
Chapter 9

Averaging integrators for classical

dynamics

In this chapter, we discuss the properties of a given averaging integrator and
present a systematic way to construct not only it but a whole class of novel
averaging methods. To keep in the process the argumentation as simple as pos-
sible, we will base our investigation on a canonical system with time–dependent
Hamiltonian. The properties of the integration schemes under consideration will
be analyzed and illustrated in application to the test system already discussed
in Sec. 4.§1.1.

The integration schemes we are interested in are so–called pointwise and
averaging methods. Roughly speaking, one denotes an integrator “pointwise”
if the force evaluation is done just at discrete times tn, whereas an “averag-
ing” method contains some kind of integration of the force over the time. One
example of an averaging integration scheme is given as classical propagation
part for QCMD 7.2. We will estimate its local and global numerical error for
τ > ε in application to the time–dependent Hamiltonian system and explain
some remarkable effects.

To illustrate the options in constructing this and other averaging integration
schemes, we will present a novel way of deriving such methods. It applies
the previously introduced technique of near–identity–transformations [68, 64]
to the Hamiltonian system, thus, resulting in an averaged system. In fact,
the near–identity transformation separates the slow dynamics from the highly
oscillatory dynamics as seen in Sections 4.§1.1.2 and 4.§1.2.2. One can show that
averaging integrators can be derived by approximating the averaged systems.
This approach gives a novel perspective on the opportunities in the construction
and explains the behavior of the algorithms.

§1 Pointwise and averaging force evaluation

The Hamiltonian system under consideration is given by the time–dependent
and separable Hamiltonian function Hε = Hε(qε, pε, t) and the corresponding
canonical equations of motion

dqε
dt

= ∇pεHε = pε

dpε
dt

= −∇qεHε

with initial conditions

qε(t0) = q∗; pε(t0) = p∗.

The investigation of classical propagation schemes relies heavily on the following
identity for qε:

qε(t+ τ)− 2qε(t) + qε(t− τ) = F τint,ε(qε, t) (9.1)
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78 9. Averaging integrators for classical dynamics

with1

F τint,ε(qε, t) =

−
∫ τ

0

(τ − s)
(

∇qεHε
(
qε(t+ s), t+ s

)
+∇qεHε

(
qε(t− s), t− s

))

ds.

It can be derived from the identity

qε(t+ τ) = qε(t) + τp(t)−
∫ τ

0

(τ − s)∇qεHε
(
qε(t+ s), t+ s

)
ds.

Note, that in the case of QCMD, ∇qεHε is given by

∇qεHε
(
qε(t), t

)
= −

〈

ψε(t),∇qεH
(
qε(t)

)
ψε(t)

〉

.

Let us start our analysis with identity (9.1). Then, the constructing of integra-
tion schemes can be put down to the task of approximating F τint,ε.

§1.1 Pointwise force evaluation

The simplest choice in approximating F τint,ε is to replace the integral with an
evaluation of the integral kernel at time tn:

F τpoint,ε(qε(tn), tn) = −τ2∇qεHε
(
qε(tn), tn

)
.

This yields the following method

qn+1ε − 2qnε + qn−1ε = F τpoint,ε(q
n
ε , tn) (9.2)

q1ε = q∗ + τ p∗ +
1
2F

τ
point,ε(q∗, t0)

where qnε approximates qε(tn).

Remark. This multistep scheme as well as all other methods we are construct-
ing is equivalent to an one–step formulation. It is the velocity version of the
so-called Velocity Verlet algorithm

pn+1/2 = pn +
1

2τ
F τpoint,ε(q

n
ε , tn)

qn+1 = qn + τpn+1/2 (9.3)

pn+1 = pn+1/2 +
1

2τ
F τpoint,ε(q

n+1
ε , tn+1)

with tn+1 = tn + τ . Note that this Velocity Verlet scheme is based on the
introduction of an approximation of the momentum at the half steps tn + 1

2τ :

pn+1/2 =
qn+1 − qn

τ
.

In the following, we will analyze the error between the analytical momentum
pε(tn + 1

2τ) and its approximation pn+1/2 as well.

1A remark on the notation: The analytic force F τ
int,ε(qε, t) integrates over ∇qεHε

(
qε(t), t

)

on the interval [t− τ, t+ τ ]. We explicitly express the fact that qε is evaluated on the whole
interval and not just at one single point tn by writing F τ

int,ε(qε, t) in contrast to the later

introduced pointwise force evaluation F τ
point,ε(qε(tn), tn).
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§1.2 An averaging Verlet scheme

The method presented by M. Hochbruck and Ch. Lubich is based on the
following idea: If the the force term F τint,ε can be solved analytically for a fixed
position qε(tn) and a fixed momentum pε(tn), then one obtains a kind of averag-
ing over the — presumably high frequency — oscillations of the time–dependent
parts of Hε. This yields a method which is pointwise with respect to the classi-
cal location and momentum and averaging with respect to the time–dependent
force terms. In our notation, this means:

F τav,ε(qε(tn), tn) =

−
∫ τ

0

(τ − s)
(

∇qεHε
(
qε(tn), tn + s

)
+∇qεHε

(
qε(tn), tn − s

))

ds. (9.4)

Remark. Note, that the classical forces in QCMD are not given analytically.
This is due to the retroactive character of the QCMD coupling. Thus, the
quantum propagation had to be approximated to obtain an analytically solvable
force integral in (7.2).

Now, the averaged force results in the following iteration

qn+1ε − 2qnε + qn−1ε = F τav,ε(q
n
ε , tn) (9.5)

q1ε = q∗ + τ p∗ +
1
2F

τ
av,ε(q∗, t0).

§2 The highly oscillatory perturbed Hamilto-

nian test system

§2.1 The test system

Let us again consider the dynamics of the particular canonical test system (4.2)
of Sec. 4.§1.1 with time–dependent and separable Hamiltonian function

Hε(qε, pε, t) =
p2ε
2

+ V (qε) + φ(ε−1 t)U(qε). (9.6)

Subsequently, we will assume that the Assumptions (OSC1)–(OSC4) on page 28
hold. They ensure the convergence of the solution to a limit solution (see
Thm. 4.1). For our following numerical analysis, it will be of advantage to
strengthen the restrictions. Therefore we assume that V ∈ C3(Rd) and U ∈ C3(Rd)
with

‖∇jqV ‖ ≤M j
V ‖∇jqU‖ ≤M j

U j = 0, 1, 2, 3.

and the function is φ ∈ C2(R) with

∣
∣
∣
∣

dj

dtj
φ(t)

∣
∣
∣
∣
≤M j

φ j = 0, 1, 2

for all t ∈ R.
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At that point, the reader might question the meaningfulness of this test
system with respect to QCMD. Clearly, the qε–dependence of the frequencies
in the highly oscillatory phases of QCMD is not reproduced by this example.
However, not only is the form of equations similar to the equations of motion of
the classical subsystem but we also have the same convergence properties (cf,
Sec. 4.§1.1 and Chap. 8):

qε → q0 in L∞([t0, T ]);

pε → p0 in L∞([t0, T ]);

q̈ε
∗
⇀ q̈0 in L∞([t0, T ]).

Throughout the chapter, the presented results will be illustrated in applica-
tion to a explicitly given one dimensional oscillator.

Example 9.a (Perturbed harmonic oscillator)

Let us now consider a small but instructive example: a one
dimensional harmonic oscillator perturbed by a highly oscil-
latory force. This example will allow us to numerically repro-
duce the analytically predicted dependencies of the numerical
error with respect to the stepsize τ and to the smallness pa-
rameter ε.

Therefore, we chose the Hamiltonian to be

H(qε, pε, t) =
p2ε
2

+ k
q2ε
2

+ γ sin(ε−1 λt)
q2ε
2
. (9.7)

Precisely, in the numerical calculations let us set γ = 1, λ = 3
and k = 1. The initial conditions for our simulations are
q∗ = 0 and p∗ = 1, the integration time spans from t0 = 1 to
T = 50. Fig. 9.1 presents solutions for ε = 0.5, ε = 0.1 and
ε = 0.01 in phase space diagrams.

§2.2 Failure of the pointwise Verlet algorithm

Let us now analyze the effects of the pointwise Verlet integrator (9.3). In the
one–step velocity formulation, it yields

pn+1/2 = pn − τ

2
∇qV (qn)− τ

2
φ(ε−1 tn)∇qU(qn)

qn+1 = qn + τpn+1/2 (9.8)

pn+1 = pn+1/2 − τ

2
∇qV (qn+1)− τ

2
φ(ε−1 tn+1)∇qU(qn+1)

with tn+1 = tn + τ .

Example 9.b (Perturbed harmonic oscillator—continued)

When applying the pointwise Verlet algorithm (9.8) to our
example system with Hamiltonian (9.7) we obtain for τ >
ε/λ ridiculously wrong trajectories in phase space as can be
seen in Fig. 9.2. Obviously, the numerical solution experi-
ences some resonance effects, which result for certain τ, λ, ε–
combinations in exploding errors.
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Figure 9.1. Phase space diagrams of perturbed harmonic oscillator of Example 9.a.
Solutions for (a) ε = 0.5, (b) ε = 0.1 and (c), (d) ε = 0.01. Fig. (d) is a magnification
of a part of Fig. (c)

The reason for this failure of the pointwise Verlet algorithm is definitely
determined by φ(ε−1 t). Since we cannot expand φ

(
ε−1 (t + s)

)
around φ(ε−1 t)

for τ < ε we have to estimate analogously to Sec. 8.§1,

‖φ
(
ε−1 (t+ τ)

)
− φ(ε−1 t)‖ =

{

O
(
τ
ε

)
for τ ≤ ε,

O (1) for τ > ε.

Let us now estimate the error in the force evaluation under the condition that
the location is given exactly — qnε is in our notation the numerical approximation
to the exact location qε(tn). Thus, we discuss the difference between the RHS
of (9.1) and (9.2) for an exact qε(tn).

Lemma 9.1 Let the assumptions of Sec. §2.1 apply, then the error in the force
evaluation (9.2) yields

‖F τint,ε(qε, tn) − F τpoint,ε(qε(tn), tn)‖ =
{

O
(
τ4

ε2

)

+O
(
τ4
)

for τ ≤ ε,
O
(
τ2
)

for τ > ε.
(9.9)

where the constant on the RHS depends on M j
V ,M

j
U , j = 1, 2, 3, M0

φ, T and

‖q̇∗‖. For τ < ε, the constant additionally depends on M 1
φ and M2

φ.
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Figure 9.2. Phase space diagrams of perturbed harmonic oscillator of Example 9.a
for ε = 0.01. (a) – (d) Calculation with pointwise Verlet algorithm (9.3) (dashed)
for different stepsizes τ .

Remark. Note that in the case of τ > ε the error is of the same order as the
force. That means, the relative error is O(1). Therefore, the defect in the force
evaluation is uncontrollable when the stepsize is not connected to ε.

Proof. The force error is composed of two parts:

‖F τ
int,ε(qε, tn) − F

τ
point,ε(qε(tn), tn)‖

= −
∫ τ

0
(τ − s)

(

∇qεV (qε(tn + s))−∇qεV (qε(tn))

+∇qεV (qε(tn − s))−∇qεV (qε(tn))
)

ds

−
∫ τ

0
(τ − s)

(

φ
(
ε−1 (tn + s)

)
∇qεU(qε(tn + s))− φ

(
ε−1 (tn)

)
∇qεU(qε(tn))

+φ
(
ε−1 (tn − s)

)
∇qεU(qε(tn − s))− φ

(
ε−1 (tn)

)
∇qεU(qε(tn))

)

ds

of which the first integral can be bounded by 1
2τ
4C using

‖∇qεV (qε(tn + s)) +∇qεV (qε(tn − s))− 2∇qεV (qε(tn))‖ ≤ s2 C (9.10)

where C depends on M j
V , j = 1, 2, 3, M1

U , M
0
φ, T and ‖q̇∗‖. For the second

integral, we derive different bounds for the cases

(τ > ε): a bound of τ 2C, where C depends on M1
U and M0

φ, via estimating the
integral kernel to O(1).
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(τ ≤ ε): a bound of τ
4

ε2 C, where C depends on M j
U ,M

j
φ, j = 1, 2, 3, M1

V , T and
‖q̇∗‖, via expanding the highly oscillatory integral kernel.

The collection of these results proves the lemma. ¤

Using a discrete Gronwall type inequality one obtains a statement concerning
the “global” error of the location as well as of the momentum.

Theorem 9.2 Let the assumptions of Sec. §2.1 hold, then the error estimate
of the pointwise Verlet integrator (9.8) yields

‖qε(tn)− qnε ‖ ≤
{

O
(
τ2

ε2

)

+O
(
τ2
)

for τ ≤ ε,
O (1) for τ > ε.

(9.11)

for tn = t0+nτ ; tn ≤ T and where the constant on the RHS depends onM j
V ,M

j
U ,

j = 1, 2, 3, M0
φ, T and ‖q̇∗‖. For τ < ε, the constant additionally depends on

M1
φ and M2

φ.
When using the one–step Velocity Verlet formulation of the scheme, the error

in the momentum at the half–steps is given by

∥
∥
∥pε(tn + 1

2τ)− p
n+1/2

∥
∥
∥ ≤

{

O
(
τ2

ε2

)

+O
(
τ2
)

for τ ≤ ε,
O (1) for τ > ε.

(9.12)

for tn = t0 + nτ ; tn ≤ T and with similar dependencies of the constants.

Remark. Thus, for an ε–independent stepsize τ the overall solution is abso-
lutely unreliable.

To prove this theorem, we will introduce two auxiliary lemmas, which can be
shown easily. The first gives the solution of a certain kind of three–term recur-
rence relation.

Lemma 9.3 The recurrence relation

an+1 − 2an + an−1 = bn for n ≥ 1

is solved by

an+1 = n(a1 − a0) + a1 +

n∑

l=1

(n− l + 1) bl.

The second is a discrete version of Gronwall’s lemma.

Lemma 9.4 Let an and bn be non-negative and ρ ≥ 0. Then

an ≤ ρ+
n−1∑

l=1

bl al for n ≥ 1 and a0 ≤ ρ

lead to the estimate

an ≤ ρ exp

(
n−1∑

l=1

bl

)

.
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Proof of Thm. 9.2. Let us denote for n ≥ 1 the location error in step n
by

∆qn = qε(tn)− qnε

and the momentum error at time tn + 1
2τ by

∆pn = pε(tn + 1
2τ)− p

n+1
ε .

The location error ∆qn obeys a recurrence relation

∆qn+1 − 2∆qn +∆qn−1 = κn (9.13)

where κn represents the difference in the right hand side between (9.1) and (9.2).
The approximate force used in (9.2) contains the defect made in each time step
as well as the error transport. Thus, κn equals

κn = F τint,ε(qε, tn)− F τpoint,ε(qε(tn), tn)
︸ ︷︷ ︸

κn
force

+F τpoint,ε(qε(tn), tn)− F τpoint,ε(qnε , tn)
︸ ︷︷ ︸

κntransp

= κnforce + κntransp .

Note, that we have already analyzed κnforce in Lemma 9.1. The error transport
term κntransp can be estimated by the Lipschitz continuity of ∇qV and ∇qU or
via the bounds on ∇2V and ∇2U

‖κntransp‖ = ‖F τpoint,ε(qε(tn), tn) − F τpoint,ε(q
n
ε , tn)‖

≤ τ2‖∇qεV (qε(tn))−∇qεV (qnε )‖
+τ2|φ(ε−1 tn)| ‖∇qεU(qε(tn))−∇qεU(qnε )‖

≤ τ2Ctransp‖∆qn‖.

where Ctransp depends on M2
V , M

2
U and M0

φ.

Using the result of Lemma 9.3 to obtain the solution to the recurrence rela-
tion (9.13), we get

‖∆qn+1‖ ≤ (n+ 1)‖∆q1‖+
n∑

l=1

(n− l + 1)‖κlforce‖+
n∑

l=1

(n− l + 1)‖κltransp‖

≤ (n+ 1)‖∆q1‖+
n∑

l=1

(n− l + 1)‖κlforce‖
︸ ︷︷ ︸

ρ

+

n∑

l=1

(n− l + 1)τ2Ctransp‖∆qn‖
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since ∆q0 = 0. The assertion of Lemma 9.1 lets us additionally obtain

n∑

l=1

(n− l + 1)‖κlforce‖ ≤ n2max
l
‖κlforce‖

≤
(
(T − t0)

τ

)2

max
l
‖κlforce‖

≤
{

O
(
τ2

ε2

)

+O
(
τ2
)

for τ ≤ ε,
O (1) for τ > ε.

Finally, an application of Gronwall’s Lemma 9.4 finishes the proof of the first
part of our statement:

‖∆qn+1‖ ≤
{

O
(
τ2

ε2

)

+O
(
τ2
)

for τ ≤ ε,
O (1) for τ > ε.

Let us now analyze the momentum error ∆p. The analytical momentum satisfies
the following identity

pε(tn + 1
2τ)− pε(tn − 1

2τ) =

− 12
∫ τ

0

(

∇qεHε
(
qε(t+

1
2s), t+

1
2s
)
+∇qεHε

(
qε(t− 1

2s), t− 1
2s
))

ds.

Its approximation pn+1/2 obeys the iteration:

pn+1/2 − pn−1/2 = 1

τ
F τpoint,ε(q

n
ε , tn).

A combination of the last two equations yields the recursion of the momentum
error ∆p

∆pn+1/2 −∆pn−1/2 =

− 12
∫ τ

0

(

∇qεHε
(
qε(t+

1
2s), t+

1
2s
)
+∇qεHε

(
qε(t− 1

2s), t− 1
2s
))

ds

−1

τ
F τpoint,ε(q

n
ε , tn)

= κ̃nforce + κ̃ntransp.

Analogous to our previous analysis of the location error, we have distinguished
between the force error

κ̃nforce = − 12
∫ τ

0

(

∇qεHε
(
qε(t+

1
2s), t+

1
2s
)
+∇qεHε

(
qε(t− 1

2s), t− 1
2s
))

ds

−1

τ
F τpoint,ε(qε(tn), tn).

and the transported error

κ̃ntransp = −1

τ
F τpoint,ε(qε(tn), tn)−

1

τ
F τpoint,ε(q

n
ε , tn) =

1

τ
κntransp.
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Estimating κ̃nforce similar to the proof of Lemma 9.1 yields

κ̃nforce =

{

O
(
τ3

ε2

)

+O
(
τ3
)

for τ ≤ ε,
O (τ) for τ > ε.

The error recursion of ∆p leads to

‖∆pn+1/2‖ ≤ ‖∆p1/2‖+
n∑

l=1

‖κ̃lforce‖+
n∑

l=1

τCtransp‖∆qn‖.

Making use of our bound on ∆qn finishes the proof. ¤

Remark. Certainly, the estimate

∥
∥
∥
∥
∥

n∑

l=1

(n− l + 1)κlforce

∥
∥
∥
∥
∥
≤

(
(T − t0)

τ

)2

c1

can be sharpened when taking the the oscillatory character of the error κlforce
into account. This can be done according to part (ii) of the proof of Thm. 9.6.
Under exclusion of resonances between stepsize τ and ε it might explain that
sometimes even for τ > ε the pointwise Verlet scheme does not lead to an
exploding error (cf., Fig. 9.5).

Example 9.c (Perturbed harmonic oscillator—continued)

The error in the force term (9.9) as well as the global errors
in the location (9.11) and in the momentum (9.12) can also
be seen in the numerical results of Example 9.a presented
in Figs. 9.3, 9.4, and 9.5. The error in the force term2 was
calculated for a given set of qε, pε and τ . The strongly varying
global error for stepsizes τ larger than ε might be explained
by resonance effects due to the oscillatory character of the
solution.

§2.3 Error estimates for the averaging method

Let us now devote ourself to the averaging scheme (9.5). In the case of the
perturbed Hamiltonian system, the averaging scheme yields

F τav,ε(qε(tn), tn) = −τ2∇qεV (qε(tn))

−∇qεU(qε(tn))

∫ τ

0

(τ − s)
(

φ
(
ε−1 (tn + s)

)
+ φ

(
ε−1 (tn − s)

))

ds. (9.14)

The averaging character of the method with respect to the highly oscillatory
part of the force is easily recognizable. For the following proofs, let us further
restrict Assumption (OSC2) by assuming

2The exact force as well as the exact qε(T ) result from an integration with the averaging
integrator using a stepsize τcomp with τcomp = min{τ · 10−3, ε · 10−2}.
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Figure 9.3. Calculation of Example 9.a via the pointwise Verlet algorithm (9.3) for
ε = 10−2 with varying stepsizes τ . Illustration of the global error of the location
(solid) and the momentum (dashed). Note that for τ > ε the global error gets uncon-
trollable. The exploding error for certain ε, τ combinations can be seen in Fig. 9.2.

(OSC5) the oscillatory function φ has a Fourier series with only finite non-
vanishing coefficients:

φ(x) =

∞∑

k=−∞

exp(ikx)φ̂(k)

with φ̂(k) 6= 0 for finite k.

Remark. For additional gain in universality, Assumption (OSC5) might be
weakened by assuming certain decay properties of the Fourier coefficients.

In our analysis of the numerical error, we will follow closely the approach
of the previous section. In the beginning, let us estimate the force error. We
distinguish again between the error made in each integration step and in the
transported error:

κn = F τint,ε(qε, tn)− F τav,ε(qε(tn), tn)
︸ ︷︷ ︸

κn
force

+F τav,ε(qε(tn), tn)− F τav,ε(qnε , tn)
︸ ︷︷ ︸

κntransp

= κnforce + κntransp .

Lemma 9.5 Let the assumptions of Sec. §2.1 and (OSC5) apply, then we have

‖F τint,ε(qε, tn) − F τav,ε(qε(tn), tn)‖

=

{

O
(
τ4

ε2

)

+O
(
τ4
)

for τ ≤ ε,
O
(
τε2
)
+O

(
ε3
)
+O

(
τ4
)

for τ > ε.
(9.15)

where the constant on the RHS depends on M j
V ,M

j
U , j = 1, 2, 3, M0

φ, T and

‖q̇∗‖. For τ < ε, the constant additionally depends on M 1
φ.
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Figure 9.4. Calculation of Example 9.a via the pointwise Verlet algorithm (9.3) for
ε = 10−3 with varying stepsizes τ . (a) shows the local error in the force evaluation
(error value for τ = ε is indicated with an asterix (*)) whereas (b) illustrates the
global error of the location (solid) and the momentum (dashed). Note that for τ > ε
the force error changes from O(τ4) to O(τ2) whereas the global error gets uncontrol-

lable.

Proof. The force error splits into an error, which depends on the potential
of the limit system V and a remainder.

κnforce = −
∫ τ

0
(τ − s)

(

∇qεV (qε(tn + s))−∇qεV (qε(tn))

+∇qεV (qε(tn − s))−∇qεV (qε(tn))
)

ds

−
∫ τ

0
(τ − s)

(

φ
(
ε−1 (tn + s)

)(

∇qεU(qε(tn + s))−∇qεU(qε(tn))
)

+φ
(
ε−1 (tn − s)

)(

∇qεU(qε(tn − s))−∇qεU(qε(tn))
))

ds

Again, the first integral is bounded by 1
2τ
4C using (9.10). To estimate the

second integral, we distinguish between the two cases

(τ > ε): The second integral can be approximated via

−
∫ τ

0

(τ − s)
(

φ
(
ε−1 (tn + s)

)(

∇qεU(qε(tn + s))−∇qεU(qε(tn))
)

+φ
(
ε−1 (tn − s)

)(

∇qεU(qε(tn − s))−∇qεU(qε(tn))
))

ds

= −∇2qεU(qε(tn))q̇ε(tn)

∫ τ

0

(τ − s)s
(

φ
(
ε−1 (tn + s)

)
− φ

(
ε−1 (tn − s)

))

ds

+O(τ4).

It remains to find a bound on

−
∫ τ

0

(τ − s)s
(

φ
(
ε−1 (tn + s)

)
− φ

(
ε−1 (tn − s)

))

ds.
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Figure 9.5. Calculation of Example 9.a via the pointwise Verlet algorithm (9.3) for
ε = 10−4 with varying stepsizes τ . (a) shows the local error in the force evaluation
(error value for τ = ε is indicated with an asterix (*)) whereas (b) illustrates the
global error of the location (solid) and the momentum (dashed). Again, note the
different regimes of the error for τ < ε and τ ≥ ε.

To this end, we make use of Assumption (OSC5). This yields

−
∫ τ

0

(τ − s)s
(

φ
(
ε−1 (tn + s)

)
− φ

(
ε−1 (tn − s)

))

ds

= −2i
∞∑

k=−∞

φ̂(k) exp(ikε−1 tn)

∫ τ

0

(τ − s)s sin(kε−1 s) ds

= −2i
∞∑

k=−∞

φ̂(k) exp(ikε−1 tn)

(

2
ε3

k3
− ε2τ

k2
sin(kε−1 τ)− ε3

k3
cos(kε−1 τ)

)

= O
(
ε2τ
)
+O

(
ε3
)

(9.16)

where the hidden constants are highly oscillatory and depend on M j
U ,

j = 1, 2, M0
φ, M

1
V , T and ‖q̇∗‖.

(τ ≤ ε): we derive a τ4

ε2 C bound, where C depends onM j
U , j = 1, 2, 3,M0

φ,M
1
φ,M

1
V ,

T and ‖q̇∗‖.

Collecting all these estimates leads to the stated result. ¤

Theorem 9.6 Given the assumptions of Lemma 9.5, one obtains

(i)

‖qε(tn)− qnε ‖ ≤







O
(
τ2

ε2

)

+O
(
τ2
)

for τ ≤ ε,
O
(
ε2

τ

)

+O
(
ε3

τ2

)

+O
(
τ2
)

for τ > ε.

for tn = t0 + nτ ; tn ≤ T and where the constant on the RHS depends
on M j

V ,M
j
U , j = 1, 2, 3, M0

φ, T and ‖q̇∗‖. For τ < ε, the constant

additionally depends on M1
φ.
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When using the one–step Velocity Verlet formulation of the scheme,
the error in the momentum at the half–steps is given by

∥
∥
∥pε(tn + 1

2τ)− p
n+1/2

∥
∥
∥ ≤

{

O
(
τ2

ε2

)

+O
(
τ2
)

for τ ≤ ε,
O
(
ε
τ

)
+O (ε) +O

(
τ2
)

for τ > ε.

for tn = t0 + nτ ; tn ≤ T .

(ii) If we additionally exclude resonances between stepsize and frequencies: let

for all m ∈ Z and for all k with φ̂(k) 6= 0 be

∣
∣
∣
∣

τk

ε
− 2πm

∣
∣
∣
∣
≥ a > 0,

then the error is

‖qε(tn)− qnε ‖ ≤







O
(
τ2
)
+O

(
τ3

ε2

)

for τ ≤ ε,
O
(
ε2
)
+O

(
ε3

τ

)

+O
(
τ2
)

for τ > ε.

Using the one–step Velocity Verlet formulation, the error in the mo-
mentum at the half–steps yields

∥
∥
∥pε(tn + 1

2τ)− p
n+1/2

∥
∥
∥ ≤

{

O
(
τ2
)
+O

(
τ3

ε2

)

for τ ≤ ε,
O (ε) +O (ετ) +O

(
τ2
)

for τ > ε.

for tn = t0 + nτ ; tn ≤ T .

for tn = t0 + nτ ; tn ≤ T with analogous dependencies of the constant.

Remark. The reader might note, that we have to deal with three different
regimes as shown in Fig. 9.6.

(1) A region where τ < ε and the method is of orderO(τ 2). Here, the asymptot-
ical analysis works and the classical order of convergence is obtained.

(2) For large stepsizes ζε < τ , the O(τ 2)-terms become the dominant error
driving parts. Interestingly, the major error term is equal to the error
in a pointwise Verlet approximation of the limit system. (This can
be explained through the analysis in the following section.) Thus, the
error of calculating a highly oscillatory problem almost fully reduces to
the error of numerically solving the corresponding limit system (4.3).

(3) An intermediate region (ε < τ < ζε) where the O(τ 2)–error of approxi-
mating the limit system is smaller than the O(ε2) or O(ε)–terms of
the location or momentum error, respectively. In this regime, reduc-
ing the stepsize does not imply a reduced global error: the error is
dominated by a “plateau” of order O(ε2) or O(ε), respectively. Notice,
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Figure 9.6. Abstract scheme of the global errors (solid line) of the averaging algo-
rithm with respect to the stepsize τ in the calculation of system (4.2). Note the three
regimes for τ < ε, ε < τ < ζε and ζε < τ . The global error of the Verlet integrator
applied to the limit system (4.3) is pointed out with a dashed line.

that such an intermediate region does only occur in cases, where the
O(ε2) or O(ε)–terms are large with respect to the magnitude of the
O(τ2)–terms. Thus, it is much more likely that it will be apparent in
the global error of the momentum than of the location.

The reader might notice that this behavior of the error when changing from
τ < ε to ε > τ is similar to the “Hump” in the integration of stiff singularly
perturbed problems (cf., Chap. VI of [45]).

Example 9.d (Perturbed harmonic oscillator—continued)

The stepsize dependence of the error in the force term as well
as the global error of the averaging scheme is numerically
illustrated in application of Example 9.a presented in Figs.
9.7 and 9.8. Here, the momentum error shows for all values
of ε an intermediate region in the sense of (3). The global
error of the location does not exhibit such a property. Here,
the O(ε2)–terms seem to be too small to dominate the error.

A question that remains concerns the magnitude of the com-
puted plateaus. Subsequently, our constructive approach will
show, that the plateaus are, in fact, strongly connected with
modelling errors. To illustrate this, we have analyzed the er-

ror of a discrete solution (qn0 , p
n+1/2
0 ) computed via the point-

wise Verlet algorithm in application to the limit model (4.3)
(called limit Verlet in the following) with respect to the exact
solution (qε(tn), pε(tn + 1

2τ)) of the full model (4.2)

‖qε(tn)− qn0 ‖ and ‖pε(tn + 1
2τ)− p

n+1/2
0 ‖. (9.17)
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Figure 9.7. Calculation of Example 9.a via the averaging Verlet algorithm (9.5) for
ε = 10−3 with varying stepsizes τ . (a) shows the local error in the force evaluation
(error value for τ = ε is indicated with an asterix (*)) whereas (b) illustrates the
global error of the location (solid ) and the momentum (dashed ). The existence of a
plateau in the sense of (3) is clearly visible for the error in the momentum propagation.

As shown in Fig. 9.9, the error of the discrete limit solu-
tion becomes constant for small stepsizes. This indicates the
modelling part of the error: we did not solve the correct equa-
tions. For large stepsizes, the error grows with τ 2. Here, the
discretization error becomes dominant.

Now, comparing this error with the error of the averaging
Verlet scheme, we see that for large τ the error is identical
to the error of the discrete solution of the limit model. That
confirms, that the O(τ 2)–term in the global error arises from
the discretization of the limit model.

Moreover, the plateau of the momentum error (as in Figs. 9.7
and 9.8) exactly coincides with the modelling error of the
discrete solution of the limit model. This gives a strong hint,
that these plateaus result from modelling errors. The order
of ε of the error plateaus is analyzed in Fig. 9.10.

Before proving Thm. 9.6 we consider an auxiliary lemma.

Lemma 9.7 Let |τω/ε− 2πm| > a > 0 for all m ∈ Z. Then

∣
∣
∣
∣
∣

n∑

l=1

exp
(

i l
τω

ε

)
∣
∣
∣
∣
∣
<

2

1− cos(a)
(9.18)

Remark. Note, that this bound does not dependent on n.

Proof.
∣
∣
∣
∣
∣

n∑

l=1

exp
(

i l
τω

ε

)
∣
∣
∣
∣
∣
=

∣
∣
∣
∣

1− exp(i n τω
ε )

1− exp(i τωε )
exp

(

i
τω

ε

)
∣
∣
∣
∣
=

∣
∣
∣
∣

1− exp(i n τω
ε )

1− exp(i τωε )

∣
∣
∣
∣
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Figure 9.8. Calculation of Example 9.a via the averaging Verlet algorithm (9.5) for
ε = 10−4 with varying stepsizes τ . (a) shows the local error in the force evaluation
(error value for τ = ε is indicated with an asterix (*)) whereas (b) illustrates the
global error of the location (solid) and the momentum (dashed). Again, the global
error of the momentum exhibits a plateau for ε < τ < ζε.

Since |1− exp(i n τω
ε )| < 2 and since |1− exp(i τωε )| > 1− cos(a)

for | τωε − 2πm| > a > 0 we proved the lemma. ¤

Proof of Thm. 9.6. The proof for case (i) is analogous to the proof of
Thm. 9.2. Let us therefore focus on the main differences if resonances between
stepsize and frequencies are excluded. It allows us to improve our estimate for
‖∑n

l=1(n− l + 1)κlforce‖. Consider therefore again κlforce = ρl +O(τ4) with

ρl = −2i∇2qεU(qε(tl))q̇ε(tl)
︸ ︷︷ ︸

al

·

·
∞∑

k=−∞

φ̂(k) exp(ikε−1 tl)

(

2
ε3

k3
− ε2τ

k2
sin(kε−1 τ)− ε3

k3
cos(kε−1 τ)

)

︸ ︷︷ ︸

bl

= al bl.

Using partial summation yields

m∑

l=1

ρl =

m∑

l=1

al bl = Bmam −
m−1∑

j=1

Bj∆aj ,
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Figure 9.9. Calculation of Example 9.a using the averaging Verlet algorithm (9.5)
and calculation of its limit system via the limit Verlet algorithm. (a) Global error of
the averaging Verlet algorithm ‖qε(tn)−qne ‖ (solid line) and global error ‖qε(tn)−qn0 ‖
(dashed line) with respect to the stepsize τ . (b) Global error of the momentum of

the averaging Verlet algorithm ‖pε(tn +
1
2
τ) − p

n+1/2
ε ‖ (solid line) and global error

‖pε(tn +
1
2
τ)− p

n+1/2
0 ‖ (dashed line) with respect to the stepsize τ .

with Bj =
∑j
l=1 bl and ∆aj = aj+1 − aj . Application of Lemma 9.7 results in

an estimation of |Bj |

|Bj | ≤
∞∑

k=−∞

∣
∣
∣
∣
φ̂(k)

(

2
ε3

k3
− ε2τ

k2
sin(kε−1 τ)− ε3

k3
cos(kε−1 τ)

)

exp(ikε−1 t0)

∣
∣
∣
∣
·

·
∣
∣
∣
∣
∣

j
∑

l=1

exp(iε−1 l k τ)

∣
∣
∣
∣
∣

≤
∞∑

k=−∞

∣
∣
∣
∣
φ̂(k)

(

2
ε3

k3
− ε2τ

k2
sin(kε−1 τ)− ε3

k3
cos(kε−1 τ)

)

exp(ikε−1 t0)

∣
∣
∣
∣
·

· 2

1− cos(a)

≤ O(ε2τ) +O(ε3)

under the assumptions given. Furthermore, we can approximate

∆aj = aj+1 − aj = O(τ)

and obtain therefore, with m = O( 1τ ),
∥
∥
∥
∥
∥

m∑

l=1

ρl

∥
∥
∥
∥
∥
≤ ‖Bm am‖+

m−1∑

j=1

|Bj | ‖∆aj‖

≤ O(ε2τ) +O(ε3).

Finally, this leads us to
∥
∥
∥
∥
∥

n∑

l=1

(n− l + 1)ρl

∥
∥
∥
∥
∥
=

∥
∥
∥
∥
∥

n∑

m=1

m∑

l=1

ρl

∥
∥
∥
∥
∥
≤ O

(
ε2
)
+O

(
ε3/τ

)
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Figure 9.10. Calculation of Example 9.a via the averaging Verlet algorithm (9.5).
Magnitude of error plateau in the momentum error for some ε (+) and least square
fit (solid line). Note, that the gradient of the least square fit indicates an O(ε) error

plateau.

and therefore proves via the Gronwall Lemma the statements of (ii) concerning
the error in the location. The error in the momentum is analyzed in a corre-
sponding way. ¤

§2.4 Conclusion

The error analysis has revealed, that the pointwise Verlet scheme is generally
unreliable for stepsizes τ larger than the smallness parameter ε. In contrast,
the averaging Verlet inherits the asymptotic convergence to an integrator of the
limit solution. Thus, it is a reliable method even for τ > ε (cf., Fig. 9.11).
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Figure 9.11. Calculation of Example 9.a via (a) the pointwise Verlet and via (b)
the averaging Verlet algorithm (9.5) for ε = 10−2 and with varying stepsizes τ .
Illustrated is the global error of the location (solid) and the momentum (dashed).
Only the averaging scheme ensures a reliable result for τ > ε.
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§3 Novel construction technique for averaging

methods

In this chapter, an essentially new perspective on averaging algorithms and their
construction is presented. It separates the averaging effect from the numerical
approximation leading to an integration scheme. The result — algorithmic prop-
erties can in some sense be handled independently from the averaging character
of the method — opens up a wide variation of possible numerical integrators.

The main idea of this ansatz is the introduction of averaging near–identity–
transformations on the Hamiltonian system (Sections 4.§1.1.2 and 4.§1.2.2). The
resulting transformed system is later approximated with classical methods of nu-
merical analysis. After transforming back, one obtains an averaging integrator
of the original system.

The construction is presented here in application to the perturbed Hamilto-
nian test system corresponding to (9.6) with the assumptions made in Sec. §2.1,

dqε
dt

= ∇pεHε = pε

dpε
dt

= −∇qεHε = −∇qεV (qε)− φ(ε−1 t)∇qεU(qε). (9.19)

The adiabatic limit of this system,

dq0
dt

= ∇p0H0 = pε

dp0
dt

= −∇q0H0 = −∇q0V (q0),

has been analyzed in Sec. 4.§1.1 in a weak* topology and by using the averaging
transformations. Therefore, we refer to Sec. 4.§1.1.2 for a detailed overview over
the first near–identity–transformation.

§3.1 First near–identity–transformation

Let us apply a canonical transformation to (9.19) with generating function S1
of (4.8). Via the rules of canonical transformations [1, 97],

xε = ∇yεS1 = qε

pε = ∇qεS1 = yε − εg(ε−1 t)∇qεU(qε),

one obtains the defining equations of the new location xε and momentum yε.
The canonical equations of motions in the transformed variables are

ẋε = yε − εg(ε−1 t)∇xεU(xε)

ẏε = −∇xεV (xε) + εg(ε−1 t)∇2xεU(xε). (9.20)

Note, that only the momentum is transformed via an averaging correction
term of order O(ε). Obviously, the transformed system is the limit system
perturbed with a highly oscillatory O(ε)–perturbation.
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§3.2 Second near–identity–transformation

This time, the canonical transformation is given through the generating function
S2:

S2(xε, Pε, t) = PTε xε − ε2G(ε−1 t)∇xεU(xε)Pε.

Again, we obtain the equations for the new conjugated variables Qε and Pε via

Qε = ∇PεS2 = xε + ε2G(ε−1 t)∇xεU(xε)

yε = ∇xεS2 = Pε + ε2G(ε−1 t)∇2xεU(xε)Pε.

Since the equation for Pε is implicit, we might approximate

Pε = yε − ε2G(ε−1 t)∇2xεU(xε)yε +O(ε4).

The canonical equations of motion for Qε and Pε are the following

Q̇ε = Pε +O(ε2)
Ṗε = −∇QεV (Qε) +O(ε2).

We see, the two times transformed system approaches for ε → 0 even faster
to the limit solution as the once transformed system. This time, we a have
averaging correction terms of order O(ε2) for both conjugated variables. The
transformed system in the new variables consists now of the limit system with
an O(ε2)–perturbation.
Remark. At that point, we could continue transforming the system to higher
orders in ε.

§3.3 Approximation of the transformed equations

The transformed variables average the highly oscillatory dynamics of the original
system. But what happens, if we use an approximation in these transformed
variables. Can we still return to our initial variables? Let us introduce the
following notation based on the equations for Qε and Pε

Q̇ε = Pε + ε2RQ(Qε, Pε, t) RQ(Qε, Pε, t) = O(1)
Ṗε = −∇QεV (Qε) + ε2RP (Qε, Pε, t) RP (Qε, Pε, t) = O(1).

Some calculus yields

Qε(tn ± τ) = Qε(tn)±
∫ τ

0

Pε(tn + s)ds−
∫ τ

0

∫ s

0

∇QεV
(
Qε(tn ± ξ)

)
dξds

+ε2
∫ τ

0

∫ s

0

RP

(

Qε(tn ± ξ), Pε(tn ± ξ), tn ± ξ
)

dξds

±ε2
∫ τ

0

RQ

(

Qε(tn ± s), Pε(tn ± s), tn ± s
)

ds

It is easy to see, that for finite times, the solution Qε is connected to the limit
solution q0 via

Qε = q0 +O(ε2τ).
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Figure 9.12. Schematical overview over the construction of averaging integrators
given in Sec. §3.

Now, a symmetriced formula for Qε(tn + τ) reads

Qε(tn + τ)−Qε(tn) +Qε(tn − τ) =

−
∫ τ

0

∫ s

0

(

∇QεV
(
Qε(tn + ξ)

)
+∇QεV

(
Qε(tn − ξ)

))

dξds

+ Terms of order O(ε2τ) and O(ε2τ2).

Transforming the equation back to qε and pε with the help of

qε = Qε − ε2G(ε−1 t)∇qεU(qε).

results in

qε(tn + τ)− qε(tn) + qε(tn − τ) =
−ε2G(ε−1 (tn + τ))∇qεU(qε(tn + τ))

+2ε2G(ε−1 tn)∇qεU(qε(tn))

−ε2G(ε−1 (tn − τ))∇qεU(qε(tn − τ))

−
∫ τ

0

∫ s

0

(

∇qεV
(
qε(tn + ξ)

)
+∇qεV

(
qε(tn − ξ)

))

dξds

+ Terms of order O(ε2τ) and O(ε2τ2).

Obviously, we obtain an implicit method when neglecting the terms of order
O(ε2τ) and O(ε2τ2). To circumvent this, we might approximate the first three
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terms on the RHS:

−ε2G(ε−1 (tn + τ))∇qεU(qε(tn + τ))

+2ε2G(ε−1 tn)∇qεU(qε(tn))

−ε2G(ε−1 (tn − τ))∇qεU(qε(tn − τ))

= −∇qεU(qε(tn))

∫ τ

0

(τ − s)
(

φ
(
ε−1 (tn + s)

)
+ φ

(
ε−1 (tn − s)

))

ds

+O(ε2τ).

Finally, we might apply the following two approximation steps:

1. neglecting all O(ε2τ) and O(ε2τ2) terms and

2. using an O(τ4) approximation for

−
∫ τ

0

∫ s

0

(

∇qεV
(
qε(tn + ξ)

)
+∇qεV

(
qε(tn − ξ)

))

dξds.

= −τ2∇qεV
(
qε(tn) +O(τ4).

and we obtain the averaging integrator (9.5):

qε(tn + τ)− qε(tn) + qε(tn − τ) =

−∇qεU(qε(tn))

∫ τ

0

(τ − s)
(

φ
(
ε−1 (tn + s)

)
+ φ

(
ε−1 (tn − s)

))

ds

−τ2∇qεV
(
qε(tn)

+O(ε2τ) +O(ε2τ2) +O(τ4).

Remark. Apparently, the averaging integrator (9.5) is based solely on the limit
solution plus the O(ε2)–correction term of the location. The correction terms
of the momentum are not included into the construction of this integrator.
The error plateau in the location error is therefore connected to the neglected
O(ε2τ) +O(ε2τ2)-terms.

Obviously, one might construct integrators of higher order in τ for τ À ε by
using higher order approximations in 2.. With these methods at hand, one can
also analyze theO(ε) plateau in the momentum error function. The construction
of an enhanced integration scheme by explicitly using the O(ε)–correction term
of the momentum might yield O(ε2) error plateaus.
Remark. Note, that in the case of the QCMD model the highly oscillatory
phase depends itself on qε in contrast to our highly oscillatory test problem,
where the phase is analytically given. However, one can try to improve the
schemes by using higher order approximations with respect to the phase func-
tion in the sense of Sec. 8.§1. Unfortunately, the possibility to increase the
order of the approximation of the phase function is limited by the order of the
approximation of qε.


