
Chapter 8

Algorithms for almost adiabatic

dynamics

This chapter deals with the case, that the smallness parameter ε becomes very
small but does not vanish. The asymptotical effects of ε → 0 on the QCMD
model have been discussed previously in Chapters 4 and 5. We saw that under
some assumptions on the spectral decomposition of the Hamiltonian H(q) in
(2.9) (Assumption (E3) on page 39) the solution of the QCMD model converges
to a solution of the Born-Oppenheimer model.

In approaching the limit ε → 0, the dynamics becomes adiabatic. In the
limit solution the highly oscillatory character of the QCMD solution vanishes:
the classical motion is only determined by the eigenvalues of H(q) and by the
initial populations.

To illustrate this, let us recapitulate the asymptotic properties of QCMD un-
der Assumption (E3). The quantum wave function ψε is only weak* convergent1

for ε→ 0 :

ψε
∗
⇀ 0 in L∞([t0, T ])

whereas the classical location qε and momentum pε converge strongly:

qε → q0 in L∞([t0, T ]); pε → p0 in L∞([t0, T ]).

However, the forces q̈ε converge as well only in a weak* sense

q̈ε
∗
⇀ q̈0 in L∞([t0, T ]).

Nevertheless, for ε small but finite, the phase of the quantum wave function
ψε oscillates with very high frequencies — the frequencies correspond to ε−1 .
Most common integrators are restricted to the region of linear stability, that is,
they resolve every oscillation, thus requiring a stepsize adapted to the highest
frequency of the system.

§1 Approximating highly oscillatory phases

Let us be more precise on the stepsize restriction due to the high–frequency
oscillation: Let us assume for a moment, that the exact classical location q0 of
the Born–Oppenheimer model is given.

In Sec. 5.§3, the wave function ψε of the quantum subsystem is under the
exclusion of energy level crossings (Assumption (E4) on page 44) expanded as

ψ(t) =
∑

λ

√

θλ∗ exp
(
− iε−1 φλ0 (t)

)
eλ(q0(t)) +O(ε).

1see Thm. III.1 in [13]
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74 8. Algorithms for almost adiabatic dynamics

where φλ0 denotes the Born–Oppenheimer phase function,

φλ0 (t) =

∫ t

0

Eλ(q0(s))ds,

and θλ∗ the initial population of energy level Eλ.
Hence, for computing the leading order in ε of the wave function ψε, we just

have to deal with the integration error when approximating the phase function
φλ0 . Let φ̃

λ
0 (τ) denote an approximation of order βint to the integral

φ̃λ0 (t)−
∫ t

0

Eλ(q0(s))ds = O(τβint), βint ≥ 0

where 1 > τ > 0 denotes some stepsize.
Now, the approximation of the Born-Oppenheimer phases exp(−iε−1 φλ0 ) re-

sults in the following error

∥
∥
∥exp (−iε−1 φλ(t))− exp(−iε−1 φ̃λ(t)

∥
∥
∥ =

{

O
(
τβint

ε

)

for τβint ≤ ε,
O (1) for τβint > ε.

where we have used, that the LHS is, in fact, bounded by 2 as well. To get an
error which vanishes with ε→ 0, we have to satisfy the following condition

τβint ≤ ε.

That is, the higher the order of the integration, the larger the stepsize allowed.
But note, an ε–independent stepsize, that is an O(1)–stepsize, is —whatever
βint we choose— not permitted without risking an uncontrolled error for ε→ 0.

We have learned from this example that a possible concept in the construc-
tion of long–stepsize methods is the use of high–order approximations of the
phase functions. Unfortunately, this can be very costly itself for in a realistic
situation also the location q0 is only approximatively given.

The question arises whether there are other methods allowing for stepsizes
much larger than the smallness parameter ε:

τ À ε.

Obviously, the problems in approximating the wave function originate from the
weak* convergence of ψε.

We can obtain strongly convergent variables in the quantum subsystem if
we consider the populations θλε and the corresponding phase functions φλε ,

θλε → θλ∗ in L∞([t0, T ]), φλε → φλ0 in L∞([t0, T ]),

for ε→ 0 . Therefore, a derivation of large–stepsize integrators based on qε, pε, θ
λ
ε

and φλε seems to be possible. Such a restriction onto qε, pε, θ
λ
ε and φλε might be

justified because many reduced models describing almost adiabatic dynamics —
cf., surface hopping algorithms as in Sec. 5.§4 — just do rely on the population
dynamics and not on the phase of the wave function. The following section
will reveal, what concept we have in mind in the construction of appropriate
large–stepsize integrators.
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§2 Inheriting asymptotic dynamics

In the construction of large–stepsize methods for almost adiabatic dynamics,
we are guided by the following idea: our knowledge of the asymptotic behavior
of the model should allow for the creation of integrators, which inherit exactly
this asymptotic behavior of the model.

Let us illustrate this idea for a simplified model. Consider a family of dy-
namical systems with strongly converging solution uε : R→ Rd for ε→ 0 :

uε → u0 for ε→ 0 in L∞([t0, T ]); uε(t0) = u∗.

Denote the analytic flow of the dynamical systems for a step with stepsize τ
by Φτε . The limit system is given by u0 : R → Rd, u0(t0) = u∗ and its flow
Φτ0 . Now, let us abstractly consider an integration method Ψτ

ε approximating
the analytic flow Φτε , and assume that the former obeys the same asymptotic
behavior as the model,

Φτε u∗ − Φτ0 u∗ = O(εβ1) with β1 > 0

Ψτε u∗ −Ψτ0 u∗ = O(τα1) +O(εβ2) with α1 > 0

Ψτ0 u∗ − Φτ0 u∗ = O(εα2) with α2 > 0

where Ψτ0 denotes the numerical approximation of the flow of the limit system.
This means, for fixed stepsize τ and ε → 0 the propagator Ψτ

ε becomes an
integration scheme Ψτ

0 of the limit flow Φτ0 . A diagram showing the convergence
properties might then look like

α1α2min(     ,     ) β2β1min(     ,     )Ο(ε             ) + Ο(τ             )

α2Ο(τ    )

β2

α1
Ο(ε    )
+ Ο(τ    )

Ψε
τ

β1Ο(ε    )

Φ0
τ Ψτ

0

Φε
τ

τ → 0

ε → 0

The local error of the method Ψτ
ε with respect to Φτε can be derived via the

asymptotic limit using a triangle inequality. This yields

Ψτε u∗ − Φτε u∗ = O
(

τmin{α1,α2}
)

+O
(

εmin{β1,β2}
)

.

or, with the stepsize τ coupled to ε by

τ = εγ , γ > 1,

one obtains for the local error

Ψτε u∗ − Φτε u∗ = O
(

εmin
{
γmin{α1,α2},min{β1,β2}

})

.

It becomes evident that a method Ψτ
ε with β2 > 0 converges for ε → 0 to an

integration scheme Ψτ
0 of the limit dynamics. Moreover, the method allows for

stepsizes τ À ε without exploding error.
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This example illustrates that the construction of integrators in the case of
very small ε should be guided by the intrinsic asymptotic behavior of the model
equations.

Remark. Clearly, this example draws a simplified picture. Not only it re-
quires a strongly converging solution but assumes furthermore Ψτ

εu∗ −Ψτ0u∗ =
O(τα1) + O(εβ2) which might not be possible to satisfy. Still, it gives a good
impression of our motives in the development of techniques for ε→ 0 .

Remark. The reader might note, that only a strongly converging solution
was required. No assumption on the convergence of the time derivatives of the
solution have been made.

However, this example does not only present the idea of inheriting the asymp-
totic dynamics. Additionally, it outlines the construction of those methods in
three steps:

1. First, the limit dynamics of the model has to be discovered. This
can be done by the methods described in Chap. 4. In the case of our
example above: one analyzes Φτε u∗ − Φτ0 u∗.

2. In a second step, an appropriate numerical integrator Ψτ
0 for the limit

dynamics Φτ0 must be selected.

3. By transforming the limit system back, using the transformation tech-
nique used in 1., one obtains higher order correction terms in ε to the
limit solution. The discretization of those is added to the discretization
of the limit system.

Finally, one obtains a method which might have the promising properties of the
integrator Ψτε of our illustrative example.

This approach governs, essentially, the construction of averaging integrators
in the next chapter.


