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1 Introduction

Protein-protein interactions are known to play a key role in many functions of living cells.

They govern signal transduction and regulate metabolic processes. Anomalies in protein-

protein interactions can lead to diseases like Alzheimer’s and cancer [1]. Therefore, the

study of protein-protein interactions is of great scientific and medical interest.

The existence of an interaction between two proteins can be detected by experimental

techniques, such as yeast two-hybrid screening [2]. Computational methods, like phyloge-

netic profiling [3], have also been developed that aim to predict interactions. Many such

protein-protein interactions are important therapeutic targets and are therefore studied

in various ways. For example, protein-protein interactions can be analyzed in order to

design new drugs and to understand diseases [4]. However, for such tasks knowledge

about the structures of the underlying protein-protein complex is required. With exper-

imental methods, such as X-ray crystallography [5], nuclear magnetic resonance (NMR)

[6] and electron microscopy (EM) [? ], the structure of proteins and protein-complexes

can be determined.

Proteins interact through contact surfaces (interfaces) which consist of residues belonging

to two or more different polypeptide chains. Protein-protein interactions can be classified

as (i) obligate, where all partners of the interaction are required in order to form a stable

structure; as (ii) permanent, where the binding partners have relatively long-lasting,

stable interactions; and (iii) transient, where the binding partners have non-permanent

or short-lived interactions. Usually, protein-protein complexes belonging to class (ii) or

(iii) are heterocomplexes where the binding partners differ [7] (examples shown in Fig. 1

on page 16a).

Often the structures of the individual partners of a protein-protein interaction are avail-

able, while, for various reasons, the structure of the protein-protein complex remains

unknown. These reasons are listed as follows. One reason is that resolving the structure

of any protein or protein-protein complex generally requires resources such as expert

knowledge and time. Additionally, many protein complexes disqualify for X-ray crys-
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tallography because they are too unstable to crystallize, which is especially true when

the interaction between the binding partners is weak. According to Vaynberg et al. [8],

solving structures of weak protein-protein interactions lags far behind the progress on

strong interactions. Combinatorial problems also exist: the individual proteins may have

multiple interaction partners, thus the number of structures that emerge from the inter-

action of individual proteins can be much larger than the number of structures of the

individual proteins themselves. Furthermore, when the partners of an interaction are

mutated at the interface, the effect on the structure of the protein-protein complex is

generally stronger than on the individual structures of the binding partners. Currently,

the number of structures of interacting proteins obtained by experiments is far behind

the number of detected protein-protein interactions [9]. Thus, predicting the structure

of a protein-protein complex computationally from the individual protein structures is

an important task in life science today.

1.1 Protein-Protein Docking Algorithms

The problem of having only the individual (unbound) structures of interacting proteins

while not knowing their spacial configuration in the bound state is addressed by protein-

protein docking algorithms. These procedures aim to predict the structure of a protein-

protein complex from the structures of the two binding partners in the unbound state.

Docking algorithms usually consist of two components: a sampling algorithm and a

scoring function. The first component, the sampling algorithm, uses the two unbound

structures and produces a set of candidate docking structures (decoys), which potentially

may resemble the protein-protein complex. For a successful docking prediction, this set

is required to contain at least one decoy that is close to the native structure. A scoring

function is used to discriminate near-native decoys from others, which is the second

component of a docking algorithm.

Sampling algorithms can be classified into rigid docking and flexible docking. In rigid

docking, the algorithm takes the binding partners and reorients them such that they
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constitute a potentially correct binding mode, while the inner geometry of each binding

partner is kept fixed. However, studies have shown that unbound protein structures

often undergo significant changes in backbone conformation when they form the docking

complex [10]. In such cases, rigid docking approaches may have difficulties finding the

correct structure of the protein-protein complex. Flexible docking algorithms, in contrast,

alter the backbone geometry of the binding partners to produce candidate structures for a

protein-protein complex. In principle, this approach allows the docking algorithm to find

the correct binding mode, even when the binding partners undergo large conformational

changes upon docking. However, flexible docking algorithms have a larger search space

compared to rigid docking algorithms [11], making them more expensive to compute and

more likely to produce false geometries. In both flexible and rigid docking algorithms,

a priory information, like the knowledge of the binding site on one or both binding

partners, can reduce the search space, thus increasing the proportion of near-native

structures among all generated decoys. Many rigid sampling approaches are based on

fast Fourier transform (FFT) [12, 13, 14, 15, 16], as proposed by Katchalski-Katzir et

al. [17]. Given two structures, each consisting of n atoms, the Katchalski-Katzir algorithm

is able to compute the translation of one structure, such that the resulting complex

geometry has the best surface complementarity. Modifications of the algorithm also

consider electrostatics, solvation energy and atom potentials. The time complexity of

the algorithm is O(n · log n) where a naive approach would require O(n3).

To discriminate the near-native decoys that are generated by a sampling algorithm from

all the other geometries, scoring functions are used. Typically, a scoring function ranks

decoys with the near-native decoys expected being top-ranked. Such scoring functions can

employ a large variety of informations, such as physical force fields, experimental binding

energies, shape complementarity of the assumed binding sites and atom- or residue-pair

potentials. So called soft scoring functions are tolerant moderate defects of input decoy

structures, which is especially important for rigid docking, where the decoys generated

from the unbound structures do not take into account conformational changes of the

binding partners [19]. After scoring, clustering of the protein complex geometries and
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prediction of energy funnels can additionally help to identify the near-native structures

[20].

1.2 Machine Learning in Protein Docking

Supervised learning is a branch of machine learning. It can be employed on a set of

training data in conjunction with desired response variables in order to derive a function

that is able to predict response variables for new input data. The procedure of supervised

learning involves several elements: the representation of the input objects, a training set

of input objects and a learning algorithm. Typically, an input object is described by a

feature vector x ∈ Rd that contains d features. The training set is used by the learning

algorithm to deduce generalized information about new input objects. Such training sets

are required to be representative in order to be effective. From the variety of existing

machine learning algorithms, including artificial neural networks [21, 22], support vector

machines [23] and random forests [24], each with individual strengths and weaknesses,

the choice of the algorithm has to be made with respect to the training data and its

representation. In addition to the training set, a prediction set of input objects is used

to evaluate the accuracy of the learned function.

In protein-protein docking approaches, a scoring function that is used to rank decoys,

is often defined as the combination of weighted interaction terms. Obtaining optimized

weights for such scoring functions is a typical task for machine learning algorithms. Each

decoy serves as an input object and its feature vector contains the values of the individual

interaction terms. Examples are given in the following. The scoring function of Palma et

al. [25] combines four weighted interaction terms: surface matching, side chain contacts,

electrostatics and solvation energy. The weights were optimized on a training set by an

artificial neural network. Bordner et al. [26] use random forests to parameterize their

scoring function which consists of residue propensities, evolutionary conservation and

shape complementarity. Fink et al. [27] attempt to extract a probability-like score from
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a support vector machine that combines electrostatic energy, Van der Waals energy and

knowledge based pair-potentials.

When applying supervised learning, there are two major sources of error that need to be

considered: under-fitting and over-fitting. Under-fitting occurs when the learning algo-

rithm fails to detect relevant characteristics within the training data. As a consequence,

the algorithm computes inaccurate outputs for the training data. Typically, such scenar-

ios are caused by inaccurate or oversimplified representations of the input objects and

can be improved by choosing different or extended models. In the case of over-fitting,

the other major type of error in supervised learning, the output values for the training

set show good accuracy while the output values for the prediction set are inaccurate.

This scenario can be caused by models of the input data that have a high complexity,

so the learning algorithm gives importance to very specific characteristics of each input

object in the training set that are not present in the prediction data. To overcome such

situations, the complexity of the model can be lowered. Thus, given a fixed training set,

choosing the complexity of the model is a trade-off between the risk of under-fitting (low

complexity) and over-fitting (high complexity). Besides lowering the model complexity,

another technique to avoid over-fitting is to use a training set that is more representa-

tive for any input data, typically by enlarging smaller training sets. Alternatively, the

accuracy of the prediction can be improved by a validation set which is monitored to

stop the learning algorithm as soon as the prediction for the validation set decreases in

performance.
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1.3 Data Sets for Protein-Protein Docking

This section explains the propose of data sets in protein-protein docking and gives an

overview on existing data sets.

Advances in the field of protein-protein docking heavily depend ons size and quality of

data sets of protein-protein complexes with experimentally determined structure. Often

scoring functions are optimized by supervised learning which, as described in section

1.2, requires a training set. In order to benchmark scoring functions a prediction set

is required. For a prediction scenario one typically needs the structure of the binding

partners in both, unbound and bound state. The unbound state serves as input for the

scoring function. The predicted output can subsequently be compared with the correct

solution which is the bound state.

The Protein Data Bank (PDB) [28] is the major source for structures of biological macro-

molecules. Currently, the PDB contains over 100,000 protein structures, including the

structures of many protein-protein complexes, and the number is constantly growing.

However, the PDB does not provide an automatic way to identify protein-protein com-

plexes among all other structures. Therefore, numerous data sets that consist of geome-

tries of protein complexes have been compiled from the PDB and published over many

years to be studied by the protein-protein docking community. An overview is given in

Table 1. Aside from data sets that focus on protein complexes, other sets provide (i)

decoys [29, 30], (ii) unbound structures generated from the bound structures [31], (iii)

modeled unbound structures [32] and protein–protein binding affinities [33].

One of the most widely used data sets for protein-protein docking is provided by Weng

and coworkers [38, 18, 34]. The authors first obtain a list of potential complexes from

the PDB by applying an automated pre-filter, that involves a minimum length for the

polypeptide chains and a minimum resolution for the structure. From these candidate

structures the authors exclude large molecular assemblies, as they consider them to be

unrealistic for docking [38]. The complexes are then categorized by hand as either tran-

sient or obligate and the obligate ones are discarded. To remove redundancy between

12
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Protein-Protein
Docking Benchmark [34]

2003 07/2012 176 164+
12

yes yes no SCOP

Dockground
bound [35]

2006 07/2012 3,170 no no no yes SCOP+
seq. al.g

Dockground
unbound [36]

2007 02/2009 233 99+
134

no yes no SCOP+
seq. al.g

Huang et al. [37] 2007 2007 851 no no no no homology
scores

Score_set [30] 2014 2014 15 yes yes yes no -
-

ProPairs (section 2.4) 2015 2015 2,409 932+
1,477

yes yes yes interface
seq. al.h

Table 1: Overview of five data sets from the literature used for developing protein-protein
docking algorithms. a The number of protein-protein complexes contained in
the set. b The number of complexes with two unbound structures (before “+”)
and with one unbound structure (after “+”). c Indicator if the set provides
residue-aligned superposed unbound structures. d Indicator if the complexes
may contain more than two polypeptide chains. e Indicator if the set was com-
piled automatically. f Strategy to detect redundant entries within the data set.
g Sequence alignment. h Interface sequence identity by sequence alignment.

the remaining complexes, the SCOP database [39] is used to classify the proteins into a

families and from each family only one representative complex is kept in the final set.

Finally, only those complexes are kept for which corresponding unbound structures are

found by sequence alignments. The unbound structures are required to have less than

three missing residues at the binding site and to have the same cofactors at the binding
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site as the bound counterpart. Updates to the protein-protein docking benchmark sets

have been made every three to four years with the most recent set consisting of 176 com-

plex structures. In Fig. 1 the structures of four complexes of the protein-protein docking

benchmark 3.0 [18] are illustrated in bound and unbound state.

The authors of Dockground [35, 36] used an automatic approach and also a manually

selected data set. The automatic method generates a list of protein structures that involve

two polypeptide chains that form an interface without any cofactors nearby. Heuristic

methods are applied that attempt to automatically identify non-obligate protein-protein

complexes. For all complexes that were considered non-obligated, an algorithm identifies

binding partners that are not interwoven. These early-stage classifications, which—

according to the authors—do not work perfectly, tend to produce false positives [35].

Thus, the resulting data set is likely to include protein-protein complexes of binding

partners that are interwoven or obligate. The SCOP database and sequence alignments

are used to remove redundancies between the complexes. With this approach, 1,460

representative protein-protein complexes have been identified in 2006 [35] and the web

page lists 3,170 in 2015.1

With Dockground unbound a smaller, representative set has been released [36].

Protein-protein complexes consisting of more than two chains are considered. Also inter-

faces with small cofactors nearby are accepted for the final data set. For all the complexes,

unbound structures are searched by sequence based methods, and if not found, simulated

by using the bound structure as a basis. In contrast to the automatic method, pairs of

complexes that have similar sequences but different binding modes, are kept for the final,

non-redundant data set which contained 523 protein-protein complexes in 2007 and 233

protein-protein complexes in September 20152 (99 complexes with two unbound struc-

tures and 134 with one unbound structure). Hwang et al. [18] note that Dockground

does not provide the structures of the unbound proteins residue-aligned and superposed

to their bound counterparts, which requires non-trivial manual effort.

Huang et al. [37] presented a manually compiled data set, consisting of 851 protein-protein
1http://dockground.compbio.ku.edu/BOUND/auto_selected_new.php
2http://dockground.bioinformatics.ku.edu/UNBOUND/manual_selected_new.php
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complexes. The set was used to derive distance dependent atom-pair potentials for

protein-protein docking. Unbound structures were not provided. To remove redundancy,

the authors calculated homology scores between the complexes and eliminated similar

pairs by discarding the structure with the lower resolution.

Score_set by Lensink et al. [30] is a benchmark set for testing scoring functions. The

complexes were taken from 15 published CAPRI [40] targets. The set’s purpose lies in

providing a variety of docking decoys generated by different sampling approaches, which

explains its relatively small number of complexes.
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a

b

Figure 1: a: The bound structure of four docking complexes is shown in a cartoon rep-
resentation. Each complex consists of two binding partners colored in purple
and light green. b: Parts of the protein-protein interfaces are illustrated for the
same four complexes in a ribbon representation. Each binding partner is shown
in bound state (purple and light green) and in unbound state (blue and dark
green) superposed to the bound structure. The interface RMSDs (iRMSD) are
1FQ1: 3.41 Å, 1NW9: 1.97 Å, 2HQS: 1.14 Å, 2AJF: 0.65 Å. All structures
and iRMSDs were taken from the protein-protein docking benchmark 3.0 [18].
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1.4 Aim of This Work

The aim of this study is to contribute to the improvement of protein-protein docking

algorithms. One key component of a protein docking algorithm is its scoring function

which is used to recognize the near-native structures within a set of candidate structures

(decoys). This study investigates how to optimize a scoring function with the goal of

competing with state-of-the-art scoring functions. The optimization of the scoring func-

tion is carried out by supervised learning and thus influenced by several decisions that

are studied in this work: (i) the selection of a machine learning algorithm; (ii) the com-

pilation of a training set of protein complexes, which is required for supervised learning;

(iii) the generation of decoys from these complexes; and (iv) a suitable representation for

those decoys that is optimized for the machine learning algorithm.

The performance of supervised learning heavily depends on the amount and quality of

training data. Current data sets for protein-protein docking are outdated, very small,

hard to access or lacking quality. Therefore, a special focus of this study lies on the

problem how current data sets can be improved, being beneficial for scoring functions for

protein-protein docking. In addition to the optimization of scoring functions, the work on

large, high-quality data sets also assists research in other areas of protein-protein docking,

including sophisticated benchmarking of docking algorithms and comprehensive analyses

of protein-protein interactions. Therefore, the presentation of the improved data set

should provide accessibility and annotation that is useful beyond the requirements on a

training set.

17



Improving Scoring Functions for Protein Docking

18



Florian Krull

2 Publications

2.1 Optimizing a Scoring Function for Protein Docking with a Neural

Network

M.H. Chae, F. Krull, S. Lorenzen and E.W. Knapp, Predicting Protein Complex

Geometries with a Neural Network, Proteins: Struct., Funct., Bioinf., 78 (2010)

1026–1039

DOI: http://dx.doi.org/10.1002/prot.22626

Own contribution:

• Development of research question

• Selection of training data

• Generation of decoys

• Development of software tools

• Preparation of manuscript

In this publication we aim to developed a scoring function capable of ranking candi-

date structures (decoys) of protein-protein complexes so that the decoys close to the

near-native structure are top-ranking. This scoring function was derived from a set of

experimental data using an artificial neural network (ANN).

The prediction capability of an ANN depends heavily on both its topology and on the

input data that the network is trained on. Here, we used a data set of 191 protein

docking complexes (48 complexes from Hwang et al. [18] and 143 complexes from Huang

et al. [37]). In Fig. 2a, four complexes are illustrated. While many other methods

use only the native structure during the training stage [41, 42, 37], we proposed a new

approach, which uses a large number of near-native decoys. For each of the complexes in

19
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the training set, we generated decoys by starting from the geometries of the two binding

partners in bound state and applying small random rotations and translations to one

of them. Decoys with small interfaces or large atom clashes were discarded. A total

of 2,000 near-native decoys per complex were generated, consisting of ten sets. Each

set j ∈ [1, . . . , 10] contains 200 decoys and each of these decoys has an interface RMSD

(iRMSD) to the native geometry within the interval [(j − 1) · 0.6,j · 0.6] Å. Examples of

these training decoys are given in Fig. 2b.

A suitable representation for the protein complexes geometries is required such that the

ANN is able to use only the representation in order to make meaningful predictions. For

this purpose, we use atom-pairs, where the two atoms belong to different proteins of

the complex. Depending on the type of the atoms and the distance between the atoms,

we assign each atom-pair to a specific class. For each decoy that we want to make a

prediction for, we count the frequencies of atom-pair classes between the two proteins in

that specific geometry. We use 20 atom types from the literature [37] and two additional

polar hydrogen atom types, which results in 222

2 + 22
2 = 253 classes of unordered atom-

pairs. Different distance classes (bins) are used, all of which consider only atom-pairs with

distances up to 6.5 Å. A total of 253·(number of distance bins) input neurons are used.

We designed the ANN as a feed-forward neural network with one input neuron for each of

the atom-pair classes (Fig. 3a). We also introduced additional input neurons which serve

as protein identity neurons. During training, we assign each complex of the training set

to such a protein identity neuron. When we present a complex geometry to the ANN, all

protein identity neurons are set to 0 except for the neuron that belongs to the complex,

which is set to 1. During training, this protein identity neuron allows normalization

between the different interfaces. The desired output of the network depends on the

distance of a decoy to the native geometry as follows

g(iRMSD) = 1− 1

1 + (iRMSD/d)2
, (1)

where we set d = 8 Å. The ANN was trained by using the back-propagation learning

20
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algorithm. To avoid over-fitting we reduced the training set from 191 to 185 complexes

and use the remaining six complexes as a validation set. The prediction capability for

the validation set was monitored and training was stopped as soon as the prediction did

not show any improvement.

After training, the prediction power of the trained neural network was measured on a

prediction set of 65 complexes taken from DB2.0 [38]. For each of those complexes,

54.000 decoys were generated by ZDOCK [43]. The scoring function was used to rank

the decoys and to obtain success rates. The success rate is defined as the fraction of

protein complexes with at least one HIT within the first n predictions (or top-ranking

decoys), where a HIT is a decoy with an iRMSD below 2.5 Å. Ideally, a scoring function

has a high success rate even for small n.

We observed that varying the hidden layer size between 0 and 4 neurons does not sig-

nificantly affect the success rate. Therefore, we continued further tests without a hidden

layer. In this topology, the output of the ANN can be described by the function:

score(D) =

i,j,r∑
i≤j

aijr(D) · wijr , (2)

where the number of atoms-pairs of decoy D that lie within the distance bin r and belong

to the atom types i and j is given by aijr(D). The corresponding weights are given by

wijr. Due to the presence of protein identity neurons, Eq. (2) has an additional term

during training.

We tested different numbers of distance bins, and found that the success rates increase

with more distance bins but saturate at 8 distance bins.

The predictive power of the ANN has been compared to the state-of-the-art scoring

function ZDOCK [43] and ZRANK [44]. As shown in Fig. 3b the ANN performs better

than ZDOCK, regarding the success rate, but worse than ZRANK when more than

50 predictions are allowed. If only the 50 top-ranking decoys or less are considered,

the predictive power of the ANN outperforms both ZDOCK and ZRANK. Thus, using
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distance dependent atom-pair potentials that are learned by an ANN on a training set

consisting of near-native decoys yields a powerful scoring function that performs equally

or even better than current scoring functions from the literature.
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a

b

Figure 2: a: Four docking complexes, each with two binding partners (purple and green),
of the training set are shown in a cartoon representation. Positions and ori-
entations of the binding partners shown in green are additionally represented
by a cone, with its base (red) lying in the proteins center of mass and its apex
(orange) pointing to the other binding partners center of mass. b: The 2,000
near-native geometries (decoys) that were used for training are illustrated for
the same four complexes. One binding partner (purple) is kept fixed in its
native orientation while the other binding partner (represented by a cone) has
2,000 new orientations.
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Figure 3: a: A schematic representation of the topology of the artificial neural network
(ANN). For each distance bin there are 222

2 + 22
2 = 253 input neurons; one for

each unordered pair of the 22 atom types. Additionally, one protein identity
neuron is used for each complex of the training set. b: The success rates for
varying n top ranked complex geometries (decoys) are plotted for a test set of
65 complexes. For each complex of the test set, 54,000 decoys were ranked by
our ANN (using 8 distance bins and no hidden layer), by ZDOCK [43] and by
ZRANK [44].
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2.2 Optimizing a Scoring Function with a Linear Scoring Function

O. Demir-Kavuk, F. Krull, M.H. Chae, E.W. Knapp, Predicting Protein Complex

Geometries with Linear Scoring Functions, Genome Inform., 24 (2010) 21-30

Own contribution:

• Development of research question

• Selection of training data

• Generation of decoys

• Development of software tools

• Analysis of results

• Preparation of manuscript

In this paper we investigated the sensitivity of our previous approach (section 2.1) to the

underlying machine learning algorithm. Initially, we used an artificial neural network

(ANN) to derive parameters of a scoring function from a training set of near-native

complex geometries (decoys). In this study we replaced the ANN by a linear scoring

function and we analyzed the resulting prediction power. To maintain comparability to

our previous work (section 2.1), exactly the same training and prediction data was used.

As before, the purpose of the scoring function resulting from the present study is to

assign ranks to a large set of decoys such that decoys close to the native geometry can

be found among the top scoring decoys.

As described previously, our training set consists of 191 protein complexes that were taken

from the literature (48 complexes from Hwang et al. [18] and 143 complexes from Huang

et al. [37]). For each decoy we used the same 2,000 near-native decoys that were generated

as described earlier (section 2.1). To describe a decoy we count the number of atom-pairs

that belong to a specific pair of atom type and a distance bin. We differentiate between

22 atom types that we introduced previously. In our previous work we discretized the
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distances between atom-pairs in distance bins. We were able to show that it is sufficient

to use eight distance bins to achieve maximum prediction power. Therefore, we describe

a decoy k by a feature vector ~xk containing 253 · 8 = 2,024 features.

To compute a score from a feature vector ~xk of length d, we use a linear scoring function

given by the formula

score(~xk) = ~wt · ~xk , (3)

where ~w ∈ Rd is a model parameter vector containing a weight for each feature. This

model parameter vector is obtained from a training set of n decoys with known iRMSD,

by minimizing an objective function which we define as

L(~w) =
n∑

k=0

[
µk
{
~wt · ~xk − iRMSDk

}]2
+ λ · ~wt · ~w . (4)

The Tikhonov regularization [45], which makes up the second term of the objective

function, is used with λ = 0.1 to avoid overfitting by suppressing the least important

features. We weight data points that have a small iRMSD by using the weights µk = (d−

iRMSDk)
2 with d = 8. In contrast to our previous work (section 2.1), with this approach

we do not need a validation set during training. Therefore, we used the near-native

decoys of all 191 protein complexes to derive the model parameter vector. Analogous to

the protein identity neurons from our previous work, we extend the feature vector by 191

protein identity features; one for each complex of the training set. During training, for

each decoy the identity feature corresponding to the complex is set to 1 while all others

are set to 0. Using the protein identity features allows adjustment of the zero-point score

for the particular protein complex.

After training the model parameter vector, we applied the linear scoring function Eq. (3)

to the 2,000 near-native decoys of each protein complex from the training set. Examples

are shown in Fig. 4a. For almost all complexes, we observed a well-established correlation

between the score and the distance from the native geometry, such that an energy-funnel

was modeled in the vicinity of the native protein complex geometry.
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As described in section 2.1, we tested the prediction power of the linear scoring function

Eq. (3) by analyzing the success rates for a prediction set of 65 protein complexes taken

from Ref. [38], each with 54,000 decoys generated by ZDOCK [43]. We observed that, in

terms of the predictive power, the linear scoring function seems to perform as well as the

ANN (Fig. 4b). Interestingly, if the number of predictions is 1, the success rate is the

same for the ANN and the linear scoring function. These observations demonstrate the

robustness of the approach of deriving distance dependent atom-pair potentials from a

training set of near-native decoys, as described in section 2.1 since it works equally well

even when a different machine learning algorithm is used.
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Figure 4: a: For four protein complexes of the training set, the iRMSD of all 2,000 near-
native geometries (decoys) is plotted against the score resulting from the linear
scoring function after minimization of the objective function. The lowest scores
can be observed on decoys close to the native geometry (small iRMSD). In
conclusion, the score mimics a funnel-like energy landscape for the interaction
between the two proteins. b: The success rates for varying n top ranked decoys
are plotted for a test set of 65 complexes. For each complex, 54,000 decoys were
ranked by the linear scoring function (LSF), by the artificial neural network
(ANN) from section 2.1, by ZDOCK [43] and by ZRANK [44].
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2.3 Applying the Elements of the Protein Docking Approach to Protein

Folding

M.H. Chae, F. Krull and E.W. Knapp, Optimized Distance-Dependent

Atom-Pair-Based Potential DOOP For Protein Structure Prediction, Proteins: Struct.,

Funct., Bioinf., 83 (2015) 881–890

DOI: http://dx.doi.org/10.1002/prot.24782

Own contribution:

• Development of software tools

• Analysis of results

• Preparation of manuscript

Previously, we established a powerful scoring function using machine learning methods

(section 2.1 and 2.2) in conjunction with near-native decoys to derive atom-pair poten-

tials. In this publication we transferred this concept from the field of protein-protein

docking to de novo protein structure prediction.

De novo protein structure prediction attempts to predict the tertiary structure of a

protein from its amino acid sequence. By using experimental methods, the amino acid

sequence of proteins is easier to obtain than their corresponding structure. However, the

structure of a protein is important for many biological questions. A recent study [46]

shows that about 1 % of the amino acid sequences available in the UniProtKB database

[47] have also corresponding structures that are available within the Protein Data Bank

(PDB) [28]. This situation creates a high demand for reliable prediction methods. Cur-

rent methods still require large computational resources, but are able to predict the

structure for small proteins with reasonable accuracy [48]. De novo protein structure

prediction will also play an important role in protein-protein docking because one struc-

ture of the interacting proteins might be unknown. In such situations, protein structure

prediction can serve as a preliminary step for a protein-protein docking algorithm [49].
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Similar to protein-protein docking algorithms, de novo protein structure prediction gen-

erally involves two components consisting of a sampling algorithm and a scoring function.

The sampling algorithm generates candidate structures (decoys). Analogous to flexible

protein-protein docking (section 1.1), in protein structure prediction the sampling prob-

lem has a very large search space. Therefore, the sampling algorithm often uses either

a low resolution model at its initial stages or some guidance by a scoring function. As

in protein-protein docking the scoring function has to be able to identify the structures

close to the native structure of a protein.

As in our previous work we used an artificial neural network (ANN) to derive atom-pair

potentials. A training set consisting of 954 protein structures was compiled. Each of these

proteins was successively partitioned into several receptor-ligand systems by removing

residues at loops and β-turns. In total, 8,609 receptor-ligand systems were generated

with this approach. Examples are shown in Fig. 5. For each of these receptor-ligand

systems, 1,000 near-native decoys were generated analogous to the procedure described

in section 2.1. The iRMSD of these 1,000 decoys show an even distribution within the

interval [0, 10] Å.A total of 10 iRMSD bins with a width of 1 Å were used, each containing

100 decoys. To describe such decoys, we used 32 atom types from the literature [50] and

14 distance bins resulting in
(
322

2 + 32
2

)
·14 = 7,392 distance dependent atom-pair classes.

We designed the ANN as feed-forward neural network without hidden layers. In addition

to the 7,392 input neurons for the distance dependent the atom-pair classes, we used

8,560 protein identity neurons, one for each receptor-ligand system of our training set.

The remaining 49 receptor-ligand systems were used as a validation set to avoid over-

fitting of the ANN. The desired output of the network is given by Eq. (3) where we set

d = 2 Å. To have the atom-pair potentials independent from the peptide bonds, we

count only those pairs whose partners have a distance of at least six amino acids within

the sequence of the polypeptide chain. After optimization of the parameters, the score

of the ANN models a funnel-like energy landscape in the vicinity of the native geometry

(Fig. 5).

In addition to the distance dependent atom-pair potentials Eatom-pair, the complete scor-
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ing function, which we call the DOcking decoy-based Optimized Potential (DOOP), uses

a torsion potential Etor

EDOOP = Eatom-pair + wtor · Etor , (5)

where wtor is a weight parameter. The torsion potential of a polypeptide chain consisting

of n amino acids is defined by the formula

Etor =
n−1∑
i=2

tor(Ai−1,Ai, Ai+1, ϕi, ψi) , (6)

where the function tor gives the torsion potential of a single residue, Ai denotes the

residue type i; ϕi and ψi the dihedral angle. The individual torsion potentials are de-

rived from statistical occurrences in a training set of 2,111 non-homologous proteins with

pairwise sequence identities of less than 20 %. The weight wtor of Eq. (5) was set to 0.1.

We applied the resulting scoring function to eight commonly used decoy sets and com-

pared the results with other statistical potential scoring functions from the literature

(Fig. 6). From a total of 168 targets, the DOOP scoring function correctly identified 151

native structures. The results demonstrate that the DOOP scoring function performs

better than or as good as other state-of-the-art coring functions, which is especially true

for the most challenging ROSETTA [53] decoy set. Moreover, the predictive power of the

DOOP scoring function shows more consistency compared to other statistical potentials.

31



Improving Scoring Functions for Protein Docking

●●
●
●●●
●●●●

●
●
●●●
●●●
●

●
●●
●
●

●

●
●
●
●

●

●

●●

●
●
●

●●●●

●
●

●●

●●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●●●
●

●

●

●●
●
●
●

●

●

●

●
●●

●

●●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●●

●
●●●

●
●

●
●
●

●●
●

●
●
●●

●●●

●●●

●●

●●
●

●
●
●

●
●

●●

●●
●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●●
●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●●

●

●
●●

●

●

●

●●
●●

●

●
●

●●●
●

●

●

●
●
●

●●

●

●

●●

●

●●●●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

● ●●●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

● ●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●●

●

●

●

●
●

●

●
●●

●

●
●

●
●

●

●

●
●

●

●
●

●
●●

●
●
●

●

●

●

●●
●

●

●

●
●

●●●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●
●

●

●●●
●
●

●

●
● ●

●●●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●●
●●●

●

●

●●

●

●●

●

●

●

●
●●

● ●

●

●

●

●
●●

●●
●●
●

●●

●

●●

●
●

●

●

●

●
●●

●●
●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●●
●

●
●●

●●●●
●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●
●

●

●●●

●

●●●

●●●

●

●

●

●

●●
●

●

●
●

●
●●

●

●●
●

●
●

●
●

●
●

●●

●
●●

●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●●
●

●

●

●
●●

●

●
●

●●

●

●

● ●

●

●

●

●●

●
●

●
●●

●
●

●●●
●
● ●●

●

●●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●
●● ●●

●●
●

●

●

●

●

●
●●●

●●

●

●

●

●

●● ●

●

●
●

●

●●

●
●●

●●
●

●
●

●

●
●

●●
●

●●●
●●

●

●

●
●

●●

●

●
●

●

●●

●●●

●
●●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●●

●
●●

●
●

● ●

●

●●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●●

●
●

●
●

●

●

●
●

●

● ●●

●

●

● ●

●● ●

●●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●● ●

●●
●

●
●

●

●
●●

●

●

●

●●

●

●

●
●

●

●

●●●

●

●

●
●●●

●

●
●

●

●
●

●
●

●

● ●
●

●●

●
●

●
●

●

●●

●
●

●

●

●
●

●

●●

●
●

●

●
●
●

●

●●
●

●●
●
●

●

●

●

●

●

●

●●
●

●●●

●●●

●

●
●

●

●

●

●

●

●●

●
●
●

●

●

●

●
●

●●
●
●

●
●
●●

●

●

●

●●

●

● ●●

●

●

● ●

●
●

●

●●

●

●
●

●

●

●
●

●●●

●

●

●

●
●

●●

●●
●

●

●

●
●●

0 2 4 6 8 10

−
10

−
5

0
5

●
●
●
●
●

●●
●

●●
●●
●●●
●

●●●

●
●

●
●
●
●
●●●
●
●●
●
●
●
●●●
●
●
●

●

●

●
●

●●

●●

●

●●
●●

●

●

●

●

●
●

●
●

●●●
●
●
●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●
●●

●

●
●

●

●

●●

●

●
●●

●
●

● ●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●
●

●

●

●●
●

●

●
●

●

●

●

●●●

● ●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●●
●

●
●●

●

●

●

●

●

●

●

●
●●

●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●●

●

●

●

●
●●●

●

●

●

●

●

●

●●

●

●

●

●●
●

●
●

●

●
●●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●●
●●

●●

●

●

●●

●
●

● ●

●

●

●

●

●

●
●●

●● ● ●●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●●

●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●●

●

●

●
●●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●●●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●
●

●●

● ●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●● ●

●

●● ●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●
●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●
●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●
● ● ●

●

●

●
●

●

●

0 2 4 6 8 10

−
2

0
2

4
iRMSD (Å)

   
   

   
  D

O
O

P
 e

ne
rg

y

a

●●●●
●
●●
●
●

●●●
●●●●●
●
●

●
●
●●
●
●
●●
●

●●

●●●●
●

●
●●

●

●
●
●●●
●
●

●

●

●

●

●●
●
●
●
●
●

●
●

●●

●

●
●

●
●

●

●

●

●
●
●

●

●
●

●

●

●
●

●

●●●

●
●

●
●●
●●

●

●●

●●

●
●
●

●

●

●

●

●

●●

●
●

●

●

●●●

●

●

●
●

●

●

●●

●

●●●

●
●
●

●
●
●
●

●

●

●

●

●

●

●

●

●●
●

● ●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

● ●●●

●
●

●●

●

●

●

●
●
●
●

●
●
●

●
●
●●

●

●

●
●

●

●

●

●●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●
●●

●
●

●●

●

●

●
●

●

●●
●

●

●

●

●

●
●

●

●

●

●●

●● ●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

● ●
●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●
●
●

●

●

●

●
●

●
●

●
●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●●

●

●●

●
●

●

● ●

●

●

●●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●●

● ●
●

●

●

●
●●

● ●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●
●●

●
●

●

●
●●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●
●●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●●●

●
●

●●

● ●
● ●

●

●

●

●

●●
●●

●●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●●

●

●

●
●
●
●

●

●

●

●●
●●●

●

●●
●

●
●●

●●
●

●

●
●

●
●

●

●

●

●
●

●

●●●

●

●

●

●●
●

●

●

●

●

●

●
●

●●

●

●●
●

●

●
●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●
●

●

●

●
●

●

●

●
●

●
● ●●

●
●

●●
●●

●

●
●●●

●
●

●

●

●

●●● ●
●

●

●●

●

●

●

●●
●●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●
●

●
●

●

●

●
●

● ●

●

●

●

●●
● ●●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●●

●
●
●

●

●
●

●
●

●●

●
●

●

●● ●●●

●
●

●

●

●●

●
●
●
●

●

●●

●

●●

●

●

●

●●●
●

●

●

●●

● ●

●

●
●

●

●

●

●
●

●●
●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●● ●

●●●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
● ●●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●
●

● ●
●

●●

●

●

●

●
●

●

●

●

●

●

● ●
●●

●

●
●● ●

●

●

●
●

●

●

●

●

●

●●
●●

●

●

●

●

●
●●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

0 2 4 6 8 10

−
6

−
2

0
2

4

●●●
●●

●●

●●
●

●

●

●

●
●

●

●
●
●

●
●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●
●

●●

●
●●

●

●

●

●

●
●●●

●

●

●

●

●●
●●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●
●

●●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●
●

●

●

●
●

●●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

● ●

●

●
●

●

●

●

● ●

●

●●
●

●

●●
●

●

●●

●
●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●
●

●●

●

●
●

●

● ●

●●

●

●
●
●●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●●

●

●
●

●
●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●
●

●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●

●
●
●

●

●

●
●●
●
●

●

●
●●

●
●

●●

●

●●
●

●

●●

●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

0 2 4 6 8 10

−
4

−
2

0
2

iRMSD (Å)

   
   

   
  D

O
O

P
 e

ne
rg

y

b

Figure 5: a, b: Four receptor-ligand systems of the training set are shown in the top row.
The first four characters belong to the PDB code of the protein structure, while
the fifth character identifies the chain id. The receptor is colored in orange and
the ligand is colored in blue. For each receptor-ligand pair, a set of 1,000 near-
native geometries (decoys) was generated. The second row shows the iRMSD
vs. the score of the trained artificial neural network of the decoy sets belonging
to the structure above.
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Figure 6: Comparison of results of the DOOP atom-pair potentials with six other scoring
functions for eight decoy sets from the literature. For each decoy set, the total
number of target structures is indicated by a horizontal line. Bars indicate
the number of correctly identified targets by the individual scoring functions.
Results for DFIRE, RWplus, dDFIRE, OPUS-PSP and GOAP were taken from
Ref. [51] and results for DOPE were taken from Ref. [52].
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2.4 Improving Protein-Protein Docking with New Data Sets for Training

and Benchmarking

F. Krull, G. Korff, N. Elghobashi-Meinhardt, E.W. Knapp, ProPairs: A Data Set for

Protein–Protein Docking, J. Chem. Inf. Model., 55 (2015) 1495–1507

DOI: http://dx.doi.org/10.1021/acs.jcim.5b00082

Own contribution:

• Development of research question

• Design and development of software

• Computation and analysis of results

• Development of web page

• Preparation of manuscript

In this publication we aim to enlarge the data set of protein-protein complexes that we

used for training in sections 2.1 and 2.2.

Protein structures that consist of multiple polypeptide chains are potentially structures of

protein-protein docking complexes. Many of such structures have been resolved and are

available in the Protein Data Bank (PDB). However, most of them are obligate protein

complexes, where all polypeptide chains are required in order to form a stable structure.

In contrast, the binding partners that are relevant for protein-protein docking can also

exist in unbound state. Based on the information in the PDB it is not directly clear

which of the structures with multiple polypeptide chains are obligate and which ones are

not.

Several hand curated data sets have been compiled [34, 36, 37]. However, regarding the

continuous growth of the PDB, keeping those data sets up-to-date is an important task
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that has not been addressed. With the Dockground data set an automatic approach

also exists, in which protein docking complexes are identified by an heuristic method.

With ProPairs we introduced a new method of compiling protein docking complexes

within the PDB, by identifying the unbound structures of at least one of the binding

partners. The underlying algorithm considers every structure of the PDB as a potential

docking complex and tries to detect all the corresponding unbound structures. If at least

one suitable unbound structure is found, the initial PDB structure is considered to be a

legitimate protein docking complex. The decision as to whether an unbound structure

is suitable or not relies on a defined set of rules that we have implemented in a software

tool. For example, the unbound structure is required to have a high sequence identity

in the interface region of the bound structure. Cofactors in the interface of the bound

structure that have a biochemical function, are required to be also present in the unbound

structure.

We applied our method to the PDB using its state of November 2013 and identified

11,600 interfaces. This large set was then further processed because it is important to

remove redundancies. Redundancies are present because, due to similarity, one interface

can be found multiple times within the same protein structure. We also want to avoid

the biasing of structures that are over-represented in the PDB. To detect redundancy,

we use a novel approach by computing the sequence identity of the interface to measure

similarity between structures. The similarity is used to cluster all 11,600 interfaces and

automatically select 2,070 representative protein docking complexes. The final nonre-

dundant set also contains representative unbound structures that our method assigns by

well defined rules. For 810 complexes, two unbound structures were identified and for

the remaining 1,206 complexes, only one suitable unbound structure was assigned. With

this approach, scanning the entire PDB has high computational costs. Therefore, our

method uses efficient pre-filtering that reduces the set of candidate complex-unbound

pairs without eliminating correct solutions.

We compared our data sets with the protein-protein docking benchmark 4.0 (DB4.0),

which is one of the most widely used data sets for protein-protein docking algorithms.
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Figure 7: a: The overlap between the ProPairs data set and the DB4.0 set is schematically
represented. With the exception of one case, the ProPairs data set contains
all protein complexes of the DB4.0 set, while being significantly larger. b: For
three data sets, the number of unbound proteins (logarithmic scale) are plotted
as a function of their interface RMSD (iRMSD) with a bin width of 1 Å. For
the small ProPairs set, 810 protein docking complexes are considered, each one
possessing two unbound structures (solid line). Each unbound protein structure
contributes independently to the distribution. In comparison, analogous data
are shown for the DB4.0 data set for which we consider the unbound structures
corresponding to the 175 complexes that are also contained in the large ProPairs
data set of 11,600 protein docking complexes (dashed line). For the large
ProPairs data set, all unbound structures are considered (dotted line).

We found that from the 176 complexes of DB4.0, 175 complexes are also identified with

ProPairs (Fig. 7a), which demonstrates the reliability our automatic procedure. The one

remaining complex (PDB id 1D6R) was not found by our approach because the biological

assembly specified in the PDB is wrong.

We also analyzed the distribution of the unbound proteins’ sequence lengths, interface

sizes and iRMSDs in histograms. Overall, we observed for DB4.0 and the nonredundant

ProPairs data set that the curves show a similar shape, despite the ProPairs data set being

significantly larger. The distributions of the iRMSDs are shown in Fig. 7b. The results

indicate that ProPairs generates comprehensive data sets that show similar characteristics
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to smaller, hand-curated data sets. Unlike other approaches, ProPairs derives its data

sets only from PDB structures and does not depend on other data bases. An overview

of the nonredundant ProPairs data set in comparison with other data sets is given in

Table 1 on page 13.

Along with the detailed description of our new method, we developed an interactive web

page. Subsets of the protein docking complexes can be created by different selection

criteria, inspected and downloaded. We also provide the ProPairs program, which can

be set up in very few steps. It generates an updated data set along with a local web page

displaying the data. The complete source code of the ProPairs program is released under

an open source license, so users in the scientific community are also able to modify the

automatic selection procedure. We gave public access to the interactive web page and

the source code at http://propairs.github.io.
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3 Discussion

In this section, it is demonstrated that our proposed method of generating data sets

(section 2.4) is valuable for protein-protein prediction. Furthermore, it is showed that

the resulting data and their presentation enables us to improve the results of our previous

work (section 2.1 and section 2.2).

3.1 Motivating the Need for Automatic Procedures to Compile Data Sets

The number of structures available from the Protein Data Bank (PDB) [28] is continu-

ously growing. In this section, it is investigated how this growth effects the number of

protein complexes that can be identified with ProPairs (section 2.4). Therefore, our au-

tomatic procedure was applied to a recent state of the PDB and compared the resulting

data set of protein docking complexes to a previous set.

Nov. 2013 Mar. 2015 Increase

Large set 11,600 13,558 16.9 %
Nonred. set 2,070 2,409 14.1 %

Table 2: The number of interfaces that were found with the ProPairs method is shown
for the large and the nonredundant set. Both sets were generated using the state
of the Protein Data Bank (PDB) [28] from November 2013 and then generated
again using PDB data from March 2015. The increase of the two sets during
that time period is denoted in the third column.

The results show that the number of interfaces found in the large ProPairs set increased

within 16 months by 16.9 % from 11,600 to 13,558 (Table 2). Within the same time,

the number of complexes contained in the nonredundant set increased by 14.1 % from

2,070 to 2,409 docking complexes. Regarding the increasing amount of protein structures

available from the PDB, exceeding 100,000 in 2015, it is obvious that the data cannot be

processed manually. Thus, there is a strong need for automatic procedures such as our

proposed method. With high time and cost efficiency, ProPairs also make short update

cycles feasible, which are crucial due to the high growth rate of the underlying Protein

Data Bank.

39



Improving Scoring Functions for Protein Docking

3.2 Demonstrating the Importance of Large Training Sets

Our method proposed in section 2.4 is able to provide training sets that are significantly

larger than the ones we used in earlier studies (section 2.1 and 2.2). In this section, it

is showed that these new data sets provide powerful training data for protein-protein

docking algorithms.
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Figure 8: a: A schematic representation of training and prediction sets. In section 2.2,
the scoring function was parameterized with a training set of 191 protein com-
plexes (LSF-2010) and benchmarked with a prediction set of 65 protein com-
plexes (DB2.0). This workflow is indicated by a dashed-dotted line. In this
section, the prediction set of 65 protein complexes is separated into two subsets:
45 enzyme-inhibitor/other complexes and 19 antibody-antigen complexes. An
additional training set (ProPairs-2015) was compiled with the ProPairs web
page consisting of 73 antibody-antigen complexes only. The new combinations
of training and prediction sets are investigated (lines a, b and c). b: The suc-
cess rates for the three new combinations of training and prediction sets are
plotted for varying n top ranked decoys (lines a, b and c). Compared to the set
of enzyme-inhibitor/other complexes (dotted line, a), smaller success rates can
be observed for the set of antibody complexes (dashed line, b), indicating that
it is more challenging. However, the prediction power for the antibody com-
plexes is increased when the training was carried out using the new ProPairs
training set (solid line, c) and, for most n, exceeds the other predictions.
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This paragraph focusses on the prediction of antibody-antigen complexes. Therefore, the

result of section 2.2 was used as a starting point and the prediction set consisting of 65

protein complexes was separated into two classes: 45 enzyme-inhibitor/other complexes

and 19 antibody-antigen complexes (lines a and b in Fig. 8a). As plotted in Fig. 8b,

the linear scoring function that was discussed in section 2.2 performs better on the

enzyme-inhibitor/other complexes (line a in Fig. 8a and b) than on the antibody-antigen

complexes (line b in Fig. 8a and b), indicating that the antibody-antigen complexes

constitute a more challenging prediction set.
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Figure 9: a: The success rates resulting from three different training sets are shown
for varying n top ranked complex geometries (decoys). The prediction set
consists of 19 antibody-antigen complexes. By selecting random complexes
the ProPairs-2015 training set containing 73 antibody-antigen complexes was
reduced to two smaller subsets containing 37 and 18 complexes. For almost all
n, the success rates increase with the size of the training set.

From the ProPairs set of March 2015 (section 3.1), a training set consisting of 73 antibody

complexes was compiled using our publicly available web page (http://propairs.github.io).

With our procedure to detect similar interfaces (section 2.4), it was verified that no com-

plex of the new training set had a similar interface to any complex of the prediction set.
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The ProPairs set of 73 antibody complexes was used to derive parameters for a linear

scoring function as described previously (workflow illustrated by line c in Fig. 8a). In

Fig. 8b the resulting prediction power is compared to the results obtained with our pre-

vious training set of 191 complexes. The results show a superior prediction quality when

using the new ProPairs training set of 73 antibody-antigen complexes (line c in Fig. 8b)

compared with the data set from our previous work (line b in Fig. 8b).

To demonstrate the positive impact of larger training sets, the set of 73 antibody com-

plexes was reduced to 37 and 18 by random selection. A comparison of the success rates,

which result from training with these subsets, is shown in Fig. 9b. It can be observed

that the success rates of the linear scoring functions increase with the size of the un-

derlying training sets, which indicates the importance of comprehensive data sets for

protein-protein docking such as ProPairs.
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4 Conclusion and Outlook

In this study, supervised learning has been successfully applied to the protein-protein

docking problem. A new method to derive a scoring function was established and notably,

the concept of deriving atom-pair potentials by a machine learning algorithm from near-

native decoys was introduced. This concept has been successfully carried out with two

machine learning algorithms; first with an artificial neural network and then by linear

scoring functions. As shown in this work, both versions of our concept resulted in scoring

functions which performed equally well or even better than other state-of-the-art scoring

functions for protein-protein docking.

With ProPairs a method has been developed to automatically identify new training data

among experimental protein structures. This method proves to significantly enlarge the

training set of protein-protein complexes that was used previously to derive atom-pair

potentials. In this work it has been shown that machine learning algorithms benefit

from this enlarged training set and resulting in further optimized atom-pair potentials.

Generally, with larger training sets the risk of over-fitting is reduced. With enlarged

training sets in combination with enlarged feature vectors the machine learning algorithm

is more likely to detect additional generalities. Thus, a promising investigation would

be to introduce additional features for the representation of docking decoys in order to

enhance the scoring function.

The proposed ProPairs method, the resulting data sets and their representation on an

interactive web page provide data for further studies, including benchmarking of docking

algorithms, comprehensive analyses of protein-protein interactions or examinations of

similar complexes for specific interactions. The ProPairs set provides the complete list of

complexes considered to be similar for each identified protein-protein complex. For each

identified unbound structure, the complete list of equivalent unbound structures is also

provided.

An analysis carried out with the ProPairs method showed that the number of identified

protein-protein complexes is rapidly growing. This observation supports the advantage
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of an automatic identification of protein-protein complexes. The ProPairs program was

released to the protein docking community and allows easy use. Consequently, ProPairs

provides a sustainable way to allow the computation of up-to-date data sets also in the

future.

In this work, many tasks required specific tools not covered by existing software libraries.

Therefore, during this work software tools were developed consisting of reusable modules.

Their code has been optimized with respect to execution time by using parallelization

and hardware optimization while at the same time ensuring portability to various plat-

forms. The portability of the library is additionally supported by its very few dependen-

cies on third-party software. The library is available to the docking community under

an open source license permitting its examination, usage, modification and extension

[http://propairs.github.io].

Protein structure prediction may serve as a preliminary step to protein-protein dock-

ing when one structure of the unbound binding partners is unknown. It was successfully

demonstrated that the concept of using machine learning in conjunction with near-native

decoys to derive atom-pair potentials can be transferred from protein-protein docking to

the field of protein structure prediction. The resulting atom-pair potentials for protein

structure prediction outperformed many other statistical potentials from the literature.

Thus, one can conclude that further advances in protein-docking are helpful to protein

structure prediction and vice versa, especially when near-native decoys, atom-pair po-

tentials and supervised learning are used in combination.
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5 Summary

Protein-protein docking plays a central role in many biological processes, such as signal

transduction and transport across membranes, and is therefore of great scientific inter-

est. Methods exist determining if two proteins interact. For many scientific questions,

notably pharmaceutical ones, knowledge about the structure of the underlying protein-

protein complex is essential. Often the structures of individual protein molecules can

be determined by experimental techniques, but the structural characterization of protein

complexes of many molecules often remains a challenge.

This problem may be solved by computer-aided methods. Such approaches are called

“protein-protein docking”. They consist of methods that use the protein structure of the

individual binding partners belonging to a protein-protein interaction pair as a starting

point and compute the structure of the protein-protein complex. These docking algo-

rithms usually consist of two components, one of which is a sampling algorithm that

generates a set of promising structures (decoys) of the protein-protein complex. The

other component is a so-called scoring function that aims to identify correct near-native

protein complex structures among the generated decoys. Ideally, the scoring function

assigns the best score to those structures that are closest to the native structure of the

protein-protein complex.

In this study, scoring functions have been established with supervised learning. In par-

ticular, the concept of representing decoys by atom-pair potentials which are derived

from near-native decoys was introduced. This concept has been successfully carried out

with two machine learning algorithms; with an artificial neural network and with a linear

scoring function. With both approaches a scoring function was derived that is able to

compete and even outperform other state-of-the-art scoring functions from the literature.

The quality and quantity of training data play an essential role in supervised learning.

Data sets from the literature consisting of protein-protein complexes turn out to be

small or do not fulfill certain quality criteria. Therefore, in this study a method was

developed to identify training data comprehensively and with well-defined, high quality
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criteria. This method was implemented in a computer program such that data sets can

be generated automatically. It has been shown that, the continuous growth of the Protein

Data Bank [28]makes it necessary to provide a tool that can generate up-to-date data

sets for protein docking in the future. Additionally, in this work it was demonstrated that

the resulting training data notably improved the performance of the machine learning

algorithm.

Finally, in this work we successfully transferred the concept of using atom-pair potentials

with near-native decoys to the field of protein structure prediction. Protein structure

prediction is carried out by methods that compute the structure of a protein from its

amino acid sequence. Such methods can serve as a preliminary step in protein-protein

docking whenever the structure of one of the two binding partners is unknown. In this

study, it was shown that the concept of deriving atom-pair potentials from near-native

decoys is also successfully applicable for state-of-the-art approaches in protein structure

prediction.
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6 Summary (German)

Protein-Protein-Interaktionen spielen eine zentrale Rolle in vielen biologischen Prozessen,

wie Signaltransduktion und Transportfunktionen, und sind daher von großem wissen-

schaftlichen Interesse. Es existieren verschiedene Methoden, um festzustellen, ob eine

Interaktion zwischen zwei Proteinen stattfindet. Beispielsweise für pharmazeutische Fra-

gestellungen ist die räumlichen Struktur des zu Grunde liegenden Protein-Protein-Kom-

plexes von entscheidender Bedeutung. Die Bestimmung der räumlichen Struktur von

Proteinen ist mit experimentellen Methoden generell möglich, gestaltet sich jedoch für

Protein-Protein-Komplexe deutlich schwieriger.

Über computergestützte Methoden versucht man dieses Problem mit geringem Aufwand

zu lösen. Solche unter “Protein-Protein-Docking” zusammengefassten Verfahren gehen

von der bekannten chemischen und räumlichen Struktur der Bindungspartner einer Pro-

tein-Protein-Interaktion aus und berechnen aus ihnen die Struktur des Protein-Protein-

Komplexes. Zumeist bestehen Docking-Algorithmen aus zwei Komponenten. Eine Kom-

ponente generiert eine Menge aussichtsreicher Strukturen des Protein-Protein-Komplexes.

Die andere Komponente, eine sogenannte “Scoring-Funktion”, identifiziert unter all den

aussichtsreichen Kandidaten die richtigen Strukturen. Dazu wird für jeden Kandidaten

ein Zahlenwert (Score) berechnet. Idealerweise haben jene Kandidaten den höchsten

Score, welche am nächsten zu der richtigen Lösung und somit am ähnlichsten zu dem

nativen Protein-Protein-Komplex sind.

Im Rahmen dieser Untersuchung wurden Scoring-Funktionen mit Hilfe von maschinellem

Lernen erarbeitet. Dabei wurde das Konzept vorgestellt, Protein-Komplexe über Atom-

paar-Potentiale zu beschreiben und diese Potentiale ausschließlich von Struktur-Kandi-

daten mit hoher Ähnlichkeit zum nativen Protein-Protein-Komplex abzuleiten. Dieses

Konzept wurde erfolgreich mit zwei Verfahren überwachten Lernens durchgeführt; mit

einem künstlichen neuronalen Netz sowie mit einer linearen Bewertungsfunktion. Mit

beiden Verfahren wurde eine Scoring-Funktion bestimmt, welche eine ähnlich hohe oder

bessere Vorhersagekraft als andere aktuelle Scoring-Funktionen aufweist.
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Entscheidende Faktoren für den Erfolg überwachten Lernens sind die Qualität und die

Quantität der Trainingsdaten. Bereits publizierte Zusammensetzungen solcher Train-

ingsdaten, das heißt Strukturen von Protein-Protein-Komplexen, sind relativ klein oder

weisen qualitative Mängel auf. In dieser Arbeit wurde daher ein Verfahren ausgearbeitet,

solche Trainingsdaten umfassend und mit hohen, klar definierten Qualitätskriterien zu

bestimmen. Dieses Qualitätskriterien wurden in einem Computerprogramm verwendet,

welches automatisch einsetzbar ist. Es konnte gezeigt werden, dass diese automatische

Methode aufgrund der stetig wachsenden Anzahl der Strukturen in der Protein Data

Bank [28] von großer Wichtigkeit ist. Ebenso wurde in dieser Arbeit demonstriert, dass

durch die resultierenden Trainingsdaten der Erfolg des maschinellen Lernens deutlich

verbessert werden kann.

Abschließend wurden Erkenntnisse dieser Arbeit aus dem Bereich des Protein-Protein-

Docking erfolgreich auf den Bereich der Proteinstrukturvorhersage angewendet. Zur

Proteinstrukturvorhersage zählen Methoden, die die Struktur eines Proteins aus seiner

Aminosäurensequenz bestimmen. Diese Verfahren kommen mitunter im Protein-Protein-

Docking zum Einsatz und dienen dort als einleitender Schritt, wenn die Struktur einer der

beiden Bindungspartner unbekannt ist. In dieser Arbeit wurde gezeigt, dass das Konzept,

Atompaar-Potentiale von fast nativen Struktur-Kandidaten abzuleiten, sich ebenfalls in

der Proteinstrukturvorhersage erfolgreich gegenüber anderen Methoden bewährt.
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