
Chapter 7

Exponential Integrators

§1 Evaluating the matrix exponential

In the previous chapter, we were obstructed by the requirement to find exactly
symmetric approximations to exp(−iτH/(2ε)). If we consider as well approxi-
mations, which are not precisely symmetric, we are free to take advantage of the
superior efficiency of iterative methods for evaluating the matrix exponential.
In the following, we will compare three different approaches. Furthermore, these
iterative methods will allow for the construction of very elaborated numerical
schemes.

Chebyshev approximation The well known expansion of exp(−iτH/ε) into
Chebyshev polynomials Tk [111] is one of the most frequently used integration
technique in numerical quantum dynamics:

exp(− i
ε H τ)ψ(t) ≈∑N

k=1 αk(ρτ)Tk(− i
εH)ψ (7.1)

with appropriately chosen coefficients αk and an estimate ρ for the spectral
radius of the Hamiltonian H. Eq. (7.1) can be evaluated with N matrix–vector
products, since the Tk are given via the Chebyshev recurrence relation. This
technique allows for large stepsizes if the truncation index N is chosen large
enough. The degree N necessary for achieving a specific accuracy depends
linearly on the stepsize τ and the spectral radius of H. The author and his
coworkers analyzed the numerical stability of (7.1) and developed an adaptive
stopping criterion for the iteration based on the decay of the coefficients αk
[88, 58, 59].

Krylov approximation of the matrix exponential The iterative approx-
imation of the matrix exponential based on Krylov subspaces (via the Lanczos
method) has been studied in different contexts [52, 91, 29]. After the itera-
tive construction of the Krylov basis {v1, . . . , vn}, the matrix exponential is
approximated by using the representation A of H(q) in this basis:

exp
(
− iτε H(q)

)
ψ ≈ V exp

(
− iτε A

)
V ∗ψ, with V = [v1, . . . , vn].

The evaluation of exp(−iτA/ε) is cheap since A is tridiagonal.
In [55], an efficient residual error estimation scheme has been introduced for

controlling the quality of the approximation. This gives us a stopping criterion
for the iteration guaranteeing that the quality of the approximation fits to the
accuracy requirements of the stepsize control.

In most cases, this Lanczos–based technique proves to be superior to the
Chebyshev method introduced above. It is the method of choice for application
problems with only a few eigenstates of H(q) being occupied. The Chebyshev
method is superior only in the case that nearly all eigenstates of the Hamiltonian
are substantially occupied.
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§2. Exponential schemes for QCMD 67

However, using the Lanczos iteration for evaluating the matrix exponen-
tial produces two eventual drawbacks. Firstly, the iteration does not use any
of the information gathered in the last step. But if the eigenvectors undergo
only minor changes from step to step, some approximate eigenvectors of the
last step may be used as good initial choices for the next iteration. This idea
can be realized by using Block-Lanczos iteration instead of the pure Lanczos
scheme. The second drawback is important if the motion under consideration
is nearly adiabatic and only a few, let us say m, eigenstates are occupied. By
approximating these eigenstates in a Krylov basis with typically d > m basis
vectors, the Lanczos scheme necessarily introduces (small) artificial populations
of other than the m states occupied. From time step to time step, this will lead
to an artificial and unwanted blow-up of the dimension of the occupied subspace.

Subspace-controlling iteration methods Out of this observation we also
have studied some subspace-controlling algorithms. In these approaches, we
do not try to construct an (eventually large) basis set for transforming the
Hamiltonian into a form appropriate for an efficient evaluation of the matrix
exponential. Instead of this, we directly approximate a (small) basis set for the
relevant (small) subspace. Only then, the matrix exponential is computed using
this basis. In the course of the iteration, appropriate error estimates control
whether the subspace dimension has to be increased or may be reduced. Mainly
two techniques were tested in order to evaluate the basis set: a simultaneous
minimization of the Rayleigh quotient in the subspace via an appropriately pre-
conditioned conjugate gradient iteration [26] and a multi grid approach to the
eigenvalue problem as introduced in [23]. Both techniques prove to be superior
to the Lanczos approach for nearly adiabatic problems with very few eigen-
states occupied. But they quickly get inefficient if a non–adiabatic excitation of
previously unimportant states is essential.

§2 Exponential schemes for QCMD

In [53, 54], M. Hochbruck and Ch. Lubich have proposed a bunch of in-
tegrators, which take the highly oscillatory character of the wave function into
account. More precisely, they have focused on methods which do not depend on
stepsize restrictions due to large bounds on spatial derivatives of the solution.
That means for a spatially discretized system, that the bound on TN does not
influence the error terms of the time discretizations proposed. Understandably,
the integration methods have surprisingly complicated convergence properties
depending on resonances and spatial regularity of the solution.

In the following, assume, that

(N1) the potential and its derivations are bounded by

‖∇jV (q)‖ ≤ Lj j = 0, 1, 2,

(N2) the Hamiltonian is smoothly diagonizable,

H(q) = Q(q)E(q)Q(q)T , E(q) = diag
(
Eλ(q)

)
,

with ‖∇qQ(q(t))‖ ≤ L∗.
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§2.1 Pointwise Verlet

First of all, M. Hochbruck and Ch. Lubich have analyzed the global error
of the symmetric method (6.7) using the Velocity Verlet and exponential inte-
gration methods to solve the quantum propagation. They found that for not
sufficiently regular solutions, method (6.7) becomes inefficient for its modest
convergence properties:

Theorem 7.1 (Thm. 4.1 of [54]) Let Assumptions (N1) and (N2) hold and
additionally let H(q(t)) be positive semidefinite for all t and let there exists
0 < α ≤ 2 such that

‖H(q(t))αψ(t)‖ ≤ Cα, 0 ≤ t ≤ T.

Then, the error of the method (6.7) is bounded by

‖qn − q(tn)‖ ≤ C τα

‖ψn − ψ(tn)‖ ≤ C τα,

for 0 ≤ tn ≤ T . The constant C depends only on Cα, ‖q̇∗‖, L1, L2, and T .

Obviously, the error term is influenced by the highest essentially occupied eigen-
value ofH(q). If the solution is sufficiently regular, that means, that ‖H(q(t))ψ‖
is comparably small, this theorem recapitulates an O(τ) error estimation.

§2.2 Enhanced integrators

Inspired by the identity

qε(t+ τ)− 2qε(t) + qε(t− τ) =

−
∫ τ

0

(τ − s)
(

〈ψ,∇qεV (q)ψ〉
∣
∣
∣
(t+s)

+ 〈ψ,∇qεV (q)ψ〉
∣
∣
∣
(t−s)

)

ds.

M. Hochbruck and Ch. Lubich suggested an integration scheme for the
classical subsystem, which takes advantage of the iterative solvers described
above:

qn+1 − 2qn + qn−1 = −
∫ τ

0

(τ − s)
(
fn(s) + fn(−s)

)
ds.

fn(s) = −〈φn(s)∇qV (qn)φn(s)〉 (7.2)

φn(s) = exp
(

−is
ε
H(qn)

)

ψn

q1 = q∗ + τ q̇∗ +

∫ τ

0

(τ − s)f0(s) ds.

The integral averages over the approximated quantum evolution exp
(
−i sεH(qn)

)
ψn

whereas the classical force is evaluated only at qn. It is an intriguing point, that
the integral in (7.2) may be evaluated explicitly and can efficiently be com-
puted via the exponential methods introduced above. For a description of the
algorithmic realization, we refer to [54].
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In a second step, an elaborated third–order–scheme for the quantum propa-
gation based on the variation–of–constants formula has been derived. We define

Jn± =
1

ε

∫ 1/2

0

exp

(

− isτ
ε
H(qn)

)
(
sH ′n ± 1

2s
2τH ′′n

)
exp

(
isτ

ε
H(qn)

)

ds

where H ′n and H ′′n are finite difference approximations of the first and second
time derivatives of H at qn using the values of H(qn+1), H(qn) and H(qn−1),
respectively.1 Now, variation–of–constants leads to

ψn = (I + iτ2Jn−) exp

(

− iτ
2ε
H(qn)

)

ψn−1/2 +O(τ4),

ψn = (I + iτ2Jn∗+ ) exp

(

− iτ
2ε
H(qn)

)

ψn+1/2 +O(τ4).

A symmetric and norm–conserving scheme for the quantum propagation can be
derived by a small modification. Combined with the averaging Verlet scheme
(7.2), one obtains a third–order method with very promising convergence results

ψ1/2 = exp

(

− iτ
2ε
H(qn)

)

exp
(
−iτ2Jn∗+

)
ψn

Averaging
Verlet







pn+1/2

qn+1

pn+1

=

=

=

pn −
∫ τ

0
(τ − s)

(
fn(s) + fn(−s)

)
ds

qn + τpn+1/2

pn+1/2 −
∫ τ

0
(τ − s)

(
fn+1(s) + fn+1(−s)

)
ds

(7.3)

ψ1 = exp
(
iτ2Jn+1−

)
exp

(

− iτ
2ε
H(qn+1)

)

ψ1/2.

Theorem 7.2 (Thm. 4.2 of [54]) Let Assumptions (N1) and (N2) hold, then
method (7.3) satisfies

‖qn − q(tn)‖ ≤ C τ2

‖ψn − ψ(tn)‖ ≤ C τ2,

for 0 ≤ tn ≤ T . The constant C depends only on ‖q̇∗‖, L0, L1, L2, L∗, and T .

For the proof and hints on a favorable implementation see [54]. Intriguingly,
bounds on TN or on ‖H(q(t))ψ‖ do not enter the error term. Thus, neither the
order of convergence nor the constant in front of the leading error term does
depend on the regularity of the solution.

Unfortunately, the use of Krylov subspaces to approximate Jn± cannot be
recommended since the definition of Jn± contains not only H(qn) but also ap-
proximations of d/dtH(qn) and d2/dt2H(qn). Generally, these matrices do not
commute. Therefore, there is no low–dimensional Krylov subspace in which we
can accurately approximate Jn±.

Fortunately, there exists an implementation via the Chebyshev approxima-
tion to the exponential as described in [54]. However, up to now, the usefulness

1Apparently, this yields an implicit method. To circumvent this, see the implementation
given in [54].
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of this method for high–dimensional systems could not be shown for the lack of
experience on application problems.

Giving up the requirement of error bounds completely independent of the
norm of TN , one can apply methods based on a truncated Magnus series for the
quantum propagation [54]:

ψn+1/2 = exp

(

− iτ
2ε
Sn+

)

ψn

ψn+1 = exp

(

− iτ
2ε
Sn+1+

)

ψn+1/2

using the Hermitian matrix

Sn± = H(qn) +
1

2
τH ′n +

1

6
τ2H ′′n +

i

12
τ2
(
H(qn)H ′n −H ′nH(qn)

)

where we have used the previously defined approximations on the time deriva-
tives of H. Again, very promising convergence results for this third–order
scheme are presented in [54].

§3 Adaptive Methods

Adaptive Stepsize Control We have to pay a price for the advantages of
previously described symplectic and symmetric methods: The stepsize τ has to
be constant during the simulation, because, up to now, there is no appropriate
strategy for efficiently controlling the stepsize without destroying the “structural
stability”. This means, that the overall stepsize has to be reduced until it
satisfies the accuracy requirements during the whole integration period. In
many real life applications of QCMD, the dynamical behavior of the solution can
change dramatically during the course of the simulation (collisions, excitation
processes). In principle, one would like to make large time steps where “nothing
important happens” and small ones where it is necessary to resolve important
processes, i.e., the stepsize should be adapted to the accuracy wanted. The
conceptual framework [22, 43] requires the control of the approximation error
in each time step via choosing the stepsize with respect to a given accuracy
requirement. That is, the stepsize is controlled in a way which bounds the local
approximation error by a given tolerance TOL.

The local error in the step from time t to t + τ , i.e., the error, which is
produced by calculating a discrete solution in this step instead of exactly solving
the QCMD equations, is given as follows:

ετ (t+ τ) = Φτp z(t)− exp(τLH) z(t),

where exp(τLH) z(t) denotes the exact solution of the QCMD model and Φτp
the discrete evolution of order p and with stepsize τ , for example the map given
by (6.7).

Unfortunately, this local error ετ cannot be calculated, since we do not know
the exact solution to the QCMD equations. The clue to this problem is given
by the introduction of an approximation to ετ . Let us consider another discrete
evolution Φτq with an order q > p and define an error estimation ε̂τ via ε̂τ (t+τ) =
Φτp z(t)− Φτq z(t).
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The control scheme tries to choose the stepsize τ so that ‖ε̂τ‖ = TOL in
some adequate norm. In case of a tolerance exceeding error, i.e., for ‖ε̂τ‖ >
TOL, one reduces the stepsize according to

τnew = p+1
√

ρ TOL/‖ε̂τ‖ τold. (7.4)

with an additional safety factor ρ < 1. The same formula is used in order to
predict a proper stepsize for the next step. Problems can arise, when the error
approaches zero. We cope with them by restricting the allowed increase of the
stepsize.

For realizing (7.4), we need an adequate norm for measuring the error. It
obviously makes no sense to use an Euclidean norm of z indiscriminately of
quantum and classical parts. We advocate the use of a scaled norm in the
classical subsystem and the usual 2-Norm for the quantum part:

‖ε̂τ (t)‖ =

√

‖ψ(t)− ψ̂(t)‖22 +
∣
∣
∣
∣

q(t)− q̂(t)
max(q(t), smin)

∣
∣
∣
∣

2

+

∣
∣
∣
∣

p(t)− p̂(t)
max(p(t), smin)

∣
∣
∣
∣

2

,

where ψ, q and p denote the results of Φτq and ψ̂, q̂ and p̂ that of Φτq . A threshold
value smin > 0 avoids an exploding error for locations or momenta close to zero.

The error estimate approximates the error of the propagation with the less
accurate method Φτp . Nonetheless, the next step is started with the more precise
result of Φτq .

We are now concerned with the selection of two integration methods of differ-
ent order. A first idea – which we are not advocating – is to use the Pickaback
integrator (6.6) as Φτq together with a first order scheme based on the Trotter
formula (6.4) replacing Φτp . Recalling that the stepsize of these methods are
dominated by the splitting of exp(−iτH/ε), we actually foresee the effect of
such an adaptive method. The scheme correctly resolves the dynamical behav-
ior but forces the stepsize to remain restricted to the order of the inverse of the
largest eigenvalue of the Hamiltonian.

A more convincing approach leads to an adaptive method based on the
symmetric second order scheme (6.7). As a first step, we have to introduce a
first order scheme substituting Φτp of the previous section. In what follows, we
use the following pair of schemes:

2nd order
symmetric scheme
as Φτq







ψ1/2

q1/2

p1

q1

ψ1

=

=

=

=

=

exp
(
−i τ2εH(q0)

)
ψ0

q0 +
τ
2p0

p0 − τ 〈ψ1/2, DqV (q1/2)ψ1/2〉

q1/2 +
τ
2p1

exp
(
−i τ2εH(q1)

)
ψ1/2

For comparison:
1st order
Euler scheme
as Φτp







ψ̂1

q̂1

p̂1

=

=

=

exp
(
−i τεH(q0)

)
ψ0

q0 + τp0

p0 − τ 〈ψ1/2, DqV (q̂1)ψ1/2〉

(7.5)
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Since it is known [44], that the usual stepsize control mechanism destroys the
reversibility of the discrete solution we may use iterative methods for evaluating
the matrix exponential.

Obviously, a combination the enhanced exponential schemes of Sec. §2.2 with
the concept of adaptivity is very interesting. However, up to now no simulations
have been conducted using such advanced methods.

Illustration To illustrate the presented methods, we have applied them to
a photo dissociation process of a collinear ArHCl molecule (see Fig. 7.1).
The photo dissociation is modeled via a transition of the bounding Hydrogen-
Chlorine ground state into a repulsive excited state. The Hydrogen starts os-
cillating between Argon and Chlorine transferring more and more kinetic en-
ergy to the Argon atom. Using Jacobi coordinates and reduced masses, the
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Figure 7.1. Collinear ArHCl system with the Jacobi-coordinates used.

Hydrogen-Chlorine interaction is modeled quantum mechanically whereas the
Ar–HCl interaction classically. The potentials used, initial data and additional
computational parameters are listed in detail in [87].

When analyzing the adaptive Verlet integrator, we observe that the stepsize
control just adapts to the dynamical behavior of the classical subsystem. The
internal (quantal) dynamics of the Hydrogen-Chlorine subsystem does not lead
to stepsize reductions.

As pointed out before, it seems to be unreasonable to equip the Pickaback
scheme with a stepsize control, because, as we indeed observe in Fig. 7.2, the
stepsize never increases above a given level. This level depends solely on the
eigenvalues of the quantum Hamiltonian.
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Figure 7.2. Stepsize τ used in the simulation of the collinear photo dissociation of
ArHCl: the adaptive Verlet-based exponential integrator using the Lanczos iteration
(dash-dotted line) for the quantum propagation, and a stepsize controlling scheme
based on Pickaback (solid line). For a better understanding we have added vertical
lines marking the collisions (same tolerance TOL). We observe that the quantal H-Cl
collision does not lead to any significant stepsize restrictions.


