Functional characterization of somatostatin receptors of pancreatic insulin and glucagon-producing cells and their impact on controlling glucose homeostasis

Inaugural-Dissertation

to obtain the academic degree Doctor rerum naturalium (Dr. rer. nat.) submitted to the Department of Biology, Chemistry and Pharmacy of Freie Universität Berlin

by

Vandana Singh

from Lucknow, India

October 2007

1st Reviewer: Prof. Dr. med. Bertram Wiedenmann 2nd Reviewer: Prof. Dr. Dr. h.c. Randolf Menzel

Date of defence: 21.11.07

TABLE OF CONTENTS

TABLE OF CONTENTSI		Ι	
A(CKNOWL	EDGEMENTS	IV
Ał	BBREVIA	ΓΙΟΝS	VI
Ał	BSTRACT		IX
1.	INTRODUCTION		1
	1.1. Endo	ocrine Pancreas	1
	1.1.1.	Development and differentiation of endocrine cells of the pancreas	2
	1.2. β -cel	ll function	5
	1.2.1.	β-cell signaling	7
	1.2.2.	β-cell dysfunction and impaired insulin action in T2DM	9
1.3. α -cell function			10
	1.3.1.	α -cell dysfunction in T2DM	10
	1.4. Soma	atostatin (SST)	11
	1.4.1.	Somatostatin synthesis	12
	1.5. Soma	atostatin receptor subtypes (SSTRs)	13
	1.5.1.	Morphology of SSTRs	13
	1.5.2.	Intracellular signalling	14
	1.5.3.	Expression and functions of SSTRs	15
	1.6. Soma	atostatin ligands	16
	1.6.1.	Somatostatin agonists	16
	1.6.2.	Peptidal somatostatin antagonists	19
	1.7. SSTF	Rs of the endocrine pancreas: expression and function	19
	1.7.1.	Expression of SSTRs in rodents	19
	1.7.2.	Functions of SSTRs in rodents	20
	1.7.3.	Expression of SSTRs in humans	20
	1.7.4.	Functions of SSTRs in humans	22
	1.8. Role of SSTRs analogues in pathophysiology of T1&T2DM		23
	1.9. Нура	othesis of the present study	26
2.	MATERIALS AND METHODS		29
	2.1. Materials		29
	2.1.1.	Reagents/chemicals	29
	2.1.2.	PCR reagents and molecular weight markers	31
		Ι	

2.1.3. Primary Antibodies	32
2.1.4. Antibodies used for immunostaining of tissues	33
2.1.5. Buffers	37
2.1.6. Kits	38
2.1.7. Instruments	39
2.2. Methods	40
2.2.1. Human Islets	40
2.2.1.1.Isolation and culture of isolated human islets	40
2.2.1.2.Incubation experiments	42
2.2.1.3.Human hepatocytes	42
2.2.2. Animals	43
2.2.2.1.Maintenance of the animal colony	43
2.2.2.DNA isolation from the tail biopsies	43
2.2.3.Genotyping of mice by PCR	44
2.2.2.4. Agarose gel electrophoresis of genomic DNA	45
2.2.2.5.High fat diet (HFD) experimental set up	46
2.2.2.5.1. Induction of obesity and insulin resistance in mice	46
2.2.2.6.Determination of metabolic parameters	46
2.2.2.7.Tolerance tests	46
2.2.2.7.1. Glucose tolerance test	47
2.2.2.7.2. Somatostatin- and insulin tolerance tests	47
2.2.2.8.Isolation of murine pancreatic islets	47
2.2.2.8.1. Incubation experiments	50
2.2.2.9.Excision of mouse organs	50
2.2.2.9.1. Determination of glycogen content in murine livers	50
2.2.2.9.2. Determination of triglyceride content in mouse livers	51
2.2.2.9.3. Immunofluorescence of cryosectioned pancreas	51
2.2.3. Histochemical analysis of tissue sections	51
2.2.3.1.Histochemical detection of hepatic glycogen content	51
2.2.3.1.1. PAS (Periodic Acid Schiff) staining for hepatic glycogen	51
2.2.3.1.2. Histochemical detection of hepatic triglyceride content by	Y
Sudan dye method	52
2.2.3.2. Preparation of RNA from tissues	52
2.2.3.3.Preparation of proteins from tissue	53

	2.2.4.	Cell culture	53
	2.2.4	4.1.Immunofluorescence study in INS-1 and InR1-G9 cells	54
	2.2.4	4.2.Insulin secretion assays using INS-1 cells	54
	2.2.4	4.3.Glucagon secretion assay using InR1-G9 cells	55
	2.2.4	4.4.cAMP determination	56
	2.2.4	4.5.RNA isolation from cells	56
	,	2.2.4.5.1. Nuclease digestion to remove DNA and ssRNA	56
	2.2.5.	(Quantitative) real-time RT-PCR	57
	2.2.6.	Protein preparation from cells	59
	2.2.	6.1.SDS-Page and western blotting	59
	2.2.	6.2.Statistical methods	60
3.	RESULTS		61
	3.1. Expres	sion of SSTRs	61
	3.1.1.	Expression of SSTRs in INS-1 cells	61
	3.1.2. I	nhibition of intracellular cAMP levels by SST-14, SSTR2 and	d SSTR3
	selectiv	e agonists in INS-1 cells	63
	3.1.3.	nhibition of insulin secretion by SST-14, SSTR2 and SSTR3	selective
	agonist	in INS-1 cells	64
	3.1.4.	Effect of SNX 482 (R-type Ca ⁺² channel blocker) on SST-14, SST	R2 and
	\$	SSTR3 agonists dependent inhibition on insulin secretion	65
	3.1.5.	Effect of SST-14 and SSTR2 selective agonist on PI3K pathway	68
	3.2. InR1-	G9 cells (hamster glucagonoma cell line)	69
	3.2.1.	Expression of SSTRs in InR1-G9 cells	69
3.2.2. Inhibition of intracellular cAMP levels by SST-14 and SSTR2 se		Inhibition of intracellular cAMP levels by SST-14 and SSTR2 sel	ective
	:	agonist in InR1-G9 cells	70
	3.2.3.	nhibition of glucagon secretion by SST-14 and SSTR2 selective	analogue
	in InR1	-G9 cells	71
	Publication	15	73
4.	DISCUS	SION	94
5.	SUMMA	RY	106
6.	ZUSAM	MENFASSUNG	108
Lis	t of Figures		110
Lis	t of Tables		113
BI	BILIOGRA	РНҮ	114

ACKNOWLEDGEMENTS

Any significant milestone in one's life is made successful by the contributions of many others along the way. The successful completion of this research is a significant milestone for me. I would like to commit that while writing this section I went through all the memories with sweat, tears, late nights, early mornings as well as the sweet memories full with words of appreciations, encouragements, achievements, success and happiness. I find it very difficult, rather lack words to express my feelings to the people who have provided me their immense help and support during my PhD work. I would like to convey my special and heartiest thanks to some very important people without whom the journey of achieving my PhD would have been impossible.

First of all I would like to express my profound indebtedness to my thesis supervisor Prof. Dr. med. Bertram Wiedenmann, Director/ Department of Hepatology and Gastroenterology for his support and encouragement to do better each day. I remember his words when I first met him "It is you, yourself who can make your presence noticed by others otherwise you will be lost in the crowd." His suggestions, invaluable advices and unflinching support gave subtle direction to my efforts. All the times he made the things so simple and easy going, when I was in real tough situations. I feel myself fortunate to have a supervisor like him who was always there to support me with his precious advices and suggestions.

I would like to express my sincere gratitude and deep regard to Priv. Doz. Dr. med. Mathias Strowski for his expertise and patient guidance throughout this research work. It has been both an honour and a challenge for me to work in his group. He provided the guidance, motivation, and instruction to press on through many frustrating times in experimental research. As a mentor, his desire and ability to support me in whatever I needed were crucial in achieving this task. His wide experience with many technical specializations especially "isolation of mice pancreatic islets" and his continuous help and support played a very important role in making this study a success.

I would also like to take the privilege to express my heartfelt gratitude to Prof. Dr. h.c. Randolf Menzel for my thesis supervision and academic support. I thank him for his altruistic amity, helpful discussions and encouragements.

I would also like to owe my special thanks to Priv. Doz. Dr. med. Ursula Plöckinger for providing me helpful and fruitful discussions.

I would like to graciously acknowledge the help of my fellow colleagues, specially Dr. Carsten Grötzinger who provided the friendly environment at the working place and I was always benefited by his scientific experience and guidance. My special thanks to Dr. Stefan Mergler for his helpful comments and constructive suggestions for scientific and official matters. Sylvia Zacharias for supporting me in technical work during all these years for the successful completion of my projects.

I would also like to thank all those who were involved and collaborated in so many ways in these studies.

In this section I would like to mention couple of names that were always there to provide their everlasting support during the ups and downs of this journey. I would like to give my very special thanks to Mr. Chander Neel Chauhan for his immense help, care and support and for being so patient and supportive during the stressful situations, Mr. Vikas Baranwal for being my good friend and helping me by his computer skills.

It will be an incomplete acknowledgement without the mention of almighty God. I thank God for blessing me and bringing me successfully to this milestone achievement of my life.

I would also like to thank my experimental animals who sacrificed their life for making this study successful for the sake of human kind.

Last but not the least, I am extremely grateful and express my deepest gratitude to my parents and brothers for their constant inspiration and silent acceptance of my long absence from home. Their constant love, support and faith in me made it possible to enjoy these years in a home far away from home.

Date:

Vandana Singh

Place: Berlin, Germany

ABBREVIATIONS

ASO	Antisense oligonucleotides
AMPK	AMP-activated protein kinase
APS	Ammonium persulphate
ATP	Adenosine triphosphate
BAT	Brown adipose tissue
BSA	Bovine serum albumin
BW	Body weight
cAMP	Cyclic adenosine mono phosphate
CBD	Common bile duct
cDNA	Complementary DNA
dsRNA	Double-stranded RNA
DEPC	Di-ethyl pyro carbonate
DIO	Diet-induced obesity
DMSO	Dimethyl sulphoxide
DNA	Deoxyribonucleic acid
DMEM	Dubelcco's modified eagels medium
dNTP	Deoxynucleotide triphosphate
DPX	<i>p</i> -xylene- <i>bis</i> -pyridinium bromide
DTT	Di thio threitol
ECL	Enhanced chemiluminescence
EDTA	Ethylenediamine tetra-acetic acid
ELISA	Enzyme linked immunosorbent assay
EIA	Enzymeimmunoassay
eWAT	Epididymal white adipose tissue
FBS	Faetal bovine serum
FCS	Faetal calf serum
G6Pase	Glucose-6-phosphatase
GDP	Guanosine diphosphate
GLP-1	Glucagon like peptide-1
GPCR	G protein-coupled receptor
GcgR	Glucagon receptor
GTP	Guanosine triphosphate
iBAT	Intrascapular brown adipose tissue

IBMX	3-Isobutyl-1-methylxanthine
HBSS	Hank's buffered saline solution
HEPES	(4-(2-hydroxy ethyl)1 piperazine ethane sulfonic acid)
dsDNA	Double stranded DNA
HEK293	Human embryonic kidney 293
HFD	High-fat-diet
HGP	Hepatic glucose production
HGP	Hepatic glucose production
KRB	Krebs-Ringer bicarbonate (KRB) buffer
LPL	Lipoprotein lipase
mAb	Monoclonal antibody
МАРК	Mitogen activated aprotein kinase
mRNA	Messenger RNA
NEFA	Nonesterified free acids
NGS	Normal goat serum
PAGE	Polyachrylamide gel electrophoresis
PAS	Periodic acid-schiff
PAb	Polyclonal antibody
PBS	Phosphate-buffered saline
PCR	Polymerase chain reaction
PEPCK	Phosphoenolpyruvate carboxykinase
PFA	Paraformaldehyde
РКА	Protein kinase A
РКС	Protein kinase C
PLA2	Phospho lipase A2
PLC	Phospho lipase C
PMSF	Phenyl methyl sulphonyl fluoride
RIA	Radioimmunoassay
RNA	Ribonucleic acid
RT	Room temperature
RT-PCR	Reverse transcription- polymerase chain reaction
SDS	Sodium dodecyl sulphate
SREBP	Sterol-regulated element-binding protein

SST	Somatostatin
SST2	Somatostatin receptor subtype-2
SSTR2 ^{-/-}	Homozygous deletion of sst2
ssRNA	Single-stranded RNA
ssDNA	Single stranded DNA
SSTRs	Somatostatin receptor subtypes
TAE	Tris-acetate-EDTA
TEMED	-N,N,N',N'- tetramethylethyylene-diamine
Tris	Tris (hydroxymethyl) aminomethanne
T1DM	Type 1 diabetes mellitus
T2DM	Type 2 diabetes mellitus
UV	Ultraviolet
WT/SSTR2 ^{+/+}	Wild type

Antibodies

CREB	Cyclic AMP response element binding
p-CREB	Phosphorylated cyclic AMP response element binding
FKHR	Forkhead (Drosophila) homolog 1 (rhabdomyosarcoma)
FOXO	Forkhead box, subgroup O
GAPDH	Glyceraldehyde—phosphate dehydrogenase
GCK	Glucokinase
GP	Glycogen phosphorylase
GSK-3	Glycogen synthase kinase-3
GS	Glycogen synthase
PhK	(Glycogen) phosphorylase kinase
PDK1	Phosphoinositide-dependent protein kinase 1

ABSTRACT

Somatostatin (SST) is an important regulator of insulin and glucagon secretion from the endocrine pancreas. All known SSTR subtypes (SSTR1-5) are expressed in α - and β -cells of the endocrine pancreas. In rodents, SSTR2 inhibits glucagon secretion, whereas SSTR5 inhibits insulin secretion. SSTR1, 2, 3 and 5 are expressed in human pancreas, however the role of individual SSTR subtypes in the regulation of glucagon and insulin secretion in humans is not well known. This study aims to characterize the role of SSTR subtypes in the regulation of human glucagon and insulin secretion *in vitro*. Data suggests that in humans, SST regulates both insulin and glucagon secretion mainly via SSTR2. SSTR5 is an additional receptor subtype which inhibits insulin secretion while SSTR1 inhibits insulin secretion from human pancreas.

Postprandial (PP) impaired glucagon inhibition contributes to hyperglycemia in T2DM. In T2DM, hypersecretion of glucagon contributes to an abnormal increase in hepatic glucose production, increased rate of hepatic gluconeogenesis, thereby contributing to hyperglycemia. SST inhibits glucagon secretion in vitro mainly via receptor SSTR2 in rodents. The present study characterizes the important role of SSTR2 in the regulation of glucose homeostasis by using a mouse model of SSTR2 deficient (SSTR2^{-/-}) mice with high fat diet (HFD) induced obesity. Data suggests that SSTR2^{-/-} mice showed increased nonfasting levels of glucose, glucagon and fasting nonesterified fatty acids levels compared to wild type (WT) mice. Islets isolated from SSTR2^{-/-} mice showed an impaired inhibition of glucagon secretion by SST or glucose. Exogenous SST showed an impaired inhibition of glucagon secretion and increased levels of glucose in these animals. In addition, exogenous insulin lowered blood glucose levels less efficiently in SSTR2^{-/-} mice compared to (WT) mice. Noteworthy SSTR2^{-/-} mice had decreased nonfasting hepatic glycogen and lipid content. Interestingly expression and activity of enzymes regulating glycogen synthesis were decreased whereas enzymes facilitating glycogen breakdown and lipolysis were increased in SSTR2^{-/-} mice. SST and SSTR2 selective agonist significantly reduced glucagon-induced glycogenolysis, without influencing de novo glucose production using primary hepatocytes. Taken together, these data suggest that ablation of SSTR2 in mice with HFD induced obesity leads to impaired

inhibition of glucagon secretion by glucose and SST. Increased levels of glucagon leads to impaired glucose control due to increased hepatic glycogen breakdown decreased hepatic glucose storage and less lipid accumulation.

Insulin and glucagon secretion was potently inhibited by SSTR2 selective agonist from insulin (INS-1) and glucagon secreting (InR1-G9) cells. SNX-482 (R-type Ca²⁺ channel blocker) prevented the inhibition of insulin secretion from INS-1-cells mainly via SSTR2. SSTR2 inhibited the expression of pFoxo1 and pAkt, which play the most important role in insulin secretion.

Parts of this study have been published in the following journals

Original articles

V. Singh, M. D. Brendel, S. Zacharias [u.a.] Characterization of somatostatin receptor subtype-specific regulation of insulin and glucagon secretion: an in vitro study on isolated human pancreatic islets In: The journal of clinical endocrinology & metabolism. – 92 (2007), 2, S. 673-680

V. Singh, C. Grötzinger, K. W. Nowak [u.a.] Somatostatin Receptor Subtype-2-Deficient Mice with Diet-Induced Obesity Have Hyperglycemia, Nonfasting Hyperglucagonemia, and Decreased Hepatic Glycogen Deposition In: Endocrinology. – 148 (2007), 8, S. 3887-3899