
Chapter 4

Adiabatic limits

Subsequently, we will study the limit equations governing the QD and QCMD
solutions for the adiabatic limit, that is, the dynamics for ε =

√

m/M → 0, in
which the motions in the degree of freedom x are infinitely faster than the slow
processes in the classical coordinate q. Note, that the preceding justification of
QCMD does not reveal the adiabatic limit of QCMD.

We restrict ourselves to finite-dimensional Hilbert spaces making H a Her-
mitian matrix as described in §4.1 So, what is the limit dynamics of (2.8) and
(2.9) for ε→ 0 , respectively? Before we address this question, we examine some
ways to compute the adiabatic limit. A variety of analytical concepts yield the
correct limit behavior, but differ in the required assumptions as well as in the
possibility to compute first order correction terms. However, since the construc-
tion of numerical integrators in the Chapters 8 and 9 is strongly influenced by
the analysis of the adiabatic limit, an inspection of the methods as well as the
QCMD limit will be of great advantage.

§1 Three methods to compute the adiabatic limit

Before we state the convergence results for QD and QCMD in the case ε→ 0 , we
will present three approaches to compute the adiabatic limit of a given system.

1. A convergence analysis in a weak* topology offers a very convenient
way to compute the adiabatic limit. A short overview over the tech-
nique is given in Appendix 10.

2. So–called near–identity or averaging transformations have been evolved
from the “method of averaging” by Krylov and Bogoliubov [68] and
were generalized later [84]. A detailed overview over near–identity–
transformations can be found in [64].

3. A transformation on rotating axes explicitly constructs a mapping
onto a coordinate system moving in time. For the case of the time–
dependent Schrödinger equation in Sec. §1.2, this method is presented
in [77].

To illustrate the techniques, we will apply them to two examples: a highly
oscillatory perturbed Hamiltonian system and the quantum adiabatic theorem,
originating from work of Born and Fock [12, 62, 77]. Since both examples
will be cited throughout this work, we will focus on the differences between the
analytical concepts in the assumptions required and in the statements resulting.

1For a generalization with respect to the infinitely dimensional case of the results presented
in this chapter, see [13].
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28 4. Adiabatic limits

§1.1 The highly oscillatory perturbed Hamiltonian test

system

Consider the dynamics of a canonical system in the variables qε, pε : R → Rd
perturbed by a highly oscillatory force. The Hamiltonian system under consid-
eration is defined by the time–dependent and separable Hamiltonian function
Hε = Hε(qε, pε, t)

Hε(qε, pε, t) =
‖pε‖2
2

+ V (qε) + φ(ε−1 t)U(qε). (4.1)

with initial conditions qε(t0) ∈ Rd, pε(t0) ∈ Rd. The corresponding canonical
equations of motion are given by

dqε
dt

=
∂Hε
∂pε

= pε

dpε
dt

= −∂Hε
∂qε

. (4.2)

Subsequently, assume that

(OSC1) the potentials V and U are differentiable: V ∈ C1(Rd) and U ∈ C1(Rd)
and the derivatives are locally Lipschitz continuous,

(OSC2) the function φ ∈ C(R) is continuous with d
dtg(t) = φ(t) and φ(t/ε) as

well as g(t/ε) are uniformly bounded for all 0 < ε < ε0,

(OSC3) the energy Hε is uniformly bounded for finite times t ∈ [t0, T ],

|Hε(qε(t), pε(t), t)| < E∗, ∀ 0 < ε < ε0,

(OSC4) and that the initial values converge uniformly for ε→ 0 ,

qε(t0)→ q∗ pε(t0)→ p∗.

Remark. Note, that Assumption (OSC2) requires some kind of oscillatory
character of the function φ.

Remark. Assumption (OSC3) is very restrictive. It is used to obtain uniform
bounds on qε, pε and q̈ε. It can be omitted, if we require that ∇qV and ∇qU
are globally Lipschitz continuous instead of only locally Lipschitz continuous
(OSC1). Then, uniform bounds on qε, pε and q̈ε result from a Gronwall lemma
for “second order” differential inequalities (cf, [102, Lemma 4.49]).

Theorem 4.1 Let Assumptions (OSC1) – (OSC4) apply. Then the location qε
converges uniformly qε → q0 for ε→ 0 in C([t0, T ]). The limit q0 is given by the
solution of

q̈0 = −∇qV (q0), q0(t0) = q∗. (4.3)
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§1.1.1 Proof of Thm. 4.1 in a weak* topology

The proof is given in three steps. At first, we find some a priori uniform bounds
on qε, q̇ε and q̈ε by making use of the bound of the energy: Since Hε is bounded,
we obtain a bound on q̇ε for finite times t ∈ [t0, T ]. Through integration, we
derive a bound on qε and finally via (4.2) a bound on q̈ε

qε, q̇ε, q̈ε = O(1).

An application of the extended Arzelà-Ascoli Theorem 10.7 as well as the
Banach–Alaoglu Theorem 10.5 yields for a subsequence {ε′} with ε′ → 0

qε′ → q0 in C
(
[t0, T ],Rd

)
(4.4)

q̈ε′
∗
⇀ q̈0 in L∞

(
[t0, T ],Rd

)
. (4.5)

In a next step, consider this subsequence {ε′} and denote

uε′(t) = φ(ε′
−1
t), uε′ : [t0, T ]→ R.

By construction (assumption (OSC2)), uε′ = O(1) and
∫ tb
ta
uε′(s)ds → 0 for

ε′ → 0 for all ta, tb ∈ [t0, T ]. This yields via Thm. 10.2 the existence of a
subsequence {ε′′} of {ε′} with

uε′′
∗
⇀ 0 in L∞

(
[t0, T ]

)
.

Thus, Thm. 10.4 together with (4.4) and the continuity of ∇qU yields

φ(ε′′
−1
t) · ∇qU(qε′′)

∗
⇀ 0 in L∞

(
[t0, T ]

)
. (4.6)

In the following step, we consider the equation of motion

q̈ε = −∇qV (qε)− φ(ε−1 t) · ∇qU(qε).

Taking the weak* limit on both sides results in

q̈0 = −∇qV (q0) (4.7)

where we have made use of (4.5) and (4.6). The limit does not depend on
the subsequence {ε′′} we took. Furthermore, one can show, that there exists
a unique solution q0 to system (4.7). Thus the solution q0 is not based on a
particular subsequence {ε′′}. We can therefore apply Thm. 10.8 and obtain the
convergence

qε → q0 in C
(
[t0, T ]

)

for the original sequence {ε}.
Concluding, let us resume the main steps in analyzing this application via the
weak* topology. We found that

1. uniform bounds on qε, pε and q̈ε are given a priori via an energy bound
(Assumption (OSC3)),

2. Assumption (OSC2) ensures the weak* convergence of the force term.

3. the subsequence independent limit system allows for a uniform conver-
gence of qε for the given sequence {ε}.
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§1.1.2 Proof of Thm. 4.1 via averaging transformations

To proof the theorem via an averaging transformation we additionally require
U ∈ C2(R). The first step of the proof is identical to the proof given above:
uniform bounds on qε, pε and q̈ε are given a priori via an energy bound (As-
sumption (OSC3)). Let us now introduce a canonical transformation of (4.2)
defined by the time–dependent generating function

S1(qε, yε, t) = yTε qε − εg(ε−1 t)U(qε). (4.8)

Using the rules of canonical transformations [1, 97]

pε = ∂S1

∂qε
= yε − εg(ε−1 t)∇qεU(qε)

xε = ∂S1

∂yε
= qε

(4.9)

one obtains the defining equations of the new location xε and momentum yε.
Obviously, we have

xε = qε; yε = pε +O(ε).

Moreover, we can calculate the canonical equations of motions in the trans-
formed variables

ẋε = yε − εg(ε−1 t)∇xεU(xε)

ẏε = −∇xεV (xε) + εg(ε−1 t)∇2xεU(xε)
(4.10)

Thus, the transformation (4.9) separates the highly oscillatory parts of the dy-
namics from the limit dynamics by averaging over the fast time scale. Now,
time integration of (4.10) yields the asserted result for finite times due to the
uniform bounds on φ(ε−1 t) and g(ε−1 t) (Assumption (OSC2)).

Remark. Note that this approach requires additionally a second derivative
of U . But, conversely to the method of weak* convergences one might obtain
higher order correction terms in ε.

§1.2 The quantum adiabatic theorem

The second example is a singularly perturbed quantum system with time–
dependent potential. The state of the finite dimensional2 system is described by
a wave function ψ : R→ CN . It obeys the singularly perturbed time–dependent
Schrödinger equation

i
d

dt
ψε(t) = ε−1H(t)ψε(t) (4.11)

with family of Hermitian matrices H = H(t). The initial condition of the
quantum state is given by ψε(t0) = ψ∗ with |ψ∗| = 1.

Subsequently, we will assume that

(H1) H : [t0, T ]→ Cr×r is a smooth map.

2The infinite dimensional case of the quantum adiabatic theorem was widely studied. See,
for example, [13] and the bibliographic remarks therein (Chap. IV.§1.6).
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(H2) H has a smooth spectral decomposition for every t ∈ [t0, T ]

H(t) =

s∑

λ=1

Eλ(t)Pλ(t)

where the Pλ are orthogonal projections onto mutually orthogonal
eigenspaces of H which span Cr.

(E1) the resonance set R

R =
{
t ∈ [t0, T ] : Eλ(t) = Eµ(t) for some λ 6= µ

}

be at most countable.

The expectation value of the projector to an eigenspace with respect to the wave
function is called the population of that eigenspace:

θελ(t) = 〈Pλ(t)ψε(t), ψε(t)〉.

Let us now present the quantum adiabatic theorem which states that the popu-
lations are adiabatic invariants.

Theorem 4.2 (Thm. 3 in [16]) Let Assumptions (H1), (H2) and (E1) apply.
Then, given a sequence ε→ 0 , the energy level populations of the wave functions
converge to the constant values of the initial populations,

θελ = 〈Pλψε, ψε〉 → θ∗λ = 〈Pλ(t0)ψ∗, ψ∗〉 in C([t0, T ]).

§1.2.1 Proof of Thm. 4.2 in a weak* topology

The proof is presented in three steps: first, a weak* limit for the density matrix is
derived. Excluding larger than countable resonance sets leads to a certain block–
diagonal structure of the limit density matrix . Next a bound for the populations
is found and Arzelà–Ascoli‘s theorem applied. Finally, the statement of the
theorem is shown by utilization of the particular structure of the limit density
matrix.

We begin with the Ehrenfest theorem [77, Eq. (V.72)] for any time–dependent
Hermitian matrix A

d

dt
〈Aψε, ψε〉 =

i

ε
〈[H,A]ψε, ψε〉+ 〈Ȧψε, ψε〉.

Computing the expectation value with respect to the identity matrix yields the
conservation of the norm of the wave function

|ψε(t)| = |ψ∗| = 1. (4.12)

Introducing the density matrix ρε for a pure quantum state

ρε = ψεψ
†
ε

as well as the trace class norm ‖ · ‖1 on the space of r × r–matrices

‖A‖1 = Tr
(
AA†

) 1
2 , A ∈ Cr×r,
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one can easily show that

‖ρε‖1 = Tr(ρε) = 1. (4.13)

This uniform bound on the density matrix (4.13) in L∞([t0, T ],Cr×r) allows for
an application of the Alaoglu Theorem 10.5. For a subsequence {ε′} one obtains

ρε′
∗
⇀ ρ0 in L∞([t0, T ],Cr×r)

with a time–dependent and Hermitian limit density matrix ρ0 with

Tr(ρ0) = 1.

Those properties of ρ0 can be proved via Lemma B.5 and Lemma B.6 of [13].
However, using the upper bound of Thm. 10.6 for a weakly* converging sequence
ρε′

∗
⇀ ρ0 in L∞([t0, T ],Cr×r) we obtain

Tr(ρ20) ≤ 1.

Thus, the limit density matrix does not have to correspond to a pure quantum
state but to a statistical mixture of states.3

Considering the equation of motion for the density matrix, as derived from
(4.11)),

iερ̇ε = [H, ρε],

allows for taking the weak* limit ε′ → 0 on both sides. The limit on the
left hand side can be derived by analyzing the sequence ε′ρε′ . Since ρε′ is
bounded, the sequence ε′ρε′ converges strongly in time to zero. Since moreover
ε′ρ̇ε′ = −i[H, ρε′ ] is uniformly bounded in time, ε′ρ̇ε′ converges in a weak* sense
to zero. Due to the linearity of the RHS with respect to ρε′ , on obtains

[H, ρε′ ]
∗
⇀ [H, ρ0] in L∞([t0, T ],Cr×r)

and, thus,

0 = [H, ρ0] in L∞([t0, T ],Cr×r).

Inserting the spectral decomposition of H gives

(
Eλ(t)− Eµ(t)

)
· Pλ(t)ρ0Pµ(t) = 0,

and for an at most countable resonance set R (Assumption (E1)) one obtains

Pλ(t)ρ0Pµ(t) = 0 for λ 6= µ.

Thus, the limit density matrix ρ0 has a block–diagonal form

ρ0 =
∑

λ

Pλ(t)ρ0Pλ(t).

3Note, that the pure quantum state has the property ρ2
ε = ρε, Tr(ρ2) = 1 whereas a

statistical mixture of quantum states obeys ρ2
ε 6= ρε, Tr(ρ2) ≤ 1.
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At last, consider now the populations θελ. They are given by

θελ = 〈Pλψε, ψε〉 = Tr(ρεPλ).

Since they are bounded in L∞([t0, T ],C), we can apply the Alaoglu theorem 10.5

and obtain for a subsequence {ε′} a weak* convergence θε′λ
∗
⇀ θ0λ in L

∞([t0, T ],C).
However, due to our assumption of a smoothly diagonizable Hamiltonian also
the time derivative of θελ is bounded in L∞([t0, T ],C)

θ̇ελ = Tr(ρεṖλ). (4.14)

We apply the Arzelà-Ascoli theorem 10.7 and get for a subsequence {ε′} a strong

convergence θε
′

λ → θ0λ in C([t0, T ],C) as well as θ̇ε
′

λ
∗
⇀ θ̇0λ in L∞([t0, T ],C) for

ε→ 0 . It remains to compute the strong limit θ0λ. We therefore take the weak*
limit of (4.14) and obtain

θ̇0λ = Tr(ρ0Ṗλ)

=
∑

µ

Tr(Pµρ0PµṖλ)

=
∑

µ

Tr(ρ0PµṖλPµ).

It is easy to show that PµṖλPµ = 0. This yields θ̇0λ = 0 and proves via time
integration for finite times the adiabatic invariance of the populations4

θ0λ(t) = θ0λ(t0) = θ∗λ.

§1.2.2 Proof of Thm. 4.2 via averaging transformations

For this approach, we have to make our assumptions stricter: we explicitly have
to exclude energy level crossings:

(E1’) Exclude energy level crossings

Eλ(t) = Eµ(t) for λ 6= µ.

Furthermore, we require

4Adapting Corollary 2 of [16] to the purely quantum dynamical case, it can be shown that
if the initial populations θ∗λ are nonzero only for simple eigenvalues, then the density matrices
ρε converge as

ρε
∗
⇀ ρ0 =

∑

λ

θ∗λPλ(·) in L∞([t0, T ],Cr).

For each θ∗λ 6= 0, the projection Pλ is the density matrix belonging to a corresponding nor-
malized eigenvector eλ,

Pλ = eλe
†
λ, Heλ = Eλeλ, |eλ| = 1.

The expectation values of a time–dependent observable A converge as

〈Aψε, ψε〉
∗
⇀

∑

λ

θ∗λ〈Aeλ, eλ〉 in L∞([t0, T ]).

If the commutation relation [H,A] = 0 holds, the convergence is strong in C([t0, T ]).



34 4. Adiabatic limits

(E2) all eigenvalues to be simple denoting by eλ(t) the eigenvector to eigen-
value Eλ(t) of H(t):

H(t)eλ(t) = Eλ(t)eλ(t)

We split the quantum wave function into a scaled real– and imaginary part:

ψε =
ε−1 zε + iζε√

2
. (4.15)

Remark. Scaled decompositions like (4.15) are commonly used in the literature
to give the Schrödinger equation a canonical Hamiltonian structure. A more
intrinsic way of this argument in the setting of infinite Hamiltonian systems can
be found in [19][74].

Introducing conjugated locations zε and momenta ζε yields a canonical sys-
tem with Hamiltonian function HQD

HQD(zε, ζε, t) = 1
2

〈
ζε, H(t)ζε

〉
+ 1

2
ε−2
〈
zε, H(t)zε

〉
(4.16)

and equations of motion

ζ̇ε = − 1

ε2
H(t)zε

żε = H(t)ζε.

Using the well–known technique of action–angle variables [1] we obtain actions
θλε and the corresponding angles ϕλε via:

zε = ε
∑

λ

√

2θλε cos(ε
−1 ϕλε )eλ(t)

ζε = −
∑

λ

√

2θλε sin(ε
−1 ϕλε )eλ(t)

with initial values θλε (t0) = θλ∗ and ϕλε (t0) = ϕλ∗ . An expansion of the quantum
wave function ψε in the (so–called adiabatic) eigenfunctions eλ(t) yields

ψε =
∑

λ

√

θλε exp(−iε−1 ϕλε ) eλ(t) (4.17)

with initial values

ψ∗ =
∑

λ

√

θλ∗ exp(−iε−1 ϕλ∗) eλ(t0).

The action variable θλε is, in fact, the population of energy level Eλ as already
defined in §1.2.1. A Hamiltonian system in the action–angle variables is obtained
by applying a canonical transformation [1] (zε, ζε) → (θε, ϕε) to the original
system with Hamiltonian function (4.16). This symplectic transformation might
be constructed employing the generating function [1]

S(zε, ϕε, t) = −
ε−1

2

∑

λ

〈
zε, eλ(t)

〉2
tan(ε−1 ϕλε )
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via ζε = ∂S/∂zε, θε = −∂S/∂ϕε. We obtain a transformed Hamiltonian function
H̃QD = H̃QD(θε, ϕε, t)

H̃QD =
∑

λ

θλεEλ(t) + ε
∑

λ,η

λ6=η

√

θλε θ
η
ε sin

(
ε−1 (ϕλε − ϕηε )

) 〈
eλ(t), ėη(t)

〉
.

The canonical equations

ϕ̇λε =
∂H̃QD

∂θλε
, θ̇λε = −∂H̃QD

∂ϕλε

finally lead to the equations of motions in action–angle variables

ϕ̇λε = Eλ(t) + ε
∑

η

η 6=λ

√

θηε
θλε

sin(ε−1 (ϕλε − ϕηε ))
〈
eλ(t), ėη(t)

〉

θ̇λε = −2
∑

η

η 6=λ

√

θλε θ
η
ε cos(ε−1 (ϕλε − ϕηε ))

〈
eλ(t), ėη(t)

〉

Excluding symmetric energy level crossings (Assumption (E1’)) and making use
of the near–identity averaging transformation

Θλε = θλε − 2ε
∑

η

η 6=λ

√

θλε θ
η
ε

Eλ − Eη
sin(ε−1 (ϕλε − ϕηε ))

〈
eλ(t), ėη(t)

〉
(4.18)

leads to the following equations of motion for the new variables φλε ,Θ
λ
ε

φ̇λε = Eλ(t) +O(ε) Θ̇λε = O(ε)

and with integration over finite time spans

φλε (t) = φλ∗ +

∫ t

t0

Eλ(s) ds+O(ε) Θλε (t) = Θλε (t0) +O(ε) = θλ∗ +O(ε)

where we have transformed Θλ
ε (t0) back using (4.18). Obviously, the populations

θλε are adiabatic invariants as stated in Thm. 4.2.
Let us concludingly point out, that the proof in the context of weak* con-

vergence requires much weaker assumptions: instead of excluding energy level
crossings altogether, one might there allow a countable resonance set R. How-
ever, the method of weak* convergence does not allow to compute higher order
terms in ε.

§1.2.3 Proof of Thm. 4.2 using rotating axes

Again, we have to exclude energy level crossings (Assumption (E1’)). Further-
more, assume that

(H2’) the time derivatives of the orthogonal projections d
dt Pλ and d2

dt2 Pλ
exist and are piecewise continuous.
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Denote the unitary time propagator to (4.11) with Uε(t):

ψε(t) = Uε(t)ψε(t0).

Obviously, it obeys the following Schrödinger equation:

i
d

dt
Uε(t) = ε−1H(t)Uε(t), Uε(t0) = I. (4.19)

Subsequently, we will transform (4.11) into a system with rotating axes. Be-
ginning with the construction of the adiabatic transformation (4.20), we will
introduce a kind of interaction picture which allows us to distinguish between
the motion due to the rotating axes and the “non–adiabatic” dynamics.

Adiabatic transformation

Definition 4.3 The unitary transformation Aε(t), mapping the projector Pλ(t0)
corresponding to the eigenspace associated with Eλ(t0) onto the projector Pλ(t)

Pλ(t) = Aε(t)Pλ(t0)A
+
ε (t); Aε(t0) = I. (4.20)

is called adiabatic transformation.

The adiabatic transformation obeys the following differential equation

i
d

dt
Aε(t) = Nε(t)Aε(t), Aε(t0) = I (4.21)

with a suitable Hermitian operator Nε(t). The relation (4.20) is only satisfied
under condition

i
d

dt
Pλ(t) = [Nε(t), Pλ(t)]. (4.22)

Since Nε(t) is not uniquely defined — one could add any operator of the form
∑

λ Pλ(t)fλ(t)Pλ(t) with an arbitrary smooth operator fλ— we require in ad-
dition that

Pλ(t)Nε(t)Pλ(t) = 0. (4.23)

Directly follows the next lemma:

Lemma 4.4 Under the conditions given above and with respect to (4.23) one
obtains

Nε(t) = i
∑

λ

dPλ(t)

dt
Pλ(t). (4.24)

Remark. In the case of simple eigenspaces (Assumption (E2)) the Hermitian
operator Nε in application to a wave function ψ equals

Nε(t)ψ = i
∑

λ

( d

dt
eλ(t)

)

〈eλ(t), ψ〉.

Likewise, the application of Aε(t) onto eigenvector eλ(t0) gives

eλ(t) = Aε(t)eλ(t0).

Here, the interpretation of Aε as adiabatic transformation becomes evident.
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Interaction picture Let us now introduce some transformed operatorsHA, NA
ε

and UAε :

HA
ε (t) = A+ε (t)H(t)Aε(t)

NA
ε (t) = A+ε (t)Nε(t)Aε(t)

UAε (t) = A+ε (t)Uε(t).

The new operator HA
ε represents the Hamiltonian operator in the rotating

frame. The resulting differential equation for the transformed propagator UAε (t)
has two parts on the right hand side: the part corresponding to the transformed
HA
ε as well as a part, which includes the deviation from this rotating frame:

i
d

dt
UAε = (ε−1HA

ε −NA
ε )UAε , UAε (t0) = I. (4.25)

Now, let us concentrate on the so–called adiabatic system

i
d

dt
σε = ε−1HA

ε σε, σε(t0) = I. (4.26)

It’s solution is given by

σε(t) =
∑

λ

exp

(

−iε−1

∫ t

0

Eλ(qε(s))ds

)

Pλ(t0). (4.27)

Thus, the propagator corresponding to the adiabatic system just adds a Born–
Oppenheimer phase but does not induce population changes. Considering the
following lemma, the name of the adiabatic system becomes clear and Thm. 4.2
is proved.

Lemma 4.5 Under Assumptions (E1’)(no eigenvalue crossings) and (H2’) one
obtains

UAε (t) = σε(t) +O(ε). (4.28)

Proof. To proof this lemma, let us separate the adiabatic motion from the
non–adiabatic parts of the dynamics. Therefore we define a modified propagator

Wε(t) = σ+ε (t)U
A
ε (t) = σ+ε (t)A

+
ε (t)Uε(t) (4.29)

with initial value Wε(t0) = I. Obviously, Wε represents just the remaining
non–adiabatic dynamics after stripping off the adiabatic motion. It satisfies the
differential equation

d

dt
Wε(t) = iN̄ε(t)Wε(t) with N̄ε(t) = σ+ε (t)N

A
ε (t)σε(t) (4.30)

or, respectively, the integral equation

Wε(t) = I + i

∫ t

0

N̄ε(s)Wε(s)ds (4.31)

= I + i

∫ t

0

σ+ε (s)N
A
ε (s)UAε (s)ds
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To show that (4.26) is the limit system of (4.25), one expands the integral kernel
of (4.31) into the eigenspaces of H and applies a partial integration [63, 77]. The
highly oscillatory character of the integral kernel yields an O(ε) approximation
under the exclusion of eigenvalue crossings. Thus, we get:

Wε(t) = I +O(ε). (4.32)

and therefore the above stated result. ¤

§2 Adiabatic limit of QD

What is the limit equation of the full quantum dynamics (2.8) governing ε→ 0 ?
Exactly this question has been addressed in different mathematical approaches,
[21], [40], and [76]. We will follow Hagedorn [40] whose results are based on
the product state assumption (IP) on page 8. Furthermore, assume that

(IP2’) the the initial state φ∗ is given by an approximate δ-function, e.g.,

φ∗(q) = 1
Aε

exp
(
− 1
4ε (q − q∗)2

)
exp

(
i
ε q̇∗q

)
. (4.33)

Analogously to our investigation of the quantum adiabatic theorem in Sec. §1.2,
we have to require

(A1) the q–parameterized Hamiltonian H(q) = − 12∆x + V (x, q) to have a
spectral decomposition

H(q) =
∑

k Ek(q)Pk(q), (4.34)

where Pk(q) is the orthogonal projection onto the eigenspace associated
with Ek(q). With respect to a quantum state ψ, the number θk =
〈ψ, Pkψ〉 is the population of the energy level Ek.

Definition 4.6 The Born–Oppenheimer dynamics (BO) is defined by

q̈BO = −gradq
∑

λ

θλ∗ Eλ(qBO), (4.35)

qBO(t0) = q∗, q̇BO(t0) = q̇∗

with the initial values q∗ and q̇∗ corresponding to (4.33). The constant θλ∗ is
the initial population of level Eλ and thus computable from the initial data:
θλ∗ = 〈ψ∗, Pλ(q∗)ψ∗〉.

Corresponding to assumption (E1’), exclude now all energy level crossings along
the BO solution:

(E1”) Along the BO solution qBO, crossings between initially occupied energy
levels are excluded, i.e., for all pairs (Eλ, Eµ) of energy levels with
λ 6= µ and θλ∗ + θµ∗ > 0, we have Eλ(qBO(t)) 6= Eµ(qBO(t)) for all
t ∈ [t0, T ].
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Using these conditions and the BO solution qBO, a wave function ΨBO is con-
structed which comes out to be the limit of the sequence of QD solution Ψε for
ε→ 0, [40]. In particular, for the position expectation

〈q〉QD

ε = 〈Ψε, qΨε〉(t),

the statement of Hagedorn is:

Theorem 4.7 (Thm. 2.1 in [40]) Assume qBO = qBO(t) to be the solution of
the BO equation, Eq. (4.35), in a finite time interval [0, T ] and let Assumptions
(IP2’), (A1) and (E1”) be satisfied. Furthermore assume that only one energy
level is initially occupied. Then, we have

lim
ε→0
〈q〉QD

ε = qBO in [0, T ].

That is, in the limit ε → 0 , the center of the QD wave packet Ψε moves along
the BO-solution.

§3 Adiabatic limit of QCMD

The limit equation of (2.9) governing ε → 0 can be motivated by referring to
the quantum adiabatic theorem (Thm. 4.2): The classical position qε influences
the Hamiltonian very slowly compared to the time scale of oscillations of ψε, in
fact, “infinitely slowly” with respect to the unscaled time in the limit ε → 0.
Thus, in analogy to the quantum adiabatic theorem, one would expect that the
populations of the energy levels with respect to H(qε) remain invariant during
the evolution:

lim
ε→0

θελ(t) = lim
ε→0
〈ψε, Pλ(qε)ψε〉 = θλ∗ = 〈ψ∗, Pλ(q∗)ψ∗〉.

All this turns out to be true: According to [16], the BO dynamics is the limit so-
lution, whenever the following assumption on the eigenspaces and eigenenergies
of H(q) is satisfied:

(E3) The spectral decomposition Eq. (4.34) of H depends smoothly on q
and the transversality condition

d

dt
(Eλ(qBO)− Eµ(qBO)) 6= 0 (4.36)

holds.

Remark. Note, that Assumption [(E3)] does not exclude energy level crossings.

Theorem 4.8 (Theorem in [16]) On the time interval [t0, T ], there exists a
smooth unique solution qBO of the Born–Oppenheimer model (4.35), and, for
every ε > 0, a smooth unique solution qε of the QCMD model (2.9). Let as-
sumption (E3) apply. Then, given a sequence ε → 0 , the classical components
of the QCMD model converge to those of the Born–Oppenheimer model (4.35),

qε → qBO in C1
(
[t0, T ],Rn

)
,
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and the energy level populations of the wave functions converge to the constants
given by their initial values,

〈ψε, Pλ(qε)ψε〉 → θλ∗ in C1
[
t0, T ].

The proof of this theorem is quite similar to the proofs given in §1.1.1 and
§1.2.1. At first, the existence and uniform boundedness of the QCMD solution
is shown using energy estimates. Then the existence of a limit solution is proven.
In a next step, a density matrix is introduced and its weak* limit derived. An
application onto the equations of motion lead to the adiabatic invariance of the
populations. Finally, the limit force of the classical equation is computed.

Remark. The reader might note that the transversality condition in assump-
tion (E3) just ensures a countable resonance set R as in §1.2.

Summarizing, QD and QCMD have the same adiabatic limit solution which
is given by the BO model if the initial conditions are appropriate and if we
exclude energy level crossings and discontinuities of the spectral decomposition.
Consequently, QCMD is justified as an approximation of QD if only ε is small
enough and these conditions are satisfied (see Fig. 4.1). These are important

q

t

caustic

QD

0ε
QCMD

0ε

Bornemann/
Schütte ’97

Hagedorn ’80

BO

no
energy-

crossings

Schütte ’96

no
caustics

Bornemann/
Nettesheim/

H smoothly diagonizable;
transversality condition

Figure 4.1. Abstract representation of full quantum dynamics (QD), quantum–
classical molecular dynamics (QCMD) and the Born–Oppenheimer dynamics (BO).
The justification of QCMD from QD fails at the presence of caustics, whereas the BO
model requires assumptions on the energy levels of H(q).

results. However, the following questions remain: What happens, if H(q) has
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no smooth spectral decomposition? Can QCMD describe anything beyond the
correct adiabatic limit of QD? Can it describe non–adiabatic effects, i.e., devi-
ations of the QD solution from its adiabatic limit for realistically small ε > 0?
The following chapters try to give answers to these questions.

§4 Multivalued adiabatic limit: Takens chaos

What happens, if one of the assumptions leading to the adiabatic limit of QCMD
is not valid? In this section, we will follow [16] in focusing on the case, that the
spectral decomposition (Assumption (E3)) is discontinuous at one point of q.
The smallest generical example having a smooth symmetric matrix which is not
smoothly diagonizable was given by Rellich [94, §2]. Consider the classical
positions q = (q1, q2) and take as Hamiltonian the real symmetric matrix

H(q) =

(
q1 q2

q2 −q1

)

. (4.37)

The eigenvalues of H(q) are given by E1(q) = −|q| and E2(q) = |q| (Fig. 4.2).
Using polar coordinates q1 = r cosϕ and q2 = r sinϕ and excluding q = 0, the

q2 q1

E2(q)

E1(q)

Figure 4.2. Eigenvalues of Hamiltonian (4.37).

eigenvectors to E1 and E2 are

e1 =

(
− sin(ϕ/2)
cos(ϕ/2)

)

, e2 =

(
cos(ϕ/2)
sin(ϕ/2)

)

.

Obviously, we have to cut the plane along a half–axis to obtain a unique repre-
sentation, because these eigenvectors are defined up to a sign only. But note, a
discontinuity of the eigenvectors remain a the cut: there they change their role.
Consider now the following initial values

qε(0) = (1, 0), q̇ε(0) = (0, µ), ψε(0) = (1, 0),
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depending on a parameter µ ≥ 0. The case µ = 0 leads to a unique limit
trajectory through the singularity q = 0: qµ=0BO (t). Much more interesting is the
case of a given limit sequence µ ↓ 0 with µ > 0. One obtains a limit solution
qµ↓0BO (t). Now, a thorough analysis in [16] reveals that after the singularity is
passed, i.e., for times t >

√
2, the limits ε→ 0 and µ→ 0 are not interchangeable

lim
ε→0

lim
µ↓0

qε(t) = qµ=0
BO

(t) 6= qµ↓0
BO

(t) = lim
µ↓0

lim
ε→0

qε(t), t >
√
2.

But not only this, at time t >
√
2 any value

qµ=0
BO

(t) ≤ q̃ ≤ qµ↓0
BO

(t).

can be obtained by a suitable simultaneous limit sequence µ(ε) ↓ 0. Thus, after
the singularity, a funnel of trajectories between the two extreme cases qµ=0BO (t)

and qµ↓0BO (t) is obtained. Since the appearance of such funnels as the limit set of
certain singularly perturbed problems has been discovered by Takens [110] we
speak of Takens-chaos, cf. [16].
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Figure 4.3. Illustration (q1 vs. t) of Takens-chaos from [16]: (a) the

two different limit solutions qµ=0
BO and qµ↓0BO , (b) the funnel of possible

limits for ε→ 0, µ→ 0.


