
A. Modelling

Typical simulations of biomolecular systems are based on classical molecular
dynamics (MD) assuming that the system of interest obeys a classical Hamil-
tonian equation of motion. In this case quantum theory is only used in order
to construct the atom-to-atom interaction potentials in the context of Born-
Oppenheimer approximation.

In many situations classical MD allows a sufficiently accurate description
of complex realistic molecular systems. But it simply cannot be valid if the
nature of the process under consideration is “deeply quantum mechanically”,
e.g., proton transfer processes in solution [115, 47, 107, 46, 38, 113, 10, 8] or
in the active site of a protein [3, 95], electron diffusion in molten salts [106],
or photo-induced excitations in molecular systems [81, 98, 65, 119, 27]. In
those cases a quantum dynamical description is unavoidable. However, since
a full quantum description of, e.g., a complete enzyme, is not feasible, there
is a growing interest in including specific quantum dynamical effects into the
otherwise classical description of some large molecular system.

The so-called QCMD model on which we will focus throughout this work,
consists of a singularly perturbed Schrödinger equation nonlinearly coupled to
classical Newtonian equations, see Sec. 2.§2.

We will carefully review the assumptions under which this QCMD model is
known to approximate the full quantum dynamical (QD) evolution of the sys-
tem (Chap. 3). Subsequently, we will correlate the model to other approaches
in the literature. They are all based on a separation of the full quantum sys-
tem via some tensor product ansatz into several parts with a coupled quantum
description. Then, the evolution of each part is modeled on different levels:
quantally, semi-classically, or (purely) classically. Some of the proposed models
can be classified via the different description levels they are mixing: some re-
main on the quantum level for all parts and are well-known as time-dependent
self-consistent field (TDSCF)-methods (cf. [36][32] in our context; a lot of ref-
erences in nuclear physics use the notion of time-dependent Hartree approxi-
mation or time-dependent mean-field approximation); other methods combine
semi-classical models for most of the parts with a quantum description for the
particularly interesting part, usually called quantum-semi-classical (QSCMD)-
models (see [31] and the references cited therein). However, we are particularly
interested in quantum-classical molecular dynamics (QCMD)-models, which use
Hamiltonian equations for space and momentum of the “classical” atoms (for
biomolecular systems see [6][7][3]; more references may be found in studies for
van der Waals molecules, e.g., [33][48]).

One important insight is that both, the QCMD model and the full QD
evolution, in fact have the same adiabatic limit system, the well-known time-
dependent Born-Oppenheimer (BO) model, see Chap. 4. The adiabatic limit of
a model equation can be derived in various different ways relying on different
assumptions: in a weak* topology, via averaging transformations and via a
transformation into a rotating axes frame. Since these techniques may be used
in the following construction of integrators, we will specify all of them in detail
and exemplify their application.
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Figure 1.2. Approximation properties of some quantum classical models.

It is well-known that BO simulations are sufficient approximations of the full
QD evolution in many important situations but lead to entirely wrong descrip-
tions in as many other “non–adiabatic” cases. In contrast to the BO model, the
QCMD model includes non–adiabatic processes, e.g., transitions between the
energy levels of the quantum system or resonance effects near level crossings,
see Chap. 5. The literature on this topic contains a significant number of specific
examples in which QCMD simulations yield better approximations of QD than
the simple BO approximation. We will analyze in Sec.5.§3 the “non–adiabatic”
effects in QCMD.

Unfortunately, the literature also contains important examples in which
QCMD fails entirely because it is a single-trajectory model while the full QD
solution develops multi-configuration character [69]. In the present article,
these observations will be illustrated by means of a certain simple example,
see Sec. 5.§2.

Subsequently, a heuristic surface hopping extension of QCMD [104] will
be introduced and compared with similar approaches [72, 117, 114, 115, 116],
Sec. 5.§4. The insights gained in the example will then allow to understand
the algorithmic strategy of such QCMD-based surface hopping algorithms: to
exploit the advantages of the non–adiabatic effects in QCMD while preventing
the algorithm from behaving like QCMD in situations where multiply-branched
classical paths are required for an accurate description. However, a rigorous
mathematical justivication of the surface hopping techniques does not exist.

Recently, a considerably new approach to an approximation of the quantum
dynamics was almost simultaneously presented by C. Martens et al. [75, 61]
and Ch. Schütte [103]. Applying a partial Wigner transform to the full
quantum dynamical description — that is, a Wigner transform [118] on the
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classical degrees of freedom only — they derive the quantum–classical Liouville
equation (QCL). The mathematical justification given in [103] allow for an inter-
pretation of the QCL solutions as classical phase space densities, at least near
the adiabatic limit. Moreover, the QCL gives a suitable starting point for the
construction of trajectory bundle based algorithms [105].


