
Chapter 2

The quantum–classical molecular

dynamics model

In this chapter we introduce the fundamental quantum dynamics model as well
as the QCMD model. For simplicity of notation we herein restrict the discussion
to the case of only two interacting particles. However, one should note that all
the following considerations can be extended to arbitrary many particles or
degrees of freedom.

Let the two particles have space coordinates x ∈ Rd and q ∈ Rd and massesm
and M (M > m), respectively. Moreover, let the interaction potential between
them be V = V (x, q).

§1 Full quantum dynamics

At first, let us consider the universally accepted quantum dynamics model.

Definition 2.1 The state of a full quantum dynamical system (QD) is a 2-
particle wave function Ψ = Ψ(x, q, t) and lives in the state space Ψ(·, ·, t) ∈
L2(R2d). It obeys the time–dependent Schrödinger equation

i ~ Ψ̇ =

(

− ~2

2m
∆x −

~2

2M
∆q + V (x, q)

)

Ψ (2.1)

with initial condition Ψ(·, ·, t0) = Ψ∗.

Typically, a proper choice of the coordinate system allows the initial quantum
state to be approximated by a product state (cf., [37], §IIb). Throughout the
following, we might therefore assume that

(IP) the initial state Ψ∗ has a product state representation

Ψ∗(x, q) = φ∗(q) · ψ∗(x). (2.2)

§2 QCMD

Now, we give an intuitive formulation of the QCMD model, preparing for
Chap. 3 in which we show how it fits into the framework of other quantum
and quantum–classical models.

The basic assumption of QCMD is that the masses differ significantly: m¿
M , and that, therefore, the heavier particle can be modeled classically while
the lighter one remains a “quantum particle”. That is, the quantum particle
is described by a wave function ψQC = ψQC(x, t) which obeys Schrödinger’s
equation

i~ ψ̇QC =

(

− ~2

2m
∆x + V (x, µ)

)∣
∣
∣
∣
µ=q(t)

ψQC (2.3)
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with a parameterized potential which depends on the location q(t) of the “clas-
sical” particle, thus being time-dependent. The location q = q(t) is the solution
of a classical Hamiltonian equation of motion

M q̇ = p
ṗ = −∇qU, (2.4)

in which the time-dependent potential U is given as the original one V weighted
with the probability of finding the quantum particle:

U(q, ψQC(t)) = 〈ψQC(t) , V (·, q)ψQC(t)〉 =

∫

V (x, q) |ψQC(x, t)|2 dx. (2.5)

Thus, the forces in (2.4) are the so-called Hellmann-Feynman forces. Together,
(2.3) and (2.4) are the basic equations of motion of QCMD.

In this approach, the arguments (q, ψQC) of U are naturally independent
unknowns. Therefore we get

∇qU = 〈ψQC , ∇qV (·, q)ψQC〉. (2.6)

Whenever the gradient of V is given, this can be evaluated directly and (2.3)
together with (2.4) constitutes a closed system of equations:

Definition 2.2 The QCMD model dynamics is given by the solution q, p : R→
Rd and ψ(·, t) ∈ L2(Rd) of the equations of motion:

i~ ψ̇QC =
(

− ~2

2m
∆x + V (x, µ)

)
∣
∣
∣
∣
µ=q(t)

︸ ︷︷ ︸

H(q)

ψQC, ψQC|t=t0 = ψ∗,

M q̇ = p, q(t0) = q∗,

ṗ = −〈ψQC,∇qV ψQC〉, p(t0) = p∗

(2.7)

where H(q) denotes the Hermitian Hamiltonian operator of the quantum sub-
system.

Remark. Our choice (2.6) of the partial derivative ∇qU is used, e.g., in [33]
or [6],[7], where, in addition, the Schrödinger equation is replaced by its density
matrix representation, the Liouville-von Neumann equation.

Remark. In [4], µ = q(t0) is considered as parameter in (2.3) and the wave
function ψQC = ψQC(µ, t) as explicitly depending on this parameter. It is as-
sumed that the dependence of ψQC on µ has then to be taken into account
yielding the derivative

∇qU =
(

〈ψQC , ∇µV (·, µ)ψQC〉
+ 〈∇µψQC , V (·, q)ψQC〉 + 〈ψQC , V (·, q)∇µψQC〉

)∣
∣
∣
µ=q

,

which, in turn, leads to the necessity of evaluating ∇µψQC in addition. An algo-
rithmic realization of this approach is presented in [4], resulting in a simulation
method which causes much more computational effort in real life applications
than the simple choice (2.6). For test simulations using this model see [2][3].
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§3 Appropriate scaling

For ease of notation in our further analysis, we scale the time and potential in
(2.1) and (2.7) by

~ t√
mM

→ t,
m

~2
V → V.

Furthermore, let us introduce the smallness parameter ε which denotes the mass
ratio

ε2 = m/M.

Subsequently, we will often consider the case M → ∞ which is equivalent to
ε→ 0. The full Schrödinger equation (2.1) transforms into the — with respect
to ε — singularly perturbed equation

iε ∂tΨ =

(

−ε
2

2
∆q − 1

2∆x + V (x, q)

)

Ψ. (2.8)

Applying the same scaling, we obtain the following QCMD equations

iε ψ̇QC =
(

− 1

2
∆x + V (x, q)

)

︸ ︷︷ ︸

H(q)

ψQC, ψQC|t=t0 = ψ∗,

q̇ = p, q(t0) = q∗,

ṗ = −〈ψQC,∇qV ψQC〉, p(t0) = p∗.

(2.9)

§4 Spatial discretization

Since the Schrödinger equations in (2.8) and (2.9) are partial differential equa-
tions (PDE), any numerical solution must be based on a projection of the solu-
tion into a finite (N) dimensional subspace of the Hilbert state space L2(R2d)
or L2(Rd), respectively. The construction of a suitably adapted subspace for
the application problem is an essential task in the preparation of the physical
model and requires a great deal of physical insight into the particular system.

However, we will subsequently assume, that this topic has already been ad-
dressed. This might have been done with either by pseudo–spectral methods
[17, 66], collocation methods [67] or by using a particular basis set as, for exam-
ple, a finite number of electronic orbitals or eigenstates of a given Hamiltonian.
To exemplify these Galerkin methods, let us consider the Schrödinger-equation:

i~
∂

∂t
u = H u (2.10)

with Hermitian operator H. Now, take a finite number of trial functions φk =
φk(x) which span the chosen subspace. The projection of u can be expanded
into these trial functions

uN (x, t) =

N∑

k=0

ak(t)φk(x)
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where ak are time–dependent expansion coefficients. In the case of pseudo–
spectral methods the φk have a global support and φk ∈ C∞(R). Fourier-
Galerkin or Fourier–collocation methods use φk(x) = exp(ikx). Now, methods
of weighted residuals require

∫

ψk(x)

(

i~
∂

∂t
uN −H uN

)

dx = 0 (2.11)

for N test functions ψk. Galerkin methods demand additionally an orthogonal-
ity relation between ψk and φk

∫

ψk(x)φl(x) dx = δkl

whereas collocation methods set ψk = δ(x − xk) leading therefore to the exact
solution on the N given points xk. Formally, both kinds of methods result via
(2.10) and (2.11) in the same structure of ordinary differential equation

i~
∂

∂t
uk =

N∑

l=0

HN
klul.

with a Hermitian matrix HN = (HN
kl ).

§5 Application problems

In the following, we will describe three classes of application problems for
quantum–classical molecular dynamics. A classification in terms of the smallness
parameter ε allows for an estimation of the character of the dynamics. Particular
attention will be given to the limiting factors in the realization of simulations,
as for example time and computer memory consuming properties. Later, the
classification implies for every application problem appropriate model enhance-
ments and restrictions as well as optimally adapted numerical algorithms (See
Fig. 2.1).

Proton transfer reaction A correct description of biochemical reactions nec-
essarily requires the consideration of quantum effects. Thus, time–dependent
quantum dynamical models play an important role in the analysis of enzyme
catalysis, interactions of enzymes with chemotherapeutic agents, proton tunnel-
ing in biomolecular systems, photosynthesis and phosphorylation processes in
biomolecular systems [2]. An elucidation of the enzymatic reactions can, for ex-
ample, be done by the QCMD model describing the dynamics of the key protons
quantum dynamically, whereas the remaining atoms are modeled classically [3].

An example is the enzyme Ribonuclease T1 which cleaves a single stranded
RNA specifically at the base guanine. Fig. 2.2 illustrates schematically the
reaction center of the enzyme and a possible path for the first step of the reac-
tion. The enzyme aligns with its sidechains Arg77+ and His92+ the negatively
charged phosphate group of the substrate. A proton transfer from the O2’ hy-
droxy group of the substrate to the Glu58- sidechain of the enzyme will initiate
a nucleophilic attack of the O2’ oxygen on the phosphorus, which leads to a
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Figure 2.1. Schematic representation of some application classes

pentacoordinated intermediate state of the reaction. Proton transfer and nucle-
ophilic attack are processes, which can be described theoretically only on the
basis of quantum dynamics.
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Figure 2.2. Example of a system to be described quantum–classically: an enzymatic
reaction catalyzed by Ribonuclease T1

For proton transfer processes, the mass ratio between the classically mod-
eled atoms and the proton is around one or two orders of magnitude. Such
small differences in the masses result in an essentially non–adiabatic motion
(see Chap. 5). The dynamics is determined by numerous eigenvalue crossings of
all kind. The simulations are obstructed by the large number of classical atoms
of realistic biomolecules which make the evaluation of the intra–classical inter-
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action potentials very time–consuming. Furthermore, typical reaction processes
take place on a very large time scale. The spatial discretization of the quantum
system depends strongly on the analyzed application. It varies from collocation
methods [3] with many grid points to expansions into only a few (≈ 5) proton
orbitals [116].

Photodissociation of Hydrogen containing molecules The breaking of
molecular bonds induced by light plays a major role in the understanding of
photochemical reactions. The investigation of photodissociation reactions of
simple molecules is at present a very active field of research [99]. A particular
example is the dissociation dynamics of a small solute molecule embedded in
a cluster or a matrix of solvent particles. Here, a so–called cage–effect of the
solvent might delay or hinder the separation of the photo fragments. In fact,
a direct cage exit where photo fragments escape from a solvent cage without
notably deforming it competes with a delayed or even an indirect cage exit where
just collision–induced cage deformations allow for an eventual cage exit. In this
process, the quantum character of the light photo fragments crucially influence
the kind of cage exit.

In cooperation with B. Schmidt and M. Holz, a photodissociation of HF
in an Argon matrix was quantum–classically analyzed (cf., Fig. 2.3) [56]. Only
the use of symmetry adapted basis functions in the Galerkin method made the
solution of the corresponding QCMD equations in 3 quantum dimensions pos-
sible. For the first time, the dependence of the energy transfer to the argon
matrix on the initial quantum state could be computed. The previously men-
tioned cage–effect was observed for certain rotationally excited initial states of
the Hydrogen.

Since the mass ratio in these photodissociation processes is similar to pro-
ton transfer processes, the dynamics is also essentially non–adiabatic. Limiting
factors in the computation are on the one hand given by the high dimension of
the quantum system due to the fact, that the photodissociation process trans-
forms the initially bounded Hydrogen into an unbounded state. This also leads
an excitation of very high eigenvalues of the quantum Hamiltonian H(q). On
the other hand, the number of considered classical atoms usually makes the
intra–classical potential evaluation very time–consuming.

Electronic problems Transitions in the electron structure of molecules de-
termine chemical reactions, as it is in the photodissociation example, where light
induced the breaking of a bond by excitation of the electron levels. Over the
years many models and methods have been proposed to compute the electron
dynamics of realistic models (see [78, 79, 80] and references herein).

The great mass difference between nuclei and electrons —three or four orders
of magnitude— result in an almost adiabatic motion. This means, that the
adiabatic limit ε → 0 is in many situations a good approximation to full QD.
Nevertheless, the —often mildly— non–adiabatic effects have to be taken into
account. This is, due to the smallness of ε possible via higher order expansion
terms in ε.

The advantage of a small ε for the modelling question is meanwhile a problem
when solving the time–dependent Schrödinger equation. Since the stepsize of the
time discretization has to be adjusted to the highest frequencies in the system
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Figure 2.3. Quantum–classical modeled photodissociation of HF in an Argon matrix.
Shown is a cut plane of the model in three spatial dimensions. The classically modeled
atoms are represented as spheres whereas the quantum probability density of the
Hydrogen is shown via isosurfaces and probability density current stream lines [100].
The time evolution of initial quantum states corresponding to the rotational quantum
numbers j = 0 and j = 6 are shown. Note, that the particular spatial expansion of
the initial state for j = 6 results in a cage effect: most of the wave packet is repelled
from the next neighbors and repercusses onto the Fluorine atom.
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(≈ ε−1 ) it might become prohibitively expensive for small ε. For that reason,
many approaches circumvent an explicitly time–dependent description of the
light particles. However, the dimension of the quantum system is in standard
examples quite small: usually, the considered Hilbert subspace is spanned by
only a few electronic orbitals.


