
Chapter 6

Structure Conserving Integration

Schemes

§1 The structure of QCMD

In this section, we will review the properties of the QCMD solution with the aim,
to pass as many as possible of these properties to the numerical approximation.

§1.1 Conservation of Energy

The total energy of the full quantum system (2.8) in the state Ψ is given by

HQD(Ψ) = −1

2
〈Ψ,∆xΨ〉 −

ε2

2
〈Ψ,∆qΨ〉+ 〈Ψ, VΨ〉.

Inserting the two approximation steps leading to QCMD (separation and WKB
limit), we get

HQD(Ψ) = HQD(Ψ⊗) +O(δ)

= 〈ψQC, H(t)ψQC〉 −
ε2

2
〈φS ,∆qφS〉+O(δ + ε)

with the time-dependent Hamilton operator H = − 12∆x + V (·, q(t)) and the

semi-classical wave function φS(q, t) = a(q, t) exp
(
iS(q,t)
ε

)

. Remember, that

a2(·, t) is an approximate δ-function at position q(t) and that the relation (3.8)
gives us ∇qS(q(t), t) = p(t). This allows to derive (see [14] for details)

HQD(Ψ) = 〈ψQC, H(t)ψQC〉+
1

2
|p(t)|2 +∆HQD(t) +O(δ + ε), (6.1)

where the term

∆HQD(t) =
ε2

2
〈∇qa(·, t),∇qa(·, t)〉

represents the zero-point energy or self energy of the heavy “classical” particle.
This self energy remains nearly constant in time. Since ∆HQD is part of the
quantum mechanical description of the “classical” particle, it is reasonable to
view the function

HQC(t) = 〈ψQC, H(t)ψQC〉+
1

2
|p(t)|2

as the natural total energy for the QCMD system (2.9). This energy is easily
seen to be a conserved quantity:

dHQC

dt
= 〈ψQC, ḢψQC〉+ pṗ+ 〈ψ̇QC, HψQC〉+ 〈ψQC, Hψ̇QC〉

︸ ︷︷ ︸

=0

= 〈ψQC,∇qV ψQC〉q̇ + q̇ṗ

= 0.

60



§2. Liouville formalism 61

Thus, the quantum mechanical energy decomposes up to small terms into the
energy HQC of the QCMD model and the initial self energy of the “classical”
particle. Since HQC is conserved the numerical simulation of the QCMD model
should reproduce this conservation property.

§1.2 Canonical Hamiltonian Structure

For the purpose of QCMD simulations, it is extremely helpful to note that the
QCMD system (2.9) constitutes a canonical system with respect to the energy
HQC, i.e., that the evolution of (2.9) is symplectic. To this end we decompose
the Hamilton operator

H = Hs + iHa

into the selfadjoint and skew adjoint part and the wave function

ψQC =
1√
2ε

(qψ + ipψ) (6.2)

into a scaled real and imaginary part. Now, introducing the generalized position
QN = (qψ, q)

T and generalized momentum PN = (pψ, p)
T the energy reads as

HQC = HQC(QN ,PN ) =
1

2ε
(〈qψ, Hsqψ〉+ 〈pψ, Hspψ〉+ 2〈pψ, Haqψ〉) +

1

2
|p|2.

A simple formal calculation shows, that the corresponding canonical equations

Q̇N =
∂

∂PN
HQC, ṖN = − ∂

∂QN
HQC

are just another form of writing the QCMD system (2.9).

§2 Liouville formalism

Since we have discovered the underlying Hamiltonian structure of the QCMD
model we are able to apply methods commonly used to construct suitable numer-
ical integrators for Hamiltonian systems. Therefore we transform the QCMD
equations (2.9) into the Liouville formalism. To this end, we introduce a new
state z in the phase space, z = (QN ,PN )T , and define the nonlinear Liouville
operator LHQC

zi = {zi,HQC}, using the common Poisson brackets { , }. This
permits us to denote the QCMD equations (2.9) in the form ż = LHQC

z. The
formal solution can now be written as

z(τ) = eτLHQC z(0). (6.3)

At this point we may apply well-known approximation techniques. For each
decomposition of HQC, i.e., HQC = H1 + H2 + . . . , the corresponding Lie-
generator decomposes accordingly

LHQC
= LH1

+ LH2
+ . . . .

Using splitting schemes of the exponential function allows for a generation of
numerical integrators. For example [112, 108]:

eτ(LH1
+LH2

) = eτLH1 eτLH2 +O
(
τ2
)

(6.4)

eτ(LH1
+LH2

) = e
τ
2
LH1 eτLH2 e

τ
2
LH1 +O

(
τ3
)
, (6.5)
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which can easily be extended to higher orders [120].
Note, that the choice of the Hk crucially influences the properties of the

resulting integrator.

§3 Symplectic Integrators

A well-known property of symplectic integrators is the conservation of the total
energy within a very accurate deviation range even for long term simulations. It
can be shown that symplectic integrators in application to Hamiltonian systems
solve a system corresponding to a modified Hamiltonian with a small stepsize-
dependent perturbation [42]. This leads to a “quasi conservation” of some first
integrals, so that, for example, the total energy of the discrete solution oscillates
around its initial value with a small amplitude that decreases with the stepsize
used (cf. Fig. 6.1). This “structural stability” makes symplectic integrators
superior for long term simulations.
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Figure 6.1. Total energy (in kJ/mol) versus time (in fs) for different integrators for a
collinear collision of a classical particle with a harmonic quantum oscillator (for details
see Sec. 3.§3). Dashed line: Nonsymplectic scheme. Dotted: Symplectic integrator of
first order. Solid: Pickaback (symplectic, second order).

A convenient and constructive approach to attain symplectic maps is given
by the composition of symplectic maps, which yields again a symplectic map.
For appropriate Hk, the splittings (6.4) and (6.5) are exactly of this form: If
the Hk are Hamiltonians with respect to the whole system, then the exp(τLHk)
define the phase flow generated by these Hk. Thus, the exp(τLHk) are sym-
plectic maps on the whole phase space and the compositions in (6.4) and (6.5)
are symplectic maps, too. Moreover, in order to allow for a direct numerical
realization, we have to find some Hk for which either exp(τLHk) has an analytic
solution or a given symplectic integrator.

§3.1 An explicit and symmetric scheme

We decompose HQC into a kinetic and a potential term:

HQC = H1 +H2 with H1 =
|p|2
2

+ 〈ψ, TN ψ〉 and H2 = 〈ψ, V (q)ψ〉.

As shown in [87], the two corresponding flow maps, exp(τLH1
) and exp(τLH2

),
can be represented analytically. Using the second order Strang splitting (6.5),
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we derive an integration scheme which is explicit, symplectic and symmetric.
This scheme was denoted Pickaback emphasizing the interwoven structure of
the partial steps.

qn+1/2 = qn +
τ

2
pn

ψn+1/2 = exp
(

− i τ
2ε
TN

)

ψn

pn+1 = pn − τ
〈
ψn+1/2, DqV (qn+1/2)ψn+1/2

〉

ψn+1 = exp
(

− i τ
2ε
TN

)

exp
(

− i τ
ε
VN (qn+1/2)

)

ψn+1/2

qn+1 = qn+1/2 +
τ

2
pn+1. (6.6)

A main advantage of Pickaback is its reliability. But the reader might notice,
that the splitting of the quantum propagator exp(−i τ2εH) restricts the stepsize
to the order of the inverse of the largest eigenvalue of H. Thus, the overall time
steps are connected to the shortest significant period of phase oscillation in the
quantum subsystem – demanding more evaluations of the pure classical forces
than required by the classical motion itself. In order to circumvent the problem
we consider multiple time stepping methods.

§3.2 Symplectic multiple time stepping

An intriguingly simple idea for reducing the number of pure classical force eval-
uations is given by multiple time stepping methods [89]. (A symmetric multiple
time stepping scheme is given in [101]). It copes with the different time scales of
classical and quantum degrees of freedom by splitting the quantum propagation
in some small “substeps”. Therefore, consider the following decomposition of
HQC

HQC = H1 +H2 with H1 =
p2

2
and H2 = 〈ψ,H(q)ψ〉.

Now, subdivide exp (τLH2
) instead of making one single step:

exp
(
τLHQC

)
= exp

(τ

2
LH1

)

exp
( τ

m
LH2

)

· · · exp
( τ

m
LH2

)

︸ ︷︷ ︸

m times

exp
(τ

2
LH1

)

+

+O
(
τ3
)
.

Unfortunately, there is no analytical solution to the equations corresponding to
H2. Thus, we have to find a symplectic, second order approximation exp(τ LH2

/m).
Two major possibilities have been discussed in [89]: The further application of
a splitting scheme and a discretization via the implicit midpoint rule. Using the
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first approach yields

qn+1/2 = qn +
τ

2
pn ,

m times

k = 1 . . .m







ψ̂k/j

pk/j

ψk/j

= exp
(
− i
ε
τ
2m TN

)
ψ(k−1)/j

= p(k−1)/j − τ
m

〈
ψ̂k/j , DqV (qn+1/2)ψ̂k/j

〉

= exp
(
− i
ε
τ
2m TN

)
exp

(
− i
ε
τ
m V (qn+1/2)

)
ψ̂(k−1)/j

q1 = qn+1/2 +
τ

2
p1 .

The splitting of the quantum propagator in exp(τ LH2
) negatively effects the

efficiency of the scheme especially if ε is small, i.e., if the quantum oscillation are
much faster than the classical motion and the numberm of substeps is becoming
inefficiently large. Moreover, the efficiency depends strongly on the regularity of
the wave function ψ. Data with large norms of ‖Hαψ‖ yield a loss of accuracy
as can be seen from [60, 54]:

∥
∥
∥
∥
∥
exp(−iτH)ψ −

(

exp

(

− iτ

2m
T

)

exp

(

− iτ
m
V

)

exp

(

− iτ

2m
T

))m

ψ

∥
∥
∥
∥
∥

≤ Cτ
( τ

m

)α

‖Hαψ‖

for α ∈ [0, 2] and a positive definite H = T + V .

§4 Symmetric Integration Schemes

In addition to the conservation properties of QCMD its equations of motion
possess another important geometric structure by being time reversible. As
shown in [44], the application of symmetric integrators to reversible problems
yields the solution of a perturbed but again reversible problem. Hence, all the
characteristics which are connected to reversibility are structurally inherited if
the discretization scheme is symmetric.

The splitting technique, introduced above for the construction of symplectic
schemes, is also adequate for symmetric ones. Now, the only condition is that
we have to split eτLHQD symmetrically. To this end, let us consider the Liouville
generator for the Hamiltonian H from above:

LHQD
= (∇qHQD)

T∇p − (∇pHQD)
T∇q

︸ ︷︷ ︸

LclH

+(∇qψHQD)
T∇pψ − (∇pψHQD)

T∇qψ
︸ ︷︷ ︸

LqmH

decomposing as LHQD
= LclH+LqmH , with LclH acting on the classical coordinates

and LqmH acting on the quantum subsystem only. This permits to produce
symmetric schemes via, for example, the second order Strang splitting:

eτLHQD = e
τ
2
LqmH eτL

cl
H e

τ
2
LqmH +O

(
τ3
)
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Using the symmetric Velocity Verlet algorithm for integrating exp(τLclH) yields:

ψn+1/2 = exp
(

− i τ
2ε
H(qn)

)

ψn

Velocity
Verlet







pn+1/2

qn+1

pn+1

=

=

=

pn − τ
2

〈
ψn, DqV (qn)ψn

〉

qn + τpn+1/2

pn+1/2 − τ
2

〈
ψn+1DqV (qn+1)ψn+1

〉

ψn+1 = exp
(

− i τ
2ε
H(qn+1)

)

ψn+1/2. (6.7)

The question remains how to evaluate exp(−iτH(qn)/(2ε))ψ while retaining
the symmetric structure. In the next chapter we will introduce some iterative
techniques for evaluating the matrix exponential but the approximative charac-
ter of these techniques will in principle destroy the symmetry. However, these
techniques allow for the construction of very efficient and quasi–symmetric in-
tegrators for the QCMD equations.


