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P R E A M B L E 

 

 

 

This PhD thesis summarizes my research work for the past years related to the computation 

of protonation patterns in organic compounds and transition metal complexes. The work is 

written in a partially cumulative fashion, based on the following peer-reviewed journal 

publication as well as the material not yet published at the time of preparation of this 

thesis: 

1. Galstyan G., Knapp E.W. 

Computations of 36 tautomer/isomer equilibria of different lactams 

Journal of Physical Chemistry A 116(25): 6885-6893, 2012. 

2. Galstyan G., Knapp E.W. 

Computing pKA values of hexa-aqua transition metal complexes 

Journal of Computational Chemistry, under revision. 

      Accepted version: http://dx.doi.org/10.1002/jcc.23764 

 

 

 

During my PhD study I also administered our local IT infrastructure at the Macromolecular 

Modeling Group, involving Linux based computer cluster for grid and GPU computing. 

Provided technical support & troubleshooting. 
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During these years I also contributed to the following scientific research, where I performed 

all quantum chemical computations: 

1. Ma L., Galstyan G., Zhang K.K., Kloc C., Sun H.D., Soci C., Michel-Beyerle M.E., Gurzadyan 

G.G. 

Two-photon-induced singlet fission in rubrene single crystal 

Journal of Chemical Physics 138(18): 184508/1-184508/6), 2013. 

2. Woelke A.L., Galstyan G., Galstyan A., Meyer T., Heberle J., Knapp E.W. 

Exploring the possible role of Glu286 in CcO by electrostatic energy computations 

combined with molecular dynamics 

Journal of Physical Chemistry B 117(41): 12432-12441, 2013. 

3. Woelke A.L., Kuehne C., Meyer T., Galstyan G., Dernedde J., Knapp E.W. 

Understanding selectin counter-receptor binding from electrostatic energy 

computations and experimental binding studies 

Journal of Physical Chemistry B 117(51): 16443-16454, 2013. 

4. Woelke A.L., Galstyan G., Knapp E.W. 

Lysine 362 in cytochrome c oxidase regulates opening of the K-channel via changes in 

pKA and conformation  

Biochimica et Biophysica Acta – Bioenergetics, 2014, doi: 10.1016/j.bbabio.2014.08.003. 

5. Woelke A.L., Wagner A., Galstyan G., Meyer T., Knapp E.W. 

Proton transfer in the K-channel analogue of B-type cytochrome c oxidase from 

thermus thermophilus 

Biophysical Journal, submitted. 
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The text of this thesis skips the detailed overview of the formalisms of the quadratic 

configuration interaction, density functional, and Poisson-Boltzmann continuum 

electrostatics theories, as well as the numerical techniques for solution of the associated 

Schrödinger, Kohn-Sham and Poisson-Boltzmann equations extensively used in this work. 

The detailed description of the least squares procedure for numerical derivation of 

electrostatic potential charges are also omitted. All these information is very well 

documented, and an interested reader is recommended to address the comprehensive 

literature or the manuals of the associated software cited as required in the text of this 

work. 
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1.   I N T R O D U C T I O N 

 

 

 

The combined action of electrons and protons in molecules is an essential component in 

the lifecycle of biochemical processes found in nature. Therefore, precise knowledge of 

redox and protonation states of molecules supporting function of biological systems is the 

key for understanding the basic mechanisms driving life on the earth. In spite of the huge 

advances in modern experimental technique and equipment, the small size and high 

mobility of protons and electrons make such observations extremely challenging or even 

impossible. Hence, the role of scientific theories and hypotheses, based on computational 

methods for prediction of physicochemical properties of molecules like reduction potential, 

ionization potential, acid dissociation constant and prototropic tautomerization constant are 

crucial. Successful application of existing theoretical methods, or the development of new 

reliable methods for studying complex bio-molecular systems, requires initial proof of their 

eligibility in reproducing known properties for a set of less complex prototype reference 

molecules. 

Since more than a decade our group is developing ab initio approaches for reduction 

potential and pKA computations based on a combination of quantum chemical and 

electrostatic methods that involve computation of gas phase energies and solvation 

energies of the studied compounds in different protonation states (Schmidt am Busch and 

Knapp 2004, Schmidt Am Busch and Knapp 2005, Galstyan and Knapp 2009). In such 

approaches, energies of solvated compounds are computed by summing the energy terms 

of an appropriate thermodynamic cycle, which connects energy contributions of gaseous 

and solvated structures. The thermodynamic cycle for a deprotonation process is shown in 

Scheme 1. Thus, the methods for computation of reduction potential of oxygen-/sulfur-

centered organic radicals (Schmidt Am Busch and Knapp 2005) and mononuclear transition 

metal complexes (Galstyan and Knapp 2009) in protic or aprotic solvents yielded accuracies 

of 58 mV and 65 mV, respectively. The procedure for pKA computations (Schmidt am Busch 
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and Knapp 2004) yielded accuracy of 0.53 pH units for a number of different types of small 

organic compounds. The aim of this PhD work is to supplement the set of aforementioned 

methods with appropriate procedures for accurate computation of i) amide-imidic acid and 

amine-imine tautomerization constants for N-heterocyclic compounds, and ii) acid 

dissociation constants for hexa-aqua complexes of transition metals. The former may 

support the understanding of fundamental mechanisms of gene mutations occurring in 

evolution (Katritzky, Hall et al. 2010), and also be useful for the development of new drugs 

(Pospisil, Ballmer et al. 2003, Martin 2009, Katritzky, Hall et al. 2010, Milletti and Vulpetti 

2010). While the latter will serve as an excellent basis for prediction of protonation states of 

the oxygen evolving complex (OEC), a Mn4Ca-cluster center (Robertazzi, Galstyan et al. 

2014), which catalyses the process of photosynthetic decomposition of water into electrons, 

protons and molecular oxygen (Leslie 2009, Cox, Pantazis et al. 2013). This water-

plastoquinone oxidoreductase photosystem II (PSII) protein complex (Umena, Kawakami et 

al. 2011) is used in the thylakoid membrane of plants, algae, and cyanobacteria. 

Understanding this mechanism of function of the Mn4Ca-cluster is of technological 

significance as a source of alternative energy, as well as of fundamental significance for 

understanding of the detailed mechanism of photosynthesis. 

 

Scheme 1. Thermodynamic cycle for deprotonation process 

Gg

Gsolv(A
-) Gsolv(H

+)

AHg

Gsolv(AH)

Gaq

Ag
-              Hg

+

AHaq Aaq
-             Haq

+

GaqGg  Gsolv(A
-)  Gsolv(H

+)  Gsolv(AH)  
 

The polarity of the medium surrounding a molecule is one of the main factors 

influencing tautomer equilibria. Hence, for biological and pharmaceutical applications it is 

relevant to compute relative energies of tautomers in aqueous (blood or plasma) or non-
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protic media (cell membranes or enzymes). Within thermodynamic cycle (Scheme 1) the 

precision of protonation equilibria will however strongly depend on the quality of tautomer 

pair energies computed in vacuum. Therefore, finding an appropriate procedure for 

accurate determination of tautomer equilibria in vacuum is an essential step toward 

successful computation of tautomer equilibria in different dielectric media. 

A recent theoretical work involves a systematic study of the relative energies of 

tautomer pairs of formamide and six N-heterocyclic compounds (pyridine, four of the 

primary nucleobases: cytosine, guanine, thymine and uracil; and one non-natural 

nucleobase: isocytosine) in vacuum (Piacenza and Grimme 2004). Therein the performance 

of a number of quantum chemical methods was tested in reproducing reference tautomer 

pair energies computed with the accurate QCISD(T) method [quadratic configuration 

interaction with single and double excitations and triple excitations added perturbatively] 

(Pople, Head-Gordon et al. 1987). An improved version of the MP2 method (second-order 

Møller−Plesset perturbation theory) introduced in (Grimme 2003) yields the smallest root-

mean-square deviation (RMSD) of 0.7 kcal/mol. In all computations a basis set of triple-ζ 

quality was used. For formamide, increasing the quality of the basis set from triple-ζ to 

pentuple-ζ reduced the discrepancy between the tested and reference methods by 0.3 

kcal/mol (Piacenza and Grimme 2004). Interestingly, all considered density functional theory 

[DFT] (Parr and Yang 1989, Koch and Holthausen 2000) methods underestimated the 

stability of the lactim relative to lactam tautomer, which the authors assumed to be related 

to the different aromatic character (aromatic versus non-aromatic) of the two tautomeric 

forms. They linked this discrepancy to the amount of the exact exchange term in the DFT 

functional, and suggested that the presence of larger contribution of exchange potential 

leads to more accurate results. Therefore, it is interesting to study if, there is indeed a 

correlation between the discrepancy of DFT from QCISD(T) based tautomer pair energies 

and the difference in aromaticity of two tautomeric states. If such correlation exists, it can 

be used to build a post-SCF correction scheme, which will provide high quality tautomer pair 

energies with the less CPU time demanding DFT method. However, to establish such a 

method accurate reference energies for a larger number of tautomer pairs are required for 

better statistics. It is also interesting to benchmark the performance in prediction of 

tautomer pair energies of such promising DFT functionals as recently developed PW6B95 
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(Zhao and Truhlar 2005); the modified version of the BH&HLYP available in Gaussian09 

(Frisch, Trucks et al. 2009), in the following referred to as BH&HLYP(G); and the recently 

developed empirical post Hartree-Fock localized orbital correction scheme B3LYP-LOC 

(Friesner, Knoll et al. 2006, Goldfeld, Bochevarov et al. 2008), which is meant to diminish 

systematic errors made by B3LYP dependent upon the extent of delocalization of the 

electronic wave function. 

Aromaticity of molecules can be characterized quantitatively using the nucleus-

independent chemical shift (NICS) tensor (Schleyer, Maerker et al. 1996). The most 

advanced definition of the scalar value of NICS is the NICS(0)πzz index, which is the negative 

of the magnetic shielding in the center of the ring plane caused by the molecular π-orbitals 

(Steiner, Fowler et al. 2001, Corminboeuf, Heine et al. 2004). It is derived from the out-of-

plane zz-component of the NICS tensor. Much simpler NICS(1)zz aromaticity index is the 

negative of the magnetic shielding 1 Å above the center of the ring plane, which is derived 

from the out-of-plane zz-component of the isotropic NICS tensor. The latter serves as a good 

alternative to the NICS(0)πzz index in terms of performance, and it is more readily accessible 

(Fallah-Bagher-Shaidaei, Wannere et al. 2006). 

A set of five measured gas-phase energies of tautomerization, namely for 2-pyridinone, 

4-pyrimidinone, 2-pyrazinone and their benzo-fused derivatives is provided by another 

recent systematic study (Gerega, Lapinski et al. 2007). Availability of accurate 

measurements is highly important for the estimation of actual capabilities of newly 

developed computational procedures. A set of accurately measured aqueous pKA values for 

hexa-aqua complexes of first and second row transition metals is collected in (Gilson and 

Durrant 2009). 

One precondition for the accurate computation of pKA values is the accurate 

computation of gas-phase proton affinities. Like in case with aromatic versus non-aromatic 

tautomers (Piacenza and Grimme 2004), also when applied to transition metal complexes 

the DFT is subject to systematic errors depending on the extent of charge delocalization of 

the electronic wave function (Friesner, Knoll et al. 2006, Knoll and Friesner 2006, Galstyan 

and Knapp 2009, Jerome, Hughes et al. 2014). This leads to inaccuracies in the estimation of 

relative energies of compounds with a transition metal in different oxidation states 

(Galstyan and Knapp 2009, Jerome, Hughes et al. 2014). Appropriate post-SCF correction 
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schemes are very practical in such cases (Galstyan and Knapp 2009). Similar issues may well 

be expected when computing relative energies of closed versus open shell systems. 

The accuracy of quantum chemical relative energies depends also on the basis set used. 

It was reported that proton affinities computed with the triple–ζ basis set systematically 

underestimate measured proton affinities for compounds involving titratable oxygens, while 

the quadruple–ζ basis set works well (Schmidt am Busch and Knapp 2004). 

In two of the most recent studies devoted to the computation of the pKA values of hexa-

aqua transition metal complexes it was reported that the deprotonated species of hexa-

aqua complexes with the metal in oxidation state +2 tend to lower the coordination number 

upon geometry optimization from six to five ligand waters unless explicit solvent water 

molecules are used (Gilson and Durrant 2009, Jerome, Hughes et al. 2014). The usage of the 

thermodynamic cycle connecting vacuum and solvation energies (Scheme 1) is based on the 

assumption that the geometries of molecules in vacuum and in solvent are identical. 

Therefore, for molecules whose geometries differ considerably in these two phases, a 

selection of appropriate model geometries may have a strong influence on the accuracy of 

computed pKA values. Quantum chemical modeling of solvated geometries by addition of 

one or only a few explicit waters can be quite arbitrary due to the required decision about 

initial positions of the solvent molecules. While a sampling over numerous solvent degrees 

of freedom will dramatically increase the necessary CPU time. In contrast to the latter 

approach, the combined quantum mechanical  molecular mechanical method [QM/MM] 

(Warshel and Levitt 1976) can be much more useful to study the influence of explicit solvent 

on the geometry of a solute molecule since it allows consideration of a large amount of 

solvent molecules and solvation shells with comparatively low computational cost. 
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2.   P U B L I C A T I O N 

 

 

Computations of 36 tautomer/isomer equilibria of different lactams  

 

 

Authors:  Galstyan G, Knapp E.W. 

 

 

Bibliography:  Journal of Physical Chemistry A 116, 6885−6893, 2012 

 

 

Contribution: 

- All computations 

- Data analysis 

- Preparation of the manuscript 

 

 

 

 

 

 

 

 

 

 

 

 

http://dx.doi.org/10.1021/jp302569g 

http://dx.doi.org/10.1021/jp302569g
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In this article the performance of five different DFT (Parr and Yang 1989, Koch and 

Holthausen 2000) and three QCISD(T) (Pople, Head-Gordon et al. 1987) methods is tested in 

reproducing measured amide-imidic acid tautomer pair free energies for five 6-membered 

N-heterocyclic compounds (Fig. 1 of the article) available from (Gerega, Lapinski et al. 2007). 

Among the DFT methods B3LYP (Vosko, Wilk et al. 1980, Lee, Yang et al. 1988, Becke 1993a, 

Stephens, Devlin et al. 1994), B3LYP-LOC (Friesner, Knoll et al. 2006, Goldfeld, Bochevarov et 

al. 2008), BH&HLYP (Lee, Yang et al. 1988, Becke 1993b), PW6B95 (Zhao and Truhlar 2005), 

and BH&HLYP(G) (Frisch, Trucks et al. 2009) used in conjunction with the ccpVQZ(-g) basis 

set (Dunning 1989); and the QCISD(T) method used in conjunction with the ccpVQZ 

(Dunning 1989), ccpVTZ (Dunning 1989, Kendall, Dunning et al. 1992, Woon and Dunning 

1993, Woon and Dunning 1994) and 631G** (Ditchfie, Hehre et al. 1971, Hehre, Ditchfie et 

al. 1972, Hehre and Pople 1972, Harihara and Pople 1973, Binkley and Pople 1977, Francl, 

Pietro et al. 1982) basis sets [denoted as QCISD(T)(qζ), QCISD(T)(tζ) and QCISD(T)(dζ), 

respectively], the QCISD(T)(qζ), BH&HLYP(G) and PW6B95 show excellent agreement with 

measured values, yielding RMSD of 0.20.3 kcal·mol-1 (Fig. 2 and Table 1 of the article) 

Highly accurate but CPU time demanding methods like QCISD(T)(qζ) and QCISD(T)(tζ) 

were only used for computation of relatively small molecules involving a single ring. The 

benchmarking of the considered methods was continued choosing as reference the 

QCISD(T)(qζ) method. Thereby 15 isomer pair energies are computed including 11 amide-

imidic acid and 2 amine-imine tautomer pairs, and 2 other isomer pairs, involving one 

zwitterion. In this comparison the QCISD(T)(tζ) method showed overall best accuracy with 

0.3 kcal·mol-1 RMSD, followed by PW6B59, QCISD(T)(d-ζ), BH&HLYP, B3LYP-LOC methods, 

each of them with about 0.7 kcal·mol-1 RMSD (Fig. 3 and Table 2 of the article). Being 

superior in reproducing the five mentioned measured pair energies, and well applicable also 

to zwitterions (in contrast to all other tested DFT methods) the PW6B95 functional was 

chosen for the further search of correlation between deviation from reference and 

aromaticity difference for the same 15 isomer pairs used in the benchmarking. Aromaticity 

of molecules was characterized by the NICS(1)zz value (Schleyer, Maerker et al. 1996) 

computed by the gauge-independent atomic orbital approach (Wolinski, Hinton et al. 1990) 

using wave functions computed with the PW91PW91 DFT functional (Perdew, Chevary et al. 

1992, Perdew, Chevary et al. 1993) and 6311G**+ basis set (Krishnan, Binkley et al. 1980, 
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McLean and Chandler 1980, Clark, Chandrasekhar et al. 1983, Frisch, Pople et al. 1984). An 

approximately linear correlation between the NICS(1)zz value and the deviation in the 

tautomer equilibria is obtained (Fig. 4 and eq. 4 of the article), which is used to construct a 

post Hartree-Fock correction scheme (eq. 5 of the article) for the computation of accurate 

ground state electronic energies, that allows to reproduce 15 computed reference energies 

as well as 5 experimental energies, each with an RMSD of 0.5 kcal·mol-1. Corrected relative 

electronic energies for all 36 tautomer/isomer pairs from Fig. 1 of the article, and 

corresponding vibrational energies and the NICS(1)zz values are present in the Supporting 

Information of this article. Gibbs free energies computed for ambient temperature with all 

considered DFT functionals, as well as B3LYP-LOC correction factors are also given in the 

Supporting Information of this article. 
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3.   U N P U B L I S H E D   S T U D Y  (submitted to the Journal of 

Computational Chemistry, under revision) 

Accepted version: http://dx.doi.org/10.1002/jcc.23764 

Computing pKA values of hexa-aqua transition metal complexes 

 

3.1. Studied compounds 

 

The subject of this study are the hexa-aqua transition metal complexes with metals 

belonging to the first and second transition rows in oxidation states (III) and (II) [Table 1]. 

Only transition metal complexes, for which reliable measured pKA values are available 

[(Gilson and Durrant 2009) and references therein], were considered. 

 

Table 1. Electron configuration and Jahn-Teller distortion (when 

applicable) for stable spin states of studied complexes.  

compound, 

spin state if 

ambivalent 

electron configuration 

closed/open a 

Jahn-Teller distortion 

[Å] b 

[Sc(H2O)6]
3+ d0 (t2g

0 eg
0) c  

[Ti(H2O)6]
3+ d1 (t2g

1 eg
0) o -1.4·10-3 

[V(H2O)6]
3+ d2 (t2g

2 eg
0) o +2.2·10-3 

[Cr(H2O)6]
3+ d3 (t2g

3 eg
0) o  

[Mn(H2O)6]
3+ hs d4 (t2g

3 eg
1) o +0.212 

[Fe(H2O)6]
3+ hs d5 (t2g

3 eg
2) o  

[Co(H2O)6]
3+ ls d6 (t2g

6 eg
0) c  

[Co(H2O)5OH]2+ hs d6 (t2g
4 eg

2) o  

[Ru(H2O)6]
3+ ls d5 (t2g

5 eg
0) o +1.4·10-3 

[Rh(H2O)6]
3+ ls d6 (t2g

6 eg
0) c  

[Mn(H2O)6]
2+ hs d5 (t2g

3 eg
2) o  

[Fe(H2O)6]
2+ hs d6 (t2g

4 eg
2) o +0.04 c 

[Ni(H2O)6]
2+ d8 (t2g

6 eg
2) o  

[Zn(H2O)6]
2+ d10 (t2g

6 eg
4) c  

a c: closed shell; o: open shell 
b bond lengths difference between axial and equatorial ligands for vacuum geometries 

(positive value indicates tetragonal elongation, negative value – compression) 
c in addition there is 0.01 Å difference in equatorial bond lengths for this complex 

 

http://dx.doi.org/10.1002/jcc.23764
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Geometries of these metal ions in aqueous solutions have well established six-coordinated 

octahedral structure, except for Sc(III), which is likely eight-coordinated [(Persson 2010) and 

references therein]. For the latter complex a six-coordinated geometry is however assumed, 

which seems to be justified due to the good agreement obtained between computed and 

measured pKA values in current work. The energy splitting of the d-orbitals of a central 

metal ion in an octahedral ligand field is shown in Fig 1. Complexes with an uneven 

occupation of t2g or eg orbitals with electrons (see Table 1) are subject to the Jahn-Teller 

effect [JTE] (Jahn and Teller 1937), which leads to further splitting of t2g and eg orbitals, 

giving rise to a distortion of the octahedral symmetry. Four of the 13 considered transition 

metal complexes possess such uneven occupations of the t2g orbitals, namely [Ti(H2O)6]3+ 

(t2g
1
 eg

0), [V(H2O)6]3+ (t2g
2
 eg

0), [Fe(H2O)6]2+ (t2g
4
 eg

2) and [Ru(H2O)6]3+ (t2g
5
 eg

0). Here, the JTE 

leads to only small variations in metal to oxygen distances, since the t2g orbitals are not 

aligned with the ligands (Table 1). For an uneven occupation of the orbitals eg, which are 

directly oriented along the ligand to metal bonds, the JTE is more pronounced. This 

condition is fulfilled for the complex [Mn(H2O)6]3+, which possesses a stable high spin 

(t2g
3 eg

1) electron configuration. Corresponding orbital splitting diagrams for all five 

configurations are shown in Figs. A1-A5 of the Appendix. 
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-2/50
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d
x
2
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2 d
z
2

t2g

d
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d
y z
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E

 

Figure 1. Orbital energy splitting in octahedral ligand field 
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3.2. Methods 

 

3.2.1. General scheme for computation of pKA values 

 

The single deprotonation process for hexa-aqua transition metal complexes in water is 

shown in eq. 1.  

 (n-1)n
aq aq aq2 a2 6 q5

   [ ] [ OH] H ΔG     M             (H O) M(H O    )      1  

Quantitatively deprotonation is described by the acid dissociation constant KA, which is 

related to the free energy change Gaq of the process according to eq. 2. 

 aq aq

A A
                                

ΔG ΔG
pK lg(K ) ,

2.303 RT 1.364
   


2  

where R  1.986·10-3 kcal·mol-1·K-1 is the molar gas constant (Mohr, Taylor et al. 2012), and 

T  298.15 K. 

The free energy change of deprotonation Gaq in aqueous solution is calculated 

according to the thermodynamic cycle connecting gas and aqueous phase energies 

(Scheme 2) as shown in eq. 3. 

 

Scheme 2. Thermodynamic cycle for single deprotonation of hexa-aqua transition 

metal complexes 

Gg

Gsolv([M(H2O)5OH](n-1)+) Gsolv(H
+)

[M(H2O)6]g
n+

Gsolv([M(H2O)6]
n+)

Gaq

[M(H2O)5OH]g
(n-1)+              Hg

+

[M(H2O)6]aq
n+ [M(H2O)5OH]aq

(n-1)+             Haq
+

 
 

 aq g solv
ΔG ΔG ΔΔG ,                                         3  

where Gg is the free energy of gas-phase acid dissociation (also referred to as gas phase 

basicity of the deprotonated species), and Gsolv is the difference in solvation energies of 

the protonated and deprotonated (including the solvated proton) species. 
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The gas phase free energy difference is calculated according to eq. 4. 

 2
(n-1) n

g g g g5 2 6ΔG G ( OH] ) G (H ) G ( ] ),    [M(H     O) [M(H O)                  4  

where Gg(H
+) is the free energy of proton in the gas phase, while Gg([M(H2O)5OH](n-1)+) and 

Gg([M(H2O)6]n+) are the free energies of the related components in vacuum, calculated as 

the sum of ground state electronic energy 0
electronicE (X) , zero point vibrational energy ZPVEE (X)  

and thermal vibrational free energy 298
vibG (X) , as shown in eq. 5. 

 0 298
g electronic ZPVE vibG (X) E (X) E (X) G (X),                                    5  

where X denotes the protonated or deprotonated species of the complex. 

The Gibbs free energy of a proton in vacuum is calculated using the convention of statistical 

thermodynamics, thereby assuming the proton to behave as a mono-atomic ideal gas 

(McQuarrie 2000), according to eq. 6. 

 -1
g g gG (H ) H (H ) TS (H ) 2.5RT 0.026012T 1.48 7.76 6.28 kcal mol ,               6  

where Hg(H
+) is enthalpy and Sg(H

+) is entropy [estimated using Sackur–Tetrode equation 

(McQuarrie 2000)] of proton in gas phase, respectively. 

The solvation energy difference in the aqueous phase is calculated according to eq. 7. 

 (n 1) + n
solv solv solv so52 lv 2 6G G ([ OM(H O) M(H O)H] ) G (H ) G ([ ] , )                  7  

where Gsolv(X) are solvation energies of components X in water. 

The value for the solvation free energy of proton in water Gsolv(H
+)  257.98 kcal·mol-1 is 

fitted to obtain the best match between computed and measured pKA values, adopting the 

procedure used in (Schmidt am Busch and Knapp 2004). It should be noted, that this new 

value of proton solvation free energy, which works for transition metal complexes, is 

different from the value 265.74 kcal·mol-1 recommended in (Schmidt am Busch and Knapp 

2004) for small organic molecules. Both values however stay in the range of measured 

values varying between 271.7 and 252.6  kcal·mol-1 [(Schmidt am Busch and Knapp 2004) 

and references therein]. The remaining terms in eq. 5 or eq. 7 are computed quantum 

chemically or by solving the Poisson equation respectively, as described below in the 

methods part. 

Since hexa-aqua complexes possess twelve hydrogen atoms, which are potential 

candidates for a deprotonation reaction, the measured or macroscopic pKA will represent 

the sum of all microscopic pKA
(micro), such that 
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 ( ) ( )
A A A ApK lg(K ) lg(12 K ) pK 1.1,                     micro micro      8  

where pKA
(micro) is computed evaluating eqs. (2) - (7). 

 

3.2.2. Computation of gas-phase basicities 

 

3.2.2.1. Quantum chemical computations 

All quantum chemical computations are performed with DFT (Parr and Yang 1989, Koch 

and Holthausen 2000), using the B3LYP functional (Vosko, Wilk et al. 1980, Lee, Yang et al. 

1988, Becke 1993a, Stephens, Devlin et al. 1994). Ground state electronic energies and 

vibrational frequencies are computed for the isolated transition metal complex geometry 

optimized either in vacuum or in presence of explicit solvent. The open shell systems were 

described using the unrestricted, while the closed shell systems using the restricted 

formalism (see Table 1). The electronic energy of the deprotonated hexa-aqua Co(III) 

complex was alternatively also computed with the restricted open shell formalism. The 

inner core orbitals of the transition metals are described using the effective core potential, 

while the outermost core and the valence orbitals are described by the basis set from the 

Los Alamos National Laboratory (Hay and Wadt 1985a, Hay and Wadt 1985b). The 

outermost core and valence orbitals are defined as follows: 

Sc – Ni:  [core]3s3p3d4s  (Hay and Wadt 1985a) 

Zn:  [core]3d4s4p   (Hay and Wadt 1985b) 

Ru, Rh:  [core]4s4p4d5s  (Hay and Wadt 1985a) 

Quantum chemical computations in vacuum are performed with Jaguar v7.7 (Bochevarov, 

Harder et al. 2013, Schrödinger 2010.); QM/MM computations are done using Jaguar v8.3 

(Bochevarov, Harder et al. 2013, Schrödinger 2014a) combined with Impact v6.2 (Banks, 

Beard et al. 2005, Schrödinger 2014b). Geometry optimizations and computation of 

vibrational frequencies are done using for the atoms H and O the 631G** basis set 

(Ditchfie, Hehre et al. 1971, Hehre, Ditchfie et al. 1972, Hehre and Pople 1972, Harihara and 

Pople 1973, Binkley and Pople 1977, Francl, Pietro et al. 1982). Electronic energy 

computations are done employing the ccpVQZ(-g) (Dunning 1989) basis set for H and O 

atoms and diffuse function for the metal. For comparison purpose the smaller ccpVTZ 

(Dunning 1989, Kendall, Dunning et al. 1992, Woon and Dunning 1993, Woon and Dunning 
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1994) basis set was also used to compute electronic energies, however its accuracy was 

found to be insufficient. Hence, it was not used in the pKA computations. The use of 

symmetry was turned off in all types of computations. 

 

3.2.2.2. Vibrational energies 

Vibrational energies are calculated employing the formalism of the statistical 

thermodynamics, assuming compound X to behave as a poly-atomic ideal gas (McQuarrie 

2000). The energies of individual vibrational normal modes, used for these calculations, 

where computed quantum chemically, as described in the previous section. 

The zero-point vibrational energy (in [kcal·mol-1] units) of a poly-atomic ideal gas is 

calculated as shown in eq. 9. 

 3
ZPVE i i

i i

0.5 hcE (X) 10  ,                               1.429      9  

where h and c denote the Planck constant and speed of light, respectively, and νi denotes 

the energy of i-th normal mode in units of [cm-1]. 

The thermal vibrational enthalpy in [kcal·mol-1] units (at ambient temperature) is calculated 

according to eq. 10. 

 3

3
i

298 i i
vib

i i i

hc 2.857 10  
exp(4.826 1

H (X) ,       
exp( 298K) 0 )1 1




 




  
 

 


10  

where i = hcνi / kß = 1.438777·νi is the vibrational temperature of the i-th normal mode in 

[K] (with νi in units of cm-1), and kß is the Boltzmann constant (Mohr, Taylor et al. 2012). 

The thermal vibrational entropy is calculated using eq. 11. 

 

   
3

3i
i3

i

3

298 i
vib i

i i

i

298K
1 exp( 298K)

exp( 298K) 1

14.826· ·
1.986·10 4.826· ·

4.826· ·

0
1 exp( 10 )

exp( 10 ) 1

  S (X) R ln

ln ,               






 



 
  
 
 

 
 

 
 


 

 




 





 11

 

where R = 1.986·10-3 kcal·mol-1 is the molar gas constant (Mohr, Taylor et al. 2012). 

Resulting thermal vibrational free energy at ambient temperature is calculated as follows 

 298 298 298
vib vib vib G (X) H (X) 298K S (X)                                      12  

The total vibrational energy is then obtained by summing up eqs. (9) and (12). The values of 

fundamental physical constants and unit conversion factors used in eqs. (9) - (12) are 

adopted from (Mohr, Taylor et al. 2012). 
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3.2.3. Geometries of transition metal complexes 

 

Three different types of geometry models for the transition metal complexes are 

considered (Table 2), namely optimized quantum chemically: (i) in vacuum with no 

constraints, (ii) in vacuum constraining the (O-metal-O) bond angles of nearest neighbor 

ligands to 90°, and (iii) in presence of explicit water using QM/MM approach (Warshel and 

Levitt 1976). 

 

Table 2. Different approaches to compute geometries and partial charges 

of studied compounds.  

oxidation state   
of metal 

optimized geometries in environment  
for charges 

(III) 

vacuum vacuum 

vacuum implicit water a 
explicit water b vacuum 

(II) 

vacuum c not considered c 
vacuum&constr d implicit water a 
explicit water b vacuum 
explicit water b implicit water a 

a charges are computed in presence of dielectric continuum with ε = 80  
b geometries are optimized in explicit water using the QM/MM approach  
c charges are not considered due to inappropriate geometries for description of 

deprotonated complexes 
d geometries are optimized in vacuum constraining (OmetalO) bond angles between 

neighbor ligands to 90°  

 

3.2.3.1. Vacuum geometries without constraints 

The deprotonated transition metal (II) complexes geometry optimized in vacuum 

without constraints show formation of strong intramolecular H-bonds between the oxygen 

of the deprotonated water ligand and the hydrogens of two neighbor water ligands (Fig. 2a). 

This is due to notable deviation of nearest neighbor (O-metal-O) bond angles from 90°. Such 

geometries are likely valid in vacuum, but do not apply to aqueous environment, where the 

formation of intramolecular Hbonds is prevented by the more favorable intermolecular 

Hbonds between the waters of the coordination shell and first solvation shell. These 

geometries are not considered in the following. Instead, special constraints are applied to 

obtain proper geometries for the transition metal (II) complexes as described in the next 

section. 
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Figure 2. Geometries of deprotonated hexa-aqua Mn(II) complex, optimized in vacuum 

a: without constraints, b: constraining the (O-Mn-O) bond angles between nearest neighbor 

ligands to 90°, and c: in presence of explicit solvent using the QM/MM approach. Lengths of 

the two shortest intramolecular hydrogen bonds are shown in [Å]. For the QM/MM model 

solvent waters within 3 Å distances of ligand atoms are shown. 

 

In contrast to the transition metal (II) complexes, the transition metal (III) complexes do 

not exhibit formation of strong intramolecular H-bonds, since the d-orbitals in the latter 

case impose stronger directionality on the relative positions of the ligands. The nearest 

neighbor (O-metal-O) bond angles in deprotonated transition metal (III) complexes stay very 

close to 90°, similar to protonated species. Such geometries serve as good models for the 

solvated structures of the transition metal (III) complexes, and will be used in the following. 

 

3.2.3.2. Vacuum geometries with constraints 

To obtain appropriate geometries for the deprotonated transition metal (II) complexes 

in vacuum, that are free of strong intramolecular H-bonds, the (O-metal-O) bond angles 

between nearest neighbor ligand pairs were constrained to 90° during geometry 

optimization (Fig. 2b). As a result 2 to 3 of the lowest frequency modes from the 3Natom – 6 

vibrational modes (Natom = 18 atoms in a deprotonated complex) have imaginary frequency 

values. Note that the contribution of the lowest frequency vibrational modes to the zero 

point vibrational energy is negligible. The contribution to thermal vibrational energies from 

these low frequency modes virtually does not depend on the frequency, since the energy 

spacing is small such that at room temperature many vibrational states of such modes are 

occupied. Hence, the contributions of these vibrational modes to the total energy of the 
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complex can be safely approximated using for each of these modes the energy of the 

vibrational mode with the lowest real numbered frequency (Table A1 in the Appendix). 

 

3.2.3.3. Geometries with explicit solvent 

To consider the influence of the solvent environment on the structure of the transition 

metal complexes, geometry optimization was also performed in presence of explicit solvent 

employing the QM/MM approach (Warshel and Levitt 1976). The solvent was represented 

as a box with TIP3P type water molecules (Jorgensen, Chandrasekhar et al. 1983, Jorgensen, 

Maxwell et al. 1996, Kaminski, Friesner et al. 2001) with an edge length of 28 Å. The metal 

ion and the six waters of coordination sphere were described quantum chemically, while all 

other water molecules were described classically. The structures obtained in vacuum were 

used as starting geometries (thereby for deprotonated transition metal (II) complexes 

vacuum geometries with bond angle constraints are used). The water box was generated in 

presence of the complex, utilizing the module Soak of the program Impact (Banks, Beard et 

al. 2005, Schrödinger 2014b). Subsequently, the solvent waters were energy minimized with 

Impact using periodic boundary conditions and fixing the atomic coordinates of the 

complex. The resulting geometry was used as starting point for the QM/MM computations, 

where the position of the metal ion was fixed at the center of the water box. For the 

QM/MM computations periodic boundary conditions were not available in the software. 

Therefore, normal solvent pressure during QM/MM geometry optimization was ensured by 

fixing the atomic coordinates of the oxygens belonging to the water molecules of the MM 

part, whose distance to the nearest atom of the complex is larger than 6 Å. Thereby, only 

the waters belonging to the first three solvation shells were fully relaxed. The isolated 

transition metal complexes taken from the QM/MM approach (Fig. 2c) possess no imaginary 

frequencies. 

For the deprotonated Mn(II) and Ni(II) complexes, the water molecules in the first 

solvation shell had a tendency to be unevenly distributed, which is likely an artifact. To avoid 

this I started for these two complexes with the geometry of the water box containing Zn(II), 

which has metal to oxygen bond length intermediate between Mn(II) and Ni(II) (see 

Tables A2 and A3 in the Appendix). 
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3.2.4. Computation of solvation energies 

 

3.2.4.1. Poisson equation and electrostatic energy 

The solvation of hexa-aqua complexes was described using an implicit solvent model. A 

schematic view of such a system is shown in Fig. 3. This is an extension of the Debye-Hückel 

model (Debye and Hückel 1923), where the central region is a single ion. The electrostatic 

potential φ(r) in this inhomogeneous dielectric medium is defined by the charge density ρ(r) 

according to the Poisson equation, which is shown in eq. 13 in atomic units: 

A B C
                          (13)[ ( ) ( )] 4 [ ( ) ( ) ( )],        r r r r r  

where dielectric constant ε depends on the region, such that in the volume of the solute 

(denoted with A) ε = 1, while in the bulk water including also the ion exclusion layer (regions 

B and C) ε = 80. Thereby vector r denotes a spatial coordinate of interest. 

 

 

Figure 3. Two-dimensional schematic representation of the 

implicit solvent model 

 

The charge density in the interior of a solute molecule is defined as the sum over all atomic 

point charges qN 
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A N N
N

                                              (14)q ( )( ) ,  r r r  

where δ is the Dirac delta function, and rN is the spatial coordinate of the point charge qN. 

The charge density in the ion exclusion layer is ρB(r) = 0, due to absence of charges in that 

volume. The charge density in the bulk solvent is conditioned by the presence of the 

solvated mobile counter ions, which are subject to the Boltzmann distribution law as 

assumed in the Debye-Hückel theory. Hence 

J J JC
J

                                   (15)c q exp[ q ( ) k T]( ) ,


  r r  

where cJ and qJ are the concentration and the charge for a given ion J, respectively; kβ is the 

Boltzmann constant and T is the absolute temperature. 

Eq. 15 can be linearized following the approach of Debye and Hückel. In case the 

electrostatic energy of a given ion J is considerably smaller than its kinetic energy (i.e. 

qJφ(r)/kβT << 1), eq 15 can be safely approximated by expanding the exponential function in 

a Taylor series and restricting it to the first two terms  

 
    2

J J J JC
J J

                                (16)c q 1 k T c q ( )( ) .r r  

The condition qJφ(r)/kβT << 1 applies well to mobile ions J located far enough from the 

solute, such that the eq. 16 describes diluted ionic solutions sufficiently well. Assuming the 

source of mobile ions J in solution is a 1:1 type electrolyte, the first term of eq. 16 vanishes 

(
J J

J

0c q  ), and the eq. 13 adopts a simpler linear form of the Poisson-Boltzmann 

equation 

                      (17)[ ( ) ( )] (8 /k T)I( ) ( ) 4 ( ),


        r r r r r  

where 

2
J J

J

0.5 (18)                                         c qI( ) r  

is the ionic strength of the solution. 

The boundary between the solute molecule and the bulk solvent (Fig. 3) is defined by 

the molecular surface, which is constructed following an original idea of Lee and Richards 

(Lee and Richards 1971) by rolling a probe sphere of solvent-size (1.4 Å radius for water) 

over the solute molecule whose shape is represented by the united volume of all atomic van 
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der Waals (vdW) spheres (Fig. 4). Corresponding vdW radii for ligand water are 1.4 Å for 

oxygen and 1.0 Å for hydrogen taken from (Schmidt am Busch and Knapp 2004) and 

(Galstyan and Knapp 2009), respectively. The vdW radii for the metal ions Sc, Ti, V, Cr, Mn, 

Fe, Co, Ni, Zn, Ru and Rh equal to 1.647, 1.587, 1.572, 1.511, 1.480, 1.456, 1.436, 1.417, 

1.381, 1.481 and 1.464 Å, respectively, are adopted from the dataset of the program Jaguar 

(Bochevarov, Harder et al. 2013, Schrödinger 2010., Schrödinger 2014a). 

The solution of the Poisson-Boltzmann equation (eq. 17) yields the electrostatic 

potential for a given charge distribution of a solute in a given dielectric medium. The 

resulting electrostatic potential can then be used to calculate the electrostatic energy Gelstat, 

which is defined as the energy required for charging of the atomic point charges of the 

molecular system from 0 to their full values. 

elstat
V

                                              (19)0.5 dG ( ) ( ) ,   r r r  

 

 

Figure 4. Two-dimensional fragment showing the construction of 

molecular and solvent accessible surfaces by rolling a probe sphere over 

the vdW surface of a hexa-aqua complex 

 

 

3.2.4.2. Solvation energies  

The free energy of solvation ΔGsolv consists of three major components: electrostatic 

energy (ΔGelstat) and van der Waals energy (ΔGvdW) of interactions between the solute and 
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the solvent, as well as cavitation energy (ΔGcav), which is the entropic penalty for 

reorganization of the solvent molecules around the solute. 

cavsolv elstat vdW
                                      (20)G G G G ,      

The latter two terms are proportional to the solvent accessible surface area [SASA] (Fig. 4), 

such that 

cavvdW
                                                (21)SASAG G ,    

where β is an empirical constant. 

The electrostatic energy contribution is normally the largest in magnitude among all terms 

in eq. 20. Having different signs, in the sum (eq. 21) the two energy terms ΔGcav and ΔGvdW 

partially compensate. Nevertheless, in certain systems, especially those with uncharged and 

non-polar molecules, the contribution from eq. 21 may become significant, and has to be 

accounted, if the goal is to compute absolute solvation energies. For the computation of pKA 

values, however, one is rather interested in the difference in solvation energies of 

protonated and deprotonated species, whose SASA values are practically equal, since they 

differ only with respect to one proton. Therefore, in the energy difference the contributions 

of vdW and cavitation energies vanish and won’t be considered in the following, assuming 

eq. 22. 

 

 

Figure 5. Thermodynamic cycle used in electrostatic energy 

computations for solvation 
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solv elstat
                                                  (22)G G   

The remaining electrostatic term ΔGelstat is calculated for individual molecules as the 

difference in energies of the charging process (eq. 19) computed in solvent (ε = 80) versus 

vacuum (ε = 1). Thereby the thermodynamic cycle shown in Fig. 5 is used. 

80 1
elstat elstat elstat

                                              (23)G G G    

The Poisson equation (eq. 17 with I(r)=0) was solved numerically by finite-difference method 

using the program Solvate from the program suit MEAD (Bashford and Gerwert 1992, 

Bashford, Case et al. 1993). Atomic partial charges used for these computations are derived 

from the quantum chemical wave functions, as described in the next section. 

 

3.2.4.3. Atomic partial charges 

Partial charges qN (eq. 14) at the atomic centers used for electrostatic energy 

computations were generated using the restraint electrostatic potential (RESP) fitting 

procedure (Bayly, Cieplak et al. 1993, Cornell, Cieplak et al. 1993). This procedure begins 

with a quantum chemical evaluation of the molecular electrostatic potential φ(r) at a large 

number of grid points located in the neighborhood of the solute, employing eq. 24. 

nuc el N el
N V

                    (24)Z d( ) ( ) ( ) ( ) ,         N
Rr r r r r' r' r r'  

where φnuc(r) and φel(r) are the contributions to the electrostatic potential due to the nuclei 

and the electrons, respectively. ZN is the charge of the nucleus N located at the position RN, 

while ρel(r’) is the electron density at position r’. 

These points are selected outside the vdW surface of the molecule, which are relevant for 

the interaction between solute and solvent (Singh and Kollman 1984). For this reason the 

atomic partial charges for the buried atoms in molecules are often poorly determined, in 

contrast to the charges of the solvent exposed atoms. As a result a set of reference 

electrostatic potential values φi
ref is obtained at spatial points i. 

In the next step a least square problem is solved to obtain a set of point charges qN at 

the atom centers rN of the molecule, where the sum of all qN is constraint to the total 

molecular charge. The fitting error function 2  defined by  

2 2 2
esp rstr

                                                  (25),     

is minimized. 
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2
esp  is the variance between electrostatic potentials computed at spatial points ri quantum 

chemically φi
ref or based on the modeled point charges φi

calc (eq. 26), as shown in eq. 27. 

calc
i N

N

                                             (26)q ,   i N
r r  

ref calc 2

i i

2
esp

i

)                                             (27)( ,     

2
rstr
  is the penalty function of a hyperbolic form, which is meant to moderate the 

magnitude of numerically poorly defined fitted charges due to near linear dependencies. 

2 2
N

2
rstr

N

q b                                           (28)a ( b),    

where parameter b defines the shape of the hyperbola, and a is the relative weight with 

respect to the error term 2
esp . 

The criterion for the minimum of 2  is 

2 22
esp rstr

N N N

0    for all atomic centers N                 (29)
( ) ( )( )

q q q
, 

    


  
 

The problem is solved iteratively until self-consistency is reached (Bayly, Cieplak et al. 1993). 

 

3.2.4.4. Quantum chemical electrostatic potentials 

The electrostatic potentials used for charge fitting, described in the previous section, 

were derived from the wave functions computed in vacuum (ε = 1) using the B3LYP DFT 

functional (Vosko, Wilk et al. 1980, Lee, Yang et al. 1988, Becke 1993a, Stephens, Devlin et 

al. 1994). Atoms of ligands were described by the 631G* basis set (Ditchfie, Hehre et al. 

1971, Hehre, Ditchfie et al. 1972, Hehre and Pople 1972, Harihara and Pople 1973, Binkley 

and Pople 1977, Francl, Pietro et al. 1982). The inner core electrons of the transition metals 

were described by the Los Alamos ECP, while the remaining electrons are described by the 

basis set available from the same lab (Hay and Wadt 1985a, Hay and Wadt 1985b). To 

describe the influence of the implicit water, electrostatic potentials were alternatively also 

evaluated using the wave functions computed in presence of dielectric continuum with 

ε = 80. To moderate the polarization of water ligands in presence of the dielectric medium 

the reduced basis set 631G was used to describe the oxygen atoms. These two types of 

quantum chemical electrostatic potentials in line with the three different geometry models 

of the complexes (described before) lead to the variety of different approaches, used for 
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computation of the atomic partial charges, summarized in Table 2. Symmetry was not 

imposed in all these computations. 

A note has to made here regarding the smaller basis set (6-31G*) used for vacuum 

conditions in this work as compared to the 631G** basis set used in the earlier works from 

our lab (Schmidt am Busch and Knapp 2004, Schmidt Am Busch and Knapp 2005, Galstyan 

and Knapp 2009). Charges derived with the latter basis set yielded accurate pKA values for a 

number of small organic molecules (Schmidt am Busch and Knapp 2004). There it was also 

discussed that the usage of dielectric continuum to evaluate the wave function would lead 

to electron leakage. I.e. electron density moves into the dielectric medium, thus leading to 

molecular species which are too polar. Seemingly, even under vacuum conditions, for 

transition metal complexes the usage of large basis sets can lead to such artifacts. In the 

present application the charges were evaluated using the smaller basis set to obtain good 

agreement with the measured pKA values. Successful application of the charges derived 

using the 631G** basis set in (Galstyan and Knapp 2009), for computation of the reduction 

potentials of transition metal complexes may well be conditioned by the post Hartree-Fock 

correction scheme, which might have compensated for the probable artifact of the electron 

leakage. 

 

 

3.3. Results and Discussion 

 

3.3.1. Atomic partial charges 

 

Atomic partial charges have been computed for the three different geometry models of 

the complexes using wave functions generated under vacuum conditions (ε = 1) or in 

presence of implicit solvent (ε = 80), leading to combinations shown in Table 2. The simplest 

structure model is obtained by optimizing the complex geometry in vacuum. This model is 

used for the transition metal (III) complexes and for the protonated form of the transition 

metal (II) complexes. For the deprotonated form of the transition metal (II) complexes this 

model is inappropriate due to the formation of strong intra-molecular H-bonds, as has been 

explained before. For the deprotonated transition metal (II) complexes the structures are 
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modeled constraining the (O-metal-O) bond angles between nearest neighbor ligands to 90° 

during geometry optimization in vacuum. Alternatively structures of the transition metal (III) 

and (II) complexes were also modeled in presence of explicit solvent using the QM/MM 

approach (Warshel and Levitt 1976). 

 

3.3.1.1. Transition metal (III) complexes 

The atomic partial charges for vacuum geometries of the transition metal (III) complexes 

computed for vacuum (ε = 1) and implicit water (dielectric continuum with ε = 80) 

environment are listed in the top and bottom parts of Table A4 of the Appendix, 

respectively. For the protonated complexes the charges of water ligands systematically 

overestimate the charge polarity of TIP3P bulk water (Jorgensen, Chandrasekhar et al. 1983, 

Jorgensen, Maxwell et al. 1996, Kaminski, Friesner et al. 2001), i.e. the charges obtained for 

the oxygen and hydrogen atoms are larger in magnitude than 0.8 and 0.4, respectively. 

This behavior is less pronounced, if the charges are computed in presence of implicit water 

than in vacuum conditions, since in the former case a smaller basis set was used that 

diminished polarization effects. Due to the same reason no clear trend can be observed for 

the deprotonated complexes (Table A4). 

The atomic partial charges for QM/MM geometries of the transition metal (III) 

complexes computed under vacuum condition (ε = 1) and in presence of implicit water 

(ε = 80) are listed in Table A5 of the Appendix. Here too, water ligands of the protonated 

species are more polar compared to bulk water. The differences in the charges of water 

ligands of the protonated complexes, generated in vacuum versus in presence of implicit 

solvent, are less pronounced for the QM/MM geometries than for the vacuum geometries 

(Table A5). In contrast to the vacuum geometries, the charges of the hydrogen atoms in 

QM/MM geometry model are slightly more polar for the implicit water charge model than 

for the vacuum charge model. As for the vacuum charge model no clear trend can be 

observed for the charges of the deprotonated complexes. 

 

3.3.1.2. Transition metal (II) complexes and selection of the proper charge model 

The atomic partial charges for vacuum geometries of the transition metal (II) complexes 

generated in vacuum and implicit water are listed in Table A6 of the Appendix. Higher 
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polarity of the water ligands of protonated species under vacuum conditions compared to 

the implicit water is due to the smaller basis set used in the latter case. Partial charges of 

the oxygen atoms generated in vacuum conditions, based on the vacuum geometries of the 

protonated complexes involving Mn and Fe, are nearly identical for transition metal (III) 

complexes (Table A4, top part) and transition metal (II) complexes (Table A6, top part). The 

difference in the polarities of the water ligands is also not pronounced for transition metal 

(III) versus (II) complexes under vacuum conditions. This is not realistic, since the oxidized 

transition metal bearing larger positive charge and smaller radius should polarize water 

ligands stronger than the reduced transition metal. This artifact is also obtained comparing 

polarities of ligands for the protonated species of transition metal (III) [Table A4, bottom 

part] versus transition metal (II) complexes (Table A6, bottom part) of Mn and Fe generated 

in dielectric medium (ε = 80). This may be related to the so-called electron leakage 

phenomenon being stronger for the transition metal (II) complexes, which carry more 

electron density in the valence shell (Schmidt am Busch and Knapp 2004). The most 

promising combination in this comparison is when for the transition metal (III) complexes 

the geometry is optimized in vacuum and the partial charges are also generated in vacuum 

(ε = 1), while for the transition metal (II) complexes they are obtained in presence of implicit 

water (ε = 80). Corresponding charges are listed in the top part of Table A4 and in the 

bottom part of the Table A6 of the Appendix, respectively. Identical results are also 

obtained for QM/MM geometries (Table A7). 

 

3.3.2. Stable spin state of the hexa-aqua transition metal complexes 

 

An approximate half and half distribution of high and low spin states of a transition 

metal complex, known as spin crossover phenomenon, occurs if the energy difference 

between two spin states is in the range of RT, which is 0.59 kcal·mol-1 for ambient 

temperature. In case of larger energy differences molecules exist predominantly in one of 

the possible spin states. The stable spin configurations of all considered protonated 

complexes are listed in Table 1. All complexes considered in this study, with exception of the 

hexa-aqua Co(III) complex, retained their stable spin state upon deprotonation. There is 

some discrepancy in the literature regarding the stable spin state of the deprotonated hexa-
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aqua Co(III) complex. Using a reaction field energy approach for vacuum geometries, 

1.2 kcal·mol-1 difference was found in favor of the high spin state (Gilson and Durrant 2009). 

In more recent work using reaction field geometries with a larger basis set the low spin state 

was found to be more stable (Jerome, Hughes et al. 2014). The evaluation of relative gas-

phase electronic energy difference between protonated (which has low spin closed shell 

electron configuration) and deprotonated (which has high spin open shell electron 

configuration) hexa-aqua Co(III) complex, depends on the choice of DFT formalism 

describing the open shell species. It is not quite clear, which formalism was used to describe 

the deprotonated high-spin state of this complex in recent works (Gilson and Durrant 2009, 

Jerome, Hughes et al. 2014). Therefore, in this work both spin states for this complex were 

carefully considered employing basis set of even higher precision (as described before) and 

different DFT formalisms (for the high spin case) to evaluate the ground state electronic 

energies. 

Using the open shell restricted versus unrestricted formalism for computation of the 

electronic energy of the high spin deprotonated hexa-aqua Co(III) complex leads to 

3.9 kcal·mol-1 difference (see Table A8 in the Appendix). Such large discrepancy indicates the 

presence of different types of systematic errors in these two approaches. Based on the 

agreement between our computed and measured pKA values, it appears that using the 

unrestricted open shell formalism leads to an over-stabilization of the deprotonated relative 

to the protonated state. Such behavior is generally expected due to spin-contamination 

present in the unrestricted open shell formalism. However, based on the expectation value 

of the total spin operator S2 (Table A9), the spin-contamination was negligible in this case. 

Hence, the computation of accurate relative electronic energies between closed and open 

shell molecular systems is hampered, when restricted and unrestricted DFT formalisms are 

used in a mixed manner. 

Appropriate relative energies between protonated and deprotonated hexa-aqua Co(III) 

complex evaluated based on the restricted DFT formalism are shown in Table A10 of the 

Appendix. Accordingly, for the Co(III) complex with geometry optimized in vacuum, the high 

spin configuration of the deprotonated species is clearly favored in vacuum by 

15.9 kcal·mol1 (Table A10). On the other hand, the solvation energy for the low spin 

configuration of this complex in water is larger by 15.0 kcal·mol-1, as compared to the high 
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spin configuration, such that in aqueous solution the high spin deprotonated hexa-aqua 

Co(III) complex is still favored but by only 0.9 kcal·mol-1 (Table A10). Hence, a spin state 

change according to (t2g
6 eg

0  t2g
4 eg

2) may occur upon deprotonation of this complex in 

water. Corresponding geometries for the high and low spin configurations of deprotonated 

hexa-aqua Co(III) complex are shown in Figs. 6a and 6b, respectively. Estimating this energy 

difference with QM/MM geometries (2.3 kcal·mol1) favors the high spin state even more, 

as shown in Table A10 of the Appendix. Nevertheless, these energies may contain 

systematic errors, such that we cannot make a clear decision about the nature of the spin 

state of the deprotonated hexa-aqua Co(III) complex in water. In particular the 0.9 kcal·mol-1 

energy difference, found based on the vacuum geometries, is too close to the value of RT 

(0.59 kcal·mol-1), suggesting that this complex may well be a subject of spin crossover. 

Therefore, pKA values for both spin states of this complex are computed.  

 

  

Figure 6. Geometries of the deprotonated hexa-aqua Co(III) 

complex obtained in vacuum for a) high and b) low spin 

configuration. Bond lengths for axial and equatorial ligands 

are given in [Å].  

 

The resulting pKA values for vacuum and QM/MM geometries are 2.7 and 3.4 for low spin 

(no spin state change) and 2.0 and 1.7, respectively, if the spin state change is considered, 

both in reasonable agreement with the measured value 2.9 (Gilson and Durrant 2009) 

[Table A11]. 
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3.3.3. Jahn-Teller effect in hexa-aqua transition metal complexes 

 

Geometries of the complexes [Ti(H2O)6]3+, [V(H2O)6]3+ and [Ru(H2O)6]3+ obtained in 

vacuum or in presence of explicit water had distortions expected from the symmetry and 

conservation of energy, i.e. tetragonal compression for the (t2g
1 eg

0) and elongation for the 

(t2g
2 eg

0) and (t2g
5 eg

0) configurations, according to Figs. A1, A2 and A5 of the Appendix, 

respectively. Interestingly, a tetragonal compression expected for the (t2g
4 eg

2) configuration 

(Fig. A4) did not take place for the optimized geometries of the [Fe(H2O)6]2+ complex. 

Instead all three bond pairs acquire slightly different lengths, indicating a more complex 

orbital splitting mechanism leading to the tetragonal elongation observed for this system. In 

all four cases however the JTE is small (Table 1), and need not to be discussed in more 

detail. 

The JTE is significant for the hexa-aqua Mn(III) complex, which possesses a stable high 

spin configuration (t2g
3 eg

1) (Table 1). Symmetric splitting of the eg orbitals (Fig. A4) does not 

allow straightforward prediction of the type of distortion in this case, i.e. which of the dx
2

-y
2 

and dz
2 orbitals will receive the electron. Computation of both possibilities yielded 

geometries shown in Figs. 7a and 7b. Thereby the geometry with tetragonal elongation is by 

1.2 kcal·mol-1 (0.6 kcal·mol-1 due to gas phase energy, and 0.6 kcal·mol-1 due to solvation 

energy) more stable than the geometry with tetragonal compression (Table A12). This result 

agrees well with earlier computations [(Kallies and Meier 2001) and references therein]. 

 

  
Figure 7. Two types of distorted geometries for the hexa-

aqua Mn(III) complex obtained in vacuum are shown. 

a) elongated, and b) compressed. Bond lengths of axial and 

equatorial ligands are given in [Å].  
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3.3.4. Influence of basis sets on the gas phase energies 

 

As it has been mentioned before, two basis sets ccpVQZ(-g) (Dunning 1989) and 

ccpVTZ (Dunning 1989, Kendall, Dunning et al. 1992, Woon and Dunning 1993, Woon and 

Dunning 1994) were applied to the ligand atoms to study the effect of basis set on 

computed electronic energies of hexa-aqua transition metal complexes. RMS deviations of 

the ccpVTZ based gas phase basicities Gg (eq. 4) from the more accurate ccpVQZ(-g) 

based values are 0.7 and 0.8 kcal·mol-1 for vacuum and QM/MM geometry models, 

respectively (see Figs. A6a and A6b in the Appendix). Common trend of triple–ζ (cc–pVTZ) 

based relative energies to underestimate the quadruple–ζ [cc–pVQZ(-g)] based relative 

energies is in good agreement with other work (Schmidt am Busch and Knapp 2004). In this 

case the deviation seems to be related to the metal’s electron configuration (Table 1). Such 

that, for the first row transition metal (III) complex geometries optimized in vacuum, the 

discrepancies between triple–ζ and quadruple–ζ based electronic energies are generally 

increasing with the occupation of d-orbitals (see Tables A10 and A13 of the Appendix). For 

Sc(III) in (t2g
0 eg

0) configuration, the corresponding discrepancy is 0.3 kcal·mol-1; from Ti(III) 

[t2g
1 eg

0] over V(III) [t2g
2 eg

0] to Cr(III) [t2g
3 eg

0] the discrepancies increase from 0.6 to 

0.7 kcal·mol1, till the t2g sub-shell gets half-populated with electrons for Cr(III); for Mn(III) 

[t2g
3 eg

1] and Fe(III) [t2g
3 eg

2], which possess unpaired electrons in eg sub-shell the 

discrepancies reach its maximum value of 1.0 kcal·mol-1. For Co(III) [t2g
6 eg

0] it drops back to 

0.7 kcal·mol-1, assuming no spin state change upon deprotonation. If a spin state change 

(t2g
6 eg

0  t2g
4 eg

2) is considered, the discrepancies between triple–ζ and quadruple–ζ based 

electronic energies are 0.3 and 0.7 kcal·mol-1 for the restricted open shell and unrestricted 

DFTs, respectively. However, for the second row transition metal complexes with Ru(III) 

[t2g
5 eg

0] and Rh(III) [t2g
6 eg

0] geometry optimized in vacuum the deviation is negligible 

(0.1 kcal·mol-1). And for the first row transition metal (II) complexes no clear trend can be 

observed (approximated geometries with bond angles constraints were used for the 

deprotonated species of these complexes). Thus, the maximum deviation of triple–ζ from 

quadruple–ζ based electronic energies of 1.6 kcal·mol-1 is obtained for Zn(II) [t2g
6 eg

4] with 

filled d-shell, followed by Mn(II) [t2g
3 eg

2] with half filled d-shell (0.6 kcal·mol-1), then Fe(II) 
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[t2g
4 eg

2, 0.3 kcal·mol-1] and Ni(II) [t2g
6 eg

2, 0.1 kcal·mol-1] with intermediate occupations of 

d-orbitals. 

These trends apply to the QM/MM geometry models as well (Fig. A6b), except that here 

discrepancies between quadruple–ζ and triple–ζ based Gg values for V(III), Ru(III) and 

Rh(III) increase to 0.9, 0.3 and 0.5 kcal·mol-1, respectively; while it practically vanishes for 

Fe(II) (0.1 kcal·mol-1). For Co(III) considering spin state change, deviations are increased to 

1.2 and 1.1 kcal·mol-1, for restricted open shell and unrestricted DFT, respectively 

(Tables A10 and A13 in the Appendix). 

As it will be shown latter, for the majority of considered complexes, pKA values 

computed with the quadruple–ζ basis set are shifted towards more acidic values compared 

to measured values. Hence, using a smaller basis set will increase that discrepancy. 

Therefore, triple–ζ basis set is not used in the following. 

 

3.3.5. Comparison of energy terms computed based on vacuum versus QM/MM geometry 

models 

 

The comparison of computed energy terms Gg (eq. 4), Gsolv (eq. 7) and Gaq (eq. 3) 

between vacuum and QM/MM geometry models is performed by considering the 

differences shown in eqs. 30-32 for all studied complexes. 

(Gg) = Gg(vac)  Gg(QM/MM)    (30) 

(Gsolv) = Gsolv(vac)  Gsolv(QM/MM)            (31) 

(Gaq) = Gaq(vac)  Gaq(QM/MM)     (32) 

Corresponding results are shown in Fig. 8. The difference in gas phase basicities (Gg) is 

positive everywhere (except for the hexa-aqua Mn(II) complex), and in the majority of cases 

it is larger in magnitude as compared to the difference in solvation energy term (Gsolv). 

Exceptions are complexes of Fe(III), low spin Co(III), Mn(II) and Ni(II). Interestingly, the 

magnitudes of the differences (Gg) and (Gsolv) seem to be related to the valence 

electron configuration of the central metal ion (Table 1). 
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Figure 8. Difference in free energy terms (Gg) = Gg(vac)  Gg(QM/MM), 

(Gsolv) = Gsolv(vac)  Gsolv(QM/MM), and (Gaq) = Gaq(vac)  Gaq(QM/MM), 

computed with molecular geometries optimized in vacuum or in presence of explicit water 

using QM/MM method for all transition metal (III) and (II) complexes studied in this work. 

Superscripts HS and LS denote the high and low spin states of the deprotonated hexa-aqua 

Co(III) complex, respectively. 

 

 

3.3.5.1. Gas phase basicities 

The magnitude of (Gg) term increases step-by-step from Sc(III) [t2g
0 eg

0] to Cr(III) 

[t2g
3 eg

0] upon half filling of the t2g sub-shell (Fig. 8). Then, it should decrease, as shown in 

the following, until half filling of the eg sub-shell at Fe(III) [t2g
3 eg

2]. Note that the Mn(III) 

[t2g
3 eg

1] departs from this pattern due to the incorrect order of protonated versus 

deprotonated energies predicted based on the QM/MM geometry model of the hexa-aqua 

Mn(III) complex. Gas phase basicity Gg(vac), computed based on the vacuum geometry 

model for this complex is 6.7 kcal·mol-1, (Table. A10 in the Appendix), suggesting that the 

protonated species is more stable than the deprotonated species. The same energy term 

falsely receives a negative sign based on the QM/MM geometry model 

Gg(QM/MM) = 2.2 kcal·mol-1 (Table. A10). This assumption is based on the agreement 

between measured and computed pKA values obtained for these two types of geometry 

models of the hexa-aqua Mn(III) complex (Table. A11 of the Appendix). Any positive 

Gg(QM/MM) value for this complex would lead to a (Gg) value smaller than 

6.7 kcal·mol1 (Fig. 8), supporting the assumption, that (Gg) should drop after Cr(III) at 
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Mn(III) and Fe(III). For the Co(III) complex the (Gg) value is small if the change in spin state 

is taken into account (Table 1), otherwise it is larger than at Fe(III) [due to the empty eg sub-

shell in the low spin Co(III)]. For the hexa-aqua Ru(III) and Rh(III) complexes (Gg) increases 

upon occupation of the t2g sub-shell. For transition metal (II) complexes the trends are less 

clear due to the approximate geometries used in the vacuum geometry model. Therefore, 

no further comparisons are performed for the transition metal (II) complexes in the 

following. 

Average lengths of all bond types for vacuum and QM/MM geometry models for all 

studied transition metal complexes are shown in Tables A2 and A3 of the Appendix, 

respectively. 

 

3.3.5.2. Solvation energy differences 

Trends found for the (Gg) term are valid also for the (Gsolv) difference, just with 

inverted order (Fig. 8). However some noise may be generally present here due to the 

conformational dependence of the numerical instabilities associated with the least-squares 

fitting of the ESP charges. Nevertheless the estimation of the associated rank deficiency was 

outside of the scope of this study. It is interesting to note, that also the value for the 

solvation energy term (Gsolv) seems to depart from the pattern for the Mn(III) complex. 

 

3.3.6. Charge distribution in transition metal (III) complexes based on the RESP charges 

 

Charge distributions for the protonated (solid lines) and deprotonated (dashed lines) 

species of the first row transition metal (III) complexes computed in vacuum and in QM/MM 

geometry are shown in Figs. 9a and 9b, respectively. Main differences in the shapes of the 

charge distribution contours between these two geometry models appear for the 

protonated complexes with centers from Sc(III) to Cr(III) (solid lines), and for the 

deprotonated complexes with centers from Cr(III) to Co(III) (dashed lines). It deserves 

attention, that the RESP charge at the metal in the hexa-aqua Mn(III) complex with QM/MM 

geometry falsely remains identical in both protonation states. Comparison of vacuum versus 

QM/MM charge distributions for the second row transition metal complexes is less 

informative, due to availability of only two complexes (Figs. A7a and A7b). Nevertheless, on 
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these contours one can observe an extra stabilization of the π-donor OH-ligand at the Ru(III) 

center [t2g
5 eg

0], as compared to the Rh(III) center [t2g
6 eg

0] with full t2g sub-shell. Overall, severe 

discrepancies in the charge distributions obtained with vacuum versus QM/MM geometry 

models just reflect the conformational dependence of the RESP procedure. 

 

a  b 

 

 

 
Figure 9. Partial charge of metal, net partial charges of hydrogen and oxygen atoms 

computed in vacuum for a: vacuum and b: QM/MM geometries of protonated (solid lines) 

and deprotonated (dashed lines) species of transition metal (III) complexes with metals 

belonging to the first transition series. The low spin deprotonated Co(III) complex is not 

shown for simplicity. 

 

There is a linear correlation between RESP charges of the metal ions and measured 

electron affinities (EA) (Table A14) at least for the protonated transition metal (III) complexes 

involving metals from Sc(III) to Fe(III) whose geometry was optimized in vacuum (Fig. A8a of 

the Appendix). Interestingly, the correlation line intersects the ordinate axis at 3.31 charge 

units, meaning, that for a hypothetical system, with center possessing EA of 0 eV, a leakage 

of 0.31 electrons from the center will take place. This may well be due to numerical 

instabilities associated with the RESP procedure, resulting in over-polarization of the buried 

atoms. The partial charge of a metal ion, being buried by ligands, does not affect solvation 

energy directly. However, according to Fig. 9 the variation of the metal’s charge from 

system to system is clearly reflected in the change of the net oxygen charge as well. 

Therefore, the latter too is in a linear relationship with the EA of the metal ion for the 

mentioned systems (Fig. A8b of the Appendix), such that (charge  7.60  0.05·EA). 
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3.3.7. Computed pKA values 

 

Computed pKA values are shown in Table A11 and Fig. 10. Excluding the outliers hexa-aqua 

Cr(III) with vacuum geometry and hexa-aqua Mn(III) with QM/MM geometry, the root mean 

square deviations (RMSD) between computed and measured pKA values are 1.2 and 1.0 pH 

units, respectively (Fig. 10). The severe underestimation of the measured pKA value by 

4.1 pH units obtained for the Mn(III) complex with the QM/MM geometry is partially due to 

the falsely predicted energy order of protonated versus deprotonated species, namely 

Gg = 2.2 kcal·mol-1. A positive Gg would improve the computed pKA value by more than 

2.2/1.365 = 1.6 pH units. 

 

-4 -2 0 2 4 6 8 10 12 14

-4

-2

0

2

4

6

8

10

12

14

c
o

m
p

u
te

d
 p

K
A

measured pK
A

RMSD
QM

    =   1.2

RMSD
QM/MM

=   1.0

 

Figure 10. Correlation diagram of measured and 

computed pKA values for vacuum (QM) and QM/MM 

geometry models shown as open or closed symbols, 

respectively. Circles and triangles represent pKA 

values for the first- and second-row transition metal 

(III) complexes, respectively. While squares 

represent transition metal (II) complexes. Two 

outliers, corresponding to the complexes with Mn(III) 

(closed circle) and Cr(III) (open circle) are indicated 

by larger symbols. They are not included in the 

RMSD values, which are 1.0 and 1.2 pH units. 



47 

 

Another contribution to the discrepancy between computed and measured pKA values may 

come from a wrong charge distribution obtained for the QM/MM geometry of the hexa-

aqua Mn(III) complex. Overestimated pKA values of the hexa-aqua Cr(III) [by 3.4 pH units], 

V(III) [by 2.0 pH units] and Ru(III) [by 2.0 pH units] complexes obtained with vacuum 

geometry may also be related to the seemingly wrong charge distribution of these 

complexes. 

The overestimations of the measured pKA values of the hexa-aqua Mn(II) and Fe(II) 

complexes with vacuum geometries by 1.9 and 1.7 pH units, respectively, may be 

rationalized by the approximate geometry used for the deprotonated species of these two 

transition metal (II) complexes. 

QM/MM geometries yield generally more acidic pKA values compared to the measured 

values, and pKA values computed for vacuum geometries. The latter is due to smaller gas 

phase basicities computed with QM/MM geometries compared to the models in vacuum 

geometry (Fig. 8). 
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4.   D I S C U S S I O N 

 

 

 

Accurate computation of tautomer equilibria of lactams with a robust DFT method is a 

challenging task, even under vacuum conditions. The selection of DFT functionals for 

benchmarking in this study was done based on previous work in (Piacenza and Grimme 

2004). They showed, that using DFT functionals with a small amount of exact exchange term 

yields tautomerization energies systematically deviating from the reference energies 

computed with accurate QCISD(T) method, if tautomeric species possess different aromatic 

character. Thereby, in current work, the set of reference energies from (Piacenza and 

Grimme 2004) is extended in number and quality. The B3LYP functional with an exact 

exchange term of 20% is used in the present only to test the performance of the B3LYP-LOC 

empirical correction scheme, while all other considered density functionals possess a larger 

contribution of exact exchange, i.e. 28% for PW6B95, and 50% for BH&HLYP and 

BH&HLYP(G). Being superior to B3LYP, the B3LYP-LOC is found to be insufficiently good for 

the current application, perhaps since the set of LOC correction terms were fitted for a 

smaller basis set than ccpVQZ used in current work. While larger contribution of exact 

exchange in BH&HLYP and BH&HLYP(G) DFT functionals makes them slightly superior in 

some cases, the PW6B95 DFT functional showed generally better performance in handling 

various types of molecules, including those with charges localized at certain parts of 

molecule (Fig. 3 of the publication “Computations of 36 tautomer/isomer equilibria of 

different lactams”). Thus, the PW6B95 DFT functional precisely reproduced the reference 

relative energy for isomer pair involving zwitterionic species (pair 15 in Fig. 3 of the 

tautomer article), while all other DFT methods failed for this task (with deviations of 

2.0 kcal·mol-1 or more). Computation of transition states reveals too high activation barriers 

(about 70 kcal·mol-1, Fig. S1 in the Supporting Information of the tautomer article) for the 

considered zwitterions, such that they hardly exist in vacuum at ambient temperature. 

However, the zwitterionic states exist in aqueous solution. For computation of the tautomer 
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pair energies for solvated structures involving zwitterions, which is performed using the 

thermodynamic cycle connecting gas and liquid phases, an accurate computation of these 

virtual pair energies in vacuum is required. The most challenging system for all considered 

DFT functionals appears to be amine-imine tautomer pair of cytosine (yielding deviations 

exceeding 1.0 kcal·mol-1, with all methods used). This problem is however not connected to 

the particular amine-imine type of tautomerism, since for amine-imine tautomers of 

isocytosine all three density functionals yield satisfactory energetics. Due to large 

discrepancy between amine-imine tautomer pair energies for cytosine computed using 

PW6B95 DFT functional and reference QCISD(T)(qζ) method, this pair of tautomers is not 

considered when computing the deviation (of PW6B95 based tautomer pair energies from 

the QCISD(T) based reference energies) versus ΔNICS(1)zz correlation line (Fig. 4 of the 

tautomer article). The latter is used to construct the following post Hartree-Fock correction 

scheme, that in conjunction with B3LYP/6-31G** geometries and vibrational energies 

provides tautomerization or isomerization free energies for lactams with 0.5 kcal·mol-1 RMS 

deviation from the measured or computed reference energies obtained with QCISD(T)(qζ) 

method. 

ΔE(V/W)(PW6B95-corr) = ΔE(V/W)(PW6B95) + 0.03·ΔNICS(1)zz kcal·mol-1, (33) 

where ΔE(V/W) denotes ground state electronic energy difference between tautomer/isomer 

species V and W. 

Computation of aqueous pKA values deals with the following complex issues, related to 

gas phase and solvation energy terms. (i) Computation of gas phase basicities for the 

molecules possessing closed versus open shell electron configurations in different 

protonation states shows high sensitivity to the DFT formalism (restricted or unrestricted) 

used for the treatment of the open shell systems. In the case of the hexa-aqua Co(III) 

complex, the usage of the unrestricted DFT formalism strongly overestimates the stability of 

the high spin deprotonated species, as compared to the restricted open shell DFT formalism. 

While the usage of unrestricted versus unrestricted and restricted versus restricted DFT 

formalisms is perfectly appropriate, the mixing of these two formalisms may yield dramatic 

discrepancies for relative energies. (ii) In some cases, such as transition metal (II) complexes 

studied in this work, the geometries of molecules strongly differ in gas and in solvent 

phases. In such situations the results become very sensitive to the selection of the 
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geometry, taking into account that the thermodynamic cycle assumes the same geometry 

for both phases. (iii) Another factor influencing gas phase energies is the choice of the basis 

set. Comparison of the tripleζ and quadrupleζ based gas phase basicities for the studied 

complexes reveals, that the corresponding discrepancy is related to the number and type of 

unpaired electrons in metal’s valence shell. Thus, the discrepancy between tripleζ and 

quadrupleζ based gas phase basicities increases with the occupation number and most 

relevantly the energy of the occupied orbitals. It reaches its maximum for Mn(III) and Fe(III) 

possessing unpaired electrons in both the t2g and eg orbitals. Therefore, using high quality 

basis set is important for the computation of accurate pKA values for complexes especially 

involving Mn(III) and Fe(III) ions. This conclusion will most likely also apply to multi-core 

transition metal complexes, and may be most relevant for such challenging systems as the 

manganese cluster enzyme in photosystem II. Larger basis sets were not tested in the 

present study, since they are not available in the software used. (iv) Atomic partial charges, 

used in electrostatic solvation energy computations, are very sensitive to the quality of the 

electrostatic potentials. The electron leakage artifact may influence the accuracy of the 

electrostatic potential to different extent dependent on the total charge of considered 

molecular system, thereby leading often to unphysical results. For this reason two different 

charge models had to be used for the transition metal (III) and (II) complexes, generated from 

electrostatic potentials computed (i) at vacuum conditions and (ii) in presence of implicit 

solvent. This helped to avoid inconsistencies with the physical picture regarding the polarity 

of ligands in the transition metal (III) versus (II) complexes. (v) The limitations of the RESP 

procedure used for the charge derivation also influence the computed solvation energies. 

Reflections of both, statistically poor determination of the charges of buried atoms, and the 

conformational dependence of RESP, are seen in the strange intersecting of the correlation 

line of metal’s partial charge versus the EA value, and in the comparison of vacuum versus 

QM/MM geometry models, respectively. Considering the above mentioned problems, the 

procedure for pKA computation suggested in this study works amazingly well, reproducing 

the measured pKA values with the RMS deviation of about 1 pH units for each considered 

geometry model. 
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S U M M A R Y 

 

 

 

In this PhD work appropriate procedures for computation of gas phase tautomer/isomer 

equilibria for lactams, involving amide-imidic acid and amine-imine tautomerisms; as well as 

aqueous acid dissociation constants for hexa-aqua complexes of transition metals belonging 

to the first and second transition series are elaborated.  

The former procedure allows to reproduce available measured tautomer/isomer pair 

energies, as well as reference values computed using the CPU time demanding QCISD(T) 

method (with RMS deviation equal to 0.5 kcal·mol-1) with considerably less CPU time. Gas 

phase energies computed with such accuracy in combination with solvation electrostatic 

energy computations will allow accurate prediction of tautomer/isomer equilibria in solvent 

environments, which has both fundamental and practical use as has been described before.  

The procedure for pKA computations allows reproduction of the available measured 

values for the challenging hexa-aqua transition metal complexes with RMS deviation equal 

to 1 pH units. Methodological experience and knowledge obtain with this prototypic 

systems will be applicable to multinuclear transition metal complexes involving titratable 

oxygens as well. Therefore, this work is an excellent starting point for the prediction of 

protonation states of OEC Mn4Ca-cluster in PSII, which has both fundamental and 

technological importance.  
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Z U S A M M E N F A S S U N G 

 

 

 

In dieser Doktorarbeit wurden Verfahren entwickelt zur präzisen Berechnung von i) 

Tautomer/Isomer Gleichgewichten von Lactams in der Gas-Phase (amide-imidic acid and 

amine-imine tautomerisms); und ii) Wasser-Dissoziationskonstanten von 

Hexaaquakomplexen der Übergangsmetallionen der ersten und zweiten Reihe. 

Das erste Verfahren berechnet die Energien für Tautomer/Isomer Paare mit geringer 

Abweichnung von 0.5 kcal/mol (RMSD) im Vergleich zu den experimentellen Messwerten 

und zu den Referenzwerten, die mit der aufwendigen QCISD(T)-Methode berechnet 

wurden. Kombiniert mit einer Berechnung der elektrostatischen Solvatationsenergie erlaubt 

das Verfahren präzise Vorhersagen von Tautomer/Isomer Gleichgewichten in den Lösung. 

Solche Vorhersagen sind von großem grundlegenden und praktischen Nutzen. 

Das zweite Verfahren erlaubt die Berechnung von pKa Werten der Hexaaquakomplexe 

von Übergangsmetalionen mit einer Genauigkeit von 1pH (RMS) Einheiten. Die Erfahrung 

und Kentnisse, die mit diesen Prototyp-Systemen gewonnen wurden, können auf 

komplexere Systeme angewandt werden, wie z.B. multinukleare Übergangsmetallkomplexe 

mit titrierbaren Sauerstoff-Atomen. Diese Arbeit ist deshalb ein guter Startpunkt, um 

zuverlässige Vorhersagen der Protonierungszustände des OEC Mn4Ca-cluster in PSII zu 

erhalten, was von grosser Bedeutung ist. 



53 

 

A D D I T I O N A L   P U B L I C A T I O N S 

 

 

Two-photon-induced singlet fission in rubrene single crystal  

 

 

Authors: Ma L., Galstyan G., Zhang K.K., Kloc C., Sun H.D., Soci C., Michel-

Beyerle M.E., Gurzadyan G.G. 

 

 

Bibliography:  Journal of Chemical Physics 138: 184508(1-6), 2013 

 

 

Contribution: 

- All quantum chemical computations 

- Preparation of the parts of the manuscript related to the quantum 

chemical computations 

 

 

 

 

 

 

 

 

 

 

 

http://dx.doi.org/10.1063/1.4804398 

http://dx.doi.org/10.1063/1.4804398


54 

 

 

 

 

Exploring the possible role of Glu286 in CcO by electrostatic energy 

computations combined with molecular dynamics  

 

 

Authors: Woelke A.L., Galstyan G., Galstyan A., Meyer T., Heberle J., Knapp 

E.W. 

 

 

Bibliography:  Journal of Physical Chemistry B 117: 12432-12441, 2013 

 

 

Contribution: 

- All quantum chemical computations 

- Preparation of the parts of the manuscript related to the quantum 

chemical computations 

 

 

 

 

 

 

 

 

 

 

http://dx.doi.org/10.1021/jp407250d 

http://dx.doi.org/10.1021/jp407250d


55 

 

 

 

 

Understanding selectin counter-receptor binding from electrostatic energy 

computations and experimental binding studies 

 

 

Authors: Woelke A.L., Kuehne C., Meyer T., Galstyan G., Dernedde J., Knapp 

E.W. 

 

 

Bibliography:  Journal of Physical Chemistry B 117: 16443-16454, 2013 

 

 

Contribution: 

- All quantum chemical computations 

- Preparation of the parts of the manuscript related to the quantum 

chemical computations 

 

 

 

 

 

 

 

 

 

 

http://dx.doi.org/10.1021/jp4099123 

http://dx.doi.org/10.1021/jp4099123


56 

 

 

 

 

Lysine 362 in cytochrome c oxidase regulates opening of the K-channel via 

changes in pKA and conformation 

 

 

Authors: Woelke A.L., Galstyan G., Knapp E.W. 

 

 

Bibliography:  Biochimica et Biophysica Acta - Bioenergetics, 2014. 

 

 

Contribution: 

- All quantum chemical computations 

- Preparation of the parts of the manuscript related to the quantum 

chemical computations 

 

 

 

 

 

 

 

 

 

 

 

http://dx.doi.org/10.1016/j.bbabio.2014.08.003 

http://dx.doi.org/10.1016/j.bbabio.2014.08.003


57 

 

R E F E R E N C E S 

 

 

 

Banks, J. L., H. S. Beard, Y. X. Cao, A. E. Cho, W. Damm, R. Farid, A. K. Felts, T. A. Halgren, D. 

T. Mainz, J. R. Maple, R. Murphy, D. M. Philipp, M. P. Repasky, L. Y. Zhang, B. J. Berne, R. A. 

Friesner, E. Gallicchio and R. M. Levy (2005). "Integrated modeling program, applied 

chemical theory (IMPACT)." Journal of Computational Chemistry 26(16): 1752-1780. 

Bashford, D., D. A. Case, C. Dalvit, L. Tennant and P. E. Wright (1993). "Electrostatic 

calculations of side-chain pK(a) values in myoglobin and comparison with NMR data for 

histidines." Biochemistry 32(31): 8045-8056. 

Bashford, D. and K. Gerwert (1992). "Electrostatic calculations of the pKa values of ionizable 

groups in bacteriorhodopsin." Journal of Molecular Biology 224(2): 473-486. 

Bayly, C. I., P. Cieplak, W. D. Cornell and P. A. Kollman (1993). "A well-behaved electrostatic 

potential based method using charge restraints for deriving atomic charges: the RESP 

model." Journal of Physical Chemistry 97(40): 10269-10280. 

Becke, A. D. (1993a). "Density-functional thermochemistry. III. The role of exact exchange." 

Journal of Chemical Physics 98(7): 5648-5652. 

Becke, A. D. (1993b). "A new mixing of Hartree-Fock and local density-functional theories." 

Journal of Chemical Physics 98(2): 1372-1377. 

Binkley, J. S. and J. A. Pople (1977). "Self-consistent molecular orbital methods. XIX. Split-

valence Gaussian-type basis sets for beryllium." Journal of Chemical Physics 66(2): 879-880. 

Bochevarov, A. D., E. Harder, T. F. Hughes, J. R. Greenwood, D. A. Braden, D. M. Philipp, D. 

Rinaldo, M. D. Halls, J. Zhang and R. A. Friesner (2013). "Jaguar: A high-performance 

quantum chemistry software program with strengths in life and materials sciences." 

International Journal of Quantum Chemistry 113(18): 2110-2142. 



58 

 

Clark, T., J. Chandrasekhar, G. W. Spitznagel and P. V. Schleyer (1983). "Efficient diffuse 

function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row 

elements, Li-F." Journal of Computational Chemistry 4(3): 294-301. 

Corminboeuf, C., T. Heine, G. Seifert, P. V. Schleyer and J. Weber (2004). "Induced magnetic 

fields in aromatic [n]-annulenes  interpretation of NICS tensor components." Physical 

Chemistry Chemical Physics 6(2): 273-276. 

Cornell, W. D., P. Cieplak, C. I. Bayly and P. A. Kollman (1993). "Application of RESP charges 

to calculate conformational energies, hydrogen-bond energies, and free energies of 

solvation." Journal of the American Chemical Society 115(21): 9620-9631. 

Cox, N., D. A. Pantazis, F. Neese and W. Lubitz (2013). "Biological water oxidation." Accounts 

of Chemical Research 46(7): 1588-1596. 

Debye, P. and E. Hückel (1923). "Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung 

und verwandte Erscheinungen." Physikalische Zeitschrift 24(9): 185-206. 

Ditchfie, R., W. J. Hehre and J. A. Pople (1971). "Self-consistent molecular-orbital methods. 

IX. Extended Gaussian-type basis for molecular-orbital studies of organic molecules." Journal 

of Chemical Physics 54(2): 724-728. 

Dunning, T. H. (1989). "Gaussian basis sets for use in correlated molecular calculations. I. 

The atoms boron through neon and hydrogen." Journal of Chemical Physics 90(2): 1007-

1023. 

Fallah-Bagher-Shaidaei, H., C. S. Wannere, C. Corminboeuf, R. Puchta and P. V. Schleyer 

(2006). "Which NICS aromaticity index for planar π rings is best?" Organic Letters 8(5): 863-

866. 

Francl, M. M., W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. Defrees and J. A. 

Pople (1982). "Self-consistent molecular orbital methods. XXIII. A polarization-type basis set 

for second-row elements." Journal of Chemical Physics 77(7): 3654-3665. 

 



59 

 

Friesner, R. A., E. H. Knoll and Y. Cao (2006). "A localized orbital analysis of the 

thermochemical errors in hybrid density functional theory: achieving chemical accuracy via a 

simple empirical correction scheme." Journal of Chemical Physics 125(12): 124107/1-

124107/24. 

Frisch, M. J., J. A. Pople and J. S. Binkley (1984). "Self-consistent molecular orbital methods. 

25. Supplementary functions for Gaussian basis sets." Journal of Chemical Physics 80(7): 

3265-3269. 

Frisch, M. J., G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. 

Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. 

Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, 

R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. 

Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. 

N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. 

Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. 

Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. 

Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, 

P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, 

J. Cioslowski, and D. J. Fox (2009). Gaussian 09, revision A.02, Gaussian, Inc., Wallingford, CT. 

Galstyan, A. and E. W. Knapp (2009). "Accurate redox potentials of mononuclear iron, 

manganese, and nickel model complexes." Journal of Computational Chemistry 30(2): 203-

211. 

Gerega, A., L. Lapinski, M. J. Nowak, A. Furmanchuk and J. Leszczynski (2007). "Systematic 

effect of benzo-annelation on oxo-hydroxy tautomerism of heterocyclic compounds. 

Experimental matrix-isolation and theoretical study." Journal of Physical Chemistry A 

111(23): 4934-4943. 

Gilson, R. and M. C. Durrant (2009). "Estimation of the pKa values of water ligands in 

transition metal complexes using density functional theory with polarized continuum model 

solvent corrections." Dalton Transactions (46): 10223-10230. 



60 

 

Goldfeld, D. A., A. D. Bochevarov and R. A. Friesner (2008). "Localized orbital corrections 

applied to thermochemical errors in density functional theory: The role of basis set and 

application to molecular reactions." Journal of Chemical Physics 129(21), 214105/1-

214105/13. 

Grimme, S. (2003). "Improved second-order Moller-Plesset perturbation theory by separate 

scaling of parallel- and antiparallel-spin pair correlation energies." Journal of Chemical 

Physics 118(20): 9095-9102. 

Harihara, P. C. and J. A. Pople (1973). "The influence of polarization functions on molecular 

orbital hydrogenation energies." Theoretica Chimica Acta 28(3): 213-222. 

Hay, P. J. and W. R. Wadt (1985a). "Ab initio effective core potentials for molecular 

calculations. Potentials for K to Au including the outermost core orbitals." Journal of 

Chemical Physics 82(1): 299-310. 

Hay, P. J. and W. R. Wadt (1985b). "Ab initio effective core potentials for molecular 

calculations. Potentials for the transition metal atoms Sc to Hg." Journal of Chemical Physics 

82(1): 270-283. 

Hehre, W. J., R. Ditchfie and J. A. Pople (1972). "Self-consistent molecular orbital methods. 

XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of 

organic molecules." Journal of Chemical Physics 56(5): 2257-2261. 

Hehre, W. J. and J. A. Pople (1972). "Self-consistent molecular orbital methods. XIII. An 

extended Gaussian-type basis for boron." Journal of Chemical Physics 56(8): 4233-4234. 

Jahn, H. A. and E. Teller (1937). "Stability of polyatomic molecules in degenerate electronic 

states. I. Orbital degeneracy." Proceedings of the Royal Society A 161(905): 220-235. 

Jerome, S. V., T. F. Hughes and R. A. Friesner (2014). "Accurate pKa prediction in first-row 

hexaaqua transition metal complexes using the B3LYP-DBLOC method." Journal of Physical 

Chemistry B 118(28): 8008-8016. 



61 

 

Jorgensen, W. L., J. Chandrasekhar, J. D. Madura, R. W. Impey and M. L. Klein (1983). 

"Comparison of simple potential functions for simulating liquid water." Journal of Chemical 

Physics 79(2): 926-935. 

Jorgensen, W. L., D. S. Maxwell and J. Tirado-Rives (1996). "Development and testing of the 

OPLS all-atom force field on conformational energetics and properties of organic liquids." 

Journal of the American Chemical Society 118(45): 11225-11236. 

Kallies, B. and R. Meier (2001). "Electronic structure of 3d [M(H2O)6]3+ ions from ScIII to FeIII: 

A quantum mechanical study based on DFT computations and natural bond orbital 

analyses." Inorganic Chemistry 40(13): 3101-3112. 

Kaminski, G. A., R. A. Friesner, J. Tirado-Rives and W. L. Jorgensen (2001). "Evaluation and 

reparametrization of the OPLS-AA force field for proteins via comparison with accurate 

quantum chemical calculations on peptides." Journal of Physical Chemistry B 105(28): 6474-

6487. 

Katritzky, A. R., C. D. Hall, B. El-Dien, M. El-Gendy and B. Draghici (2010). "Tautomerism in 

drug discovery." Journal of Computer-Aided Molecular Design 24(6-7): 475-484. 

Kendall, R. A., T. H. Dunning and R. J. Harrison (1992). "Electron affinities of the first-row 

atoms revisited. Systematic basis-sets and wave functions." Journal of Chemical Physics 

96(9): 6796-6806. 

Knoll, E. H. and R. A. Friesner (2006). "Localized orbital corrections for the calculation of 

ionization potentials and electron affinities in density functional theory." Journal of Physical 

Chemistry B 110(38): 18787-18802. 

Koch, W. and M. C. Holthausen (2000). A chemist's guide to density functional theory. 

Weinheim, Wiley-VCH. 

Krishnan, R., J. S. Binkley, R. Seeger and J. A. Pople (1980). "Self-consistent molecular orbital 

methods .XX. A basis set for correlated wave functions." Journal of Chemical Physics 72(1): 

650-654. 



62 

 

Lee, B. and F. M. Richards (1971). "The interpretation of protein structures: Estimation of 

static accessibility." Journal of Molecular Biology 55(3): 379-400. 

Lee, C. T., W. T. Yang and R. G. Parr (1988). "Development of the Colle-Salvetti correlation-

energy formula into a functional of the electron density." Physical Review B 37(2): 785-789. 

Leslie, M. (2009). "On the origin of photosynthesis." Science 323(5919): 1286-1287. 

Martin, Y. C. (2009). "Let's not forget tautomers." Journal of Computer-Aided Molecular 

Design 23(10): 693-704. 

McLean, A. D. and G. S. Chandler (1980). "Contracted Gaussian basis sets for molecular 

calculations. I. Second row atoms, Z=11-18." Journal of Chemical Physics 72(10): 5639-5648. 

McQuarrie, D. A. (2000). Statistical mechanics. Sausalito, CA, University Science Books. 

Milletti, F. and A. Vulpetti (2010). "Tautomer preference in PDB complexes and its impact on 

structure-based drug discovery." Journal of Chemical Information and Modeling 50(6): 1062-

1074. 

Mohr, P. J., B. N. Taylor and D. B. Newell (2012). "CODATA Recommended values of the 

fundamental physical constants: 2010." Journal of Physical and Chemical Reference Data 

41(4): 043109/1-043109/84. 

Parr, R. G. and W. Yang (1989). Density-functional theory of atoms and molecules. New 

York, NY, Oxford University Press. 

Perdew, J. P., J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. 

Fiolhais (1992). "Atoms, molecules, solids, and surfaces: Applications of the generalized 

gradient approximation for exchange and correlation." Physical Review B 46(11): 6671-6687. 

Perdew, J. P., J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. 

Fiolhais (1993). "Erratum: Atoms, molecules, solids, and surfaces: Applications of the 

generalized gradient approximation for exchange and correlation (Vol 46, Pg 6671, 1992)." 

Physical Review B 48(7): 4978-4978. 



63 

 

Persson, I. (2010). "Hydrated metal ions in aqueous solution: How regular are their 

structures?" Pure and Applied Chemistry 82(10): 1901-1917. 

Piacenza, M. and S. Grimme (2004). "Systematic quantum chemical study of DNA-base 

tautomers." Journal of Computational Chemistry 25(1): 83-99. 

Pople, J. A., M. Head-Gordon and K. Raghavachari (1987). "Quadratic configuration 

interaction. A general technique for determining electron correlation energies." Journal of 

Chemical Physics 87(10): 5968-5975. 

Pospisil, P., P. Ballmer, L. Scapozza and G. Folkers (2003). "Tautomerism in computer-aided 

drug design." Journal of Receptors and Signal Transduction 23(4): 361-371. 

Robertazzi, A., A. Galstyan and E. W. Knapp (2014). "PSII manganese cluster: Protonation of 

W2, O5, O4 and His337 in the S1 state explored by combined quantum chemical and 

electrostatic energy computations." Biochimica et Biophysica Acta – Bioenergetics 1837(8): 

1316-1321. 

Schleyer, P. V., C. Maerker, A. Dransfeld, H. J. Jiao and N. J. R. V. Hommes (1996). "Nucleus-

independent chemical shifts: A simple and efficient aromaticity probe." Journal of the 

American Chemical Society 118(26): 6317-6318. 

Schmidt am Busch, M. and E. W. Knapp (2004). "Accurate pKa determination for a 

heterogeneous group of organic molecules." Europenan Journal of Chemical Physics and 

Physical Chemistry 5(10): 1513-1522. 

Schmidt Am Busch, M. and E. W. Knapp (2005). "One-electron reduction potential for 

oxygen- and sulfur-centered organic radicals in protic and aprotic solvents." Journal of the 

American Chemical Society 127(45): 15730-15737. 

Schrödinger, LLC (2010). Jaguar, version 7.7, New York, NY.  

Schrödinger, LLC (2014a). Jaguar, version 8.3, New York, NY. 

Schrödinger, LLC (2014b). Impact, version 6.2, New York, NY. 



64 

 

Singh, U. C. and P. A. Kollman (1984). "An approach to computing electrostatic charges for 

molecules." Journal of Computational Chemistry 5(2): 129-145. 

Steiner, E., P. W. Fowler and L. W. Jenneskens (2001). "Counter-rotating ring currents in 

coronene and corannulene." Angewandte Chemie - International Edition 40(2): 362-366. 

Stephens, P. J., F. J. Devlin, C. F. Chabalowski and M. J. Frisch (1994). "Ab initio calculation of 

vibrational absorption and circular dichroism spectra using density functional force fields." 

Journal of Physical Chemistry 98(45): 11623-11627. 

Umena, Y., K. Kawakami, J. R. Shen and N. Kamiya (2011). "Crystal structure of oxygen-

evolving photosystem II at a resolution of 1.9Å." Nature 473(7345): 55-60. 

Vosko, S. H., L. Wilk and M. Nusair (1980). "Accurate spin-dependent electron liquid 

correlation energies for local spin density calculations: a critical analysis." Canadian Journal 

of Physics 58(8): 1200-1211. 

Warshel, A. and M. Levitt (1976). "Theoretical studies of enzymic reactions: Dielectric, 

electrostatic and steric stabilization of carbonium ion in reaction of lysozyme." Journal of 

Molecular Biology 103(2): 227-249. 

Wolinski, K., J. F. Hinton and P. Pulay (1990). "Efficient implementation of the gauge-

independent atomic orbital method for NMR chemical shift calculations." Journal of the 

American Chemical Society 112(23): 8251-8260. 

Woon, D. E. and T. H. Dunning (1993). "Gaussian basis sets for use in correlated molecular 

calculations. III. The atoms aluminum through argon." Journal of Chemical Physics 98(2): 

1358-1371. 

Woon, D. E. and T. H. Dunning (1994). "Gaussian basis sets for use in correlated molecular 

calculations. IV. Calculation of static electrical response properties." Journal of Chemical 

Physics 100(4): 2975-2988. 

Zhao, Y. and D. G. Truhlar (2005). "Design of density functionals that are broadly accurate 

for thermochemistry, thermochemical kinetics, and nonbonded interactions." Journal of 

Physical Chemistry A 109(25): 5656-5667. 



65 

 

A P P E N D I X 

 

 

 

Appendix includes the following material: 

 

Figure A1. Jahn-Teller effect for 1 0

2g gt e  configuration leads to small tetragonal compression 67 

Figure A2. Jahn-Teller effect for 2 0
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Figure A1. Jahn-Teller effect for 1 0

2g gt e  configuration leads to small tetragonal compression 
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Figure A2. Jahn-Teller effect for 2 0

2g gt e  configuration leads to small tetragonal elongation 
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Figure A3. Jahn-Teller effect for 3 1

2g gt e  configuration leading to large tetragonal distortion. It should 

be noted, that due to symmetric splitting of eg orbitals the type of distortion (compression or 

elongation) for this configuration can’t be straightforwardly predicted from the simple symmetry 

and energy conservation considerations. Our calculation however revealed occurrence of a 

tetragonal elongation in [Mn(H2O)6]
3+ molecule.  
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Figure A4. Jahn-Teller effect for 4 2

2g gt e  configuration leads to small tetragonal compression 
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Figure A5. Jahn-Teller effect for 5 0

2g gt e  configuration leads to small tetragonal elongation 
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Table A1. Imaginary frequencies of the transition metal (II) complexes in vacuum geometry with applied 

(O-metal-O) bond angle constraints; lowest frequency for each complex, which was used to replace the 

energy contribution from the imaginary frequencies; associated energy correction terms; and the 

resulting total vibrational correction energy accounting for all imaginary frequency modes. Frequencies 

are given in units of [cm-1], while energies are in units of [kcal·mol-1]. 

compound 
squared  

frequencies 
lowest real 
frequency 

correction to vibrational energy 
a
 

zero point  
energy 

thermal 
enthalpy 

thermal 
entropy 

thermal  
free energy 

total  
energy 

[Mn(H2O)6]
2+

 
-172.97 
-152.21 
-37.53 

38.04 0.163 1.618 0.016 -3.172 -3.009 

[Fe(H2O)6]
2+

 
-173.71 
-81.19 
-62.91 

58.64 0.251 1.537 0.013 -2.488 -2.236 

[Ni(H2O)6]
2+

 
-183.03 
-20.61 

67.83 0.194 1.001 0.008 -1.511 -1.317 

[Zn(H2O)6]
2+

 

-159.62 
-86.99 
-55.84 

47.12 0.202 1.582 0.015 -2.829 -2.627 

a
 corrections are calculated according to eqs. (9) - (12) in the main text. 
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Table A2. Metal to oxygen (M–O) and oxygen to hydrogen (O–H) bond lengths in [Å] for protonated and 

deprotonated species of transition metal complexes geometry optimized in vacuum. 

compound 
protonated form  deprotonated form 

M–O 
a
 O–H 

a
  M–Oeq 

b M–Oax 
c
 M–Oh 

d
 O–Heq 

b
 O–Hax 

c
 O–Hh 

d
 

[Sc(H2O)6]
3+

 2.14 0.98  2.21 2.27 1.81 0.97 0.97 0.97 
[Ti(H2O)6]

3+
 2.08 0.98  2.16 2.20 1.75 0.97 0.97 0.97 

[V(H2O)6]
3+

 2.04 0.98  2.10 2.21 1.76 0.97 0.97 0.97 
[Cr(H2O)6]

3+
 2.01 0.98  2.05 2.16 1.79 0.97 0.97 0.97 

[Mn(H2O)6]
3+

 
e
 

2.18 
ax

 0.98 
ax

 
 2.15 2.07 1.75 0.97 0.97 0.98 

1.97 
eq

 0.98 
eq

 

[Fe(H2O)6]
3+

 2.06 0.98  2.14 2.16 1.75 0.97 0.97 0.97 

[Co(H2O)6]
3+

 
f
 

1.94 0.98  
2.12 2.10 1.74 0.97 0.97 0.98 

[Co(H2O)6]
3+

 
g
 1.94 2.05 1.80 0.98 0.97 0.97 

[Ru(H2O)6]
3+

 2.09 0.98  2.13 2.23 1.89 0.97 0.97 0.98 
[Rh(H2O)6]

3+
 2.08 0.98  2.08 2.22 1.95 0.98 0.97 0.97 

[Mn(H2O)6]
2+

 2.22 0.97  2.27 2.26 1.92 0.97 0.97 0.96 

[Fe(H2O)6]
2+

 
e
 

2.19 
ax

 0.97 
ax

 
 2.22 2.20 1.92 0.97 0.97 0.96 

2.15 
eq

 0.97 
eq

 

[Ni(H2O)6]
2+

 2.09 0.97  2.13 2.15 1.91 0.97 0.97 0.96 
[Zn(H2O)6]

2+
 2.15 0.97  2.22 2.14 1.91 0.97 0.97 0.96 

a
 average metal to oxygen and oxygen to hydrogen bond lengths. 

b
 average metal to oxygen and oxygen to hydrogen bond lengths for the equatorial water ligands. 

c
 average metal to oxygen and oxygen to hydrogen bond lengths for the axial water ligand. 

d
 metal to oxygen and oxygen to hydrogen bond lengths for the deprotonated water ligand. 

e
 bond lengths for axial and equatorial ligands are given separately and denoted with ax or eq superscripts, respectively. 

f
 computed for high spin deprotonated state. 

g
 computed for low spin deprotonated state. 

 

Table A3. Metal to oxygen (M–O) and oxygen to hydrogen (O–H) bond lengths in [Å] for protonated and 

deprotonated species of transition metal complexes geometry optimized in presence of explicit water. 

compound 
protonated form  deprotonated form 

M–O 
a
 O–H 

a
  M–Oeq 

b M–Oax 
c
 M–Oh 

d
 O–Heq 

b
 O–Hax 

c
 O–Hh 

d
 

[Sc(H2O)6]
3+

 2.11 0.99  2.17 2.19 1.85 0.98 0.99 0.96 
[Ti(H2O)6]

3+
 2.04 1.00  2.13 2.15 1.77 0.99 0.98 0.96 

[V(H2O)6]
3+

 2.01 0.99  2.06 2.17 1.79 0.98 0.98 0.97 
[Cr(H2O)6]

3+
 1.98 1.00  2.02 2.11 1.81 0.98 0.99 0.97 

[Mn(H2O)6]
3+

 
e
 

2.15 
ax

 0.98 
ax

 
 2.12 2.04 1.76 0.98 0.99 0.97 

1.95 
eq

 1.00 
eq

 

[Fe(H2O)6]
3+

 2.02 0.99  2.09 2.15 1.79 0.98 0.98 0.97 

[Co(H2O)6]
3+

 
f
 

1.91 0.99  
2.08 2.12 1.80 0.98 0.98 0.97 

[Co(H2O)6]
3+

 
g
 1.92 1.99 1.81 0.99 0.99 0.97 

[Ru(H2O)6]
3+

 2.07 0.99  2.10 2.17 1.92 0.99 0.99 0.97 
[Rh(H2O)6]

3+
 2.05 1.00  2.07 2.17 1.95 0.99 0.99 0.97 

[Mn(H2O)6]
2+

 2.20 0.98  2.26 2.22 2.01 0.98 0.98 0.96 

[Fe(H2O)6]
2+

 
e
 

2.14 
ax

 0.98 
ax

 
 2.22 2.15 1.94 0.98 0.98 0.97 

2.14 
eq

 0.98 
eq

 

[Ni(H2O)6]
2+

 2.08 0.98  2.12 2.11 1.96 0.98 0.98 0.97 
[Zn(H2O)6]

2+
 2.13 0.98  2.13 2.12 1.95 0.98 0.98 0.97 

a
 average metal to oxygen and oxygen to hydrogen bond lengths. 

b
 average metal to oxygen and oxygen to hydrogen bond lengths for the equatorial water ligands. 

c
 average metal to oxygen and oxygen to hydrogen bond lengths for the axial water ligand. 

d
 metal to oxygen and oxygen to hydrogen bond lengths for the deprotonated water ligand. 

e
 bond lengths for axial and equatorial ligands are given separately and denoted with ax or eq superscripts, respectively. 

f
 computed for high spin deprotonated state. 

g
 computed for low spin deprotonated state. 
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Table A4. RESP charges of transition metal (III) complexes based on model structures optimized in 

vacuum. Atomic partial charges are determined in vacuum (ε = 1) (first nine lines) and alternatively in 

dielectric continuum with ε = 80 (last nine lines). Charges of protonated and deprotonated complexes 

are given in the left and right part of the table, respectively. 

compound 
protonated form  deprotonated form 

metal O 
a
 H 

a
  metal Oeq 

b
 Oax 

c
 Oh 

d
 Heq 

b
 Hax 

c
 Hh 

d
 

[Sc(H2O)6]
3+

 2.31 -1.05 0.58  1.92 -0.91 -0.88 -1.10 0.51 0.50 0.61 
[Ti(H2O)6]

3+
 2.18 -1.02 0.58  1.71 -0.89 -0.79 -0.97 0.50 0.48 0.61 

[V(H2O)6]
3+

 2.11 -1.01 0.58  1.28 -0.78 -0.73 -0.76 0.49 0.46 0.51 
[Cr(H2O)6]

3+
 2.03 -0.99 0.58  1.31 -0.82 -0.74 -0.71 0.50 0.47 0.44 

[Mn(H2O)6]
3+

 
e
 1.95 

-1.01 
ax

 0.56 
ax

  
1.33 -0.83 -0.71 -0.63 0.49 0.47 0.45 

-0.94 
eq

 0.58 
eq

  

[Fe(H2O)6]
3+

 2.04 -0.99 0.57  1.37 -0.80 -0.74 -0.82 0.48 0.46 0.58 
[Co(H2O)6]

3+
 1.70 -0.92 0.57  1.23 -0.81 -0.68 -0.64 0.48 0.45 0.55 

[Ru(H2O)6]
3+

 1.80 -0.94 0.57  1.10 -0.75 -0.76 -0.66 0.49 0.48 0.45 
[Rh(H2O)6]

3+
 1.20 -0.76 0.53  1.07 -0.74 -0.73 -0.67 0.50 0.47 0.40 

[Sc(H2O)6]
3+

 1.88 -0.94 0.57  1.47 -0.86 -0.83 -0.97 0.53 0.50 0.55 
[Ti(H2O)6]

3+
 1.94 -0.98 0.58  1.35 -0.84 -0.77 -0.87 0.52 0.49 0.56 

[V(H2O)6]
3+

 1.75 -0.92 0.57  1.44 -0.86 -0.86 -0.91 0.53 0.51 0.54 
[Cr(H2O)6]

3+
 1.40 -0.83 0.55  1.49 -0.89 -0.87 -0.93 0.54 0.52 0.51 

[Mn(H2O)6]
3+

 
e
 1.40 

-0.88 
ax

 0.53 
ax

  
1.42 -0.87 -0.83 -0.84 0.53 0.52 0.53 

-0.80 
eq

 0.55 
eq

  

[Fe(H2O)6]
3+

 1.49 -0.85 0.55  1.20 -0.82 -0.76 -0.77 0.52 0.49 0.54 
[Co(H2O)6]

3+
 1.19 -0.79 0.55  1.14 -0.82 -0.73 -0.65 0.51 0.49 0.55 

[Ru(H2O)6]
3+

 1.44 -0.86 0.56  1.42 -0.90 -0.93 -0.86 0.54 0.54 0.50 
[Rh(H2O)6]

3+
 1.38 -0.85 0.56  1.32 -0.86 -0.89 -0.89 0.55 0.53 0.48 

a
 average charge of the oxygen and hydrogen atoms of water ligands. 

b
 average charge on the oxygen or hydrogen atoms for equatorial water ligands. 

c
 charge on the oxygen or hydrogen atoms for the axial water ligand. 

d
 charge on the oxygen or hydrogen atom for the deprotonated water ligand. 

e
 charges for axial and equatorial ligands are given separately and denoted with ax or eq superscripts, respectively. 
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Table A5. RESP charges of transition metal (III) complexes based on model structures optimized in 

presence of explicit solvent using a QM/MM approach. Atomic partial charges are determined in 

vacuum (first nine lines) and alternatively in dielectric continuum with ε = 80 (last nine lines). Charges of 

protonated and deprotonated complexes are given in the left and right part of the table, respectively. 

compound 
protonated form  deprotonated form 

metal O 
a
 H 

a
  metal Oeq 

b
 Oax 

c
 Oh 

d
 Heq 

b
 Hax 

c
 Hh 

d
 

[Sc(H2O)6]
3+

 2.11 -0.97 0.56  1.80 -0.90 -0.76 -1.03 0.51 0.46 0.58 
[Ti(H2O)6]

3+
 2.15 -1.01 0.57  1.60 -0.84 -0.77 -0.97 0.49 0.48 0.60 

[V(H2O)6]
3+

 1.81 -0.91 0.55  1.39 -0.85 -0.75 -0.70 0.51 0.46 0.45 
[Cr(H2O)6]

3+
 1.47 -0.80 0.53  1.55 -0.91 -0.78 -0.71 0.53 0.47 0.42 

[Mn(H2O)6]
3+

 
e
 1.44 

-0.94 
ax

 0.55 
ax

  
1.42 -0.86 -0.74 -0.63 0.50 0.47 0.46 

-0.72 
eq

 0.52 
eq

  

[Fe(H2O)6]
3+

 1.61 -0.84 0.53  1.15 -0.73 -0.70 -0.72 0.47 0.46 0.51 
[Co(H2O)6]

3+
 1.20 -0.77 0.53  1.44 -0.90 -0.80 -0.55 0.51 0.48 0.48 

[Ru(H2O)6]
3+

 1.29 -0.77 0.53  0.95 -0.67 -0.66 -0.64 0.46 0.45 0.43 
[Rh(H2O)6]

3+
 0.92 -0.66 0.50  0.94 -0.67 -0.64 -0.67 0.47 0.46 0.45 

[Sc(H2O)6]
3+

 2.04 -0.99 0.58  1.73 -0.95 -0.89 -1.06 0.55 0.53 0.56 
[Ti(H2O)6]

3+
 1.83 -0.95 0.57  1.50 -0.90 -0.78 -0.94 0.53 0.50 0.57 

[V(H2O)6]
3+

 1.71 -0.92 0.57  1.50 -0.89 -0.87 -0.92 0.54 0.52 0.51 
[Cr(H2O)6]

3+
 1.65 -0.90 0.56  1.57 -0.91 -0.90 -0.94 0.55 0.53 0.49 

[Mn(H2O)6]
3+

 
e
 1.63 

-0.96 
ax

 0.55 
ax

  
1.52 -0.92 -0.84 -0.84 0.53 0.53 0.51 

-0.87 
eq

 0.57 
eq

  

[Fe(H2O)6]
3+

 1.65 -0.89 0.56  1.50 -0.90 -0.86 -0.90 0.54 0.51 0.55 
[Co(H2O)6]

3+
 1.46 -0.88 0.57  1.48 -0.93 -0.88 -0.76 0.54 0.52 0.53 

[Ru(H2O)6]
3+

 1.49 -0.88 0.57  1.35 -0.88 -0.88 -0.85 0.54 0.53 0.49 
[Rh(H2O)6]

3+
 1.37 -0.85 0.56  1.27 -0.84 -0.89 -0.89 0.54 0.54 0.48 

a
 average charge of the oxygen and hydrogen atoms of water ligands. 

b
 average charge on the oxygen or hydrogen atoms for equatorial water ligands. 

c
 charge on the oxygen or hydrogen atoms for the axial water ligand. 

d
 charge on the oxygen or hydrogen atom for the deprotonated water ligand. 

e
 charges for axial and equatorial ligands are given separately and denoted with ax or eq superscripts, respectively. 

 

Table A6. RESP charges of transition metal (II) complexes based on model structures optimized in 

vacuum constraining (O-metal-O) bond angles between neighbor water ligands to 90°. Atomic partial 

charges are determined in vacuum (ε = 1) (first four lines) and alternatively in dielectric continuum with 

ε = 80 (last four lines). Charges of protonated and deprotonated complexes are given in the left and right 

part of the table, respectively. 

compound 
protonated form  deprotonated form 

metal O 
a
 H 

a
  metal Oeq 

b
 Oax 

c
 Oh 

d
 Heq 

b
 Hax 

c
 Hh 

d
 

[Mn(H2O)6]
2+

 1.75 -0.99 0.52  1.49 -0.90 -0.84 -1.16 0.46 0.46 0.50 

[Fe(H2O)6]
2+

 
e
 1.67 

-1.00 
ax

 0.52 
ax

  
1.33 -0.87 -0.82 -1.02 0.46 0.45 0.42 

-0.97 
eq

 0.52 
eq

  

[Ni(H2O)6]
2+

 1.65 -0.98 0.52  1.26 -0.84 -0.83 -0.99 0.45 0.46 0.41 
[Zn(H2O)6]

2+
 1.74 -0.99 0.52  1.42 -0.88 -0.79 -1.06 0.46 0.45 0.41 

[Mn(H2O)6]
2+

 1.36 -0.94 0.52  1.33 -0.98 -0.90 -1.14 0.52 0.51 0.47 

[Fe(H2O)6]
2+

 
e
 1.30 

-0.95 
ax

 0.52 
ax

  
1.38 -0.98 -0.96 -1.18 0.52 0.52 0.46 

-0.92 
eq

 0.52 
eq

  

[Ni(H2O)6]
2+

 1.27 -0.92 0.52  1.35 -0.96 -0.95 -1.19 0.52 0.52 0.46 
[Zn(H2O)6]

2+
 1.35 -0.94 0.53  1.42 -0.98 -0.94 -1.24 0.52 0.52 0.48 

a
 average charge of the oxygen and hydrogen atoms of water ligands. 

b
 average charge on the oxygen or hydrogen atoms for equatorial water ligands. 

c
 charge on the oxygen or hydrogen atoms for the axial water ligand. 

d
 charge on the oxygen or hydrogen atom for the deprotonated water ligand. 

e
 charges for axial and equatorial ligands are given separately and denoted with ax or eq superscripts, respectively. 
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Table A7. RESP charges of transition metal (II) complexes based on model structures optimized in 

presence of explicit solvent using a QM/MM approach. Atomic partial charges are determined in 

vacuum (ε = 1) (first four lines) and alternatively in dielectric continuum with ε = 80 (last four lines). 

Charges of protonated and deprotonated complexes are given in the left and right part of the table, 

respectively. 

compound 
protonated form  deprotonated form 

metal O 
a
 H 

a
  metal Oeq 

b
 Oax 

c
 Oh 

d
 Heq 

b
 Hax 

c
 Hh 

d
 

[Mn(H2O)6]
2+

 1.55 -0.91 0.49  1.11 -0.78 -0.65 -0.92 0.43 0.40 0.36 

[Fe(H2O)6]
2+

 
e
 1.50 

-0.96 
ax

 0.52 
ax

  
0.97 -0.75 -0.67 -0.84 0.42 0.42 0.35 

-0.89 
eq

 0.49 
eq

  

[Ni(H2O)6]
2+

 1.29 -0.85 0.48  0.91 -0.74 -0.65 -0.86 0.42 0.40 0.35 
[Zn(H2O)6]

2+
 1.61 -0.94 0.50  1.08 -0.78 -0.67 -0.94 0.43 0.41 0.36 

[Mn(H2O)6]
2+

 1.43 -0.96 0.53  1.24 -0.92 -0.82 -1.15 0.50 0.48 0.44 

[Fe(H2O)6]
2+

 
e
 1.36 

-0.96 
ax

 0.53 
ax

  
1.19 -0.90 -0.91 -1.09 0.49 0.51 0.44 

-0.94 
eq

 0.53 
eq

  

[Ni(H2O)6]
2+

 1.36 -0.95 0.53  1.17 -0.91 -0.83 -1.12 0.50 0.48 0.42 
[Zn(H2O)6]

2+
 1.54 -1.00 0.54  1.29 -0.94 -0.85 -1.19 0.51 0.49 0.45 

a
 average charge of the oxygen and hydrogen atoms of water ligands. 

b
 average charge on the oxygen or hydrogen atoms for equatorial water ligands. 

c
 charge on the oxygen or hydrogen atoms for the axial water ligand. 

d
 charge on the oxygen or hydrogen atom for the deprotonated water ligand. 

e
 charges for axial and equatorial ligands are given separately and denoted with ax or eq superscripts, respectively. 

 

 

Table A8. Comparison of computed gas phase free 

energy of deprotonated hexa-aqua Co(III) complex in 

high spin state, based on the ground state electronic 

energies evaluated with restricted open shell DFT 

(RODFT) or unrestricted DFT (UDFT) formalisms, 

based on the vacuum (QM) and QM/MM geometry 

models. Geometries in all cases are optimized using 

the UDFT approach. Energies are given in [kcal·mol-1] 

units. 

DFT formalism Gg with QM Gg with QM/MM 

RODFT -378188.18 -378174.14 
UDFT -378192.02 -378178.07 

difference 3.84 3.93 
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Table A9. Formal theoretical and computed 

expectation values of the total spin S2 operator for 

ground state electronic energy computations 

performed using unrestricted DFT approach. The 

deviations from theoretical values remained in the 

same range in the course of geometry optimizations.  

compound 

total spin S
2
 

formal 
a
 

Computed 

QM QM/MM 

[Ti(H2O)6]
3+

 
0.750 

0.751 0.751 

[Ti(H2O)5OH]
2+

 0.753 0753 
[V(H2O)6]

3+
 

2.000 
2.004 2.004 

[V(H2O)5OH]
2+

 2.014 2.014 
[Cr(H2O)6]

3+
 

3.750 
3.759 3.759 

[Cr(H2O)5OH]
2+

 3.764 3.765 
[Mn(H2O)6]

3+
 

6.000 
6.019 6.023 

[Mn(H2O)5OH]
2+

 6.068 6.060 
[Fe(H2O)6]

3+
 

8.750 
8.756 8.756 

[Fe(H2O)5OH]
2+

 8.761 8.760 

[Co(H2O)5OH]
2+

 6.000 6.013 6.012 

[Ru(H2O)6]
3+

 
0.750 

0.755 0.753 

[Ru(H2O)5OH]
2+

 0.753 0.753 

[Mn(H2O)6]
2+

 
8.750 

8.752 8.753 

[Mn(H2O)5OH]
 +

 8.754 8.754 
[Fe(H2O)6]

2+
 

6.000 
6.005 6.005 

[Fe(H2O)5OH]
 +

 6.007 6.006 
[Ni(H2O)6]

2+
 

2.000 
2.002 2.002 

[Ni(H2O)5OH]
 +

 2.003 2.003 
a
 formal theoretical total spin is calculated as s(s+1), where s 

equals to 0.5 times the number of unpaired electrons.
 

 

Table A10. Computed values for the energy terms Gg, Gsolv, Gaq, used in calculations of the pKA
(micro) 

values for vacuum (QM) and QM/MM geometry models. Electronic energies are evaluated using 

quadruple–ζ basis set as described in the Methods Section. All energies are given in [kcal·mol-1]. 

compound 
QM  QM/MM 

Gg Gsolv Gaq  Gg Gsolv Gaq 

[Sc(H2O)6]
3+

 22.17 -14.79 7.37  20.88 -15.19 5.69 
[Ti(H2O)6]

3+
 12.79 -8.48 4.31  10.30 -7.81 2.49 

[V(H2O)6]
3+

 16.43 -8.74 7.68  11.46 -6.65 4.81 
[Cr(H2O)6]

3+
 21.28 -9.39 11.89  13.49 -6.39 7.10 

[Mn(H2O)6]
3+

 6.67 -6.59 0.07  -2.20 -1.85 -4.05 
[Fe(H2O)6]

3+
 12.61 -6.69 5.91  11.72 -8.79 2.93 

[Co(H2O)6]
3+

 
a
 -4.68 8.93 4.25  -5.07 8.86 3.80 

[Co(H2O)6]
3+

 
b
 11.26 -6.12 5.14  6.35 -0.22 6.13 

[Ru(H2O)6]
3+

 22.01 -14.48 7.54  19.58 -13.30 6.28 
[Rh(H2O)6]

3+
 19.30 -14.43 4.87  12.62 -8.06 4.56 

[Mn(H2O)6]
2+

 153.76 -135.30 18.46  155.99 -141.84 14.15 
[Fe(H2O)6]

2+
 157.07 -140.36 16.71  146.86 -133.29 13.57 

[Ni(H2O)6]
2+

 154.03 -140.60 13.42  148.76 -134.08 14.68 
[Zn(H2O)6]

2+
 155.22 -141.23 14.00  154.54 -141.69 12.85 

[Co(H2O)6]
3+

 
c
 -8.52 8.93 0.41  -8.99 8.86 -0.13 

a
 proper Gg computed using restricted open shell DFT for the high spin deprotonated state. The protonated state is closed shell. 

b
 energy terms computed assuming no spin state change upon deprotonation. 

c
 Gg computed using unrestricted DFT for the deprotonated state. The protonated state is closed shell. Not used in pKA 

computations. 
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Table A11. Comparison of measured and computed pKA values for vacuum (QM) and 

QM/MM geometry models.  

compound 
pKA  ΔpKA (computed–measured) 

measured 
a
 QM QM/MM  QM QM/MM 

[Sc(H2O)6]
3+

 4.30 4.32 3.09  0.02 -1.21 
[Ti(H2O)6]

3+
 2.15 2.08 0.75  -0.07 -1.40 

[V(H2O)6]
3+

 2.60 4.55 2.44  1.95 -0.16 
[Cr(H2O)6]

3+
 4.20 7.63 4.12  3.43 -0.08 

[Mn(H2O)6]
3+

 0.08 -1.02 -4.05  -1.10 -4.13 
[Fe(H2O)6]

3+
 2.20 3.25 1.06  1.05 -1.14 

[Co(H2O)6]
3+

 
b
 

2.90 
2.04 1.70  -0.86 -1.20 

[Co(H2O)6]
3+

 
c
 2.69 3.41  -0.21 0.51 

[Ru(H2O)6]
3+

 2.47 4.44 3.52  1.97 1.05 
[Rh(H2O)6]

3+
 3.60 2.49 2.26  -1.11 -1.34 

[Mn(H2O)6]
2+

 10.60 12.45 9.28  1.85 -1.32 
[Fe(H2O)6]

2+
 9.50 11.17 8.86  1.67 -0.64 

[Ni(H2O)6]
2+

 9.90 8.75 9.67  -1.15 -0.23 
[Zn(H2O)6]

2+
 9.50 9.18 8.34  -0.32 -1.16 

RMSD 
d
     1.2 1.0 

a
 measured pKA values are adopted from the Ref.(Gilson and Durrant 2009)

 

b
 computed using restricted open shell DFT for the high spin deprotonated state. The protonated state is closed shell. 

c
 computed assuming no spin state change upon deprotonation. 

d
 RMS errors don’t include outliers, Cr(III) and Mn(III) complexes for QM and QM/MM geometry models, respectively. 

 

 

Table A12. Comparison of gas phase, solvation and aqueous free energies (shown 

in [kcal·mol-1] units) of two different distorted geometries with tetragonal 

elongation or compression found for hexa-aqua Mn(III) complex with geometries 

modeled in vacuum shown in Fig. 7. 

distortion Gg 
a Gsolv 

b Gaq = Gg + Gsolv 

elongation -352416.62 -480.56 -352897.19 

compression -352416.07 -479.97 -352896.04 

difference -0.55 -0.59 -1.15 
a
 calculated according to eq. (5) in the main text. 

b
 calculated solving Poisson equation. 
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Figure A6. Comparison of 15 gas-phase basicities (Gg) based on the ground state electronic 

energies computed with quadruple–ζ (Table S10) or triple–ζ basis sets (Table S12), for geometries 

optimized a: in vacuum and b: in presence of explicit solvent. Energies are given in kcal·mol-1. 

 

 

Table A13. Gas phase basicities Gg of studied 

compounds computed using ccpVTZ basis set of 

triple–ζ quality for O and H atoms, for vacuum (QM) 

and QM/MM geometry models. Metals are described 

as defined in the methods part of the main text of this 

article. All energies are given in [kcal·mol-1] units. 

compound 
Gg 

QM QM/MM 

[Sc(H2O)6]
3+

 21.83 20.51 
[Ti(H2O)6]

3+
 12.16 9.70 

[V(H2O)6]
3+

 15.75 10.59 
[Cr(H2O)6]

3+
 20.60 12.84 

[Mn(H2O)6]
3+

 5.62 -3.26 
[Fe(H2O)6]

3+
 11.62 10.67 

[Co(H2O)6]
3+

 
a
 -4.36 -6.25 

[Co(H2O)6]
3+

 
b
 10.51 5.55 

[Ru(H2O)6]
3+

 21.92 19.24 
[Rh(H2O)6]

3+
 19.17 12.11 

[Mn(H2O)6]
2+

 154.38 156.60 
[Fe(H2O)6]

2+
 157.33 146.77 

[Ni(H2O)6]
2+

 153.94 148.80 
[Zn(H2O)6]

2+
 156.83 156.11 

[Co(H2O)6]
3+

 
c
 -9.21 -10.10 

a
 computed using restricted open shell DFT for the high spin 

deprotonated state. The protonated state is closed shell. 
b
 computed assuming no spin state change upon deprotonation.

 

c
 computed using unrestricted DFT for the deprotonated state. The 

protonated state is closed shell. 
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Table A14. Measured electron affinities (EA) for 

metal (III) ions considered in this work. 

metal ion EA 
a 

Sc
3+

 -24.757 
Ti

3+
 -27.492 

V
3+

 -29.311 
Cr

3+
 -30.960 

Mn
3+

 -33.668 
Fe

3+
 -30.652 

Co
3+

 -33.500 

Ru
3+

 -28.470 
Rh

3+
 -31.060 

a
 EA of M

3+
 ion equals to the negative of first ionization 

potential (IP) of M
2+

 ion. Corresponding measured IP values 
are adopted from (David R. Lide, ed., CRC Handbook of 
Chemistry and Physics, Internet Version 2005, CRC Press, 
Boca Raton, FL, 2005.) 

 

 

a  b 

 

 

 
Figure A7. Partial charge of metal, net partial charges of hydrogen and oxygen atoms computed in 

vacuum for a: vacuum and b: QM/MM geometries of protonated (solid lines) and deprotonated 

(dashed lines) species of second-row transition metal (III) complexes. 
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a  b 

 

 

 
Figure A8. Correlation between measured EA of M3+ ion and RESP charge of a: metal center or b:  

oxygens in protonated complexes of metals from Sc(III) to Fe(III). 

 

 

 

 


