 0,
then there is C� > 0 with

v 2
L2 ≤ C� ∇v 2

L2 for all v ∈ A.

Examples are A = {u ∈ H1Ωk : u|∂M = 0} if M has a boundary, or A = {u ∈
H1Ωk :

ffl
M
u = 0} in cases where the integral

´
U
u makes sense. By linear translation,

the latter one gives the consequence v −
ffl
M
v L2 ≤ C� ∇v L2 for functions v ∈ H1Ω0.

Proof. It obviously su�ces to show the last claim with v 2
H1 instead of v 2

L2 on the
left-hand side. Then the proof always follows the same lines: If the claim is wrong,
there has to be a sequence 〈vi〉 ⊂ H1Ωk with vi H1 = 1, and the right-hand side tends

14



2. Functional Analysis and Exterior Calculus

to 0. Because this sequence is bounded in H1Ωk, there has to be a weakly convergent
subsequence, which we again denote by 〈vi〉. This will su�ce to extract a contradiction
in all three cases.
ad primum: Because Hk is �nite-dimensional, it is closed, and so is (Hk)⊥, that means

v ⊥ Hk. At the same time, Dir(v) = lim Dir(vi) = 0, so v ∈ H1,1Hk. Therefore, v = 0,
but at the same time v L2 = lim vi L2 > 0 because the imbedding H1Ωk → L2Ωk is
compact.
ad sec.: By assumption, (Hkt )t is closed, so the argument works again, as t∗v =

lim t∗vi = 0.
ad tertium: Here the convergence of the right-hand side means ∇vi → 0 strongly in

L2, hence ∇v = 0, so v has to be constant almost everywhere, so v = 0 by assumption
on A, q. e. d.

2.11Remark. <a> It is common to prove the last part constructively, see 13.7. We are
not aware of a constructive proof for the �rst and second case.

<b> By a scaling argument, one can see that C� = C̃� diamM with a constant C̃�
that does not depend on the size of M .

2.12Proposition. Situation as in 2.10b. Let f ∈ L2Ωk with f ⊥ H1,1Hkt . Then there is
exactly one u ∈ (H1,1Hkt )⊥t with Lap(u, v) = 〈〈〈f, v〉〉〉 for all v ∈ H1,1Ωkt .

Proof. By the Lax�Milgram theorem, there is exactly one u ∈ (H1,1Hkt )⊥t with Lap(u, v)
= 〈〈〈f, v〉〉〉 for all v ∈ (H1,1Hkt )⊥t . Now observe that not only H1,1Ωkt = H1,1Hkt ⊕(H1,1Hkt )⊥,
but that the second summand must also have zero boundary values, so H1,1Ωkt =
H1,1Hkt ⊕ (H1,1Hkt )⊥t . So everything that is missing is to prove this equality also for
v ∈ H1,1Hkt . But that is not di�cult: On the one hand, Lap( · , v) = 0 for such v, on
the other 〈〈〈f, v〉〉〉 = 0 by assumption on f , q. e. d.

Remark. <a> For each u∗ ∈ H1,1Hkt , one also has L(u + u∗) = f . So the solution is
unique up to harmonic components. This non-uniqueness for manifolds of higher genus
can indeed be observed in numerics, cf. Arnold et al. (2010, section 2.3.3).

<b> If f is not orthogonal to H1,1Hkt , then there is an orthogonal projection p of f to
this space and a Dirichlet potential u for f − p.

Hodge Decompositions

2.13Proposition (weak Hodge decomposition, Brüning and Lesch 1992, lemma
2.1). There is an orthogonal decomposition

H1,0Ωk = d(H1,0Ωk−1
t )⊕ H1,0(Ck)⊥ ⊕ H1,0Hk,

where H1,0Hk := H1,0Ck ∩ d(H1,0Ωk−1
t )⊥.

Proof. By de�nition of H1,0Hk, this sum exhausts H1,0Ωk, and the last summand
is orthogonal to the two other ones. It only remains to show the orthogonality of
d(H1,0Ωk−1

t ) and H1,0(Ck)⊥. So let u = da with a ∈ H1,0Ωk−1
t . Then by 2.9b u ∈ H1,0Ck,

hence it is perpendicular to each element in H1,0(Ck)⊥, q. e. d.
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2.14 Proposition (strong Hodge decomposition, Brüning and Lesch 1992, cor. 2.5;
Schwarz 1995, thm. 2.4.2). For a Fredholm complex, there is an orthogonal decompo�
sition

H1,1Ωk = d(H1+1Ωk−1
t )⊕ δ(H1+1Ωk+1

n )⊕ H1,1Hk.

In other words: each u ∈ H1,1Ωk can be decomposed as u = da + δb + c with ta = 0,
nb = 0, dc = 0, and δc = 0. The parts a and b can be computed as minimisers of
F [u](a) = 〈〈〈da, da〉〉〉 − 2〈〈〈da, u〉〉〉 over a ∈ H1+1(Ck−1)⊥t and G[u](b) = 〈〈〈δb, δb〉〉〉 − 2〈〈〈δb, u〉〉〉
over b ∈ H1+1(C∗k+1)⊥n respectively.

Proof. By the Fredholm property, H1,1Hk is closed and hence convex. By the projec�
tion theorem (cf. e. g. Alt 2006, thm. 2.2), H1,1Ωk has an orthogonal decomposition
H1,1Ωk = H1,1Hk ⊕ (H1,1Hk)⊥. So everything we have to show is

H1,1(Hk)⊥ = d(H1+1Ωk−1
t )⊕ δ(H1+1Ωk+1

n )

⇔ H1,1Hk =
(
d(H1+1Ωk−1

t )⊕ δ(H1+1Ωk+1
n )

)⊥
.

The inclusion ⊂ is clear by the last part of 2.9a. For the other direction consider
u ∈ H1,1Ωk such that

〈〈〈u, dv〉〉〉 = 0 for all v ∈ H1,0Ωk−1
t ,

〈〈〈u, δw〉〉〉 = 0 for all w ∈ H0,1Ωk+1
n .

Because of Green's formula, this means

〈〈〈δu, v〉〉〉 = 0 for all v ∈ H1,0Ωk−1
t ,

〈〈〈du,w〉〉〉 = 0 for all w ∈ H0,1Ωk+1
n .

These v and w su�ce to test for du = 0 and δu = 0 in the interior ofM , so u ∈ H1,1Hk.
For the variational property, observe that the orthogonal projection da of u ∈ H1,1Ωk

onto d(H1+1Ωk−1
t ) ful�lls 〈〈〈u−da, dv〉〉〉 = 0 for every v ∈ H1+1Ωk−1

t , which is exactly the
optimality condition for F . The minimiser is unique up to elements of Ck, for which
reason we only seek a in (Ck)⊥. The analogous argument applies for G, q. e. d.

2.15 Remark. By assumption, the ranges of d and δ are closed, so a continuity argument
also shows that L2[d(H1,0Ωkt ⊕ δ(H0,1Ωkn )]⊥ is the L2 completion H̄k of Hk, which gives
the L2 Hodge decomposition

L2Ωk = d(H1,0Ωk−1
t )⊕ δ(H0,1Ωk+1

n )⊕ H̄k.

2.16 Proposition (Hodge�Friedrichs decomposition, Schwarz 1995, thm 2.4.8). For
a Fredholm complex that is H1+1-regular, that means the Dirichlet potential of an L2

right-hand side is in H1+1Ωk, there is an orthogonal decomposition

H1,1Hk = H1,1Hkt ⊕ H1,1Hk ∩ H1,0B∗k,

= H1,1Hkn ⊕ H1,1Hk ∩ H0,1Bk.
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Together with 2.14, this gives the decomposition

H1,1Ωk = d(H1+1Ωk−1
t )⊕ δ(H1+1Ωk+1

n )⊕ H1,1Hkt ⊕ H1,1Hk ∩ H1,0B∗k

= d(H1+1Ωk−1
t )⊕ δ(H1+1Ωk+1

n )⊕ H1,1Hkn ⊕ H1,1Hk ∩ H0,1Bk.

Proof. We only prove the �rst decomposition, the second one is literally the same. By
the last statement of 2.9a, H1,1Hkt ⊥ H1,0B∗k. So if the decomposition exists, it will be
orthogonal. We are done if we can show that every u ∈ H1,1Hk with u ⊥ H1,1Hkt is a
coboundary, that means there is some v ∈ H1+1Ωk−1 with u = δv.
Therefore, suppose u ∈ H1,1Hk and u ⊥ H1,1Hkt . Then by 2.12 there is a Dirichlet

potential w ∈ H1,1Ωkt for u. Let v := dw.
(I.) It holds u− δv ⊥ H1,1Hkt due to the assumption on u and δv ∈ H1,0B∗k.
(II.) As δu = 0 and δ2v = 0, we have δ(u−δv) = 0. Because the Dirichlet problem is

H1+1-regular, u = (dδ+δd)w and hence d(u−δv) = d(dδw+δdw−δdw) = d(dδw) = 0.
This shows that u − δv ∈ H1,1Hk. And because u − δv = dδw is a boundary, it has
vanishing tangent component: Take any (k − 1)-dimensional domain U ⊂ ∂M . There
is a domain U ′ ⊂ M with U = U ′ ∩ ∂M , and

´
U

t∗(u − δv) =
´
U ′
d(u − δv) = 0. For

this reason, u− δv ∈ H1,1Hkt .
Now u−δv is at the same time in some space and its orthogonal complement, which

can only hold if u− δv = 0, q. e. d.

Mixed Form of the Dirichlet Problem in Ωk

2.17Observation. The Dirichlet problem also has a mixed form without coderivatives
(Arnold et al. 2006, sec. 7.1): If one introduces the auxiliary variable σ, which replaces
δu in a weak sense, i. e. which ful�lls 〈〈〈σ, τ〉〉〉 = 〈〈〈dτ, u〉〉〉 for all τ ∈ H1,0Ωk−1

t , then
Lu = f − p can be written as

〈〈〈dσ, v〉〉〉+ 〈〈〈du, dv〉〉〉 = 〈〈〈f − p, v〉〉〉 for all v ∈ H1,0Ωkt ,

〈〈〈σ, τ〉〉〉 − 〈〈〈u, dτ〉〉〉 = 0 for all τ ∈ H1,0Ωk−1
t ,

〈〈〈u, q〉〉〉 = 0 for all q ∈ H1,1Hkt .

Let S := H1,0Ωk−1
t × H1,0Ωkt × H1,1Hkt . By computing the Euler�Lagrange equation,

one sees that (σ, u, p) ∈ S solves the equations above if and only if it is a minimiser of

I(σ, u, p) := 1
2 〈〈〈σ, σ〉〉〉 − 〈〈〈dσ, u〉〉〉 −

1
2 〈〈〈du, du〉〉〉+ 〈〈〈f − p, u〉〉〉.

In such a critical point, every (σ, 0, 0) ∈ S is a descent direction, and every (0, v, q) ∈ S
is an ascent direction, so I has a saddle point at (σ, u, p).

2.18Proposition (Arnold et al. 2006, thm. 7.2). In a Fredholm complex, the weak
Dirichlet problem in mixed formulation is well-posed, that means: There is a solution
(σ, u, p) ∈ S for every f ∈ L2Ωk, and there is a constant c only depending on M such
that σ, u, p S ≤ c f L2 .
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Proof. For s = (σ, u, p) and t = (τ, v, q), let

b(σ, u, p; τ, v, q) := 〈〈〈σ, τ〉〉〉 − 〈〈〈u, dτ〉〉〉+ 〈〈〈dσ, v〉〉〉+ 〈〈〈du, dv〉〉〉+ 〈〈〈p, v〉〉〉 − 〈〈〈u, q〉〉〉, (2.18a)

let B : S→ S∗ be the linear operator with b(s, t) = 〈〈〈Bs, t〉〉〉S∗,S and F : t 7→ 〈〈〈f, v〉〉〉L2 .
We have to show that there is a solution to the operator equation B(s) = F in S∗.
There is an inf-sup condition for b: According to 2.13, decompose u = da+x+y with

a ∈ H1,0Ωkt ∩ Ck−1 and x ⊥ Ck. Then by 2.10b, we have a H1,0 ≤ C� a L2 ≤ C� u L2

and by 2.10a, x H1,0 ≤ C� dx L2 = C� du L2 . With τ = σ − C−2
� a, v = u + dσ + p

and q = p − y, one obtains (all norms are L2 norms here) b(σ, u, p; τ, v, q) = σ 2 −
C−2

� 〈〈〈σ, a〉〉〉+C−2
� da 2 + dσ 2 + du 2 + p 2 + y 2, which is (for C� ≥ 1) greater than

C−2
� ( σ 2

H1,0 + u 2
H1,0 + p 2

L2). As τ, v, q S ≤ α σ, u, p S for some α ∈ R, we have
shown that there is a constant γ with

sup
t∈S

b(s, t)

t S
≥ γ s S for all s ∈ S. (2.18b)

Once this inf-sup-condition is established, the way is well-known (Babu²ka and Aziz
1972, thm. 5.2.1): Consider the linear operator B : S → S∗ belonging to b. Because
of Bs S∗ ≥ γ s S, it must be injective. And as we have that for any t ∈ S there is
some s ∈ S with b(s, t) 6= 0, the image of B must be the whole space S∗ by the closed
range theorem. Using the inf-sup condition once again, we get that α S∗ ≥ γ B−1α S,
which shows that B−1 is continuous, q. e. d.

2.19 Remark. The only thing that cannot be inferred from our high-level point of view is
that (H1,0Ω, d) indeed forms a Fredholm complex, and that the imbedding H1Ωk →
L2Ωk is compact. The �nite-dimensionality of Hk and hence the Fredholm property
is proven by the inequality v H1 ≤ C(Dir(v) + v L2) of Gaffney (1951), see e. g.
Schwarz (1995, cor. 2.1.6). The compact embedding is Rellich's inequality (see e. g.
Alt 2006, A 6.1), which carries over from the Euclidean case without modi�cation.
Both need the vector bundle structure of (H1,0Ω, d), but they are obviously also true if
(H1,0Ω, d) is a complex of �nite-dimensional vector spaces. Therefore all proofs above
literally carry over to the �discrete exterior calculus� from section 9. A very prelimi�
nary version of this attempt of formulation exterior calculus without recurrence to the
vector-bundle structure has been given in von Deylen (2012).

2.20 De�nition. When we speak of variational problems in the forthcoming sections,
we will always refer to the Hodge decomposition, the Dirichlet problem and other
strongly elliptic problems.

3. Geometry of a Single Simplex

As typical domain for the parametrisation of simplices, the numerical community
mostly uses the n-dimensional unit simplex

D := conv(0, e1, . . . , en) = {p ∈ Rn≥0 : p · 1n ≤ 1},
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where 1n is the vector in Rn with all entries 1, and ei is the i'th Euclidean unit vector.
We will investigate parametrisation of simplices over D for given edge lengths and
see how the Riemannian metric over D changes when those edge lengths are slightly
distorted. In contrast, geometers tend to employ the standard simplex

∆ := conv(e0, . . . , en) = {λ ∈ Rn+1
≥0 : λ · 1n+1 = 1}

for the same purpose (here and in the following, we will use the enumeration e0, . . . , en
for the canonical Euclidean basis of Rn+1). Although the parametrisation over ∆ is
not a parametrisation in the strict sense, as not some Rn itself is used, but some linear
subspace of it, we will see that there will be no problems with this additional direction.

The Unit Simplex

3.1Metric on TD. Consider points p0, . . . , pn ∈ Rn that are supposed to be vertices
of a simplex s. As we are only interested in its isometry-invariant properties, we can
assume that p0 is the origin of Rn. Then the matrix P := [p1| · · · |pn] represents a
linear map D → s. The �rst fundamental form has entries

Cij := (P tP )ij = pi · pj , i, j = 1, . . . , n,

and the volume of s is computable as vol s = 1
n! (detC)1/2. If `ij = |pi − pj | are the

edge lengths of s, we have by the cosine law

Cij = 1
2 (`20i + `20j − `2ij). (3.1a)

If only a system of prescribed �edge lengths� ¯̀
ij is given, then there is a simplex with

such edge lengths if and only if the matrix with entries 1
2 (¯̀2

0i + ¯̀2
0j − ¯̀2

ij) is positive
de�nite.

3.2Metric on T ∗D. Let Di, i = 1, . . . , n, be the facet (subsimplex of codimension 1)
of D opposite to the vertex ei. The vector ei is normal to Di, and as normal directions
transform with P−t, the vectors vi := P−tei, i = 1, . . . , n, are normal to the facets si
of s. In other words, P−1 has the normals vi as rows. At the same time, these vi are
the gradients of the barycentric coordinate functions λi, de�ned by the representation
p = λipi for any point in s. The length of these gradients decreases as the simplex'
height hi above pi decreases, more precisely

vi = gradλi ⊥ si, |vi| = 1
hi
, (3.2a)

this in particular implies |si|/|vi| = 1
n vol s for each i. This formula does not only hold

for i = 1, . . . , n, but also the appropriately-scaled normal v0 opposite to the origin p0

is the gradient of λ0. De�ne V := [v1| · · · |vn]. As the barycentric coe�cients sum up
to one, v0 = −V 1n. By de�nition of V , we have V tP = 1, which means that the vi

and pj form a �biorthogonal system� (Fiedler 2011, thm. 1.1.2). The matrix

Q̃ij := (V tV )ij = vi · vj , i, j = 1, . . . , n,
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is inverse to Cij and hence represents the scalar product of the cotangent space. Clearly
V t = PQ̃, that means vk = pj〈vj , vk〉, so v0 = −V 1n = pj〈vj , v0〉. As pj also equals
the edge vector ej0 (due to p0 = 0), this shows the translation-independent form

vi = ekj v
k · vj for all i = 0, . . . , n (3.2b)

(where i = j might be included in the summation or not, which does not matter due
to eii = 0). In the following, we will only consider the (n + 1) × (n + 1) matrix Q,
which extends Q̃ by a 0'th row and column:

Qij := vi · vj , i, j = 0, . . . , n.

It is made to have vanishing row-sum and column-sum, i. e. Q1n+1 = 0 and 1tn+1Q = 0.
In the special case n = 2, we know from Pinkall and Polthier (1993, Pinkall
nowadays dates the formula back to Duffin 1959 or even MacNeal 1949, but as the
formula itself is easy to discover by classical trigonometry, we value the application
to computational mathematics higher than the �rst occurence of two opposite angles'
cotangents)

|ijk| vj · vi =
|∗ij|
|ij|

= cotαkij , (3.2c)

(as is frequently used in discrete exterior calculus, see Hirani 2003), where ∗ij is the
straight line from ijk's circumcentre to the midpoint of ij, and αkij is the angle in ijk
opposite to vertex k.

3.3 De�nition. We say that s is (ϑ, h)-small if all edge lengths `ij are smaller than h
and s has volume greater than ϑhnσn, where σn :=

√
n+ 1/(2n/2n!) is the volume of

the regular n-simplex with unit edge length, i. e. the scaled standard simplex 1√
2
∆. In

terms of the �rst fundamental form, detC ≥ (ϑhnn!σn)2.

3.4 Remark. <a> The standard simplex has maximal volume among all n-simplices with
the same edge length bounds, so ϑ ≤ 1.

<b> The parameter ϑ is 1/σn times the fullness Θ(s) in Whitney (1957, sec. IV.14). The

fullness parameter ϑ from von Deylen et al. (2014) is n!σnϑ in the notation employed here.

It would be equivalent to require a lower bound on the angles between subsimplices.

<c> Weaker requirements on the simplex quality that still ensure well-posedness of
the interpolation problem, like the famous maximum angle condition of Babu²ka and
Aziz (1976), are circumstantially treated by Shewchuk (2002).

3.5 Lemma. Let αn := n!σnn
1−n for all n ∈ N. Then the eigenvalues λi of C ful�ll

ϑhαn ≤
√
λi ≤ hn.

Proof. We have to estimate ||P || and ||P−1|| from 3.1.�Recall that the n-dimensional
unit simplex has interior and boundary measure

voln(D) =
1

n!
, voln−1(∂D) =

n

(n− 1)!
+

√
n

(n− 1)!
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3. Geometry of a Single Simplex

(the latter one because the (n− 1)-dimensional standard simplex conv(e1, . . . , en) has
volume

√
n

(n−1)! ). For any n-simplex s, the radius r of the insphere is connected to
volume and surface via voln(s) = r

n voln−1(∂s). This can be easily seen by considering
the simplices s∗i := conv(si, c), where si is a facet of s and c is the circumcentre
of the insphere. These s∗i all have volume voln(s∗i ) = r

n voln−1(si), and voln(s) =
voln(s∗1) + · · ·+ voln(s∗n+1). Now, solving voln(D) = r

n voln−1(∂D) for r gives

r =
1

n+
√
n
≥ 1

2n
.

This means that any vector v ∈ TD with length 1
n ≤ 2r can be represented as p − q

with points p, q ∈ ∆. Its image in s is Pp − Pq, which must be shorter than the
diameter of s. So ||P || ≤ nh. On the other hand,

λmin(nh)2n−2 ≥ λminλ
n−1
max ≥ detC > (ϑhnn!σn)2

q. e. d.

3.6Corollary. For the norm |w|2g := wiwjCij on T∆ holds ϑhαn|w|`2 ≤ |w|g ≤ hn|w|`2 .
In particular, all edges are longer than ϑhαn. The columns vi of V form a g-ortho-
normal basis, and |vi|`2 ≤ (ϑhαn)−1 for all i.

Proof. We have |w|g = |C1/2w|`2 , and the extremal eigenvalues of C1/2 are λ
1/2
min and

λ
1/2
max, which shows the �rst claim. The second is clear from V tP = 1 and the fact that
C−1 has eigenvalues between (hn)−2 and (ϑhαn)−2, q. e. d.

3.7Lemma. Assume two symmetric matrices C, C̄ ∈ Rn×n with C being positive de�nite
and |(C − C̄)v · v| ≤ εCv · v. Then also |(C − C̄)v · w| ≤ ε|Cv · v|1/2|Cw · w|1/2.

Proof. The claim is independent of scaling v and w, so let Cv · v = Cw · w = 1. We
will �rst show the claim for C-orthogonal vectors and then for linear combinations. So
assume Cv ·w = 0 for the moment. Then C(v+w) · (v+w) = C(v−w) · (v−w) = 2,
and the parallelogram identity (polarisation formula)

4A(v, w) = A(v + w, v + w)−A(v − w, v − w)

for any symmetric 2-tensor A gives 4|(C − C̄)v · w| ≤ εC(v + w) · (v + w) + εC(v −
w) · (v − w) = 4ε = 4ε|Cv · v|1/2|Cw · w|1/2. Now for a linear combination, we obtain
|(C − C̄)(v + w) · v|2 ≤ |(C − C̄)v · v|2 + |(C − C̄)w · v|2 ≤ 2ε = ε|Cv · v| |C(v + w) ·
(v + w)|, q. e. d.

3.8Remark. The polarisation argument is also feasible for higher-order symmetric ten�
sors, as e. g.

6C(v, v, w) = C(v + w, v + w, v + w)− C(v − w, v − w, v − w)− 2C(w,w,w),

which (together with the usual paralellogram identity) shows that all evaluations of a
symmetric 3-tensor can be reduced to linear combinations of equal argument evalua�
tions.
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3.9 Lemma. Let C, C̄ ∈ Rn×n be symmetric matrices, where all eigenvalues of C are
larger than λmin > 0 (in particular, C is positive de�nite), and |Cij − C̄ij | ≤ ελmin/n.
Then |(C − C̄)v · w| ≤ ε|Cv · v|1/2 |Cw · w|1/2.

Proof. Due to 3.7, the case v = w is su�cient. Then

|(C − C̄)v · v| =
∣∣∣∑
i,j

(Cij − C̄ij)vivj
∣∣∣ ≤ ελmin

n

∑
i,j

|vi||vj | =
ελmin

n

(∑
i

|vi|
)2

,

and the square is, by Jensen's inequality, smaller than n
∑
|vi|2 = n|v|2. As C is

positive de�nite, Cv · v ≥ λmin|v|2, q. e. d.

3.10 Remark. Compare the classical eigenvalue distortion theorem of Bauer and Fike (1960)
in the formulation of Ipsen (1998, theorem 2.1): If C can be orthogonally diagonalised, λ is
an eigenvalue of C, then there is an eigenvalue λ̄ of C̄ with |λ−λ̄||λ̄| ≤ ||C

−1(C̄ − C)||.

The Standard Simplex

Things are less obvious in barycentric coordinates, for which reason we refer to Fiedler
(2011, chapters 1 and 2) for proofs of the following statements.

3.11 Metric on T∆. We drop our assumption p0 = 0 and let p0, . . . , pn be arbitrary
points in Rm. Their convex hull s has a parametrisation over the standard simplex ∆,
represented by the matrix P+ = [p0| · · · |pn]. The Riemannian metric on T∆ = {v ∈
R
n+1 : v · 1n+1 = 0} is given by

Eij := − 1
2 |pi − pj |

2
, i, j = 0, . . . , n. (3.11a)

By 3.1a, we know Cij = Eij − E0i − E0j for i, j = 1, . . . , n. The volume of s can be
computed as

vol s = 2
n! (−detM+)

1/2, where M+ =

Å
0 − 1

21tn+1

− 1
21n+1 E

ã
∈ R(n+2)×(n+2)

(3.11b)
is − 1

2 times the usual Cayley�Menger or extended Menger matrix. The volume

element hence is G := 2(−detM+)1/2.

3.12 Metric on T ∗∆. Assume detM+ 6= 0. The cotangent space on ∆ consists of all
linear combinations vidλi with v · 1n+1 = 0. As Qij , i, j = 0, . . . , n, already contains
the correct scalar products between all possible linear combinations of the dλi, it is in
particular the correct representation for the scalar product on T ∗∆. The ambiguity in
the choice of gij and gij is especially visible in the fact that normally both are inverse
matrices, whereas for the choices made here, we only have

M−1
+ =

Å
4r2 −2qt

−2q Q

ã
, (3.12a)

where r is the circumradius and q are the barycentric coordinates of the circumcentre
of s.
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3. Geometry of a Single Simplex

Remark. Fiedler (2011) uses the symbols M and M0 for the objects −2E and −2M+.

3.13De�nition. From now on, we will only consider barycentric coordinates on the stan�
dard simplex and will always use

gij = Eij , gij = Qij , i, j = 0, . . . , n

and say that g is a (ϑ, h)-small metric if s is (ϑ, h)-small. The latter one is of course
only possible if s is non-degenerate, in particular n ≤ m. Note that for any c ∈ R, the
matrices gij + c and gjk + c induce the same scalar product on T∆ and T ∗∆ as gij
and gjk respectively, so we can assume that both are positive de�nite on Rn+1 with
the same eigenvector bounds as in 3.5.

3.14Proposition. Although gij and gjk are not inverse matrices, the tangent-cotangent
isomorphism is given by the usual identities:

(vi∂i)
[ = gijv

idλj , (αjdλ
j)] = gijαi∂j .

Proof. By 3.11b and 3.12a, QijEjk = δik + qi for all i, k = 0, . . . , n. In other words,

QE = 1 + [q| · · · |q].

But if α · 1n+1 = 0, then [q| · · · |q]α = 0, irrespective of the entries of q. So on T∆ (and
equally on T ∗∆), both matrices are indeed inverse to each other, q. e. d.

3.15Lemma. Assume real numbers x, y > 0 with |x− y| ≤ εx for some ε < 1. Then

|xp − yp| ≤ cpεxp, where cp =

®
p (1 + ε)p−1 for p ≥ 1,

p (1− ε)p−1 for p ∈ [0; 1].

In particular,

|
√
x−√y| ≤ 2ε

√
x and |x2 − y2| ≤ 3εx2 for ε < 1

2 .

Proof. Let f : x 7→ xp. Then |f(x)− f(y)| ≤ maxξ∈[x;y] f
′(ξ)|x− y|. So we only have

to �nd the maximum of f ′. Suppose p < 1. Here f ′ is monotonously decreasing. If
x ≤ y, then max f ′ = f ′(x) = pxp−1. If y ≤ x, then max f ′ = f ′(y) = pyp−1 ≤
p(1 − ε)p−1xp−1, and this case dominates the �rst one.�The argument for p > 1 is
litterally the same, but with inversed rôles of x and y, q. e. d.

3.16Proposition. Let `ij be the edge lengths of a simplex, de�ning a (ϑ, h)-small met�
ric g on ∆, and let ¯̀

ij be a second system of desired edge lengths with |`ij − ¯̀
ij | ≤

2
3εn
−1α2

nϑ
2`ij where ε ≤ 1

2 . Then there is a simplex s̄ ⊂ Rn with edge lengths ¯̀
ij, and

its Riemannian metric ḡ over ∆ ful�lls |(g − ḡ)〈v, w〉| ≤ ε|v|g |w|g.

Proof. For the existence claim, it su�ces to show that ḡij = − 1
2

¯̀2
ij is positive de��

nite on T∆. By 3.15 and the assumption, we have |`2ij − ¯̀2
ij | ≤ 2εn−1αnϑ

2`2ij , hence
|Eij − Ēij | ≤ εn−1α2

nϑ
2h2. Now apply 3.9 to get |(g − ḡ)〈v, w〉| ≤ ε|v|g|w|g. In partic�

ular, ḡ is positive de�nite for ε < 1, q. e. d.
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3.17 Remark. Although the proof of 3.9 seems to be fairly rough, the fullness parameter ϑ
is essential to 3.16 and cannot be weakened to a bound e. g. on the minimal edge length
(which would be equivalent to a minimal angle bound, which is a sharp tool for some
interpolation estimates, see Babu²ka and Aziz 1972). In fact, edge lengths 2, 1 + ε
and 1+ε of a thin triangle may only be relatively distorted by a factor δ ∈ ] 1

1+ε ; 1 + ε[
to guarantee the existence of a corresponding simplex.

3.18 Corollary. Situation as in 3.16. Then g and ḡ are equivalent norms, (1− ε)ḡ〈v, v〉 ≤
g〈v, v〉 ≤ (1 + ε)ḡ〈v, v〉.

3.19 Proposition. Situation from 3.16. Then the estimate carries over to all higher tensor
spaces T rs ∆ with constants depending on r and s.

Proof. Let us �rst consider the extension of g to bivectors, that means elements of
T 0

2 ∆. Without regarding the tensor-product structure, we could just say this it is a
scalar product with components gijgk`, where (i, k) and (j, `) are the indices of the �rst
and second argument respectively. And these components are almost equal to those of
ḡ (we abbreviate |gij − ḡij | ≤ δgij):

|gijgk` − ḡij ḡk`| ≤ |gijgk` − ḡijgk`| + |gij ḡk` − ḡij ḡk`|
≤ δ|gijgk`| + δ|gij ḡk`|
≤ δ|gijgk`| + δ(1 + δ)|gijgk`| ≤ 3δ|gijgk`|.

For the n2 × n2 matrices gijgk` and ḡij ḡk`, apply 3.9 again, q. e. d.

3.20 Corollary. Situation as in 3.16. The volume elements of g and ḡ ful�ll |G− Ḡ| ≤ c εG
with a constant c depending only on n.

Proof. The usual proof would be to use G = 2(−detM+)1/2, together with the �rst
order approximation of the determinant: det(F + tA) =

(
1 + t trF−1A+O(t2)

)
detF

(a classical reference is Bellmann 1960, pp. 96sqq., although the nicest proof that we
know is in Eschenburg and Jost 2007, lemma 8.2.1). However, we want to control
more than the �rst order. So observe that if ∂i is a coordinate-induced basis of the
tangent space, then G = |∂1 ∧ · · · ∧ ∂n|g, and ḡ−g on the space of n-forms is controlled
by the previous proposition, q. e. d.

3.21 Proposition. Let g, ḡ be two metrics with |(g − ḡ)〈v, w〉| ≤ ε|v|g|w|g, where ε < 1
2 .

Then the metric gij on the cotangent space ful�lls |g〈α, β〉 − ḡ〈α, β〉| ≤ 2ε |α|g |β|g for
α, β ∈ T ∗∆.

Proof. Again, we do not use the conventional approach to bound M̄−1
+ by the di�eren�

tial of the matrix inversion d
dF F

−1(A) = −F−1AF−1 (Deuflhard and Hohmann,
2003, lemma 2.8). Instead, the de�nition of | · |g on T ∗∆ as operator norms will help:
For every v ∈ T∆, we have |α|2ḡ ≥ (α(v)

|v|ḡ )2 ≥ 1
1+ε (α(v)

|v|g )2, in particular for the v realising

|α|g. On the other hand, if w realises |α|ḡ, then |α|2ḡ = (α(w)
|w|ḡ )2 ≤ 1

1−ε (α(w)
|w|g )2. So

1

1 + ε
|α|2g ≤ |α|2ḡ ≤ 1

1− ε
|α|2g.

24
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Now as ε < 1
2 by assumption, we have 1

1−ε ≤ 1+2ε and 1
1+ε ≥ 1−ε > 1−2ε, therefore∣∣|α|2g − |α|2ḡ∣∣ ≤ 2ε|α|2g, which su�ces due to 3.7, q. e. d.

4. Simplicial Complexes and Discrete Riemannian Metrics

In computational geometry, it is common to describe simplicial complexes as the union
of simplices in Euclidean spaces with appropriate conditions on their intersections. We
consider these intersection conditions as tedious and use the more abstract de�nition
via barycentric coordinates, as is usually done in topology. We follow the lines of
Munkres (1984), but we repeat the de�nitions in order to directly deal with abstract
simplicial complexes as (almost everywhere smooth) Riemannian manifolds.

Non-Oriented Complexes

4.1De�nition. An n-dimensional combinatorial simplex (n-simplex) is a set of n+1 el�
ements, its `-dimensional subsimplices are subsets of cardinality `+1. An n-dimensio-
nal combinatorial simplicial complex is a collection K = (K0, . . . ,Kn), where each
K` is a collection of `-dimensional simplices such that if t is a k-dimensional subsimplex
of s ∈ K`, then t ∈ Kk. The complex is called regular if each simplex is contained in
an n-simplex and each (n − 1)-simplex is the subsimplex of at most two n-simplices.
When we speak of simplicial complexes, we always mean regular ones.
An (n− 1)-simplex f is called a boundary simplex if there is only one e ∈ Kn with

f ⊂ e. The (n − 1)-dimensional complex formed out of these boundary simplices and
their subsimplices is called the boundary complex ∂K of K.

Notation. We use special notations for the most interesting dimensions (here k is any
dimension between 0 and 1, kept �xed inside an argumentation):

vertices pi or i ∈ K0 t ∈ Kk−1 facets f ∈ Kn−1

edges ij ∈ K1 s ∈ Kk elements e ∈ Kn

Sometimes we will also use the convention t ∈ Kk and s ∈ Kk+1. In every case t will be
one dimension smaller than s.

4.2De�nition (tom Dieck (2000), p. 63). Let s := {p0, . . . , pk} be a combinatorial
k-simplex. For a function λ : s→ R, abbreviate λ(pi) as λi. The geometric realisa�
tion of s is rs := {λ : s → [0; 1] : λ · 1n+1 = 1}. For a complex K = (K0, . . . ,Kn), the
realisation is de�ned as rK :=

⋃
e∈Kn re.

Remark. <a> This de�nition is equivalent to, but much more elegant than the usual
way of �annotating� the vertices of the euclidean standard simplex ∆ with the elements
of K0, considering the disjoint union of |Kn| many such annotated simplices and glueing
them whenever two sides have equal annotations.

<b> By setting λi = 0 for all unused vertices pi ∈ K0, the elements of rK can naturally
be considered as functions λ : K0 → [0; 1] with suppλ = s for some s ∈ Kk.
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<c> We say that some property is ful�lled piecewise on rK if it is ful�lled on each
re, e ∈ Kn.

4.3 Proposition. Let K be an n-dimensional simplicial complex (regular, as always).
Then rK is an n-dimensional manifold, which is smooth everywhere except at (n −
2)-simplices.

Proof. For each f ∈ Kn−1, belonging to e, e′ ∈ Kn, de�ne a chart xf : re ∪ re′ → R
n

in the following way: Without loss of generality, assume e = {p0, . . . , pn} and e′ =
{p1, . . . , pn+1}. Let e1, . . . , en be the usual euclidean basis vectors in Rn, let e0 be the
origin and en+1 := 2

n (e1 + · · ·+ en). Then the convex hulls D := conv(e0, . . . , en) and
D′ := conv(e1, . . . , en+1) are isometric (up to a change of orientation). Now de�ne

xf(λ) := λiei =

{
λ0e0 + · · ·+ λnen on re,

λ1e1 + · · ·+ λn+1en+1 on re′.
(4.3a)

This xf is a bijection re→ D and re′ → D′. For any other chart xf′ that also covers re,
the chart transition is an a�ne map that maps E to either e or e′, hence rK is smooth
in the interior of each n-simplex.
Around an (n − 2)-simplex, we do not give a chart, but we just remark that a

topological manifold is su�ciently de�ned by a �nite cover of closed chart domains.
Open charts are only needed for the de�nition of smooth functions.
Note that another choice than e0, . . . , en+1 would have led to the same di�erentiable

structure on rK (as long as the convex hulls are full-dimensional simplices in Rn),
q. e. d.

4.4 Observation. <a> Consider s ∈ Kk. By 4.2, rs is a full-dimensional subset of the
k-dimensional a�ne space {λ : s → R : λ · 1n+1 = 1}, so its tangent space is Tλrs =
{v : s → R : v · 1n+1 = 0} at every internal λ ∈ rs. As rs is an a�ne space, we
deliberately drop the foot point λ in most cases, just as we do with T∆.

<b> The obvious linear isomorphism ∆→ rs is ei 7→ rpi. This means that λ ∈ ∆ and
v ∈ T∆ are mapped to λirpi and virpi.

<c> The realisation of the boundary complex is the boundary of the realisation: ∂rK =
r∂K. In particular, rK is a manifold without boundary i� each (n − 1)-simplex in K
belongs to two n-simplices.

4.5 De�nition (Wardetzky 2006 or, similar but shorter, Hildebrandt et al. 2006).
De�ne a di�erentiable structure on rK by the requirement that some function is
smooth (or of class Ck,α) if it has this smoothness property piecewise and is continuous
up to the boundary. Consequently, de�ne Hk as the completion of Ck with respect to
the Hk norm.

4.6 De�nition (Bobenko et al. 2010). Let K be a simplicial complex. A function ` : K1 →
R≥0 with the property that Cij from 3.1a is positive semide�nite for each e ∈ Kn is
called a discrete Riemannian metric. In particular, ` ful�lls the triangle inequality
on each t ∈ K2.
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On each Tλrs, s ∈ Kk, the discrete Riemannian metric ` induces a usual Riemannian
metric g`〈v, w〉 = viwjgij by gij := − 1

2`
2
ji, cf. 3.11a. As this metric does not change

with λ, rs will be �at. When we deal with a piecewise �at metric, we always assume
that it is de�ned via a discrete Riemannian metric.

4.7Observation. <a> Let t be a facet of s. The restriction of ` to edges in t is a discrete
Riemannian metric for itself, and its induced Riemannian metric g`,t on rt is the restric�
tion of g`. So the glueing of two supersimplices s, s′ of t along t is done isometrically
with respect to g`.

<b> Consequently, every set U ⊂ rK that does not contain any (n − 2)-simplex is
�at. In fact, also (n− 2)-simplices might be included if they have some �at neighbour�
hood, which is equivalent to requiring that their internal dihedral angles as de�ned by
Cheeger et al. (1984, p. 412) sum up to 1. In this sense, curvature of piecewise �at
spaces is concentrated in the (n− 2)-simplices.

<c> If pi are points in Euclidean space with `ij = |pi − pj |`2 , then g` coincides with
the pull-back metric gs of s := conv(p0, . . . , pk) to the standard simplex ∆. Hence,
x∆ : (rs, g`) → (∆, gs), λ 7→ λiei and xs : (rs, g`) → (s, `2), λ 7→ λipi are both
isometries.

<d> In the construction 4.3a, one may use points qi with distances |qi − qj |`2 = `ij
instead of the points ei (of course, |q0 − qn+1|`2 does not undergo any restriction). Up
to Euclidean isometries, these qi are unique. This de�nes an atlas {xf : f ∈ Kn−1} of
isometries.

<e> Consider a triangle {pi, pj , pk} ∈ K2, shortly written as ijk. By the usual trigono�
metric formulas incorporating only edge lengths, one can de�ne angles αkij opposite to
the edge ij and area |ijk| on the basis of ` only, without using g`. The metric d` on
rK obtained by the requirement

|jkλ| = λi|ijk|, |kiλ| = λj |ijk|, |ijλ| = λk|ijk|.

is the same as the metric induced by g`. The generalisation of this approach to higher
dimensions is of course feasible and natural, but notationally tedious.

4.8Proposition. Let rK be a realised simplicial complex with a piecewise �at metric g.
Consider two adjacent elements e = {p0, . . . , pn} and e′ = {p1, . . . , pn+1} ∈ Kn with
common subsimplex f. Then for any λ in the interior of rf, the di�erential of the
transition map Tre→ Tre′ has dual

(dτe′,e)
[ : T ∗re→ T ∗re′, dλi 7→ dλi for i = 1, . . . , n,

dλ0 7→ − |dλ0|
|dλn+1| dλ

n+1.
(4.8a)

Proof. It is clear that the common di�erentials dλ1, . . . , dλn remain unchanged. Under
an isometric embedding as in 4.7d, (dλ0)] and (dλn+1)] are normal to the common
facet (cf. 3.2), pointing in opposite directions, which gives 1

|dλ0| dλ
0 = − 1

|dλn+1| dλ
n+1,

q. e. d.
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Remark. <a> We have chosen to give (dτs′,s)
[ and not dτs,s′ just to obtain a nicer

formula. One could as well say

gradλ0 7→ |dλ0|
|dλn+1| gradλn+1.

<b> Formally, τe′,e is only de�ned on re ∪ re′, where it is the identity. But the charts
x∆
e and x∆

e′ from 4.7c can be extended to some neighbourhood of the standard simplex,
as (re, g`) and (re′, g`) are glued isometrically.

Oriented Complexes

4.9 De�nition (
�
Nanu, Sie kennen Kor noch nicht? �). Let V be a set. De�ne an equiv�

alence relation ∼ on the set V n+1 of (n + 1)-tuples over V by a ∼ b i� there is a
permutation with positive sign that maps a into b. Let [a0, . . . , an] be the equiva�
lence class of a ∈ V n. The quotient of V n+1 under ∼ is called the set of oriented
k-simplices with vertices in V and is denoted by [V n].
If [b] ∈ [V k] is an oriented simplex, its facets are the oriented (k − 1)-simplices

obtained by dropping one of its vertices: [b0, . . . , b̂i, . . . , bk] < [b0, . . . , bk]. The sub�
simplices of [b] are obtained by dropping one or more vertices. If dimensions do not
matter, we also abbreviate [a] < · · · < [b] as [a] < [b] if [a] is a subsimplex of [b].
An oriented simplicial complex Kor of dimension n with vertex set V is a collection

K0
or, . . . ,K

n
or, where K

k
or ⊂ [V k], such that [a] < [b] for some [b] ∈ Kkor implies [a] ∈ Kk−1

or .
The complex is regular if no vertex occurs twice in any simplex, each simplex is
contained in an n-dimensional simplex, each (n−1)-simplex is the boundary of exactly
one n-simplices, and each two n-simplices in Knor have di�erent vertex sets.
If Kor is a regular orientable simplicial complex, we denote the corresponding complex

made out of non-oriented simplices by K. The realisation of an oriented complex Kor

is de�ned as rKor := rK.

4.10 Remark. <a> There are exactly two distinct oriented simplices with the same set
of vertices a0, . . . , an, which we write [a0, . . . , an] and [a0, . . . , an]−. As non-oriented
simplices were de�ned as sets, each non-oriented simplex corresponds to two oriented
simplices. So the last condition on a regular complex says that not [a] and [a]− ∈ [V n]
can belong to an n-dimensional complex at the same time.

<b> The vertices of a non-degenerate euclidean simplex s = conv(p0, . . . , pn) ⊂ Rm
can be ordered such that P = [p1 − p0| · · · |pn − p0] as in 3.1 has positive determinant.
This is what we call the canonical orientation of {p0, . . . , pn}. (On the other hand, if
p0, . . . , pn are not taken out of some oriented space, there is no canonical choice.)

4.11 Proposition. rKor is an orientable piecewise smooth manifold for any regular oriented
simplicial complex Kor.

Proof. We will show that if we use only those charts from the proof of 4.3 that respect
the orientation of n-simplices, we obtain an oriented atlas of rKor:
Suppose there are two simplices s, s′ ∈ Knor that share n vertices, say p1, . . . , pn. Then

because t := [p1, . . . , pn] can only be contained in one of them, we can assume that

s = [p0, p1, . . . , pn], s′ = [pn+1, p1, . . . , pn]−
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for two vertices p0, pn+1 ∈ K0
or. Now let xt be the chart as in 4.3a. Obviously, [e0, . . . , en]

and [en+1, e1, . . . , en]− are both canonically oriented. As there was no choice in this
construction, every other chart that covers s must also map rs to a euclidean simplex
with this orientation, therefore every transition map is orientation-preserving, q. e. d.

Barycentric Subdivision

4.12De�nition. Let K be a simplicial complex, regular as usual, and K∗ := K1 ∪ · · · ∪ Kn

be the set of all its simplices. An (ascending) k-�ag in K is a set a := {a0, . . . , ak} ⊂
(K∗)k+1 such that, if its elements are ordered by magnitude, ai ⊂ ai+1. In other
words, a k-�ag is a sequence of k + 1 nested simplices. If ai ∈ Kni , we also write
a = (〈n0〉, . . . , 〈nk〉), meaning that 〈j〉 is a �generic j-simplex�.

4.13Remark. <a> The notation 〈i〉 is uncommon, but not more ambigous than other
authors' notations such as σi. Our notation is made to save double subscripts.

<b> Of course, �ags are simplices, only in some special complex. But having a di�erent
name will (hopefully) prevent confusion. The term ��ag� is borrowed from algebra,
where it signi�es sequences of nested linear spaces, whereas set theory mostly speaks
of �ascending chains� for nested sets. But the term �chain� already has a canonical
meaning in simplicial homology theory, and in section 9 we need to use both at a time.

<c> All elements of a k-�ag lie in a common n-simplex. An n-�ag contains exactly one
k-simplex for each k.

4.14Example. Suppose K consists of one triangle ijk, its edges and its vertices. Then the
0-�ags are the elements of K∗ (to be totally precise, the 0-�ags are singletons containing
elements of K∗). The 1-�ags are of the form (〈0〉, 〈1〉), that means combinations of a
vertex and an edge containing it, or of the form (〈0〉, 〈2〉), i. e. a vertex and the triangle,
or (〈1〉, 〈2〉), an edge and the triangle:

{i, ij}, {i, ik}, {i, ijk}, {ij, ijk}, {ik, ijk} and similar for the vertices j and k.

The 1-�ags (〈0〉, 〈1〉) are interpreted as straight line segments from the point r〈0〉 to a
point λ〈1〉 somewhere on the edge 〈1〉, and the �ags (〈1〉, 〈2〉) connect the points λ〈1〉
to the �barycentre� λ〈2〉. The 2-�ags consist of a vertex, an edge containing this vertex,
and the triangle, they are all of the form (〈0〉, 〈1〉, 〈2〉):

{i, ij, ijk}, {i, jk, ijk} and similar for other vertices.

4.15De�nition. The (barycentric) subdivision sdK of the complex K is a complex of
the same dimension whose k-simplices are the k-�ags in K.
Suppose there is some λs ∈ rs given for each s ∈ K∗. Because of 4.13c, the mapping

r(sdK)0 → rK, r{s} 7→ λs

can be uniquely extended to a continuous, piecewise a�ne mapping i : r(sdK) → rK,
mapping the realisation of a �ag r(a0, . . . , ak) to the convex hull of λa0

, . . . , λal . If ` is a
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discrete Riemannian metric on K, then r(sdK) can be endowed with the induced metric
`{s},{s′} = |λs − λs′ |g` , and i becomes an isometry. Let r′ := i ◦ r be the �realisation of
sdK in rK�.
If Kor is an oriented complex, one can obviously de�ne an oriented subdivision by

considering the n-�ags as tuples instead of sets and using the orientation induced by r′.

4.16 Observation. There are several obvious conclusions from the fact that r′{a0, . . . , ak}
= conv(λa0

, . . . , λak). Most prominently, one can decompose the realisation of a k-sim-
plex rt into the realisations of k-�ags ending at t. The boundary ∂(rs) of a realised
(k + 1)-simplex s is covered by (the realisation of) k-�ags ending at facets of s:

rt =
⋃
〈k〉=t

r′(〈0〉, . . . , 〈k〉), ∂(rs) =
⋃
〈k〉⊂s

r′(〈0〉, . . . , 〈k〉).

De�nition. For s ∈ Kk, aggregate the n-�ags containing s in the neighbourhood
U(s) of s and the (n− k)-�ags starting with s in the dual cell ∗s:

U(s) :=
⋃
〈k〉=s

r′(〈0〉, . . . , 〈n〉), r(∗s) :=
⋃
〈k〉=s

r′(〈k〉, . . . , 〈n〉). (4.16a)

4.17 Observation. <a> The �ags occuring in U(s) must obviously be di�erent from the
�ags occuring in U(s′) for s 6= s′, so these neighbourhoods form a covering of rK with
disjoint interior for each k.

<b> The set of all n-�ags �running through s� can be represented as a product of two
�ag sets: k-�ags ending at s, whose union is rs, and the (n − k)-�ags beginning at
s, whose union is r(∗s). For us, the latter is just a way to write this union, we will
not de�ne the combinatorial dual of K. The interested reader is referred to Munkres
(1984, � 64).

<c> The boundary of a neighbourhood consists of those �ags where 〈k〉 = t is left out:

∂U(s) =
⋃
〈k〉=s

r′(〈0〉, . . . ,”〈k〉, . . . , 〈n〉).
This can be seen as follows: The boundary of any n-�ag a consists of (n − 1)-�ags a′

where any one of the elements in a is left out. The boundary of the union U(s) now
consists of those facets r′a′ where some element is left out and there is no other n-�ag
belonging to U(s) on the other side of r′a′. This second condition is satis�ed only if s
is left out, because if 〈i〉 6= s is left out, there is another �ag (〈0〉′, . . . , 〈n〉′) running
through s with 〈i〉′ 6= 〈i〉.

4.18 Lemma. Let rK be a realised simplicial complex with piecewise �at metric, and let
λs be the circumcentre of rs for each s ∈ K∗. Then for each n-�ag (〈0〉, . . . , 〈n〉), the
vectors v〈i〉,〈i+1〉 := λ〈i+1〉−λ〈i〉 are perpendicular to r〈i〉 and thus pairwise orthogonal.

Proof. Consider the two-dimensional case: If λijk is the circumcentre of r(ijk), then
|vi,ijk| = |vj,ijk|. The �circumcentre� of the edge ij is λij = 1

2 (ri + rj). So we have
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two equilateral triangles (λi, λij , λijk) and (λj , λij , λijk), which must hence have the
same angle π/2 at λij . The same argument applies in higher dimensions: If λt is
the barycentre of rt, then all vi,t have the same length. If t is a facet of s, then all
triangles (i, λt, λs) are equilateral and hence have the same angle at λt. This can only
be (because the vectors vi,t span the supporting plane of rt) if vt,s is perpendicular to
the supporting plane of t, q. e. d.

4.19Corollary. If the complex is well-centred, i. e. if the circumcentre λs always lies
inside rs, then the volume of a k-�ag a ∈ (sdK)k can be computed as

|r′a| =
1

k!
|va0,a1

| · · · |vak−1,ak | =
1

k!
|va0,a1

∧ · · · ∧ vak−1,ak |.

Together with 4.17b, we get for an n-dimensional complex

|s| |∗s| =

Ç
n

k

å
|U(s)| for t ∈ Kk,

where we have written |s| instead of |rs| for short, as we will always do in the following
(no ambiguity will occur, as the magnitude k + 1 of s is always indicated by saying
s ∈ Kk).

Remark. This last volume equation is, to the best of our knowledge, not yet used
in discrete exterior calculus, but frequently in Regge calculus, see e. g. Miller et al.
(2013), and its use for discrete calculus seems to date back to Miller (1997).
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5. The Karcher Simplex: Definition

Notation. Let d be the geodesic distance on M . For points p0, . . . , pn ∈ M and the
n-dimensional standard simplex ∆, consider the function

E : M ×∆→ R, (a, λ) 7→ λ0 d2(a, p0) + · · ·+ λn d2(a, pn).

5.1Convexity. Let cvrM be the largest radius such that all geodesic balls BcvrM (p),
p ∈M , are convex in the sense of 1.4. It can be estimated by

cvrM ≤ 1
2 min

{
π√
C0
, injM

}
,

where injM is the injectivity radius of the manifold (Cheeger and Ebin 1975, thm.
5.14), and d(p, · ) is convex in BcvrM (p). Consequently, for a smaller ball B :=
B 1

2 cvrM (p), all functions d(q, · ), q ∈M , are convex in B.

Remark. One knows that injM ≥ min{minimal distance between conjugate points}, { 1
2
min.

length of a closed geodesic}, and because conjugate points need to have distance greater
than π/

√
C0 by Rauch's comparison theorem (which is true also if the sectional curvature is

somewhere negative, so the restriction of nowhere positive sectional curvature in Cheeger
and Ebin 1975, corr. 5.7, is only historically determined and factually unneccessary),

cvrM ≤ 1
2

¶
π√
C0

, 1
2
min. length of a closed geodesic

©
.

The probably best known estimate for the latter term in arbitrary dimension is

L(γ) ≥ 2π
volM

vol Sm
Ä √

C0

sinh(
√
C0 diamM)

äm−1

for a closed geodesic γ (Heintze and Karcher 1978), where Sm is the m-dimensional unit
sphere in Rm+1. For even dimensions, Klingenberg (1959) showed L(γ) ≥ 2π

√
C0 for

orientable and L(γ) ≥ π
√
C0 for non-orientable M .

5.2Observation. Local minimisers of E( · , λ) for �xed λ are zeroes of the section F :
M ×∆→ TM ,

F (a, λ) := λiXi|a with Xi = 1
2 gradd2( · , pi) from 1.22.

If the points pi lie in a common ball B := B 1
2 cvrM (p) for some p ∈ M , then E( · , λ)

is convex, and hence there is a unique minimiser in B. But this can be sharpened:

5.3Proposition. Let p0, . . . , pn be contained in a ball B = Br(q) ⊂M with r ≤ 1
2 cvrM .

Then for each λ in the standard simplex, E( · , λ) has a global minimiser in B.
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Proof. Let x be the minimiser of E( · , λ) over a ∈ B. The key observation is that
this function cannot have more than one minimiser in B2r(M), as Kendall (1990,
thm. 7.3) has shown. His approach uses convex functions on M ; but Afsari (2011)
has given a direct proof: F ( · , λ) points inwards on the boundary ∂B2r(p), and the
Hessian of E is positive de�nite at all critical points. So by the Poincaré�Hopf index
theorem, F needs to have exactly one zero.
Outside B2r(p), there cannot be any minimisers: If a ∈M \B2r(q), then d(a, pi) >

r ≥ d(x, pi) and hence E(a, λ) > E(x, λ), q. e. d.

Assumption. From now on, we only consider p0, . . . , pn that lie in a common ball B
of radius smaller than 1

2 cvrM , in particular C0r
2 ≤ π2

4 .

5.4 De�nition. For a given λ ∈ ∆, let x(λ) be the minimizer of E( · , λ) in B. We call
this map x : ∆ → M the barycentric mapping with respect to vertices pi, and its
image s := x(∆) the corresponding Karcher simplex.

5.5 Remark. <a> In case M is the Euclidean space, x is just the canonical parametrisa�
tion λ 7→ λipi, because d2(p, a) = |a− p|2`2 gives Xi|a = a− pi.
<b> For λi = 0, the value x(λ) is independent of pi. So the subsimplices of the standard
simplex are mapped to �Karcher subsimplices� which only depend on the vertices of
the subsimplex.

<c> If ei is the i-th Euclidean basis vector of Rn+1, then x(tej + (1 − t)ei) = γ(t),
where γ is the unique shortest geodesic with γ(0) = pi and γ(1) = pj .

<d> Because x is continuous, the Karcher subsimplices form the boundary of a Karcher
simplex: ∂(x(∆)) = x(∂∆).

<e> Concerning the de�nition of x, we will not make use of the fact that all λi are
positive beside in 6.16. It was only needed to have an easy access to the well-de�ned�
ness of the minimiser. Sander (2013) showed that negative weights also lead to a
well-de�ned minimum if the pi are contained in a ball whose radius is bounded by a
constant depending on injM , the curvature of M and max |λi − λj |.

5.6 Proposition. If all pi lie in a totally geodesic submanifold S, then x(∆) ⊂ S. There�
fore the usual notion of simplices in spaces of constant curvature as convex hull of the
vertices (cf. e. g. Thurston 1997, ex. 3.3.6) is recovered.

Proof. Let ki := 1
2 d2( · , pi). If B is convex, then so is B ∩ S. So E(λ, · ) is convex on

B ∩ S, and hence there is a unique minimizer a of E(λ, · )|S , so there are coe�cients
λi with λi grad(ki|S) = 0 at a. As S is totally geodesic in M , it holds grad(ki|S) =
(grad ki)|S = Xi|S . Hence λiXi = 0 at the point a ∈ S, q. e. d.

5.7 Proposition. De�ne bundle maps σ,Av (for v ∈ Rn+1) by

σ|λ : Tλ∆→ Tx(λ)M, v 7→ − viXi|x(λ),

Av|λ : Tx(λ)M → Tx(λ)M, V 7→vi∇VXi|x(λ).
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If x is smooth at λ ∈ ∆, then its �rst and second derivative there ful�ll

Aλdx v − σ(v) = 0, (5.7a)

Aλ∇dx(v, w) +Awdx v +Avdxw + λi∇2
dxw,dx vXi = 0. (5.7b)

Proof. Similar to the proof of the implicit function theorem: The derivatives of F in a
direction (V, v) ∈ Tx(λ)M × Tλ∆ are

∇(V,v)F = λi∇VXi + viXi = Aλ V − σλ(v).

Now consider a curve γ : t 7→ λ+tv with derivative γ̇(t) = v. We have F (x(γ(t)), γ(t)) =
0, and di�erentiating this gives, like in the usual proof of the implicit function theorem,
0 = DtF = ∇(dx v,v)F . This shows the �rst claim.
The second claim is a totally analogous computation, but involves second covariant

derivatives ∇2
V,W := ∇V∇W −∇∇VW . We di�erentiate F once more and obtain

∇(W,w)∇(V,v)F = wi∇VXi + vi∇WXi + λi∇W∇VXi

= wi∇VXi + vi∇WXi + λi∇2
W,VXi + λi∇∇WVXi

Again, F neither changes in direction (dx v, v) nor in direction (dxw,w), so we get

0 = wi∇dx vXi + vi∇dxwXi + λi∇2
dxw,dx vXi + λi∇∇dxwdx vXi

= Awdx v +Avdxw + λi∇2
dxw,dx vXi +Aλ∇dxwdx v.

And because ∆ is �at, we have ∇dxwdx v = ∇dx(v, w) by 1.7, q. e. d.

5.8Remark. One can consider λ as a point measure on M that assigns the mass λi to the point
pi. For a general probability measure µ on M , Karcher (1977) speaks of the minimiser of

Eµ(a) :=

ˆ
M

d2(a, p) dµ(p)

as Riemannian centre of mass, but the subsequent literature has mostly called it the
Karcher mean with respect to the measure µ (cf. e. g. Jermyn 2005, probably initiated
by Kendall 1990). The concept seems to go back to Cartan (see the historic overview in
Afsari 2011), but has not been used by others until the work of Grove and Karcher

(1973).
Karcher himself used the centre of mass to retrace the standard molli�cation procedure

of Gauss kernel convolution in the case of functions that map into a manifold. Considering
the centre of mass as a function from an interesing �nite-dimensional space of measures
into M , as we use it, has been done by Rustamov (2010), and the barycentric coordinates
we deal with have been used by Sander (2012, 2013) and Grohs et al. (2013). All these
emphasise the possibility to glue the Karcher simplices along corresponding facets, but do
not investigate the distortion properties of this mapping. Recently, we were informed that
Dyer and Wintraecken (Rijksuniversiteit Groningen) have also proven a result similar to
6.17 by Topogonov's angle comparison theorems. However, this approach seems not to deliver
an analogue of 6.22.

In contrast, there is a large literature for �barycentric coordinates� on general convex poly�
gons in the plane, cf. Warren et al. (2007); Meyer et al. (2002) and references therein.
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6. Approximation of the Geometry

Estimates for Jacobi Fields

It is well-known that locally, Jacobi �elds grow approximately linearly:

|J(t)− P t,0(J(0) + tJ̇(0))| ≤ C0t
2|γ̇|2

(
|J(0)| + 1

4 t|J̇(0)|
)

for C0t
2 ≤ π2

4 . (6.1)

In fact, Jost (2011, thm. 5.5.3) proves that the left-hand side is smaller than |J(0)|
(cosh ct−1)+ d

dt |J |(0)( 1
c sinh ct−t) for c =

√
C0. By Taylor expansion and d

dt |J | ≤ |J̇ |,
this estimate is weakened to our form. Clearly, if the values J(0) and J(τ) are given,
one can expect J̇ to behave like 1

τ (J(τ) − J(0)), but as Richard Dedekind (1893,
p. 11) said, �nothing that is provable ought to be believed without proof in science.�

6.2 Situation. Suppose γ : [0; τ ]→M is an arclength-parametrised geodesic with γ(0) =
p and γ(τ) = q, and V ∈ TqM . Let s 7→ δ(s) be a geodesic with δ(0) = γ(τ) and
δ̇(0) = V . De�ne a variation of geodesics by

c(s, t) := expp
(
t
τ (expp)

−1δ(s)
)
.

Then T := ∂tc is an autoparallel vector �eld and J := ∂sc a Jacobi �eld along t 7→ c(s, t)
for every s with boundary values J(s, 0) = 0 and J(s, τ) = δ̇(s).

6.3 Proposition. Situation as in 6.2. De�ne V (s, t) := P t,τ δ̇(s) and `(s) := τ |T |(s), the
distance from p to δ(s). (By construction, |V (s, t)| is constant in s and t, and |T (s, t)|
is constant in t, so we drop the unneeded arguments.) If C0`

2(s) < π2

4 for all s, then∣∣J(s, t)− t
τ V (s, t)

∣∣ ≤ 2C0`
2(s)|V |,

|J̇(s, t)− 1
τ V (s, t)| ≤ 3

2C0`(s) |T |(s)|V |,
|J̈(s, t)| ≤ C0|T |2(s)|V |.

If the derivatives of R up to order k are bounded by constants, then so are the t-derivati-
ves of J up to order k + 2.

Proof. From the usual Jacobi �eld estimates, e. g. Jost (2011, thm. 5.5.1), we get that
|J | is increasing for all t < τ in case C0`

2 < π2

4 . By the Jacobi equation 1.15a, this
already shows the last claim. Now observe J(s, 0)− 0J̇(s, 0) = 0 and∣∣∣Dt

Ä
J(s, t)− tJ̇(s, t)

ä∣∣∣ = t |J̈(s, t)| ≤ C0t |T |2(s)|V |.

So the vector �eld U : t 7→ J(s, t) − tJ̇(s, t) vanishes at t = 0, and we have bounded
its derivative. The fundamental theorem of calculus 1.19a gives

|J̇(s, t)− tJ(t, s)| ≤ 1
2C0t

2|T |2(s)|V |. (6.3a)

By J(s, τ) = V (s, τ), we have

|V (s, τ)− τ J̇(s, τ)| ≤ 1
2C0 `

2(s) |V |.
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Now |P t,τ J̇(s, τ)− J̇(s, t)| ≤ (τ − t) max |J̈ | by the mean value theorem, and thus

|V (s, t)− τ J̇(s, t)| ≤ |P t,τV (s, τ)− τP t,τ J̇(s, τ)| + τ |P t,τ J̇(s, τ)− J̇(s, t)|
≤ 1

2C0|V | `2(s) + C0(τ − t)τ |V | |T |2(s)

≤ 3
2C0`

2(s)|V |.

This proves the comparison between J̇ and 1
τ V . For the comparison to J , consider∣∣J(s, t)− t

τ V (s, t)
∣∣ ≤ |J(s, t)− tJ̇(s, t)| + t|J̇(s, t)− 1

τ V |
≤ 1

2C0t
2|V | |T |2(s) + 3

2C0tτ |V | |T |2(s)

≤ 2C0`
2(s)|V |.

The statement about higher derivatives of J is justi�ed by the fact that one can easily
give linear ode's for them by di�erentiating the Jacobi equation, e. g.

...
J +R(J̇ , T )T +

Ṙ(J, T )T = 0 as Ṫ = 0, q. e. d.

6.4Remark. These estimates are scale-aware with respect to reparametrisations of γ: If
t is replaced by λt, then also τ becomes λτ , whereas |T | becomes 1

λ |T |. So
t
τ and hence

the whole �rst inequality in 6.3 is scale-independend. As J̇ = ∇TJ (loosely speaking),
the second inequality scales with 1/λ and the third one with 1/λ2.

6.5Lemma. Consider some C2 function U : [0; τ ]→ Rm satisfying the linear second-order
di�erential equation Ü = AU +B with smooth time-dependent data A(t) ∈ Rm×m and
B(t) ∈ Rm as well as boundary conditions U(0) = U(τ) = 0. Then, provided that
||A(t)||τ2 ≤ 1 everywhere, it holds

|U̇(t)| ≤ 3|B|τ, |U(t)| ≤ 6|B|t(τ − t).

Proof (by David Glickenstein). Denote the maxima of ||A|| and |B| over [0; τ ] as a and
b respectively. As U is C2, there is an upper bound K for |U | on [0; τ ], attained at
t = ϑ. As this point is critical for |U |2, we have 〈U, U̇〉 = 0 there. So

K2 + ϑ2|U̇(ϑ)|2 = |U − tU̇ |2(ϑ) =
∣∣∣ ϑ̂
0

tÜ dt
∣∣∣2 ≤ ∣∣∣ˆ t(aK + b)

∣∣∣2 =
(

1
2ϑ

2(aK + b)
)2
.

This shows K ≤ 1
2ϑ

2(aK + b), so K ≤ τ2b by assumtion and hence |Ü | ≤ 2b. (Note
that this argument, which �rst roughly bounds |U | and then re-inserts this bound
into the di�erential inequality to get a sharper estimate, is the same as in 11.17sq.)
Furthermore, the inequality chain also shows ϑ|U̇(ϑ)| ≤ bϑ2, which means |U̇(ϑ)| ≤ bτ .
For other values of t, we have |U̇(t)| ≤ bτ +

´
|Ü(t)| ≤ 3bτ and, by integrating once

more, |U(t)| ≤ 3bτt as well as |U(t)| ≤ 3bτ(τ − t), whose minimum is dominated by
6bt(τ − t), q. e. d.
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6.6 Proposition. Sitation as in 6.2, C0`
2(s) ≤ π2

4 . Then

|DsJ(s, t)| ≤ 90C0,1(s) t(τ−t)τ |V |2 |T |(s)
≤ 90C0,1(s) t |V |2 |T |(s),

|DsJ̇(s, t)| ≤ 50C0,1(s) |V |2 |T |(s).

with C0,1(s) := C0 + `(s)C1. If derivatives of R up to order k are bounded by constants
C1, . . . , Ck, then τ |Dk

s...sJ̇ | ≤ c(C0, . . . , Ck) |V |2. Under reparametrisations of γ as in
6.4, the �rst estimate remains unchanged, the second one scales with 1

λ .

Proof. Our approach is to derive some di�erential equation for DsJ = ∇JJ , which
has boundary values DsJ(s, 0) = 0 and DsJ(s, τ) = 0 for all s because J(s, 0) = 0 is
constant in s and J(s, τ) = δ̇(s) is the tangent of a geodesic.
ad primum: Because J and T are coordinate vector �elds, 1.3a gives DsDtU =

DtDsU +R(J, T )U for every vector �eld U , so we have

DsJ̈ = DsDtDt∂sc = DtDsDt∂sc+R(J, T )J̇

= DtDtDs∂sc+DtR(J, T )J +R(J, T )J̇

= D2
ttDsJ + Ṙ(J, T )J +R(J̇ , T )J + 2R(J, T )J̇

whereas the (negative) left-hand side is, due to the Jacobi equation,

−DsJ̈ = Ds

(
R(J, T )T

)
= (DsR)(J, T )T +R(DsJ, T )T +R(J, J̇)T +R(J, T )J̇

(note DsT = DtJ = J̇). From now on, we consider J and J̇ as being part of the given
data (which is allowed, as we have already su�ciently described their behaviour in
6.3). So we have a linear second-order ode for U := DsJ :

Ü = AU +B,

where both sides scale with 1/λ2 under reparametrisation, and the norm of A is
bounded through ||A|| ≤ C0|T |2(s). For ease of notation, we will thus assume that
we consider a t-line with |T |(s) = 1 and rescale our results afterwards. By assumption
on the smallness of τ ,

|B| ≤ 2C1|J |2 + 5C0|J | |J̇ |
≤ 2C1|V |2 + 5C0|V |( 1

τ + 3
2C0τ)|V |

≤ 15C0,1
1
τ |V |

2.

Now consider Fermi coordinates along c(s, · ) as in 1.17 to obtain an ode in Euclidean
space. For any smooth vector �eld V = V i∂i, the covariant derivative in direction
T = ∂tc is just ∇TV = V i,1∂i. Hence, our ode has the coordinate expression

U i,11∂i = (AijU
j +Bi)∂i.

As we only need to know the values of U on x = (t, 0, . . . , 0), this gives a euclidean
di�erential equation for the components U i of the same form as above. The claim on
U is then contained in 6.5.
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ad sec.: With U = DsJ as above, we have DsJ̇ = U̇ +R(J, T )J and thus

|DsJ̇ | ≤ |U̇ | + C0|J |2 ≤ 45C0,1|V |2 + 4C0|V |2.

ad tertium: For higher s-derivatives, one can proceed by induction: The statement
is true for k = 0, 1, as we have shown above. By analogous computations, one can
control Dk

s...sJ̇ by a linear second-order ode, in which all lower derivatives might enter
as �given data�. This data is bounded by a constant, and hence the solution will be
bounded as well, q. e. d.

Estimates for Normal Coordinates

6.7Situation. Fix some p ∈M and consider normal coordinates around p as in 1.12:

x : (u1, . . . , um) 7→ expp u
iEi

for some orthonormal basis Ei of TpM . Recall from 1.14 that the deviation of metric
and connection from its Euclidean counterparts can be described by di�erential and
Hessian of the exponential map. In the following, we let r := d(p, · ) be the geodesic
distance to p.

6.8Lemma. Situation as above, C0r
2 ≤ π2

4 . Then |gij − δij | ≤ C0r
2.

Proof. By 3.7, it su�ces to consider i = j. So we only have to show
∣∣|dx ei|2 − 1

∣∣ ≤
C0r

2. By means of 1.14a, this amounts to control
∣∣|dU (expp)Ei| − |Ei|

∣∣. From 1.16, we
know that dU (expp)Ei is the terminal value J(1) of a Jacobi �eld with J(0) = 0 and

J̇(0) = Ei. Now
∣∣|dU (expp)Ei| − |Ei|

∣∣ ≤ |dU (expp)Ei − PEi| ≤ 1
4C0r

2 by 6.1, and the
squared norms thus cannot di�er by more than 2(1 + π2

16 ) · 1
4C0r

2 ≤ 0.809C0r
2 due to

3.15, q. e. d.

6.9Lemma. Situation as above, C0r
2 ≤ π2

4 . Then ||Γ|| ≤ 10C0r + 5C1r
2.

Proof. Again, the case i = j is su�cient. Additionally, we will only prove the claim
for r = 1. The correct scaling is then automatically enforced by 1.10. So let T, V ∈
TpM be unit vectors, assume C0 ≤ π2

4 , and consider a variation of geodesics c(s, t) =
expp t(T + sV ). As the exponential mapping has no radial distortion, we may assume
V ⊥ T wthout loss of generality. This delivers us a Jacobi �eld J(s, · ) = ∂sc(s, · ) for
each s, and 1.14b tells us that dT (expp)(Γ(v, v)) = ∇dT (expp)(V, V ) = ∇JJ(0, 1) =

Ds∂sc(0, 1) for V = viEi. As observed in 6.6, the vector �eld U := Ds∂s(0, · ) along
c(0, · ) obeys the linear second-order ode

Ü = R(T,U)T +R(J̇ , J)T + 3R(T, J)J̇ +R(T, J̇)J + Ṙ(T, J)J + (DsR)(T, J)T

where the obvious notation T for ∂tc has been used. So again we have Ü = AU + B
with ||A|| ≤ C0 and |B| ≤ 2C1|J |2+5C0|J ||J̇ |, but this time as an initial-value problem
with U(0) = U̇(0) = 0. Denoting the supremum over |B| by b again, the norm |U |
will be dominated by the solution of ü = c2u+ b, c =

√
C0, which is b

2c2 e−ct(ect − 1)2,
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which itself is smaller than 5
8b for ct ≤

π
2 . This means |∇dT (expp)(V, V )| ≤ 5

8b, and

our task is to estimate B against V = J̇(0).

From 6.1, we get |J(t)| ≤ (1 + 1
4C0t

2)t|J̇(0)| ≤ (1 + π2

16 )t|J̇(0)| for all t ≤ 1. On the
other hand, 6.3a gives t|J̇(t)| ≤ (1 + 1

2C0t
2)|J(t)|, and combining both leads us to the

rought, but su�cient estimate |J̇(t)| ≤ (1+ π2

8 )(1+ π2

16 )|J̇(0)|. So we have, as V = J̇(0)
is of unit length,

|B| ≤ (1 + π2

16 )2C1 + (1 + π2

8 )(1 + π2

16 )2C0. (6.9a)

So far, we have only estimated the norm of ∇dT (expp)(V, V ) = dT (expp)(Γ(v, v)) by
5
8b, and this needs to be compared to Γ(v, v). By 1.16, the former is the value Z(1)

of a Jacobi �eld Z along c(0, · ), and the latter is Ż(0). Using 6.1 for Z, we obtain
|Ż(1)| ≤ (1− π2

16 )−1|Z(1)|, and by inserting this into 6.9a, we �nally get

|Γ(ei, ei)| ≤
5
8 |B|

1− π2

16

≤
5
8 (1 + π2

16 )2

1− π2

16

C1 +
5
8 (1 + π2

8 )(1 + π2

16 )2

1− π2

16

C0 ≤ 5C1 + 10C0,

q. e. d.

6.10 Remark. <a> As one can easily see in the proof, our numerical constants are by no means

optimal. A sharper result, but with much more technical e�ort, has been given by Kaul

(1976). This author also deals with the case that the sectional curvature might be asym�

metrically bounded between c0 and C0, whereas we are only interested in the simpler case

c0 = −C0.

<b> Considering the Christo�el symbols as objects that store �derivative information�
for the metric, the classical procedure of numerical analysis would have been to �rst
estimate the Christo�el symbols and then integrate this to obtain a bound for the
metric tensor. It is a speci�c property of the gij that they can be bounded by a
right-hand side which includes fewer terms than the bound for their derivatives.

<c> Under scaling of Mg as in 1.11, the estimate 6.9 scales like 1
µ , and 6.8 is scale-in�

dependent. The assumptions in both propositions are scale-independent.

<d> Regarding 1.3b rises the question if derivatives of R are actually needed to bound
||Γ||. In fact they are needed in normal coordinates (de Turck and Kazdan 1981, ex.
2.3), but not in harmonic coordinates, which would lead to estimates that only depend
on C0r

2 (loc. cit., thm. 2.1). As Bemelmans et al. (1984) remarked, the metric g can
be in�nitesimally abridged by a short time of Ricci �ow, and the new metric ḡ has
||∇iR̄|| ≤ C̄i(C0) for all i. Furthermore, a bound on∇R will be needed in 6.6 anyway, so
we decided to take normal coordinates, which make it easier to give explicit numerical
constants in the estimates.

6.11 Conclusion. In a normal coordinate ball (B, u) of radius r with C0r
2 < 1 and 2r <

injM , g and the Euclidean standard metric are equivalent, and∣∣|V |g(u) − |V |`2
∣∣ ≤ C0|u|2|V |`2 , ||Γ(u)|| ≤ 10C0|u| + 5C1|u|2. (6.11a)
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6.12Corollary. In a Fermi coordinate tube of radius r with C0r
2 < 1 and 2r < injM , g

and the Euclidean standard metric are equivalent, and∣∣|V |g(t,u) − |V |`2
∣∣ ≤ C0|u|2|V |`2 , ||Γ(t, u)|| ≤ 10C0|u| + 5C1|u|2. (6.12a)

6.13Lemma. Let g and ge be two Riemannian metrics with
∣∣|v|g − |v|ge ∣∣ ≤ ε|v|ge , ε < 1.

Then the curve lengths and geodesic distances with respect to g and ge ful�ll

|Lg(c)− Lge(c)| ≤ εLge(c), |dg(p, q)− dge(p, q)| ≤ εdge(p, q).

Proof. The �rst claim is proven in the obvious way by integrating
∣∣|ċ|g − |ċ|ge ∣∣ ≤ ε|ċ|ge

along c. The second claim is a combination with Lg(c) ≤ Lg(ce) and Lge(ce) ≤ Lge(c)
if c and ce are the distance-realising geodesics for g and ge respectively, q. e. d.

Approximation of the Metric

6.14Corollary. Let q be in a convex neighbourhood of p, ` := d(p, q) with C0`
2 ≤ π2

4 , and
let U ∈ TqM be an arbitrary direction. Then

|∇VXp − V | ≤ 3
2C0`

2|π⊥Y V | ≤ 3
2C0`

2|V |,

|∇2
V,VXp| ≤ 50(C0 + `C1)` |π⊥Y V |2.

Here π⊥Y is the orthogonal projection onto the orthogonal complement of Yp|q in TqM .

Proof. Direct consequence of 6.3 and 6.6 together with 1.23, q. e. d.

Remark. With |U | instead of |π⊥Y U |, but with a smaller constant, the �rst claim is directly
proven in Jost and Karcher (1982, also cf. Karcher 1977, a.5.4). For the improvement, see
Kaul (1976). An exact computation of ∇d exp for symmetric spaces is given by Fletcher
(2013).

6.15Lemma. Let A : V → V be an endomorphism of a normed vector space V with
|| id−A|| ≤ ε < 1. Then || id−A−1|| ≤ ε/(1− ε).

Proof. By the Neumann series (Alt 2006, ex. 3.7):

A−1 =
∞∑
i=0

(id−A)i, so || id−A−1|| ≤
∞∑
i=1

εi =
ε

1− ε
,

q. e. d.

6.16Lemma. Let p0, . . . , pn be distinct points inside a convex ball of radius h and x be
their barycentric mapping. If 6C0h

2 ≤ 1, then for a tangent vector v ∈ Tλ∆ at any
λ ∈ ∆ and σ as in Proposition 5.7,∣∣dx v − σ(v)

∣∣ ≤ 2C0h
2 |σ(v)|.

41



B. Main Constructions

Proof. By 5.7, dλx v = (Aλ)−1σ|λ(v) and hence
∣∣dx v − σ(v)

∣∣ ≤ ||A−1
λ − id || |σ(v)|. By

6.14, one has |∇VXi − V | ≤ 3
2C0 d

2( · , pi)|V | for all tangent vectors V , or, in terms
of operator norms, ||∇Xi − id || ≤ 3

2C0 d
2( · , pi) ≤ 3

2C0h
2. Thus, as λ · 1n+1 = 1 and

λi ≥ 0,
||Aλ − id || = ||λi(∇Xi − id)|| ≤ |λi| ||∇Xi − id || ≤ 3

2C0h
2.

Now if 6C0h
2 ≤ 1, then 1− 3

2C0h
2 ≥ 3

4 , and the claim follows from 6.15, q. e. d.

Notation. We write a . b if there is some constant c which only depends on n
such that a ≤ c b (saying �a ≤ b up to a constant.�). Equivalently, we will also write
a = O(b). We in particular remark that our suppressed constants do not depend on
the geometry parameters.

6.17 Theorem. Let p0, . . . , pn be distinct points inside a convex ball and x be their barycen�
tric mapping. Let ge be the �at Riemannian metric on ∆ induced by geodesic distances
d(pi, pj). Suppose ge is (ϑ, h)-small, 3nC ′0h

2 < α2
n with αn from 3.5. Then it holds for

tangent vectors v, w ∈ Tλ∆

|(x∗g − ge)〈v, w〉| . C ′0h
2|v| |w|. (6.17a)

The norms on the right-hand side can be either x∗g or ge norms, as both are equivalent.

Proof. Note that the assumption on h includes the requirements of 6.16 and 6.13.
Due to 3.7, it su�ces to show the claim for v = w. Consider a point λ ∈ ∆ with
image a = x(λ). We �rst compare x∗g to the Euclidean metric of the simplex s̄a =
conv(Xi|a) ⊂ TaM , and compare this metric to ge afterwards.
Parametrise s̄a in the canonical way over the unit simplex via x̄ : λiei 7→ λiXi|a.

Now clearly dx̄ = σ from 5.7. The metric of s̄a is the induced metric of the surronding
vector space, namely g|a. Now use 6.16 to get

|(x∗g|a)〈v, v〉1/2 − (x̄∗g|a)〈v, v〉1/2| =
∣∣|dx v|g|a − |dx̄ v|g|a ∣∣

≤ |dx v − dx̄ v|g|a ≤ 2C0h
2|dx̄ v|g|a = 2C0h

2|v|x̄∗g.

And of course, the same is true for the squared norms by 3.15: |(x∗g − x̄∗g)〈v, v〉| ≤
6C0h

2|v|2ḡe . Hence we have successfully compared x∗g to the euclidean metric of s̄a. If
we can show that s and s̄a have almost equal metrics, we are done with 3.16.
The edge lengths of s̄a are |Xi −Xj |g|a , and the edge lengths of s are the geodesic

distance between pi = expa(Xi) and pj = expa(Xj). By 6.13, we have for their edge
lengths `ij and ¯̀

ij

|`ij − ¯̀
ij | =

∣∣d(pi, pj)− |Xi −Xj |
∣∣ ≤ C0h

2 d(pi, pj) = C0h
2`ij ,

so ge and ḡe match 3.16 with 2
3εn
−1α2

nϑ
2 = C0h

2, q. e. d.

6.18 Corollary. hϑ| · |`2 . | · |g . h| · |`2 .
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De�nition. We say that points p1, . . . , pn ∈ M lie in (ϑ, h)-close position, if there
is some p ∈ x(∆) such that ḡeij = − 1

2 |Xi −Xj |2g|p de�nes a (ϑ, h)-small metric in the
notation of 3.3. (Note that this can only be if n ≤ m.)

6.19Corollary. Each collection of points p0, . . . , pn in (ϑ, h)-close position that ful�ll
3nC ′0h

2 ≤ αn de�nes an injective barycentric map.

6.20Remark. As x∗g and g are equivalent metrics, there is a self-adjoint automorphism J of
Tλ∆ such that x∗g〈v, w〉 = ge〈Jv,w〉, as has been empoyed by Holst and Stern (2012,
thm. 3.8). For a comparison to the metric distortion tensor A of Wardetzky (2006) and the
Ah of Dziuk (1988) et al., see 11.15.

Approximation of Covariant Derivatives

6.21Remark. The second-order approximation qualities of a parametrisation would usu�
ally be measured by bounds on the Christo�el symbols. However, our de�nition of gij

is not exactly the inverse matrix of gij , so the usual de�nition 1.2b would not work.
Instead, we employ the idea from Kaul (1976) to consider the operator Γ = ∇x∗g−
∇ge , which would have the coordinate expression Γ(V,W ) = ΓkijV

iW j∂k in a usual
n-dimensional chart. Recall from 6.7 that ∇x∗g is de�ned by dx∇x∗gv w = ∇dx vdxw
We suppress the g subscript for norms.

6.22Theorem. Situation as in 6.17. Then ||∇dx||∆ge,Mg . C ′0,1h.

Proof. Due to 3.7, it su�ces to show the theorem for v = w. Similar to ||A−1
λ − id || .

C0h
2 we have, as the vi sum up to zero,

|Av(V )| = |vi∇VXi −
∑
viV | ≤ |vi||∇VXi − V | ≤ 3

2 |v|`1 C0h
2|V |g.

Now we use 5.7b and again that ||A−1
λ || . 1 + C0h

2:

1

1 + C0h2
|∇dx(v, v)| ≤ 2|Av(dx v)| + |λi∇2

dx v,dx vXi|

. C0h
2|v|`1 |dx v| + C0,1h|dx v|2 . C0,1h

2|v|`2 |v|,

where ∇2Xi has been estimated by 6.14, q. e. d.

6.23Corollary. |(∇x∗g −∇ge)vw| . C ′0,1h|v| |w|.

Proof. It su�ces to consider v and w with constant coe�cients, so ∇gev w = 0. By de��
nition of ∇x∗g and 1.7, |∇x∗gv w|x∗g = |∇gdx vdxw|g = |∇dx(v, w)|, and so the preceding
theorem applies, q. e. d.

6.24Corollary. For λ, µ ∈ ∆, it holds
∣∣dλx v − Pdµx v∣∣ . C ′0,1h |λ− µ| |v|.

Proof. By the fundamental theorem 1.19a,

dλx v = Pdµx v +

ˆ

γ

P∇dx γ̇dx v = Pdµx v +

ˆ
P∇dx(γ̇, v)

for a curve γ : λ; µ, q. e. d.
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6.25 Remark. <a> The piecewise �at metric geij = − 1
2`

2
ij is nothing more than the �most

natural candidate� for a constant Riemannian metric. Any other ge that is a sec�
ond-order approximation of g|a for some a ∈ s would give the same result. The par�
ticulary interesting observation is that g can be approximated up to second order by
a piecewise constant metric, whereas an arbitrary function would require a piecewise
linear function for a similar approximation order.

<b> The convergence result for the connection does not mean that if Mg is triangu�
lated over a sequence of �ner and �ner simplicial complices rKh, the connections of x∗hg
and geh would converge. In fact, geh would be always piecewise �at, so the connection
would vanish and hence can never approximate the connection of a curved Mg. This
global impossibility is consistent with our simplex-wise convergence result because the
connection for ge on two adjacent simplices cannot be compared to each other, as the
metric is not continuous across the simplex boundary. The connection ∇ge can hence�
forth not be connected to the derivative of ge globally, but only in those matters which
make sense in this situation, e. g. higher derivatives of real-valued functions as in 7.2b.

<c> The convergence of Lipschitz�Killing curvatures from Cheeger et al. (1984) ap�
plies for our situation, although their triangulation is de�ned in a slighly di�erent way,
see 8.9b. It is a convergence in measure of rate h1/2. For submanifolds of Euclidean
space, Cohen-Steiner and Morvan (2006) give a convergence order h in measure,
but we did not check if their arguments can be carried over to our setting.

<d> The metric approximation result is similar to, and of the same order as the usual one us�

ing orthogonal projection of a triangular surface onto some nearby smooth surface (cf. Dziuk

1988). We will reproduce this conventional approach for the approximation of submanifolds

in section 11.

7. Approximation of Functions

Goal. In this section, we want to apply the Karcher mean construction and the results
from the previous section to functions between manifolds: First, we consider the case
of functions (∆, x∗g)→ R, where the preimage is to be approximated by (∆, ge). After
that, we will consider the case of approximation in the image, which means we will
interpolate some function y : ∆→M by the Karcher simplex parametrisation x with
prescribed values x(ei) = y(ei).

Approximation in the Preimage

7.1 Situation. Suppose x∗g and ge are two Riemannian metrics on ∆, that ge is �at
and that 6.17 for the metric as well as 6.23 for the Christo�el operator holds. Vector
and operator norms, if not explicitely quali�ed, are taken with respect to one of these
equivalent norms.

7.2 Proposition. Situation as in 7.1. For given smooth u : ∆→ R,

|gradx
∗g u− gradg

e

u| . C ′0h
2|gradx

∗g u|, (7.2a)

||∇x
∗gdu−∇g

e

du|| . C ′0,1h|du| (7.2b)
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Remark. It is easier to estimate the operator norm ||∇x∗gdu−∇gedu||, although we
will actually need the induced norm |∇x∗gdu−∇gedu| for bilinear forms or bi-covec�
tors. Recall that the equivalence constant for these two norms only depends on the
dimension, which will be neglected as usual, so || · ||g ≤ | · |g . || · ||g on any tensor
bundle over TM .

Proof. ad primum: Represent du = uidλ
i. In the notation of 3.13, we have gradx

∗g u =
Qijui∂j and gradg

e

u = (Qe)ijui∂j . So with ū = (u1, . . . , un),

|gradx
∗g u− gradg

e

u|2g = E(Q−Qe)ū · (Q−Qe)ū
. (C ′0h

2)2EQū ·Qū
= (C ′0h

2)2Qū · ū = (C ′0h
2 |du|)2.

ad sec.: By 1.2a, the di�erence between two connections only depends on their Christof�
fel symbols. Extend the vectors v, w ∈ Tλ∆ to vector �elds with constant coe�cients.
As ge is �at, this gives ∇gev = 0 and ∇gew = 0. Now by 1.8a,

(∇g
e

du−∇x
∗gdu)(v, w) = du(∇g

e

v w)− du(∇x
∗g
v w) = du((∇g

e

−∇x
∗g)vw)

and together with 6.23,

|(∇x
∗gdu−∇g

e

du)(v, w)| = |du(∇x
∗g
v w −∇g

e

v w)| ≤ |du| |Γ(v, w)|
≤ |du|C ′0,1h|v| |w|,

q. e. d.

7.3Proposition. Situation as in 7.1. The Wk,p-norms, k = 0, 1, 2, with respect to x∗g
and ge are equivalent for every p ∈ [1;∞[:

u p
Lp(∆x∗g) = u p

Lp(∆ge)(1 +O(C ′0h
2)), (7.3a)

du p
Lp(∆x∗g) = du p

Lp(∆ge)(1 +O(C ′0cph
2)), (7.3b)

du p
W1,p(∆x∗g) = du p

W1,p(∆ge)(1 +O(C ′0,1cph)), (7.3c)

with cp from 3.15. The same holds, without power p and factor cp, for the Wk,∞ norms.

Remark. Note that the estimates speak about · p instead of · . This means that
the estimates become worse for p→∞. Therefore, an additional argument for the case
p =∞ is needed.

Proof. Case k = 0: The Lebesgue norms on ∆x∗g and ∆ge only di�er by their volume
elements G and Ge, which ful�lls the claimed equivalences thanks to 3.20. So∣∣∣ˆ

∆

|u|pG−
ˆ

∆

|u|pGe
∣∣∣ . C ′0h

2

ˆ

∆

|u|pG.

In the L∞ norm, there is nothing to show, as both norms agree.
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Case k = 1: Here an approximation of the volume element and the gradient norm
enter:∣∣∣ˆ g〈du, du〉p/2G−

ˆ
ge〈du, du〉p/2Ge

∣∣∣
≤
∣∣∣ˆ g〈du, du〉p/2(G−Ge)

∣∣∣ + cp

∣∣∣ˆ (g − ge)〈du, du〉p/2Ge
∣∣∣

. C ′0cph
2

ˆ
g〈du, du〉p/2G,

because cp ≥ 1. For the L∞ norm of du, it su�ces to observe that if |dλ∗u|ge is maximal
among all λ ∈ ∆, then |dλ∗u|ge . (1 +O(C ′0h

2))|dλ∗u|g ≤ (1 +O(C ′0h
2)) maxλ |dλu|g.

Case k = 2: We do not have an estimate of our usual form |x− y| ≤ ε|x| for the
Hessian, but the proof of 3.15 also admits this situation:∣∣|∇gdu|pg − |∇gedu|pg∣∣ ≤ cp|∇gdu|p−1

g

∣∣|∇gdu|g − |∇gedu|g∣∣
≤ cp|∇gdu|p−1

g |du|g||Γ||
≤ cp

(
p−1
p |∇

gdu|pg + 1
p |du|

p
g

)
||Γ||

≤ cp(|∇gdu|pg + |du|pg)||Γ||,

thanks to Young's inequality (Alt 2006, eqn. 1�11). Now one needs approximations of
the volume form, the norm on covectors and bi-covectors from 3.19, as well as of the
Hessian:∣∣∣ˆ |∇gdu|pgG− ˆ |∇gedu|pgeGe∣∣∣
≤
ˆ ∣∣|∇gdu|pg − |∇gedu|pg∣∣G+

ˆ ∣∣|∇gedu|pg − |∇gedu|pge ∣∣G+

ˆ
|∇g

e

du|pge(G−Ge)

.
ˆ ∣∣|∇gdu|pg − |∇gedu|pg∣∣G + C ′0cph

2

ˆ
|∇g

e

du|pgG

. (C ′0cph
2 + C ′0,1cph)

ˆ
|∇gdu|pG+ C ′0,1cph

ˆ
|du|pgG,

q. e. d.

7.4 Theorem. Situation as in 7.1. For a C2 function u : ∆ → R, let uh : ∆ → R be its
Lagrange interpolation, that means uh is linear and uh(ei) = u(ei). Then

u− uh L∞(∆) + h d(u− uh) L∞(∆) . h2ϑ−1 ∇g
e

du L∞(∆ge).

The right-hand side can be replaced by h2ϑ−1(1 + C ′0,1h) ∇x∗gdu L∞(∆x∗g).

Proof. If we were only interested in this interpolation of real-valued functions, the
easiest method of proof would be to use the interpolation estimates in Euclidean space.
But when we come to mappings into a second manifold in 7.9, these methods would not
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be applicable without further work. Therefore we decided to use a more �geometric�
approach.
ad primum: Let µ ∈ ∆ be an arbitrary point, consider the tangent eij = ej − ei to

the geodesic γij : ej ; ei and

r1 : λ 7→ (dλu− dλuh)eij .

This scalar-valued function has a zero along the geodesic γij , because r1 ◦ γij is the
map t 7→ (du − duh)(γ̇ij) = d

dt |u− uh|(γ(t)), and |u− uh| is zero at both endpoints
of γij . Let ν ∈ ∆ be the position of this extremum.
Now let γ be the geodesic ν ; µ and ψ(t) := r1(γ(t)) = (dγ(t)u− dγ(t)uh)eij . Then

ψ̇(t) = ge〈gradg
e

(u− uh),∇g
e

γ̇ eij〉+ ge〈∇g
e

γ̇ gradg
e

(u− uh), eij〉.

The �rst summand vanishes because eij is parallel with respect to ge, and the second
one is ∇ged(u− uh)(eij , γ̇) due to 1.7. So

|ψ̇(t)| ≤ h||∇g
e

d(u− uh)||ge |γ̇|ge for all t, (7.4a)

and because uh is linear,∇g
e

duh = 0. Hence |ψ(t)| ≤
´
|ψ̇(s)| ds ≤ h2 ∇gedu L∞(γijge).

If Ek form an orthonormal basis, then |du|2 =
∑
du(Ek)2 Because of 3.6, the Ek

have an expression in the eij with coe�cients smaller than 1/ϑh, which gives

|du− duh|ge|µ . hϑ−1 ∇du L∞(∆,ge).

As µ was chosen arbitrarily, this holds for every point in ∆.
ad sec.: Now consider a new arbitrary point µ ∈ ∆, the function

r0 : λ 7→ |u(λ)− uh(λ)|2

and a geodesic γ : ei ; λ for some vertex ei of ∆. Then let ϕ(t) := r0(γ(t)).
As r0 vanishes at the interpolation points, we have ϕ(0) = 0, and everywhere
|ϕ̇(t)| = |d(u− uh)γ̇| ≤ |d(u− uh)|ge |γ̇|ge . hϑ−1|γ̇|ge ∇g

e

du L∞(∆,ge) and thus
|ϕ(t)| ≤

´
|ϕ̇(s)| ds . h2ϑ−1 ∇gedu L∞(∆,ge).

ad tertium: The last statement is a direct application of 7.3, q. e. d.

7.5Corollary. The same result also applies for the Lp norms:

u− uh Lp(∆) + h d(u− uh) Lp(∆) . h2ϑ−1 ∇g
e

du Lp(∆ge).

The right-hand side can be replaced by h2ϑ−1(1 + C ′0,1h) ∇gedu Lp(∆x∗g).

Proof. Only the estimate 7.4a has to be re�ned by the �Hölder 1-trick�, a common
application of Hölder's inequality (Alt 2006, lemma 1.10): Suppose some function
a ∈ L∞(∆) is estimated pointwise by |a(λ)| ≤

´
γ[λ]

b, where the integration path
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γ[λ] : e0 ; λ is of size h. Then as in the most �basic� proof (there are others, cf. 2.10b)
of the Poincaré inequality (Adams 1975, sec. 6.26),

a p
Lp(∆) =

ˆ

∆

|a|p ≤
ˆ

∆

( ˆ
γ[λ]

b 1
)p

≤
ˆ

∆

( ˆ
γ[λ]

bp
)( ˆ

1
)p/q ≤ ˆ

∆

( ˆ
γ[λ]

bp
)
h
p/q.

(7.5a)

Then compute the ∆ integral by �rst integrating over the subsimplex ∆0 opposite to
the vertex e0 and then over the ray e0 ; µ ∈ ∆0. Then λ = tµ + (1 − t)e0 for some
t between 0 and 1, and each function c ∈ L∞(R) with c ≥ 0 ful�lls

´ r
0

´ t
0
c(s) ds dt ≤

r
´ r

0
c(s) ds, we have ˆ

∆

ˆ

γ[λ]

bp ≤ h
ˆ

∆

bp. (7.5b)

Then observe p
q = p−1, so we have a p

Lp(∆) ≤ h
p b pLp(∆) for such a function a. As there

does not occur any L∞ term in the �nal estimate, it remains valid for a, b ∈ Lp(∆),
q. e. d.

Approximation in the Image

Remark. For curves in M , there are already interpolation estimates for high-order (quasi-)
interpolation methods by Wallner and Dyn (2005) and Grohs (2013).

During the �nishing of this thesis, Grohs et al. (2013) have given a very elaborate estimate
for higher-order �polynomial� interpolation using the Karcher mean construction. We decided
to nevertheless publish our proof here, as we hope that our approach gives more geometric
intuition, involves simpler constants, and is used in sections 11�13.

7.6 Situation. In the following, we assume that ∆ carries a (ϑ, h)-small Euclidean metric
ge (which is not assumed to come from geodesic distances inM). We consider a smooth
function y : ∆ge → Mg (and assume that y(∆) lies in a convex ball of radius r as in
6.11 with C0r

2 < 1 ) and de�ne x to be the barycentric mapping with respect to the
vertices y(ei). We will usually write x and y instead of x(λ) and y(λ).

7.7 Lemma. Situation as in 7.6. Let P be the parallel transport TyM → TxM . Consider
d(x, y) and d2(x, y) as functions ∆→ R. Then

d(d2(x, y))v = 2g|x〈Xy, (dx− Pdy)v〉,
d(d(x, y))v = g|x〈Yy, (dx− Pdy)v〉,

with Xp, Yp as in 1.22.

Proof. From 1.22, we know the gradients of d and d2 if only one of the two arguments
is varying. Then for ϕ : M ×M → R, (p, q) 7→ d2(p, q), we have for tangent vectors
V ∈ TpM and W ∈ TqM that

dϕ(V,W ) = g|p〈V,Xq〉+ g|q〈W,Xp〉.
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7. Approximation of Functions

Now d2(x, y) is the concatenation of the map λ 7→ (x, y), which has derivative v 7→
(dx v, dy v) with ϕ, so

d(d2(x, y))v = g|x〈Xy, dx v〉+ g|y〈Xx, dy v〉

As Xy is the starting tangent of the geodesic x ; y parametrised over [0; 1], we have
PXx = −Xy, and P is an isometry, so g|y〈Xx, dy v〉 = −g|x〈Xy, Pdy v〉, q. e. d.

7.8Lemma. Let c(s, t) be a smooth variation of curves c(s, · ), and let P b,as : Tc(s,a)M →
Tc(s,b)M be the parallel transport along these curves. Then

DsP
b,a
s =

bˆ

a

P b,ts R(∂t, ∂s)P
t,a
s dt

(note that the integrand is always a linear map Tc(s,a)M → Tc(s,b)M , the integration
is therefore de�ned without problems) and hence ||DsP

b,a
s || ≤ C0

´
c(s, · ) |∂s|.

Proof. Consider a vector �eld V (s) ∈ Tc(s,a)M , and let V (s, t) := P t,as V (s). As
�rst step, observe that Ds(P

b,a
s V (s)) = P b,as (DsV (s)) + (DsP

b,a
s )V (s). This formula

seems obvious, but actually requires a little argumentation: It symbolically resembles
∇(AV ) = (∇A)V + A(∇V ) for linear bundle maps A from 1.2, but as P mediates
between di�erent tangent spaces for preimage and image, the ∇ operator is not the
same on both sides. Instead, consider the function f : c(s, a) 7→ c(s, b) between the a
and the b isoline A and B respectively. The parallel transport from a to b is a mapping
TxM → Tf(x)M and hence an element of TM |A ⊗ f∗(TM |B). As in 1.6b, the induced
connection on this bundle is given by

∇∂s(ω ⊗ f∗V ) = (∇∂sω)⊗ f∗V + ω ⊗ f∗∇df(∂s)V,

and indeed df(∂sc(s, a)) = ∂sc(s, b), giving the Leibniz rule for PV . On the other hand,
the fundamental theorem of calculus gives

Ds(V (s, b)) = P b,as (DsV (s, a)) +

bˆ

a

P b,ts (DtDsV (s, t)) dt.

Because V (s, · ) is parallel, the vector �eld in the integrand is

DtDsV (s, t) = DsDtV (s, t) +R(∂t, ∂s)V (s, t) = 0 +R(∂t, ∂s)P
t,a
s V (s).

Because V (s) is independent of t, it can be pulled out of the integral.�The second
claims results from

||DsP
b,a
s || ≤

bˆ

a

||R|| |∂t| |∂s| ||P b,ts || ||P t,as || dt

and ||P t,t′s || = 1 everywhere because parallel transport is isometric, q. e. d.
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Remark. Generally, it is well-known that the curvature tensor can be characterised as
in�nitesimal version of holonomy, i. e. the parallel transport along a closed curve (see
e. g. Petersen 2006, sec 8.6). We found this speci�c version in Rani (2009, lemma
3.2.2). The estimate can obviously be sharpened by replacing |∂t||∂s| by |∂t ∧ ∂s|, see
Buser and Karcher (1981, 6.2.1).

7.9 Lemma. Situation as in 7.6. Then if d(x, y) ≤ ρ everywhere in ∆, we have at every
vertex ei

||deix− deiy||∆ge,Mg . hϑ−1
Ä
∇dy L∞(∆ge,Mg) + C0,1ρ dy 2

L∞(∆ge,Mg)

ä
.

Proof. First, consider v to be an edge vector ej−ei, so c : t 7→ ei+ tv parametrises the
ij edge over [0; 1]. Then choose Fermi coordinates (t, u2, . . . , um) along an arclength-
parametrised version of γ := x ◦ c. As γ itself is not parametrised by arclength, it has
coordinates γ(t) = ( tα , 0, . . . , 0) with α = d(pi, pj). The image of c under y is another
curve δ which intersects γ at pi and pj , so

δ(0) = γ(0), δ(1) = γ(1).

By the intermediate value theorem, each component γ̇i − δ̇i must have a zero at some
τ i ∈ [0; 1]. As Dtγ̇ = 0 and Γkij = 0 along γ, the second derivatives γi,tt of the compo�
nents vanish, too. So

|(γ̇i − δ̇i)(0)| ≤
τ iˆ

0

|δi,tt| dt ≤ τ i δi,tt L∞([0;1]).

By 1.7, Dtδ = ∇dy(v, v), and together with Dtδ = (δi,tt + δj,tδ
k
,tΓ

i
jk)∂i from 1.4a, we

have
|δ,tt|g ≤ |∇dy(v, v)|g + |dy v|2g max ||Γ||

By 6.12a, we have |dy v| = |δ̇|g . (1 + C0,1ρ
2)|δ̇|`2 , which means that both norms are

equivalent for small ρ. Similarly, max ||Γ|| . C0,1ρ. Together with |v|ge = α ≤ h, we
have

|(dx− dy)v|g|pi . h
Ä
∇dy L∞([0;a]ge,Mg) + C0,1ρ dy 2

L∞(cge,Mg)

ä
|v|ge .

This shows the claimed estimate for edge vectors. And some general v that is not
tangent to an edge can be represented as linear combination of edge tangents ei, and
all coe�cients vi are estimated from above by |v|g/ϑ up to a constant, q. e. d.

7.10 Remark. <a> For triangles, the fullness parameter ϑ controls the minimum angle at
each vertex. This is exactly the parameter that enters in the last argument, so there
is a direct geometry meaning of the factor ϑ−1.

<b> There are also coordinate-free methods to prove 7.9, but we did not �nd any
method that is �so intrinsic� that no curvature term like C0,1hρ dy comes in. For
example, one could transport δ̇ and γ̇ both to the vertex p = y(ei) and do all compar�
isons there. Then the estimate δ,tt − δ̈ is not needed anymore, but some ∇P and the
holonomy P γ(t),δ(t) − P γ(t),pP p,δ(t) have to be estimated by 7.8 and 13.4.
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<c> The term in parentheses on the right-hand side of 7.9 is what Grohs et al. (2013) esti�

mate by their �smoothness descriptor�. Our computation shows that the nonlinear lower-order

term dy 2 only enters with an additional distance factor ρ.

7.11Proposition. Situation as in 7.6. Then if d(x, y) ≤ ρ everywhere in ∆,

dx− Pdy L∞(∆ge,Mg) . hϑ−1
Ä
∇dy − P∇dx L∞(cge,Mg) + C0,1ρ dy 2

L∞(cge,Mg)

ä
.

Proof. Let us prove the claim at some p = x(µ). Consider some vector v ∈ T∆, and
let V := (dx− Pdy)v. Along a geodesic γ = x ◦ c : pi ; p, which comes from a curve
c : ei ; µ in ∆, we have by the fundamental theorem 1.19a

V |p = P̃ 1,0V |pi +

1ˆ

0

P̃ 1,tDtV |γ(t) dt,

where P̃ is the parallel transport along γ (not to be confused with the parallel transport
P along geodesics y ; x). Inside the integral, we have DtV = ∇dx ċV = ∇dx ċdx v −
∇dx ċ(Pdy)v. As in the proof of 7.8, de�ne a mapping f : x(λ) 7→ y(λ). Then df(dxw) =
dy w and hence ∇dx ċ(Pdy)v = P∇dy ċdy v + (∇dx ċP )(dy v). Together, this gives

DtV = ∇dx ċdx v − P∇dy ċdy v − (∇dx ċP )dy v

= ∇dx(ċ, v)− P∇dy(ċ, v)− (∇dx ċP )dy v.

By 7.8, we have |∇dx ċP | ≤ C0ρmax |∂s|, where ρ is again the maximum distance
between x and y, and ∂s is the vector �eld de�ned in the proof above and has values
dx ċ and dy ċ at the endpoints x and y. Thus

|DtV |g ≤ ||∇dy − P∇dx|||ċ|ge |v|ge + C0ρmax |∂s| ||dy|| |v|ge

Now observe |∂s| . |dy ċ|, which gives

|DtV |g . h
(
||∇dy − P∇dx|| + C0ρ||dy||2

)
|v|ge |ċ|ge .

By |V |g|p ≤ |V |g|pi + max |DtV |, the claim is proven with help of 7.9 for the initial
value at pi, q. e. d.

7.12Proposition. Situation as in 7.6. If C0,1ϑ
−1h dy 2 is small, then

d(x, y) L∞(∆) . h2ϑ−1 ∇dy − P∇dx L∞(cge,Mg).

Proof. Consider any point λ ∈ ∆ and a geodesic c : ei ; λ. Then, with 7.7,

d(x(λ), y(λ)) =

ˆ
d(d(x, y))ċ ≤

ˆ
|(dx− Pdy)ċ|g ≤ h dx− Pdy ,

everywhere, and this norm is estimated by 7.11: There is a constant α such that

1

1− αC0,1hϑ−1 dy 2
d(x(λ), y(λ)) ≤ hϑ−1 ∇dy − P∇dx ,

and the assumption means that the fraction is greater than, say, 1
2 , q. e. d.

51



B. Main Constructions

7.13 Remark. <a> The smallness assumption on C0,1ϑ
−1h dy 2 is reasonable because the

interesting situation is when the domain is decomposed into �ner and �ner simplicial
complexes. In this case h→ 0, whereas (given that the subdivision is performed intel�
ligently) ϑ can be bounded from below independent of h, and C0,1 as well as dy are
independent of this re�nement (here it is important that ||dy|| is taken with respect to
ge on ∆, not `2).

<b> The estimates are scale-aware: When ∆ is scaled by ḡe = ν2ge and M is scaled
by ḡ = µ2g like in 1.10b, then both sides of the estimates 7.11 and 7.12 scale similarly,
namely like µ

ν and like µ respectively: In fact, r̄ = µr, h̄ = νh, ||R||ḡ = 1
µ2 ||R||g, and

derivatives of x and y scale like in 1.10b: ||dx||ḡe,ḡ = µ
ν ||dx||ge,g, ||∇dx||ḡe,ḡ = µ

ν2 ||∇dx||ge,g
and similar for y.

7.14 Conclusion. Taking 7.12 and 7.11 together, we get

d(x, y) L∞(∆) + h dx− Pdy L∞(∆ge,Mg) . h2ϑ−1 ∇dy − P∇dx L∞(∆ge,Mg).

7.15 Theorem. Let N and M be Riemannian manifolds with curvature bounds C0 and
C1 as usual, and y : N → M be a given smooth function. Suppose p0, . . . , pn ∈ N
are given points in (ϑ, h)-close position with h so small that their barycentric mapping
∆ → s is injective, where s ⊂ N is the Karcher simplex with respect to vertices pi,
and furthermore suppose that the barycentric mapping ∆→M with respect to vertices
y(pi) is well-de�ned. Then if C ′0,1h dy 2

L∞ is small in comparison to the dimensions,
there is a function yh : s→M interpolating y at the pi, with

d(yh, y) L∞(s) + h dyh − Pdy L∞(s,M) . h2ϑ−1 ∇dyh − P∇dy L∞(s,M).

Proof. By 6.19, there is a bijective barycentric mapping xN : ∆ → s with ei 7→ pi. If
xM : ∆ → M is the barycentric mapping with respect to vertices y(pi), which have
distance less than h dy , set yh := xM ◦ x−1

N . The the estimate is a combination of
7.14 and 7.3, q. e. d.

7.16 Remark. <a> One could have proven the intermediate estimates 7.9 and 7.11 for
scaled versions of ∆ and M , for example with `2 instead of ge or diamM ≤ 1. But we
did not consider the situation above complicated enough to justify a separate scaling
argument. But if one likes, the argument obviously could have been executed for ∆
andM having both unit size. Then 7.13b is the equivalent of the usual �transformation
from the reference element�.

<b> The step from the L∞ estimate 7.14 to an Lp estimate works exactly as in 7.5, so
we save paper by not repeating all the integrals.

<c> The estimate could be considered as �incomplete work�, as the right-hand side
still contains a ∇dx term. We decided not to estimate it by 6.22 to make clear that
the right-hand side tends to zero if y is an �almost barycentric� map.

<d> For a �higher-order� interpolation, Grohs et al. (2013) use basis functions ϕi :
∆→M of higher order, not just ϕi(λ) = λi as we did, that ful�ll ϕ1 + · · ·+ϕk = 1 and
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ϕi(µj) = δij for control points µj ∈ ∆. Then the interpolation with respect to points
pi = y(µi) is the minimiser of ϕi d2(pi, · ).
If one chooses the ϕi such that there are k + 1 control points on each edge, as is

usually done (e. g. for the quadratic basis functions λi(2λi− 1) and 4λiλj , i 6= j), then
7.9 and 7.11 can obviously be interated to give

∇`dx− P∇`dy . hk−`ϑ`−k ∇kdx−∇kPdy + curvature terms.

The only point of di�culty is to show that ∇kdx is actually bounded by dy and
the geometry, which needs quite some computation, as it involves many derivative
norms ∇jXi , but is provable along the same lines.

8. The Karcher�Delaunay Triangulation

Notation. The term �triangulation� is used in various senses in (discrete) geometry,
topology, and computational mathematics. We will use it only in the topological mean�
ing as a map rK→M for some simplicial complex K. (To obtain the correct homology,
one usually requires this map to be bijective. We will construct this map and give
conditions for its injectivity, but we will also call it a triangulation without these con�
ditions.) The partition of a space M into topological disks will in contrast be referred
to as a �tesselation�.

Goal. In this section, we want to explore how a simplicial structure can be imposed
on a �δ-dense� point set in a manifold. Conversely, if the simplicial structure and the
vertex set are given, the resulting triangulation weill be considered in section 11.

8.1Situation. In the following, the usual assumption from 1.5 that M is closed (i. e.
complete and without boundary) is essential. Let V ⊂M be a set of �nitely many, but
at least m points in M and δ > 0 be such that each δ-ball in M contains at least one
point from V . We say that V is δ-dense in M .

8.2De�nition (Leibon and Letscher 2000). Situation as in 8.1. Let p ∈ V . The
Voronoi cell of p is the set of points in M that are nearer to p than to any other
point in V :

Vp := {a ∈M : d(a, p) ≤ d(a, q) for all q ∈ V }

These sets cover M , overlapping only on their boundaries. The cover {Vp : p ∈ V } is
called the Voronoi tesselation of M with vertex set V .
The bisector Bpq of p and q ∈ V is the set of points which have equal distance to

p and q, but larger distance to all other points in V :

Bpq := {a ∈M : d(a, p) = d(a, q) ≤ d(a, r) for all r ∈ V }

Obviously, Bpq = Vp ∩ Vq. Similarly, the bisector Bs of a set s ⊂ V is de�ned as⋂
p∈s Vp. The set V is said to be generic if each non-empty bisector Bs is a disk-type

submanifold (with boundary) of codimension |s| − 1 and Bs is empty for |s| > m+ 1.
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8.3 Proposition. Situation as in 8.1, p ∈ V . Then Vp has diameter less than 2δ. If
2δ ≤ cvrM , then Vp is a topological ball.

Proof. ad primum: No point in Vp has distance greater than δ from p, so the claim is
simply the triangle inequality.
ad sec.: If geodesics starting from p are unique, then Vp is star-shaped, cf. 5.1,

q. e. d.

8.4 Remark. <a> Let s ⊂ V with nonempty Bs. Locally, Bs is a smooth submanifold,
and its tangent space in a non-boundary point a ∈ Bs is

{W ∈ TaM : g〈W,Xp −Xq〉 = 0 for all p, q ∈ s},

where Xp and Xq are the gradients of squared distances as in 5.2. In fact, a curve γ
with image in Bs ful�lls d

2(γ(t), p)−d2(γ(t), q) = 0 everywhere, which has derivative
g〈γ̇, Xp −Xq〉.
<b> Note that Vp will in general not be convex because Vp and Vq could only be both
convex if Bpq were totally geodesic. Beem (1975) showed that all bisectors are totally
geodesic if and only if M has constant sectional curvature.

<c> Generally, the properties of topological spheres in Riemannian manifolds are
treated by Karcher (1968): A topological sphere that does not meet its cut locus
cuts M in two open sets, some �interior� ball and some �outside�. A set B ⊂ M is
convex if and only if each p ∈ ∂B has a �geodesic support plane�, that is a subspace
Hp ⊂ TpM of codimension 1, such that all starting directions (expp)

−1a for points
a ∈ B lie on the same side of Hp.

<d> Boissonnat et al. (2011) remark that genericity of a point set, which can be
achieved in Euclidean space by an arbitrarily small perturbation of a degenerate point
set, is not always removable by in�nitesimally small changes of V . For this reason, we
assume a generic V and disregard the question of sharp conditions that ensure this. The
problem is currently treated in detail by Dyer and Wintraecken (Rijksuniversiteit
Groningen).

8.5 Proposition. Situation as in 8.1 with generic V and 2δ < cvrM . Then K` := {s ⊂
V : Bs is non-empty, s ∈ K`−1}, ` = 0, . . . ,m, de�ne a regular simplicial complex
without boundary, called the Delaunay complex for M , with vertex set K0 = V .

Proof. The only property for a simplicial complex, that some t ⊂ s with cardinality k
is contained in the set of k-simplices Kk, is clear, because Bt ⊂ Bs for t ⊂ s.
It remains to show that K is regular and has no boundary. An (m − 1)-simplex

t cannot be part of more than two m-simplices, because a non-constraint bisector
{a ∈M : d(a, p) = d(a, q)} divides M into two distinct sets. On the other hand, there
cannot be only onem-simplex containing t, because boundaries of the Voronoi cells can
only occur where two cells meet if M has no boundary for itself. And each `-simplex
belongs to an (`+1)-simplex: Let t ∈ K`. Because Bt is a topological disk of dimension
n − `, it must have a boundary, which in turn can only consist of bisectors Bs with
t ⊂ s, q. e. d.
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8.6Remark. Note that the following situations are ruled out by our assumptions:

<a> an m-dimensional sphere with V = {p0, . . . , pm}, because BV would consist of
two points of equidistance, which is not a 0-ball, but a 0-disk. However, the de�nition
of Voronoi regions would be feasible, but its dual would consist of two m-simplices
with the same vertices, and our notation does not allow to distinguish between them.

<b> m + 2 equidistant points V = {p0, . . . , pm+1} in an m-dimensional manifold,
because this V is not generic: In fact, BV would be the point of equidistance, but this
set should be empty, as |V | > m+ 1.

<c> The counterexample of Boissonnat et al. (2011, pp. 38sqq.), because the bisector
B{p,u,v,w} is not empty.

8.7De�nition. Situation as in 8.1 with generic V and 2δ < cvrM . Let K be the complex
from 8.5. For e ∈ Kn, let xe be the mapping from 5.4. As xe|rf only depends on f for
f ⊂ e, this piecewise de�nition gives a well-de�ned mapping x : rK → M , called the
Karcher�Delaunay triangulation of M with vertex set V .

8.8Proposition. The Karcher�Delaunay triangulation is indeed a triangulation in the
usual sense: Situation as in 8.1 with generic V and 2δ < cvrM . If δ is so small that
the requirements of 6.19 are met on each Karcher simplex, then x is bijective.

Proof. The map x is surjective because its image is non-empty and has no boundary
in M . By 6.19 each xe is injective, and as the Karcher simplices do not overlap except
on their boundaries, so is x, q. e. d.

8.9Remark. <a> If M is not closed, but compact and with boundary, the construction
is of course feasible, but will only be bijective if there are also points on the boundary
and the boundary is aligned with their Karcher�Delaunay triangulation.

<b> The construction of Cheeger et al. (1984) seems similar, but (of course) does not use
our barycentric mapping. It starts with a triangulation x : rK→M , considers �ner and �ner
subdivisions s : rK′ → rK of the complex, and then compares the metric (s ◦ x)∗g on rK′

to the piecewise �at metric induced by edge lengths `ij = d(x ◦ s(ri), x ◦ s(rj)), for edges
ij ∈ (K′)1 in the subdivided complex.

<c> We know, however, that Burago et al. (2013) state that �it is now clear that in di�

mensions beyond three polyhedral structures are too rigid to serve as discrete models of

Riemannian spaces with curvature bounds�, but nevertheless there will certainly be rigidity

results for spaces of piecewise constant curvature without counterparts in the smooth cate�

gory, we are not convinced that the references they give support this statement in its full

generality.

9. A Piecewise Constant Interpolation of dec

Goal. As second main construction of this thesis, we will now give an interpretation
of the discrete exterior calculus as piecewise constant di�erential forms, which turns
variational problems in the simplicial cohomology (Ck, ∂∗) into problems in a complex
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(P−1Ωk, d). The main question will be the connection between d and the usual exte�
rior derivative d on H1,0Ωk. The introductional de�nitions are the basics of simplicial
homology as they can be found in any topology textbook, e. g. Munkres (1984) or
Hatcher (2001).

Discrete Exterior Calculus (dec)

9.1 De�nition. Let R be a ring with neutrals 0 and 1, and let Kor be a regular n-dimensio-
nal oriented simplicial complex. For any simplex s ∈ Kkor, let χs : Kkor → R be de�ned
by χs(s) = 1 and χs(s

′) = 0 for any s′ 6= s.
Consider the R-module C̃k(K) that is spanned by all χs, s ∈ Kkor. Let Ck(K), the

space of k-chains over K (with coe�cients in R), be the quotient of C̃k(K) under the
identi�cation of χs− and −χs. Its dual space Ck(K), the R-module of all homomor�
phisms Ck(K)→ R, is called the space of k-cochains over K (with coe�cients in R).
Let fs be the generators of Ck(K) dual to δs, that means fs(χs) = 1 and fs(χs′) = 0
for s 6= s′. In the following, we will only use R = R.
The boundary operator is the linear map Ck(K) → Ck−1(K), de�ned on the

generators by
∂ χ[p0,...,pk] := (−1)iχ[p0,...,p̂i,...,pk]

(as usual, summation over i is intended), where p̂i means that this vertex is omitted.
With respect to the basis χs, we write ∂ in coe�cients:

∂ χs = ∂tsχt for s ∈ Kk,

where summation over t ∈ Kk−1 is intended. For the whole section, we will sum about
indices occuring twice in a product, irrespective if they are superscripts oder subscripts.
Volume terms like |s| or |U(s)| do not count for this, as s is no sub- or superscript in
them. The co-boundary operator ∂∗ is the dual of ∂, i. e. a map Ck−1(K)→ Ck(K)
uniquely characterised by ∂∗α(c) = α(∂c) for all α ∈ Ck−1(K) and all c ∈ Ck(K).

9.2 Remark. <a> By a direct computation, or by common linear algebra knowledge, one
obtains that the matrix representation of ∂∗ is the transposed of the matrix represen�
tation of ∂. In other words, (∂∗)ts = ∂ts for ∂

∗f t = (∂∗)tsf
s.

<b> It would be very natural to write δs instead of χs, because χs actually is the
Kronecker delta on Kk. But we will already have some operator δ acting on di�erential
forms, we will de�ne some δ for cochains and some δ on piecewise constant forms. In
the whole following section, we will not use the Kronecker symbol.

<c> The use of functions χs as generators of Ck(K) is only one possible de�nition. The

other frequently encountered possibility is to speak of �formal linear combinations� of the s

themselves (e. g. Hatcher 2001 and Hirani 2003 use this de�nition). Logically, there is no

di�erence between both de�nitions, as the only strict way to de�ne �formal linear combina�

tions� is to use the characteristic functions χs. However, the existence of both approaches

introduces an unpleasant notational ambiguity that may disturb a quick reader: Linear maps

from simplices to R are chains in our notation, whereas they represent cochains in the other.

Our notation has the advantage to employ s only as sub- and superscript, but not as term,

which allows for usual summation convention.
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9. A Piecewise Constant Interpolation of dec

9.3Lemma. Let K consist of one single n-simplex. Then the boundary map ∂k : Ck →
Ck−1, which can be written as

(
n+1
k+1

)
×
(
n+1
k

)
-matrix, has rank

(
n
k

)
.

Proof. The matrix size just stems from counting the elements in Kk, which arise from
choosing k + 1 vertices out of n+ 1.
The rank of ∂k is proven by induction over k, starting with k = n. Here the statement

is that ∂n : Cn → Cn−1 has rank one, which is true because ∂n 6= 0. For any k < n, the
rank-nullity theorem gives that the rank of ∂k can be computed as dimension

(
n+1
k+1

)
of

its image space minus the dimension of its kernel, which is the rank of ∂k+1 because
the k'th homology group of the simplex vanishes. And by assumption, ∂k+1 has rank(
n
k+1

)
, which gives rank ∂k =

(
n+1
k+1

)
−
(
n
k+1

)
=
(
n
k

)
, q. e. d.

9.4Short introduction to discrete exterior calculus (dec). The discrete exterior
calculus (Desbrun et al. 2005, Hirani 2003) attempts to build a simple and useable
�nite-dimensional version of the de Rham cohomology based on an intelligent interpre�
tation of simplical cohomology. It calls ∂∗ the discrete exterior derivative d, which
gives that d : Ck(K)→ Ck+1(K) acts as

df t = dtsf
s with dts = ∂ts. (9.4a)

If points λs ∈ rs for all simplices s and numbers ak ∈ R are given, leading to dual
cells r(∗s) as in 4.16a, it de�nes the scalar product of two discrete k-forms as

〈〈〈αsf
s, βs′f

s′〉〉〉Ck := akαsβs
|∗s|
|s| . (9.4b)

Remark. The numbers ak do usually not occur in the de�nition of the scalar product,
but we will see that they must be chosen as ak =

(
n
k

)
to obtain a correspondence to

piecewise constant forms. The points λs are classically chosen to be the circumcentres
of the rs.

The coderivative δ is supposed to be dual to d with respect to this scalar product,
that means 〈〈〈α, dβ〉〉〉Ck = 〈〈〈δα, β〉〉〉Ck−1 for all α ∈ Ck(K) and all β ∈ Ck−1(K). Spelling
out both sides for α = fs and β = f t gives

dts
|∗s|
|s| ak = δst

|∗t|
|t| ak−1, ⇔ δst =

ak
ak−1

|∗s| |t|
|∗t| |s|

∂ts. (9.4c)

Other de�nitions are obvious: A form α is called harmonic if (δd+ dδ)α = 0 etc.

Piecewise Constant Differential Forms

9.5Situation. Let Kor be an oriented regular n-dimensional simplicial complex with a
discrete Riemannian metric g, let K be the corresponding non-oriented complex, and
let λs for any simplex s de�ne subdivision neighbourhoods U(s).

9.6De�nition. Situation as in 9.5. Let P0Ωk be the space of L∞Ωk forms that are constant
in U(s) for each s ∈ Kk.
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Any simplex s ∈ Kk has a volume k-form dvolrs which can be extended to a constant
k-form in whole U(s). Denoting the extension also as dvolrs, let

ωs :=

®
dvolrs in U(s)

0 elsewhere,
and P−1Ωk := span{ωs : s ∈ Kk} ⊂ P0Ωk.

9.7 Example. Situation as in 9.5, dimension n = 2. Consider two triangles rijk and rjil,
which together contain the subdivision neighbourhood U(ij). Then ωij is the �attened
unit vector vector �eld in direction ri − rj in U(ij) and zero elsewhere, ωi is the
characteristic function of U(i), and similarly ωijk is the volume form of rK in rijk and
the zero 2-form elsewhere.

9.8 Observation. All basis elements have pointwise unit length with respect to the metric
induced on the tensor bundles by g, and have distinct support up to null sets, so the
L2 scalar product has diagonal form in the basis ωs:

〈〈〈αsω
s, βs′ω

s′〉〉〉L2Ωk = |U(s)| αsβs (9.8a)

De�nition. Situation as in 9.5. Let d : P−1Ωk−1 → P−1Ωk be de�ned by

dωt = dtsω
s, dts :=

|t|
|s|
∂ts. (9.8b)

Let δ : P−1Ωk → P−1Ωk−1 be de�ned by

δωs = δstω
t, δst =

|U(s)|
|U(t)|

dts. (9.8c)

9.9 Proposition. Situation as in 9.5. The maps d and δ ful�ll the

�discrete Stokes' formula�
ˆ

rs

dα =

ˆ

∂rs

α, (9.9a)

�discrete Green's formula� 〈〈〈dα, β〉〉〉L2Ωk = 〈〈〈α, δβ〉〉〉L2Ωk−1 (9.9b)

for all s ∈ Kkor, α ∈ P−1Ωk−1, and β ∈ P−1Ωk. In particular, d2 = 0.

Proof. ad primum: For any α ∈ Ωk−1, we have
´
∂rs

α = ∂t
′

s

´
rt′
α. Now let α = ωt for

some t ∈ Kk−1. Then we have ˆ

∂rs

ωt = ∂t
′

s

ˆ

rt′

ωt = ∂ts |t|

(without summation over t). On the other hand,ˆ

rs

dωt =

ˆ

rs

dts′ω
s′ = dts |s| .

ad sec.: If one spells out both scalar products with help of 9.8a for α = ωt ∈ P−1Ωk−1

and β = ωs ∈ P−1Ωk, one gets δst |U(t)| !
= dts |U(s)| for 9.9b to hold, q. e. d.
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9.10Remark. The discrete Green's formula 9.9b holds without assumption on the bound�
ary values because the weights |U(s)| and |U(t)| already incorporate the smaller extent
of δ. For a correct treatment of boundary conditions in variational problems, one would
have to modify 9.8c. We decided to investigate the original dec setup here.

9.11Proposition. Situation as in 9.5. The map ik : Ck → P−1Ωk, fs 7→ 1
|s|ω

s is a cochain
map, i. e. each square in the following diagram commutes:

C0

d
- C1

d
- . . .

d
- Cn

PΩ0

i0
?

d - PΩ1

i1
?

d - . . .
d - PΩn

in
?

If ak =
(
n
k

)
, it is an isometry for each k and a chain map, i. e. each square in the

following diagram commutes:

C0 �
δ

C1 �
δ

. . . �
δ

Cn

PΩ0

i0
?
� δ

PΩ1

i1
?
� δ

. . . �
δ

PΩn

in
?

Proof. The isometry property is clear by the expressions 9.4b and 9.8a for the scalar
product of Ck and P−1Ωk respectively. The properties dik−1 = ikd and δik = ik−1δ
only need to be checked for basis elements, so it su�ces to show

dts
1
|t| = dts

1
|s| , δst

1
|s| = δst

1
|t| for all s ∈ Kk, t ∈ Kk−1.

The �rst one is obvious from de�nitions 9.4a and 9.8b. The second one comes from
9.4b, as

δst =
|t| |U(s)|
|s| |U(t)|

∂st =

(
n
k

)(
n
k−1

)|∗s|
|∗t|

∂st =
ak−1

ak

(
n
k

)(
n
k−1

)|s|
|t|
δss ,

q. e. d.

Remark. It might seem a little bit queer to use piecewise constant forms for this construction
and not the elementary forms introduced by Whitney (1957, sec. IV.27)

ω̃[p0...pk] = k!λidλ0 ∧ · · ·”dλi · · · ∧ dλk,
which would also make i a cochain map. The reason is that we did not succeed to �nd any
relation between the L2 scalar product of Whitney's elementary forms and the dec scalar
product 9.4b. This means that although there is a worked-out interpolation estimate for the
space spanned by ω̃s, s ∈ Kk, by Dodziuk (1976), it gives no possibility to compare solutions
of variational problems that were computed using the dec scalar product.

9.12Proposition. Suppose that rKg is a piecewise �at, (ϑ, h)-small and absolutely well-
centred realised simplicial complex, that means all circumcentres λs have barycentric
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coordinates λis > α, and that the circumradii are bounded by βh. Then if ḡ is a second
piecewise �at metric with |(g − ḡ)〈v, w〉| ≤ ch2|v||w|, it holds for c′ := cβ

αϑ :

ωs
g − ωs

ḡ L2 . c′h2 ωs
g L2

dgω
s
g − dḡωs

ḡ L2 . c′h2 dgω
s
g L2

|〈〈〈αsω
s
g, βs′ω

s′

g 〉〉〉g − 〈〈〈αsω
s
ḡ, βs′ω

s′

ḡ 〉〉〉ḡ| . c′h2〈〈〈αsω
s
g, βs′ω

s′

g 〉〉〉g

Proof. The di�erence between dg and dḡ is easiest, because it only involves simplex
volumes like |s|g and |s|ḡ. These are close to each other by 3.20. The approximation of
the scalar product involves comparison between the neighbourhood volumes |Ug(s)|g
and |Uḡ(s)|ḡ. These can be estimated if we know how the circumcentres are distorted.
By 3.12a, these are controlled by the distortion of the Cayley�Menger matrix inverse
M−1

+ , and inverses of symmetric matrices are treated by 3.21 (which we apply to M+

instead of g):
|qi − q̄i| . ch2r|gradg λ

i|

(where r is the circumradius with respect to g) because 4r2 and |vi|2 = |gradg λ
i|2

are the corresponding diagonal entries of M−1
+ . By assumption, this is smaller than

c′h2|qi|, q. e. d.

Connection to the bv Derivative

Goal. Recall that piecewise constant functions possess distributional derivatives, which
are (n − 1)-dimensional measures concentrated on the jump sets. Their analogue for
di�erential forms are the currents from geometric measure theory. (In order to avoid
�currential derivative� or similar terms, we will speak of bv derivatives.) If our de�ni�
tion of discrete exterior derivatives is meaningful, it should be connected to this sort
of derivative. In fact, the bv derivative of a piecewise constant k-form α also ful�lls
Stokes' theorem if the jump set is transversal to the integration domain. But as their
support is (n − 1)-dimensional, we will see that its scaling behaviour does match the
one of full-dimensional (k + 1)-forms such as dα.

9.13 De�nition. The comass of a k-covector α is the absolute value of its largest compo�
nent, equivalently: the maximum over all applications of α to simple unit k-vectors:

||α||∗ = maxα(ei0 ∧ · · · ∧ eik).

For completeness, we also de�ne that the mass of a k-vector is the norm dual to
the comass: ||v||∗ = max||α||∗=1 α(v). A di�erential form α ∈ L1

locΩk(M) has locally
bounded variation (is locally of bv) if

sup
β∈C1

0Ωk+1(U)
||β||∗≤1

〈〈〈α, δβ〉〉〉 is �nite for all U ⊂⊂M, (9.13a)

where of course C1
0Ωk(U) denotes the space of continuously di�erentiable k-forms onM

with compact support inside U . The space of k-forms with locally bounded variation
is called BVlocΩk. The globalisation to the space BVΩk is as usual.
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9. A Piecewise Constant Interpolation of dec

9.14Fact (cf. Evans and Gariepy 1992, thm. 5.1). For each α ∈ BVlocΩk, there is a
Borel-regular measure µ on M and a µ-integrable (k + 1)-form dBVα such that

〈〈〈α, δβ〉〉〉 =

ˆ

M

〈dBVα, β〉 dµ for all β ∈ C1
0Ωk. (9.14a)

We will mostly write 〈〈〈dBVα, β〉〉〉 as abbreviation of the right-hand side.

Remark. This formulation of the bv structure theorem is the one normally used
for functions of bounded variation. For di�erential forms, one calls the supremum in
9.13a the mass of the current (linear form on Ωk) β 7→ 〈〈〈α, δβ〉〉〉, and then observes
that every current of �nite mass is �representable by integration� in the meaning of the
theorem (Federer 1969, sec. 4.1.7, orMorgan 2000, sec. 4.3b). To obtain uniqueness
of dBVα, one usually requires it to have unit-mass everywhere, and the pointwise scaling
then comes from µ. As we are only interested in dBVα for α ∈ P−1Ωk, it will be more
adequate to use a non-unit-length (k+ 1)-form and the volume form of ∂U(s), s ∈ Kk,
for µ.
For the proof of 9.14, we refer to Evans and Gariepy (loc. cit.), because it only

consists of the observation that β 7→ 〈〈〈α, δβ〉〉〉 has a norm-preserving continuation to
C0

0Ωk, and the application of Riesz' representation theorem.

9.15Proposition. For the basis elements ωt of P−1Ωk, the bv derivative is given by µ =
dvol∂U(t) and dBVωt = ν ∧ ωt, where ν is the outer normal on U(t).

Proof. If β ∈ C1
0Ωk+1, the product 〈ωt, δβ〉 is supported only in U(t), where we can

apply the classical Green's formula because the integrand is smooth. So

〈〈〈dBVωt, β〉〉〉 (9.14a)
= 〈〈〈ωt, δβ〉〉〉 =

ˆ

∂U(t)

ωt ∧ ∗β + 〈〈〈dωt, β〉〉〉 =

ˆ

∂U(t)

〈ν ∧ ωt, β〉dvol∂U(t), (9.15a)

the last equality by usual multilinear algebra and dωt = 0 almost everywhere, q. e. d.

9.16Proposition. There is a variant of Stokes' theorem for the bv derivative of P−1

forms: If we de�ne ˆ

rs

dBVωt :=

ˆ

rs∩∂U(t)

ωt, (9.16a)

then ˆ

rs

dBVα =

ˆ

∂rs

α for all α ∈ P−1Ωk, s ∈ Kk. (9.16b)

Proof. The homotopy formula is easy for constant forms: If dα = 0, then 0 =
´
U
dα =´

∂U
α, hence

´
A
α = ±

´
B
α if the integration domains A and B bound a common

(k+ 1)-dimensional domain U , the sign depending on the orientation of B. This is the
case for

∂(rs ∩ U(t)) = ∂rs ∩ U(t) ∪ rs ∩ ∂U(t).

So the formula is clear for α = ωt by de�nition of the �domain integral� over rs, and
by linearity, it hence holds for all α ∈ P−1Ωk, q. e. d.
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Remark. <a> The notation 9.16a might seem to obscure the actual integration pro�
cess over a subdomain, but we would like to emphasise the analogue to dα, which
ful�lls the same Stokes formula.

<b> For a smoothly bounded (k+1)-dimensional integration domain U and di�erential
forms α ∈ Ωk, β ∈ Ωk−1, it is always true thatˆ

U

α =

ˆ

U

〈α,dvolU 〉dvolU ,

ˆ

∂U

β = ±
ˆ

∂U

〈ν ∧ β,dvolU 〉dvol∂U ,

where the sign is the same as in dvolU = ±ν ∧ dvol∂U . Therefore, the notation 9.16a
can also be interpreted asˆ

rs

dBVα =

ˆ

rs∩∂U(t)

〈dBVα,dvolrs〉dvolrs∩∂U(t)

with dBVωt = ν∧ωt as in 9.15. The notational problem is mainly that the bv derivative
is supported on a codimension-1-set, which makes the integral in Green's formula
(n−1)-dimensional instead of n-dimensional, and the left-hand side integral in Stokes'
formula k-dimensional instead of (k + 1)-dimensional. Unfortunately, we do not know
a common notation covering both.

<c> The formula stays correct (with an appropriate notational adaption) for sbv forms
(introduced by de Giorgi and Ambrosio 1988, as overview we refer to Ambrosio
et al. 2000) which are bv forms whose derivative measure µ consists of parts µac and µs
which are absolutely continuous with respect to the n-dimensional and to the (n− 1)-
dimensional Hausdor� measure in rK, if µs is supported on a set that is transversal to
the integration domain U . For the proof, one can use the approximation of α ∈ SBVΩk

by convolution with smooth Gaussian kernels. If the jump set of α, i. e. the support of
µs, is transveral to U , then the convergence is uniform almost everywhere on ∂U , and
so the integrals

´
∂U

αi of the molli�ed forms αi tend to
´
∂U

α and give a well-de�ned
interpretation of

´
U
dBVα.

<d> This means that for β ∈ L∞Ωk+1 which is smooth inside each U(s), s ∈ Kk+1, we
have

〈〈〈α, δβ〉〉〉 =
∑
s

ˆ

∂U(s)

α ∧ ∗β + 〈〈〈dBVα, β〉〉〉 for all α ∈ P−1Ωk.

9.17 Proposition. 〈〈〈dBVα, β〉〉〉 = n
k+1 〈〈〈dα, β〉〉〉 for all α ∈ P−1Ωk and all β ∈ P0Ωk+1.

Proof. Due to 9.15a, it su�ces to consider, for each s ∈ Kk+1 and each s ∈ Kk,

〈〈〈dBVωt, β〉〉〉U(s) =

ˆ

U(s)∩∂U(t)

ωt ∧ ∗β

which can be spelled out by using the (n− 1)-�ags a in U(s) ∩ ∂U(t):ˆ

U(s)∩∂U(t)

ωt ∧ ∗β =
∑
a

ˆ

∆n−1

ωt ∧ ∗β =
1

(n− 1)!

∑
a

(ωt ∧ ∗β)(ba),
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where ba is the pull-back of an orthonormal basis of r′a. The �ags occuring in this sum
are of the form (〈0〉, . . . , t̂, s, . . . , 〈n〉), cf. 4.17c. Using the vectors v〈i〉,〈i+1〉 from 4.18,
we have inside each r′a

ba = v〈0〉,〈1〉 ∧ · · · ∧ v〈k−1〉,s ∧ vs,〈k+2〉 ∧ · · · ∧ v〈n−1〉,〈n〉

= v〈0〉,〈1〉 ∧ · · · ∧ (v〈k−1〉,t + vt,s) ∧ vs,〈k+2〉 ∧ · · · ∧ v〈n−1〉,〈n〉,

the factors in the latter product are all mutually perpendicular. Now observe

(ωt)] =
v〈0〉,〈1〉 ∧ · · · ∧ v〈k−1〉,t

|v〈0〉,〈1〉 ∧ · · · ∧ v〈k−1〉,t|
, (∗ωs)] =

vs,〈k+2〉 ∧ · · · ∧ v〈n−1〉,〈n〉

|vs,〈k+2〉 ∧ · · · ∧ v〈n−1〉,〈n〉|
.

By orthogonality of all vectors in ba, the application (ωt ∧ ∗β)(ba), usually comprising
all permutations of the factors, splits as

(ωt ∧ ∗β)(ba) = ωt(v〈0〉,〈1〉 ∧ · · · ∧ v〈k−1〉,t) (∗β)(vs,〈k+2〉 ∧ · · · ∧ v〈n−1〉,〈n〉)

= |v〈0〉,〈1〉 ∧ · · · ∧ v〈k−1〉,t| 〈β, ωs〉|vs,〈k+2〉 ∧ · · · ∧ v〈n−1〉,〈n〉|.

Summation over all �ags (〈0〉, . . . , t̂, s, . . . , 〈n〉) then gives, by 4.19,ˆ

U(s)∩∂U(t)

ωt ∧ ∗β =
k!(n− k − 1)!

(n− 1)!
|t| |∗s|〈ωs, β〉 =

n

k + 1

|t|
|s|
|U(s)|〈ωs, β〉,

q. e. d.

Approximation Estimate for P−1Ωk

9.18Lemma. Let us denote the set of multiindices I = (i1, . . . , ik) with ij < ij+1 and
1 ≤ ij ≤ n for all j, by

(
n
k

)
(which in fact is its cardinality). Suppose K is a simplicial

complex with only one n-simplex e with a non-degenerate �at metric. Then the
(
n
k

)
×(

n+1
k+1

)
matrix

M(k)(e) :=
(ˆ
re

ωt(vI)
)
I∈(nk),t∈Kk

has full rank
(
n
k

)
, where v{i1,...,ik} :=

∧
vij for an arbitrary basis vj of Tre.

Proof. The choice of vj does not matter, because a change of this basis only results
in a multiplication with a non-singular

(
n
k

)
×
(
n
k

)
-matrix from the left. Furthermore,

it su�ces to show that the matrix M̃(k) := (
´

dvolrt(vI))I,t has full rank, because it
only di�ers from M(k) by factors depending on the volumes |U(t)|, which must be
non-vanishing for at least

(
n
k

)
of the t (which happens if the circumcentre lies on a

facet of t). Now if we choose vi = ri − r0, we can transform the situation onto the
unit simplex D with vertices 0, e1, . . . , en, where then vi = ei, and the volume forms
of simplices t containing the vertex 0 have a particularly easy expression:

dvolrt = dxi1 ∧ · · · ∧ dxik for t = {0, i1, . . . , ik}.

So dvolr({0}∪I)(vI′) = 1 if I = I ′ and 0 else, hence these rows of M̃(k) are already
linearly independent, q. e. d.
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9.19 Proposition. Suppose rK is a simplicial complex with a piecewise �at and (ϑ, h)-small
metric, α ∈ H1,1Ωk. Then there are α0, α1 ∈ P−1Ωk and, if λis > 0 for all components
of the λs de�ning subdivision neighbourhoods U(s), there is α2 ∈ P−1Ωk, such that the
L2 norms of α0, dα1 and δα2 are estimated by the corresponding norms of α up to a
constant, and (with the Poincaré constant C̃� from 2.11b)

〈〈〈α− α0, β〉〉〉 . C̃�h α ∇β for all β ∈ H1Ωk,

〈〈〈dα− dα1, β〉〉〉 . C̃�h dα ∇β for all β ∈ H1Ωk+1,

〈〈〈δα− δα2, β〉〉〉 . C̃�h δα ∇β for all β ∈ H1Ωk−1.

Proof. Let us introduce a space P−1
elwΩk of �elementwise� P−1 forms, spanned by

ωs,e :=

®
dvolrs in U(s) ∩ re
0 elsewhere

for s ⊂ e, e ∈ Kk.

Then we can �nd α̃0, α̃1 and α̃2 such that, for each e ∈ Kn,
ˆ
re

〈α̃0, β̄〉 =

ˆ
re

〈α, β̄〉 for all constant β̄ ∈ Ωk,

ˆ
re

〈dα̃1, β̄〉 =

ˆ
re

〈dα, β̄〉 for all constant β̄ ∈ Ωk+1

(9.19a)

and similarly for δα2. In fact, writing α̃0 = α̃0
t,eω

t,e and inserting β = v[I from above
with I ∈

(
n
k

)
, the equations for determining coe�cients α̃0

t,e have M(k) as system
matrix, which has full rank by 9.18. The integral

´
〈dα̃1, β̄〉 reduces to a boundary

integral by 9.17 which does not include d anymore, this boundary integral is invariant
under a�ne transformations, and the problem is solvable on the unit simplex D. If all
λis are positive, the δ

t
s are just a row- and column-rescaling of dst by non-zero factors.

As a second step, let α0 = α0
tω

t ∈ P−1Ωk be de�ned by the condition that, for each
t ∈ Kk and all s ∈ Kk+1,

ˆ
U(t)

〈α0, β̄〉 =

ˆ
U(t)

〈α̃0, β̄〉 for all constant β̄′ ∈ Ωk,

ˆ
U(s)

〈dα1, β̄〉 =

ˆ
U(s)

〈dα̃1, β̄〉 for all constant β̄′ ∈ Ωk+1

(and similarly for δα2), which means averaging α̃0 over all parts U(t) ∩ re with t ⊂ e.
These forms have the desired properties: Norm-preservation is clear by construction.
For the approximation, observe that β ∈ Ωk can be replaced by some β̄ that is con�
stant in each element re, and the error is estimated by the Poincaré inequality 2.10c:
β − β̄ L2 ≤ C̃�h ∇β L2 . And similarly it can be replaced by some β̄′ that is constant
in each neighbourhood U(t). This gives

〈〈〈α− α0, β〉〉〉 = 〈〈〈α− α̃0, β〉〉〉+ 〈〈〈α̃0 − α0, β〉〉〉
. 〈〈〈α− α̃0, β̄〉〉〉+ 〈〈〈α̃0 − α0, β̄′〉〉〉+ C̃�h α ∇β ,
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and the scalar products vanish by choice of α̃0 and α0. Exactly the same computation
is feasible for 〈〈〈dα− dα1, β〉〉〉 and 〈〈〈δα− δα2, β〉〉〉, q. e. d.

9.20Proposition. For a complex consisting of only one n-simplex e, let d(k)(e) be the(
n+1
k+2

)
×
(
n+1
k+1

)
matrix representation (dts)s∈Kk+1,t∈Kk of d : P−1Ωk → P−1Ωk+1.

Suppose K is a simplicial complex with a piecewise �at and (ϑ, h)-small metric.
Assume that the

(
n+1
k+1

)
×
(
n+1
k+1

)
-matrixÇ

M(k)(e)

M(k+1)(e)d(k)(e)

å
has full rank for each e ∈ Kn. (9.20a)

Let C̃� be the Poincaré constant from 2.11b. Then for each α ∈ Ωk, there is ᾱ ∈ P−1Ωk

with ᾱ Lp . α Lp , dᾱ Lp . dα Lp and

〈〈〈α− ᾱ, β〉〉〉 . C̃�h α ∇β for all β ∈ H1Ωk

〈〈〈dα− dᾱ, β〉〉〉 . C̃�h dα ∇β for all β ∈ H1Ωk+1.
(9.20b)

Proof. The assumption 9.20a guarantees that we can �nd one single α̃ ∈ P−1
elwΩk ful�

�lling both equations in 9.19a at the same time, q. e. d.

9.21Remark. <a> We did not succeed to verify 9.20a in the general case, but there are at
least no structural obstructions for it to hold: M(k) has full rank

(
n
k

)
, and d(k), which

is the transposed of ∂k+1 from 9.3 with rows scaled by |t| and columns scaled by |s|,
has rank

(
n
k+1

)
, which add up to

(
n+1
k+1

)
.

<b> Using an Lp Poincaré inequality (Evans and Gariepy 1992, thm. 4.5.2) instead
of 2.10c leads to 〈〈〈α−α0, β〉〉〉 ≤ C̃�,ph α Lp ∇β Lp and similar for dα−dα1 and δα−δα2.

<c> The estimates 9.20b are formulated as H−1 norm estimates. By inserting molli�ed
characteristic forms or forms with small support and |

´
β| = 1 (�Dirac forms�), one

can localise the convergence.

<d> We do not call 9.19 and 9.20 �interpolation estimates�, as α0, α1, α2 or ᾱ may
have nothing to do with α pointwise, but only in integral mean. In contrast to interpo�
lation, the integral of α and α0 over smaller spaces like boundaries of the U(t) will in
general not converge, as 9.17 shows. For an example, see also 10.30. The section title
�interpolation of dec� does not refer to interpolation of smooth functions, but to the
process of extending the simplicial de�nitions in 9.4 to L∞ forms in 9.11.
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10. Real-Valued Variational Problems

10.1Situation. Using the results of the preceding sections, we do not speak of a manifold
and its triangulation, but directly suppose that M = rK is a realised n-dimensional
regular simplicial complex (compact, as usual), endowed with a piecewise �at and
(ϑ, h)-small Riemannian metric ge, as well as with a smooth metric g ful�lling 6.17
and 6.23 with C ′0,1h < 1. Except for 10.18sqq., we assume that ifM has a boundary, it
follows the boundary of the Karcher simplices. Therefore, the homeomorphism property
of x remains unchanged.

10.2Remark. <a> Obviously, the spaces Ck,α of strongly di�erentiable and Lipschitz func�
tions for g and ge (de�ned in the classical meaning for g and by 4.5 for ge) are di�erent,
but as the Sobolev norms for di�erentiation orders k = 0, 1, 2 are equivalent, the spaces
Wk,r(Mg) and Wk,r(Mge) coincide.

<b> The convergence of curve length and geodesic distance, treated in Hildebrandt
et al. (2006, sec. 4.1) for the case of embedded surfaces, is already covered by 6.13 in
our setting.

The Dirichlet Problem for Functions

Goal. In this section, we will deal with approximations of the Dirichlet problem, that
is solving a weak version of ∆u = f , where ∆ is the Laplace�Beltrami operator of M .
The Laplacian of k-di�erential forms will be dealt in the subsequent section.
As �rst step, we will give a short review of the usual proof for convergence of Galerkin

approximations to the Dirichet problem as can be found for instance in Braess (2007).
In the second step, we will add the usual error terms resulting from the �variational
crime� to use ge instead of g. This is standard in the fe theory for geometric pde's
initiated by Dziuk (1988), but often not separated from the error of the �rst step.

10.3De�nition. Situation as in 10.1. Denote by H1
0 the space of weakly di�erentiable

functions with vanishing trace on ∂M and by P1 the space of globally continuous,
piecewise linear functions (here, �linear� of course means usual linearity in the parame�
ter domain re, e ∈ Kn), by P1

0 the same but with vanishing boundary values. The norm
of an operator on function spaces will be denoted by · .

10.4De�nition. For v, w ∈ P1, recall the de�nition Lap(u, v) := 〈〈〈du, dv〉〉〉L2(Mg) from 2.2
and that the (homogeneous) weak g-Dirichlet problem is the task to �nd u ∈ H1

0(M)
such that Lap(u, v) = 〈〈〈f, v〉〉〉Mg for all v ∈ H1

0, we shortly write Lu = f with an
operator L : H1

0 → (H1
0)∗. The g-Galerkin solution to the Dirichlet problem with
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respect to the trial space P1
0 is the solution uh to Lap(uh, v) = 〈〈〈f, v〉〉〉Mg for all v ∈ P1

0.
Naturally, there is also the notion of a ge-Galerkin solution.

10.5 Remark. By 2.12, we know that the Dirichlet problem has no solution for general
f ∈ L2, but only for f ⊥ H, and the solution is unique up to harmonic components,
in other words: there is a unique solution in H⊥. But the space of harmonic functions
is one-dimensional, consisting only of the constant functions�and these are ruled out
by the boundary value requirements.

10.6 Fact (Schwarz 1995, also cf. 2.19). The de Rham complex (H1,0Ω, d) of a smooth
compact Riemannian manifold is a Fredholm complex, so the Dirichlet problem is
uniquely solvable, and du L2 ≤ C� f L2 with the Poincaré constant C� from 2.10b.
This means that L−1 is a bounded linear operator.
If ∂M is piecewise smooth or convex (that means, convex where it is not smooth),

then M is H2-regular, i. e. there is a constant C� depending on M , but not on f ,
with u H2 ≤ C� f L2 , that means that L−1

L2,H2 ≤ C� in this case.

10.7 Lemma (Céa). Situation as in 10.1. Let u be the Dirichlet potential and uh be the
g-Galerkin solution to f ∈ L2. Then uh is the orthogonal projection of u onto P1

0 with
respect to Lap( · , · ).

Proof. As P1
0 ⊂ H1

0, also u ful�lls Lap(u, v) = 〈〈〈f, v〉〉〉L2 for all v ∈ P1
0 by which uh was

de�ned. So we have the so-called �Galerkin orthogonality� Lap(u − uh, v) = 0 for all
such v ∈ P1

0, which is the characterising property of the projection error, q. e. d.

10.8 Corollary. Situation as in 10.1. Let Π be the orthogonal projection H1
0 → P1

0 with
respect to Lap( · , · ) and Π⊥ := id−Π be the projection error. Then for any k for
which both sides are de�ned,

u− uh Hk ≤ f L2 Π⊥L−1
L2,Hk .

10.9 Proposition. Situation as in 10.1 with dimension n ≤ 3. Then Π⊥ H2,H1 . ϑ−1h,
and if additionally M is H2-regular, then

u− uh H1 . C�hϑ
−1 f L2 .

Proof. It su�ces to show that there is one uh ∈ P1 with u− uh H1 . ϑ−1h u H2 , then
the projection of u will produce a smaller error than this uh. As usual, we take uh to be
the Lagrange interpolation of u (which is well-de�ned, as H2 ⊂ C0 in dimension ≤ 3, cf.
Adams 1975, Theorem 5.4.c). And this interpolation estimate is exactly 7.5, q. e. d.

10.10 Proposition (Aubin�Nitsche). Situation as in 10.1. Then Π⊥L−1
L2,L2 ≤

Π⊥L−1 2
L2,H1 . Under the same conditions as in 10.9,

u− uh L2 . C2
�h

2ϑ−2 f L2 .
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Proof. First, note that for a right-hand side g, the solution L−1g is characterised by
〈〈〈g, v〉〉〉Mg = Lap(L−1g, v) for all v ∈ H1

0. Now for a right-hand side f ∈ L2, consider

Π⊥L−1f L2(Mg) = sup
g∈L2

〈〈〈Π⊥L−1f, g〉〉〉L2

g L2

= sup
Lap(Π⊥L−1f, L−1g)

g L2

(∗)
= sup

Lap(Π⊥L−1f,Π⊥L−1g)

g L2

≤ Π⊥L−1f H1 Π⊥L−1
L2,H1 ,

where we have used in (∗) that Π and hence Π⊥ is a Lap-orthogonal projection, q. e. d.

10.11Remark. It would of course be possible to consider other interpolation procedures
than just nodal Lagrange interpolation, for example averaged Taylor polynomials as
in Brenner and Scott (2002, section 4.1), which would circumvent the dimension
restrictions. However, the emphasis of this thesis lies more on the di�erent possible ap�
plications of the Karcher simplex construction than on optimal results for the Dirichlet
problem.

10.12Lemma. Situation as in 10.1. Let F (v) := 〈〈〈v, f〉〉〉M,g, and let Lape and F e be de�ned
similar to Lap and F , but with ge instead of g everywhere. Then |(Lap−Lape) (v, w)| .
C ′0h

2 dv L2 dw L2 and |(F − F e)v| . C ′0h
2 v L2 .

Proof. Exactly as in 7.3, q. e. d.

Remark. In the understanding of Hildebrandt et al. (2006), the �weak Laplacian� Lg is a
mapping H1 → (H1)∗, Lgu : v 7→ Lap(u, v). In this setting, 10.12 can be seen as a convergence
result for the weak Laplacians: Lg − Lge H1,(H1)∗ . C′0h

2.

10.13Proposition. Situation as in 10.1 with H2-regular M . Let uh, ueh ∈ P1
0 be the Galerkin

solutions to Lgu = F and Lgeue = F e. Then

uh − ueh L2 + C� duh − dueh L2 . C ′0C
2
�h

2 f L2 .

Proof. During this proof, · always means · L2(Mg). Let us �rst consider the deriva�
tive term on the left-hand side: For some v with v = 1, we have

duh − dueh = Lap(uh − ueh, v)

≤ |Lap(uh, v)− Lape(ueh, v)| + |Lape(ueh, v)− Lap(ueh, v)|
≤ |(F − F e)v| + |(Lape−Lap)(ueh, v)|
. C ′0h

2 f v + C ′0h
2 dueh dv

Then use dueh ≤ C� f from 10.6. For the estimate of uh − ueh , use the Poincaré
inequality again, q. e. d.

Remark. As in the euclidean setting, the proofs carry over to an arbitrary continuous,
strongly H1

0-elliptic bilinear form on H1 instead of Lap.
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Variational Problems in Ωk

10.14 Assumption. Situation as in 10.1. For k = 0, . . . , n, let there be �nite-dimensional
subspaces PΩk of H1,0Ωk (or H0,1Ωk, if needed) with L2 and H1,1 approximation order
h analogous to 7.4:

min
vh∈PΩk

v − vh L2 + dv − dvh L2 + δv − δvh L2︸ ︷︷ ︸
only for 10.15a

≤ αh v H2

and similar for t∗v = t∗vh = 0 or nv = nvh = 0. Furthermore, assume that the
Dirichlet problem is H2-regular and the Hodge decomposition u = da + δb + c is
H1-regular, which means da H1 . u H1 etc. We abbreviate 〈〈〈 · , · 〉〉〉L2(Mge) as 〈〈〈 · , · 〉〉〉e.

10.15 Proposition. Assume 10.14. Let u = da + δb + c be the Hodge decomposition of
u ∈ H1,1Ωk, which can be computed as a = argminF [u] over a ∈ H1,1Ωk−1

t and b =
argminG[u] over b ∈ H1,1Ωk+1

n as in 2.14. If ah = argminF [u] over ah ∈ PΩk−1
t and

bh = argminG[u] over bh ∈ PΩk+1
n , then

da− dah L2 + δb− δbh L2 ≤ αh u H1 . (10.15a)

If u = dae + δbe + ce is the Hodge decomposition with respect to ge, and if ah,e and
bh,e are de�ned similiarly, then

da− dae L2 + δb− δbe L2 + c− ce L2 . C ′0h
2 u L2 , (10.15b)

dah − dah,e L2 + δbh − δbh,e L2 . C ′0h
2 u L2 . (10.15c)

Proof. ad primum: By the Euler�Lagrange equation 〈〈〈da, dv〉〉〉 = 〈〈〈u, dv〉〉〉 for all v ∈
H1,1Ωk+1

t and 〈〈〈dah, dv〉〉〉 = 〈〈〈u, dv〉〉〉 for all v ∈ PΩk+1
t , we know that dah is the L2-best

approximation of da in d(PΩkt ), which is smaller than αh ∇da by assumption.
ad sec.: If 〈〈〈dah,e, dv〉〉〉e − 〈〈〈u, dv〉〉〉e = 0, then 〈〈〈dah,e, dv〉〉〉 − 〈〈〈u, dv〉〉〉 . C ′0h

2( dah,e +
u ) v and hence 〈〈〈dah−dah,e, dv〉〉〉 . C ′0h

2( dah,e + u ) v for all v ∈ PΩkt . The same
calculation is valid for dah − dah,e instead of da− dae. The c− ce estimate comes out
as the remainder, q. e. d.

10.16 Remark. <a> 10.15b is our analogue of thm. 3.4.6 in Wardetzky (2006).

<b> In general, there will be no exact �nite-dimensional Hodge decomposition in PΩk,
as we have not required any connection between d(PΩk) and PΩk+1. There is a Hodge
decomposition in the space of Whitney forms with convergence proven by Dodziuk
(1976, thm. 4.9). Variational problems in a speci�c space P−1Ωk of piecewise constant
forms will be treated in 10.24sqq.
<c> The feec setting of Arnold et al. only has a weak Hodge decomposition u =
dah + b̃h + ch of u ∈ PΩk as in 2.13, but as its parts are also orthogonal projections,
there is an estimate

dah − dah,e L2 + b̃h − b̃h,e L2 + ch − ch,e L2 . C ′0h
2 u L2

corresponding to 10.15b.
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10.17Mixed form of Dirichlet problem. Arnold et al. (2006, 2010) have shown how
to construct �nite-dimensional subcomplexes (PΩ, d) of (H1,0Ω, d) and solve the mixed
Dirichlet problem therein.Holst and Stern (2012) have extended this to the situation
where the domain of the Sobolev space and the �nite-dimensional approximation are
endowed with di�erent, but close Riemannian metrics g and ge, which leads to the
situation that the inclusion map PΩk(Mge) → H1,0Ωk(Mg) is not norm-preserving
anymore, but only an almost-isometric map. Their setting directly applies to Finite
Element computations on the Karcher�Delaunay triangulation:

Proposition (Holst and Stern 2012, thm. 3.10). Assume 10.14, and use the no�
tation from 2.17sq. For f ∈ L2Ωk, let (σ, u, p) ∈ PS and (σe, ue, pe) ∈ PSe be the
solution of the mixed formulation 2.18 of the Dirichlet problem in Mg and Mge re�
spectively, where PS = PΩkt × PΩk+1

t × PHkt is a stable choice of trial spaces from
Arnold et al. (2006, eqn 7.14), and PSe di�ers from PS only by the last factor
(PHke)t , the harmonic trial functions with respect to ge. Then

σ − σe H1 + u− ue H1 + p− pe L2 .
C ′0
γ
h2 f L2 ,

where γ is the inf-sup constant as in 2.18 (but over PΩk).

Proof. The solution s = (σ, u, p) with respect to the �correct� scalar product g ful�lls
b(s, t) = F (t) for every test triple t = (τ, v, q) ∈ PS. On the other hand, the distorted
solution se ful�lls be(se, te) = Fe(te) for all te ∈ PSe with the obvious de�nition of be
and Fe. As the trial spaces only di�er in the last term q, we have

be(se, te) = be(se, t) + 〈〈〈ue, qe − q〉〉〉e = be(se, t) + 〈〈〈ue, q〉〉〉e

(because ue ⊥ PHke). Now observe 〈〈〈ue, q〉〉〉 = 〈〈〈πue, q〉〉〉, where π is the orthogonal pro�
jection onto PHk, and by 10.16c the projection of a PHke element onto PHk is small.
Hence

〈〈〈ue, q〉〉〉e = 〈〈〈ue, q〉〉〉+ (〈〈〈ue, q〉〉〉e − 〈〈〈ue, q〉〉〉) . C ′0,1h
2 u q .

Weakening the right-hand side, we obtain |be(se, t)− Fe(t)| . C ′0h
2 s t . By the scalar

product comparison 10.12, also |b(se, t)− F (t)| . C ′0h
2 s t , and taking this together

with b(s, t) = F (t), we have

b(s− se, t) . C ′0h
2 s t .

Now, by the inf-sup-condition 2.18b, γ s− se ≤ supt b(s− se, t)/ t , q. e. d.

Dirichlet Problems with Curved Boundary

The case that the analytical and the computational domain actually coincide is not
the only interesting problem. When for example a Dirichlet problem on the unit disk
in hyperbolic space is considered, a Karcher triangulation with respect to the whole
hyperbolic space will not exactly cover the unit disk. But the treatment of such a
boundary approximation is standard in Finite Element theory, and the main task is
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to carefully inspect which arguments have to be modi�ed because they rely on the
Euclidean structure of the domain. We give a presentation according to Dörfler and
Rumpf (1998) and do not treat the di�erence between g and ge, as this comparison
can be done separately by using 10.13 after 10.21.
The usual setup for boundary approximation is that a domain Ω is replaced by

a simplicial domain Ωh whose boundary vertices lie on ∂Ω. By (n − 1)-dimensional
interpolation estimates, one then gets that ∂Ω and ∂Ωh are only . h2κ far apart,
where κ bounds the curvature of ∂Ω and h the mesh size of Ωh. We translate this, for
Ω ⊂M , into the following

10.18 Situation. Let M = rK be a piecewise �at and (ϑ, h)-small realised simplicial com�
plex. Let Ω ⊂M be a full-dimensional domain and Ωh = rK̄ a realised full-dimensional
subcomplex, connected by a �normal graph map� Φ : ∂Ω→ ∂Ωh, p 7→ expp d ν, where
d : ∂Ω→ R is Lipschitz-continuous and ν is the outer normal on ∂Ω, with the follow�
ing properties: First, the retraction inverse (p, t) 7→ expt td ν is injective (to ensure
that no topology change may happen). Seond, it is �short� in the send that |d| ≤ αh2,
Lip d ≤ αh ≤ 1, and |∇dd| ≤ α (where d is smooth) for some α ∈ R. Let all principal
curvatures of ∂Ω in M be bounded by κ. This implies that for small h the norms of
dΦ and ∇dΦ are bounded, see section 11.

10.19 Lemma. Situation as in 10.18. If v ∈ H1(Ωh), then v L2(Ωh\Ω) . αh2 dv L2(Ωh\Ω)

and v L2(∂Ω∩Ωh) .
√
αh dv L2(Ωh\Ω) for small h.

Proof. ad primum: It su�ces to show the claim for smooth v. Consider λ ∈ Ωh \Ω. As
d(λ, ∂Ωh) . αh2, there is a curve γ[λ] : µ; λ for some µ ∈ ∂Ωh with length . αh2. If
h is small, this curve can be supposed to be a straight line lying entirely in one simplex
of K̄. As v(µ) = 0,

v(λ) =

ˆ

γ[λ]

dv γ̇. (10.19a)

Suppose γ is arclength-parametrised. Now we can again apply the arguments from the
proof of 7.5 (keeping in mind that γ[λ] has length h there, but αh2 here):

ˆ

Ωh∩Ω

|v|2
(10.19a)

≤
ˆ

Ωh∩Ω

( ˆ
γ[λ]

|dv|
)2 (7.5a)

. αh2

ˆ

Ωh∩Ω

ˆ

γ[λ]

|dv|2
(7.5b)

. α2h4 dv 2
L2(Ωh\Ω)

ad sec.: Because ∂Ωh is a graph over ∂Ω, the inverse is also true: ∂Ω is a graph (usually
not normal) over ∂Ωh, so we can introduce coordinates in which a simplex f of ∂Ωh
lies in the xm-plane and ∂Ω is parametrised by (x1, . . . , xm−1) 7→ (x1, . . . , xm+1, ρ).
Then

v 2
L2(∂Ω∩rf) =

ˆ

t

|v|2
»

1 + |dρ|2
(11.10b)

.
ˆ

rf

|v|2

(10.19a)

.
ˆ

rf

( ˆ
γ[λ]

|dv|
)2 (7.5a)

. αh2 dv 2
L2(Ωh\Ω),

q. e. d.
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10.20Lemma. Situation as in 10.18. For v : M → R, which is H2 continuous in Ω and
M \ Ω, let [v] be the jump of v across ∂Ω. If h is small, there is a continuous ex�
tension ū of u ∈ H2(Ω) onto Ω ∪ Ωh such that ū|Ω = u, ū H2(Ωh\Ω) . u H2(Ω) and
[dū ν] L2(∂Ω∩Ωh) . u H1(Ω).

Proof. By assumption, all points in Ωh \ Ω are covered by the homotopy

Φt : p 7→ expp tν,

where at each p ∈ ∂Ω ∩ Ωh, the parameter t is chosen within ]0;d(p)] (in particular,
points with negative d(p) are excluded, as they would parametrise Ω \ Ωh instead of
Ωh \ Ω). For an image point of Φt, set ū(expp tν) := u(expp−tν), the re�ection along
∂Ω. This ū is continuous, and [dū ν] = ±2du ν. The H2 norm-preservation follows from
the assumptions on Φ (but note that ū is not H2 in Ωh ∪ Ω due to the jump on ∂Ω,
even though Φt is smooth), q. e. d.

10.21Proposition. Situation as in 10.18. Let u ∈ H2
0(Ω) be the solution of Lu = f with

respect to Ω, and let uh ∈ P1
0(Ωh) be the Galerkin solution over Ωh for an extension

of the right-hand side f by zero onto Ωh \Ω. Then du− duh L2(Ω) .
√
αh u H2(Ω) for

small h, where uh has been extended by zero in Ω \ Ωh.

Proof. Let ū be the extension of u from 10.20. Assume we can show

ū− u H1(Ωh) . ū− v H1(Ωh)+αh
2 ū H2(Ωh\Ω)+

√
αh [dū(ν)] L2(∂Ω∩Ωh) (10.21a)

for every v ∈ P1(Ωh). Then the claim is proven by 7.5 and 10.20. Supposed v ∈ P1,
observe that in dv − duh = sup 〈〈〈dv − duh, dw〉〉〉/ dw , it su�ces to take w ∈ P1. So
we have

dū− duh L2(Ωh) ≤ dū− dv + dv − duh = dū− dv + sup
w∈P1

〈〈〈dv − duh, dw〉〉〉
dw

= dū− dv + sup
w∈P1

〈〈〈dv − dū, dw〉〉〉+ 〈〈〈dū− duh, dw〉〉〉
dw

≤ 2 dū− dv + sup
w∈P1

〈〈〈dū− duh, dw〉〉〉
dw

.

And now, if f̄ is the extension of f by f̄ = 0 in Ωh \ Ω,

〈〈〈dū− duh, dw〉〉〉L2(Ωh) =

ˆ

Ωh∩Ω

〈dū, dw〉 − fw +

ˆ

Ωh\Ω

〈dū, dw〉 − f̄w

=

ˆ

Ωh∪Ω

(−∆u− f)︸ ︷︷ ︸
=0

w +

ˆ

∂Ωh∩Ω

w du ν +

ˆ

Ωh\Ω

−w∆u+

ˆ

∂(Ωh\Ω)

w dū(−ν),

as −ν is the outer normal of Ωh \ Ω. So this gives

〈〈〈dū− duh, dw〉〉〉L2(Ωh) ≤ ∆ū L2(Ωh\Ω) w L2(Ωh\Ω) + [du(ν)] L2(∂Ω∩Ωh) w L2(∂Ω∩Ωh),

which shows, together with 10.19 for the w norms, the claimed estimate 10.21a,
q. e. d.
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Heat Flow

Goal. As a short outlook on Galerkin methods for parabolic problems, we consider
the approximation of heat �ow under perturbations of metric. We decided to exclude
the general convergence theory (see e. g. Thomée 2006, chap. 1) and concentrate on
the di�erence between Galerkin approximations with respect to g and ge.

10.22 Proposition. Situation as in 10.1. For a time interval [0; a], let uh, uh,e be the time-
continuous Galerkin approximation to the heat �ow with initial value u0 ∈ P1

0 and
right-hand side f ∈ L∞([0; a], L2(Mg)) for metrics g and ge respectively, that means

〈〈〈u̇h, v〉〉〉+ 〈〈〈duh, dv〉〉〉 = 〈〈〈f, v〉〉〉 for all v ∈ P1, uh|t=0 = u0,

〈〈〈u̇h,e, v〉〉〉e + 〈〈〈duh,e, dv〉〉〉e = 〈〈〈f, v〉〉〉e for all v ∈ P1, uh,e|t=0 = u0,

where 〈〈〈 · , · 〉〉〉e is the abbreviation for 〈〈〈 · , · 〉〉〉Mge . Then their di�erence can be estimated
by

uh − uh,e L∞(L2) . C ′0C�h
2 u0 H1 + C ′0C�h

2
( ˆ

f(t) 2
L2

)1/2

.

Proof. The proof follows the line of the usual convergence proof for parabolic problems
as in Thomée (2006, thm. 1.2): Consider ε := uh−uh,e. By the de�ning equations for
uh and uh,e, we have

〈〈〈ε̇, v〉〉〉+ 〈〈〈dε, dv〉〉〉 = 〈〈〈f, v〉〉〉 − 〈〈〈u̇h,e, v〉〉〉 − 〈〈〈duh,e, dv〉〉〉.

By 7.3 and 10.12, we have

|〈〈〈u̇h,e, v〉〉〉 − 〈〈〈duh,e, dv〉〉〉 − 〈〈〈f, v〉〉〉| . C ′0,1h
2
(
u̇h,e v + duh,e dv + f v

)
,

where all norms are L2 norms. So we have for v = ε, together with the Poincaré
constant C� from 2.10c,

1
2

d
dt ε

2 + dε 2 . C ′0C�h
2
(
u̇h,e + duh,e + f

)
dε .

Then Young's inequality gives 2cab ≤ c2a2 +b2, hence we obtain a separated summand
dε 2 on the right-hand side, which can be cancelled (the suppressed constant belongs
to c):

1
2

d
dt ε

2 . (C ′0C�h
2)2
(
u̇h,e

2 + duh,e
2 + f 2

)
Integration over [0; a] gives, as ε|t=0 = 0,

ε 2 ≤ (C ′0C�h
2)2

ˆ
u̇h,e

2 + duh,e
2 + f 2.

From the usual regularity theory for parabolic problems (Thomée 2006, eqn. 1.20,
case m = 0), we know that

´
( u̇ 2 + u 2

H1) . u0 H1 +
´
f 2, which shows the desired

estimate for ε, q. e. d.
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10.23Proposition. Situation as above. Let unh, u
n
h,e be the Galerkin approximation to the

heat �ow with implicit Euler time discretisation with respect to g and ge respectively,
that means

〈〈〈∂̄unh, v〉〉〉+ 〈〈〈dunh, dv〉〉〉 = 〈〈〈f, v〉〉〉 for all v ∈ P1
0, u0

h = u0,

〈〈〈∂̄unh,e, v〉〉〉e + 〈〈〈dunh,e, dv〉〉〉e = 〈〈〈f, v〉〉〉e for all v ∈ P1
0, u0

h,e = u0

for the backward di�erence quotient ∂̄vn := 1
τ (vn−vn−1). Then their di�erence at time

t = nτ can be estimated by duh − dunh,e L2 . Kh2t, where K depends on the geometry,
f L∞(L2) and u0 H1 .

Proof. As before, let εn := unh − unh,e. Then

〈〈〈∂̄εn, v〉〉〉+ 〈〈〈dε, dv〉〉〉 = 〈〈〈f, v〉〉〉 − 〈〈〈∂̄unh,e, v〉〉〉 − 〈〈〈duh,e, dv〉〉〉,

and the right-hand side is bounded by

|〈〈〈∂̄unh,e, v〉〉〉 − 〈〈〈∂̄unh,e, v〉〉〉e| + |〈〈〈duh,e, dv〉〉〉 − 〈〈〈duh,e, dv〉〉〉e| + |〈〈〈f, v〉〉〉 − 〈〈〈f, v〉〉〉e|
. C ′0h

2
(
∂̄unh,e v + duh,e dv + f v

)
. C ′0C�h

2
(
∂̄unh,e + duh,e + f

)
dv .

Denote the whole term in parentheses as Λ. As before, it is bounded in terms of the
given data. Then again the choice v = εn gives

εn 2 − 〈〈〈εn−1, εn〉〉〉+ dεn 2 . C ′0C�h
2τΛ dεn 2

and so
εn 2 + dεn 2 . C ′0C�h

2τΛ dεn 2 + C2
� dεn−1 dεn .

And of course dεn 2 is smaller than the last left-hand side, which gives dεn .
C ′0,1C�h

2τΛ + C2
� dεn−1 . Then the claim follows by induction over n, q. e. d.

Discrete Exterior Calculus

10.24Observation. As we have noticed in 2.19, all variational problems from section 2

are uniquely solvable in (P−1Ωk, d) like in (Ωk, d) by the construction of P−1Ωk as a
(co-)chain complex. As (P−1Ωk, d) just a gentle way of writing the simplicial cochain
complex (Ck, ∂∗), its (co-)homology is isomorphic to the de Rham complex' one (a
short direct proof, called �the theorem of de Rham�, is given in Whitney 1957, sec.
iv.29, although de Rham 1931 proved isomorphy to singular, not simplicial coho�
mology). Therefore, we can hope for approximating smooth solutions of variational
problems by ones in P−1Ωk.

10.25Situation. Let rK be a realised oriented regular n-dimensional simplicial complex
without boundary with a piecewise �at, (ϑ, h)-small metric g. Let λs, s ∈ K∗, be the
simplices' circumcentres, and suppose λis > 0 for all their components (i. e. rKg is
well-centred). Assume 9.20a and that the Hodge decomposition u = da + δb + c is
H1-regular, meaning da H1 . u H1 etc. We use the Poincaré inequality in the form
2.11b.
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10.26 Proposition. Situation as in 10.25. For a function f ∈ H1, let u ∈ H2 be the solution
of the Poisson problem 〈〈〈du, dv〉〉〉 = 〈〈〈f, v〉〉〉 for all v ∈ H1, and let uh ∈ P−1Ω0 be the
solution of 〈〈〈duh, dvh〉〉〉 = 〈〈〈f, vh〉〉〉 for all vh ∈ P−1Ω0. Then

〈〈〈du− duh, dvh〉〉〉 . C̃�h( ∇f vh + ∇du dvh ) for all vh ∈ P−1Ωk.

Proof. Let v and vh be connected by 9.20b. Then

〈〈〈du−duh, dvh〉〉〉 = 〈〈〈du, dv〉〉〉− 〈〈〈duh, dvh〉〉〉+ 〈〈〈du, dvh−dv〉〉〉 = 〈〈〈f, v− vh〉〉〉+ 〈〈〈du, dvh−dv〉〉〉,

and both terms can be estimated as claimed, q. e. d.

10.27 Proposition. Situation as in 10.25. Let u = da+δb+c be the Hodge decomposition of
u ∈ H1,1Ωk, and let ū = dah+δbh+ch be the Hodge decomposition of its L2-orthogonal
projection onto P−1Ωk. Then

〈〈〈da− dah, dvh〉〉〉 . C̃�h u H1 dvh L2

〈〈〈δb− δbh, δvh〉〉〉 . C̃�h u H1 δvh L2

for all vh ∈ P−1Ωk.

Proof. We know that da is characterised by 〈〈〈da, dv〉〉〉 = 〈〈〈u, dv〉〉〉 for all v ∈ H1,0Ωk.
Naturally, ah is characterised by 〈〈〈dah, dvh〉〉〉 = 〈〈〈ū, dvh〉〉〉 for all vh ∈ P−1Ωk, but the
right-hand side is 〈〈〈u, dvh〉〉〉 if du is the orthogonal projection onto P−1. So we can
proceed exactly like before, but using 9.19 to connect only dv and dvh instead of v and
vh:

〈〈〈da−dah, dvh〉〉〉 = 〈〈〈da, dv〉〉〉−〈〈〈dah, dvh〉〉〉+〈〈〈da, dvh−dv〉〉〉 = 〈〈〈u, dv−dvh〉〉〉+〈〈〈da, dvh−dv〉〉〉,

the ∇da produced by the latter term can be estimated by u H1 by assumption. The
same procedure is feasible for δb and δbh (where another test form v can be employed
such that δv is close to δvh), q. e. d.

10.28 Proposition. De�ne S1 := H1Ωk−1×H1Ωk×H1Hk and P−1S := P−1Ωk−1×P−1Ωk×
P−1Hk. Suppose s = (σ, u, p) ∈ S1 is a solution of the Poisson problem in mixed
form as in 2.17, and sh = (σh, uh, ph) ∈ P−1S is the solution of the corresponding
�nite-dimensional problem. Then for all th = (τh, vh, qh) ∈ P−1S,

b(s− sh, th) . C̃�h( ∇f L2 + ∇s L2) th H1,0 ,

where the left-hand side is of course not to be taken literally as in 2.18a, but with P−1

exterior derivatives for sh and th, i. e. consisting of terms like 〈〈〈du− duh, dvh〉〉〉 etc.

Proof. In the spirit of 10.26, we start with

b(s− sh, th) = b(s, t)− b(sh, th) + b(s, t− th).

As before, the �rst two terms are 〈〈〈f, v−vh〉〉〉, which is well-controlled by the right-hand
side of the claim. In b(s, t− th), there are many easy terms, which we do not explicitely
discuss once more. Only 〈〈〈u, q − qh〉〉〉 = 〈〈〈u, qh〉〉〉 is iteresting. Estimating it actually
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means bounding the di�erence between H1Hk and P−1Hk. Let u = da + δb be the
Hodge decomposition of u (which does not contain a harmonic term), and choose dah,
δbh close to them in the sense of 9.19. Then, as qh ∈ P−1Hk,

〈〈〈u, qh〉〉〉 = 〈〈〈da+ δb, qh〉〉〉 = 〈〈〈da− dah, qh〉〉〉+ 〈〈〈δb− δbh, qh〉〉〉 . C̃�h( ∇da + ∇db ) qh ,

q. e. d.

10.29Remark. <a> In 10.27, we cannot say anything about c− ch (yet), as we would need
to control the terms in 〈〈〈c− ch, vh〉〉〉 = 〈〈〈dah− da, vh〉〉〉+ 〈〈〈δbh− δb, vh〉〉〉, but we only have
control over the scalar product with dvh or δvh respectively.

<b> As remarked in 9.10, the correct treatment of variational boundary value problems
in P−1Ωk would require a modi�cation of δ at boundary simplices.

<c> Employing P−1 forms also as test functions is unsatisfactory, as they are no clas�
sical objects to test with, so the results are not easily comparable to usual estimates.
However, we are not sure which forms would be the right ones to test with: Perhaps
forms that are �almost constant� in some small, but non-shrinking region would be good
to obtain an average value for such a region. H1,1 forms are not the right candidates:
If for example in the Poisson problem 〈〈〈du− duh, dv〉〉〉 converged for all �well-behaving�
v ∈ H1, then also du 2 − duh

2 would converge, which is not the case:

10.30Example. Consider an equilateral triangle mesh in the xy plane with unit edge length,
rotated such that one of the edges is parallel to the x-axis. Now consider the constant
vector �eld v = (1, 0), and let us compute its P−1Ω1 approximation according to 9.20:
In a triangle ijk, where ij points in x direction, we have

´
ijk
〈vh, (1, 0)〉 = 1

3 |ijk| (αij +
1
2αik+ 1

2αkj). So αij = 2 and αik = αkj = 1 gives the correct integral mean (the scalar
product with (0, 1) is obvious). There are other combinations matching

ffl
ijk

v (for
example the �obvious� choice αij = 3 and αik = αkj = 0), but this one also captures
its exterior derivative: As v is constant, dv = 0, and dvh = 0 for vh = 2ωij +ωik +ωkj .
This vector �eld v is also the gradient of the function f : (x, y) 7→ x. If fh ∈ P−1Ω0

has the same values as f on all vertices, then dfh = vh. The homogeneous Dirichlet
problem in P−1Ω0 is equivalent to the Dirichlet problem in P1 by 3.2c, for which reason
fh will be the P−1 harmonic function with prescribed boundary values fh|∂K, no matter
where the boundary is drawn. Thus, f and fh with derivatives v and vh are the solutions
compared in 10.26. As |v| = 1 everywhere, we have df 2

L2(ijk) = |ijk| in each triangle,

but dfh
2
L2(ijk) = 1

3 |ijk| (4+1+1) = 2 |ijk|. The discrepancy dfh
2
L2(ijk) = 2 df 2

L2(ijk)

does not shrink with smaller and smaller edge lengths, so the Dirichlet energy of the
P−1 approximations will always be twice as large as of the analytical solution.

11. Approximation of Submanifolds

Extrinsic and Intrinsic Karcher Triangulation

11.1De�nition. Let the piecewise smooth n-dimensional submanifold S ⊂M be given by
a bijective triangulation y : rK → S with vertices pi = y(ri). If y|re for each e ∈ Kn
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is a barycentric mapping with respect to the induced metric g|S , then y is called an
intrinsic Karcher triangulation. If moreover each y|re is also a barycentric mapping
with respect to the metric ofM , then y is called an extrinsic Karcher triangulation.

Goal. The possibility for the existence of an intrinsic Karcher triangulation has been
dealt with in section 8. The question of this section will now be how well an extrin�
sic Karcher triangulation, induced by the same complex K and the same vertex set
{pi}, approximates S. Note that such an extrinsic Karcher triangulation is always an
interpolation of the given triangulation of S in the sense of 7.14.

11.2 Proposition. Let y be a piecewise (ϑ, h)-small intrinsic Karcher triangulation y of
S with ||Wν || ≤ κ for all Weingarten maps Wν . Suppose that all vertices pi = y(ri),
i ∈ e, lie in a common convex ball with respect to g for each e ∈ Kn. Then for small
edge lengths `ij := dS(pi, pj) and ¯̀

ij := d(pi, pj) with respect to g|S and g, it holds
|`ij − ¯̀

ij | . κhϑ−1 ¯̀
ij.

Proof. There exists an extrinsic Karcher triangulation x of some set S′ ⊂M with the
same combinatorics and vertices as y (that means: interpolating y) because the vertices
of each simplex are contained in a convex ball. We do not know if S′ is a manifold,
because the fullness of the extrinsic simplices is not clear a priori, but will be a result
of the length estimate.
Let us show the claim for the edge γ : ei ; ej in re with tangent v := γ̇. The

estimate 7.9 can be extended to the whole edge:

|(dx− Pdy)v| . hϑ−1 |(∇dx− P∇dy)(v, v)|
|dy v|

As edges are mapped to geodesics, ∇dx(v, v) = 0 and t∇dy(v, v) = 0. And as
〈∇dy vdy v, ν〉 = −〈∇dy vν, dy v〉 for any normal ν to S, we have |∇dy(v, v)| ≤ κ|dy v|2.
So

|`ij − ¯̀
ij | ≤

ˆ ∣∣|dx v| − |dy v|∣∣ ≤ ˆ |(dx− Pdy)v| ≤ κhϑ−1

ˆ
|dy v|,

q. e. d.

11.3 Corollary. Situation as before, additionally ||Wν || + h||∇Wν || ≤ κ for all Weingarten
maps. Let ¯̀

ij also induce a (ϑ, h)-full metric ge on rK. Then for small h,

|(y∗g − ge)〈v, w〉| . (C0h
2 + κhϑ−1)|v| |w|, (11.3a)

|∇y
∗g
v w −∇g

e

v w| . C̃ ′0,1h|v| |w|, (11.3b)

where C̃0,1 = (C0,1 + κ2)ϑ−1. The second estimate also holds for any other piecewise
�at metric ge on rK.

Proof. The metric estimate comes from the edge length comparison above, and the
connection estimate from 6.23 does not depend on the chosen metric, as long as it is
�at. Due to the Gauÿ equation (e. g. Jost 2011, thm. 4.7.2), the intrinsic curvature
tensor of S is bounded by C0 + ||Wν ||2 and its derivative by C1 + ||Wν ||||∇Wν ||, q. e. d.

78



11. Approximation of Submanifolds

11.4Remark. The observation that 11.3b also holds for any other piecewise �at metric on
K means that if g is approximated up to second order by a better-suited approximation
of edge lengths `ij than just ¯̀

ij , then the approximation of the connection remains
unchanged.
Nevertheless, taken as it is, 11.3 says that a simple interpolation of a given triangula�

tion, just as in Euclidean space, is not the best candidate for geometry approximation.
Henceforth, the rest of this section is devoted to the normal graph mapping, which
reveals better approximation properties.

General Properties of Normal Graphs

11.5De�nition. Let S ⊂M be an n-dimensional compact boundaryless smooth subman�
ifold. A second submanifold S′ ⊂ M is said to be a normal graph over S if there is
a normal vector �eld Z on S such that

Φ : a 7→ expa Z|a (11.5a)

is a bijective mapping S → S′. Where we need it, we will also consider the �smooth
transition� S ; S′ via the homotopy

Φt : a 7→ expa tZ|a. (11.5b)

Parallel transport along t 7→ Φt(p) from Φa(p) to Φb(p) will be denoted by P b,a.

11.6Remark. <a> The term �normal graph� or �normal height map� is mostly used in the context

of triangular approximation of surfaces in R3, e. g. in Hildebrandt et al. (2006). In the

context of manifold-valued pde's, it is more common to consider the geodesic homotopy

Φt, see 13.6d, which also Grohs et al. (2013) use. In particular, their control of distortion

along Φt is equivalent to our control of the distortion by Φ.

<b> Here, as usual, we do not want to treat global properties ofM , so we always tacitly
assume |Z| < injM .

<c> Any other n-dimensional submanifold S′ ⊂ M that is near enough to have a
bijective orthogonal projection S′ → S can be represented as a normal graph over S.
Here �normal projection� means mapping some p ∈ S′ onto the point q ∈ S minimising
d(p, q). The largest ε such that the orthogonal projection Bε(S) → S is well-de�ned
is called the reach of S (introduced by Federer 1959, def. 4.1, for a recent overview
see Thäle 2008). Another formulation for the same thing is that

Φ̃ : TS⊥ →M, (p, Z)→ expp Z

is a di�eomorphism from Oε := {ν ∈ TS⊥ : |ν| < ε} onto its image.

<d> It is well-known (see e. g. Hildebrandt 2012, eqn 1.11) that for M = R
m, the

map Φ is locally a di�eomorphism if |Z|||Wν || < 1 for all Weingarten maps Wν . (Note
that this bound can only capture the local geometry of S but cannot see if some part of
S that is intrinsically far from a point p ∈ S comes close to p in the surrounding space
M .) Di�erent to the usual argument involing the curvature radius of S and osculating
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spheres, one can use Jacobi �elds as in 1.25 (we use the notation from there) to see
this:
We already know dΦt ṗ = J(t) for a Jacobi �eld with J(0) = ṗ and J̇(0) = ∇ṗν, so

d
dtΦ
∗
t g〈ṗ, ṗ〉 = g〈J, J̇〉. Now let ν be a unit normal �eld. Then J̇ = WνJ . If ṗ is the

eigenvector in direction of the largest eigenvalue κ, we have

d

dt
Φ∗t g〈ṗ, ṗ〉 = 2κ(t)|J(t)|,

where κ(t) is the eigenvalue of the Weingarten map Wν in direction ṗ at Φt(p). In our
case R = 0, the Riccati equation 1.25b gives Ẇν = −W 2

ν , so the eigenvalues κi also
evolve by κ̇i = −κ2

i . This di�erential equation has solution κi(t) = (t − 1
κi(0) )−1 =

κi(0)
κi(0)t−1 , hence

d

dt
Φ∗t g〈ṗ, ṗ〉 =

2κ

κt− 1
Φ∗t g〈ṗ, ṗ〉.

This is solved by Φ∗t g〈ṗ, ṗ〉 = (1− κt)2g〈ṗ, ṗ〉, so g is positive de�nite for κt < 1.
<e> If we represent Z = f iνi with parallel unit normal vector �elds νi and scalar
functions f i, then ∇Z = df i ⊗ νi + f i∇νi, which splits into tangential and normal
parts

t∇Z = f i∇νi, n∇Z = df i ⊗ νi.

Hence, although ||∇Z|| usually shrinks slower than |Z| for |f | → 0, the tangential
part is ||t∇Z|| . κ|f |, where κ is an upper bound for the Weingarten maps Wν of S.
Similary, ||t∇2Z|| . κ|df | + κ′|f | if κ′ bounds all ||∇Wν ||.

11.7 Situation. Let S′ be given as a normal graph over S by a vector �eld Z with d :=
|Z| ≤ ε2 and ||dd || ≤ ε everywhere, and let the Weingarten maps of S be bounded by
||Wν || + ε||∇Wν || ≤ κ. This means ||∇Z|| . κε. For simplicity, assume κ ≤ κ2.

11.8 Proposition. Situation as in 11.7. The map Φ : a 7→ expa Z is locally a di�eomor�
phism if |d|(κ+

√
C0) < 1 everywhere.

Proof. Let us suppose Z has unit length at some point and see for which t the map Φt
is locally a di�eomorphism. Note that 1.25b gives |κ̇i| ≤ C0 + |κ2

i | for any eigenvalue
of a Weingarten map. The equation u̇ = −C0 − u2 leads to a subsolution

u(t) =
√
C0 tan

(√
C0t− arctan κi(0)√

C0

)
.

Regarding d
dtΦ
∗
t g〈ṗ, ṗ〉 ≤ κ(t)Φ∗t g〈ṗ, ṗ〉, which has positive solutions (for positive initial

data) as long as κ is bounded, it su�ces to know where the �rst pole of κi(t) can occur.
The �rst pole of u (which must also bound the position of the �rst pole of κi) is where√
C0t− arctan κi(0)√

C0
= ±π2 . Now a simple function inspection shows

1

1 + s
< π

2 + arctan s, − 1

1 + s
> −π2 + arctan s,

so there will be no pole as long as |
√
C0t| < (1 + κ√

C0
)−1, q. e. d.
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11.9Observation. By 1.16, the di�erential of Φt is dΦtV = J(t) for the Jacobi �eld with
J(0) = V , J̇(0) = ∇V Z. By 6.1, this means for Qt : V 7→ V + t∇V Z

|dΦtV − P t,0QtV | . C0 d
2 t2(1 + κεt)|V | (11.9a)

and
|dΦsV − P t,0V | . κε|V | + C0 d

2 t2(1 + κεt)|V |. (11.9b)

This estimate is scale-invariant with respect to scaling of Z: If Z ′ = αZ, then Φ′t/α =

Φt. So tZ = t′Z ′ is scale-invariant, and the estimate only contains tZ, never Z alone.
But due to 11.6e, this distortion happens mostly in normal direction, the tangential

change is of higher order:

||t (dΦ− P )|| . κd+C0 d
2 (11.9c)

11.10Proposition. Situation as in 11.7. Consider some point p ∈ reachS with projection
ψ(p) onto S. If p = expψ(p) d ν for some unit normal vector ν with ||Wν || ≤ κ, and if
κε < 1

2 , the orthogonal projection ψ satis�es

||dψ −Q−1
ν tP p,ψ(p)|| . C0 d

2, ||dψ − tP p,ψ(p)|| . κd+C0 d
2, (11.10a)

where Qν is the linear map TpS → TpM , V 7→ V + d∇V ν. If d ν is replaced by some
other normal vector �eld Z with expψ(p) Z = p, and Q is replaced by V 7→ V +∇V Z,
it holds

||dψ − (tQ)−1tP p,ψ(p)|| . C0 d
2, ||dψ − tP p,ψ(p)|| . κd+C0 d

2 . (11.10b)

Proof. Let us �rst show that tQ does not depend on how Z is chosen at points 6= ψ(p).
If Z = d ν in a neighbourhood of ψ(p), where ν is a parallel unit normal �eld and d is
constant, then Z is parallel, and so ∇Z = t∇Z = dWν . For any other Z, t∇Z stays
the same, and only some part n∇Z 6= 0 is added. That means tQν = Qν on Tψ(p)S.
So we will only prove 11.10b.
ad primum: Observe that the operator tQ : TpS → TpS ful�lls ||tQ− id || . κε < 1

2
by assumption, hence is invertible with ||(tQ)−1 − id || . κε

1−κε by 6.15, which gives
||(tQ)−1|| . 1 + κε

1−κε = 1
1−κε < 2. Hence the claim is proven if we can show ||t (Qdψ−

P )|| . C0 d
2.

Consider some vector V ∈ TpM and split V = Vp+Vν as in 1.25c. Then tQdψ(V ) =

ṗ + t∇ṗZ = Jp(0) + J̇p(0) on the one hand, and tPV = PVp = PJp(1) by 1.25d on
the other. So 6.1 gives

|Jp(1)− P (Jp(0) + J̇p(0))| . C0 d
2 |ṗ| . C0 d

2 |V |.

ad sec.: We have ||dψ − tP || ≤ ||dψ − (tQ)−1tP || + ||(tQ)−1t − t ||. The �rst norm has
been estimated above, and the second is . κd because ||tQt − t || . κd due to 11.6e
and the boundedness of (tQ)−1, q. e. d.

Remark. For C0 = 0, this (exact) representation of the projection di�erential is the one in
Wardetzky (2006, thm. 3.2.1) and Morvan and Thibert (2004, lemma 4).
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11.11 Proposition. Situation as in 11.7. Let t ′ be the orthogonal projection TM |S′ → TS′.
Then for small ε, we have ||P t ′ − tP || . κε + C0 d

2. This means that the angles
](TΦ(p)S

′, PTpS) and ]((TΦ(p)S
′)⊥, PTpS

⊥) between the corresponding tangent and
normal spaces must be bounded by this factor, too. Therefore, normals νi to S can be
extended to normal �elds νi,t along Φt with |νi,t − P t,0νi| . κε+ C0 d

2.

Proof. For the time of this proof, let us write the terminal value J(1) of a Jacobi �eld
along t 7→ Φt(p) with initial values J(0) = q̇ and J̇(0) = ν̇ as T (q̇, ν̇). Linearity of
the Jacobi equation translates into linearity of T . In this notation, the splitting from
1.25c says that a vector V ∈ TM |S′ can be represented as V = T (ṗ, t ν̇) + T (0, n ν̇).
We argue that its projection t ′V onto TS′ is almost T (ṗ,∇ṗZ).
In fact, all tangent vectors on S′ have the form T (q̇,∇q̇Z) for some q̇ ∈ TS. Now

consider
|V − T (q̇,∇q̇Z)|2 = |T (ṗ− q̇, ν̇ −∇q̇Z)|2.

This is minimal among all ṙ if t ′V = T (q̇,∇q̇Z), this means its norm has vanishing
derivative in direction (ṙ,∇ṙZ). Because T is linear, this gives

0 = 〈T (ṗ− q̇, ν̇ −∇q̇Z), T (ṙ,∇ṙZ)〉 for all ṙ ∈ TpS.

Now recall that T (U,W ) = P (U + dW ) +O(C0 d
2), hence this is

= 〈ṗ− q̇, ṙ + d∇ṙZ〉+ d〈ν̇ −∇q̇Z, ṙ〉+ d2〈ν̇ −∇q̇Z,∇ṙZ〉+O(C0 d
2).

If ṗ = q̇, the �rst term vanishes, and (using that κd is small) the remaining ones are
estimated from above by κd |V | |ṙ|. Because the minimisation is well-conditioned at
this position, the optimal q̇ is ṗ+O((κd+C0 d

2)|V |).
Now recall from 1.25d that P tPV = T (ṗ, t∇ṗZ), which gives that the claim |P t ′V −

tPV | = |(t ′ − P tP )V | = |T (0, n∇ṗZ)|+O((κd+C0 d
2)|V |) . (κε+C0 d

2)|V | is just
the usual Jacobi �eld estimate 6.1, q. e. d.

11.12 Corollary. Omitting the last paragraph of the proof, one gets ||tP t ′−tP || . κd+C0 d
2.

Remark. This is analogous to the classical statement ||P (Ph − 1)P || . d up to constants
depending on the geometry from Dziuk et al., where P is the projection onto TS and Ph the
projection onto TS′.

Geometric Distortion by the Graph Mapping

11.13 Lemma. Situation as in 11.7. Then for Q : U 7→ U +∇UZ,

|〈QU,QV 〉 − 〈U, V 〉| . (κ2 d+C0 d
2) |U | |V | for all U, V ∈ TpS.

Proof. Just because 〈U + ∇UZ, V + ∇V Z〉 − 〈U, V 〉 = 〈∇UZ, V 〉 + 〈∇V Z,U〉 +
〈∇UZ,∇V Z〉 and 11.9c, q. e. d.

11.14 Conclusion. Situation as in 11.7. Pulled back to S, the S′ metric Φ∗g|p〈U, V 〉 =
g|Φ(p)〈dΦU, dΦV 〉 ful�lls∣∣(Φ∗g − g)〈U, V 〉

∣∣ . (κ2 d+C0 d
2) |U | |V | .
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Proof. Is a direct application of 11.9c and 11.13. We especially remark that the di�er�
ence between g|p and g|Φ(p) does not need to be handled explicitely, as P p,Φ(p) is an
isometry with respect to these two metrics, q. e. d.

11.15Remark. As Φ∗g and g are equivalent metrics, A := dΦtdΦ (where dΦt denotes the g-adjoint
of dΦ) is a self-adjoint automorphism of TpS such that Φ∗g〈U, V 〉 = g〈AU, V 〉, called the
metric distortion tensor by Wardetzky (2006, p. 53). In the numerical literature, it is
common not to compare the Riemannian metrics, but to estimate directly ||G

e

G
A− id ||, which

already includes the volume element change (cf. the proof of 7.3), see Dziuk (1988); Demlow
(2009); Heine (2005).

For a comparison with the tensor J from 6.20, consider Ψ := Φ−1. If M is the Euclidean
space Rn and S′ is a piecewise �at submanifold, its metric ge := g|S′ is piecewise �at. The
metric g|S pulls back to a metric Ψ∗g on S′, and there is J such that Ψ∗g〈U, V 〉 = ge〈JU, V 〉.
So the transformations A and J perform inverse tasks.

11.16Proposition. Situation as in 11.7. For a given vector U and a vector �eld V on S,
de�ne the �connection distortion� W := ∇dΦtUdΦtV − dΦt(t∇UV ). This vector �eld
obeys the di�erential equation

Ẅ = R(Z,W )Z + Ḟ for F := R(Z, dΦtU)dΦtV +∇2
dΦtU,dΦtV Z

with initial values W (0) = 0 and Ẇ (0) = F (0).

Proof. Let us abbreviate U t := dΦtU , V t := dΦtV , and denote the parallel translation
of Z along t 7→ expp tZ also as Z. Let K := ∇UtV t and J := dΦt(t∇UV ). Then we
want to determine W = K − J.
By 1.25, J is a Jacobi �eld, i. e. J̈ = R(Z, J)Z. An inhomogeneous Jacobi equation

describes K:
K̈ = R(Z,K)Z +DtR(Z,U t)V t +Dt∇2

Ut,V tZ.

In fact, consider a variation γ(r, s) of geodesics (inM), i. e. we assume that s 7→ γ(r, s)
is a geodesic for each �xed s, with ∂sγ(0, 0) = V and ∂rγ(0, 0) = U . Transport this
along t as c(r, s, t) := expγ(r,s) tZ|γ(r,s). Then we want to determine K = Dr∂s, so we
consider

K̈ = DtDtDr∂s = DtDrDt∂s +DtR(∂t, ∂r)∂s

= DtDrDs∂t +DtR(∂t, ∂r)∂s,

the �rst term of which is

∇Z∇Ut∇V tZ = ∇Z∇2
Ut,V tZ +∇Z∇∇UtV tZ

= ∇Z∇2
Ut,V tZ +∇∇UtV t∇ZZ +R(Z,∇UtV t), Z

= Dt∇2
Ut,V tZ + 0 +R(Z,K)Z.

The initial value is computed in exactly the same way, q. e. d.
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11.17 Proposition. Situation as before. If C0|Z|2 + ||∇Z|| ≤ 1
2 , then

|∇dΦUdΦV − dΦ t∇UV | . |U ||V |(||∇2Z|| + C0|Z|) + C0|∇UV ||Z|2.

If we only consider the tangential part tW , then even

|t∇dΦUdΦV − dΦ t∇UV | . |U ||V |
(
||t∇2Z|| + ||∇Z|| + C0|Z|2

)
+ C0|∇UV ||Z|2.

(11.17a)

Proof. Preparatory step one: Let us �rst establish the boundedness of W = K−J and
show |W | . |∇UV | + at, where a := |U t||V t|(||∇2Z|| + C0|Z|): The t-derivative of K
is, as ∂t = Z,

∇Z∇UtV t = ∇Ut∇ZV t +R(Z,U t)V t

= ∇Ut∇V tZ +R(Z,U t)V t = ∇2
Ut,V tZ +∇∇UtV tZ +R(Z,U t)V t,

so d
dt |K| ≤ |K̇| ≤ a+||∇Z|| |K|. As |Z| is short by assumption, we have |U t| . |U | and

|V t| . |V |. The di�erential inequality of the form u̇ ≤ a+bu gives u ≤ (u0 + a
b )ebt− a

b .
For bt ≤ 1

2 , this function is dominated by u0 + 2bt(u0 + a
b ) ≤ 2(u0 + at).

For the bound on J , we have |J | ≤ |J(0)| + t|J̇(0)| as usual, and J(0) = ∇UV ,
J̇(0) = ∇ZJ(0) shows that these terms are already contained in the K estimate.
Preparatory step two: Now let us show

∣∣∣W (t)−
tˆ

0

P t,τF (τ) dτ
∣∣∣ . C0t

2|Z|2(|∇UV | + at).

The proof idea is from Jost (2011, thm 5.5.2). Let A :=
´ t

0
PF . This is a vector �eld

ful�lling Ä = Ḟ with the same initial values as W , namely A(0) = 0 and Ȧ(0) = F (0).
Furthermore, let w : [0; t] → R be the solution of ẅ = C0|Z|2|W | with initial values
w(0) = ẇ(0) = 0. Then, for some parallel vector �eld E along t, de�ne v := (〈W −
A,E〉 − w)/t and obtain

d

dt
(v̇t2) =

d

dt

(
(〈Ẇ − Ȧ, E〉 − ẇ)t− 〈W −A,E〉+ w

)
= (〈Ẅ − Ä, E〉 − ẅ)t ≤ 0.

This means that v̇t2 ≤ 0, hence v̇ ≤ 0. Now 〈W −A,E〉− v has a double root at t = 0,
so v(0) = 0 and thus v ≤ 0 everywhere. And because E was arbitrary, this already
means

|W −A| ≤ w.

Therefore we are done if we can bound u by the right-hand side of the proposition.
But as we know that |W | . |∇UV |+at, we can simply integrate ẅ = C0|Z|2|W | twice
and obtain the desired estimate (the argument is the same as in the proof of 6.5).
ad primum: The �nal estimate for |W | comes from |

´
PF | ≤

´
|F |, together with

|F (t)| . |F (0)| ≤ a for t ≤ 1, because the same holds for U t and V t, and the norm of
∇2Z|Φt(p) is the same as the norm of ∇2Z|p because Z is parallel along t 7→ Φt(p).
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ad sec.: For the estimate of |tW | let t t be the orthogonal projection onto the tangent
space of Φt(S) and consider

t tW (t)−
tˆ

0

t tP t,τF (τ) dτ = t tW (t)−
tˆ

0

P t,0t tP 0,τF (τ)+(t tP t,τ−P t,0tP 0,τ )F (τ) dτ.

Then |tPF | . |U ||V |||t∇2Z||, and the projection di�erence is estimated by t||∇Z|| +
C0t

2|Z|2 in 11.11, q. e. d.

11.18Theorem. Let y : rK → S be the triangulation of a smooth submanifold S ⊂ M
with Weingarten maps Wν bounded by ||Wν || + h||∇Wν || ≤ κ and x : rK → S′ an
extrinsic Karcher triangulation with the same vertices pi and y = ψ(x). Suppose ge is a
(ϑ, h)-small piecewise �at metric on rK induced by edge lengths dS′(pi, pj) = d(pi, pj).
Then for small h, it holds d(x, y) . h2ϑ−1 ∇dx− P∇dy L∞ and

|(y∗g − ge)〈v, w〉| . (κ2 d+C0 d
2)|v||w|,

|∇y
∗g
v w −∇g

e

v w| . κhϑ−2 ∇dx− P∇dy L∞ |v||w| + ho.,

where �ho.� stands for higher-order terms whose coe�cients depend on C0, κ, ϑ, |v|,
|w| and |∇gev w|. The norm on the left-hand side may be induced by either x∗g, y∗g, or
ge, because all three are equivalent.

Proof. By the estimate 7.12 for d(x, y), S′ is a normal graph over S for small h with
|Z| = d(x, y) . h2ϑ−1 ∇dx− P∇dy . Morally, it is clear that ||∇Z|| must be con�
trolled by ∇dx− P∇dy , too. In fact, we can precisely compute this for V = dy v:

∇V Z = ∇dy v(−Xx|y) = J̇(1)

for a Jacobi �eld along x ; y with J(0) = dx v and J(1) = dy v by combining 1.23
and 12.3 (we postpone the computation to the next section because it is more relevant
there), so by 6.1 |∇V Z − (dx− Pdy)v| . C0 d

2(x, y), hence 7.14 gives

||∇Z|| . hϑ−1 ∇dx− P∇dy + C0 d
2 .

Now because x = Φ ◦ y and hence dx = dΦdy, 11.14 gives

|(x∗g − y∗g)〈v, w〉| . (κ2 d+C0 d
2)|v|y∗g|w|y∗g.

The comparison of x∗g and ge is done in 6.17.�Analogously, we only compare ∇y∗g
to ∇x∗g and refer to 6.23 for the rest: For a vector v and a vector �eld w, 11.17 gives
(together with 11.6e)

|∇S
′

dx vdxw − dΦ∇Sdy vdy w| . κh2ϑ−1 ∇dx− P∇dy + ho.

By de�nition of the pull-back connection, ∇S′dx vdxw = dx∇x∗gv w and thus

|dΦdy(∇x
∗g
v w −∇y

∗g
v w)| . κh2ϑ−1 ∇dx− P∇dy + ho.

Together with ||dΦ−1|| . 1 and ||dy−1|| . 1/hϑ, this shows the claim, q. e. d.
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The Weak Shape Operator

11.19 Lemma. Let S ⊂ M be a smooth submanifold with boundary ∂S in M . Let U be a
smooth vector �eld on S, not neccessarily tangential to S. Then U may be extended to
a vector �eld on M in such a way that divM tU = divS tU and divM nU = −〈U,H〉,
where H = ∇Mei ei for any orthonormal basis ei of TpS is the mean curvature vector

of S.

Proof. It su�ces to �nd a local extension of U to some small neighbourhood of S. Let
e1, . . . , en, νn+1, . . . , νm be an orthonormal basis of TpM . Then divM U = 〈∇Mei U, ei〉+
〈∇MνjU, νj〉. If U is extended parallel in normal direction, the latter term vanishes.
Regarding the tangential part, observe 〈∇Mei tU, ei〉 = 〈t∇Mei tU, ei〉, and because

t∇M = ∇S , this is divS tU .
Now consider nU = αjνj . Again, if U is constant in normal direction, divM nU =
〈(∂iαj)νj , ei〉+〈αj∇Mei νj , ei〉, the former term vanishes, the latter one is αj〈∇Mei νj , ei〉 =
−αj〈∇Mei ei, νj〉, q. e. d.

11.20 Lemma. Let S ⊂ M be a smooth submanifold with boundary ∂S in M . Then for
smooth vector �elds V and W on M ,ˆ

S

〈W, ν〉divM V + 〈W, ν〉〈V,H〉+ 〈∇MV ν,W 〉+ 〈ν,∇MV W 〉 =

ˆ

∂S

〈W, ν〉〈V, τ〉,

where τ is the outer normal of ∂S in S.

Proof. Let f := 〈W, ν〉. By the divergence theorem (Lee 2003, thm. 14.23), we haveˆ

S

divS(fV ) =

ˆ

∂S

〈fV, τ〉.

Now by product rule and 11.19, divS(fV ) = f divS V + V f = f divM V − f〈V,H〉 +
V f , q. e. d.

11.21 Corollary. Let S ⊂ M be a smooth submanifold without boundary. The operators
sν , σν : X(TM |S)× X(TM |S)→ R, de�ned by

sν(V,W ) :=

ˆ

S

〈∇MV ν,W 〉+〈W, ν〉〈V,H〉, σν(V,W ) := −
ˆ

S

〈W, ν〉divM V+〈ν,∇MV W 〉

coincide for smooth S and each normal �eld ν. On tangential vector �elds, sν(V,W ) =
σν(V,W ) = −

´
IIν(V,W ). If S were only piecewise smooth, σν would still be well-de�

�ned. It is called the weak shape operator of S.

11.22 Proposition. Situation as in 11.7. Then there are normal �elds ν for S and ν′ for
S′ such that σν approximates the weak shape operator σ′ν′ of S

′, which is

σ′ν′(V,W ) = −
ˆ

S′

〈W, ν′〉divM V + 〈ν′,∇MV W 〉,

up to �rst order: |(σν(V,W )− σ′ν′(PV, PW )| . ε V H1(TM |S) W H1(TM |S).
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12. Variation of Karcher Simplex Volume

Proof. The derivatives of V and W are not distorted at all, P∇VW = ∇PV PW , see
1.17, hence divM PV = divM V . According to 11.11, the normals ν and ν′ can be
chosen such that they do not di�er by more than ε, q. e. d.

Remark. This is our analogue of the weak shape operator convergence result from Hilde-

brandt and Polthier (2011, thm. 8) (similar, but more extensive, Hildebrandt 2012, thm.

2.4). However, Hildebrandt de�nes σ′ν′ with divS
′
instead of divM , which did not meet our

own calculations.

12. Variation of Karcher Simplex Volume

Notation. Di�erent from other sections, we will mostly write volS instead of |S| for
the volume of some set S ⊂ M , but where we �nd it meaningful, we will mix both
notations.

Goal. Consider a full-dimensional Karcher simplex x(re) with vertices p0, . . . , pm. If
pi is moved with velocity ṗi = dxui, leading to a family xt of barycentric mappings,
we would like to compute the derivative d

dt |t=0 volg(xt(rs)) of a subsimplex volume. In
a second step, we want to show that this derivative is close to d

dt |t=0 volge(rst), where
the vertices ei of rs are moved with velocity ui.

12.1Fact (see e. g. Jost 2011, eqn. 4.8.3). Let Φt : S → St be a normal variation of the
smooth submanifold S ⊂M with a velocity Z = ∂tΦt that has compact support. If H
is the mean curvature vector of S, then

d
dt

∣∣
t=0

volSt = −
ˆ

S

divS Z
(11.20)

=

ˆ

S

〈Z,H〉,

where the last equality only holds if Z vanishes at the boundary of S, whereas the
divergence formula is also correct for velocities with support up to the boundary.

12.2Situation. Let K be a regular m-dimension simplicial complex, x : rK → M be a
Karcher triangulation with respect to vertices pi ∈ M such that drixe is bijective for
every vertex of every element and x induces metrics x∗g and ge as usual, where ge is
(ϑ, h)-small, ful�lling 6.17 and 6.23. Let K̄ be an n-dimensional subcomplex of K such
that S := x(rK̄) is an n-dimensional submanifold of M .

Variation of Karcher Triangulations

12.3Lemma. Let p ∈ M be some point and X be its half squared distance gradient from
5.2. Recall from 1.23 that if the evaluation point a is moved on a curve a(r), then
∇ȧ(r)X = σJ̇r(σ), where Jr is a Jacobi �eld along the geodesic p; a(r) with Jr(0) = 0
and Jr(σ) = ȧ(r).
Now if p moves on a curve p(t), this induces a new variation vector �eld Ẋp(t) :=

DtXp(t). It satis�es Ẋp(t)|a = σJ̇t(σ), where Jt is a Jacobi �eld along p(t) ; a with
boundary values Jt(0) = ṗ(t) and Jt(σ) = 0. Combining both variations, we obtain
∇ȧ(r)Ẋp(t) = σDrJ̇r(σ) = σDtJ̇r(σ)
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Remark. <a> Note that J̇ and Ẋ denote derivatives with respect to di�erent direc�
tions. In this section, the parameter r takes the rôle of t in section 6.

<b> In the notation of Grohs et al. (2013), Ẋ = ∇1 log(a, p).

Proof. ad primum: Without restriction, we can assume that p(t) and a(r) describe
geodesics, as no second derivatives of them enter. Analogous to 1.23, consider a varia�
tion of geodesics

c(r, s, t) := expp(t)
(
s
σ (expp(t))

−1a(r)
)
.

As in 1.23, one can see that

Xp(t)|c(r,s,t) = s
σ∂sc(r, s, t), Jr = ∂r, Jt = ∂t

because ∂r and ∂t are Jacobi �elds with the desired values at s = 0 and s = σ.
ad sec.: We have 1

σ∇ȧ(r)Ẋp(t) = DrDt∂sc(r, s, σ) = DtDr∂sc(r, s, σ) + R(∂r, ∂t)∂s,
and because c(r, s, σ) = a(r) is independent of t, we have ∂t = 0 there. And the former
term is DtDs∂rc(r, s, σ) = DtJ̇r(σ), q. e. d.

12.4 Lemma. Situation as before. Abbreviate ` := d(a(r), p(t)), V := ȧ(r), W := ṗ(t) and
T := ∂s. Then if C0`

2 < π2

4 ,

|DtJr| ≤ 90C0,1(r) s(σ−s)σ |V | |W | |T |(r)
≤ 90C0,1(r) s |V | |W | |T |(r),

|DtJ̇r| ≤ 50C0,1(r) |V | |W | |T |(r).

Proof. The claim is similar to 6.6, and so is the proof: We again have to �nd a di�eren�
tial equation for U := DtJr to apply 6.5. By the usual laws of covariant di�erentiation
and ∂r = Jr, ∂t = Jt, we have

DtJ̈r = DtDsDs∂r = DsDtDs∂r +R(Jt, T )J̇r

= DsDsDt∂r +DsR(Jt, T )Jr +R(Jt, T )J̇r

= D2
ssU + (DsR)(Jt, T )Jr +R(J̇t, T )Jr + 2R(Jt, T )J̇r.

On the other hand, using the Jacobi equation,

−DtJ̈r = DtR(Jr, T )T = (DtR)(Jr, T )T +R(U, T )T +R(Jr, J̇t)T +R(Jr, T )J̇t.

So with A := −R( · , T )T , we have Ü = AU + B, where ||A|| ≤ C0|T |2. Let us assume
that we consider some geodesic with |T | = 1 (as usual, the correct power of |T | follows
from a scaling argument). Then, because 6.3 holds for Jr as well as for Jt,

|B| = |(DsR)(Jt, T )Jr + (DtR)(Jr, T )T

+R(J̇t, T )Jr + 2R(Jt, T )J̇r +R(Jr, J̇t)T +R(Jr, T )J̇t|
≤ 2C1|V | |W | + 15C0

1
σ |V | |W |.

The claim on DtJ̇r follows from DtJ̇r = DtDs∂r = DsDt∂r +R(∂t, ∂r)∂s, q. e. d.
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12. Variation of Karcher Simplex Volume

12.5Lemma. Notation as before, and Aλ as in 5.7. For varying vertices pi(t) ∈M , let xt
be the corresponding Karcher triangulations, and V = dx v. Then

Aλẋt|λ = −λiẊi|xt(λ), Aλ∇V ẋ = −viẊi − λi∇2
V,ẋXi − λi∇V Ẋi −Avẋ.

Proof. ad primum: Along t 7→ xt(λ), consider the vector �eld U(t) := λiXi(t)|xt(λ).
As has been stated in 5.2, this vector �eld vanishes for all r, so U̇ = 0. For those who
believe, the shorthand proof is

0 = Dt|t=0(λiXi(t)|xt) = λiDt|t=0(Xi(t)|x0) + λiDt|t=0(Xi(0)|xt)
= λi(Ẋi +∇ẋ0

Xi)|x0
,

(12.5a)

a rather uncommon use of the chain rule. For all others, this argument is justi�ed by
a calculation in coordinates: Let λiXi = U j∂j and ẋ(t) = ẋj(t)∂j be the needed coor�
dinate representation. As Uk(t) = 0 for all k and all t, we have U̇k(t) = 0, and this is
by usual Euclidean chain rule ∂tUk(t, x1(t), . . . , xn(t)) +∂`U

k(t, x1(t), . . . , xn(t))ẋ`(t).
And if all Uk vanish, we can add Γk`jU

j ẋ` without harm, which gives

0 = (∂tU
k + ∂`U

kẋ` + Γk`jU
j ẋ`)∂k = DtU +∇ẋU.

ad sec.: Di�erentiating 12.5a once more leads to

0 = λi∇V∇ẋXi +∇V (λiẊi) = λi∇2
V,ẋXi + λi∇∇V ẋXi + viẊi + λi∇V Ẋi + vi∇ẋXi,

q. e. d.

12.6Proposition. Situation as in 12.2, and let the variation of pi be given by ṗi(t) = dxwi
for some vector wi ∈ Tre. Then for u := λiwi, we have

|ẋ− dxu| . C ′0,1h|ẋ|, |∇dx vẋ− dx∇g
e

v u| . C ′0,1h|u| |ẋ|.

Proof. ad primum: At the vertex ei of the standard simplex, deixw and the variation
ṗi agree. At another point λ ∈ ∆,

dλxwi = Pdeixwi +O(C ′0,1h
2|wi|) = P ṗi +O(C ′0,1h

2|wi|)

by 6.24, which means dxu = λiP ṗi +O(C ′0,1h|u|) by de�nition of u, and

ẋ = −λiẊi +O(C ′0h
2|ẋ|) by 12.5

= λiP ṗi +O(C ′0h
2|ẋ|) by 12.3 and 6.3.

ad sec.: The derivative of u is, by Euclidean calculus, just ∇gev u = viwi, so the latter
term is dx∇gev u = vidxwi. The covariant derivative ∇2Xi in 12.5 is estimated by 6.14,
and the ∇V Ẋ term by 12.4, so we have

|Aλ∇dx vẋ− vidxwi| ≤ vi|Ẋi + dxwi| + λi|∇2
V,ẋXi| + λi|∇V Ẋi| + |Avẋ|

. C0h
2vi|ṗi| + C ′0,1h|v| |ẋ|,

q. e. d.
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Discrete Vector Fields

12.7 De�nition. For a piecewise barycentric mapping x : rK→M , let

P̄Xx := TM |x(K0) =
⊔

pi,i∈K0

TpiM

be the disjoint union of all vertex tangent spaces. For Ū = (Ui) ∈ P̄Xx, de�ne a
piecewise interpolation: It induces a variation of x by de�ning xt[Ū ] to be the piecewise
barycentric mapping with respect to vertices exppi tUi (where we keep t so small that
x(λ) and xt(λ) stay in a convex neighbourhood of each other). We call Ū 7→ U :=
ẋt[Ū ]|t=0 the P1-interpolation of Ū and

P1Xx := {U : Ū ∈ P̄Xx}

the set of piecewise smooth, globally continuous test vector �elds.

12.8 Observation. As a �nite sum of vector spaces with scalar products g and ge, P̄Xx
carries the natural inner products

`2g〈〈〈V̄ , W̄ 〉〉〉 =
∑
i

g〈Vi,Wi〉, `2ge〈〈〈V̄ , W̄ 〉〉〉 =
∑
i

ge〈ve,i, we,i〉,

whereas P1Xx has the scalar products L2g and L2ge that are induced from L2X(TM):

L2g〈〈〈V,W 〉〉〉 =

ˆ

x(rK)

g〈V,W 〉, L2ge〈〈〈V,W 〉〉〉 =
∑
e∈Kn

ˆ
re

ge〈v̄, w̄〉,

where V = dx v̄ and W = dx w̄. As both are isomorphic �nite-dimensional vector
spaces, all these norms are equivalent. The equivalence constants between `2g and `2ge

and between L2g and L2ge are the ones from 6.17a and 7.3a, whereas the equivalence
constant between L2ge and `2ge depends on the maximal and minimal simplex volume.

12.9 De�nition. Situation as in 12.2, and Ū ∈ P̄Xx. Inside every simplex e ∈ Km, the
vector Ui, i ∈ e, can be represented as Ui = drixe w

e
i (without any summation). De�ne

a piecewise linear, globally discontinuous vector �eld u|re := λiwe
i and a piecewise

smooth vector �eld ū by requiring dx ū = U everywhere.

12.10 Conclusion. By de�nition, dx∇x∗gv ū = ∇dx vẋt[Ū ]. From 12.6, we hence know that

|u− ū| . C ′0,1h|u|, |∇x
∗g
v ū−∇g

e

v u| . C ′0,1h|v||u|,

where all norms are | · |x∗g norms. The same estimates hold for the jump [dxu]f =

dxeλ
iwe
i − dxe′λiwe′

i of u across a facet f = e ∩ e′.
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12. Variation of Karcher Simplex Volume

Area Differentials

12.11Observation. Situation as in 12.2. If the vertices pi of a Karcher triangulation vary
smoothly with velocity (Ui) ∈ P̄Xx, the area change of S = x(rK̄) is also smooth, hence
has a di�erential

d volK̄ : P̄Xx → R. (12.11a)

The volume is additive in s ∈ K̄n, and the variations of di�erent vertices are linearly
independent, so it su�ces to compute the di�erential d volis,g : TrirK → R of |x(rs)|g
with respect to the variation of x(ri), i ∈ s. Correspondingly, let d volis,ge be the
analogous di�erential of |s|ge .

Remark. We do not think that a notational distinction between this area di�erential
and the volume form from 9.6 is neccessary. For readers who disagree, we remark that
in 12.11a, the d denotes a di�erential and is hence written in italics, whereas it is
upright as part of the volume form dvol.

12.12Proposition. Situation as in 12.2. Then |d volis,g −d volis,ge | . C ′0,1h |s|ge .

Proof. By 12.1, d volis,g(w) = −
´

divS Z, where Z = ẋ is induced by the vertex varia�
tion ṗi = dxw. If ṽj form a g-orthogonal basis of Trs, this is

´
〈∇dx ṽj ẋ, dx ṽj〉. By the

comparison of volume elements for g and ge in 3.20,

d voljs,g(w) = −
ˆ

x(rs),g

g〈∇dx ṽj ẋ, dx ṽj〉 = −(1 +O(C ′0h
2))

ˆ

x(rs),ge

g〈∇dx ṽj ẋ, dx ṽj〉,

and, noting that there is a ge-orthonormal basis vj of Trs with |vj − ṽj | . C ′0h
2 by

3.6, the integrand is

g〈∇gdx ṽj ẋ, dx ṽj〉 = x∗g〈∇g
e

ṽj
u, ṽj〉+O(C ′0,1h|u|) by 12.6

= x∗g〈∇g
e

vju, vj〉+O(C ′0,1h|u|) +O(C ′0h
2||∇u||)

= ge〈∇g
e

vju, vj〉+O(C ′0,1h|u|) +O(C ′0h
2||∇u||),

and the last right-hand-side term is div(rs,ge) u, q. e. d.

12.13Remark. <a> It is common knowledge that d voli∆ = dλi|∆|, proven by inserting
div u = dλi(w) for u = λiw into 12.1. Classically, one says for triangles (Polthier
2002, eqn. 4.3) that the gradient of the area functional with respect to vertex variations
is the π

2 rotation of the opposite edge vector, which is exactly (dλi)].

One has to take care to transfer this to the subsimplex situation, because div(rs,ge) u
= 0 if w is perpendicular to rs, so one needs a form dλis that acts like dλ

i on Trs and
vanishes on Trs⊥. For example, if rs = conv(e0, . . . , en) and v0 = gradλ0 ∈ T∆,

dλis(w) = dλi
(
w − 〈w0, w〉

|v0|2
v0

)
= wi − w0

|dλ0|2 〈dλ
i, dλ0〉.
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It is easier to transfer the gradient vis of λ
i in rs to Tre, as its vector components stay

the same: div(s,ge) u = ge〈vis, w〉. By 3.2a, this vis is characterised as the vector in Trs
that is perpendicular to the facet s \ {i} opposite i with lengths h−1

i , the reciprocal of
rs's height above s \ {i} from 3.2a.

<b> For computational purposes, 12.12 is insatisfactory, as only d vols,ge(u) is numeri�
cally accessible, not d vols,ge(ū). But this is only an easy combination with 12.10, which
will be spelled out for the area gradients in the following paragraphs.

Area Gradients

12.14 Observation. The area di�erentials d vols,g and d vols,ge can be expressed as gradient
with respect to di�erent norms on P̄Xx. The gradients with respect to `2g and `2ge

correspond to the �mean curvature vector� of Polthier (2002), whereas the gradients
with respect to or L2g and L2ge give the construction from Dziuk (1991).

12.15 Corollary. If H`2g ∈ TpiM is the gradient of |x(rs)|g with respect to a variation of pi,
and H`2ge = |s|ge gradλi is the corresponding gradient of |s|ge , then |dxH`2ge −H`2g|
. C ′0,1h|H`2ge |.

12.16 De�nition. The discrete mean curvature vector HL2g ∈ P1Xx is the solution of
L2g〈〈〈HL2g, V 〉〉〉 = dvolK̄,g(V ) for all V ∈ P1X. The approximate mean curvature vector
HL2ge ∈ P1Xx is the solution of L2ge〈〈〈HL2ge , V 〉〉〉 = d volK̄,ge(V ) for all V ∈ P1X.

12.17 Observation. The di�erentials of the right-hand sides can be represented as L2 prod�
ucts of linear maps: If vectors Zi = dxwi ∈ TpiM induce a variation ẋ = dx z̄ of x,
and if we de�ne z = λiwi, as well as dλ : ei 7→ gradλi, then

L2g〈〈〈HL2g, Z〉〉〉 = 〈〈〈dx,∇x
∗g z̄〉〉〉L2g(TrK⊗x∗TM), (12.17a)

L2ge〈〈〈HL2ge , Z〉〉〉 = 〈〈〈dλ,∇g
e

z〉〉〉L2ge(TrK⊗x∗TM). (12.17b)

To see 12.17a, we take an orthonormal basis Ei = dx yi in divS Z = 〈∇EiZ,Ei〉. Then
we have an integrand of the form 〈α(yi), β(yi)〉 for two linear maps α, β. A computation
in coordinates easily shows that this is 〈α, β〉.
For 12.17b, the computation is even simpler: z = λivi (without summation) for the

gradient vi of λi has derivative ∇z = vi ⊗ dλi, which maps ek to vk, so div z = vii =
〈∇eiz, gradλi〉.

12.18 Proposition. Situation as before. Then HL2g −HL2ge L2 . C ′0,1h(1 + h HL2ge L2).

Proof. Similar to 10.13: The functionals on the right-hand side of 12.17b only di�er
by a factor of 1 + O(C ′0,1h|S|), and the bilinear forms on the left ful�ll |L2g〈U, V 〉 −
L2ge〈U, V 〉| . C ′0h

2 U V , so

HL2g −HL2ge
2
L2g = L2g〈HL2g −HL2ge , HL2g −HL2ge〉
≤ |L2g〈HL2g, HL2g −HL2ge〉 − L2ge〈HL2ge , HL2g −HL2ge〉|

+ |(L2g − L2ge)〈HL2ge , HL2g −HL2ge〉|
. |(d volK̄,g −d volK̄,ge)(HL2g −HL2ge)|

+ C ′0h
2 HL2ge HL2g −HL2ge

. C ′0,1h HL2g −HL2ge (1 + h HL2ge ), q. e. d.
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13. The Manifold-Valued Dirichlet Problem

Goal. Let Nγ and Mg be two smooth compact Riemannian manifolds of dimension
n and m. We have seen in 8.8 that a su�ciently dense generic point set in N gives
us an almost-isometry N → rK, and in 7.14 that smooth functions rK → M can be
interpolated by piecewise barycentric mappings rs → M , s ∈ Kn, that are globally
continuous. Now it is a natural attempt to consider Galerkin approximations e. g. to
the Dirichlet problem in H1(N,M): Suppose N has a Lipschitz boundary that can
be resolved by the triangulation. Given a smooth harmonic function y : N → M , let
x : rK → M be the function that minimises the Dirichlet energy among all functions
that are piecewise barycentric mappings and agree with y at the boundary vertices.
How well is y then approximated by x?
A popular example for such functions y is the minimal submanifold problem: If

S ⊂ M is a minimal submanifold, then the identity mapping S → M is harmonic
(Jost 2011, eqn. 4.8.12). One already sees that to keep the notation consistent among
the chapters, we denote smooth harmonic functions etc. by y and the interpolation in
the sense of 7.6 by x.

Remark. The results presented in this section are generally the same as in Grohs et al.

(2013), but although their interpolation procedure is the same as ours (but including high�
er-order interpolation, see 7.16d), their functional analytic approach is slightly di�erent: They
do not use the distance measure ρ1 and its corresponding Poincaré inequality, but consider
functionals that are (in a weak sense) convex along geodesic homotopies.

The General Galerkin Approach

13.1De�nition. The Dirichlet energy of y ∈ C1(N,M) is

Dir(y) :=
1

2

ˆ

N

|dy|2.

Recall that the norm on TN ⊗ y∗TM induced by γ and g has a representation in local
coordinates uα for N and vi for M as |dy|2 = γαβgijy

i
,αy

j
,β .

13.2Proposition (Dirichlet principle, Jost 2011, eqn. 8.1.13). y ∈ C1(N,M) is a
critical point for Dir with given boundary values i� 〈〈〈dy,∇V 〉〉〉 = 0 for all compactly
supported vector �elds V ∈ X(y∗TM).

Proof. Every compactly supported vector �eld V along y induces a variation yt :=
expy(tV ) of y that does not change the boundary values. By the usual calculus of
variations, d

dt |t=0 Dir(yt) = 〈〈〈dy,Dtdy〉〉〉. So we only have to compute the t-derivative
of dyt = yi,α(t)∂i ⊗ duα with the notation from 1.6. As Dt = ∇V in the usual sloppy
notation and Dt(du

α) = 0, we have at the origin of normal coordinates in N

Dtdyt = Dt(y
i
,α∂i)⊗ duα = V i,α∂i ⊗ duα + yi,α∇V ∂i ⊗ duα

= V i,α∂i ⊗ duα + yi,αV
jΓkij∂k ⊗ duα

On the other hand, regarding 1.6c,

∇V = ∇∂α(V i∂i)⊗ duα = V i,α∂i ⊗ duα + V iyj,αΓkij∂k ⊗ duα, q. e. d.
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13.3 De�nition. <a> For N = rK, let P1(N,M) be the space of piecewise barycentric,
globally continuous mappings (which obviously depends on the simplicial structure and
not only on its manifold structure, but we do not explicitely denote this). Obviously
the domain of Dir can be extended to include also piecewise smooth mappings, so every
v ∈ P1(N,M) has �nite Dirichlet energy.

<b> For a, b ∈M , denote a ∼ b if there is a unique shortest geodesic a; b in M . Say
that x, y : N →M are close of x(p) ∼ y(p) for almost p ∈ N .

<c> On C1(N,M), de�ne the Lr metric ρ0,r and the H1,r �distance measure� ρ1,r by

ρ0,r(x, y) :=
(ˆ
N

dr(x(p), y(p)) dp
)1/r

,

ρ1,r(x, y) :=
(ˆ
N

®
||dpx− Pdpy||r if x(p) ∼ y(p)

∞ else

´
dp
)1/r

,

with the usual modi�cation for r = ∞. We abbreviate ρ0 := ρ0,2 and ρ1 := ρ1,2. Let
H1(N,M) be the completion of C1(N,M) with respect to ρ0 + ρ1.

13.4 Lemma. Let γ be a closed curve in a convex region of M , and let P be the parallel
transport along γ. If C0L

2(γ) < π2, then ||Pγ − id || ≤ 1
2C0L

2(γ).

Proof. The parallel transport is continuous with respect to L∞ convergence in the space
of loops [0; 1]→ M , so it su�ces to show the claim for smooth γ. To �x notation, let
us say γ : [0; 1]→M , γ(0) = γ(1) = p. As this curve lies entirely in a convex region, it
can be represented as γ(t) = expp V (t) with a vector �eld V : [0; 1] → TpM . De�ne a
homotopy c(s, t) := expp sV (t) between γ and the lazy loop. Denote the s-parameter
lines by ct and the t-parameter lines by γs. By 7.8, we have

Pγ − id =

1ˆ

0

1ˆ

0

P 1,t
s R(ċt, γ̇s)P

t,0
s dt ds

The coordinate vectors ċt = ∂sc and γ̇s = ∂tc can be explicitely computed: ∂sc(s, t) =
P s,0t V (t) because ct is a geodesic with initial velocity V (t), and ∂tc(s, t) = Jt(s) for
a Jacobi �eld Jt along ct with values Jt(0) = 0, Jt(1) = γ̇(t) and J̇t(0) = V̇ (t) by
1.16 (any two of these conditions determine Jt uniquely). So we have |ċt| = |V | and
|γ̇s| ≤ |γ̇| because the Jacobi �eld grows monotonously in s, see the proof of 6.3.
Because the parallel transports along γs are isometries, we obtain

||Pγ − id || ≤
ˆ ˆ

C0|ċt| |γ̇s| ≤ C0L(γ) max |V |.

And |V (t)| is the distance from p to γ(t), which cannot be larger than 1
2L(γ), q. e. d.

13.5 Proposition (�triangle inequality�). If x, y, z ∈ C1(N,M) with ρ0,∞(x, y) +
ρ0,∞(y, z) ≤ `, then

ρ1(x, z) ≤ ρ1(x, y) + ρ1(y, z) + 1
2C0`

2 Dir
1/2(z)
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Proof. Pointwise, we have

||dx− P x,zdz|| ≤ ||dx− P x,ydy|| + ||dy − P y,zdz|| + ||P x,z − P x,yP y,z|| ||dz||.

The di�erence between the parallel transports is the holonomy of the loop x ; y ;

z ; x, which is smaller than 1
2C0`

2 by 13.4. Now the claim is a simple application of
Minkowski's inequality in L2(M,R), q. e. d.

13.6Remark. <a> That ρ0,r is indeed a metric is proven with the same argument as the
usual Minkowsky inequality, see e. g. Alt (2006, lemma 1.18). In contrast, 13.5 gives
only a distorted triangle inequality for ρ1. Nevertheless, H1(N,M) can be de�ned as
the completion of C1(N,M) with respect to ρ0 +ρ1, because this term does not disturb
the usual completion construction for metric spaces, see e. g. Alt (2006, no. 0.20), and
we never need to use the triangle inequality explicitely.

<b> Because of
|Dir(x)−Dir(y)| . ρ2

1(x, y)

(the hidden constant comes from the comparison of |dx− Pdy| with ||dx− Pdy||), the
de�nition above ensures that every u ∈ H1(N,M) indeed has �nite Dirichlet energy.
Nevertheless, not all functions with �nite Dirichlet energy are contained in our de�ni�
tion of H1(N,M), but only those that are limits of smooth function sequences. The
usual counterexample is the function u 7→ u

|u| from the unit ball to the unit sphere min�
imises Dir in dimension m ≥ 3 and larger (Hildebrandt et al. 1977, sec. 6; general
regularity theory is given in Schoen and Uhlenbeck 1982). So the usual de�nition
of W1,2(N,M) as

{y ∈W1,2(N,Rk) : y(p) ∈M a. e.},
whereM is embedded in Rk, neccessarily has the drawback that C1(N,M) is not dense
in W1,2(N,M) in dimension 3 and larger (Schoen and Uhlenbeck 1983, sec. 4). In
allusion toMeyers and Serrin (1964), Jost (1988, p. 266) states this as H1(N,M) 6=
W1,2(N,M). By our use of H1(N,M), we restrict ourselves to functions that can be
smoothly approximated. This space is well-suited for approximation questions, but the
wrong one to show existence of solutions. For an overview over di�culties and pitfalls
of the harmonic mapping problem, we refer to the survey of Jost (1988).

<c> Consequently, two functions x, y ∈ C1(N,M) are close i� ρ1(x, y) is �nite.

<d> If x, y ∈ C1(N,M) are close, the geodesics x(p) ; y(p) give rise to a geodesic
homotopy h : x ; y, i. e. a smooth mapping N × [0; 1] → M , (p, s) 7→ hs(p), such
that h0 = x and h1 = y and s 7→ hs(p) is a geodesic for any p. It minimises the energy

E(h) :=

ˆ

N

1ˆ

0

| d
dshs(p)|

2 ds dp

over all homotopies in the same class (Jost 2011, lemma 8.5.1). In fact, E(h) =
ρ2

0(x, y) if h is the geodesic homotopy x ; y and x, y are close, because | d
dshs(p)| is

independent of s in this case. This is also called the L2-width of the geodesic homotopy
(Kokarev 2013, the older literature mostly uses the L∞-width ρ0,∞ from Siegel and
Williams 1984).
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13.7 Proposition (Poincaré inequality). Suppose ∂N is smooth, all Weingarten maps
of ∂N with respect to N are bounded by ||Wν || ≤ κ everywhere, and no point in N has
distance larger than r to ∂N . Then

f 2
L2(N) ≤ 2rCN f 2

L2(∂N) + 4r2 df 2
L2(N) with CN := ermax(κ,

√
C0).

Proof. Without regarding the constants, it would be very easy to reduce this case
to the Poincaré inequality for vanishing boundary values 2.10c. As a very personal
attitude, we would like to circumvent the contradiction argument there. Let us �rst
consider a positive C1 function g : N → R.
As Mantegazza and Mennucci (2003, prop. 3.5) have shown, the distance �eld

d := d( · , ∂N) is C1 except on an (n − 1)-dimensional set S (in fact, they deal with
the distance �eld of an arbitrary submanifold K for boundaryless N , but the case of
K = ∂N is also possible). By the coarea formula (Evans and Gariepy 1992, thm.
3.4.2),

´
g can be computed by integration over the t-level sets N t := {p ∈ N \ S :

d = t}, where points in S can be omitted because it is a null set:

ˆ

N

g =

rˆ

0

( ˆ
Nt

g
)

dt

(note that |gradd| = 1, so there is no additional weighting factor). There are smooth
homotopies ht retracting each level set N t to the boundary, de�ned on a subset N t

0 of
∂N , with ht0 = id and htt(N

t
0) = N t, following the gradient �eld of d. The intermediate

mappings hts cover sets N
t
s ⊂ Ns, and the N t integral can be computed by the funda�

mental theorem of calculus for a(s) =
´
Nts
g as a(t) = a(0) +

´ s
0
ȧ(s) ds. The derivative

of the integrals is composed of the integrand's change along s-lines and the changing
of the volume element:

d

ds

ˆ

Nts

g =

ˆ

Nts

dg(ḣts) +

ˆ

Nts

g trWs,

where ḣts denotes the s-derivative of the homotopy and Ws is the Weingarten operator
of the distance setNs from 1.25b. Here we have used that τ(s) := trWs is the derivative
of the volume element (Karcher 1989, eqn. 1.5.4 or, in a more general setup,Delfour
and Zolesio 2011, eqn. 9.4.17). Now by 1.25b, the function τ(s) obeys τ̇ ≤ C0 − τ2

with initial value τ(0) ≤ κ by assumption. This di�erential inequality delivers us
τ ≤ K := max(κ,

√
C0). (Note that not the absolute value of τ can be bounded, only

τ itself�in fact τ → −∞ where dhts becomes singular.) So we have

d

ds

ˆ

Nts

g ≤
ˆ

Nts

|dg| +K

ˆ

Nts

g

or ȧ ≤ b + Ka with b being the integral over |dg|. This di�erential inequality has the
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supersolution a(0)eKt +
´ t

0
b(s) ds, which hence is a bound for a(t). That means

ˆ

N

g ≤
rˆ

0

a(t) dt ≤ reKr
ˆ

∂N

g + r

ˆ

N

|dg|.

Now for f ∈ H1, let g = f2. The latter term becomes |d(f2)| = 2f |df |, and its integral
is estimated by 2 f df by Hölder. Then apply Young's inequality uv ≤ δu2 + 1

4δv
2

with δ = 1
4r to obtain

r d(f2) L2 ≤ 1
2 f 2

L2 + 2r2 df 2
L2 ,

q. e. d.

13.8Corollary. Situation as before. Suppose x, y ∈ H1(N,M) are close maps with d(x, y)(p)
≤ ε for all boundary points p ∈ ∂N . De�ning C ′N := CN

√
r, it holds ρ0(x, y) .

C ′Nε+ rρ1(x, y).

Proof. Consider the function f := d(x, y) : N → R. It has di�erential df(V ) =
g〈Yy, (dx− Pdy)V 〉 by 7.7, and hence |df | ≤ ||dx− Pdy||, q. e. d.

Remark. <a> The Poincaré inequality in the form above also holds for di�erential
forms, with the covariant derivative on the right-hand side. In fact, consider u ∈ H1Ωk

and f := |u|. Then, because ∇ is metric, |df | = 〈∇u, u〉/|u| ≤ |∇u|.
<b> By the same method of proof, the Poincaré inequality of Kappeler et al. (2003, thm.

0.4) can be signi�cantly shortened. They prove that if N,M are closed and compact and M

has negative sectional curvature, then any two homotopic mappings x, y ∈ C1(N,M) satisfy

ρ0(x, y) . 1 + Dir(x)
1/2 + Dir(y)

1/2.

13.9Situation. For simplicity, we assume N = rK (otherwise, concatenate the results
below with 10.12). Suppose the metric γ of N is piecewise ( 1

2 , h)-small, so that we can
omit the fullness parameter. If y : N → M is a smooth function, we assume that its
piecewise barycentric interpolation x is close to y, which is the case for small enough
C0h

2.

13.10Proposition (Galerkin orthogonality). Situation as in 13.9. Let y ∈ H1(N,M)
be a critical point of Dir with respect to compactly supported variations, and let x ∈
P1(N,M) be a critical point of Dir with respect to variations W ∈ P1Xx as in 12.7 that
vanish at boundary vertices, such that x(pi) = y(pi) on all boundary vertices. Then if
x and y are close,

〈〈〈dx− Pdy,∇W 〉〉〉 = 0 for all W ∈ P1Xx,W |∂N = 0.

Proof. Because x and y are close, the parallel transport induces a bundle isomorphism
x∗TM → y∗TM . Because piecewise smooth vector �elds are in H1 and the variation
on the whole boundary vanishes if it vanishes on the vertices (recall that the barycen�
tric mapping on a subsimplex only depends on the vertices of this subsimplex), we
obtain that PW is an admissible variation �eld along y for all W ∈ P1Xx. Therefore
〈〈〈Pdy,∇W 〉〉〉 = 0 by 13.2, and similarly 〈〈〈dx,∇W 〉〉〉 = 0, q. e. d.
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13.11 Corollary. Situation as before. Then dx− Pdy L2 ≤ infW∈P1Xx dx− Pdy −∇W L2 ,
because dx− Pdy 2 = 〈〈〈dx− Pdy −∇W,dx− Pdy〉〉〉 ≤ dx− Pdy −∇W dx− Pdy .

Approximation Properties of Karcher Triangulation Variations

13.12 Lemma. Situation as in 13.9. Let V be an H1 vector �eld along x. Then for any
i ∈ K0, there is a variation pi(t) of x(ri) such that the vector �eld Ẋi from 12.5
satis�es V − Ẋi L2(si) . h(1 + C0,1h) ∇V L2(si) + C0,1h

2 V L2(si), where si denotes
the star of ri, i. e. the union of all simplices rs with i ∈ s.

Proof. Abbreviate p := x(ri) and write X instead of Xi for the time of the proof. In
the �rst step, let us consider a smooth vector �elds V . Choose the variation of x(ri)
such that ṗ(0) = V |p. Then by 12.5, Ẋ = V at p and hence

(V − Ẋ)|q =

ˆ

γ

P∇γ̇(V − Ẋ) =

ˆ

γ

P∇γ̇V −
ˆ

γ

P∇γ̇Ẋ,

where γ : p; q. The second integral should disappear in the result. By 12.4, we have
|∇γ̇Ẋ| . C0,1h|γ̇| |ṗ|. So we end up with |ṗ|, which is a point evaluation of V and
hence undesired. Express ṗ = V |p = PV |γ(t) −

´
P∇γ̇V , where the integral only runs

from 0 to t. Then

|V − Ẋ|g|q ≤
ˆ
||∇V ||+C0,1h

ˆ (
|V |+

ˆ
||∇V ||

)
. (1+C0,1h)

ˆ

γ

||∇V ||+C0,1h

ˆ

γ

|V |,

Squaring both sides and applying Hölder's inequality as in 7.5b gives
ˆ

si

|V − Ẋ|2 . h(1 + C0,1h)

ˆ

si

||∇V ||2 + C0,1h
2

ˆ

si

|V |2.

So for a smooth vector �eld V , we have constructed an interpolation. The best ap�
proximation in L2 must of course also ful�ll this inequality. And by continuity of the
L2-orthogonal projection, this holds for every vector �eld of class H1, q. e. d.

13.13 Proposition. Situation as in 13.9. Let Q be an H1 section of T ∗N⊗x∗TM . Then there
is some W ∈ P1Xx with Q−∇W L2 . h ∇Q L2 + C0,1h

2 Q . The hidden constant
depends on n, m and |N |.

Proof. It su�ces to show the claim for the L2(N,M) operator norm in the left-hand
side instead of L2 norm:

Q−∇W L2

!

. h ∇Q L2 + C0,1h
2 Q . (13.13a)

In fact, let v be the unit vector �eld on N realising ||Q|| everywhere. Then v ∈
L2(x∗TM) and hence Q 2 =

´
|Q|2 .

´
||Q||2 =

´
|Qv|2 . Q 2 v 2 . Q 2|N |2.

So let us prove 13.13a.
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In any simplex, Q can be applied to vectors ri − rj and their linear combinations.
Choose a norm-preserving H1 extension of Q such that it can also be applied to vectors
ri. Then de�ne, on each star si, a vector �eld Vi := Qri. Then Qv = viVi for any
v ∈ TN |si . Now let Ẋi be the L2 best approximation to −Vi on si. Then( ˆ

|Qv + viẊi|2
)1/2

=
(ˆ

(vi)2|Vi + Ẋi|2
)1/2

≤ vi Vi + Ẋi

. vi
(
h(1 + C0,1h) ∇Vi + C0,1h

2 Vi
)

. v
(
h(1 + C0,1h) ∇Q + C0,1h

2 Q
)
.

Now recall that |Aλ∇dx vẋ+ viẊi| . C0,1h|dx v| |ẋ| from 12.5 in combination with 6.14
and 12.4, and ||Aλ−id || . C0h

2 from 6.16. This gives ∇dx vẋ+ viẊi . C0h
2 ∇dx vẋ +

C0h
2 Ẋi vi . So we have for W := ẋ ∈ P1Xx

∇dx vW −Qv ≤ ∇dx vW + viẊi + viẊi +Qv

. C0,1h
2 v ∇W + h(1 + C0,1h) ∇Q + C0,1h

2 Q .

Because ∇W is almost an L2 best approximation of Q, we have ∇W . Q , which
completes the proof, q. e. d.

13.14Theorem. Situation as in 13.10. Then

ρ0(x, y) + ρ1(x, y) . ρ0,∂N (x, y) + h ∇dy + C ′0,1h,

where the hidden constant depends on m and the geometry of N .

Proof. Applying 13.13 to Q = dx− Pdy, there is W ∈ P1Xx with

dx− Pdy −∇W . h ∇dx−∇Pdy + C0,1h
2 dx− Pdy .

Because C0,1h
2 is assumed to be small, say ≤ 1

2 , we can neglect the latter term. Due
to 6.22, |dx| . C ′0,1h|N |, and ∇Pdy − P∇dy can be shown to be bounded with an
argument like in 7.12 (spelled out in detail, this amounts to a rought L∞ estimate
for d(x, y), which is provable by a suitable modi�cation of the standard �rst-order L∞

estimate as inBraess 2007, p. 89). Then the claim is proven by 13.11 and 13.8, q. e. d.
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D. Outlook

There are several research directions that would naturally continue the course of this
dissertation, but which could not be further investigated due to time constraints:

<1> Whereas the weak formulation and approximation of extrinsic curvature is obvi�
ously bound to the embedding of a submanifold, the weak form of Ricci curvature as
in Fritz (2013) could be formulated intrinsically.

<2> The measure-valued approximation of Lipschitz�Killing curvatures of submani�
folds in Euclidean space from Cohen-Steiner and Morvan (2006) could possibly be
carried over to situations where the surrounding space itself has curvature.

<3> The level set approach (Osher and Sethian 1988, Osher and Fedkiw 2003)
that was used to approximate pde's on surfaces (Dziuk and Elliott 2008), surface
�ows (Deckelnick and Dziuk 2001) or, as combination of both, pde's on evolving
surfaces (Dziuk and Elliott 2013, sec. 8) can directly be carried over to submanifolds.

<4> Assumption 9.20a has to be veri�ed, perhaps under additional conditions. The
testing with P−1 forms in 10.26�28 should be sharpened or at least re-interpreted with
the use of more classical test functions.

<5> Our de�nition of the barycentric mapping x is implicit and needs to know gradi�
ents of the squared distance function d2. The exact computation of geodesic distances
is very expensive, and the task to �nd fast and accurate approximations is a current re�
search problem, cf. Crane et al. (2013), Campen et al. (2013) and references therein.
The use of any of these d2 approximations to compute the barycentric mapping would
lead to a computationally feasible approximation of x.

<6> After this, or restricted to 3-manifolds where geodesic distances can be exactly
computed (or su�ciently well approximated), the minimal surface algorithms from
Brakke (1992), Pinkall and Polthier (1993), Renka andNeuberger (1995), and
Dziuk and Hutchinson (1999) can be applied, for example in hyperbolic three-space
H

3, the product H2 × R of hyperbolic 2-space and the real line, or products with
twisted metrics.

<7> Variational methods in shape space, as have been dealt by Rumpf and Wirth
(2011), can be extended e. g. to the computation of minimal submanifolds (whose
dimension can be freely chosen) or multi-dimensional regression.
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Zusammenfassung

<1> Sei (M, g) eine unberandete, kompakte Riemannsche Mannigfaltigkeit und ∆ das
n-dimensionale Standardsimplex. Für n + 1 gegebene Punkte pi ∈ M betrachten wir
mit Karcher (1977) die Funktion

E : M ×∆→ R, (a, λ) 7→ λ0 d2(a, p0) + · · ·+ λn d2(a, pn),

worin d der geodätische Abstand in M sei. Liegen alle pi in einem hinreichend kleinen
geodätischen Ball, so ist x : λ 7→ argminaE(a, λ) eine wohlde�nierte Funktion ∆→M
(5.3). Wir nennen s := x(∆) das Karcher-Simplex mit Ecken pi. Auf ∆ sei eine �ache
Riemannsche Metrik ge durch Vorgabe von Seitenlängen d(pi, pj) de�niert. Wenn alle
Seitenlängen kleiner als h sind und vol(∆, ge) ≥ αhn für ein α > 0 ist, so zeigen wir
in 6.17 und 6.23

|(x∗g − ge)〈v, w〉| ≤ ch2|v||w|, |(∇x
∗g −∇g

e

)vw| ≤ ch|v||w| (a.1a)

mit einer nur vom Krümmungstensor R von (M, g) und ϑ abhängigen Konstanten c.
Daraus folgen mit wenig Aufwand Interpolationsabschätzungen für Funktionen u : s→
R (7.4) und y : s → N für eine zweite Riemannsche Mannigfaltigkeit N (7.15). Auch
erlaubt diese Simplexde�nition, auf Grundlage der Voronoi-Zerlegung von Leibon und
Letscher (2000) eine Karcher-Delaunay-Triangulierung zu de�nieren (8.7).
Daher können wir im folgenden ganz (M, g) als trianguliert annehmen. Auf jedem

Simplex ist g durch eine Metrik ge mit a.1a approximiert, und schwach di�erenzier�
bare Funktion u ∈ H1(M, g) lassen sich durch stückweise polynomielle uh ∈ P1(M)
approximieren. In der üblichen Weise (Dziuk 1988, Holst und Stern 2012) lassen
sich daher Variationsprobleme wie das Poissonproblem (10.13, 10.17, 13.14) oder die
Hodge-Zerlegung (10.15) in H1(M, g) mit denjenigen in H1(M, ge) und ihren Galer-
kin-Approximationen in P1(M) vergleichen.
Anknüpfend an die gängige Finite-Elemente-Theorie für Probleme auf Untermannig�

faltigkeiten des Rm lassen sich auch Untermannigfaltigkeiten S ⊂ M durch Karcher-
Simplexe approximieren. Der dabei auftretende Geometriefehler ist gleich dem für
Untermannigfaltigkeiten des Rm zuzüglich eines Terms ch2 (11.18).

<2> Sei M die geometrische Realisierung eines simplizialen Komplexes K. Die sim�
pliziale Kohomologie (Ck(K), ∂∗) ist von Desbrun und Hirani (2003, 2005) als diskre-
tes äuÿeres Kalkül (dec) interpretiert worden. Wir de�nieren Räume P−1Ωk ⊂ L∞Ωk

und äuÿere Di�erentiale und geben eine isometrische Kokettenabbildung Ck → P−1Ωk

an (9.11). Damit ist die Berechnung von Variationsproblemen im diskreten äuÿeren
Kalkül auf Variationsprobleme in einem Raum von nicht-konformen Ansatz-Di�er�
entialformen zurückgeführt. Wir untersuchen die Approximationseigenschaften von
P−1Ωk in H1Ωk (9.19, 9.20) und vergleichen die Lösungen von Variationsproblemen
in ihnen (10.26�28).




